Sample records for method exhibited linearity

  1. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  2. A Numerical and Theoretical Study of Seismic Wave Diffraction in Complex Geologic Structure

    DTIC Science & Technology

    1989-04-14

    element methods for analyzing linear and nonlinear seismic effects in the surficial geologies relevant to several Air Force missions. The second...exact solution evaluated here indicates that edge-diffracted seismic wave fields calculated by discrete numerical methods probably exhibits significant...study is to demonstrate and validate some discrete numerical methods essential for analyzing linear and nonlinear seismic effects in the surficial

  3. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  4. Total dose bias dependency and ELDRS effects in bipolar linear devices

    NASA Technical Reports Server (NTRS)

    Yui, C. C.; McClure, S. S.; Rex, B. G.; Lehman, J. M.; Minto, T. D.; Wiedeman, M.

    2002-01-01

    Total dose tests of several bipolar linear devices show sensitivity to both dose rate and bias during exposure. All devices exhibited Enhanced Low Dose Rate Sensitivity (ELDRS). An accelerated ELDRS test method for three different devices demonstrate results similar to tests at low dose rate. Behavior and critical parameters from these tests are compared and discussed.

  5. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  6. Tunnel magnetoresistance and linear conductance of double quantum dots strongly coupled to ferromagnetic leads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weymann, Ireneusz, E-mail: weymann@amu.edu.pl

    2015-05-07

    We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition frommore » the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.« less

  7. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  8. Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Cai, Qin; Hsieh, Meng-Juei; Wang, Jun; Luo, Ray

    2014-01-01

    We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement. PMID:24723843

  9. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part II: Comparison of RDA-PE and Radiotracer RDA Measures.

    PubMed

    Schneiderman, Eva; Colón, Ellen; White, Donald J; St John, Samuel

    2015-01-01

    The purpose of this study was to compare the abrasivity of commercial dentifrices by two techniques: the conventional gold standard radiotracer-based Radioactive Dentin Abrasivity (RDA) method; and a newly validated technique based on V8 brushing that included a profilometry-based evaluation of dentin wear. This profilometry-based method is referred to as RDA-Profilometry Equivalent, or RDA-PE. A total of 36 dentifrices were sourced from four global dentifrice markets (Asia Pacific [including China], Europe, Latin America, and North America) and tested blindly using both the standard radiotracer (RDA) method and the new profilometry method (RDA-PE), taking care to follow specific details related to specimen preparation and treatment. Commercial dentifrices tested exhibited a wide range of abrasivity, with virtually all falling well under the industry accepted upper limit of 250; that is, 2.5 times the level of abrasion measured using an ISO 11609 abrasivity reference calcium pyrophosphate as the reference control. RDA and RDA-PE comparisons were linear across the entire range of abrasivity (r2 = 0.7102) and both measures exhibited similar reproducibility with replicate assessments. RDA-PE assessments were not just linearly correlated, but were also proportional to conventional RDA measures. The linearity and proportionality of the results of the current study support that both methods (RDA or RDA-PE) provide similar results and justify a rationale for making the upper abrasivity limit of 250 apply to both RDA and RDA-PE.

  10. Sum-of-Squares-Based Region of Attraction Analysis for Gain-Scheduled Three-Loop Autopilot

    NASA Astrophysics Data System (ADS)

    Seo, Min-Won; Kwon, Hyuck-Hoon; Choi, Han-Lim

    2018-04-01

    A conventional method of designing a missile autopilot is to linearize the original nonlinear dynamics at several trim points, then to determine linear controllers for each linearized model, and finally implement gain-scheduling technique. The validation of such a controller is often based on linear system analysis for the linear closed-loop system at the trim conditions. Although this type of gain-scheduled linear autopilot works well in practice, validation based solely on linear analysis may not be sufficient to fully characterize the closed-loop system especially when the aerodynamic coefficients exhibit substantial nonlinearity with respect to the flight condition. The purpose of this paper is to present a methodology for analyzing the stability of a gain-scheduled controller in a setting close to the original nonlinear setting. The method is based on sum-of-squares (SOS) optimization that can be used to characterize the region of attraction of a polynomial system by solving convex optimization problems. The applicability of the proposed SOS-based methodology is verified on a short-period autopilot of a skid-to-turn missile.

  11. A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity

    NASA Astrophysics Data System (ADS)

    Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier

    2017-12-01

    Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.

  12. Estimation of hysteretic damping of structures by stochastic subspace identification

    NASA Astrophysics Data System (ADS)

    Bajrić, Anela; Høgsberg, Jan

    2018-05-01

    Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.

  13. Simple, Fast, and Sensitive Method for Quantification of Tellurite in Culture Media▿

    PubMed Central

    Molina, Roberto C.; Burra, Radhika; Pérez-Donoso, José M.; Elías, Alex O.; Muñoz, Claudia; Montes, Rebecca A.; Chasteen, Thomas G.; Vásquez, Claudio C.

    2010-01-01

    A fast, simple, and reliable chemical method for tellurite quantification is described. The procedure is based on the NaBH4-mediated reduction of TeO32− followed by the spectrophotometric determination of elemental tellurium in solution. The method is highly reproducible, is stable at different pH values, and exhibits linearity over a broad range of tellurite concentrations. PMID:20525868

  14. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  15. Discovery of the linear region of Near Infrared Diffuse Reflectance spectra using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng

    2018-05-01

    Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  16. Statistical Tests of System Linearity Based on the Method of Surrogate Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, N.; Paez, T.; Red-Horse, J.

    When dealing with measured data from dynamic systems we often make the tacit assumption that the data are generated by linear dynamics. While some systematic tests for linearity and determinism are available - for example the coherence fimction, the probability density fimction, and the bispectrum - fi,u-ther tests that quanti$ the existence and the degree of nonlinearity are clearly needed. In this paper we demonstrate a statistical test for the nonlinearity exhibited by a dynamic system excited by Gaussian random noise. We perform the usual division of the input and response time series data into blocks as required by themore » Welch method of spectrum estimation and search for significant relationships between a given input fkequency and response at harmonics of the selected input frequency. We argue that systematic tests based on the recently developed statistical method of surrogate data readily detect significant nonlinear relationships. The paper elucidates the method of surrogate data. Typical results are illustrated for a linear single degree-of-freedom system and for a system with polynomial stiffness nonlinearity.« less

  17. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation

    NASA Astrophysics Data System (ADS)

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

  18. Optical, scintillation and dosimeter properties of MgO:Tb translucent ceramics synthesized by the SPS method

    NASA Astrophysics Data System (ADS)

    Kawano, Naoki; Kato, Takumi; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-11-01

    MgO translucent ceramics doped with different concentrations of Tb (0.01, 0.05, 0.1, 0.5%) were prepared by the Spark Plasma Sintering (SPS) method. Further, the optical, scintillation, dosimeter properties of were evaluated systematically. In the photoluminescence (PL) and scintillation spectra, sharp emission peaks due to the 4f-4f transitions of Tb3+ were observed. In the PL and scintillation decay curves, the decay time constants were a few ms which were on a typical order of the 4f-4f transitions of Tb3+. The thermally-stimulated luminescence (TSL) glow curves exhibited glow peaks around 80, 160 °C after X ray irradiation of 10 mGy. The intensity of TSL peak at 160 °C exhibited a linear response against X-ray dose over a dose range of 0.1-10 mGy. The optically-stimulated luminescence (OSL) under 590 nm stimulation exhibited strong emissions due to Tb3+ around 385-550 nm after X-ray irradiation. As in TSL, the intensity of OSL peak showed a linear response to X-ray dose, and the dynamic range confirmed was 0.1-1000 mGy.

  19. Detection and description of non-linear interdependence in normal multichannel human EEG data.

    PubMed

    Breakspear, M; Terry, J R

    2002-05-01

    This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex.

  20. TL and OSL properties of beta irradiated Y2O3 nanocrystal

    NASA Astrophysics Data System (ADS)

    Shivaramu, N. J.; Lakshminarasappa, B. N.; Nagabhushana, K. R.; Tatumi, S. H.; Rocca, R. R.; Singh, Fouran

    2017-05-01

    Nanocrystalline yttrium oxide (Y2O3) is synthesized by low temperature sol-gel technique and synthesized material is annealed at 900°C. The annealed β-rayed Y2O3 two TL glows with prominent peak at 407 K and weak glow peak at 643 K were observed in all irradiated samples. It is found that TL glow peaks intensity linearly increases with increase in β-dose from 0.813 - 40.625 Gy. The TL kinetic parameters are calculated using glow curve deconvoluted (GCD) method. The TL glows exhibits general order kinetics. Intense optical stimulated luminescence (OSL) is observed in the Y2O3 sample. These material exhibits linearity and reproducibility and hence, it suggests that this material may be used as dosimetric applications.

  1. New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.

    1992-01-01

    A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.

  2. Cuprate-titanate superconductor and method for making

    DOEpatents

    Toreki, Robert; Poeppelmeier, Kenneth; Dabrowski, Bogdan

    1995-01-01

    A new copper oxide superconductor of the formula Ln.sub.1-x M.sub.x Sr.sub.2 Cu.sub.3-y Ti.sub.y O.sub.7+.delta. is disclosed, and exhibits a Tc of 60.degree. K. with deviations from linear metallic behavior as high as 130.degree. K.

  3. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2015-02-01

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.

  4. High performance liquid chromatographic assay for the quantitation of total glutathione in plasma

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; Silvestrov, Natalia A.; Menter, Julian M.; von Deutsch, Daniel A.; Bayorh, Mohamed A.; Socci, Robin R.; Ganafa, Agaba A.

    2002-01-01

    A simple and widely used homocysteine HPLC procedure was applied for the HPLC identification and quantitation of glutathione in plasma. The method, which utilizes SBDF as a derivatizing agent utilizes only 50 microl of sample volume. Linear quantitative response curve was generated for glutathione over a concentration range of 0.3125-62.50 micromol/l. Linear regression analysis of the standard curve exhibited correlation coefficient of 0.999. Limit of detection (LOD) and limit of quantitation (LOQ) values were 5.0 and 15 pmol, respectively. Glutathione recovery using this method was nearly complete (above 96%). Intra-assay and inter-assay precision studies reflected a high level of reliability and reproducibility of the method. The applicability of the method for the quantitation of glutathione was demonstrated successfully using human and rat plasma samples.

  5. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  6. Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination.

    PubMed

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-15

    A simple and rapid dispersive micro-solid phase extraction (DMSPE) combined with mode-mismatched thermal lens spectrometry as well as fiber optic linear array spectrophotometry was developed for the separation, extraction and determination of sulfadiazine. Graphene oxide was synthesized using the modified Hummers method and functionalized with iron oxide nanoparticles by means of a simple one step chemical coprecipitation method. The synthesized iron oxide functionalized graphene oxide was utilized as an efficient sorbent in DMSPE of sulfadiazine. The retained analyte was eluted by using 180µL of a 6:4 mixture of methanol/acetic acid solution and was spectrophotometrically determined based on the formation of an azo dye through coupling with thenoyltrifluoroacetone. Under the optimized conditions, with the application of spectrophotometry technique and with a sample volume of 100mL, the method exhibited a linear dynamic range of 3-80µg L(-1) with a detection limit of 0.82µg L(-1), an enrichment factor of 200 as well as the relative standard deviations of 2.6% and 4.3% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. Whereas, through the application of the thermal lens spectrometry and a sample volume of 10mL, the method exhibited a linear dynamic range of 1-800µg L(-1) with a detection limit of 0.34µg L(-1) and the relative standard deviations of 3.1% and 5.4% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. The method was successfully applied to the determination of sulfadiazine in milk, honey and water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Computational process to study the wave propagation In a non-linear medium by quasi- linearization

    NASA Astrophysics Data System (ADS)

    Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH

    2018-03-01

    Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.

  8. Parallel/distributed direct method for solving linear systems

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    A new family of parallel schemes for directly solving linear systems is presented and analyzed. It is shown that these schemes exhibit a near optimal performance and enjoy several important features: (1) For large enough linear systems, the design of the appropriate paralleled algorithm is insensitive to the number of processors as its performance grows monotonically with them; (2) It is especially good for large matrices, with dimensions large relative to the number of processors in the system; (3) It can be used in both distributed parallel computing environments and tightly coupled parallel computing systems; and (4) This set of algorithms can be mapped onto any parallel architecture without any major programming difficulties or algorithmical changes.

  9. Cuprate-titanate superconductor and method for making

    DOEpatents

    Toreki, R.; Poeppelmeier, K.; Dabrowski, B.

    1995-05-23

    A new copper oxide superconductor of the formula Ln{sub 1{minus}x}M{sub x}Sr{sub 2}Cu{sub 3{minus}y}Ti{sub y}O{sub 7+{delta}} is disclosed, and exhibits a {Tc} of 60 K with deviations from linear metallic behavior as high as 130 K. 2 Figs.

  10. Detection and correction of laser induced breakdown spectroscopy spectral background based on spline interpolation method

    NASA Astrophysics Data System (ADS)

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.

  11. Integration of system identification and finite element modelling of nonlinear vibrating structures

    NASA Astrophysics Data System (ADS)

    Cooper, Samson B.; DiMaio, Dario; Ewins, David J.

    2018-03-01

    The Finite Element Method (FEM), Experimental modal analysis (EMA) and other linear analysis techniques have been established as reliable tools for the dynamic analysis of engineering structures. They are often used to provide solutions to small and large structures and other variety of cases in structural dynamics, even those exhibiting a certain degree of nonlinearity. Unfortunately, when the nonlinear effects are substantial or the accuracy of the predicted response is of vital importance, a linear finite element model will generally prove to be unsatisfactory. As a result, the validated linear FE model requires further enhancement so that it can represent and predict the nonlinear behaviour exhibited by the structure. In this paper, a pragmatic approach to integrating test-based system identification and FE modelling of a nonlinear structure is presented. This integration is based on three different phases: the first phase involves the derivation of an Underlying Linear Model (ULM) of the structure, the second phase includes experiment-based nonlinear identification using measured time series and the third phase covers augmenting the linear FE model and experimental validation of the nonlinear FE model. The proposed case study is demonstrated on a twin cantilever beam assembly coupled with a flexible arch shaped beam. In this case, polynomial-type nonlinearities are identified and validated with force-controlled stepped-sine test data at several excitation levels.

  12. Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.

    2013-01-01

    Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.

  13. Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy.

    PubMed

    Kazemi, Elahe; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-28

    This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4-60.0 μg L(-1), a detection limit of 0.21 μg L(-1), an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L(-1) level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05-300 μg L(-1), a detection limit of 0.016 μg L(-1) and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L(-1) level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Gradient optimization and nonlinear control

    NASA Technical Reports Server (NTRS)

    Hasdorff, L.

    1976-01-01

    The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.

  15. Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors.

    PubMed

    Jung, S K; Wilson, G S

    1996-02-15

    An oxidase-based glucose sensor has been developed that uses a mercaptosilane-modified platinum electrode to achieve selectivity of electrochemical interferants. A platinum-iridium (9:1) wire (0.178 mm o.d., sensing area of 1.12 mm2) is modified with (3-mercaptopropyl)trimethoxysilane. The modified sensors show excellent operational stability for more than 5 days. Glucose oxidase is immobilized on the modified surface (i) by using 3-maleimidopropionic acid as a linker or (ii) by cross-liking with bovine serum albumin using glutaraldehyde. Sensitivities in the range of 9.97 nA/mM glucose are observed when the enzyme is immobilized by method ii. Lower sensitivities (1.13 x 10(-1) nA/mM glucose) are observed when immobilization method i is employed. In terms of linear response range, the sensor enzyme-immobilized by method i is superior to that immobilized by method ii. The linearity is improved upon coating the enzyme layer with polyurethane. The sensor immobilized by method ii and coated with polyurethane exhibits a linear range to 15 mM glucose and excellent selectivity to glucose (0.47 nA/mM) against interferants such as ascorbic acid, uric acid, and acetaminophen.

  16. An hp symplectic pseudospectral method for nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  17. Graphite nanocomposites sensor for multiplex detection of antioxidants in food.

    PubMed

    Ng, Khan Loon; Tan, Guan Huat; Khor, Sook Mei

    2017-12-15

    Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) are synthetic antioxidants used in the food industry. Herein, we describe the development of a novel graphite nanocomposite-based electrochemical sensor for the multiplex detection and measurement of BHA, BHT, and TBHQ levels in complex food samples using a linear sweep voltammetry technique. Moreover, our newly established analytical method exhibited good sensitivity, limit of detection, limit of quantitation, and selectivity. The accuracy and reliability of analytical results were challenged by method validation and comparison with the results of the liquid chromatography method, where a linear correlation of more than 0.99 was achieved. The addition of sodium dodecyl sulfate as supporting additive further enhanced the LSV response (anodic peak current, I pa ) of BHA and BHT by 2- and 20-times, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 3D volumetry comparison using 3T magnetic resonance imaging between normal and adenoma-containing pituitary glands.

    PubMed

    Roldan-Valadez, Ernesto; Garcia-Ulloa, Ana Cristina; Gonzalez-Gutierrez, Omar; Martinez-Lopez, Manuel

    2011-01-01

    Computed-assisted three-dimensional data (3D) allows for an accurate evaluation of volumes compared with traditional measurements. An in vitro method comparison between geometric volume and 3D volumetry to obtain reference data for pituitary volumes in normal pituitary glands (PGs) and PGs containing adenomas. Prospective, transverse, analytical study. Forty-eight subjects underwent brain magnetic resonance imaging (MRI) with 3D sequencing for computer-aided volumetry. PG phantom volumes by both methods were compared. Using the best volumetric method, volumes of normal PGs and PGs with adenoma were compared. Statistical analysis used the Bland-Altman method, t-statistics, effect size and linear regression analysis. Method comparison between 3D volumetry and geometric volume revealed a lower bias and precision for 3D volumetry. A total of 27 patients exhibited normal PGs (mean age, 42.07 ± 16.17 years), although length, height, width, geometric volume and 3D volumetry were greater in women than in men. A total of 21 patients exhibited adenomas (mean age 39.62 ± 10.79 years), and length, height, width, geometric volume and 3D volumetry were greater in men than in women, with significant volumetric differences. Age did not influence pituitary volumes on linear regression analysis. Results from the present study showed that 3D volumetry was more accurate than the geometric method. In addition, the upper normal limits of PGs overlapped with lower volume limits during early stage microadenomas.

  19. Modeling Outcomes with Floor or Ceiling Effects: An Introduction to the Tobit Model

    ERIC Educational Resources Information Center

    McBee, Matthew

    2010-01-01

    In gifted education research, it is common for outcome variables to exhibit strong floor or ceiling effects due to insufficient range of measurement of many instruments when used with gifted populations. Common statistical methods (e.g., analysis of variance, linear regression) produce biased estimates when such effects are present. In practice,…

  20. Significance of parametric spectral ratio methods in detection and recognition of whispered speech

    NASA Astrophysics Data System (ADS)

    Mathur, Arpit; Reddy, Shankar M.; Hegde, Rajesh M.

    2012-12-01

    In this article the significance of a new parametric spectral ratio method that can be used to detect whispered speech segments within normally phonated speech is described. Adaptation methods based on the maximum likelihood linear regression (MLLR) are then used to realize a mismatched train-test style speech recognition system. This proposed parametric spectral ratio method computes a ratio spectrum of the linear prediction (LP) and the minimum variance distortion-less response (MVDR) methods. The smoothed ratio spectrum is then used to detect whispered segments of speech within neutral speech segments effectively. The proposed LP-MVDR ratio method exhibits robustness at different SNRs as indicated by the whisper diarization experiments conducted on the CHAINS and the cell phone whispered speech corpus. The proposed method also performs reasonably better than the conventional methods for whisper detection. In order to integrate the proposed whisper detection method into a conventional speech recognition engine with minimal changes, adaptation methods based on the MLLR are used herein. The hidden Markov models corresponding to neutral mode speech are adapted to the whispered mode speech data in the whispered regions as detected by the proposed ratio method. The performance of this method is first evaluated on whispered speech data from the CHAINS corpus. The second set of experiments are conducted on the cell phone corpus of whispered speech. This corpus is collected using a set up that is used commercially for handling public transactions. The proposed whisper speech recognition system exhibits reasonably better performance when compared to several conventional methods. The results shown indicate the possibility of a whispered speech recognition system for cell phone based transactions.

  1. A stable 1D multigroup high-order low-order method

    DOE PAGES

    Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...

    2016-07-13

    The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less

  2. A Novel Real-Time Reference Key Frame Scan Matching Method.

    PubMed

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-05-07

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.

  3. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles.

    PubMed

    Kanchana, P; Sekar, C

    2015-02-25

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0×10(-7) to 3.5×10(-4) M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A General Method for Solving Systems of Non-Linear Equations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.; Deiss, Ron (Technical Monitor)

    1995-01-01

    The method of steepest descent is modified so that accelerated convergence is achieved near a root. It is assumed that the function of interest can be approximated near a root by a quadratic form. An eigenvector of the quadratic form is found by evaluating the function and its gradient at an arbitrary point and another suitably selected point. The terminal point of the eigenvector is chosen to lie on the line segment joining the two points. The terminal point found lies on an axis of the quadratic form. The selection of a suitable step size at this point leads directly to the root in the direction of steepest descent in a single step. Newton's root finding method not infrequently diverges if the starting point is far from the root. However, the current method in these regions merely reverts to the method of steepest descent with an adaptive step size. The current method's performance should match that of the Levenberg-Marquardt root finding method since they both share the ability to converge from a starting point far from the root and both exhibit quadratic convergence near a root. The Levenberg-Marquardt method requires storage for coefficients of linear equations. The current method which does not require the solution of linear equations requires more time for additional function and gradient evaluations. The classic trade off of time for space separates the two methods.

  5. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  6. Precision of dehydroascorbic acid quantitation with the use of the subtraction method--validation of HPLC-DAD method for determination of total vitamin C in food.

    PubMed

    Mazurek, Artur; Jamroz, Jerzy

    2015-04-15

    In food analysis, a method for determination of vitamin C should enable measuring of total content of ascorbic acid (AA) and dehydroascorbic acid (DHAA) because both chemical forms exhibit biological activity. The aim of the work was to confirm applicability of HPLC-DAD method for analysis of total content of vitamin C (TC) and ascorbic acid in various types of food by determination of validation parameters such as: selectivity, precision, accuracy, linearity and limits of detection and quantitation. The results showed that the method applied for determination of TC and AA was selective, linear and precise. Precision of DHAA determination by the subtraction method was also evaluated. It was revealed that the results of DHAA determination obtained by the subtraction method were not precise which resulted directly from the assumption of this method and the principles of uncertainty propagation. The proposed chromatographic method should be recommended for routine determinations of total vitamin C in various food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Analysis of periodically excited non-linear systems by a parametric continuation technique

    NASA Astrophysics Data System (ADS)

    Padmanabhan, C.; Singh, R.

    1995-07-01

    The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot

    The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less

  9. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  10. Comparison of serum copper determination by colorimetric and atomic absorption spectrometric methods in seven different laboratories. The S.F.B.C. (Société Française de Biologie Clinique) Trace Element Group.

    PubMed

    Arnaud, J; Chappuis, P; Zawislak, R; Houot, O; Jaudon, M C; Bienvenu, F; Bureau, F

    1993-02-01

    An interlaboratory collaborative trial was conducted on the determination of serum copper using two different methods, based on colorimetry (test combination Copper, Boehringer Mannheim, Mannheim, Germany) and flame atomic absorption spectrometry (FAAS). The general performance of the colorimetric method was below that of FAAS, except for sensitivity and linear range, as assessed by detection limit (0.44 versus 1.32 mumol/L) and upper limit of linearity (150 versus 50 mumol/L). The range of the between-run CVs and the recovery of standard additions were, respectively, 2.3-11.9% and 92-127% for the colorimetric method and 1.1-6.0% and 93-101% for the FAAS method. Interferences were minimal with both methods. The two techniques correlated satisfactorily (the correlation coefficients ranged from 0.945-0.970 among laboratories) but the colorimetric assay exhibited slightly higher results than the FAAS method. Each method was transferable among laboratories.

  11. Evaluation of the DCA Vantage analyzer for HbA 1c assay.

    PubMed

    Szymezak, Jean; Leroy, Nathalie; Lavalard, Emmanuelle; Gillery, Philippe

    2008-01-01

    Measurement of HbA 1c is key in monitoring diabetic patients in both laboratories and clinical units, where HbA 1c results are used as part of patient education. We have evaluated the DCA Vantage, a new device for immunological assay of HbA 1c. HbA 1c results obtained were evaluated in terms of precision, linearity, specificity and practicability, and were compared with results obtained by a Variant II HPLC method. The method exhibited intra- and inter-assay coefficients of variation lower than 2.6% and 4.0%, respectively, and good correlation with the comparison HPLC method (r2=0.9776). No interference was noted in the presence of labile HbA 1c or carbamylated hemoglobin. The new device exhibited improved practicability characteristics and allowed better sample identification, better management of quality control routines and greater connectivity possibilities compared to the previous DCA 2000 analyzer. This new analyzer exhibited analytical and practical characteristics very suitable for HbA 1c assay for laboratory or point-of-care use according to good laboratory practice.

  12. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974). © 2012 American Academy of Forensic Sciences.

  13. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.

    PubMed

    Royes, Jorge; Provenzano, Clementina; Pagliusi, Pasquale; Tejedor, Rosa M; Piñol, Milagros; Oriol, Luis

    2014-11-01

    The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Scaling the Non-linear Impact Response of Flat and Curved Composite Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Chunchu, Prasad B.; Rose, Cheryl A.; Feraboli, Paolo; Jackson, Wade C.

    2005-01-01

    The application of scaling laws to thin flat and curved composite panels exhibiting nonlinear response when subjected to low-velocity transverse impact is investigated. Previous research has shown that the elastic impact response of structural configurations exhibiting geometrically linear response can be effectively scaled. In the present paper, a preliminary experimental study is presented to assess the applicability of the scaling laws to structural configurations exhibiting geometrically nonlinear deformations. The effect of damage on the scalability of the structural response characteristics, and the effect of scale on damage development are also investigated. Damage is evaluated using conventional methods including C-scan, specimen de-plying and visual inspection of the impacted panels. Coefficient of restitution and normalized contact duration are also used to assess the extent of damage. The results confirm the validity of the scaling parameters for elastic impacts. However, for the panels considered in the study, the extent and manifestation of damage do not scale according to the scaling laws. Furthermore, the results indicate that even though the damage does not scale, the overall panel response characteristics, as indicated by contact force profiles, do scale for some levels of damage.

  15. Performance prediction of high Tc superconducting small antennas using a two-fluid-moment method model

    NASA Astrophysics Data System (ADS)

    Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.

    1992-01-01

    The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.

  16. Variational principles for dissipative (sub)systems, with applications to the theory of linear dispersion and geometrical optics

    DOE PAGES

    Dodin, I. Y.; Zhmoginov, A. I.; Ruiz, D. E.

    2017-02-24

    Applications of variational methods are typically restricted to conservative systems. Some extensions to dissipative systems have been reported too but require ad hoc techniques such as the artificial doubling of the dynamical variables. We propose a different approach. Here, we show that for a broad class of dissipative systems of practical interest, variational principles can be formulated using constant Lagrange multipliers and Lagrangians nonlocal in time, which allow treating reversible and irreversible dynamics on the same footing. A general variational theory of linear dispersion is formulated as an example. Particularly, we present a variational formulation for linear geometrical optics inmore » a general dissipative medium, which is allowed to be nonstationary, inhomogeneous, anisotropic, and exhibit both temporal and spatial dispersion simultaneously.« less

  17. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  18. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An

    2016-03-01

    A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.

  19. Geopotential Error Analysis from Satellite Gradiometer and Global Positioning System Observables on Parallel Architecture

    NASA Technical Reports Server (NTRS)

    Schutz, Bob E.; Baker, Gregory A.

    1997-01-01

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  20. TL and OSL characterization of Eu3+ doped Y2O3: Application in dosimetry

    NASA Astrophysics Data System (ADS)

    Shivaramu, N. J.; Coetsee, E.; Swart, H. C.

    2018-05-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of beta irradiated Eu3+ doped Y2O3 nanophosphor have been investigated in this paper. The Eu3+ doped Y2O3 nanophosphor was synthesized by solution combustion technique and synthesized material was annealed at 900°C. The annealed materials were exposed to β-ray for various dose. TL glow with prominent peak at 403 K and weak glow peak at 660 K were observed in all irradiated samples. It is found that TL glow peaks intensity linearly increases with increase in β-dose from 8.125 - 40.625 Gy. The TL kinetic parameters were calculated using glow curve deconvoluted (GCD) and peak shape methods. The TL glows exhibits general order kinetics. Intense continuous wave optical stimulated luminescence (CW-OSL) was observed in the sample. These material exhibits linearity at low dose, good reproducibility and response of intense OSL and hence, these results suggests that this material may be suitable for dosimetry applications.

  1. Geopotential error analysis from satellite gradiometer and global positioning system observables on parallel architectures

    NASA Astrophysics Data System (ADS)

    Baker, Gregory Allen

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  2. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Suo, Hao; Sun, Baoshan

    2017-11-15

    Vidal Blanc grape (Vitis vinifera cv.) is the predominant white grape variety used for the production of icewine in China's Liaoning province. In this paper, the development and validation of the method by ultrahigh-performance liquid chromatography-tandem mass spectrometry has been performed for determination of the detailed phenolic composition in the skin, seed and stem of Vidal grapes. The validation of the method was realized by calculating the linearity, repeatability, precision, stability and the limits of detection (LOD) and quantification (LOQ) of standard solutions. All the curves exhibited good linearity (r 2 >0.9997) and the LOD and LOQ were in the range of 0.002-0.025 and 0.006-0.086μg/ml, respectively. Good repeatability (RSD<4.3%) and stability (RSD<3.7%) were also found. Results confirmed that the developed method was more effective and sensitive for simultaneous determination of the major phenolic compounds in Vidal grape pomace. The optimized and validated method of ultrahigh-performance liquid chromatography tandem two complementary techniques, fourier transform ion cyclotron resonance mass spectrometry and triple-quadrupole mass spectrometry, allowed to identify and quantify up to 35 phenolic compounds in Vidal grape pomace, which has, as far as we know, been reported this grapevine variety for the first time. Seeds, skins and stems exhibited different qualitative and quantitative phenolic profiles. These results provided useful information for recovery of phenolic antioxidants from different parts of icewine pomace. Copyright © 2017. Published by Elsevier B.V.

  3. The simple determination method for anthocyanidin aglycones in fruits using ultra-high-performance liquid chromatography.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Kim, Dong-Man; Watanabe, Masaki; Park, Hyun-Jin; Jang, Hae Won; Lee, Jangho; Ha, Jaeho

    2015-01-01

    The simple determination method for anthocyanidin aglycones in fruits using ultra-high-performance liquid chromatography (UHPLC) coupled with the heating-block acidic hydrolysis method was validated through the precision, accuracy and linearity. The UHPLC separation was performed on a reversed-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) with a photodiode-array detector. The limits of detection and quantification of the UHPLC analyses were 0.09 and 0.29 mg/kg for delphinidin, 0.08 and 0.24 mg/kg for cyanidin, 0.09 and 0.26 mg/kg for petunidin, 0.14 and 0.42 mg/kg for pelargonidin, 0.16 and 0.48 mg/kg for peonidin and 0.30 and 0.91 mg/kg for malvidin, respectively. The intra- and inter-day precisions of individual anthocyanidin aglycones were <10.3%. All calibration curves exhibited good linearity (r = 0.999) within the tested ranges. The total run time of UHPLC was 8 min. The simple preparation method with UHPLC detection in this study presented herein significantly improved the speed and the simplicity for preparation step of delphinidin, cyanidin, petunidin, pelargonidin, peonidin and malvidin in fruits. Especially, the UHPLC detection exhibited good resolution in spite of shorter run time about four times than conventional HPLC detection. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Evaluation of Two Statistical Methods Provides Insights into the Complex Patterns of Alternative Polyadenylation Site Switching

    PubMed Central

    Li, Jie; Li, Rui; You, Leiming; Xu, Anlong; Fu, Yonggui; Huang, Shengfeng

    2015-01-01

    Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3’-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3’-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3’-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified. PMID:25875641

  5. The compression–error trade-off for large gridded data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, Jeremy D.; Zender, Charles S.

    The netCDF-4 format is widely used for large gridded scientific data sets and includes several compression methods: lossy linear scaling and the non-lossy deflate and shuffle algorithms. Many multidimensional geoscientific data sets exhibit considerable variation over one or several spatial dimensions (e.g., vertically) with less variation in the remaining dimensions (e.g., horizontally). On such data sets, linear scaling with a single pair of scale and offset parameters often entails considerable loss of precision. We introduce an alternative compression method called "layer-packing" that simultaneously exploits lossy linear scaling and lossless compression. Layer-packing stores arrays (instead of a scalar pair) of scalemore » and offset parameters. An implementation of this method is compared with lossless compression, storing data at fixed relative precision (bit-grooming) and scalar linear packing in terms of compression ratio, accuracy and speed. When viewed as a trade-off between compression and error, layer-packing yields similar results to bit-grooming (storing between 3 and 4 significant figures). Bit-grooming and layer-packing offer significantly better control of precision than scalar linear packing. Relative performance, in terms of compression and errors, of bit-groomed and layer-packed data were strongly predicted by the entropy of the exponent array, and lossless compression was well predicted by entropy of the original data array. Layer-packed data files must be "unpacked" to be readily usable. The compression and precision characteristics make layer-packing a competitive archive format for many scientific data sets.« less

  6. The compression–error trade-off for large gridded data sets

    DOE PAGES

    Silver, Jeremy D.; Zender, Charles S.

    2017-01-27

    The netCDF-4 format is widely used for large gridded scientific data sets and includes several compression methods: lossy linear scaling and the non-lossy deflate and shuffle algorithms. Many multidimensional geoscientific data sets exhibit considerable variation over one or several spatial dimensions (e.g., vertically) with less variation in the remaining dimensions (e.g., horizontally). On such data sets, linear scaling with a single pair of scale and offset parameters often entails considerable loss of precision. We introduce an alternative compression method called "layer-packing" that simultaneously exploits lossy linear scaling and lossless compression. Layer-packing stores arrays (instead of a scalar pair) of scalemore » and offset parameters. An implementation of this method is compared with lossless compression, storing data at fixed relative precision (bit-grooming) and scalar linear packing in terms of compression ratio, accuracy and speed. When viewed as a trade-off between compression and error, layer-packing yields similar results to bit-grooming (storing between 3 and 4 significant figures). Bit-grooming and layer-packing offer significantly better control of precision than scalar linear packing. Relative performance, in terms of compression and errors, of bit-groomed and layer-packed data were strongly predicted by the entropy of the exponent array, and lossless compression was well predicted by entropy of the original data array. Layer-packed data files must be "unpacked" to be readily usable. The compression and precision characteristics make layer-packing a competitive archive format for many scientific data sets.« less

  7. A Novel Real-Time Reference Key Frame Scan Matching Method

    PubMed Central

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-01-01

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems. PMID:28481285

  8. Relativistic Ionization with Intense Linearly Polarized Light

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas Plummer

    The Strong Field Approximation (SFA) method is used to derive relativistic ionization rate expressions for ground state hydrogen-like atoms in the presence of an intense electromagnetic field. The emitted particle, which is initially bound to a hydrogen nucleus, is either an electron described by the Dirac equation, with spin effects fully included, or a spinless "electron" described by the Klein-Gordon equation. The derivations and subsequent calculations for both particles are made assuming a linearly polarized electromagnetic field which is monochromatic and which exhibits neither diffraction nor temporal dependence. From each of the relativistic ionization rate expressions, the corresponding expression in the nonrelativistic limit is derived. The resultant expressions are found to be equivalent to those derived using the SFA with the nonrelativistic formalism. This comparison provides the first check of the validity for the core results of this dissertation. Intensity-dependent ionization rates are then calculated for two ultraviolet frequencies using a numerical implementation of the derived expressions. Calculations of ionization rates and related phenomena demonstrate that there are negligible differences between relativistic and nonrelativistic predictions for low intensities. In addition, the differences in behavior between linearly and circularly polarized ionizing fields and between particles with and without spin are explored. The spin comparisons provide additional confidence in the derivations by showing negligible differences between ionization rates for Dirac and Klein -Gordon particles in strong linearly-polarized fields. Also of interest are the differential transition rates which exhibit dynamic profiles as the intensity is increased. This behavior is interpreted as an indication of more atomic influence for linearly polarized electromagnetic (em) fields than for circularly polarized em fields.

  9. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data.

    PubMed

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-05-15

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection.

  10. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data

    PubMed Central

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-01-01

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection. PMID:28505135

  11. Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies.

    PubMed

    Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre

    2018-03-15

    Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. We propose a methodology based on Cox mixed models and written under the R language. This semiparametric model is indeed flexible enough to fit duration data. To compare log-linear and Cox mixed models in terms of goodness-of-fit on real data sets, we also provide a procedure based on simulations and quantile-quantile plots. We present two examples from a data set of speech and gesture interactions, which illustrate the limitations of linear and log-linear mixed models, as compared to Cox models. The linear models are not validated on our data, whereas Cox models are. Moreover, in the second example, the Cox model exhibits a significant effect that the linear model does not. We provide methods to select the best-fitting models for repeated duration data and to compare statistical methodologies. In this study, we show that Cox models are best suited to the analysis of our data set.

  12. Calculation of skin-stiffener interface stresses in stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Cohen, David; Hyer, Michael W.

    1987-01-01

    A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.

  13. Time Domain Stability Margin Assessment Method

    NASA Technical Reports Server (NTRS)

    Clements, Keith

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  14. An implemented method of asymmetric transmission for arbitrary polarization base in multi-layered chiral meta-surface

    NASA Astrophysics Data System (ADS)

    Xiao, Zhong-yin; Zou, Huan-ling; Xu, Kai-Kai; Tang, Jing-yao

    2018-03-01

    Asymmetric transmission of linearly or circularly polarized waves is a well-established property not only for three-layered chiral structures but for multi-layered ones. Here we show a method which can simultaneously implement asymmetric transmission for arbitrary base vector polarized wave in multi-layered chiral meta-surface. We systematically study the implemented method based on a multi-layered chiral structure consisting of a y-shape, a half gammadion and an S-shape in the terahertz gap. A numerical simulation was carried out, followed by an explanation of the asymmetric transmission mechanism in these structures proposed in this work. The simulated results indicate that the multi-layered chiral structure can realize a maximum asymmetric transmission of 0.89 and 0.28 for circularly and linearly polarized waves, respectively, which exhibit magnitude improvement over previous chiral metamaterials. Specifically, the maximum asymmetric transmitted coefficient of the multi-layered chiral structure is insensitivity to the incident angles from 0° to 45° for circularly polarized components. Additionally, we also study the influence of structural parameters on the asymmetric transmission effect for both linearly and circularly polarized waves in detail.

  15. A comparison of linear and non-linear data assimilation methods using the NEMO ocean model

    NASA Astrophysics Data System (ADS)

    Kirchgessner, Paul; Tödter, Julian; Nerger, Lars

    2015-04-01

    The assimilation behavior of the widely used LETKF is compared with the Equivalent Weight Particle Filter (EWPF) in a data assimilation application with an idealized configuration of the NEMO ocean model. The experiments show how the different filter methods behave when they are applied to a realistic ocean test case. The LETKF is an ensemble-based Kalman filter, which assumes Gaussian error distributions and hence implicitly requires model linearity. In contrast, the EWPF is a fully nonlinear data assimilation method that does not rely on a particular error distribution. The EWPF has been demonstrated to work well in highly nonlinear situations, like in a model solving a barotropic vorticity equation, but it is still unknown how the assimilation performance compares to ensemble Kalman filters in realistic situations. For the experiments, twin assimilation experiments with a square basin configuration of the NEMO model are performed. The configuration simulates a double gyre, which exhibits significant nonlinearity. The LETKF and EWPF are both implemented in PDAF (Parallel Data Assimilation Framework, http://pdaf.awi.de), which ensures identical experimental conditions for both filters. To account for the nonlinearity, the assimilation skill of the two methods is assessed by using different statistical metrics, like CRPS and Histograms.

  16. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  17. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE PAGES

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    2017-09-13

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  18. Multifactor analysis and simulation of the surface runoff and soil infiltration at different slope gradients

    NASA Astrophysics Data System (ADS)

    Huang, J.; Kang, Q.; Yang, J. X.; Jin, P. W.

    2017-08-01

    The surface runoff and soil infiltration exert significant influence on soil erosion. The effects of slope gradient/length (SG/SL), individual rainfall amount/intensity (IRA/IRI), vegetation cover (VC) and antecedent soil moisture (ASM) on the runoff depth (RD) and soil infiltration (INF) were evaluated in a series of natural rainfall experiments in the South of China. RD is found to correlate positively with IRA, IRI, and ASM factors and negatively with SG and VC. RD decreased followed by its increase with SG and ASM, it increased with a further decrease with SL, exhibited a linear growth with IRA and IRI, and exponential drop with VC. Meanwhile, INF exhibits a positive correlation with SL, IRA and IRI and VC, and a negative one with SG and ASM. INF was going up and then down with SG, linearly rising with SL, IRA and IRI, increasing by a logit function with VC, and linearly falling with ASM. The VC level above 60% can effectively lower the surface runoff and significantly enhance soil infiltration. Two RD and INF prediction models, accounting for the above six factors, were constructed using the multiple nonlinear regression method. The verification of those models disclosed a high Nash-Sutcliffe coefficient and low root-mean-square error, demonstrating good predictability of both models.

  19. RP-HPLC Method Development and Validation for Determination of Eptifibatide Acetate in Bulk Drug Substance and Pharmaceutical Dosage Forms.

    PubMed

    Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad

    2017-01-01

    A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r 2 =0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms.

  20. Feature-based and statistical methods for analyzing the Deepwater Horizon oil spill with AVIRIS imagery

    USGS Publications Warehouse

    Rand, R.S.; Clark, R.N.; Livo, K.E.

    2011-01-01

    The Deepwater Horizon oil spill covered a very large geographical area in the Gulf of Mexico creating potentially serious environmental impacts on both marine life and the coastal shorelines. Knowing the oil's areal extent and thickness as well as denoting different categories of the oil's physical state is important for assessing these impacts. High spectral resolution data in hyperspectral imagery (HSI) sensors such as Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) provide a valuable source of information that can be used for analysis by semi-automatic methods for tracking an oil spill's areal extent, oil thickness, and oil categories. However, the spectral behavior of oil in water is inherently a highly non-linear and variable phenomenon that changes depending on oil thickness and oil/water ratios. For certain oil thicknesses there are well-defined absorption features, whereas for very thin films sometimes there are almost no observable features. Feature-based imaging spectroscopy methods are particularly effective at classifying materials that exhibit specific well-defined spectral absorption features. Statistical methods are effective at classifying materials with spectra that exhibit a considerable amount of variability and that do not necessarily exhibit well-defined spectral absorption features. This study investigates feature-based and statistical methods for analyzing oil spills using hyperspectral imagery. The appropriate use of each approach is investigated and a combined feature-based and statistical method is proposed.

  1. Noise Identification in a Hot Transonic Jet Using Low-Dimensional Methods

    DTIC Science & Technology

    2008-03-01

    calibration between the nozzle static pressure (transducer) and total pressure ( pitot probe) reveals a nearly linear relationship between the two, exhibiting... rakes of hot-wires. Multi-point correlations of velocity components coupled with assumptions of homogeneity and periodicity in the jet flow flied...axisymmetric incompressible jet at one downstream position using an in-house designed rake of 138 hot-wires. The experiment was then carried out at multiple

  2. COED Transactions, Vol. IX, No. 1, January 1977. Rapid Production of System Phase-Plane Portraits on the EAI 380 Hybrid/Analog Computer.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    The method of phase-plane presentation as an educational tool in the study of the dynamic behavior of systems is discussed. In the treatment of nonlinear or piecewise-linear systems, the phase-plane portrait is used to exhibit the nature of singular points, regions of stability, and switching lines to aid comprehension. A technique is described by…

  3. Reformulating Polycaprolactone Fumarate to Eliminate Toxic Diethylene Glycol: Effects of Polymeric Branching and Autoclave Sterilization on Material Properties

    PubMed Central

    Runge, M. Brett; Wang, Huan; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J.

    2011-01-01

    Polycaprolactone fumarate (PCLF) is a cross-linkable derivate of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of the previously studied PCLF (PCLFDEG) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLFPPD) or glycerol (PCLFGLY). PCLFPPD is linear and resembles the previously studied PCLFDEG, while PCLFGLY is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLFPPD has material properties similar to the previously studied PCLFDEG. The branched PCLFGLY exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate FDA approvable sterilization method is addressed. This study shows that autoclave sterilization on PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties. PMID:21911087

  4. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  5. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    PubMed

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.

  6. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations.

    PubMed

    Balbus, Steven A

    2016-10-18

    A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.

  7. Self-assembled nanostructures of linear arylacetylenes and their aza-substituted analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jia-Ju; Department of Physics and Materials Science and Centre of Super Diamond and Advanced Films; Yang, Xiong-Bo

    2016-06-15

    A series of linear phenylene ethynylene molecules have been synthesized, and aza-substitution has been used as a strategy to fine-tune the properties of the molecules. All the compounds exhibited pure blue emission both in solution and solid state, and fluorescence quantum yields as high as 0.66, 0.63 and 0.82 were found in chloroform solutions. The well-defined nanostructures such as quasi-cubes, cubes and rods were fabricated by self-assembly method from these compounds. The photophysical properties and aggregation behavior of self-assembled structures were analyzed in detail. The morphology as well as photophysical properties of these nanostructures have been tuned with selective requirements.

  8. Study on photophysical and aggregation induced emission recognition of 1,8-naphthalimide probe for casein by spectroscopic method

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liu, Zhen; Liang, Xuhua; Fan, Jun; Han, Quan

    2013-05-01

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated in different solutions. The fluorescence intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association emission with increasing solvent polarity. Moreover, the spectral red-shift and intensity quench in protic solvents were caused by the excited-state hydrogen bond strengthening effect. Density Functional Theory (DFT) calculations revealed that 1 exhibited a strong TICT character. The AIE mechanism of 1 with casein was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with Tyr and Trp residues, resulting in the aggregation of 1 on the casein surface and emission enhancement. Based on this, a novel casein assay method was developed. The proposed exhibited a good linear range from 0.1 to 22 μg mL-1, with the detection limit of 2.8 ng mL-1. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied to the determination of casein in milk powder samples and the results were in good agreement with the result of Biuret method.

  9. Application of closed-form solutions to a mesh point field in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.

    1985-01-01

    A computer simulation method is discussed that provides for equivalent simulation accuracy, but that exhibits significantly lower CPU running time per bias point compared to other techniques. This new method is applied to a mesh point field as is customary in numerical integration (NI) techniques. The assumption of a linear approximation for the dependent variable, which is typically used in the finite difference and finite element NI methods, is not required. Instead, the set of device transport equations is applied to, and the closed-form solutions obtained for, each mesh point. The mesh point field is generated so that the coefficients in the set of transport equations exhibit small changes between adjacent mesh points. Application of this method to high-efficiency silicon solar cells is described; and the method by which Auger recombination, ambipolar considerations, built-in and induced electric fields, bandgap narrowing, carrier confinement, and carrier diffusivities are treated. Bandgap narrowing has been investigated using Fermi-Dirac statistics, and these results show that bandgap narrowing is more pronounced and that it is temperature-dependent in contrast to the results based on Boltzmann statistics.

  10. Linear Motor With Air Slide

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  11. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Hwang, Jin-Bong; Park, Hyun-Jin; Seo, Dongwon; Ha, Jaeho

    2015-11-15

    A rapid method for the determination of 14 types of isoflavones in food using ultra-high performance liquid chromatography (UHPLC) was validated in terms of precision, accuracy, sensitivity and linearity. The UHPLC separation was performed on a reverse-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) using a photo diode array detector that was fixed to 260 nm. The limits of detection and quantification of the UHPLC analyses ranged from 0.03 to 0.33 mg kg(-1). The intra-day and inter-day precision of the individual isoflavones were less than 11.77% and calibration curves exhibited good linearity (r(2) = 0.99) within the tested ranges. These results suggest that the rapid method used in this study could be available to determine of 14 types of isoflavones in a variety of food such as soy bean, black bean, red bean and soybean paste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    ERIC Educational Resources Information Center

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  13. LDV measurement of small nonlinearities in flat and curved membranes. A model for eardrum nonlinear acoustic behaviour

    NASA Astrophysics Data System (ADS)

    Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx

    2016-06-01

    Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.

  14. Simultaneous Determination of Piperine, Capsaicin, and Dihydrocapsaicin in Korean Instant-Noodle (Ramyun) Soup Base Using High-Performance Liquid Chromatography with Ultraviolet Detection.

    PubMed

    Shim, You-Shin; Kim, Jong-Chan; Jeong, Seung-Weon

    2016-01-01

    A simultaneous analytical method for piperine, capsaicin, and dihydrocapsaicin in Korean instant-noodle soup base using HPLC was validated in terms of precision, accuracy, sensitivity, and linearity. The HPLC separation was performed on a reversed-phase C18 column (5 μm particle size, 4.6 mm id, 250 mm length) using a UV detector fixed at 280 nm. The LOD and LOQ of the HPLC analyses ranged from 0.25 to 1.03 mg/kg. The intraday and interday precisions of the individual piperine, capsaicin, and dihydrocapsaicin were <10.55%, and the recovery values ranged from 85.43 to 94.68%. The calibration curves exhibited good linearity (r(2) = 0.999) within the tested ranges. These results suggest that the analytical method in this study can be used to classify Korean instant noodles based on their levels of spiciness.

  15. Validation of a HPLC method for determination of hydroxymethylfurfural in crude palm oil.

    PubMed

    Ariffin, Abdul Azis; Ghazali, H M; Kavousi, Parviz

    2014-07-01

    For the first time 5-hydroxymethyl-2-furaldehyde (HMF) was separated from crude palm oil (CPO), and its authenticity was determined using an RP-HPLC method. Separation was accomplished with isocratic elution of a mobile phase comprising water and methanol (92:8 v/v) on a Purospher Star RP-18e column (250mm×4.6mm, 5.0μm). The flow rate was adjusted to 1ml/min and detection was performed at 284nm. The method was validated, and results obtained exhibit a good recovery (95.58% to 98.39%). Assessment of precision showed that the relative standard deviations (RSD%) of retention times and peak areas of spiked samples were less than 0.59% and 2.66%, respectively. Further, the limit of detection (LOD) and LOQ were 0.02, 0.05mg/kg, respectively, and the response was linear across the applied ranges. The crude palm oil samples analysed exhibited HMF content less than 2.27mg/kg. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Complexity and Productivity Differentiation Models of Metallogenic Indicator Elements in Rocks and Supergene Media Around Daijiazhuang Pb-Zn Deposit in Dangchang County, Gansu Province

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jin-zhong, E-mail: viewsino@163.com; Yao, Shu-zhen; Zhang, Zhong-ping

    2013-03-15

    With the help of complexity indices, we quantitatively studied multifractals, frequency distributions, and linear and nonlinear characteristics of geochemical data for exploration of the Daijiazhuang Pb-Zn deposit. Furthermore, we derived productivity differentiation models of elements from thermodynamics and self-organized criticality of metallogenic systems. With respect to frequency distributions and multifractals, only Zn in rocks and most elements except Sb in secondary media, which had been derived mainly from weathering and alluviation, exhibit nonlinear distributions. The relations of productivity to concentrations of metallogenic elements and paragenic elements in rocks and those of elements strongly leached in secondary media can be seenmore » as linear addition of exponential functions with a characteristic weak chaos. The relations of associated elements such as Mo, Sb, and Hg in rocks and other elements in secondary media can be expressed as an exponential function, and the relations of one-phase self-organized geological or metallogenic processes can be represented by a power function, each representing secondary chaos or strong chaos. For secondary media, exploration data of most elements should be processed using nonlinear mathematical methods or should be transformed to linear distributions before processing using linear mathematical methods.« less

  17. An algorithm for solving the perturbed gas dynamic equations

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    The present application of a compact, higher-order central-difference approximation to the linearized Euler equations illustrates the multimodal character of these equations by means of computations for acoustic, vortical, and entropy waves. Such dissipationless central-difference methods are shown to propagate waves exhibiting excellent phase and amplitude resolution on the basis of relatively large time-steps; they can be applied to wave problems governed by systems of first-order partial differential equations.

  18. Revision of laser-induced damage threshold evaluation from damage probability data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataviciute, Gintare; Grigas, Povilas; Smalakys, Linas

    2013-04-15

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametricmore » regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).« less

  19. Reconstruction of the 3-D Dynamics From Surface Variables in a High-Resolution Simulation of North Atlantic

    NASA Astrophysics Data System (ADS)

    Fresnay, S.; Ponte, A. L.; Le Gentil, S.; Le Sommer, J.

    2018-03-01

    Several methods that reconstruct the three-dimensional ocean dynamics from sea level are presented and evaluated in the Gulf Stream region with a 1/60° realistic numerical simulation. The use of sea level is motivated by its better correlation with interior pressure or quasi-geostrophic potential vorticity (PV) compared to sea surface temperature and sea surface salinity, and, by its observability via satellite altimetry. The simplest method of reconstruction relies on a linear estimation of pressure at depth from sea level. Another method consists in linearly estimating PV from sea level first and then performing a PV inversion. The last method considered, labeled SQG for surface quasi-geostrophy, relies on a PV inversion but assumes no PV anomalies. The first two methods show comparable skill at levels above -800 m. They moderately outperform SQG which emphasizes the difficulty of estimating interior PV from surface variables. Over the 250-1,000 m depth range, the three methods skillfully reconstruct pressure at wavelengths between 500 and 200 km whereas they exhibit a rapid loss of skill between 200 and 100 km wavelengths. Applicability to a real case scenario and leads for improvements are discussed.

  20. Effects of Laboratory Disinfecting Agents on Dimensional Stability of Three Commercially Available Heat-Cured Denture Acrylic Resins in India: An In-Vitro Study

    PubMed Central

    Jujare, Ravikanth Haridas; Varghese, Rana Kalappattil; Singh, Vishwa Deepak; Gaurav, Amit

    2016-01-01

    Introduction Dental professionals are exposed to a wide variety of microorganisms which calls for use of effective infection control procedures in the dental office and laboratories that can prevent cross-contamination that could extend to dentists, dental office staff, dental technicians as well as patients. This concern has led to a renewed interest in denture sterilization and disinfection. Heat polymerized dentures exhibit dimensional change during disinfection procedure. Aim The purpose of this study was to determine the influence of different types of widely used laboratory disinfecting agents on the dimensional stability of heat-cured denture acrylic resins and to compare the dimensional stability of three commercially available heat-cured denture acrylic resins in India. Materials and Methods Twelve specimens of uniform dimension each of three different brands namely Stellon, Trevalon and Acralyn-H were prepared using circular metal disc. Chemical disinfectants namely 2% alkaline glutaraldehyde, 1% povidone-iodine, 0.5% sodium hypochlorite and water as control group were used. Diameter of each specimen was measured before immersion and after immersion with time interval of 1 hour and 12 hours. The data was evaluated statistically using one way analysis of variance. Results All the specimens in three disinfectants and in water exhibited very small amount of linear expansion. Among three disinfectants, specimens in 2% alkaline glutaraldehyde exhibited least(0.005mm) and water showed highest (0.009mm) amount of dimensional change. Among resins, Trevalon showed least (0.067mm) and Acralyn-H exhibited highest (0.110mm) amount of dimensional change. Conclusion Although, all the specimens of three different brands of heat-cured denture acrylic resins exhibited increase in linear dimensional change in all the disinfectants and water, they were found to be statistically insignificant. PMID:27134996

  1. Infrared light-assisted preparation of Ag nanoparticles-reduced graphene oxide nanocomposites for non-enzymatic H{sub 2}O{sub 2} sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Ye; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences; Zhang, Yong

    2015-12-15

    Graphical abstract: An infrared light irradiation method has been developed for preparation of AgNPs/rGO nanocomposites for electrochemical detection of H{sub 2}O{sub 2}. - Highlights: • AgNPs/rGO nanocomposites have been prepared by photochemical method. • AgNPs/rGO nanocomposites exhibit good sensing performances for detection of H{sub 2}O{sub 2}. • The present work provides a simple and green method for preparation of rGO-based materials. - Abstract: A green method has been developed for preparation of Ag nanoparticles/reduced graphene oxide (AgNPs/rGO) nanocomposites by infrared light irradiation. The characterizations indicate the successful preparation of AgNPs/rGO nanocomposites. Most importantly, AgNPs/rGO nanocomposites exhibit excellent electrocatalytic activity formore » reduction of H{sub 2}O{sub 2}, leading to a high-performance non-enzymatic H{sub 2}O{sub 2} sensor with linear detection range and detection limit about 0.1 mM to 140 mM (r = 0.9896) and 3.0 μM, respectively.« less

  2. Anodic voltammetric behavior and determination of rosiglitazone in pharmaceutical dosage forms and biological fluids on solid electrode.

    PubMed

    Dogan-Topal, Burcu; Tuncel, Secil; Ozkan, Sibel A

    2010-09-01

    The anodic voltammetric behavior and electroanalytical determination of rosiglitazone was studied using cyclic, linear sweep, differential pulse and square wave voltammetric techniques on glassy carbon electrode. The oxidation of rosiglitazone was irreversible and exhibited diffusion controlled process depending on pH. Different parameters were tested to optimize the conditions for the determination of the oxidation mechanism of rosiglitazone. The dependence of current intensities and potentials on pH, concentration, scan rate, nature of the buffer was also investigated. According to the linear relationship between the peak current and the concentration, differential pulse and square wave voltammetric methods for rosiglitazone assay in pharmaceutical dosage forms and biological fluids were developed. A linear response was obtained within the range of 1x10-6M - 6x10-5M in 0.1 M H2SO4 and acetate buffer at pH 5.70 for both voltammetric methods in human serum samples. The practical analytical value of the method is demonstrated by quantitative determination of rosiglitazon in pharmaceutical formulation and human serum, without the need for separation or complex sample preparation, since there was no interference from the excipients and endogenous substances. The methods were fully validated and successfully applied to the high throughput determination of the drug in tablets and human serum with good recoveries.

  3. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  4. Electrochemical Determination of Trace Sudan I Contamination in Chili Powder at Carbon Nanotube Modified Electrodes

    PubMed Central

    Ming, Liang; Xi, Xia; Chen, Tingting; Liu, Jie

    2008-01-01

    We have developed a simple, convenient and inexpensive voltammetric method for determining trace Sudan I contamination in chili powder, based on the catalyzed electrochemical reduction of Sudan I at the carbon nanotube modified electrode. Under optimized conditions, the method exhibited acceptable analytical performance in terms of linearity (over the concentration range 6.0×10−7 to 7.5×10−5 M, r = 0.9967), detection limit (2.0×10−7 M) and reproducibility (RSD = 4.6%, n=10, for 2.0×10−5 M Sudan I). PMID:27879800

  5. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  6. Rheology modification with ring polymers

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    It is now established that experimental unconcatenated ring polymers can be purified effectively by means of fractionation at the critical condition. For molecular weights well above the entanglement threshold, purified rings relax stress via power-law (with an exponent of about -0.4), sharply departing from their linear counterparts. Experimental results are in harmony with modeling predictions and simulations. Here, we present results from recent interdisciplinary efforts and discuss two challenges: (i) the nonlinear shear rheology of purified ring melts is also very different from that of unlinked chains. Whereas the latter exhibit features that can be explained, to a first approach, in the framework in the tube model, the former behave akin to unentangled chains with finite extensibility and exhibit much small deformation at steady state. (ii) blends of rings and linear polymers exhibit unique features in different regimes: The addition of minute amounts of linear chains drastically affects ring dynamics. This relates to ring purity and the ability of unlinked linear chains to thread rings. With the help of simulations, it is possible to rationalize the observed surprisingly slow viscoelastic relaxation, which is attributed to ring-linear and ring-ring penetrations. On the other hand, adding small amounts of rings to linear polymers of different molecular weights influences their linear and nonlinear rheology in an unprecedented way. The blend viscosity exceeds that of the slower component (linear) in this non-interacting mixture, and its dependencies on composition and molecular weight ratio are examined, whereas the role of molecular architecture is also addressed. Consequently, closing the ends of a linear chain can serve as a powerful means for molecular manipulation of its rheology. This presentation reflects collaborative efforts with S. Costanzo, Z-C. Yan, R. Pasquino, M. Kaliva, S. Kamble, Y. Jeong, P. Lutz, J. Allgaier, T. Chang, D. Talikis, V. Mavrantzas and M. Rubinstein.

  7. Singular observation of the polarization-conversion effect for a gammadion-shaped metasurface

    PubMed Central

    Lin, Chu-En; Yen, Ta-Jen; Yu, Chih-Jen; Hsieh, Cheng-Min; Lee, Min-Han; Chen, Chii-Chang; Chang, Cheng-Wei

    2016-01-01

    In this article, the polarization-conversion effects of a gammadion-shaped metasurface in transmission and reflection modes are discussed. In our experiment, the polarization-conversion effect of a gammadion-shaped metasurface is investigated because of the contribution of the phase and amplitude anisotropies. According to our experimental and simulated results, the polarization property of the first-order transmitted diffraction is dominated by linear anisotropy and has weak depolarization; the first-order reflected diffraction exhibits both linear and circular anisotropies and has stronger depolarization than the transmission mode. These results are different from previously published research. The Mueller matrix ellipsometer and polar decomposition method will aid in the investigation of the polarization properties of other nanostructures. PMID:26915332

  8. Numerical approach of the quantum circuit theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.J.B., E-mail: jaedsonfisica@hotmail.com; Duarte-Filho, G.C.; Almeida, F.A.G.

    2017-03-15

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency formore » a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.« less

  9. Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes

    PubMed Central

    Nicholson-Dykstra, Susan M.; Higgs, Henry N.

    2009-01-01

    The Arp2/3 complex-mediated assembly and protrusion of a branched actin network at the leading edge occurs during cell migration, although some studies suggest it is not essential. In order to test the role of Arp2/3 complex in leading edge protrusion, Swiss 3T3 fibroblasts and Jurkat T cells were depleted of Arp2 and evaluated for defects in cell morphology and spreading efficiency. Arp2-depleted fibroblasts exhibit severe defects in formation of sheet-like protrusions at early time points of cell spreading, with sheet-like protrusions limited to regions along the length of linear protrusions. However, Arp2-depleted cells are able to spread fully after extended times. Similarly, Arp2-depleted Jurkat T lymphocytes exhibit defects in spreading on anti-CD3. Interphase Jurkats in suspension are covered with large ruffle structures, whereas mitotic Jurkats are covered by finger-like linear protrusions. Arp2-depleted Jurkats exhibit defects in ruffle assembly but not in assembly of mitotic linear protrusions. Similarly, Arp2-depletion has no effect on the highly dynamic linear protrusion of another suspended lymphocyte line. We conclude that Arp2/3 complex plays a significant role in assembly of sheet-like protrusions, especially during early stages of cell spreading, but is not required for assembly of a variety of linear actin-based protrusions. PMID:18720401

  10. RP-HPLC Method Development and Validation for Determination of Eptifibatide Acetate in Bulk Drug Substance and Pharmaceutical Dosage Forms

    PubMed Central

    Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad

    2017-01-01

    A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r2=0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms. PMID:28979304

  11. A Nanohelicoidal Nematic Liquid Crystal Formed by a Non-Linear Duplexed Hexamer.

    PubMed

    Mandle, Richard J; Goodby, John W

    2018-06-11

    The twist-bend modulated nematic liquid-crystal phase exhibits formation of a nanometre-scale helical pitch in a fluid and spontaneous breaking of mirror symmetry, leading to a quasi-fluid state composed of chiral domains despite being composed of achiral materials. This phase was only observed for materials with two or more mesogenic units, the manner of attachment between which is always linear. Non-linear oligomers with a H-shaped hexamesogen are now found to exhibit both nematic and twist-bend modulated nematic phases. This shatters the assumption that a linear sequence of mesogenic units is a prerequisite for this phase, and points to this state of matter being exhibited by a wider range of self-assembling structures than was previously envisaged. These results support the double helix model of the TB phase as opposed to the simple heliconical model. This new class of materials could act as low-molecular-weight surrogates for cross-linked liquid-crystalline elastomers. © 2018 Die Autoren. Veröffentlicht von Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Feedback system design with an uncertain plant

    NASA Technical Reports Server (NTRS)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  13. Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties.

    PubMed

    Runge, M Brett; Wang, Huan; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J

    2012-01-01

    Polycaprolactone fumarate (PCLF) is a cross-linkable derivative of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of PCLF (PCLF(DEG)) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLF(PPD)) or glycerol (PCLF(GLY)). PCLF(PPD) is linear and resembles the previously studied PCLF(DEG), while PCLF(GLY) is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLF(PPD) has material properties similar to the previously studied PCLF(DEG). The branched PCLF(GLY) exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate Food and Drug Administration approvable sterilization method is addressed. This study shows that autoclave sterilization of PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    PubMed

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of two sweating simulation methods on clothing evaporative resistance in a so-called isothermal condition.

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui

    2016-07-01

    The effect of sweating simulation methods on clothing evaporative resistance was investigated in a so-called isothermal condition (T manikin  = T a  = T r ). Two sweating simulation methods, namely, the pre-wetted fabric "skin" (PW) and the water supplied sweating (WS), were applied to determine clothing evaporative resistance on a "Newton" thermal manikin. Results indicated that the clothing evaporative resistance determined by the WS method was significantly lower than that measured by the PW method. In addition, the evaporative resistances measured by the two methods were correlated and exhibited a linear relationship. Validation experiments demonstrated that the empirical regression equation showed highly acceptable estimations. The study contributes to improving the accuracy of measurements of clothing evaporative resistance by means of a sweating manikin.

  16. Ring Laser Gyro G-Sensitive Misalignment Calibration in Linear Vibration Environments.

    PubMed

    Wang, Lin; Wu, Wenqi; Li, Geng; Pan, Xianfei; Yu, Ruihang

    2018-02-16

    The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the gyros. The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or maneuver environments where large-amplitude specific forces and angular rates coexist. However, g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is performed on the SINS. Therefore, linear vibration environments can be created to simulate the harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive misalignments, the relationship between attitude errors and specific forces as well as angular rates is established, whereby a calibration scheme with approximately optimal observations is designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive misalignments compensation.

  17. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  18. Spectral embedding finds meaningful (relevant) structure in image and microarray data

    PubMed Central

    Higgs, Brandon W; Weller, Jennifer; Solka, Jeffrey L

    2006-01-01

    Background Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented. Results We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison. Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons. Conclusion Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology. PMID:16483359

  19. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  20. The Natural Neighbour Radial Point Interpolation Meshless Method Applied to the Non-Linear Analysis

    NASA Astrophysics Data System (ADS)

    Dinis, L. M. J. S.; Jorge, R. M. Natal; Belinha, J.

    2011-05-01

    In this work the Natural Neighbour Radial Point Interpolation Method (NNRPIM), is extended to large deformation analysis of elastic and elasto-plastic structures. The NNPRIM uses the Natural Neighbour concept in order to enforce the nodal connectivity and to create a node-depending background mesh, used in the numerical integration of the NNRPIM interpolation functions. Unlike the FEM, where geometrical restrictions on elements are imposed for the convergence of the method, in the NNRPIM there are no such restrictions, which permits a random node distribution for the discretized problem. The NNRPIM interpolation functions, used in the Galerkin weak form, are constructed using the Radial Point Interpolators, with some differences that modify the method performance. In the construction of the NNRPIM interpolation functions no polynomial base is required and the used Radial Basis Function (RBF) is the Multiquadric RBF. The NNRPIM interpolation functions posses the delta Kronecker property, which simplify the imposition of the natural and essential boundary conditions. One of the scopes of this work is to present the validation the NNRPIM in the large-deformation elasto-plastic analysis, thus the used non-linear solution algorithm is the Newton-Rapson initial stiffness method and the efficient "forward-Euler" procedure is used in order to return the stress state to the yield surface. Several non-linear examples, exhibiting elastic and elasto-plastic material properties, are studied to demonstrate the effectiveness of the method. The numerical results indicated that NNRPIM handles large material distortion effectively and provides an accurate solution under large deformation.

  1. Study of quality assurance regulations for linear accelerators in Korea: A comparison study between the current status in Korea and the international guidelines

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Jeong, Seonghoon; Jo, Yunhui; Yoon, Myonggeun

    2015-07-01

    Quality assurance (QA) for medical linear accelerators is indispensable for appropriate cancer treatment. Some international organizations and advanced Western countries have provided QA guidelines for linear accelerators. Currently, QA regulations for linear accelerators in Korean hospitals specify a system in which each hospital stipulates its independent hospital-based protocols for QA procedures (HP_QAPs) and conducts QA based on those HP_QAPs while regulatory authorities verify whether items under those HP_QAPs have been performed. However, because this regulatory method cannot guarantee the quality of universal treatment and QA items with tolerance criteria are different in many hospitals, the presentation of standardized QA items and tolerance criteria is essential. In this study, QA items in HP_QAPs from various hospitals and those presented by international organizations, such as the International Atomic Energy Agency, the European Union, and the American Association of Physicist in Medicine, and by advanced Western countries, such as the USA, the UK, and Canada, were compared. Concordance rates between QA items for linear accelerators that were presented by the aforementioned organizations and those currently being implemented in Korean hospitals were shown to exhibit a daily QA of 50%, a weekly QA of 22%, a monthly QA of 43%, and an annual QA of 65%, and the overall concordance rates of all QA items were approximately 48%. In the comparison between QA items being implemented in Korean hospitals and those being implemented in advanced Western countries, concordance rates were shown to exhibit a daily QA of 50%, a weekly QA of 33%, a monthly QA of 60%, and an annual QA of 67%, and the overall concordance rates of all QA items were approximately 57%. The results of this study indicate that the HP_QAPs currently implemented by Korean hospitals as QA standards for linear accelerators used in radiation therapy do not meet international standards. If this problem is to be solved, national standardized QA items and procedures for linear accelerators need to be developed.

  2. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode

    PubMed Central

    Ma, Xiaoyan; Yang, Hongqiao; Xiong, Huabin; Li, Xiaofen; Gao, Jinting; Gao, Yuntao

    2016-01-01

    In this paper, the multi-walled carbon nanotubes modified screen-printed electrode (MWCNTs/SPE) was prepared and the MWCNTs/SPE was employed for the electrochemical determination of the antioxidant substance chlorogenic acids (CGAs). A pair of well-defined redox peaks of CGA was observed at the MWCNTs/SPE in 0.10 mol/L acetic acid-sodium acetate buffer (pH 6.2) and the electrode process was adsorption-controlled. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods for the determination of CGA were proposed based on the MWCNTs/SPE. Under the optimal conditions, the proposed method exhibited linear ranges from 0.17 to 15.8 µg/mL, and the linear regression equation was Ipa (µA) = 4.1993 C (×10−5 mol/L) + 1.1039 (r = 0.9976) and the detection limit for CGA could reach 0.12 µg/mL. The recovery of matrine was 94.74%–106.65% (RSD = 2.92%) in coffee beans. The proposed method is quick, sensitive, reliable, and can be used for the determination of CGA. PMID:27801797

  4. Development and validation of an LC-MS method for determination of Karanjin in rat plasma: application to preclinical pharmacokinetics.

    PubMed

    Yi, Deliang; Wang, Zhihua; Yi, Longzhi

    2015-04-01

    A selective and sensitive liquid chromatography-mass spectrometry (MS) method was developed and validated for the determination of karanjin in rat plasma. The target analyte, together with the internal standard (warfarin), was extracted from rat plasma by liquid-liquid extraction with ethyl acetate. Chromatographic separation was performed on a ZORBAX SB-C18 column using a mixture of acetonitrile and 0.1% aqueous formic acid as the mobile phase with linear gradient elution. MS detection was performed on a single quadrupole MS by selected ion monitoring mode via a positive electrospray ionization source. The assay exhibited a linear dynamic range of 2.50-3,000 ng/mL for karanjin. The intra- and inter-day precision was <10.8%, and the intra- and inter-day accuracy was <9.2%. The validated method has been applied to the preclinical pharmacokinetic studies of karanjin following oral administration of 5, 10 and 20 mg/kg karanjin to rats. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Interpreting spectral unmixing coefficients: From spectral weights to mass fractions

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian

    2018-01-01

    It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.

  6. Determination of Total Selenium in Infant Formulas: Comparison of the Performance of FIA and MCFA Flow Systems

    PubMed Central

    Pistón, Mariela; Knochen, Moisés

    2012-01-01

    Two flow methods, based, respectively, on flow-injection analysis (FIA) and on multicommutated flow analysis (MCFA), were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp.), higher sampling frequency (160 versus. 70 samples per hour), and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance. PMID:22505923

  7. Comparative Performance Evaluation of Rainfall-runoff Models, Six of Black-box Type and One of Conceptual Type, From The Galway Flow Forecasting System (gffs) Package, Applied On Two Irish Catchments

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Shamseldin, A. Y.

    The "Galway Real-Time River Flow Forecasting System" (GFFS) is a software pack- age developed at the Department of Engineering Hydrology, of the National University of Ireland, Galway, Ireland. It is based on a selection of lumped black-box and con- ceptual rainfall-runoff models, all developed in Galway, consisting primarily of both the non-parametric (NP) and parametric (P) forms of two black-box-type rainfall- runoff models, namely, the Simple Linear Model (SLM-NP and SLM-P) and the seasonally-based Linear Perturbation Model (LPM-NP and LPM-P), together with the non-parametric wetness-index-based Linearly Varying Gain Factor Model (LVGFM), the black-box Artificial Neural Network (ANN) Model, and the conceptual Soil Mois- ture Accounting and Routing (SMAR) Model. Comprised of the above suite of mod- els, the system enables the user to calibrate each model individually, initially without updating, and it is capable also of producing combined (i.e. consensus) forecasts us- ing the Simple Average Method (SAM), the Weighted Average Method (WAM), or the Artificial Neural Network Method (NNM). The updating of each model output is achieved using one of four different techniques, namely, simple Auto-Regressive (AR) updating, Linear Transfer Function (LTF) updating, Artificial Neural Network updating (NNU), and updating by the Non-linear Auto-Regressive Exogenous-input method (NARXM). The models exhibit a considerable range of variation in degree of complexity of structure, with corresponding degrees of complication in objective func- tion evaluation. Operating in continuous river-flow simulation and updating modes, these models and techniques have been applied to two Irish catchments, namely, the Fergus and the Brosna. A number of performance evaluation criteria have been used to comparatively assess the model discharge forecast efficiency.

  8. An in vitro investigation into the physical properties of irreversible hydrocolloid alternatives.

    PubMed

    Patel, Rishi D; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2010-11-01

    A number of manufacturers have introduced new products that are marketed as alternatives to irreversible hydrocolloid impression materials. However, there is a paucity of laboratory and clinical research on these products compared to traditional irreversible hydrocolloid. The purpose of this study was to evaluate the detail reproduction, gypsum compatibility, and linear dimensional change of 3 recently introduced impression materials designed as alternatives to irreversible hydrocolloid. The tested materials were Position Penta Quick, Silgimix, and AlgiNot. An irreversible hydrocolloid impression material, Jeltrate Plus Antimicrobial, served as the control. The parameters of detail reproduction, gypsum compatibility, and linear dimensional change were tested in accordance with ANSI/ADA Specifications No. 18 and 19. The gypsum compatibility was tested using a type III stone (Microstone Golden) and a type IV stone (Die-Keen Green). The data were analyzed using the Kruskal-Wallis rank test and the Mann-Whitney U test (α=.05). The test materials demonstrated significantly (P<.001) better detail reproduction than the control material. Silgimix exhibited the best compatibility with Microstone, whereas AlgiNot and Position Penta Quick exhibited the best gypsum compatibility with Die-Keen. An incompatibility was observed over time between the Jeltrate control material and the Microstone gypsum material. For linear dimensional change, the mean dimension of the control material most closely approximated the distance between the lines on the test die, but it exhibited the greatest variability in measurements. All of the test materials exhibited linear dimensional change within the ADA's accepted limit of 1.0%. The 3 new impression materials exhibited better detail reproduction and less variability in linear dimensional change than the irreversible hydrocolloid control. Gypsum compatibility varied with the brand of gypsum used, with an incompatibility identified between the control material (Jeltrate Plus Antimicrobial) and Microstone related to surface changes observed over time. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Microwave-assisted rapid preparation of monodisperse superhydrophilic resin microspheres as adsorbent for triazines in fruit juices.

    PubMed

    Zhou, Tianyu; Ding, Jie; Wang, Qiang; Xu, Yuan; Wang, Bo; Zhao, Li; Ding, Hong; Chen, Yanhua; Ding, Lan

    2018-03-01

    Monodisperse superhydrophilic melamine formaldehyde resorcinol resin (MFR) microspheres were prepared in 90min at 85°C via a microwave-assisted method with a yield of 60.6%. The obtained MFR microspheres exhibited narrow size distribution with the average particle size of about 2.5µm. The MFR microspheres were used as absorbents to detect triazines in juices followed by high performance liquid chromatography tandem mass spectrometry. Various factors affecting the extraction efficiency were investigated. Under the optimized conditions, the built method exhibited excellent linearity in the range of 1-250μgL -1 (R 2 ≥ 0.9994) and lower detection limits (0.3-0.65μgL -1 ). The relative standard deviations of intra- and inter-day analyses ranged from 3% to 7% and from 2% to 7%, respectively. The method was applied to determine six triazines in three juice samples. At the spiked level of 3μgL -1 , the recoveries were in the range of 90-99% with the relative standard deviations ≤ 8%. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Combination of QuEChERS and DLLME for GC-MS determination of pesticide residues in orange samples.

    PubMed

    Andraščíková, Mária; Hrouzková, Svetlana; Cunha, Sara C

    2013-01-01

    A new method combining QuEChERS (quick, easy, cheap, effective, rugged and safe) and DLLME (dispersive liquid-liquid microextraction) followed by gas chromatography-mass spectrometry with selected ion monitoring (SIM) was developed for the simultaneous determination of 19 pesticides from nine chemical groups exhibiting or suspected to exhibit endocrine-disrupting properties in orange samples. Acetonitrile extract obtained from QuEChERS extraction was used for DLLME as dispersive solvent and carbon tetrachloride as extractive solvent to increase the enrichment factor of the extraction procedure. The effect of several extraction parameters, such as volume extract achieved by the QuEChERS method and subsequently used for DLLME, selection of extractive solvent and its volume, was tested. Under optimum conditions, good linearity, satisfactory recoveries and repeatability were obtained. Limits of quantification (LOQs) achieved (ranging from 0.02 to 47 ng/g) were below the maximum residue limits established by the European Union. The proposed method was applied to the monitoring of pesticide residue levels in oranges commercialised in Portugal.

  11. Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei

    2016-01-01

    In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).

  12. Hair as a specimen to document tetramethylene disulfotetramine exposure.

    PubMed

    Shen, Min; Xiang, Ping; Zhou, Fuxiang; Shen, Baohua; Shi, Yan

    2012-05-01

    Tetramethylene disulfotetramine (tetramine) is a rodenticide that has been banned for many years in China. Since 2005, inhabitants of a village in the Henan Province have been suffering from grand mal seizures. To investigate the possibility of tetramine as the cause, we developed a method to determine tetramine in human hair. Sample preparation involved external decontamination, frozen pulverization, and ultrasonication in 2 mL ethyl acetate in the presence of cocaine-d3 as an internal standard. The method exhibited good linearity; calibration curve was linear over a range of 0.1-20 ng/mg hair. The limit of detection for the assay was 0.05 ng/mg hair. Except for one subject (No. 4), all head and pubic hair samples were positive for tetramine. The concentrations of tetramine in pubic hair were significantly higher than those in the same subjects' head hair samples. Because of a long retention in body, segmental head hair analysis cannot provide an accurate exposure history of tetramine in the body. © 2012 American Academy of Forensic Sciences.

  13. Low-temperature plasma-probe mass spectrometry based method for determination of new psychoactive substances in oral fluid.

    PubMed

    Wang, Xiaochen; Hua, Zhendong; Yang, Zhaoguang; Li, Haipu; Liu, Huwei; Qiu, Bo; Nie, Honggang

    2018-06-15

    Owing to the widespread abuse of new psychoactive substances (NPSs), developing a rapid, easily operable method to detect NPSs in oral fluid is of high priority. Their ease of collection and non-invasive nature make oral fluid samples suitable for on-site tests and forensic cases. Herein we report a rapid and sensitive method to screen and quantitate 11 new NPSs in oral fluid. Low-temperature plasma-probe mass spectrometry (LTP-MS) was applied and, to improve the signal intensity, thermally assisted desorption was employed. Tandem mass spectrometry was performed to exclude false positive signals and to decrease noise at the m/z values of interest. Linearity was studied using matrix-matched calibration curves; all the analytes exhibited good linearity with R 2 varying from 0.9907 to 0.9981. The estimated limits of detection (LODs) were in the range of 3.0-15.2 ng/mL, which are comparable to those of immunoassay; relative standard deviations (RSDs) are no greater than 23% at the studied concentration levels. The proposed LTP-MS-based method was promising in forensic and on-site applications to curb the abuse of NPSs. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    NASA Astrophysics Data System (ADS)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  15. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  16. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    NASA Astrophysics Data System (ADS)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-12-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  17. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  18. A wavelet-based ECG delineation algorithm for 32-bit integer online processing

    PubMed Central

    2011-01-01

    Background Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. Methods This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. Results The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. Conclusions The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra. PMID:21457580

  19. Optimizing complex phenotypes through model-guided multiplex genome engineering

    DOE PAGES

    Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.; ...

    2017-05-25

    Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.

  20. Optimizing complex phenotypes through model-guided multiplex genome engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.

    Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.

  1. Flavonoid detection in hydroethanolic extract of Pouteria torta (Sapotaceae) leaves by HPLC-DAD and the determination of its mutagenic activity.

    PubMed

    Costa, Daryne L M G; Rinaldo, Daniel; Varanda, Eliana A; de Sousa, Juliana F; Nasser, Ana L M; Silva, Ana C Z; Baldoqui, Débora C; Vilegas, Wagner; dos Santos, Lourdes Campaner

    2014-10-01

    It is well known that phytotherapy has grown in popularity in recent years. Because a drug cannot be administered without ensuring its effectiveness and safety, the standardization and regulation of phytotherapeutic drugs are required by the global market and governmental authorities. This article describes a simple and reliable high-performance liquid chromatography-diode array detection analysis method for the simultaneous detection of myricetin-3-O-β-D-galactopyranoside, myricetin-3-O-α-L-arabinopyranoside, and myricetin-3-O-α-L-rhaminopyranoside present in the hydroethanolic extract (ethanol/H2O, 7:3, v/v) of Pouteria torta. The mutagenic activity of the extract was evaluated on Salmonella typhimurium and by an in vivo micronucleus test on the peripheral blood cells of Swiss mice. The linearity, sensitivity, selectivity, repeatability, accuracy, and precision of the assay were evaluated. The analytical curves were linear and exhibited good repeatability (with a deviation of less than 5%) and demonstrated good recovery (within the 83-107% range). The results demonstrate that the hydroethanolic extract exhibited a mutagenic activity in both assays, suggesting caution in the use of this plant in folk medicine.

  2. Flavonoid Detection in Hydroethanolic Extract of Pouteria torta (Sapotaceae) Leaves by HPLC-DAD and the Determination of Its Mutagenic Activity

    PubMed Central

    Costa, Daryne L.M.G.; Rinaldo, Daniel; Varanda, Eliana A.; de Sousa, Juliana F.; Nasser, Ana L.M.; Silva, Ana C.Z.; Baldoqui, Débora C.; Vilegas, Wagner

    2014-01-01

    Abstract It is well known that phytotherapy has grown in popularity in recent years. Because a drug cannot be administered without ensuring its effectiveness and safety, the standardization and regulation of phytotherapeutic drugs are required by the global market and governmental authorities. This article describes a simple and reliable high-performance liquid chromatography–diode array detection analysis method for the simultaneous detection of myricetin-3-O-β-D-galactopyranoside, myricetin-3-O-α-L-arabinopyranoside, and myricetin-3-O-α-L-rhaminopyranoside present in the hydroethanolic extract (ethanol/H2O, 7:3, v/v) of Pouteria torta. The mutagenic activity of the extract was evaluated on Salmonella typhimurium and by an in vivo micronucleus test on the peripheral blood cells of Swiss mice. The linearity, sensitivity, selectivity, repeatability, accuracy, and precision of the assay were evaluated. The analytical curves were linear and exhibited good repeatability (with a deviation of less than 5%) and demonstrated good recovery (within the 83–107% range). The results demonstrate that the hydroethanolic extract exhibited a mutagenic activity in both assays, suggesting caution in the use of this plant in folk medicine. PMID:25055245

  3. Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.

    1984-01-01

    Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.

  4. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

    NASA Technical Reports Server (NTRS)

    Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1993-01-01

    A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

  5. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime

    NASA Astrophysics Data System (ADS)

    Vajente, G.; Quintero, E. A.; Ni, X.; Arai, K.; Gustafson, E. K.; Robertson, N. A.; Sanchez, E. J.; Greer, J. R.; Adhikari, R. X.

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10-15 m/ √{ Hz } in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

  6. Aggregation-induced emission of 1,8-naphthalimide-casein micelle: investigation by synchronous spectrographic method.

    PubMed

    Sun, Yang; Liang, Xuhua; Zhao, Yingyong; Fan, Jun

    2013-09-01

    A novel 1,8-naphthalimide probe 1, bearing two acetic-acid moieties was synthesized. The acetic-acid groups, docked into the sub-domains of casein micelle and bound with tryptophan residues, and the 1,8-naphthalimide chromophore adsorbed on the surface of casein micelle, forming a supermolecule, 1-casein micelle, which exhibited the aggregation-induced synchronous emission (AISE) characters. The effect of pH on the intensity of supermolecule was investigated, and the result indicated that the emission enhancement was mainly due to the 1,8-naphthalimide chromophore aggregated onto the casein micelle. Based on AISE, a novel casein quantification method was developed, which exhibited a good linear range of 0.05-10.0 μg ml(-1) and 0.07-9.5 μg ml(-1) with the detection limits of 2.8 and 3.0 ng ml(-1) . The effects of metal ions and pH on the system of 1-casein micelle were investigated. The proposed method was applied to determine casein in milk samples, and the results were in good agreement with the result of the Biuret method. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Effect of Stress Corrosion and Cyclic Fatigue on Fluorapatite Glass-Ceramic

    NASA Astrophysics Data System (ADS)

    Joshi, Gaurav V.

    2011-12-01

    Objective: The objective of this study was to test the following hypotheses: 1. Both cyclic degradation and stress corrosion mechanisms result in subcritical crack growth in a fluorapatite glass-ceramic. 2. There is an interactive effect of stress corrosion and cyclic fatigue to cause subcritical crack growth (SCG) for this material. 3. The material that exhibits rising toughness curve (R-curve) behavior also exhibits a cyclic degradation mechanism. Materials and Methods: The material tested was a fluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). Rectangular beam specimens with dimensions of 25 mm x 4 mm x 1.2 mm were fabricated using the press-on technique. Two groups of specimens (N=30) with polished (15 mum) or air abraded surface were tested under rapid monotonic loading. Additional polished specimens were subjected to cyclic loading at two frequencies, 2 Hz (N=44) and 10 Hz (N=36), and at different stress amplitudes. All tests were performed using a fully articulating four-point flexure fixture in deionized water at 37°C. The SCG parameters were determined by using a statistical approach by Munz and Fett (1999). The fatigue lifetime data were fit to a general log-linear model in ALTA PRO software (Reliasoft). Fractographic techniques were used to determine the critical flaw sizes to estimate fracture toughness. To determine the presence of R-curve behavior, non-linear regression was used. Results: Increasing the frequency of cycling did not cause a significant decrease in lifetime. The parameters of the general log-linear model showed that only stress corrosion has a significant effect on lifetime. The parameters are presented in the following table.* SCG parameters (n=19--21) were similar for both frequencies. The regression model showed that the fracture toughness was significantly dependent (p<0.05) on critical flaw size. Conclusions: 1. Cyclic fatigue does not have a significant effect on the SCG in the fluorapatite glass-ceramic IPS e.max ZirPress. 2. There was no interactive effect between cyclic degradation and stress corrosion for this material. 3. The material exhibited a low level of R-curve behavior. It did not exhibit cyclic degradation. *Please refer to dissertation for table.

  8. Vascular mechanics of the coronary artery

    NASA Technical Reports Server (NTRS)

    Veress, A. I.; Vince, D. G.; Anderson, P. M.; Cornhill, J. F.; Herderick, E. E.; Klingensmith, J. D.; Kuban, B. D.; Greenberg, N. L.; Thomas, J. D.

    2000-01-01

    This paper describes our research into the vascular mechanics of the coronary artery and plaque. The three sections describe the determination of arterial mechanical properties using intravascular ultrasound (IVUS), a constitutive relation for the arterial wall, and finite element method (FEM) models of the arterial wall and atheroma. METHODS: Inflation testing of porcine left anterior descending coronary arteries was conducted. The changes in the vessel geometry were monitored using IVUS, and intracoronary pressure was recorded using a pressure transducer. The creep and quasistatic stress/strain responses were determined. A Standard Linear Solid (SLS) was modified to reproduce the non-linear elastic behavior of the arterial wall. This Standard Non-linear Solid (SNS) was implemented into an axisymetric thick-walled cylinder numerical model. Finite element analysis models were created for five age groups and four levels of stenosis using the Pathobiological Determinants of Atherosclerosis Youth (PDAY) database. RESULTS: The arteries exhibited non-linear elastic behavior. The total tissue creep strain was epsilon creep = 0.082 +/- 0.018 mm/mm. The numerical model could reproduce both the non-linearity of the porcine data and time dependent behavior of the arterial wall found in the literature with a correlation coefficient of 0.985. Increasing age had a strong positive correlation with the shoulder stress level, (r = 0.95). The 30% stenosis had the highest shoulder stress due to the combination of a fully formed lipid pool and a thin cap. CONCLUSIONS: Studying the solid mechanics of the arterial wall and the atheroma provide important insights into the mechanisms involved in plaque rupture.

  9. Rapid sampling of stochastic displacements in Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fiore, Andrew M.; Balboa Usabiaga, Florencio; Donev, Aleksandar; Swan, James W.

    2017-03-01

    We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-Prager-Yamakawa (RPY) tensor, which guarantees that the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurations. Brownian displacements are drawn from a superposition of two independent samples: a wave-space (far-field or long-ranged) contribution, computed using techniques from fluctuating hydrodynamics and non-uniform fast Fourier transforms; and a real-space (near-field or short-ranged) correction, computed using a Krylov subspace method. The combined computational complexity of drawing these two independent samples scales linearly with the number of particles. The proposed method circumvents the super-linear scaling exhibited by all known iterative sampling methods applied directly to the RPY tensor that results from the power law growth of the condition number of tensor with the number of particles. For geometrically dense microstructures (fractal dimension equal three), the performance is independent of volume fraction, while for tenuous microstructures (fractal dimension less than three), such as gels and polymer solutions, the performance improves with decreasing volume fraction. This is in stark contrast with other related linear-scaling methods such as the force coupling method and the fluctuating immersed boundary method, for which performance degrades with decreasing volume fraction. Calculations for hard sphere dispersions and colloidal gels are illustrated and used to explore the role of microstructure on performance of the algorithm. In practice, the logarithmic part of the predicted scaling is not observed and the algorithm scales linearly for up to 4 ×106 particles, obtaining speed ups of over an order of magnitude over existing iterative methods, and making the cost of computing Brownian displacements comparable to the cost of computing deterministic displacements in BD simulations. A high-performance implementation employing non-uniform fast Fourier transforms implemented on graphics processing units and integrated with the software package HOOMD-blue is used for benchmarking.

  10. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov

    NASA Astrophysics Data System (ADS)

    Greenough, J. A.; Rider, W. J.

    2004-05-01

    A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are equal for both numerical methods, then PLMDE uniformly produces lower errors than WENO for the fixed computation cost on the test problems considered here.

  11. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine.

    PubMed

    Thanh, Tran Duy; Balamurugan, Jayaraman; Lee, Seung Hee; Kim, Nam Hoon; Lee, Joong Hee

    2016-07-15

    A novel gold nanoparticle-anchored nitrogen-doped graphene (AuNP/NG) nanohybrid was synthesized through a seed-assisted growth method, as an effective electrocatalyst for glucose and dopamine detection. The AuNP/NG nanohybrids exhibited high sensitivity and selectivity toward glucose and dopamine sensing applications. The as-synthesized nanohybrids exhibited excellent catalytic activity toward glucose, with a linear response throughout the concentration range from 40μM to 16.1mM, a detection limit of 12μM, and a short response time (∼ 10s). It also exhibited an excellent response toward DA, with a wide detection range from 30nM to 48μM, a low detection limit of 10nM, and a short response time (∼ 8s). Furthermore, it also showed long-term stability and high selectivity for the target analytes. These results imply that such nanohybrids show a great potential for electrochemical biosensing application. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. NLOphoric multichromophoric auxiliary methoxy aided triphenylamine D-π-A chromophores - Spectroscopic and computational studies

    NASA Astrophysics Data System (ADS)

    Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2017-11-01

    Molecules containing methoxy supported triphenylamine as strong electron-donor and dicyanovinyl as electron-acceptor groups interacting via isophorone as a configurationally locked polyene π-conjugated bridge are studied for their nonlinear optical properties. The photophysical study of examined chromophores in non-polar and polar solvents suggest that they exhibit strong emission solvatochromism and significant charge transfer characteristics supported by Lippert-Mataga plots and Generalised Mulliken Hush analysis. Linear and nonlinear optical properties as well as electronic properties measured by spectroscopic methods and cyclic voltametry and supported by DFT calculation were used to elucidate the structure property relationships. All three chromophores exhibit very high thermal stabilities with the decomposition temperatures higher than 340°C. The vibrational motions play very important role in determining the overall NLO response styryl chromophores which was established by DFT study. Dye 3 with maximum nonlinear optical susceptibility among three D-π-A systems proves that the multibranched push-pull chromophores exhibit a higher third order nonlinear susceptibility and justifies the design strategy.

  13. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo

    2016-12-01

    In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  14. The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Babu, K. Justice; Zahoor, Awan; Nahm, Kee Suk; Ramachandran, R.; Rajan, M. A. Jothi; Gnana kumar, G.

    2014-02-01

    The different morphologies of MnO2 nanomaterials such as rod, belt, and flower were synthesized through a facile hydrothermal method, and their phases were also effectively controlled without employing any organic surfactants. The growth mechanisms of prepared nanostructures has been rationalized through the observed morphologic and structural characterizations. The prepared MnO2 nanostructures improved the electron transfer kinetics and minimized the overpotential and exhibited good electrocatalytic activities in detecting the hydrogen peroxide. Among the studied nanostructures, r-MnO2 exhibited an excellent sensing behavior toward hydrogen peroxide, and a linear current response was observed for the hydrogen peroxide, ranging from 1 micromolar to 1.5 mM with a high-sensitivity and low-level detection limit of 62.9 μAmM-1 cm-2 and 0.1 μM, respectively. Moreover, r-MnO2-modified electrode exhibited high selectivity toward hydrogen peroxide and interference-free phenomenon for the other electroactive species.

  15. Modified Carbon Nanotube Paste Electrode for Voltammetric Determination of Carbidopa, Folic Acid, and Tryptophan

    PubMed Central

    Esfandiari Baghbamidi, Sakineh; Beitollahi, Hadi; Karimi-Maleh, Hassan; Soltani-Nejad, Somayeh; Soltani-Nejad, Vahhab; Roodsaz, Sara

    2012-01-01

    A simple and convenient method is described for voltammetric determination of carbidopa (CD), based on its electrochemical oxidation at a modified multiwall carbon nanotube paste electrode. Under optimized conditions, the proposed method exhibited acceptable analytical performances in terms of linearity (over the concentration range from 0.1 to 700.0 μM), detection limit (65.0 nM), and reproducibility (RSD = 2.5%) for a solution containing CD. Also, square wave voltammetry (SWV) was used for simultaneous determination of CD, folic acid (FA), and tryptophan (TRP) at the modified electrode. To further validate its possible application, the method was used for the quantification of CD, FA, and TRP in urine samples. PMID:22666634

  16. Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiqi, E-mail: qiqi@mit.edu; Hu, Rui, E-mail: hurui@mit.edu; Blonigan, Patrick, E-mail: blonigan@mit.edu

    2014-06-15

    The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned “least squares shadowing (LSS) problem”. The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate ourmore » algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.« less

  17. The origins of the directionality of noncovalent intermolecular interactions.

    PubMed

    Wang, Changwei; Guan, Liangyu; Danovich, David; Shaik, Sason; Mo, Yirong

    2016-01-05

    The recent σ-hole concept emphasizes the contribution of electrostatic attraction to noncovalent bonds, and implies that the electrostatic force has an angular dependency. Here a set of clusters, which includes hydrogen bonding, halogen bonding, chalcogen bonding, and pnicogen bonding systems, is investigated to probe the magnitude of covalency and its contribution to the directionality in noncovalent bonding. The study is based on the block-localized wavefunction (BLW) method that decomposes the binding energy into the steric and the charge transfer (CT) (hyperconjugation) contributions. One unique feature of the BLW method is its capability to derive optimal geometries with only steric effect taken into account, while excluding the CT interaction. The results reveal that the overall steric energy exhibits angular dependency notably in halogen bonding, chalcogen bonding, and pnicogen bonding systems. Turning on the CT interactions further shortens the intermolecular distances. This bond shortening enhances the Pauli repulsion, which in turn offsets the electrostatic attraction, such that in the final sum, the contribution of the steric effect to bonding is diminished, leaving the CT to dominate the binding energy. In several other systems particularly hydrogen bonding systems, the steric effect nevertheless still plays the major role whereas the CT interaction is minor. However, in all cases, the CT exhibits strong directionality, suggesting that the linearity or near linearity of noncovalent bonds is largely governed by the charge-transfer interaction whose magnitude determines the covalency in noncovalent bonds. © 2015 Wiley Periodicals, Inc.

  18. Stationary variational estimates for the effective response and field fluctuations in nonlinear composites

    NASA Astrophysics Data System (ADS)

    Ponte Castañeda, Pedro

    2016-11-01

    This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.

  19. Development and Validation of RP-HPLC Method for the Estimation of Ivabradine Hydrochloride in Tablets

    PubMed Central

    Seerapu, Sunitha; Srinivasan, B. P.

    2010-01-01

    A simple, sensitive, precise and robust reverse–phase high-performance liquid chromatographic method for analysis of ivabradine hydrochloride in pharmaceutical formulations was developed and validated as per ICH guidelines. The separation was performed on SS Wakosil C18AR, 250×4.6 mm, 5 μm column with methanol:25 mM phosphate buffer (60:40 v/v), adjusted to pH 6.5 with orthophosphoric acid, added drop wise, as mobile phase. A well defined chromatographic peak of Ivabradine hydrochloride was exhibited with a retention time of 6.55±0.05 min and tailing factor of 1.14 at the flow rate of 0.8 ml/min and at ambient temperature, when monitored at 285 nm. The linear regression analysis data for calibration plots showed good linear relationship with R=0.9998 in the concentration range of 30-210 μg/ml. The method was validated for precision, recovery and robustness. Intra and Inter-day precision (% relative standard deviation) were always less than 2%. The method showed the mean % recovery of 99.00 and 98.55 % for Ivabrad and Inapure tablets, respectively. The proposed method has been successfully applied to the commercial tablets without any interference of excipients. PMID:21695008

  20. Development of a Titanium Plate for Mandibular Angle Fractures with a Bone Defect in the Lower Border: Finite Element Analysis and Mechanical Test

    PubMed Central

    Goulart, Douglas Rangel; Kemmoku, Daniel Takanori; Noritomi, Pedro Yoshito

    2015-01-01

    ABSTRACT Objectives The aim of the present study was to develop a plate to treat mandibular angle fractures using the finite element method and mechanical testing. Material and Methods A three-dimensional model of a fractured mandible was generated using Rhinoceros 4.0 software. The models were exported to ANSYS®, in which a static application of displacement (3 mm) was performed in the first molar region. Three groups were assessed according to the method of internal fixation (2 mm system): two non-locking plates; two locking plates and a new design locking plate. The computational model was transferred to an in vitro experiment with polyurethane mandibles. Each group contained five samples and was subjected to a linear loading test in a universal testing machine. Results A balanced distribution of stress was associated with the new plate design. This plate modified the mechanical behavior of the fractured region, with less displacement between the fractured segments. In the mechanical test, the group with two locking plates exhibited greater resistance to the 3 mm displacement, with a statistically significant difference when compared with the new plate group (ANOVA, P = 0.016). Conclusions The new plate exhibited a more balanced distribution of stress. However, the group with two locking plates exhibited greater mechanical resistance. PMID:26539287

  1. Step responses of a torsional system with multiple clearances: Study of vibro-impact phenomenon using experimental and computational methods

    NASA Astrophysics Data System (ADS)

    Oruganti, Pradeep Sharma; Krak, Michael D.; Singh, Rajendra

    2018-01-01

    Recently Krak and Singh (2017) proposed a scientific experiment that examined vibro-impacts in a torsional system under a step down excitation and provided preliminary measurements and limited non-linear model studies. A major goal of this article is to extend the prior work with a focus on the examination of vibro-impact phenomena observed under step responses in a torsional system with one, two or three controlled clearances. First, new measurements are made at several locations with a higher sampling frequency. Measured angular accelerations are examined in both time and time-frequency domains. Minimal order non-linear models of the experiment are successfully constructed, using piecewise linear stiffness and Coulomb friction elements; eight cases of the generic system are examined though only three are experimentally studied. Measured and predicted responses for single and dual clearance configurations exhibit double sided impacts and time varying periods suggest softening trends under the step down torque. Non-linear models are experimentally validated by comparing results with new measurements and with those previously reported. Several metrics are utilized to quantify and compare the measured and predicted responses (including peak to peak accelerations). Eigensolutions and step responses of the corresponding linearized models are utilized to better understand the nature of the non-linear dynamic system. Finally, the effect of step amplitude on the non-linear responses is examined for several configurations, and hardening trends are observed in the torsional system with three clearances.

  2. Analysis of a Spatial Point Pattern: Examining the Damage to Pavement and Pipes in Santa Clara Valley Resulting from the Loma Prieta Earthquake

    USGS Publications Warehouse

    Phelps, G.A.

    2008-01-01

    This report describes some simple spatial statistical methods to explore the relationships of scattered points to geologic or other features, represented by points, lines, or areas. It also describes statistical methods to search for linear trends and clustered patterns within the scattered point data. Scattered points are often contained within irregularly shaped study areas, necessitating the use of methods largely unexplored in the point pattern literature. The methods take advantage of the power of modern GIS toolkits to numerically approximate the null hypothesis of randomly located data within an irregular study area. Observed distributions can then be compared with the null distribution of a set of randomly located points. The methods are non-parametric and are applicable to irregularly shaped study areas. Patterns within the point data are examined by comparing the distribution of the orientation of the set of vectors defined by each pair of points within the data with the equivalent distribution for a random set of points within the study area. A simple model is proposed to describe linear or clustered structure within scattered data. A scattered data set of damage to pavement and pipes, recorded after the 1989 Loma Prieta earthquake, is used as an example to demonstrate the analytical techniques. The damage is found to be preferentially located nearer a set of mapped lineaments than randomly scattered damage, suggesting range-front faulting along the base of the Santa Cruz Mountains is related to both the earthquake damage and the mapped lineaments. The damage also exhibit two non-random patterns: a single cluster of damage centered in the town of Los Gatos, California, and a linear alignment of damage along the range front of the Santa Cruz Mountains, California. The linear alignment of damage is strongest between 45? and 50? northwest. This agrees well with the mean trend of the mapped lineaments, measured as 49? northwest.

  3. A displacement-based approach for determining non-linear effects on pre-tensioned-cable cross-braced structures

    NASA Astrophysics Data System (ADS)

    Giaccu, Gian Felice; Caracoglia, Luca

    2017-04-01

    Pre-tensioned-cable bracing systems are widely employed in structural engineering to limit lateral deflections and stabilize structures. A suitable configuration of the pre-tensioned-cable bracing systems in a structure is an important issue since the internal force distribution, emerging from the interaction with the existing structure, significantly affects the structural dynamic behavior. The design, however, is often based on the intuition and the previous experience of the engineer. In recent years, the authors have been investigating the non-linear dynamic response of cable systems, installed on cable-stayed bridges, and in particular the so-called "cable-cross-tie systems" forming a cable network. The bracing cables (cross-ties) can exhibit slackening or snapping. Therefore, a non-linear unilateral model, combined with the taut-cable theory, is required to simulate the incipient slackening conditions in the stays. Capitalizing from this work on non-linear cable dynamics, this paper proposes a new approach to analyze, in laterally- braced truss structures, the unilateral effects and dynamic response accounting for the loss in the pre-tensioning force imparted to the bracing cables. This effect leads to non-linear vibration of the structure. In this preliminary study, the free vibrations of the structure are investigated by using the "Equivalent Linearization Method". A performance coefficient, a real positive number between 0.5 and 1.0, is defined and employed to monitor the relative reduction in the apparent stiffness of the braces during structural vibration, "mode by mode". It is shown that the system can exhibit alternate unilateral behavior of the cross-braces. A reduction of the performance coefficient close to fifty percent is observed in the braces when the initial pre-tensioning force is small. On the other hand the performance coefficient tends to one in the case of a high level of pre-stress. It is concluded that the performance coefficient may possibly be used as an indicator for the design of the braces since a suitable selection of the initial pre-tensioning force can avoid slackening in the braces.

  4. The influence of electromyographic recording methods and the innervation zone on the mean power frequency-torque relationships.

    PubMed

    Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Housh, Terry J

    2015-06-01

    This study examined the effects of electromyographic (EMG) recording methods and innervation zone (IZ) on the mean power frequency (MPF)-torque relationships. Nine subjects performed isometric ramp muscle actions of the leg extensors from 5% to 100% of maximal voluntary contraction with an eight channel linear electrode array over the IZ of the vastus lateralis. The slopes were calculated from the log-transformed monopolar and bipolar EMG MPF-torque relationships for each channel and subject and 95% confidence intervals (CI) were constructed around the slopes for each relationship and the composite of the slopes. Twenty-two to 55% of the subjects exhibited 95% CIs that did not include a slope of zero for the monopolar EMG MPF-torque relationships while 25-75% of the subjects exhibited 95% CIs that did not include a slope of zero for the bipolar EMG MPF-torque relationships. The composite of the slopes from the EMG MPF-torque relationships were not significantly different from zero for any method or channel, however, the method and IZ location slightly influenced the number of significant slopes on a subject-by-subject basis. The log-transform model indicated that EMG MPF-torque patterns were nonlinear regardless of recording method or distance from the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Online Exhibits & Concept Maps

    NASA Astrophysics Data System (ADS)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors, teachers, artists, and web designers, a smaller scale collaborative effort can result in an effective mini-exhibit. Online concept maps can present a large quantity of information in bite-size chunks, demonstrating interrelationships between pieces of information without inundating visitors. SpicyNodes uses radial mapping technology to enable visitors to learn about a topic or search for information in intuitive and organic ways. This online concept mapping tool can be used as a portal to invite exploration into topics, or as a means of displaying hierarchies of information. With nodes that contain text, audio, video, and links, interactive online concept maps especially engage visual, kinesthetic, and nonlinear learners. SpicyNodes is also useful for scientists who wish to complement papers, chapters, and books with an online interface that is especially appealing to nonlinear learners. Essentially, SpicyNodes shifts the burden of discovery from the reader to the author. For example, the author may create a nodemap on climate change with hundreds of nodes, but as visitors drill through the nodemap for information (e.g. from climate change to atmospheric gases to carbon dioxide), they see only a few nodes at a time and are not overwhelmed.

  6. Brittle failure of rock: A review and general linear criterion

    NASA Astrophysics Data System (ADS)

    Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan

    2018-07-01

    A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.

  7. Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs.

    PubMed

    Zhang, Qiang; Liu, Lihua; Zhao, Dong; Duan, Qianqian; Ji, Jianlong; Jian, Aoqun; Zhang, Wendong; Sang, Shengbo

    2017-12-04

    Due to the rapid development and superb performance of electronic skin, we propose a highly sensitive and stretchable temperature and strain sensor. Silver nanoparticles coated carbon nanowires (Ag@CNT) nanomaterials with different Ag concentrations were synthesized. After the morphology and components of the nanomaterials were demonstrated, the sensors composed of Polydimethylsiloxane (PDMS) and CNTs or Ag@CNTs were prepared via a simple template method. Then, the electronic properties and piezoresistive effects of the sensors were tested. Characterization results present excellent performance of the sensors for the highest gauge factor (GF) of the linear region between 0-17.3% of the sensor with Ag@CNTs1 was 137.6, the sensor with Ag@CNTs2 under the strain in the range of 0-54.8% exhibiting a perfect linearity and the GF of the sensor with Ag@CNTs2 was 14.9.

  8. Time-Domain Stability Margin Assessment

    NASA Technical Reports Server (NTRS)

    Clements, Keith

    2016-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  9. [Standard sample preparation method for quick determination of trace elements in plastic].

    PubMed

    Yao, Wen-Qing; Zong, Rui-Long; Zhu, Yong-Fa

    2011-08-01

    Reference sample was prepared by masterbatch method, containing heavy metals with known concentration of electronic information products (plastic), the repeatability and precision were determined, and reference sample preparation procedures were established. X-Ray fluorescence spectroscopy (XRF) analysis method was used to determine the repeatability and uncertainty in the analysis of the sample of heavy metals and bromine element. The working curve and the metrical methods for the reference sample were carried out. The results showed that the use of the method in the 200-2000 mg x kg(-1) concentration range for Hg, Pb, Cr and Br elements, and in the 20-200 mg x kg(-1) range for Cd elements, exhibited a very good linear relationship, and the repeatability of analysis methods for six times is good. In testing the circuit board ICB288G and ICB288 from the Mitsubishi Heavy Industry Company, results agreed with the recommended values.

  10. Continuing evaluation of bipolar linear devices for total dose bias dependency and ELDRS effects

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Gorelick, Jerry L.; Yui, Candice; Rax, Bernard G.; Wiedeman, Michael D.

    2003-01-01

    We present results of continuing efforts to evaluate total dose bias dependency and ELDRS effects in bipolar linear microcircuits. Several devices were evaluated, each exhibiting moderate to significant bias and/or dose rate dependency.

  11. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernoch, Antonin; Soubusta, Jan; Celechovska, Lucie

    We report on experimental implementation of the optimal universal asymmetric 1->2 quantum cloning machine for qubits encoded into polarization states of single photons. Our linear-optical machine performs asymmetric cloning by partially symmetrizing the input polarization state of signal photon and a blank copy idler photon prepared in a maximally mixed state. We show that the employed method of measurement of mean clone fidelities exhibits strong resilience to imperfect calibration of the relative efficiencies of single-photon detectors used in the experiment. Reliable characterization of the quantum cloner is thus possible even when precise detector calibration is difficult to achieve.

  13. Tunneling calculations for GaAs-Al(x)Ga(1-x) as graded band-gap sawtooth superlattices. Thesis

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Meijer, Paul H. E.

    1991-01-01

    Quantum mechanical tunneling calculations for sawtooth (linearly graded band-gap) and step-barrier AlGaAs superlattices were performed by means of a transfer matrix method, within the effective mass approximation. The transmission coefficient and tunneling current versus applied voltage were computed for several representative structures. Particular consideration was given to effective mass variations. The tunneling properties of step and sawtooth superlattices show some qualitative similarities. Both structures exhibit resonant tunneling, however, because they deform differently under applied fields, the J-V curves differ.

  14. Band structure and unconventional electronic topology of CoSi

    NASA Astrophysics Data System (ADS)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  15. A study of fracture phenomena in fiber composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Konish, H. J., Jr.

    1973-01-01

    The extension of linear elastic fracture mechanics from ostensibly homogeneous isotropic metallic alloys to heterogeneous anisotropic advanced fiber composites is considered. It is analytically demonstrated that the effects of material anisotropy do not alter the principal characteristics exhibited by a crack in an isotropic material. The heterogeneity of fiber composites is experimentally shown to have a negligible effect on the behavior of a sufficiently long crack. A method is proposed for predicting the fracture strengths of a large class of composite laminates; the values predicted by this method show good agreement with limited experimental data. The limits imposed by material heterogeneity are briefly discussed, and areas for further study are recommended.

  16. Non-linear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability.

    PubMed

    Terrier, Philippe; Dériaz, Olivier

    2013-01-01

    It has been observed that times series of gait parameters [stride length (SL), stride time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another non-linear method estimates the degree of resilience of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear system embedded in a reconstructed state space (attractor) diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST, and SS from which the statistical persistence among consecutive strides can be assessed), and the trajectory of the center of pressure (from which the LDS can be estimated). In 20 healthy participants, the response to rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%). That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS) and scaling exponents exhibited a significant correlation between them (r = 0.7). Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.

  17. Methods and apparatus of entangled photon generation using four-wave mixing

    DOEpatents

    Camacho, Ryan

    2016-02-23

    A non-linear optical device is provided. The device comprises an optical disk or ring microresonator fabricated from a material that exhibits an optical nonlinearity able to produce degenerate four-wave mixing (FWM) in response to a pump beam having a pump frequency in a specified effective range. The microresonator is conformed to exhibit an angular group velocity minimum at a pump frequency within the specified effective range such that there is zero angular group velocity dispersion at the pump frequency. We refer to such a pump frequency as the "zero dispersion frequency". In embodiments, excitation of the resonator by a pump beam of sufficient intensity at the zero-dispersion frequency causes the resonator to emit a frequency comb of entangled photon pairs wherein the respective frequencies in each pair are symmetrically placed about the zero-dispersion frequency.

  18. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.

    2017-06-01

    Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

  19. A wavelet-based ECG delineation algorithm for 32-bit integer online processing.

    PubMed

    Di Marco, Luigi Y; Chiari, Lorenzo

    2011-04-03

    Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.

  20. Hypersensitive Detection and Quantitation of BoNT/A by IgY Antibody against Substrate Linear-Peptide

    PubMed Central

    Li, Tao; Liu, Hao; Cai, Kun; Tian, Maoren; Wang, Qin; Shi, Jing; Gao, Xiang; Wang, Hui

    2013-01-01

    Botulinum neurotoxin A (BoNT/A), the most acutely poisonous substance to humans known, cleave its SNAP-25 substrate with high specificity. Based on the endopeptidase activity, different methods have been developed to detect BoNT/A, but most lack ideal reproducibility or sensitivity, or suffer from long-term or unwanted interferences. In this study, we developed a simple method to detect and quantitate trace amounts of botulinum neurotoxin A using the IgY antibody against a linear-peptide substrate. The effects of reaction buffer, time, and temperature were analyzed and optimized. When the optimized assay was used to detect BoNT/A, the limit of detection of the assay was 0.01 mouse LD50 (0.04 pg), and the limit of quantitation was 0.12 mouse LD50/ml (0.48 pg). The findings also showed favorable specificity of detecting BoNT/A. When used to detect BoNT/A in milk or human serum, the proposed assay exhibited good quantitative accuracy (88% < recovery < 111%; inter- and intra-assay CVs < 18%). This method of detection took less than 3 h to complete, indicating that it can be a valuable method of detecting BoNT/A in food or clinical diagnosis. PMID:23555605

  1. Hypersensitive detection and quantitation of BoNT/A by IgY antibody against substrate linear-peptide.

    PubMed

    Li, Tao; Liu, Hao; Cai, Kun; Tian, Maoren; Wang, Qin; Shi, Jing; Gao, Xiang; Wang, Hui

    2013-01-01

    Botulinum neurotoxin A (BoNT/A), the most acutely poisonous substance to humans known, cleave its SNAP-25 substrate with high specificity. Based on the endopeptidase activity, different methods have been developed to detect BoNT/A, but most lack ideal reproducibility or sensitivity, or suffer from long-term or unwanted interferences. In this study, we developed a simple method to detect and quantitate trace amounts of botulinum neurotoxin A using the IgY antibody against a linear-peptide substrate. The effects of reaction buffer, time, and temperature were analyzed and optimized. When the optimized assay was used to detect BoNT/A, the limit of detection of the assay was 0.01 mouse LD50 (0.04 pg), and the limit of quantitation was 0.12 mouse LD50/ml (0.48 pg). The findings also showed favorable specificity of detecting BoNT/A. When used to detect BoNT/A in milk or human serum, the proposed assay exhibited good quantitative accuracy (88% < recovery < 111%; inter- and intra-assay CVs < 18%). This method of detection took less than 3 h to complete, indicating that it can be a valuable method of detecting BoNT/A in food or clinical diagnosis.

  2. Relating the structure of geminal amido esters to their molecular hyperpolarizability

    DOE PAGES

    Cole, Jacqueline M.; Lin, Tze -Chia; Ashcroft, Christopher M.; ...

    2016-12-05

    Advanced organic non-linear optical (NLO) materials have attracted increasing attention due to their multitude of applications in modern telecommunication devices. Arguably the most important advantage of organic NLO materials, relative to traditionally used inorganic NLO materials, is their short optical response time. Geminal amido esters with their donor-x-acceptor (D-π-A) architecture exhibit high levels of electron delocalization and substantial intramolecular charge transfer, which should endow these materials with short optical response times and large molecular (hyper)polarizabilities. In order to test this hypothesis, the linear and second-order non-linear optical properties of five geminal amido esters, ( E)-ethyl 3-(X-phenylamino)-2-(Y-phenylcarbamoyl)acrylate (1: X = 4-H,Ymore » = 4-H; 2: X= 4-CH 3, Y = 4-CH 3; 3: X = 4-NO 2, Y = 2,5-OCH 3; 4: X = 2-Cl, Y = 2-Cl; 5: X = 4-Cl, Y = 4-Cl) were synthesized and characterized, whereby NLO structure-function relationships were established including intramolecular charge transfer characteristics, crystal field effects, and molecular first hyperpolarizabilities β. Given the typically large errors (10-30%) associated with the determination of (β) coefficients, three independent methods were used: i) density functional theory, ii) hyper-Rayleigh scattering, and iii) high-resolution X-ray diffraction data analysis based on multipolar modeling of electron densities at each atom. These three methods delivered consistent values of β, and based on these results, 3 should hold the most promise for NLO applications. In conclusion, the correlation between the molecular structure of these geminal amido esters and their linear and non-linear optical properties thus provide molecular design guidelines for organic NLO materials; this leads to the ultimate goal of generating bespoke organic molecules to suit a given NLO device application.« less

  3. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  4. Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the Determination of Asbestos Species in Bulk Building Materials

    PubMed Central

    Accardo, Grazia; Cioffi, Raffaeke; Colangelo, Francesco; d’Angelo, Raffaele; De Stefano, Luca; Paglietti, Fderica

    2014-01-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS) chemometrics, the Linear Calibration Curve Method (LCM) and the Method of Additions (MoA). Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight) can be determined with precision and accuracy (errors less than 0.1). PMID:28788467

  5. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  6. Viscoelastic effect on acoustic band gaps in polymer-fluid composites

    NASA Astrophysics Data System (ADS)

    Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.

    2009-10-01

    In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.

  7. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas

    PubMed Central

    Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.

    2017-01-01

    Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941

  8. A novel colorimetric method based on copper nanoclusters with intrinsic peroxidase-like for detecting xanthine in serum samples

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Niu, Qianqian; Mou, Mingyao; Wu, Yi; Liu, Xiaoxuan; Liao, Shenghua

    2017-07-01

    A facile strategy for detecting xanthine in serum samples by copper nanocluster (CuNCs) with high intrinsic peroxidase-like activity was reported. Firstly, a simple, mild and time-saving method for preparing CuNCs was developed, in which dithiothreitol (DTT) and bovine serum albumin (BSA) were used as reductant and stabilizer, respectively. The as-prepared CuNCs exhibited a fluorescence emission at 590 nm with a quantum yield (QY) of approximately 5.29%, the fluorescence intensity of the as-prepared CuNCs exhibited no considerable change when stored under ambient condition with the lifetime is 1.75 μs. Moreover, the as-prepared CuNCs exhibited high intrinsic peroxidase-like activity with lower K m ( K m = 8.90 × 10-6 mol L-1) for H2O2, which indicated that CuNCs have a higher affinity for H2O2. Compared with natural enzyme, the as-synthesized CuNCs are more catalytic stable over a wide range of pH (4.0 13.0) and temperature (4 80 °C). Finally, an indirect method for sensing xanthine was established because xanthine oxidase can catalyse the oxidation of xanthine to produce H2O2. Xanthine could be detected as low as 3.8 × 10-7 mol L-1 with a linear range from 5.0 × 10-7 to 1.0 × 10-4 mol L-1. These results proved that the proposed method is sensitive and accurate and could be successfully applied to the determination of xanthine in the serum sample with satisfaction.

  9. Electrochemical Detection of Ultratrace (Picomolar) Levels of Hg2+ Using a Silver Nanoparticle-Modified Glassy Carbon Electrode.

    PubMed

    Suherman, Alex L; Ngamchuea, Kamonwad; Tanner, Eden E L; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2017-07-05

    Ultratrace levels of Hg 2+ have been quantified by undertaking linear sweep voltammetry with a silver nanoparticle-modified glassy carbon electrode (AgNP-GCE) in aqueous solutions containing Hg 2+ . This is achieved by monitoring the change in the silver stripping peak with Hg 2+ concentration resulting from the galvanic displacement of silver by mercury: Ag(np) + 1/2Hg 2+ (aq) → Ag + (aq) + 1/2Hg(l). This facile and reproducible detection method exhibits an excellent linear dynamic range of 100.0 pM to 10.0 nM Hg 2+ concentration with R 2 = 0.982. The limit of detection (LoD) based on 3σ is 28 pM Hg 2+ , while the lowest detectable level for quantification purposes is 100.0 pM. This method is appropriate for routine environmental monitoring and drinking water quality assessment since the guideline value set by the US Environmental Protection Agency (EPA) for inorganic mercury in drinking water is 0.002 mg L -1 (10 nM).

  10. The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects.

    PubMed

    Rumian, Łucja; Reczyńska, Katarzyna; Wrona, Małgorzata; Tiainen, Hanna; Haugen, Håvard J; Pamuła, Elżbieta

    2015-01-01

    In this study the attempts to improve mechanical properties of highly-porous titanium dioxide scaffolds produced by polymer sponge replication method were investigated. Particularly the effect of two-step sintering at different temperatures on microstructure and mechanical properties (compression test) of the scaffolds were analysed. To this end microcomputed tomography and scanning electron microscopy were used as analytical methods. Our experiments showed that the most appropriate conditions of manufacturing were when the scaffolds were heat-treated at 1500 °C for 1 h followed by sintering at 1200 °C for 20 h. Such scaffolds exhibited the highest compressive strength which was correlated with the highest linear density and the lowest size of grains. Moreover, grain size distribution was narrower with predominating fraction of fine grains 10-20 μm in size. Smaller grains and higher linear density sug- gested that in this case densification process prevailed over undesirable process of grain coarsening, which finally resulted in im- proved mechanical properties of the scaffolds.

  11. Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2006-01-01

    A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.

  12. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys

    NASA Astrophysics Data System (ADS)

    Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet

    2018-02-01

    The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.

  13. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self- Assembly into Large Domain Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mapas, Jose Kenneth D.; Thomay, Tim; Cartwright, Alexander N.

    2016-05-05

    Block copolymer (BCP) derived periodic nanostructures with domain sizes larger than 150 nm present a versatile platform for the fabrication of photonic materials. So far, the access to such materials has been limited to highly synthetically involved protocols. Herein, we report a simple, “user-friendly” method for the preparation of ultrahigh molecular weight linear poly(solketal methacrylate-b-styrene) block copolymers by a combination of Cu-wire-mediated ATRP and RAFT polymerizations. The synthesized copolymers with molecular weights up to 1.6 million g/mol and moderate dispersities readily assemble into highly ordered cylindrical or lamella microstructures with domain sizes as large as 292 nm, as determined bymore » ultra-small-angle x-ray scattering and scanning electron microscopy analyses. Solvent cast films of the synthesized block copolymers exhibit stop bands in the visible spectrum correlated to their domain spacings. The described method opens new avenues for facilitated fabrication and the advancement of fundamental understanding of BCP-derived photonic nanomaterials for a variety of applications.« less

  14. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Wu, Yaoxing; Chang, Victor W-C

    2012-05-18

    The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient

    NASA Astrophysics Data System (ADS)

    Hande, Vinayak; Shojaei Baghini, Maryam

    2015-08-01

    A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2

  16. Structural and Interfacial Properties of Hyperbranched-Linear Polymer Surfactant.

    PubMed

    Qiang, Taotao; Bu, Qiaoqiao; Huang, Zhaofeng; Wang, Xuechuan

    2014-01-01

    With oleic acid grafting modification, a series of hyperbranched-linear polymer surfactants (HLPS) were prepared by hydroxyl-terminated hyperbranched polymer (HBP), which was gained through a step synthesis method using trimethylolpropane and AB 2 monomer. The AB 2 monomers were obtained through the Michael addition reaction of methyl acrylate and diethanol amine. The structures of HLPS were characterised by Fourier transform infrared spectrophotometer and nuclear magnetic resonance (NMR), which indicated that HBP was successfully modified by oleic acid. Furthermore, the properties of surface tension and critical micelle concentration of HLPS solution showed that HLPS can significantly reduce the surface tension of water. The morphology of the HLPS solution was characterised by dynamic light scattering, which revealed that HLPS exhibited a nonmonotonic appearance in particle size at different scattering angles owing to the different replaced linear portions. The relationships of the surface pressure to monolayer area and time were measured using the Langmuir-Blodgett instrument, which showed that the surface tension of monolayer molecules increased with the increasing of hydrophobic groups. In addition, the interface conditions of different replaced HLPS solutions were simulated.

  17. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.

    PubMed

    Halpern, Aaron R; Corn, Robert M

    2013-02-26

    A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids were removed from the surface, a thin film of positive photoresist was applied, and a backside exposure of the photoresist was used to create a nanohole electrode array; (iii) this array of nanoscale cylindrical electrodes was then used for the electrodeposition of gold, silver, or nickel nanorings. Removal of the photoresist and sacrificial metal film yielded a nanoring array in which all of the nanoring dimensions were set independently: the inter-ring spacing was fixed by the colloidal radius, the radius of the nanorings was controlled by the plasma etching process, and the width of the nanorings was controlled by the electrodeposition process. A combination of scanning electron microscopy (SEM) measurements and Fourier transform near-infrared (FT-NIR) absorption spectroscopy were used to characterize the nanoring arrays. Nanoring arrays with radii from 200 to 400 nm exhibited a single strong NIR plasmonic resonance with an absorption maximum wavelength that varied linearly from 1.25 to 3.33 μm as predicted by a simple standing wave model linear antenna theory. This simple yet versatile nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances.

  18. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    PubMed

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained from the same depth.

  19. Corrigendum to "Co-occurrence of linear and circular dichroism in chiral sculptured ZrO2 thin films" [Opt. Mater. 75 (January 2018) 319-324

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Wali, Faiz; Song, Li

    2018-05-01

    The authors regret .

  20. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  1. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    PubMed

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  2. Need total sulfur content? Use chemiluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.

    Regulations issued by the United States Environmental Protection Agency require petroleum refineries to reduce or control the amount of total sulfur present in their refined products. These legislative requirements have led many refineries to search for online instrumentation that can produce accurate and repeatable total sulfur measurements within allowed levels. Several analytical methods currently exist to measure total sulfur content. They include X-ray fluorescence (XRF), microcoulometry, lead acetate tape, and pyrofluorescence techniques. Sulfur-specific chemiluminescence detection (SSCD) has recently received much attention due to its linearity, selectivity, sensitivity, and equimolar response. However, its use has been largely confined to the areamore » of gas chromatography. This article focuses on the special design considerations and analytical utility of an SSCD system developed to determine total sulfur content in gasoline. The system exhibits excellent linearity and selectivity, the ability to detect low minimum levels, and an equimolar response to various sulfur compounds. 2 figs., 2 tabs.« less

  3. Synthesis, crystal growth and studies on non-linear optical property of new chalcones

    NASA Astrophysics Data System (ADS)

    Sarojini, B. K.; Narayana, B.; Ashalatha, B. V.; Indira, J.; Lobo, K. G.

    2006-09-01

    The synthesis, crystal growth and non-linear optical (NLO) property of new chalcone derivatives are reported. 4-Propyloxy and 4-butoxy benzaldehydes were made to under go Claisen-Schmidt condensation with 4-methoxy, 4-nitro and 4-phenoxy acetophenones to form corresponding chalcones. The newly synthesized compounds were characterized by analytical and spectral data. The Second harmonic generation (SHG) efficiency of these compounds was measured by powder technique using Nd:YAG laser. Among tested compounds three chalcones showed NLO property. The chalcone 1-(4-methoxyphenyl)-3-(4-propyloxy phenyl)-2-propen-1-one exhibited SHG conversion efficiency 2.7 times that of urea. The bulk crystal of 1-(4-methoxyphenyl)-3-(4-butoxyphenyl)-2-propen-1-one (crystal size 65×28×15 mm 3) was grown by slow-evaporation technique from acetone. Microhardness of the crystal was tested by Vicker's microhardness method.

  4. Preparation of pentacene thin film deposited using organic material auto-feeding system for the fabrication of organic thin film transistor.

    PubMed

    Kim, Young Baek; Choi, Bum Ho; Lim, Yong Hwan; Yoo, Ha Na; Lee, Jong Ho; Kim, Jin Hyeok

    2011-02-01

    In this study, pentacene organic thin film was prepared using newly developed organic material auto-feeding system integrated with linear cell and characterized. The newly developed organic material auto-feeding system consists of 4 major parts: reservoir, micro auto-feeder, vaporizer, and linear cell. The deposition of organic thin film could be precisely controlled by adjusting feeding rate, main tube size, position and size of nozzle. 10 nm thick pentacene thin film prepared on glass substrate exhibited high uniformity of 3.46% which is higher than that of conventional evaporation method using point cell. The continuous deposition without replenishment of organic material can be performed over 144 hours with regulated deposition control. The grain size of pentacene film which affect to mobility of OTFT, was controlled as a function of the temperature.

  5. δ M formalism: a new approach to cosmological perturbation theory in anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Talebian-Ashkezari, A.; Ahmadi, N.; Abolhasani, A. A.

    2018-03-01

    We study the evolution of the metric perturbations in a Bianchi background in the long-wavelength limit. By applying the gradient expansion to the equations of motion we exhibit a generalized "Separate Universe" approach to the cosmological perturbation theory. Having found this consistent separate universe picture, we introduce the δ M formalism for calculating the evolution of the linear tensor perturbations in anisotropic inflation models in almost the same way that the so-called δ N formula is applied to the super-horizon dynamics of the curvature perturbations. Similar to her twin formula, δ N, this new method can substantially reduce the amount of calculations related to the evolution of tensor modes. However, it is not as general as δ N it is a "perturbative" formula and solves the shear only to linear order. In other words, it is restricted to weak shear limit.

  6. Time Domain Stability Margin Assessment of the NASA Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  7. Time Domain Stability Margin Assessment of the NS Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  8. Assessment of Gamma-Ray Spectra Analysis Method Utilizing the Fireworks Algorithm for various Error Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    Significant role in enhancing nuclear nonproliferation plays the analysis of obtained data and the inference of the presence or not of special nuclear materials in them. Among various types of measurements, gamma-ray spectra is the widest used type of data utilized for analysis in nonproliferation. In this chapter, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, with non-zero coefficients expressing the detected signatures. FWA is tested on amore » set of experimentally obtained measurements and various objective functions -MSE, RMSE, Theil-2, MAE, MAPE, MAP- with results exhibiting its potential in providing high accuracy and high precision of detected signatures. Furthermore, FWA is benchmarked against genetic algorithms, and multiple linear regression with results exhibiting its superiority over the rest tested algorithms with respect to precision for MAE, MAPE and MAP measures.« less

  9. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  10. Validated spectrofluorimetric methods for the determination of apixaban and tirofiban hydrochloride in pharmaceutical formulations.

    PubMed

    El-Bagary, Ramzia I; Elkady, Ehab F; Farid, Naira A; Youssef, Nadia F

    2017-03-05

    Apixaban and Tirofiban Hydrochloride are low molecular weight anticoagulants. The two drugs exhibit native fluorescence that allow the development of simple and valid spectrofluorimetric methods for the determination of Apixaban at λ ex/λ em=284/450nm and tirofiban HCl at λ ex/λ em=227/300nm in aqueous media. Different experimental parameters affecting fluorescence intensities were carefully studied and optimized. The fluorescence intensity-concentration plots were linear over the ranges of 0.2-6μgml -1 for apixaban and 0.2-5μgml -1 for tirofiban HCl. The limits of detection were 0.017 and 0.019μgml -1 and quantification limits were 0.057 and 0.066μgml -1 for apixaban and tirofiban HCl, respectively. The fluorescence quantum yield of apixaban and tirofiban were calculated with values of 0.43 and 0.49. Method validation was evaluated for linearity, specificity, accuracy, precision and robustness as per ICH guidelines. The proposed spectrofluorimetric methods were successfully applied for the determination of apixaban in Eliquis tablets and tirofiban HCl in Aggrastat intravenous infusion. Tolerance ratio was tested to study the effect of foreign interferences from dosage forms excipients. Using Student's t and F tests, revealed no statistically difference between the developed spectrofluorimetric methods and the comparison methods regarding the accuracy and precision, so can be contributed to the analysis of apixaban and tirofiban HCl in QC laboratories as an alternative method. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Development and validation of a single robust HPLC method for the characterization of a pharmaceutical starting material and impurities from three suppliers using three separate synthetic routes.

    PubMed

    Sheldon, E M; Downar, J B

    2000-08-15

    Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.

  12. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    PubMed

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.

  13. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine.

    PubMed

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-02-28

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen) 3 2 + -doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs.

  14. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine

    PubMed Central

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-01-01

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen)32+-doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs. PMID:28264472

  15. Mediatorless Impedance Studies with Titanium Dioxide Conjugated Gold Nanoparticles for Hydrogen Peroxide Detection

    PubMed Central

    Abdul Halim, Nur Hamidah; Lee, Yook Heng; Marugan, Radha Swathe Priya Malon; Hashim, Uda

    2017-01-01

    An impedimetric-based biosensor constructed using gold nanoparticles (AuNP) entrapped within titanium dioxide (TiO2) particles for hydrogen peroxide (H2O2) detection is the main feature of this research. The matrix of the biosensor employed the surface of TiO2, which was previously modified with an amine terminal group using 3-Aminopropyltriethoxysilane (APTS) at a low temperature to create a ready to immobilise surface for the biosensor application. Hemoglobin (Hb), which exhibits peroxidase-like activity, was used as the bioreceptor in the biosensor to detect H2O2 in solution. The analysis was carried out using an alternative impedance method, in which the biosensor exhibited a wide linear range response between 1 × 10−4 M and 1.5 × 10−2 M and a limit of detection (LOD) of 1 × 10−5 M without a redox mediator. PMID:28927005

  16. Electrochemical sensor for rutin detection based on Au nanoparticle-loaded helical carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Haitang; Li, Bingyue; Cui, Rongjing; Xing, Ruimin; Liu, Shanhu

    2017-10-01

    The key step in the fabrication of highly active electrochemical sensors is seeking multifunctional nanocomposites as electrode modified materials. In this study, the gold nanoparticle-decorated helical carbon nanotube nanocomposites (AuNPs-HCNTs) were fabricated for rutin detection because of its superior sensitivity, the chemical stability of AuNPs, and the superior conductivity and unique 3D-helical structure of helical carbon nanotubes. Results showed the prepared nanocomposites exhibited superior electrocatalytic activity towards rutin due to the synergetic effects of AuNPs and HCNTs. Under the optimized conditions, the developed sensor exhibited a linear response range from 0.1 to 31 μmol/L for rutin with a low detectable limit of 81 nmol/L. The proposed method might offer a possibility for electrochemical analysis of rutin in Chinese medical analysis or serum monitoring owing to its low cost, simplicity, high sensitivity, good stability, and few interferences against common coexisting ions in real samples.

  17. Relationship Between Ktrans and K1 with Simultaneous Versus Separate MR/PET in Rabbits with VX2 Tumors.

    PubMed

    Lee, Kyung Hee; Kang, Seung Kwan; Goo, Jin Mo; Lee, Jae Sung; Cheon, Gi Jeong; Seo, Seongho; Hwang, Eui Jin

    2017-03-01

    To compare the relationship between K trans from DCE-MRI and K 1 from dynamic 13 N-NH 3 -PET, with simultaneous and separate MR/PET in the VX-2 rabbit carcinoma model. MR/PET was performed simultaneously and separately, 14 and 15 days after VX-2 tumor implantation at the paravertebral muscle. The K trans and K 1 values were estimated using an in-house software program. The relationships between K trans and K 1 were analyzed using Pearson's correlation coefficients and linear/non-linear regression function. Assuming a linear relationship, K trans and K 1 exhibited a moderate positive correlations with both simultaneous (r=0.54-0.57) and separate (r=0.53-0.69) imaging. However, while the K trans and K 1 from separate imaging were linearly correlated, those from simultaneous imaging exhibited a non-linear relationship. The amount of change in K 1 associated with a unit increase in K trans varied depending on K trans values. The relationship between K trans and K 1 may be mis-interpreted with separate MR and PET acquisition. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Propagating synchrony in feed-forward networks

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2013-01-01

    Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons. PMID:24298251

  19. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.

    PubMed

    Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F

    2014-11-21

    Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.

  20. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  1. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    PubMed Central

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-01-01

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature. PMID:27763494

  2. Surface tension and density of Si-Ge melts

    NASA Astrophysics Data System (ADS)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  3. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.

    PubMed

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-10-17

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1-0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature.

  4. A sensitive LC-MS/MS method for simultaneous determination of amygdalin and paeoniflorin in human plasma and its application.

    PubMed

    Li, Xiaobing; Shi, Fuguo; Gu, Pan; Liu, Lingye; He, Hua; Ding, Li

    2014-04-01

    A simple and sensitive HPLC-MS/MS method was developed and fully validated for the simultaneous determination of amygdalin (AD) and paeoniflorin (PF) in human plasma. For both analytes, the method exhibited high sensitivity (LLOQs of 0.6ng/mL) by selecting the ammonium adduct ions ([M+NH4](+)) as the precursor ions and good linearity over the concentration range of 0.6-2000ng/mL with the correlation coefficients>0.9972. The intra- and inter-day precision was lower than 10% in relation to relative standard deviation, while accuracy was within ±2.3% in terms of relative error for both analytes. The developed method was successfully applied to a pilot pharmacokinetic study of AD and PF in healthy volunteers after intravenous infusion administration of Huoxue-Tongluo lyophilized powder for injection. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain.

    PubMed

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie

    2017-09-05

    A new metal polyphosphate, α-CsBa 2 (PO 3 ) 5 , exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO 3 ) ∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa 2 (PO 3 ) 5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa 2 (PO 3 ) 5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  6. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Fundamental Department, Aviation University, Changchun 130022; Li Ming

    2011-04-15

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases.

  7. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure.

    PubMed

    Yang, Jie; Li, Ming; Zhang, Honglin; Gao, Chunxiao

    2011-04-01

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases. © 2011 American Institute of Physics

  8. A schematic eye model for the effects of translation and rotation of ocular components on peripheral astigmatism.

    PubMed

    Barnes, D A; Dunne, M C; Clement, R A

    1987-01-01

    The relative contributions of translation and rotation of the cornea and lens to peripheral astigmatic asymmetry have been investigated using a linear algebraic ray tracing method. It is believed that lenticular rotation is responsible for angle alpha, so bringing about peripheral astigmatic asymmetry, as normally occurs in human eyes over the temporal and nasal retina. Rotation of the cornea may be responsible for the small numbers of eyes which exhibit large amounts of peripheral astigmatic asymmetry. The effects of corneal rotation and translation on the dimensions of the entrance pupil are illustrated.

  9. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  10. Mott glass from localization and confinement

    NASA Astrophysics Data System (ADS)

    Chou, Yang-Zhi; Nandkishore, Rahul M.; Radzihovsky, Leo

    2018-05-01

    We study a system of fermions in one spatial dimension with linearly confining interactions and short-range disorder. We focus on the zero-temperature properties of this system, which we characterize using bosonization and the Gaussian variational method. We compute the static compressibility and ac conductivity, and thereby demonstrate that the system is incompressible, but exhibits gapless optical conductivity. This corresponds to a "Mott glass" state, distinct from an Anderson and a fully gapped Mott insulator, arising due to the interplay of disorder and charge confinement. We argue that this Mott glass phenomenology should persist to nonzero temperatures.

  11. Standard random number generation for MBASIC

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1976-01-01

    A machine-independent algorithm is presented and analyzed for generating pseudorandom numbers suitable for the standard MBASIC system. The algorithm used is the polynomial congruential or linear recurrence modulo 2 method. Numbers, formed as nonoverlapping adjacent 28-bit words taken from the bit stream produced by the formula a sub m + 532 = a sub m + 37 + a sub m (modulo 2), do not repeat within the projected age of the solar system, show no ensemble correlation, exhibit uniform distribution of adjacent numbers up to 19 dimensions, and do not deviate from random runs-up and runs-down behavior.

  12. Total Ionizing Dose Effects in Bipolar and BiCMOS Devices

    NASA Technical Reports Server (NTRS)

    Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.

    2005-01-01

    This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.

  13. Thermoluminescence properties of gamma-irradiated nano-structure hydroxyapatite.

    PubMed

    Shafaei, M; Ziaie, F; Sardari, D; Larijani, M M

    2016-02-01

    The suitability of nano-structured hydroxyapatite (HAP) for use as a thermoluminescence dosimeter was investigated. HAP samples were synthesized using a hydrolysis method. The formation of nanoparticles was confirmed by X-ray diffraction and average particle size was estimated to be ~30 nm. The glow curve exhibited a peak centered at around 200 °C. The additive dose method was applied and this showed that the thermoluminescence (TL) glow curves follow first-order kinetics due to the non-shifting nature of Tm after different doses. The numbers of overlapping peaks and related kinetic parameters were identified from Tm -Tstop through computerized glow curve deconvolution methods. The dependence of the TL responses on radiation dose was studied and a linear dose response up to 1000 Gy was observed for the samples. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    PubMed

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  16. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines.

    PubMed

    Vargas Casanova, Yerly; Rodríguez Guerra, Jorge Antonio; Umaña Pérez, Yadi Adriana; Leal Castro, Aura Lucía; Almanzar Reina, Giovanni; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny

    2017-09-29

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.

  17. Higher order contribution to the propagation characteristics of low frequency transverse waves in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Misra, A. P.; Chowdhury, A. Roy; Paul, S. N.

    2004-09-01

    Characteristic features of low frequency transverse wave propagating in a magnetised dusty plasma have been analysed considering the effect of dust-charge fluctu- ation. The distinctive behaviours of both the left circularly polarised and right circularly polarised waves have been exhibited through the analysis of linear and non-linear disper- sion relations. The phase velocity, group velocity, and group travel time for the waves have been obtained and their propagation characteristics have been shown graphically with the variations of wave frequency, dust density and amplitude of the wave. The change in non-linear wave number shift and Faraday rotation angle have also been exhibited with respect to the plasma parameters. It is observed that the effects of dust particles are significant only when the higher order contributions are considered. This may be referred to as the `dust regime' in plasma.

  18. Stepwise photochromism of bisnaphthopyrans exhibiting an excitation intensity-dependent color change.

    PubMed

    Inagaki, Yuki; Mutoh, Katsuya; Abe, Jiro

    2018-06-07

    Non-linear photoresponses against excitation light intensity are important for the development of attractive photofunctional materials exhibiting high spatial selective photoswitching that is not affected by weak background light. Biphotochromic systems composed of two fast photochromic units have the potential to show a stepwise two-photon absorption process in which the optical properties can be non-linearly controlled by changing the excitation light conditions. Herein, we designed and synthesized novel bisnaphthopyran derivatives containing fast photoswitchable naphthopyran units. The bisnaphthopyran derivatives show a stepwise two-photon-induced photochromic reaction upon UV light irradiation accompanied by a drastic color change due to a large change in the molecular structure between the one-photon product and the two-photon product. Consequently, the color of the bisnaphthopyran derivatives can be non-linearly controlled by changing the excitation intensity. This characteristic photochromic property of the biphotochromic system provides important insight into advanced photoresponsive materials.

  19. Elastic properties and optical absorption studies of mixed alkali borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed

    2018-05-01

    First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.

  20. Miniaturized Stretchable and High-Rate Linear Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning

    2017-07-01

    Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g-1 at the discharge current of 1 A g-1.

  1. Miniaturized Stretchable and High-Rate Linear Supercapacitors.

    PubMed

    Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning

    2017-12-01

    Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g -1 at the discharge current of 1 A g -1 .

  2. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing.

    PubMed

    Lagos, Maureen J; Batson, Philip E

    2018-06-13

    We measure phonon energy gain and loss down to 20 meV in a single nanostructure using an atom-wide monochromatic electron beam. We show that the bulk and surface, energy loss and energy gain processes obey the principle of detailed balancing in nanostructured systems at thermal equilibrium. By plotting the logarithm of the ratio of the loss and gain bulk/surface scattering as a function of the excitation energy, we find a linear behavior, expected from detailed balance arguments. Since that universal linearity scales with the inverse of the nanosystem temperature only, we can measure the temperature of the probed object with precision down to about 1 K without reference to the nanomaterial. We also show that subnanometer spatial resolution (down to ∼2 Å) can be obtained using highly localized acoustic phonon scattering. The surface phonon polariton signal can also be used to measure the temperature near the nanostructure surfaces, but with unavoidable averaging over several nanometers. Comparison between transmission and aloof probe configurations suggests that our method exhibits noninvasive characteristics. Our work demonstrates the validity of the principle of detailed balancing within nanoscale materials at thermal equilibrium, and it describes a transparent method to measure nanoscale temperature, thus representing an advance in the development of a noninvasive method for measurements with angstrom resolution.

  3. Comparison of BiLinearly Interpolated Subpixel Sensitivity Mapping and Pixel-Level Decorrelation

    NASA Astrophysics Data System (ADS)

    Challener, Ryan C.; Harrington, Joseph; Cubillos, Patricio; Foster, Andrew S.; Deming, Drake; WASP Consortium

    2016-10-01

    Exoplanet eclipse signals are weaker than the systematics present in the Spitzer Space Telescope's Infrared Array Camera (IRAC), and thus the correction method can significantly impact a measurement. BiLinearly Interpolated Subpixel Sensitivity (BLISS) mapping calculates the sensitivity of the detector on a subpixel grid and corrects the photometry for any sensitivity variations. Pixel-Level Decorrelation (PLD) removes the sensitivity variations by considering the relative intensities of the pixels around the source. We applied both methods to WASP-29b, a Saturn-sized planet with a mass of 0.24 ± 0.02 Jupiter masses and a radius of 0.84 ± 0.06 Jupiter radii, which we observed during eclipse twice with the 3.6 µm and once with the 4.5 µm channels of IRAC aboard Spitzer in 2010 and 2011 (programs 60003 and 70084, respectively). We compared the results of BLISS and PLD, and comment on each method's ability to remove time-correlated noise. WASP-29b exhibits a strong detection at 3.6 µm and no detection at 4.5 µm. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  4. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    PubMed Central

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were <1.27% and 0.61%, respectively. The results of the recovery test were 101.35–101.75% with an RSD value of 0.21–1.65%. The developed method was applied successfully to quantify the maltol in three ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  5. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    PubMed

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-08

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders.

    PubMed

    Kestur, Umesh S; Wanapun, Duangporn; Toth, Scott J; Wegiel, Lindsay A; Simpson, Garth J; Taylor, Lynne S

    2012-11-01

    The primary aim of this study was to evaluate the utility of second-order nonlinear imaging of chiral crystals (SONICC) to quantify crystallinity in drug-polymer blends, including solid dispersions. Second harmonic generation (SHG) can potentially exhibit scaling with crystallinity between linear and quadratic depending on the nature of the source, and thus, it is important to determine the response of pharmaceutical powders. Physical mixtures containing different proportions of crystalline naproxen and hydroxyl propyl methyl cellulose acetate succinate (HPMCAS) were prepared by blending and a dispersion was produced by solvent evaporation. A custom-built SONICC instrument was used to characterize the SHG intensity as a function of the crystalline drug fraction in the various samples. Powder X-ray diffraction (PXRD) and Raman spectroscopy were used as complementary methods known to exhibit linear scaling. SONICC was able to detect crystalline drug even in the presence of 99.9 wt % HPMCAS in the binary mixtures. The calibration curve revealed a linear dynamic range with a R(2) value of 0.99 spanning the range from 0.1 to 100 wt % naproxen with a root mean square error of prediction of 2.7%. Using the calibration curve, the errors in the validation samples were in the range of 5%-10%. Analysis of a 75 wt % HPMCAS-naproxen solid dispersion with SONICC revealed the presence of crystallites at an earlier time point than could be detected with PXRD and Raman spectroscopy. In addition, results from the crystallization kinetics experiment using SONICC were in good agreement with Raman spectroscopy and PXRD. In conclusion, SONICC has been found to be a sensitive technique for detecting low levels (0.1% or lower) of crystallinity, even in the presence of large quantities of a polymer. Copyright © 2012 Wiley-Liss, Inc.

  7. Static response of coated microbubbles compressed between rigid plates: Simulations and asymptotic analysis including elastic and adhesive forces

    NASA Astrophysics Data System (ADS)

    Lytra, A.; Pelekasis, N.

    2018-03-01

    The static response of coated microbubbles is investigated with a novel approach employed for modeling contact between a microbubble and the cantilever of an atomic force microscope. Elastic tensions and moments are described via appropriate constitutive laws. The encapsulated gas is assumed to undergo isothermal variations. Due to the hydrophilic nature of the cantilever, an ultrathin aqueous film is formed, which transfers the force onto the shell. An interaction potential describes the local pressure applied on the shell. The problem is solved in axisymmetric form with the finite element method. The response is governed by the dimensionless bending, k^ b=kb/(χ R02 ), pressure, P^ A=(PAR0 )/χ , and interaction potential, W ^ =w0/χ . Hard polymeric shells have negligible resistance to gas compression, while for the softer lipid shells gas compressibility is comparable with shell elasticity. As the external force increases, numerical simulations reveal that the force versus deformation (f vs d) curve of polymeric shells exhibits a transition from the linear O(d) (Reissner) regime, marked by flattened shapes around the contact region, to a non-linear O(d1/2) (Pogorelov) regime dominated by shapes exhibiting crater formation due to buckling. When lipid shells are tested, buckling is bypassed as the external force increases and flattened shapes prevail in an initially linear f vs d curve. Transition to a curved upwards regime is observed as the force increases, where gas compression and area dilatation form the dominant balance providing a nonlinear regime with an O(d3) dependence. Asymptotic analysis recovers the above patterns and facilitates estimation of the shell mechanical properties.

  8. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  9. Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.

    2018-08-01

    Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.

  10. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  11. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    PubMed

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  12. A solar cycle dependence of nonlinearity in magnetospheric activity

    NASA Astrophysics Data System (ADS)

    Johnson, Jay R.; Wing, Simon

    2005-04-01

    The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  13. Impact of structural symmetry on magnetization properties in SrCo0.95Mn0.05O3 prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Meenakshi, Mahto, Rabindra Nath

    2018-04-01

    We have investigated magnetization properties of the sol-gel prepared SrCo0.95Mn0.05O3 (SCMO) sample with respect to change in structural symmetry. The X-ray diffraction patterns show the crystal structure changes from nH-hexagonal, showing trigonal symmetry (SCMO1), to 2H-hexagonal phase (SCMO2). The trigonal crystal symmetry was obtained at lower annealing temperature (less than 1100 °C), however, the 2H-hexagonal symmetry was obtained at higher annealing temperature. The crystallite size calculated using Debye Scherer formula is found to be ˜ 46 nm and ˜ 33 nm for SCMO1 and SCMO2 samples respectively. The temperature dependence zero field cooled (MZFC) and field cooled (MFC) magnetization curves measured under the applied magnetic field of 500 Oe show magnetic reversibility for the SCMO1 sample. However, MZFC and MFC curves in hexagonal phase show magnetic irreversibility with onset temperature, Tirr ˜ 150 K, exhibits weak ferromagnetic ordering. The temperature variation of magnetization in paramagnetic region was analyzed by following Curie-Weiss law fitting. The χ-1(T) curve shows complete linear behavior with single slope for SCMO1 sample, whereas, the SCMO2 curve exhibit the linear behavior with two distinct slopes. Interestingly the sample in hexagonal phase shows small hysteresis loop at 2 K and 100 K respectively.

  14. On a model of three-dimensional bursting and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.

    2008-04-01

    A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.

  15. Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivaitized with 2-iodoacetanilide isotopologues.

    PubMed

    Lee, Der-Yen; Huang, Wei-Chieh; Gu, Ting-Jia; Chang, Geen-Dong

    2018-06-01

    Hydrogen sulfide (H 2 S), previously known as a toxic gas, is now recognized as a gasotransmitter along with nitric oxide and carbon monoxide. However, only few methods are available for quantitative determination of H 2 S in biological samples. 2-Iodoacetanilide (2-IAN), a thiol-reacting agent, has been used to tag the reduced cysteine residues of proteins for quantitative proteomics and for detection of cysteine oxidation modification. In this article, we proposed a new method for quantitative analyses of H 2 S and thiol metabolites using the procedure of pre-column 2-IAN derivatization coupled with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). 13 C 6 -Labeled and label-free 2-IAN efficiently react with H 2 S and thiol compounds at pH 9.5 and 65 °C. The derivatives exhibit excellent stability at alkaline conditions, high resolution on reverse phase liquid chromatography and great sensitivity for ESI-MS detection. The measurement of H 2 S, l-cysteine, glutathione, and DL-homocysteine derivatives was validated using 13 C 6 -labeled standard in LC-ESI-MS analyses and exhibited 10 nM-1 μM linear ranges for DL-homocysteine and glutathione and 1 nM-1 μM linear ranges for l-cysteine and H 2 S. In addition, the sequence of derivatization and extraction of metabolites is important in the quantification of thiol metabolites suggesting the presence of matrix effects. Most importantly, labeling with 2-IAN and 13 C 6 -2-IAN isotopologues could achieve quantitative and matched sample comparative analyses with minimal bias using our extraction and labeling procedures before LC-MS analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Precision of a CAD/CAM-engineered surgical template based on a facebow for orthognathic surgery: an experiment with a rapid prototyping maxillary model.

    PubMed

    Lee, Jae-Won; Lim, Se-Ho; Kim, Moon-Key; Kang, Sang-Hoon

    2015-12-01

    We examined the precision of a computer-aided design/computer-aided manufacturing-engineered, manufactured, facebow-based surgical guide template (facebow wafer) by comparing it with a bite splint-type orthognathic computer-aided design/computer-aided manufacturing-engineered surgical guide template (bite wafer). We used 24 rapid prototyping (RP) models of the craniofacial skeleton with maxillary deformities. Twelve RP models each were used for the facebow wafer group and the bite wafer group (experimental group). Experimental maxillary orthognathic surgery was performed on the RP models of both groups. Errors were evaluated through comparisons with surgical simulations. We measured the minimum distances from 3 planes of reference to determine the vertical, lateral, and anteroposterior errors at specific measurement points. The measured errors were compared between experimental groups using a t test. There were significant intergroup differences in the lateral error when we compared the absolute values of the 3-D linear distance, as well as vertical, lateral, and anteroposterior errors between experimental groups. The bite wafer method exhibited little lateral error overall and little error in the anterior tooth region. The facebow wafer method exhibited very little vertical error in the posterior molar region. The clinical precision of the facebow wafer method did not significantly exceed that of the bite wafer method. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. High-resolution proxies for wood density variations in Terminalia superba

    PubMed Central

    De Ridder, Maaike; Van den Bulcke, Jan; Vansteenkiste, Dries; Van Loo, Denis; Dierick, Manuel; Masschaele, Bert; De Witte, Yoni; Mannes, David; Lehmann, Eberhard; Beeckman, Hans; Van Hoorebeke, Luc; Van Acker, Joris

    2011-01-01

    Background and Aims Density is a crucial variable in forest and wood science and is evaluated by a multitude of methods. Direct gravimetric methods are mostly destructive and time-consuming. Therefore, faster and semi- to non-destructive indirect methods have been developed. Methods Profiles of wood density variations with a resolution of approx. 50 µm were derived from one-dimensional resistance drillings, two-dimensional neutron scans, and three-dimensional neutron and X-ray scans. All methods were applied on Terminalia superba Engl. & Diels, an African pioneer species which sometimes exhibits a brown heart (limba noir). Key Results The use of X-ray tomography combined with a reference material permitted direct estimates of wood density. These X-ray-derived densities overestimated gravimetrically determined densities non-significantly and showed high correlation (linear regression, R2 = 0·995). When comparing X-ray densities with the attenuation coefficients of neutron scans and the amplitude of drilling resistance, a significant linear relation was found with the neutron attenuation coefficient (R2 = 0·986) yet a weak relation with drilling resistance (R2 = 0·243). When density patterns are compared, all three methods are capable of revealing the same trends. Differences are mainly due to the orientation of tree rings and the different characteristics of the indirect methods. Conclusions High-resolution X-ray computed tomography is a promising technique for research on wood cores and will be explored further on other temperate and tropical species. Further study on limba noir is necessary to reveal the causes of density variations and to determine how resistance drillings can be further refined. PMID:21131386

  18. Simultaneous determination of four neuroprotective compounds of Tilia amurensis by high performance liquid chromatography coupled with diode array detector

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Yun, Bo-Ra; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2014-01-01

    Background: Tilia amurensis consists of various compounds, such as flavonoids and terpenoids. Objective: A simple and reliable high performance liquid chromatography (HPLC) coupled with the diode array detector (DAD) method has been established for simultaneous determination of epicatechin, nudiposide, lyoniside, and scopoletin isolated from Tilia amurensis. Materials and Methods: Optimum separations were obtained with a SHISEIDO C18 column by gradient eluton, with 0.1% Trifluoroacetic acid (TFA) water-methanol as the mobile phase. The gradient elution system was completed within 40 minutes. The flow rate and detection wavelength were 1 mL/minute, 205 nm, 250 nm, and 280 nm, respectively. Results: Validation of the analytical method was evaluated by linearity, precision, and the accuracy test. The calibration curve was linear over the established range with R2 > 0.997. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.01-15.20 μg/mL and 0.03-46.06 μg/mL. The method exhibited an intraday and interday precision range of 96.25-105.66% and 93.52-109.92%, respectively (RSD <2.80%). The recoveries and relative standard deviation (RSD) of the four compounds in Tilia amurensis were in the range of 90.42-104.84% and 0.2-2.58%. Conclusion: This developed method was accurate and reliable for the quality evaluation of the four compounds isolated from Tilia amurensis. PMID:25210303

  19. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine.

    PubMed

    Bergamaschi, Mateus M; Barnes, Allan; Queiroz, Regina H C; Hurd, Yasmin L; Huestis, Marilyn A

    2013-05-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex-a cannabis plant extract containing 1:1 ∆(9)-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x (2) weighting with linear ranges (r(2) > 0.990) of 2.5-100 ng/mL for non-hydrolyzed CBD and 2.5-500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7-105.3 %, imprecision 1.4-6.4 % CV and extraction efficiency 82.5-92.7 % (no hydrolysis) and 34.3-47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration.

  20. Kinematic Localization for Global Navigation Satellite Systems: A Kalman Filtering Approach

    NASA Astrophysics Data System (ADS)

    Tabatabaee, Mohammad Hadi

    Use of the Global Positioning System (GNSS) has expanded significantly in the past decade, especially with advances in embedded systems and the emergence of smartphones and the Internet of Things (IoT). The growing demand has stimulated research on development of GNSS techniques and programming tools. The focus of much of the research efforts have been on high-level algorithms and augmentations. This dissertation focuses on the low-level methods at the heart of GNSS systems and proposes a new methods for GNSS positioning problems based on concepts of distance geometry and the use of Kalman filters. The methods presented in this dissertation provide algebraic solutions to problems that have predominantly been solved using iterative methods. The proposed methods are highly efficient, provide accurate estimates, and exhibit a degree of robustness in the presence of unfavorable satellite geometry. The algorithm operates in two stages; an estimation of the receiver clock bias and removal of the bias from the pseudorange observables, followed by the localization of the GNSS receiver. The use of a Kalman filter in between the two stages allows for an improvement of the clock bias estimate with a noticeable impact on the position estimates. The receiver localization step has also been formulated in a linear manner allowing for the direct application of a Kalman filter without any need for linearization. The methodology has also been extended to double differential observables for high accuracy pseudorange and carrier phase position estimates.

  1. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates.

    PubMed

    Huang, Jing; Deng, Hongtao; Song, Dandan; Xu, Hui

    2015-06-09

    In the current study, we introduced a novel polystyrene/graphene (PS/G) composite nanofiber film for thin film microextraction (TFME) for the first time. The PS/G nanofiber film was fabricated on the surface of filter paper by a facile electrospinning method. The morphology and extraction performance of the resultant composite film were investigated systematically. The PS/G nanofiber film exhibited porous fibrous structure, large surface area and strong hydrophobicity. A new thin film microextraction-high performance liquid chromatography (TFME-HPLC) method was developed for the determination of six aldehydes in human exhaled breath condensates. The method showed high enrichment efficiency and fast analysis speed. Under the optimal conditions, the linear ranges of the analytes were in the range of 0.02-30 μmol L(-1) with correlation coefficients above 0.9938, and the recoveries were between 79.8% and 105.6% with the relative standard deviation values lower than 16.3% (n=5). The limits of quantification of six aldehydes ranged from 13.8 to 64.6 nmol L(-1). The established method was successfully applied for the quantification of aldehyde metabolites in exhaled breath condensates of lung cancer patients and healthy people. Taken together, the TFME-HPLC method provides a simple, rapid, sensitive, cost-effective, non-invasion approach for the analysis of linear aliphatic aldehydes in human exhaled breath condensates. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A UPLC-MS/MS method for simultaneous determination of five flavonoids from Stellera chamaejasme L. in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Li, Yun-Qing; Li, Cheng-Jian; Lv, Lei; Cao, Qing-Qing; Qian, Xian; Li, Si Wei; Wang, Hui; Zhao, Liang

    2018-06-01

    Stellera chamaejasme L. has been used as a traditional Chinese medicine for the treatment of scabies, tinea, stubborn skin ulcers, chronic tracheitis, cancer and tuberculosis. A sensitive and selective ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of five flavonoids (stelleranol, chamaechromone, neochamaejasmin A, chamaejasmine and isochamaejasmin) of S. chamaejasme L. in rat plasma. Chromatographic separation was accomplished on an Agilent Poroshell 120 EC-C 18 column (2.1 × 100 mm, 2.7 μm) with gradient elution at a flow rate of 0.4 mL/min and the total analysis time was 7 min. The analytes were detected using multiple reaction monitoring in positive ionization mode. The samples were prepared by liquid-liquid extraction with ethyl acetate. The UPLC-MS/MS method was validated for specificity, linearity, sensitivity, accuracy and precision, recovery, matrix effect and stability. The validated method exhibited good linearity (r ≥ 0.9956), and the lower limits of quantification ranged from 0.51 to 0.64 ng/mL for five flavonoids. The intra- and inter-day precision were both <10.2%, and the accuracy ranged from -11.79 to 9.21%. This method was successfully applied to a pharmacokinetic study of five flavonoids in rats after oral administration of ethyl acetate extract of S. chamaejasme L. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Data-Driven Method to Estimate Nonlinear Chemical Equivalence.

    PubMed

    Mayo, Michael; Collier, Zachary A; Winton, Corey; Chappell, Mark A

    2015-01-01

    There is great need to express the impacts of chemicals found in the environment in terms of effects from alternative chemicals of interest. Methods currently employed in fields such as life-cycle assessment, risk assessment, mixtures toxicology, and pharmacology rely mostly on heuristic arguments to justify the use of linear relationships in the construction of "equivalency factors," which aim to model these concentration-concentration correlations. However, the use of linear models, even at low concentrations, oversimplifies the nonlinear nature of the concentration-response curve, therefore introducing error into calculations involving these factors. We address this problem by reporting a method to determine a concentration-concentration relationship between two chemicals based on the full extent of experimentally derived concentration-response curves. Although this method can be easily generalized, we develop and illustrate it from the perspective of toxicology, in which we provide equations relating the sigmoid and non-monotone, or "biphasic," responses typical of the field. The resulting concentration-concentration relationships are manifestly nonlinear for nearly any chemical level, even at the very low concentrations common to environmental measurements. We demonstrate the method using real-world examples of toxicological data which may exhibit sigmoid and biphasic mortality curves. Finally, we use our models to calculate equivalency factors, and show that traditional results are recovered only when the concentration-response curves are "parallel," which has been noted before, but we make formal here by providing mathematical conditions on the validity of this approach.

  4. An evaluation of methods for estimating decadal stream loads

    NASA Astrophysics Data System (ADS)

    Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-11-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  5. An evaluation of methods for estimating decadal stream loads

    USGS Publications Warehouse

    Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-01-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  6. Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction

    PubMed Central

    Liang, Wenxi; Vanacore, Giovanni M.; Zewail, Ahmed H.

    2014-01-01

    In materials, the nature of the strain–stress relationship, which is fundamental to their properties, is determined by both the linear and nonlinear elastic responses. Whereas the linear response can be measured by various techniques, the nonlinear behavior is nontrivial to probe and to reveal its nature. Here, we report the methodology of time-resolved Kikuchi diffraction for mapping the (non)linear elastic response of nanoscale graphite following an ultrafast, impulsive strain excitation. It is found that the longitudinal wave propagating along the c-axis exhibits echoes with a frequency of 9.1 GHz, which indicates the reflections of strain between the two surfaces of the material with a speed of ∼4 km/s. Because Kikuchi diffraction enables the probing of strain in the transverse direction, we also observed a higher-frequency mode at 75.5 GHz, which has a relatively long lifetime, on the order of milliseconds. The fluence dependence and the polarization properties of this nonlinear mode are entirely different from those of the linear, longitudinal mode, and here we suggest a localized breather motion in the a-b plane as the origin of the nonlinear shear dynamics. The approach presented in this contribution has the potential for a wide range of applications because most crystalline materials exhibit Kikuchi diffraction. PMID:24706785

  7. Sex differences in the fetal heart rate variability indices of twins.

    PubMed

    Tendais, Iva; Figueiredo, Bárbara; Gonçalves, Hernâni; Bernardes, João; Ayres-de-Campos, Diogo; Montenegro, Nuno

    2015-03-01

    To evaluate the differences in linear and complex heart rate dynamics in twin pairs according to fetal sex combination [male-female (MF), male-male (MM), and female-female (FF)]. Fourteen twin pairs (6 MF, 3 MM, and 5 FF) were monitored between 31 and 36.4 weeks of gestation. Twenty-six fetal heart rate (FHR) recordings of both twins were simultaneously acquired and analyzed with a system for computerized analysis of cardiotocograms. Linear and nonlinear FHR indices were calculated. Overall, MM twins presented higher intrapair average in linear indices than the other pairs, whereas FF twins showed higher sympathetic-vagal balance. MF twins exhibited higher intrapair average in entropy indices and MM twins presented lower entropy values than FF twins considering the (automatically selected) threshold rLu. MM twin pairs showed higher intrapair differences in linear heart rate indices than MF and FF twins, whereas FF twins exhibited lower intrapair differences in entropy indices. The results of this exploratory study suggest that twins have sex-specific differences in linear and nonlinear indices of FHR. MM twins expressed signs of a more active autonomic nervous system and MF twins showed the most active complexity control system. These results suggest that fetal sex combination should be taken into consideration when performing detailed evaluation of the FHR in twins.

  8. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (

  9. A Sequential Ensemble Prediction System at Convection Permitting Scales

    NASA Astrophysics Data System (ADS)

    Milan, M.; Simmer, C.

    2012-04-01

    A Sequential Assimilation Method (SAM) following some aspects of particle filtering with resampling, also called SIR (Sequential Importance Resampling), is introduced and applied in the framework of an Ensemble Prediction System (EPS) for weather forecasting on convection permitting scales, with focus to precipitation forecast. At this scale and beyond, the atmosphere increasingly exhibits chaotic behaviour and non linear state space evolution due to convectively driven processes. One way to take full account of non linear state developments are particle filter methods, their basic idea is the representation of the model probability density function by a number of ensemble members weighted by their likelihood with the observations. In particular particle filter with resampling abandons ensemble members (particles) with low weights restoring the original number of particles adding multiple copies of the members with high weights. In our SIR-like implementation we substitute the likelihood way to define weights and introduce a metric which quantifies the "distance" between the observed atmospheric state and the states simulated by the ensemble members. We also introduce a methodology to counteract filter degeneracy, i.e. the collapse of the simulated state space. To this goal we propose a combination of resampling taking account of simulated state space clustering and nudging. By keeping cluster representatives during resampling and filtering, the method maintains the potential for non linear system state development. We assume that a particle cluster with initially low likelihood may evolve in a state space with higher likelihood in a subsequent filter time thus mimicking non linear system state developments (e.g. sudden convection initiation) and remedies timing errors for convection due to model errors and/or imperfect initial condition. We apply a simplified version of the resampling, the particles with highest weights in each cluster are duplicated; for the model evolution for each particle pair one particle evolves using the forward model; the second particle, however, is nudged to the radar and satellite observation during its evolution based on the forward model.

  10. Soft tissue strain measurement using an optical method

    NASA Astrophysics Data System (ADS)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  11. Efficient numerical method for analyzing optical bistability in photonic crystal microcavities.

    PubMed

    Yuan, Lijun; Lu, Ya Yan

    2013-05-20

    Nonlinear optical effects can be enhanced by photonic crystal microcavities and be used to develop practical ultra-compact optical devices with low power requirements. The finite-difference time-domain method is the standard numerical method for simulating nonlinear optical devices, but it has limitations in terms of accuracy and efficiency. In this paper, a rigorous and efficient frequency-domain numerical method is developed for analyzing nonlinear optical devices where the nonlinear effect is concentrated in the microcavities. The method replaces the linear problem outside the microcavities by a rigorous and numerically computed boundary condition, then solves the nonlinear problem iteratively in a small region around the microcavities. Convergence of the iterative method is much easier to achieve since the size of the problem is significantly reduced. The method is presented for a specific two-dimensional photonic crystal waveguide-cavity system with a Kerr nonlinearity, using numerical methods that can take advantage of the geometric features of the structure. The method is able to calculate multiple solutions exhibiting the optical bistability phenomenon in the strongly nonlinear regime.

  12. Targeted Selected Reaction Monitoring Mass Spectrometric Immunoassay for Insulin-like Growth Factor 1

    PubMed Central

    Niederkofler, Eric E.; Phillips, David A.; Krastins, Bryan; Kulasingam, Vathany; Kiernan, Urban A.; Tubbs, Kemmons A.; Peterman, Scott M.; Prakash, Amol; Diamandis, Eleftherios P.; Lopez, Mary F.; Nedelkov, Dobrin

    2013-01-01

    Insulin-like growth factor 1 (IGF1) is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM) mode. The resulting quantitative mass spectrometric immunoassay (MSIA) exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories. PMID:24278387

  13. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water.

    PubMed

    Dong, Yongqiang; Li, Geli; Zhou, Nana; Wang, Ruixue; Chi, Yuwu; Chen, Guonan

    2012-10-02

    Free chlorine was found to be able to destroy the passivated surface of the graphene quantum dots (GQDs) obtained by pyrolyzing citric acid, resulting in significant quenching of their fluorescence (FL) signal. After optimizing some experimental conditions (including response time, concentration of GQDs, and pH value of solution), a green and facile sensing system has been developed for the detection of free residual chlorine in water based on FL quenching of GQDs. The sensing system exhibits many advantages, such as short response time, excellent selectivity, wide linear response range, and high sensitivity. The linear response range of free chlorine (R(2) = 0.992) was from 0.05 to 10 μM. The detection limit (S/N = 3) was as low as 0.05 μM, which is much lower than that of the most widely used N-N-diethyl-p-phenylenediamine (DPD) colorimetric method. This sensing system was finally used to detect free residual chlorine in local tap water samples. The result agreed well with that by the DPD colorimetric method, suggesting the potential application of this new, green, sensitive, and facile sensing system in drinking water quality monitoring.

  14. A new real-time guidance strategy for aerodynamic ascent flight

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takayuki; Kawaguchi, Jun'ichiro

    2007-12-01

    Reusable launch vehicles are conceived to constitute the future space transportation system. If these vehicles use air-breathing propulsion and lift taking-off horizontally, the optimal steering for these vehicles exhibits completely different behavior from that in conventional rockets flight. In this paper, the new guidance strategy is proposed. This method derives from the optimality condition as for steering and an analysis concludes that the steering function takes the form comprised of Linear and Logarithmic terms, which include only four parameters. The parameter optimization of this method shows the acquired terminal horizontal velocity is almost same with that obtained by the direct numerical optimization. This supports the parameterized Liner Logarithmic steering law. And here is shown that there exists a simple linear relation between the terminal states and the parameters to be corrected. The relation easily makes the parameters determined to satisfy the terminal boundary conditions in real-time. The paper presents the guidance results for the practical application cases. The results show the guidance is well performed and satisfies the terminal boundary conditions specified. The strategy built and presented here does guarantee the robust solution in real-time excluding any optimization process, and it is found quite practical.

  15. Probing the fractal pattern and organization of Bacillus thuringiensis bacteria colonies growing under different conditions using quantitative spectral light scattering polarimetry

    NASA Astrophysics Data System (ADS)

    Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K.

    2013-03-01

    Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.

  16. Application of third molar development and eruption models in estimating dental age in Malay sub-adults.

    PubMed

    Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc

    2015-08-01

    The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  17. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  18. Q estimation of seismic data using the generalized S-transform

    NASA Astrophysics Data System (ADS)

    Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming

    2016-12-01

    Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.

  19. A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.

  20. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    NASA Astrophysics Data System (ADS)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  1. Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.

  2. A new and simple resonance Rayleigh scattering method for human serum albumin using graphite oxide as probe.

    PubMed

    Wang, Shengmian; Xu, Lili; Wang, Lisheng; Liang, Aihui; Jiang, Zhiliang

    2013-01-01

    Graphite oxide (GO) was prepared by the Hummer procedure, and can be dispersed to stable colloid solution by ultrasonic wave. The GO exhibited an absorption peak at 313 nm, and a resonance Rayleigh scattering (RRS) peak at 490 nm. In pH 4.6 HAc-NaAc buffer solution, human serum albumin (HSA) combined with GO probe to form large HSA-GO particles that caused the RRS peak increasing at 490 nm. The increased RRS intensity was linear to HSA concentration in the range 0.50-200 µg/mL. Thus, a new and simple RRS method was proposed for the determination of HSA in samples, with a recovery of 98.1-104%. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Symplocin A, a Linear Peptide from the Bahamian Cyanobacterium Symploca sp. Configurational Analysis of N,N-Dimethylamino Acids by Chiral-Phase HPLC of Naphthacyl Esters†

    PubMed Central

    Molinski, Tadeusz F.; Reynolds, Kirk A.; Morinaka, Brandon I.

    2012-01-01

    The absolute stereostructures of the components of symplocin A (3), a new N,N-dimethyl-terminated peptide from the Bahamian cyanobacterium, Symploca sp., were assigned from spectroscopic analysis, including MS and 2D NMR and Marfey’s analysis. The complete absolute configuration of symplocin A, including the unexpected D-configurations of the terminal N,N-dimethylisoleucine and valic acid residues, were assigned by chiral-phase HPLC of the corresponding 2-naphthacyl esters, a highly sensitive, complementary strategy for assignment of N-blocked peptide residues where Marfey’s method is ineffectual, or other methods fall short. Symplocin A exhibited potent activity as an inhibitor of cathepsin E (IC50 300 pM). PMID:22360587

  4. A novel polarization demodulation method using polarization beam splitter (PBS) for dynamic pressure sensor

    NASA Astrophysics Data System (ADS)

    Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping

    2018-03-01

    In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.

  5. Electrochemical Sunset Yellow Biosensor Based on Photocured Polyacrylamide Membrane for Food Dye Monitoring

    PubMed Central

    Rozi, Normazida; Ahmad, Amalina; Yook Heng, Lee; Shyuan, Loh Kee; Hanifah, Sharina Abu

    2018-01-01

    An enzyme-based electrochemical biosensor was investigated for the analysis of Sunset Yellow synthetic food dye. A glassy carbon electrode was coated with a poly(acrylamide-co-ethyl methacrylate) membrane to immobilize laccase using a single-step photopolymerization procedure. Poly(acrylamide-co-ethyl methacrylate) membrane was demonstrated to have acceptable water absorption and suitable for biosensor application. Sunset Yellow biosensor exhibited a linear response range from 0.08 to 10.00 µM with a detection limit of 0.02 µM. This biosensor was successfully used to determine Sunset Yellow in soft drinks with recoveries of 99.0–101.6%. The method was validated using high-performance liquid chromatography, indicating the biosensor can be as a promising alternative method for Sunset Yellow detection. PMID:29301262

  6. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  7. Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface.

    PubMed

    Wan, Xiang; Cai, Ben Geng; Li, Yun Bo; Cui, Tie Jun

    2015-11-03

    We propose a method for dual-channel near-field manipulations by designing isotropic but inhomogeneous metasurfaces. As example, we present a dual-channel near-field focusing metasurface device. When the device is driven by surface waves from different channels on the metasurface, the near fields will be focused at the same spatial point with different polarizations. Conversely, if a linearly polarized source is radiated at the spatial focal point, different channels will be evoked on the metasurface controlled by polarization. We fabricated and measured the metasurface device in the microwave frequency. Well agreements between the simulation and measurement results are observed. The proposed method exhibits great flexibility in controlling the surface waves and spatial waves simultaneously. It is expected that the proposed method and dual-channel device will facilitate the manipulation of near electromagnetic or optical waves in different frequency regimes.

  8. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxi; Jiao, Yang; Hu, Feng; Yang, Yaling

    2018-02-01

    In this work, a green, simple, economical method was developed in the synthesis of fluorescent carbon dots using pork as carbon source. The as-prepared carbon dots exhibit exceptional advantages including high fluorescent quantum yield (17.3%) and satisfactory chemical stability. The fluorescence of carbon dots based nanosensor can be selectively and efficiently quenched by uric acid. This phenomenon was used to develop a fluorescent method for facile detection of uric acid within a linear range of 0.1-100 μM and 100-500 μM, with a detection limit of 0.05 μM (S/N = 3). Finally, the proposed method was successfully applied in the determination of uric acid in human serum and urine samples with satisfactory recoveries, which suggested that the new nanosensors have great prospect toward the detection of uric acid in human fluids.

  9. Denoised Wigner distribution deconvolution via low-rank matrix completion

    DOE PAGES

    Lee, Justin; Barbastathis, George

    2016-08-23

    Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less

  10. Denoised Wigner distribution deconvolution via low-rank matrix completion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Justin; Barbastathis, George

    Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less

  11. Pharmacokinetics of Rhodamine 110 and Its Organ Distribution in Rats.

    PubMed

    Jiang, Shiau-Han; Cheng, Yung-Yi; Huo, Teh-Ia; Tsai, Tung-Hu

    2017-09-06

    Rhodamine dyes have been banned as food additives due to their potential tumorigenicity. Rhodamine 110 is illegal as a food additive, although its pharmacokinetics have not been characterized, and no accurate bioanalytical methods are available to quantify rhodamine 110. The aim of this study was to develop and validate a fast, stable, and sensitive method to quantify rhodamine 110 using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) to assess its pharmacokinetics and organ distribution in awake rats. Rhodamine 110 exhibited linear pharmacokinetics and slow elimination after oral administration. Furthermore, its oral bioavailability was approximately 34-35%. The distribution in the liver and kidney suggests that these organs are primarily responsible for rhodamine 110 metabolism and elimination. Our investigation describes the pharmacokinetics and a quantification method for rhodamine 110, improving our understanding of the food safety of rhodamine dyes.

  12. Rapid capillary electrophoresis approach for the quantification of ewe milk adulteration with cow milk.

    PubMed

    Trimboli, Francesca; Morittu, Valeria Maria; Cicino, Caterina; Palmieri, Camillo; Britti, Domenico

    2017-10-13

    The substitution of ewe milk with more economic cow milk is a common fraud. Here we present a capillary electrophoresis method for the quantification of ewe milk in ovine/bovine milk mixtures, which allows for the rapid and inexpensive recognition of ewe milk adulteration with cow milk. We utilized a routine CE method for human blood and urine proteins analysis, which fulfilled the separation of skimmed milk proteins in alkaline buffer. Under this condition, ovine and bovine milk exhibited a recognizable and distinct CE protein profiles, with a specific ewe peak showing a reproducible migration zone in ovine/bovine mixtures. Based on ewe specific CE peak, we developed a method for ewe milk quantification in ovine/bovine skimmed milk mixtures, which showed good linearity, precision and accuracy, and a minimum amount of detectable fraudulent cow milk equal to 5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

    PubMed Central

    Khodadadian, Mehdi; Jalili, Ronak; Bahrami, Mohammad Taher; Bahrami, Gholamreza

    2017-01-01

    An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping voltammetry. The electrooxidation of Hy-HCl at MWCNT/GCE occurred at ~32 mV which was lower than that observed at bare GCE (~52 mV). The optimum working conditions for determination of the drug using differential-pulse adsorptive stripping voltammetry (DPAdSV) were established. The method exhibited linear responses to Hy-HCl in the concentration range 10-220 nM with a detection limit of 2.7 nM. The proposed method was successfully applied to the determination of this compound in pharmaceutical dosage forms. PMID:29552043

  14. Quantification of residual EDU (N-ethyl-N'-(dimethylaminopropyl) carbodiimide (EDC) hydrolyzed urea derivative) and other residual by LC-MS/MS.

    PubMed

    Lei, Q Paula; Lamb, David H; Shannon, Anthony G; Cai, Xinxing; Heller, Ronald K; Huang, Michael; Zablackis, Earl; Ryall, Robert; Cash, Patricia

    2004-12-25

    An LC-MS/MS method for determination of the break down product of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) urea derivative, EDU, has been developed and validated for monitoring the residual coupling reagents. Results indicate that the method exhibits suitable specificity, sensitivity, precision, linearity and accuracy for quantification of residual EDU in the presence of meningococcal polysaccharide-diphtheria toxoid conjugate vaccine and other vaccine matrix compounds. The assay has been validated for a detection range of 10-100 ng/mL and then successfully transferred to quality control (QC) lab. This same method has also been applied to the determination of residual diaminohexane (DAH) in the presence of EDU. LC-MS/MS has proven to be useful as a quick and sensitive approach for simultaneous determination of multiple residual compounds in glycoconjugate vaccine samples.

  15. Multi-center evaluation of analytical performance of the Beckman Coulter AU5822 chemistry analyzer.

    PubMed

    Zimmerman, M K; Friesen, L R; Nice, A; Vollmer, P A; Dockery, E A; Rankin, J D; Zmuda, K; Wong, S H

    2015-09-01

    Our three academic institutions, Indiana University, Northwestern Memorial Hospital, and Wake Forest, were among the first in the United States to implement the Beckman Coulter AU5822 series chemistry analyzers. We undertook this post-hoc multi-center study by merging our data to determine performance characteristics and the impact of methodology changes on analyte measurement. We independently completed performance validation studies including precision, linearity/analytical measurement range, method comparison, and reference range verification. Complete data sets were available from at least one institution for 66 analytes with the following groups: 51 from all three institutions, and 15 from 1 or 2 institutions for a total sample size of 12,064. Precision was similar among institutions. Coefficients of variation (CV) were <10% for 97%. Analytes with CVs >10% included direct bilirubin and digoxin. All analytes exhibited linearity over the analytical measurement range. Method comparison data showed slopes between 0.900-1.100 for 87.9% of the analytes. Slopes for amylase, tobramycin and urine amylase were <0.8; the slope for lipase was >1.5, due to known methodology or standardization differences. Consequently, reference ranges of amylase, urine amylase and lipase required only minor or no modification. The four AU5822 analyzers independently evaluated at three sites showed consistent precision, linearity, and correlation results. Since installations, the test results had been well received by clinicians from all three institutions. Copyright © 2015. Published by Elsevier Inc.

  16. Creep rupture testing of carbon fiber-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Burton, Kathryn Anne

    Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.

  17. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection.

    PubMed

    You, Linna; He, Man; Chen, Beibei; Hu, Bin

    2017-11-17

    In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Parameter estimation of Monod model by the Least-Squares method for microalgae Botryococcus Braunii sp

    NASA Astrophysics Data System (ADS)

    See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.

    2018-04-01

    This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.

  19. An EBIC study of HEM polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Koch, T.; Ast, D.

    1982-01-01

    Low-cost silicon for solar cells grown by the heat exchanger method (HEM) was studied in the electron beam induced current (EBIC) mode of a scanning electron microscope (SEM). Comparisons were made between the defects observed optically and the recombination centers visible in EBIC. Much of the HEM material was single crystalline, but structural defects were found from areas near the corners of the grown material. Most of these defects consisted of linear twin boundaries and grain boundaries. The electrical activity of these boundaries was dependent on symmetry of the boundaries. Symmetric twin boundaries did not exhibit recombination activity while unsymmetric twin boundaries were electrically active.

  20. Microcionamides A and B, bioactive peptides from the philippine sponge Clathria (Thalysias) abietina.

    PubMed

    Davis, Rohan A; Mangalindan, Gina C; Bojo, Zenaida P; Antemano, Rowena R; Rodriguez, Nell O; Concepcion, Gisela P; Samson, Shiela C; de Guzman, Dennis; Cruz, Lourdes J; Tasdemir, Deniz; Harper, Mary Kay; Feng, Xidong; Carter, Guy T; Ireland, Chris M

    2004-06-11

    Microcionamides A (1) and B (2) have been isolated from the Philippine marine sponge Clathria (Thalysias) abietina. These new linear peptides are cyclized via a cystine moiety and have their C-terminus blocked by a 2-phenylethylenamine group. Their total structures, including absolute stereochemistry, were determined by a combination of spectral and chemical methods. Compound 1 was shown to slowly isomerize about the C-36/C-37 double bond when stored in DMSO. Microcionamides A (1) and B (2) exhibited significant cytotoxicity against the human breast tumor cells lines MCF-7 and SKBR-3 and displayed inhibitory activity against Mycobacterium tuberculosis H(37)Ra.

  1. The human chromosomal fragile sites more often involved in constitutional deletions and duplications - A genetic and statistical assessment

    NASA Astrophysics Data System (ADS)

    Gomes, Dora Prata; Sequeira, Inês J.; Figueiredo, Carlos; Rueff, José; Brás, Aldina

    2016-12-01

    Human chromosomal fragile sites (CFSs) are heritable loci or regions of the human chromosomes prone to exhibit gaps, breaks and rearrangements. Determining the frequency of deletions and duplications in CFSs may contribute to explain the occurrence of human disease due to those rearrangements. In this study we analyzed the frequency of deletions and duplications in each human CFS. Statistical methods, namely data display, descriptive statistics and linear regression analysis were applied to analyze this dataset. We found that FRA15C, FRA16A and FRAXB are the most frequently involved CFSs in deletions and duplications occurring in the human genome.

  2. Tools for Detecting Causality in Space Systems

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Wing, S.

    2017-12-01

    Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.

  3. Revealing the transport properties of the spin-polarized β‧-Tb2(MoO4)3: DFT+U

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.

    2017-11-01

    The thermoelectric properties of the spin-polarized β‧-Tb2(MoO4)3 phase are calculated using first-principles and second-principles methods to solve the semi-classical Bloch-Boltzmann transport equations. It is interesting to highlight that the calculated electronic band structure reveals that the β‧-Tb2(MoO4)3 has parabolic bands in the vicinity of the Fermi level (EF); therefore, the carriers exhibit low effective mass and hence high mobility. The existence of strong covalent bonds between Mo and O in the MoO4 tetrahedrons is more favorable for the transport of the carriers than the ionic bond. It has been found that the carrier concentration of spin-up (↑) and spin-down (↓) increases linearly with increasing the temperature and exhibits a maximum carrier concentration at EF. The calculations reveal that the β‧-Tb2(MoO4)3 exhibits maximum electrical conductivity, minimum electronic thermal conductivity, a large Seebeck coefficient and a high power factor at EF for (↑) and (↓). Therefore, the vicinity of EF is the area where the β‧-Tb2(MoO4)3 is expected to show maximum efficiency.

  4. Biological monitoring of environment exposure to safrole and the Taiwanese betel quid chewing.

    PubMed

    Chang, M J W; Ko, C Y; Lin, R F; Hsieh, L L

    2002-11-01

    A rapid and sensitive biological monitoring (BM) method for assessing exposure to the environmental carcinogen safrole has been developed. The method is an isocratic high-performance liquid chromatographic (HPLC) analysis of urinary dihydroxychavicol (DHAB) and eugenol, the urinary metabolites of safrole. Good linearity, precision, and accuracy were demonstrated. A recovery of 98.8 +/- 5.4% (SD, n = 3) was found for DHAB and 84.1 +/- 3.4% (n = 3) for eugenol. The quantitation limits of the method were 8 ng for DHAB and 10 ng for eugenol. The validity of the method was demonstrated by a linear dose-response relationship observed in rats given oral doses of safrole at 30, 75, and 150 mg/kg body weight. The method was also used to monitor the environmental exposure to the Taiwanese betel quid (TBQ) chewing, because TBQ used in Taiwan not only contains areca (betel) nut, slaked lime, and catechu but also Piper betle inflorescence or its leaves. Both of the latter have a high content of safrole. The feasibility of the method to monitor TBQ chewing was demonstrated by an analysis of 153 spot human urine samples. The results showed that the p value of the nonparametric group comparison was < 0.001 for DHAB and 0.832 for eugenol. The TBQ chewers also exhibited a significantly higher rate of urinary DHAB (but not eugenol) than the nonchewers with an odd ratio of 3.47 (95% CI, 1.61-7.51). However, when only the eugenol-positive subjects were taken into analysis, the ratio rose to 24.38 (95% CI, 3.00-197.90).

  5. Theoretically guided analytical method development and validation for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometer

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad F.; Rita, Shamima A.; Kayser, Md. Shahidulla; Islam, Md. Shariful; Asad, Sharmeen; Bin Rashid, Ridwan; Bari, Md. Abdul; Rahman, Muhammed M.; Al Aman, D. A. Anwar; Setu, Nurul I.; Banoo, Rebecca; Rashid, Mohammad A.

    2017-04-01

    A simple, rapid, economic, accurate and precise method for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometeric technique (guided by the theoretical investigation of physicochemical properties) was developed and validated. Theoretical investigations revealed that isoniazid and pyrazinamide both were freely soluble in water and slightly soluble in ethyl acetate whereas rifampicin was practically insoluble in water but freely soluble in ethyl acetate. This indicates that ethyl acetate is an effective solvent for the extraction of rifampicin from a water mixture of isoniazid and pyrazinamide. Computational study indicated that pH range of 6.0-8.0 would favor the extraction of rifampicin. Rifampicin is separated from isoniazid and pyrazinamide at pH 7.4 ± 0.1 by extracting with ethyl acetate. The ethyl acetate was then analyzed at λmax of 344.0 nm. The developed method was validated for linearity, accuracy and precision according to ICH guidelines. The proposed method exhibited good linearity over the concentration range of 2.5 - 35.0 µg/mL. The intraday and inter-day precision in terms of % RSD ranged from 1.09 - 1.70% and 1.63 - 2.99%, respectively. The accuracy (in terms of recovery) of the method varied from of 96.7 ± 0.9 to 101.1 ± 0.4%. The LOD and LOQ were found to be 0.83 and 2.52 µg/mL, respectively. In addition, the developed method was successfully applied to assay rifampicin combination (isoniazid and pyrazinamide) brands available in Bangladesh.

  6. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J

    2017-05-01

    Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.

  7. Nonharmonicity in vibrated granular solids

    NASA Astrophysics Data System (ADS)

    Schreck, Carl

    2012-02-01

    We have shown that granular packings composed of frictionless particles with repulsive contact interactions are strongly nonharmonic. When infinitesimally perturbed along linear response eigenmodes of the static packing, energy leaks from the original mode of vibration to a continuum of frequencies due solely to contact breaking even when the system is under significant compression. Further, vibrated packings possess well-defined equilibrium positions that are different than those of the unperturbed packing. The vibrational density of states obtained using the displacement matrix and velocity autocorrelation function methods exhibit an increase in the number of low-frequency modes over that obtained from linear response of the static packing. The form of the density of states in vibrated granular packings is reminiscent of the low-frequency behavior of the vibrational density of states in fluid systems. We also investigate the effects of inter-particle friction, dissipation, particle shape, and degree of positional order on the density of states and thermal transport properties in driven granular packings.

  8. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  9. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin.

    PubMed

    Liang, Aihui; Li, Chongning; Li, Dan; Luo, Yanghe; Wen, Guiqing; Jiang, Zhiliang

    2017-01-01

    The nanogold reaction between HAuCl 4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR) enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs) that exhibited strong surface plasmon resonance (SPR) absorption (Abs) at 550 nm and resonance Rayleigh scattering (RRS) at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG), the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide-hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2-20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples.

  10. A sensor based on blue luminescent graphene quantum dots for analysis of a common explosive substance and an industrial intermediate, 2,4,6-trinitrophenol.

    PubMed

    Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2015-02-25

    A rapid and effective sensor for the analysis of nitrophenol-based explosive substances, represented by trinitrophenol (TNP), has been developed with the use of the blue luminescent graphene quantum dots (GQDs); these GQDs are derived from citric acid by a pyrolysis procedure. They emit strong blue fluorescence at 450 nm after excitation at 365 nm, and TNP can quench this fluorescence because a fluorescence resonance energy transfer occurs. The quenching ratio (F0-F)/F0 was related linearly to the concentration of TNP in the range of 0.1-15 μmol L(-1) with a detection limit of 0.091 μmol L(-1) (S/N=3). The developed method exhibits high sensitivity, good linearity and reliable reproducibility for the quantitative analysis of TNP in water samples. The GQDs were used directly without any further treatment or complicated modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Detection of genomic loci associated with environmental variables using generalized linear mixed models.

    PubMed

    Lobréaux, Stéphane; Melodelima, Christelle

    2015-02-01

    We tested the use of Generalized Linear Mixed Models to detect associations between genetic loci and environmental variables, taking into account the population structure of sampled individuals. We used a simulation approach to generate datasets under demographically and selectively explicit models. These datasets were used to analyze and optimize GLMM capacity to detect the association between markers and selective coefficients as environmental data in terms of false and true positive rates. Different sampling strategies were tested, maximizing the number of populations sampled, sites sampled per population, or individuals sampled per site, and the effect of different selective intensities on the efficiency of the method was determined. Finally, we apply these models to an Arabidopsis thaliana SNP dataset from different accessions, looking for loci associated with spring minimal temperature. We identified 25 regions that exhibit unusual correlations with the climatic variable and contain genes with functions related to temperature stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation

    PubMed Central

    Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza

    2017-01-01

    The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer’s expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion. PMID:28773036

  13. The Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations

    NASA Technical Reports Server (NTRS)

    Hesthaven, J. S.

    1997-01-01

    We present a detailed analysis of a recently proposed perfectly matched layer (PML) method for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed, and ill-posed under small low order perturbations. This analysis provides the explanation for the stability problems associated with the split field formulation and illustrates why applying a filter has a stabilizing effect. Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing independent of frequency and angle of incidence of the wave in the case of a non-convecting mean flow. In the general case of a convecting mean flow, a number of techniques is combined to obtain a absorbing layers exhibiting PML-like behavior. The efficacy of the proposed absorbing layers is illustrated though computation of benchmark problems in aero-acoustics.

  14. Effects of aging on the architecture of the ileocecal junction in rats

    PubMed Central

    de Brito, Maria Cícera; Chopard, Renato Paulo; Cury, Diego Pulzatto; Watanabe, Ii Sei; Mendes, Cristina Eusébio; Castelucci, Patricia

    2016-01-01

    AIM: To evaluate the structural organization of the elastic and collagen fibers in the region of the ileocecal transition in 30 young and old male Wistar rats. METHODS: Histology, immunohistochemistry (IHC), transmission electron microscopy and scanning electron microscopy were employed in this study. The results demonstrated that there was a demarcation of the ileocecal region between the ileum and the cecum in both groups. RESULTS: The connective tissue fibers had different distribution patterns in the two groups. IHC revealed the presence of nitric oxide synthase, enteric neurons and smooth muscle fibers in the ileocecal junctions (ICJs) of both groups. Compared to the young group, the elderly group exhibited an increase in collagen type I fibers, a decrease in collagen type III fibers, a decreased linear density of oxytalan elastic fibers, and a greater linear density of elaunin and mature elastic fibers. CONCLUSION: The results revealed changes in the patterns of distribution of collagen and elastic fibers that may lead to a possible decrease in ICJ functionality. PMID:27602243

  15. Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation.

    PubMed

    Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza

    2017-06-21

    The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer's expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion.

  16. [Rapid screening and identification of 22 allergenic disperse dyes in ecological textiles by high performance liquid chromatography-linear ion trap/orbitrap mass spectrometry].

    PubMed

    Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Xiu, Xiaoli; Zhang, Li; Wang, Xin; Chen, Jing

    2015-10-01

    A rapid screening method based on high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) for 22 disperse dyes in ecological textiles has been established. The target compounds were extracted by pyridine/water (1:1, v/v) by shaking extraction in 90 degrees C water bath. The extracts were then separated by a CAPCELL PAK C18 column (100 mm x 2.0 mm, 5 μm) using gradient elution with acetonitrile-5 mmol/L ammonium acetate containing 0.01% (v/v) formic acid as mobile phases, and finally analyzed by HPLC-LTQ/Orbitrap in positive and negative ESI modes. The retention time and accurate mass of parent ion were used for fast screening of 22 disperse dyes, while the confirmatory analysis was obtained by fragments generated by collision-induced dissociation (CID) MS/MS. Target analysis exhibited high mass accuracy (< 5 x 10(-6)). Each target showed a good linearity in its own concentration range and the correlation coefficient was higher than 0.99. The LOQs were 0.125-2.5 mg/kg. Except for Disperse Yellow 49, the average recoveries of most disperse dyes at three spiked levels were 65%-120%, and the relative standard deviations (n = 6) were less than 15%. The method was applied for screening 40 different kinds of textiles, and Disperse Orange 37/76 was detected in one of them. With high selectivity and strong anti-jamming ability, this method is simple, rapid, accurate, and it can be used for the inspection of disperse dyes in textiles.

  17. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    PubMed

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cyanex based uranyl sensitive polymeric membrane electrodes.

    PubMed

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  19. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks

    PubMed Central

    Capurro, Alberto; Baroni, Fabiano; Olsson, Shannon B.; Kuebler, Linda S.; Karout, Salah; Hansson, Bill S.; Pearce, Timothy C.

    2012-01-01

    Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies. PMID:22529799

  20. The generic world-sheet action of irrational conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clubok, K.; Halpern, M.B.

    1995-05-01

    We review developments in the world-sheet action formulation of the generic irrational conformal field theory, including the non-linear and the linearized forms of the action. These systems form a large class of spin-two gauged WZW actions which exhibit exotic gravitational couplings. Integrating out the gravitational field, we also speculate on a connection with sigma models.

  1. Critical temperature of noninteracting bosonic gases in cubic optical lattices at arbitrary integer fillings.

    PubMed

    Rakhimov, Abdulla; Askerzade, Iman N

    2014-09-01

    We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.

  2. Nonautonomous linear system of the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to decompose modeled carbon cycle into a few traceable components so as to facilitate model intercompsirosn, benchmark analysis, and data assimilation of global land models.

  3. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun

    2016-01-01

    Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.

  4. Turbulence closure for mixing length theories

    NASA Astrophysics Data System (ADS)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  5. Nonclassical point of view of the Brownian motion generation via fractional deterministic model

    NASA Astrophysics Data System (ADS)

    Gilardi-Velázquez, H. E.; Campos-Cantón, E.

    In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.

  6. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    PubMed

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  7. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Smart particles for noble drug delivery system.

    PubMed

    Park, Cheolyoung; Kim, Jihoon; Jang, Seunghyun; Woo, Hee-Gweon; Ko, Young Chun; Sohn, Honglae

    2010-05-01

    Optically encoded smart particles were prepared for noble drug delivery materials. Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by applying a computer-generated pseudo-square wave current waveform. This DBR PSi film was lifted off from the Si substrate and thermally oxidized to convert PSi to porous silicon dioxide (PSD). DBR PSD film was derivatized with 20(S)-Camptothecin (CPT) and fractured by ultrasono-method to give smart particles. DBR PSD smart particles exhibited a sharp photonic band gap in the optical reflectivity spectrum. Optical characteristic of PSD smart particles retained DBR photonic property in aqueous buffer solution. The release of CPT and change of reflection wavelength were measured by UV-vis and reflectance spectrometer, respectively. The intensity of differential peak from reflection resonances of the smart particles was increased with a drug release. The blue shift of reflection peak resulted in the decrease of refractive index of PSD smart particles during the drug release. The concentration of released drug exhibited an linear relationship with a release time.

  9. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  10. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  11. Adhesive and composite evaluation of acetylene-terminated phenylquinoxaline resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1981-01-01

    A series of acetylene-terminated phenylquinoxaline (ATPQ) oligomers of various molecular weights were prepared and subsequently chain extended by the thermally induced reaction of the ethynyl groups. The processability and thermal properties of these oligomers and their cured resins were compared with that of a relatively high molecular weight linear polyphenylquinoxaline (PPQ) with the same chemical backbone. The ATPQ oligomers exhibited significantly better processability than the linear PPQ but the PPQ displayed substantially better thermooxidative stability. Adhesive (Ti/Ti) and composite (graphite filament reinforcement) work was performed to evaluate the potential of these materials for structural applications. The PPQ exhibited better retention of adhesive and laminate properties than the ATPQ resins at 260 C after aging for 500 hr at 260 C in circulating air.

  12. A revolute joint with linear load-displacement response for a deployable lidar telescope

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.

  13. Development of HPLC-ELSD method for determination of maltodextrin in raw milk.

    PubMed

    Moraes, Flávia Santana; da Costa, Marion Pereira; de Melo Silva, Vitor Luiz; de Barros Pinto Moreira, Rodrigo Vilela; de Barros, Raphael Ferreira; Mársico, Eliane Teixeira; Conte-Junior, Carlos Adam; de Oliveira Silva, Adriana Cristina

    2017-02-15

    An analytical method was developed and validated for the determination of maltodextrin in raw milk, using high-performance liquid chromatography with evaporative light scattering detection. Maltodextrin content was evaluated in adulterated raw milk using a Supelcosil LC-NH2 (25cm×4.6mm) column and isocratic elution (68% of acetonitrile). Validation parameters exhibited adequate linearity, with relative standard deviation values between 0.74 and 2.16% (n=10) for repeatability and 0.11-19.39% (n=5) for intermediate precision. Limits of detection and quantification were 0.78 and 1.56mg.mL(-1), respectively, and recovery rates were between 91 and 93% for three levels. The application of this method shows that maltodextrin concentrations found in adulterated samples are lower than expected, which may be related to the quality of the commercial maltodextrin used. The method proposed proved to be simple and appropriate for the determination of maltodextrin in raw milk, with detection down to adulteration levels of 1%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs

    NASA Astrophysics Data System (ADS)

    Alias, Christophe; Darte, Alain; Feautrier, Paul; Gonnord, Laure

    Proving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Previous algorithms based on affine rankings either are applicable only to simple loops (i.e., single-node flowcharts) and rely on enumeration, or are not complete in the sense that they are not guaranteed to find a ranking in the class of functions they consider, if one exists. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also show the links and differences with previous techniques based on the insertion of counters.

  15. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    PubMed

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  16. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H₂O₂ Detection.

    PubMed

    Dong, Wenbo; Wang, Kaiyin; Chen, Yu; Li, Weiping; Ye, Yanchun; Jin, Shaohua

    2017-07-28

    An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H₂O₂. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H₂O₂. It was found that the CTS-CAT could produce a strong reduction peak current in response to H₂O₂ and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H₂O₂ concentration in the range of 1.0 × 10 -7 -6.0 × 10 -3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.

  17. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  18. Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3

    NASA Astrophysics Data System (ADS)

    Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.

    2006-09-01

    LaNi3 exhibited a metallic antiferromagnetic property with T N = 30 K. La(Ni1-x Cox )3 with x = 0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x . La(Ni1-2z Coz Cuz )3 with z = 0.015 exhibited a ferromagnetic property with a small T C. A La(Ni1-y Cuy )3 sample with y = 0.01 exhibited a Pauli-paramagnetic property; those with y = 0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y = 0.05 exhibited a ferromagnetic property. The gradual metamagnetic M -H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one.

  19. Coupling carbon nanotube film microextraction with desorption corona beam ionization for rapid analysis of Sudan dyes (I-IV) and Rhodamine B in chilli oil.

    PubMed

    Chen, Di; Huang, Yun-Qing; He, Xiao-Mei; Shi, Zhi-Guo; Feng, Yu-Qi

    2015-03-07

    A rapid analysis method by coupling carbon nanotube film (CNTF) microextraction with desorption corona beam ionization (DCBI) was developed for the determination of Sudan dyes (I-IV) and Rhodamine B in chilli oil samples. Typically, CNTF was immersed into the diluted solution of chilli oil for extraction, which was then placed directly under the visible plasma beam tip of the DCBI source for desorption and ionization. Under optimized conditions, five dyes were simultaneously determined using this method. Results showed that the analytes were enriched by the CNTF through the π-π interactions, and the proposed method could significantly improve the sensitivities of these compounds, compared to the direct analysis by DCBI-MS/MS. The method with a linear range of 0.08-12.8 μg g(-1) and good linear relationships (R(2) > 0.93) in a multiple reaction monitoring (MRM) mode was developed. Satisfactory reproducibility was achieved. Relative standard deviations (RSDs) were less than 20.0%. The recoveries ranged from 80.0 to 110.0%, and the limits of detection (LODs) were in the range of 1.4-21 ng g(-1). Finally, the feasibility of the method was further exhibited by the determination of five illegal dyes in chilli powder. These results demonstrate that the proposed method consumes less time and solvent than conventional HPLC-based methods and avoids the contamination of chromatographic column and ion source from non-volatile oil. With the help of a 72-well shaker, multiple samples could be treated simultaneously, which ensures high throughput for the entire pretreatment process. In conclusion, it provides a rapid and high-throughput approach for the determination of such illicit additions in chilli products.

  20. Determination of serum levels of imatinib mesylate in patients with chronic myeloid leukemia: validation and application of a new analytical method to monitor treatment compliance

    PubMed Central

    Rezende, Vinícius Marcondes; Rivellis, Ariane Julio; Gomes, Melissa Medrano; Dörr, Felipe Augusto; Novaes, Mafalda Megumi Yoshinaga; Nardinelli, Luciana; Costa, Ariel Lais de Lima; Chamone, Dalton de Alencar Fisher; Bendit, Israel

    2013-01-01

    Objective The goal of this study was to monitor imatinib mesylate therapeutically in the Tumor Biology Laboratory, Department of Hematology and Hemotherapy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP). A simple and sensitive method to quantify imatinib and its metabolite (CGP74588) in human serum was developed and fully validated in order to monitor treatment compliance. Methods The method used to quantify these compounds in serum included protein precipitation extraction followed by instrumental analysis using high performance liquid chromatography coupled with mass spectrometry. The method was validated for several parameters, including selectivity, precision, accuracy, recovery and linearity. Results The parameters evaluated during the validation stage exhibited satisfactory results based on the Food and Drug Administration and the Brazilian Health Surveillance Agency (ANVISA) guidelines for validating bioanalytical methods. These parameters also showed a linear correlation greater than 0.99 for the concentration range between 0.500 µg/mL and 10.0 µg/mL and a total analysis time of 13 minutes per sample. This study includes results (imatinib serum concentrations) for 308 samples from patients being treated with imatinib mesylate. Conclusion The method developed in this study was successfully validated and is being efficiently used to measure imatinib concentrations in samples from chronic myeloid leukemia patients to check treatment compliance. The imatinib serum levels of patients achieving a major molecular response were significantly higher than those of patients who did not achieve this result. These results are thus consistent with published reports concerning other populations. PMID:23741187

  1. Force analysis of magnetic bearings with power-saving controls

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.

    1992-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.

  2. Impaired Intracellular Ca2+ Dynamics in Live Cardiomyocytes Revealed by Rapid Line Scan Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Plank, David M.; Sussman, Mark A.

    2005-06-01

    Altered intracellular Ca2+ dynamics are characteristically observed in cardiomyocytes from failing hearts. Studies of Ca2+ handling in myocytes predominantly use Fluo-3 AM, a visible light excitable Ca2+ chelating fluorescent dye in conjunction with rapid line-scanning confocal microscopy. However, Fluo-3 AM does not allow for traditional ratiometric determination of intracellular Ca2+ concentration and has required the use of mathematic correction factors with values obtained from separate procedures to convert Fluo-3 AM fluorescence to appropriate Ca2+ concentrations. This study describes methodology to directly measure intracellular Ca2+ levels using inactivated, Fluo-3-AM-loaded cardiomyocytes equilibrated with Ca2+ concentration standards. Titration of Ca2+ concentration exhibits a linear relationship to increasing Fluo-3 AM fluorescence intensity. Images obtained from individual myocyte confocal scans were recorded, average pixel intensity values were calculated, and a plot is generated relating the average pixel intensity to known Ca2+ concentrations. These standard plots can be used to convert transient Ca2+ fluorescence obtained with experimental cells to Ca2+ concentrations by linear regression analysis. Standards are determined on the same microscope used for acquisition of unknown Ca2+ concentrations, simplifying data interpretation and assuring accuracy of conversion values. This procedure eliminates additional equipment, ratiometric imaging, and mathematic correction factors and should be useful to investigators requiring a straightforward method for measuring Ca2+ concentrations in live cells using Ca2+-chelating dyes exhibiting variable fluorescence intensity.

  3. Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell.

    PubMed

    Lang, Qiaolin; Yin, Long; Shi, Jianguo; Li, Liang; Xia, Lin; Liu, Aihua

    2014-01-15

    A novel electrochemical sequential biosensor was constructed by co-immobilizing glucoamylase (GA) and glucose oxidase (GOD) on the multi-walled carbon nanotubes (MWNTs)-modified glassy carbon electrode (GCE) by chemical crosslinking method, where glutaraldehyde and bovine serum albumin was used as crosslinking and blocking agent, respectively. The proposed biosensor (GA/GOD/MWNTs/GCE) is capable of determining starch without using extra sensors such as Clark-type oxygen sensor or H2O2 sensor. The current linearly decreased with the increasing concentration of starch ranging from 0.005% to 0.7% (w/w) with the limit of detection of 0.003% (w/w) starch. The as-fabricated sequential biosensor can be applicable to the detection of the content of starch in real samples, which are in good accordance with traditional Fehling's titration. Finally, a stable starch/O2 biofuel cell was assembled using the GA/GOD/MWNTs/GCE as bioanode and laccase/MWNTs/GCE as biocathode, which exhibited open circuit voltage of ca. 0.53 V and the maximum power density of 8.15 μW cm(-2) at 0.31 V, comparable with the other glucose/O2 based biofuel cells reported recently. Therefore, the proposed biosensor exhibited attractive features such as good stability in weak acidic buffer, good operational stability, wide linear range and capable of determination of starch in real samples as well as optimal bioanode for the biofuel cell. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Enabling Surgical Placement of Hydrogels through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions

    PubMed Central

    Beck, Emily C.; Lohman, Brooke L.; Tabakh, Daniel B.; Kieweg, Sarah L.; Gehrke, Stevin H.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Hydrogels are a promising class of materials for tissue regeneration, but they lack the ability to be molded into a defect site by a surgeon because hydrogel precursors are liquid solutions that are prone to leaking during placement. Therefore, although the main focus of hydrogel technology and developments are on hydrogels in their crosslinked form, our primary focus is on improving the fluid behavior of hydrogel precursor solutions. In this work, we introduce a method to achieve paste-like hydrogel precursor solutions by combining hyaluronic acid nanoparticles with traditional crosslinked hyaluronic acid hydrogels. Prior to crosslinking, the samples underwent rheological testing to assess yield stress and recovery using linear hyaluronic acid as a control. The experimental groups containing nanoparticles were the only solutions that exhibited a yield stress, demonstrating that the nanoparticulate rather than the linear form of hyaluronic acid was necessary to achieve paste-like behavior. The gels were also photocrosslinked and further characterized as solids, where it was demonstrated that the inclusion of nanoparticles did not adversely affect the compressive modulus and that encapsulated bone marrow-derived mesenchymal stem cells remained viable. Overall, this nanoparticle-based approach provides a platform hydrogel system that exhibits a yield stress prior to crosslinking, and can then be crosslinked into a hydrogel that is capable of encapsulating cells that remain viable. This behavior may hold significant impact for hydrogel applications where a paste-like behavior is desired in the hydrogel precursor solution. PMID:25691398

  5. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solarmore » minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.« less

  6. Development of an enzyme free glucose sensor based on copper oxide-graphene composite by using green reducing agent ascorbic acid

    NASA Astrophysics Data System (ADS)

    Palve, Yogesh Pandit; Jha, Neetu

    2018-05-01

    In this research work we have developed high sensitive and selective glucose sensor based on copper oxide-graphene composite which is prepared by green synthesis method and used for nonenzymatic glucose sensor. In present paper we report that present method highly selective, simple, efficient, accurate, ecofriendly, less toxic. The prepared composite were characterized by material characterization like SEM, XRD and also by electrochemical characterization like CV, chronoamperometry represents that copper oxide-graphene shows excellent electrocatalytic activity towards glucose, exhibiting a good sensitivity of 103.84 µA mM-1 cm-2, a fast response time 2s, a low detection limit 0.00033µM and linear range from 10 µM-3000 µM. The present sensor can successfully apply for determination of glucose concentration in human blood sample.

  7. Twenty years of talking past each other: The theory of high Tc

    NASA Astrophysics Data System (ADS)

    Anderson, Philip W.

    2007-09-01

    In 1988, the outline of an essentially correct theory of the high Tc cuprates was published by two groups, Zhang et al. in Zurich and Kotliar et al. in the US, based on earlier suggestions. The rather startling experimental predictions: that the gap would be real d-wave with nodes; that the gap would greatly increase with underdoping; that Tc would exhibit a dome terminating linearly around x = 30%; were so bizarre that these papers gathered little attention from others, including myself and at least 8 other Nobel prize-winners, and as they came to be substantiated one by one nobody much noticed that fact until the method was revived a dozen years later by Paramekanti et al. and Sorella et al. I will discuss some recent achievements and generalizations of these methods.

  8. Quantification of citalopram or escitalopram and their demethylated metabolites in neonatal hair samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    Frison, Giampietro; Favretto, Donata; Vogliardi, Susanna; Terranova, Claudio; Ferrara, Santo Davide

    2008-08-01

    Citalopram and escitalopram are highly selective serotonin reuptake inhibitors widely used in the treatment of depression. They exhibit adverse drug reactions and side effects, however, and the development of specific methods for their determination is of great interest in clinical and forensic toxicology. A liquid chromatography-tandem mass spectrometry method has been developed and validated for the assay of citalopram, escitalopram, and their demethylated metabolites in 10-mg hair samples. The analytes were extracted by incubation in methanol and liquid/liquid extraction with diethyl ether/dichloromethane. Gradient elution on a narrow bore C18 column was realized using clomipramine-d3 as an internal standard. Positive ion electrospray ionization and tandem mass spectrometry determination by collision-induced dissociation were performed in an ion trap mass spectrometer. The method exhibited a linear range of 25 to 2000 pg/mg, a quantification limit of 25 pg/mg for all analytes, relative standard deviations in the range of 12.10 to 9.80 (intraassay), and 13.80 to 11.78 (interassay), and accuracies (as percent recovery of the spiked standards) in the range of 90% to 110%; it was applied to the determination of citalopram and escitalopram and their metabolites in hair samples of two newborns to document their in utero exposure to the drugs. The method proved suitable for neonatal hair analysis of citalopram or escitalopram and was applied to two real cases of gestational exposure.

  9. Prediction of optimum sorption isotherm: comparison of linear and non-linear method.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2005-11-11

    Equilibrium parameters for Bismarck brown onto rice husk were estimated by linear least square and a trial and error non-linear method using Freundlich, Langmuir and Redlich-Peterson isotherms. A comparison between linear and non-linear method of estimating the isotherm parameters was reported. The best fitting isotherm was Langmuir isotherm and Redlich-Peterson isotherm equation. The results show that non-linear method could be a better way to obtain the parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.

  10. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine

    PubMed Central

    Bergamaschi, Mateus M.; Barnes, Allan; Queiroz, Regina H. C.; Hurd, Yasmin L.

    2013-01-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex—a cannabis plant extract containing 1:1 Δ9-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x2 weighting with linear ranges (r2>0.990) of 2.5–100 ng/mL for non-hydrolyzed CBD and 2.5–500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7–105.3 %, imprecision 1.4–6.4 % CV and extraction efficiency 82.5–92.7 % (no hydrolysis) and 34.3–47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration. PMID:23494274

  11. Simultaneous determination of five major compounds in the traditional medicine Pyeongwee-San by high performance liquid chromatography-diode array detection and liquid chromatography-mass spectrometry/mass spectrometry.

    PubMed

    Lee, Bohyoung; Weon, Jin Bae; Yun, Bo-Ra; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2014-01-01

    Pyeongwee-San (PWS) has been widely used for treating acute gastritis, chronic, and gastritis. In this paper, simultaneous determination of five compounds (naringin, hesperidin, glycyrrhizin, atractylenolide III, and magnolol) from traditional medicine PWS using the high performance liquid chromatography (HPLC) was established for quality control. Optimum separations were obtained with a SHISEIDO C18 reverse-phase column by gradient elution with 0.1% Trifluoroacetic acid (TFA) water-acetonitrile as the mobile phase. The flow rate was 1 mL/min and detection wavelength was set at 205 nm and 250 nm. Validation of the analytical method was evaluated by linearity, precision, and accuracy test. The calibration curves were linear over the established range with R (2) > 0.9978. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.09 to 0.43 and 0.27 to 1.29 μg/mL. The method exhibited intra-day and inter-day precision range between 0.01-1.86% and 0.04-0.35% respectively. The recoveries of five compounds in PWS were in the range between 93.18-106.40%, and 0.20-1.51%. The application of this method was identified through the successful analysis of five compounds in 12 batches of PWS. In addition, identification of five compounds was confirmed by a liquid chromatography method and mass spectrometry. The HPLC method was could be accomplished to the quality control and stable experiment for the preparations consisted of five major compounds.

  12. A method to characterize average cervical spine ligament response based on raw data sets for implementation into injury biomechanics models.

    PubMed

    Mattucci, Stephen F E; Cronin, Duane S

    2015-01-01

    Experimental testing on cervical spine ligaments provides important data for advanced numerical modeling and injury prediction; however, accurate characterization of individual ligament response and determination of average mechanical properties for specific ligaments has not been adequately addressed in the literature. Existing methods are limited by a number of arbitrary choices made during the curve fits that often misrepresent the characteristic shape response of the ligaments, which is important for incorporation into numerical models to produce a biofidelic response. A method was developed to represent the mechanical properties of individual ligaments using a piece-wise curve fit with first derivative continuity between adjacent regions. The method was applied to published data for cervical spine ligaments and preserved the shape response (toe, linear, and traumatic regions) up to failure, for strain rates of 0.5s(-1), 20s(-1), and 150-250s(-1), to determine the average force-displacement curves. Individual ligament coefficients of determination were 0.989 to 1.000 demonstrating excellent fit. This study produced a novel method in which a set of experimental ligament material property data exhibiting scatter was fit using a characteristic curve approach with a toe, linear, and traumatic region, as often observed in ligaments and tendons, and could be applied to other biological material data with a similar characteristic shape. The resultant average cervical spine ligament curves provide an accurate representation of the raw test data and the expected material property effects corresponding to varying deformation rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stability Analysis of Algebraic Reconstruction for Immersed Boundary Methods with Application in Flow and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, M.; Battiato, I.

    2017-12-01

    Flow and reactive transport problems in porous media often involve complex geometries with stationary or evolving boundaries due to absorption and dissolution processes. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying these problems. Yet, implementing these methods requires one to answer a very first question of what type of grid is to be used. Among different possible answers, Cartesian grids are one of the most attractive options as they possess simple discretization stencil and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of the structured grids while exhibiting a high-level resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues and severe time-step restriction due to explicit-time implementation combined with limited studies on the implementation of Neumann (constant flux) and linear and non-linear Robin (e.g. reaction) boundary conditions (BCs) have significantly limited the applicability of IBMs to transport in porous media. We have developed an implicit IBM capable of handling all types of BCs and addressed some numerical issues, including unconditional stability criteria, compactness and reduction of spurious oscillations near the immersed boundary. We tested the method for several transport and flow scenarios, including dissolution processes in porous media, and demonstrate its capabilities. Successful validation against both experimental and numerical data has been carried out.

  14. Highly sensitive analysis of polycyclic aromatic hydrocarbons in environmental water with porous cellulose/zeolitic imidazolate framework-8 composite microspheres as a novel adsorbent coupled with high-performance liquid chromatography.

    PubMed

    Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo

    2016-07-01

    In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Boosting Bayesian parameter inference of stochastic differential equation models with methods from statistical physics

    NASA Astrophysics Data System (ADS)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods that have been developed in the statistical physics community over the last few decades. We demonstrate that such methods, along with automated differentiation algorithms, allow us to perform a full-fledged Bayesian inference, for a large class of SDE models, in a highly efficient and largely automatized manner. Furthermore, our algorithm is highly parallelizable. For our toy model, discretized with a few hundred points, a full Bayesian inference can be performed in a matter of seconds on a standard PC.

  16. Ion velocity analysis of rotating structures in a magnetic linear plasma device

    NASA Astrophysics Data System (ADS)

    Claire, N.; Escarguel, A.; Rebont, C.; Doveil, F.

    2018-06-01

    The MISTRAL device is designed to produce a linear magnetized plasma column. It has been used a few years ago to study a nonlinear low frequency instability exhibiting an azimuthal number m = 2. By changing the experimental configuration of MISTRAL, this work shows experimental results on an m = 1 rotating instability with strongly different behavior. The spatio-temporal evolution of the ion velocity distribution function given by a laser-induced fluorescence diagnostic is measured to infer the radial and azimuthal velocities, ion fluxes, and electric fields. The naive image of a plasma exhibiting a global rotation is again invalidated in this m = 1 mode but in a different way. Contrary to the m = 2 mode, the rotation frequency of the instability is lower than the ion cyclotron frequency and ions exhibit a complex behavior with a radial outward flux inside the unstable arm and azimuthal ion fluxes always directed toward the unstable arm. The azimuthal ion velocity is close to zero inside the ionization region, whereas the radial ion velocity grows linearly with radius. The radial electric field is oriented inward inside the unstable arm and outward outside. An axial velocity perturbation is also present, indicating that contrary to the m = 2 mode, the m = 1 mode is not a flute mode. These results cannot be easily interpreted with existing theories.

  17. Development and Validation of a Novel LC-MS/MS Opioid Confirmation Assay: Evaluation of β-glucuronidase Enzymes and Sample Cleanup Methods.

    PubMed

    Yang, He S; Wu, Alan H B; Lynch, Kara L

    2016-06-01

    With the rise in the use and misuse of prescription opioids, there is an increasing need for the confirmed identification of opioid analgesics in toxicology laboratories. The goals of this study were to (i) systematically evaluate the hydrolysis efficiency of four β-glucuronidase enzymes under optimized condition; (ii) evaluate compound recovery, matrix effects and precision of three protein precipitation plates and (iii) develop and validate a qualitative liquid-chromatography mass spectrometry (LC-MS/MS) assay to identify 13 opioids in urine. A recombinant β-glucuronidase exhibited the best overall hydrolysis efficiency for seven opioid glucuronide conjugates compared with β-glucuronidase from red abalone, Escherichia coli and Patella vulgata One of the protein precipitation plates tested exhibited overall better recovery of the opioids and lower ion suppression compared with the other two plates. An ESI positive mode LC-MS/MS assay for qualitative opioid analysis was developed and validated. Linearity, LOD, precision, matrix effect, recovery, carryover and interference of the method were evaluated. Sixty-two patient samples were analyzed by both a legacy GC-MS opioid method and the LC-MS/MS method, and 22 samples were analyzed by the LC-MS/MS and an LC-MS/MS reference method. The results of the comparisons showed good concordance. Overall, we described an efficient sample preparation procedure for a sensitive qualitative opioid confirmation assay in urine. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Switched periodic systems in discrete time: stability and input-output norms

    NASA Astrophysics Data System (ADS)

    Bolzern, Paolo; Colaneri, Patrizio

    2013-07-01

    This paper deals with the analysis of stability and the characterisation of input-output norms for discrete-time periodic switched linear systems. Such systems consist of a network of time-periodic linear subsystems sharing the same state vector and an exogenous switching signal that triggers the jumps between the subsystems. The overall system exhibits a complex dynamic behaviour due to the interplay between the time periodicity of the subsystem parameters and the switching signal. Both arbitrary switching signals and signals satisfying a dwell-time constraint are considered. Linear matrix inequality conditions for stability and guaranteed H2 and H∞ performances are provided. The results heavily rely on the merge of the theory of linear periodic systems and recent developments on switched linear time-invariant systems.

  19. An efficient analytical method for determination of S-phenylmercapturic acid in urine by HPLC fluorimetric detector to assessing benzene exposure.

    PubMed

    Mendes, Michele P Rocha; Silveira, Josianne Nicácio; Andre, Leiliane Coelho

    2017-09-15

    Benzene is an important occupational and environmental contaminant, naturally present in petroleum and as by-product in the steel industry. Toxicological studies showed pronounced myelotoxic action, causing leukemic and others blood cells disorders. Assessing of benzene exposure is performed by biomarkers as trans, trans-muconic acid (AttM) and S-phenylmercapturic acid (S-PMA) in urine. Due to specificity of S-PMA, this biomarker has been proposed to asses lower levels of benzene in air. The aim of this study was to validate an analytical method for the quantification of S-PMA by High-Performance Liquid Chromatography with fluorometric detector. The development of an analytical method of S-PMA in urine was carried out by solid phase extraction (SPE) using C-18 phase. The eluated were submitted to water bath at 75°C and nitrogen to analyte concentration, followed by alkaline hydrolysis and derivatization with monobromobimane. The chromatography conditions were reverse phase C-18 column (240mm, 4mm and 5μm) at 35°C; acetonitrile and 0.5% acetic acid (50:50) as mobile phase with a flow of 0.8mL/min. The limits of detection and quantification were 0.22μg/L and 0.68μg/L, respectively. The linearity was verified by simple linear regression, and the method exhibited good linearity in the range of 10-100μg/L. There was no matrix effect for S-PMA using concentrations of 40, 60, 80 and 100μg/L. The intra- and interassay precision showed coefficient of variation of less than 10% and the recovery ranged from 83.4 to 102.8% with an average of 94.4%. The stability of S-PMA in urine stored at -20°C was of seven weeks. The conclusion is that this method presents satisfactory results per their figures of merit. This proposed method for determining urinary S-PMA showed adequate sensitivity for assessment of occupational and environmental exposure to benzene using S-PMA as biomarker of exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu(2+) sensing in living cells.

    PubMed

    Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin

    2016-03-15

    We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Rapid characterization of chlorogenic acids in Duhaldea nervosa based on ultra-high-performance liquid chromatography-linear trap quadropole-Orbitrap-mass spectrometry and mass spectral trees similarity filter technique.

    PubMed

    Liu, Lianghong; Zhang, Jiayu; Zheng, Binjie; Guan, Ying; Wang, Liting; Chen, Lei; Cai, Wei

    2018-04-01

    Duhaldea nervosa (Wallich ex Candolle) A. Anderberg has been traditionally used as a food spice and also in folk medicine for treating traumatic injury and relieving rheumatism, especially accelerating the healing of a fracture. However, so far as we are aware, the chemical constituents have not been fully investigated. In this study, a practical method of mass spectral trees similarity filter, a data-mining technique, was developed and evaluated for the rapid detection and identification complicated constituents based on ultra-high-performance liquid chromatography-linear trap quadropole-Orbitrap-mass spectrometry. Finally, a total of 47 chlorogenic acids, including 19 monoacyl-quinic acids, 22 diacyl-quinic acids, and six triacyl-quinic acids, were unambiguously or tentatively identified based on their accurate mass measurement, chromatographic retention, MS n spectra, and bibliography data. To our best knowledge, it is the first time to report the chlorogenic acids of D. nervosa, which would be beneficial for the further material basis and quality research. Meanwhile, this mass spectral trees similarity filter method could be envisioned to exhibit a wide application for the identification of complicated components from botanical extracts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Growth, structural, spectroscopic, thermal, dielectric and optical study of cobalt sulphide-doped ADP crystals

    NASA Astrophysics Data System (ADS)

    Kochuparampil, A. P.; Joshi, J. H.; Joshi, M. J.

    2017-09-01

    As ammonium dihydrogen phosphate (ADP) is a popular nonlinear optical crystal, to engineer its linear and nonlinear optical properties, the chalcogenide compound cobalt sulphide (CoS) was doped and the crystals were grown by the slow solvent evaporation method. To increase the solubility of CoS in water, its nanoparticles were synthesized by wet chemical technique using ethylene diamine as the capping agent followed by microwave irradiation. The nanoparticle sample exhibited finite solubility in water and was used to dope in ADP crystals. The powder XRD patterns showed the single phase nature of the doped crystals. The FTIR spectra confirmed the presence of various functional groups and EDAX gave the estimation of Co and S elements. The EPR spectroscopy also confirmed the presence of cobalt in the doped samples. TGA indicated slightly less thermal stability of the doped crystals compared to the pure ADP. The dielectric study was carried out at room temperature in the frequency range from 100Hz to 1MHz. Also, various linear optical parameters were evaluated for pure and doped crystals using UV-Vis spectroscopy. The second harmonic generation (SHG) efficiency of Nd:YAG laser was evaluated by the Kurtz and Parry method for the doped samples, it was found to be slightly lesser than that of the pure ADP crystals.

  3. Ratiometric ultrasensitive electrochemical immunosensor based on redox substrate and immunoprobe

    NASA Astrophysics Data System (ADS)

    Tang, Zhongxue; Ma, Zhanfang

    2016-10-01

    In this work, we presented a ratiometric electrochemical immunosensor based on redox substrate and immunoprobe. Carboxymethyl cellulose-Au-Pb2+ (CMC-Au-Pb2+) and carbon-Au-Cu2+ (C-Au-Cu2+) nanocomposites were firstly synthesized and implemented as redox substrate and immunoprobe with strong current signals at -0.45 V and 0.15 V, respectively. Human immunoglobulin G (IgG) was used as a model analyte to examine the analytical performance of the proposed method. The current signals of CMC-Au-Pb2+ (Isubstrate) and C-Au-Cu2+ (Iprobe) were monitored. The effect of redox substrate and immunoprobe behaved as a better linear relationship between Iprobe/Isubstrate and Lg CIgG (ng mL-1). By measuring the signal ratio Iprobe/Isubstrate, the sandwich immunosensor for IgG exhibited a wide linear range from 1 fg mL-1 to 100 ng mL-1, which was two orders of magnitude higher than other previous works. The limit of detection reached 0.26 fg mL-1. Furthermore, for human serum samples, the results from this method were consistent with those of the enzyme linked immunosorbent assay (ELISA), demonstrating that the proposed immunoassay was of great potential in clinical diagnosis.

  4. Anodic voltammetric behavior and determination of cefixime in pharmaceutical dosage forms and biological fluids.

    PubMed

    Golcu, Ayşegul; Dogan, Burcu; Ozkan, Sibel A

    2005-10-15

    The voltammetric behavior of cefixime was studied using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. The oxidation of cefixime was irreversible and exhibited diffusion controlled process depending on pH. The oxidation mechanism was proposed and discussed. Different parameters were tested to optimize the conditions for the determination of cefixime. The dependence of current intensities and potentials on pH, concentration, scan rate, nature of the buffer was investigated. According to the linear relationship between the peak current and the concentration, differential pulse (DPV) and square wave (SWV) voltammetric methods for cefixime assay in pharmaceutical dosage forms and biological fluids were developed. For the determination of cefixime were proposed in acetate buffer at pH 4.5, which allows quantitation over the 6 x 10(-6)-2 x 10(-4)M range in supporting electrolyte and spiked serum sample; 8 x 10(-6)-2 x 10(-4)M range in urine sample; 6 x 10(-6)-1 x 10(-4)M range in breast milk samples for both techniques. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and in the biological samples, respectively.

  5. Effect of reduction time on third order optical nonlinearity of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-04-01

    We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  6. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  7. Theoretically Guided Analytical Method Development and Validation for the Estimation of Rifampicin in a Mixture of Isoniazid and Pyrazinamide by UV Spectrophotometer

    PubMed Central

    Khan, Mohammad F.; Rita, Shamima A.; Kayser, Md. Shahidulla; Islam, Md. Shariful; Asad, Sharmeen; Bin Rashid, Ridwan; Bari, Md. Abdul; Rahman, Muhammed M.; Al Aman, D. A. Anwar; Setu, Nurul I.; Banoo, Rebecca; Rashid, Mohammad A.

    2017-01-01

    A simple, rapid, economic, accurate, and precise method for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometeric technique (guided by the theoretical investigation of physicochemical properties) was developed and validated. Theoretical investigations revealed that isoniazid and pyrazinamide both were freely soluble in water and slightly soluble in ethyl acetate whereas rifampicin was practically insoluble in water but freely soluble in ethyl acetate. This indicates that ethyl acetate is an effective solvent for the extraction of rifampicin from a water mixture of isoniazid and pyrazinamide. Computational study indicated that pH range of 6.0–8.0 would favor the extraction of rifampicin. Rifampicin is separated from isoniazid and pyrazinamide at pH 7.4 ± 0.1 by extracting with ethyl acetate. The ethyl acetate was then analyzed at λmax of 344.0 nm. The developed method was validated for linearity, accuracy and precision according to ICH guidelines. The proposed method exhibited good linearity over the concentration range of 2.5–35.0 μg/mL. The intraday and inter-day precision in terms of % RSD ranged from 1.09 to 1.70% and 1.63 to 2.99%, respectively. The accuracy (in terms of recovery) of the method varied from of 96.7 ± 0.9 to 101.1 ± 0.4%. The LOD and LOQ were found to be 0.83 and 2.52 μg/mL, respectively. In addition, the developed method was successfully applied to determine rifampicin combination (isoniazid and pyrazinamide) brands available in Bangladesh. PMID:28503547

  8. Theoretically Guided Analytical Method Development and Validation for the Estimation of Rifampicin in a Mixture of Isoniazid and Pyrazinamide by UV Spectrophotometer.

    PubMed

    Khan, Mohammad F; Rita, Shamima A; Kayser, Md Shahidulla; Islam, Md Shariful; Asad, Sharmeen; Bin Rashid, Ridwan; Bari, Md Abdul; Rahman, Muhammed M; Al Aman, D A Anwar; Setu, Nurul I; Banoo, Rebecca; Rashid, Mohammad A

    2017-01-01

    A simple, rapid, economic, accurate, and precise method for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometeric technique (guided by the theoretical investigation of physicochemical properties) was developed and validated. Theoretical investigations revealed that isoniazid and pyrazinamide both were freely soluble in water and slightly soluble in ethyl acetate whereas rifampicin was practically insoluble in water but freely soluble in ethyl acetate. This indicates that ethyl acetate is an effective solvent for the extraction of rifampicin from a water mixture of isoniazid and pyrazinamide. Computational study indicated that pH range of 6.0-8.0 would favor the extraction of rifampicin. Rifampicin is separated from isoniazid and pyrazinamide at pH 7.4 ± 0.1 by extracting with ethyl acetate. The ethyl acetate was then analyzed at λ max of 344.0 nm. The developed method was validated for linearity, accuracy and precision according to ICH guidelines. The proposed method exhibited good linearity over the concentration range of 2.5-35.0 μg/mL. The intraday and inter-day precision in terms of % RSD ranged from 1.09 to 1.70% and 1.63 to 2.99%, respectively. The accuracy (in terms of recovery) of the method varied from of 96.7 ± 0.9 to 101.1 ± 0.4%. The LOD and LOQ were found to be 0.83 and 2.52 μg/mL, respectively. In addition, the developed method was successfully applied to determine rifampicin combination (isoniazid and pyrazinamide) brands available in Bangladesh.

  9. Critical behavior of dissipative two-dimensional spin lattices

    NASA Astrophysics Data System (ADS)

    Rota, R.; Storme, F.; Bartolo, N.; Fazio, R.; Ciuti, C.

    2017-04-01

    We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian that are subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated with a dissipative ferromagnetic transition. We show that the von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information, which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition.

  10. Wavelength dependence of position angle in polarization standards

    NASA Astrophysics Data System (ADS)

    Dolan, J. F.; Tapia, S.

    1986-08-01

    Eleven of the 15 stars on Serkowski's (1974) list of "Standard Stars with Large Interstellar Polarization" were investigated to determine whether the orientation of the plane of their linear polarization showed any dependence on wavelength. Nine of the eleven stars exhibited a statistically significant wavelength dependence of position angle when measured with an accuracy of ≡0°.1 standard deviation. For the majority of these stars, the effect is caused primarily by intrinsic polarization. The calibration of polarimeter position angles in a celestial coordinate frame must evidently be done at the 0°.1 level of accuracy by using only carefully selected standard stars or by using other astronomical or laboratory methods.

  11. Hexacopter trajectory control using a neural network

    NASA Astrophysics Data System (ADS)

    Artale, V.; Collotta, M.; Pau, G.; Ricciardello, A.

    2013-10-01

    The modern flight control systems are complex due to their non-linear nature. In fact, modern aerospace vehicles are expected to have non-conventional flight envelopes and, then, they must guarantee a high level of robustness and adaptability in order to operate in uncertain environments. Neural Networks (NN), with real-time learning capability, for flight control can be used in applications with manned or unmanned aerial vehicles. Indeed, using proven lower level control algorithms with adaptive elements that exhibit long term learning could help in achieving better adaptation performance while performing aggressive maneuvers. In this paper we show a mathematical modeling and a Neural Network for a hexacopter dynamics in order to develop proper methods for stabilization and trajectory control.

  12. A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, R.

    The author presents a numerical study of the axisymmetric Couette-Taylor problem using a finite difference scheme. The scheme is based on a staggered version of a second-order central-differencing method combined with a discrete Hodge projection. The use of central-differencing operators obviates the need to trace the characteristic flow associated with the hyperbolic terms. The result is a simple and efficient scheme which is readily adaptable to other geometries and to more complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution, and robustness. The numerical results agree accurately with linear stability theory and with previous numerical studies.

  13. Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing.

    PubMed

    Cardiel, Joshua J; Zhao, Ya; Tonggu, Lige; Wang, Liguo; Chung, Jae-Hyun; Shen, Amy Q

    2014-10-21

    A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.

  14. Energy landscapes for machine learning

    NASA Astrophysics Data System (ADS)

    Ballard, Andrew J.; Das, Ritankar; Martiniani, Stefano; Mehta, Dhagash; Sagun, Levent; Stevenson, Jacob D.; Wales, David J.

    Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.

  15. Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wu, Tian; Zhang, Lieyu

    2015-12-01

    Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.

  16. Wavelength dependence of position angle in polarization standards. [of stellar systems

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Tapia, S.

    1986-01-01

    Eleven of the 15 stars on Serkowski's (1974) list of 'Standard Stars with Large Interstellar Polarization' were investigated to determine whether the orientation of the plane of their linear polarization showed any dependence on wavelength. Nine of the eleven stars exhibited a statistically significant wavelength dependence of position angle when measured with an accuracy of about 0.1 deg standard deviation. For the majority of these stars, the effect is caused primarily by intrinsic polarization. The calibration of polarimeter position angles in a celestial coordinate frame must evidently be done at the 0.1 deg level of accuracy by using only carefully selected standard stars or by using other astronomical or laboratory methods.

  17. Stochastic resonance algorithm applied to quantitative analysis for weak chromatographic signals of alkyl halides and alkyl benzenes in water samples.

    PubMed

    Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai

    2009-09-01

    The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.

  18. Heavily loaded ferrite-polymer composites to produce high refractive index materials at centimetre wavelengths

    NASA Astrophysics Data System (ADS)

    Parke, L.; Hooper, I. R.; Hicken, R. J.; Dancer, C. E. J.; Grant, P. S.; Youngs, I. J.; Sambles, J. R.; Hibbins, A. P.

    2013-10-01

    A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%-80%). The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10) and permeability (23 ± 2). The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics.

  19. Design and fabrication of highly sensitive and stable biochip for glucose biosensing

    NASA Astrophysics Data System (ADS)

    Lu, Shi-Yu; Lu, Yao; Jin, Meng; Bao, Shu-Juan; Li, Wan-Yun; Yu, Ling

    2017-11-01

    Common producing steps for test strips is complex and fussy. In this work, we proposed a feasible binder-free test strips fabrication method to directly grow enzyme/manganese phosphate nanosheets hybrids on the screen-print electrodes (SPE). Combined with microfluidic packaging technology, the ready-made portable electrochemical biochip shows a wider linear range (1-40 mM, R2 = 0.9998) and excellent stability (maintained 98% response current after 20 days store and retained 75% response current after continuous 30 days determination) for the detection of glucose. Compared with commercial test strips, the biochip exhibits excellent sensitivity, stability and accuracy, which is indicative of its potential application in real samples.

  20. Mapping GRACE Accelerometer Error

    NASA Astrophysics Data System (ADS)

    Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.

    2017-12-01

    After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.

  1. Electric-field-induced association of colloidal particles

    NASA Astrophysics Data System (ADS)

    Fraden, Seth; Hurd, Alan J.; Meyer, Robert B.

    1989-11-01

    Dilute suspensions of micron diameter dielectric spheres confined to two dimensions are induced to aggregate linearly by application of an electric field. The growth of the average cluster size agrees well with the Smoluchowski equation, but the evolution of the measured cluster size distribution exhibits significant departures from theory at large times due to the formation of long linear clusters which effectively partition space into isolated one-dimensional strips.

  2. Near-infrared absorbing squarylium dyes with linearly extended π-conjugated structure for dye-sensitized solar cell applications.

    PubMed

    Maeda, Takeshi; Hamamura, Yuuto; Miyanaga, Kyohei; Shima, Naoki; Yagi, Shigeyuki; Nakazumi, Hiroyuki

    2011-11-18

    A novel class of near-infrared absorbing squarylium sensitizers with linearly extended π-conjugated structures, which were obtained by Pd-catalyzed cross-coupling reactions with stannylcyclobutenediones, has been developed for dye-sensitized solar cells. The cells based on these dyes exhibited a significant spectral response in the near-infrared region over 750 nm in addition to the visible region.

  3. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis

    DTIC Science & Technology

    1988-12-01

    Figure 5-10. The Linearized Single-Unit Vehicle Model ............................... 41 Figure 5-11. Interpretation of the Single-Unit Model...The starting point for the driver modelling research conducted under this project was a linear preview control model originally proposed by MacAdam 1...regardless of its origin, can pass at least the elementary validation test of exhibiting "cross-over model"-like- behavior in the vicinity of its

  4. Interpenetrating graphene networks: Three-dimensional node-line semimetals with massive negative linear compressibilities

    NASA Astrophysics Data System (ADS)

    Lin, Yangzheng; Zhao, Zhisheng; Strobel, Timothy A.; Cohen, R. E.

    2016-12-01

    We investigated the stability and mechanical and electronic properties of 15 metastable mixed s p2-s p3 carbon allotropes in the family of interpenetrating graphene networks (IGNs) using density functional theory (DFT). IGN allotropes exhibit nonmonotonic bulk and linear compressibilities before their structures irreversibly transform into new configurations under large hydrostatic compression. The maximum bulk compressibilities vary widely between structures and range from 3.6 to 306 TPa-1. We find all the IGN allotropes have negative linear compressibilities with maximum values varying from -0.74 to -133 TPa-1. The maximal negative linear compressibility of Z33 (-133 TPa-1 at 3.4 GPa) exceeds previously reported values at pressures higher than 1.0 GPa. IGN allotropes can be classified as either armchair or zigzag type, and these two types of IGNs exhibit different electronic properties. Zigzag-type IGNs are node-line semimetals, while armchair-type IGNs are either semiconductors or node-loop or node-line semimetals. Experimental synthesis of these IGN allotropes might be realized since their formation enthalpies relative to graphite are only 0.1-0.5 eV/atom (that of C60 fullerene is about 0.4 eV/atom), and energetically feasible binary compound pathways are possible.

  5. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  6. Simple estimation of linear 1+1 D tsunami run-up

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Campos, J. A.; Riquelme, S.

    2016-12-01

    An analytical expression is derived concerning the linear run-up for any given initial wave generated over a sloping bathymetry. Due to the simplicity of the linear formulation, complex transformations are unnecessay, because the shoreline motion is directly obtained in terms of the initial wave. This analytical result not only supports maximum run-up invariance between linear and non-linear theories, but also the time evolution of shoreline motion and velocity. The results exhibit good agreement with the non-linear theory. The present formulation also allows computing the shoreline motion numerically from a customised initial waveform, including non-smooth functions. This is useful for numerical tests, laboratory experiments or realistic cases in which the initial disturbance might be retrieved from seismic data rather than using a theoretical model. It is also shown that the real case studied is consistent with the field observations.

  7. Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems

    NASA Technical Reports Server (NTRS)

    Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.

    2016-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability margins. At each time point, the system was linearized about the current operating point using Simulink's built-in solver. Each linearized system in time was evaluated for its rigid-body gain margin (high frequency gain margin), rigid-body phase margin, and aero gain margin (low frequency gain margin) for each control axis. Using the stability margins derived from the baseline linearization approach, the time domain derived stability margins were determined by executing time domain simulations in which axis-specific incremental gain and phase adjustments were made to the nominal system about the expected neutral stability point at specific flight times. The baseline stability margin time histories were used to shift the system gain to various values around the zero margin point such that a precise amount of expected gain margin was maintained throughout flight. When assessing the gain margins, the gain was applied starting at the time point under consideration, thereafter following the variation in the margin found in the linear analysis. When assessing the rigid-body phase margin, a constant time delay was applied to the system starting at the time point under consideration. If the baseline stability margins were correctly determined via the linear analysis, the time domain simulation results should contain unstable behavior at certain gain and phase values. Examples will be shown from repeated simulations with variable added gain and phase lag. Faithfulness of margins calculated from the linear analysis to the nonlinear system will be demonstrated.

  8. Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce.

    PubMed

    Xie, Fang; Lai, WeiHua; Saini, Jasdeep; Shan, Shan; Cui, Xi; Liu, DaoFeng

    2014-05-01

    Soybean sauce, a traditional fermented food in China, has different levels of aflatoxin B1 pollution. Two kinds of direct and indirect immunomagnetic bead methods for the pretreatment of aflatoxin B1 were evaluated in this work. A method was established to detect aflatoxin B1 in soybean sauce using an immunomagnetic bead system for pretreatment and ELISA for quantification. The pretreatment method of immunomagnetic beads performed better compared with the conventional extraction and immunoaffinity column method. ELISA exhibited a good linear relationship at an aflatoxin B1 concentration of 0.05-0.3μg/kg (r(2)=0.9842). The average recoveries across spike levels varied from 0.5 to 7μg/kg were 83.6-104% with a relative standard deviation between 4.2% and 11.7%. With the advantages of rapid detection, easy operation, simple equipment, sensitivity, accuracy, and high recovery; this method can be well applied in the trace determination of aflatoxin B1 in soybean sauce samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Differential computation method used to calibrate the angle-centroid relationship in coaxial reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-05-01

    A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.

  10. Ultra-performance liquid chromatography tandem mass spectrometry for simultaneous determination of natural steroid hormones in sea lamprey (Petromyzon marinus) plasma and tissues.

    PubMed

    Wang, Huiyong; Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Weiming

    2016-01-15

    This study aims to provide a rapid, sensitive and precise UPLC-MS/MS method for target steroid quantitation in biological matrices. We developed and validated an UPLC-MS/MS method to simultaneously determine 16 steroids in plasma and tissue samples. Ionization sources of Electrospray Ionization (ESI) and Atmospheric Pressure Chemical Ionization (APCI) were compared in this study by testing their spectrometry performances at the same chromatographic conditions, and the ESI source was found up to five times more sensitive than the APCI. Different sample preparation techniques were investigated for an optimal extraction of steroids from the biological matrices. The developed method exhibited excellent linearity for all analytes with regression coefficients higher than 0.99 in broad concentration ranges. The limit of detection (LOD) was from 0.003 to 0.1ng/mL. The method was validated according to FDA guidance and applied to determine steroids in sea lamprey plasma and tissues (fat and testes) by the developed method. Copyright © 2015. Published by Elsevier B.V.

  11. Analysis of phenolic acids by ionic liquid-in-water microemulsion liquid chromatography coupled with ultraviolet and electrochemical detector.

    PubMed

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Shi, Yu-Tin; Xu, Jing-Jing

    2017-05-26

    An environmentally friendly ionic liquid-in-water (IL/W) microemulsion was established and applied as mobile phase in microemulsion liquid chromatography (MELC) with ultraviolet (UV) detection or electrochemical detector (ECD) for analysis of phenolic compounds in real samples. The optimal condition of the method was using the best composition of microemulsion (0.2% w/v [HMIM]PF 6 , 1.0% w/v SDS, 3.0% w/v n-butanol, 95.8% v/v water, pH 2.5) with UV detection. The validation results indicated that the method provided high degree of sensitivity, precision and accuracy with the low limit of detections ranged from 17.9-238ng/mL, satisfactory mean recovery values in the range of 80.1-105% and good linearity (r 2 >0.9994). Additionally, this method exhibited high selectivity and resolution for the analytes and was more eco-friendly compared with traditional MELC method. Consequently, the established IL/W MELC method was successfully applied to simultaneously separate and determine target compounds in Danshen sample and its preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bandwidth efficient channel estimation method for airborne hyperspectral data transmission in sparse doubly selective communication channels

    NASA Astrophysics Data System (ADS)

    Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.

    2017-10-01

    A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.

  13. Quasi-integrable non-linear Schrödinger models, infinite towers of exactly conserved charges and bright solitons

    NASA Astrophysics Data System (ADS)

    Blas, H.; do Bonfim, A. C. R.; Vilela, A. M.

    2017-05-01

    Deformations of the focusing non-linear Schrödinger model (NLS) are considered in the context of the quasi-integrability concept. We strengthen the results of JHEP 09 (2012) 103 for bright soliton collisions. We addressed the focusing NLS as a complement to the one in JHEP 03 (2016) 005 , in which the modified defocusing NLS models with dark solitons were shown to exhibit an infinite tower of exactly conserved charges. We show, by means of analytical and numerical methods, that for certain two-bright-soliton solutions, in which the modulus and phase of the complex modified NLS field exhibit even parities under a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved during the scattering process of the solitons. We perform extensive numerical simulations and consider the bright solitons with deformed potential V=2η /2+\\upepsilon{({|ψ |}^2)}^{2+\\upepsilon},\\upepsilon \\in \\mathbb{R},η <0 . However, for two-soliton field components without definite parity we also show numerically the vanishing of the first non-trivial anomaly and the exact conservation of the relevant charge. So, the parity symmetry seems to be a sufficient but not a necessary condition for the existence of the infinite tower of conserved charges. The model supports elastic scattering of solitons for a wide range of values of the amplitudes and velocities and the set { η, ɛ}. Since the NLS equation is ubiquitous, our results may find potential applications in several areas of non-linear science.

  14. Velocity Gradient Across the San Andreas Fault and Changes in Slip Behavior as Outlined by Full non Linear Tomography

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.

    2017-12-01

    The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.

  15. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    PubMed

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  16. First-principles investigation of thermodynamic, elastic and electronic properties of Al{sub 3}V and Al{sub 3}Nb intermetallics under pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe; Zhang, Peng; Chen, Dong

    2015-02-28

    The thermodynamic, elastic, and electronic properties of D0{sub 22}-type Al{sub 3}V and Al{sub 3}Nb intermetallics were studied using the first-principle method. The results showed the pressure has profound effects on the structural, mechanical and electronic properties in both Al{sub 3}V and Al{sub 3}Nb. Thermodynamically, the formation enthalpies for Al{sub 3}V and Al{sub 3}Nb were derived, which agreed well with available experimental and theoretical values. Comparably, Al{sub 3}Nb was a more stable phase with the more negative H{sub f} than Al{sub 3}V. Mechanically, the calculated elastic constants showed linearly increasing tendencies, and satisfied the Born's criteria from 0–20 GPa, indicating the mechanicallymore » stability of Al{sub 3}V and Al{sub 3}Nb under this pressure range. Further, the mechanical parameters (i.e., bulk modulus (B), shear modulus (G), and Young's modulus (E)) were derived using the Voigt-Reuss-Hill (VRH) method, and in good agreement with available experimental results at the ground state. All these parameters presented the linearly increasing dependences on the external pressure. The B/G ratios and Poisson's ratio indicated that the Al{sub 3}V and Al{sub 3}Nb crystals should exhibit brittle behavior at 0–20 GPa. Additionally, the bulk modulus can be obtained through fitting the Birch-Murnaghan equation (B{sub 0}), computing by VRH method (B{sub H}), and deriving from the elastic theory (B{sub relax}) in both intermetallics. The uniformity of these calculated bulk moduli in each compound exhibited the excellent reliability and self-consistency. In addition, Debye temperature was estimated from the average sound velocity. The Debye temperature showed an increasing dependence on the pressures. Finally, through density of states analysis, Al{sub 3}V and Al{sub 3}Nb were suggested to possess naturally metallic behavior. Under pressures, it was noted that the shapes of peaks and pseudogaps exhibited relative few changes, suggesting Al{sub 3}V and Al{sub 3}Nb has kept structurally stable up to 20 GPa. At zero pressure, Al{sub 3}Nb was considered as a more structurally stable phase with the more number of bonding electrons per atom than Al{sub 3}V. This conclusion was in consistent with the one drawn from the thermodynamic analysis.« less

  17. Fourier-spectral element approximation of the ion–electron Braginskii system with application to tokamak edge plasma in divertor configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjeaud, Sebastian; INRIA project CASTOR; Pasquetti, Richard, E-mail: richard.pasquetti@unice.fr

    Due to the extreme conditions required to produce energy by nuclear fusion in tokamaks, simulating the plasma behavior is an important but challenging task. We focus on the edge part of the plasma, where fluid approaches are probably the best suited, and our approach relies on the Braginskii ion–electron model. Assuming that the electric field is electrostatic, this yields a set of 10 strongly coupled and non-linear conservation equations that exhibit multiscale and anisotropy features. The computational domain is a torus of complex geometrical section, that corresponds to the divertor configuration, i.e. with an “X-point” in the magnetic surfaces. Tomore » capture the complex physics that is involved, high order methods are used: The time-discretization is based on a Strang splitting, that combines implicit and explicit high order Runge–Kutta schemes, and the space discretization makes use of the spectral element method in the poloidal plane together with Fourier expansions in the toroidal direction. The paper thoroughly describes the algorithms that have been developed, provides some numerical validations of the key algorithms and exhibits the results of preliminary numerical experiments. In particular, we point out that the highest frequency of the system is intermediate between the ion and electron cyclotron frequencies.« less

  18. Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture

    NASA Astrophysics Data System (ADS)

    Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis

    2016-09-01

    The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.

  19. A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.

    PubMed

    Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas

    2010-11-01

    Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. On Discontinuous Piecewise Linear Models for Memristor Oscillators

    NASA Astrophysics Data System (ADS)

    Amador, Andrés; Freire, Emilio; Ponce, Enrique; Ros, Javier

    2017-06-01

    In this paper, we provide for the first time rigorous mathematical results regarding the rich dynamics of piecewise linear memristor oscillators. In particular, for each nonlinear oscillator given in [Itoh & Chua, 2008], we show the existence of an infinite family of invariant manifolds and that the dynamics on such manifolds can be modeled without resorting to discontinuous models. Our approach provides topologically equivalent continuous models with one dimension less but with one extra parameter associated to the initial conditions. It is possible to justify the periodic behavior exhibited by three-dimensional memristor oscillators, by taking advantage of known results for planar continuous piecewise linear systems. The analysis developed not only confirms the numerical results contained in previous works [Messias et al., 2010; Scarabello & Messias, 2014] but also goes much further by showing the existence of closed surfaces in the state space which are foliated by periodic orbits. The important role of initial conditions that justify the infinite number of periodic orbits exhibited by these models, is stressed. The possibility of unsuspected bistable regimes under specific configurations of parameters is also emphasized.

  1. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    PubMed Central

    Solarte, Víctor A.; Rosas, Jaiver E.; Rivera, Zuly J.; Arango-Rodríguez, Martha L.; García, Javier E.; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC. PMID:26609531

  2. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity.

    PubMed

    Ting, Kai Yiu; Leung, Christina F P; Graeff, Richard M; Lee, Hon Cheung; Hao, Quan; Kotaka, Masayo

    2016-03-01

    Cyclic ADP-ribose (cADPR) mobilizes intracellular Ca(2+) stores and activates Ca(2+) influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD(+) by the multifunctional CD38/ADP-ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD(+) can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD(+) to form linear ADPR while Aplysia ADP-ribosyl cyclase prefers cyclizing NAD(+) to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD(+) cyclase activity producing cADPR. We also determined the X-ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD(+) reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively. © 2016 The Protein Society.

  3. Effect of Temperature and Nutrient Manipulations on eelgrass ...

    EPA Pesticide Factsheets

    Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur

  4. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    PubMed

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Systematic study of doping dependence on linear magnetoresistance in p-PbTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.

    2014-10-20

    We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linearmore » magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.« less

  6. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  7. [Determination of phthalate plasticizers in foods by high performance liquid chromatography with gel permeation chromatographic clean-up].

    PubMed

    Zhang, Chunyu; Wang, Hui; Zhang, Xiaohui; Ma, Zhongqiang; Deng, Wanmei; Hu, Ke; Ding, Mingyu

    2011-12-01

    A method of gel permeation chromatography-high performance liquid chromatography (GPC-HPLC) was established for the simultaneous determination of 5 main phthalate plasticizers in foods (edible oil, instant noodles, fried pastries, Saqima, etc.). The samples were extracted with petroleum ether in an ultrasonator, purified by a GPC column, and analyzed by HPLC. The chromatographic separation was achieved on a Labtech-C18 column (250 mm x 4.6 mm, 5 microm) using acetonitrile and water mixture as the mobile phases in a gradient elution mode. The developed method exhibited a linear correlation coefficient of more than 0.997 and the detection limits of 3.25 - 13.4 microg/L. The spike recoveries were between 70.4% and 113.6% with the relative standard deviations (RSDs, n = 3) of 0.3% - 5.8% at the spiked level of 50 mg/L. This method is simple, rapid and practical, and can be used for the simultaneous determination of PAEs in grease food samples.

  8. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of aniracetam in human plasma.

    PubMed

    Zhang, Jingjing; Liang, Jiabi; Tian, Yuan; Zhang, Zunjian; Chen, Yun

    2007-10-15

    A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.

  9. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    PubMed Central

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  10. Electric field feedback for Magneto(elasto)Electric magnetometer development

    NASA Astrophysics Data System (ADS)

    Yang, M.-T.; Zhuang, X.; Sing, M. Lam Chok; Dolabdjian, C.; Finkel, P.; Li, J.; Viehland, D.

    2017-12-01

    Magneto(elasto)Electric (ME) sensors based on magnetostrictive-piezoelectric composites have been investigated to evaluate their performances to sense a magnetic signal. Previous results have shown that the dielectric loss noise in the piezoelectric layer exhibits as the dominant intrinsic noise at low frequencies, which limits the sensor performances. Also, it has intrinsically no DC capability. To avoid a part of this limitation, modulation detection methods are evaluated through a frequency up-conversion technique [1-4]. Moreover, classical magnetic field feedback techniques can be used to increase the dynamic range, the sensing stability and the system linearity, too. In this paper, we propose a new method to feedback the system by using both the magneto-capacitance modulation and an electric field feedback technique. Our development shows the feasibility of the method and the results match with the theoretical description and material properties. Even if the present results are not totally satisfactory, they give the proof of concept and yield a way for the development of very low power magnetometers.

  11. Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot.

    PubMed

    Teng, Fei; Zhu, Qunyan; Wang, Yalei; Du, Juan; Lu, Nan

    2018-03-01

    Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI TOF MS) has become one of the most important analytical methods due to its less interference at low molecular weight range. However, it is still a challenge to obtain a good reproducibility of SALDI TOF MS because of the inhomogeneous distribution of analyte molecules induced by coffee ring effect. We propose a universal and reliable method to eliminate the coffee ring effect by concentrating all the analyte molecules within the laser spot. This method exhibits an excellent reproducibility of spot-to-spot and substrate-to-substrate, and the relative standard deviations (RSDs) for different concentrations are lower than 12.6%. It also performs good linear dependency (R 2 > 0.98) in the log-log plot with the concentration range of 1nM to 1μM, and the limit of detection for R6G is down to 1fmol. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation.

    PubMed

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL(-1) with a detection limit of 0.98 μg mL(-1). This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation

    NASA Astrophysics Data System (ADS)

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL-1 with a detection limit of 0.98 μg mL-1. This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid.

  14. Similarity of scattering rates in metals showing T-linear resistivity.

    PubMed

    Bruin, J A N; Sakai, H; Perry, R S; Mackenzie, A P

    2013-02-15

    Many exotic compounds, such as cuprate superconductors and heavy fermion materials, exhibit a linear in temperature (T) resistivity, the origin of which is not well understood. We found that the resistivity of the quantum critical metal Sr(3)Ru(2)O(7) is also T-linear at the critical magnetic field of 7.9 T. Using the precise existing data for the Fermi surface topography and quasiparticle velocities of Sr(3)Ru(2)O(7), we show that in the region of the T-linear resistivity, the scattering rate per kelvin is well approximated by the ratio of the Boltzmann constant to the Planck constant divided by 2π. Extending the analysis to a number of other materials reveals similar results in the T-linear region, in spite of large differences in the microscopic origins of the scattering.

  15. A Novel Local Learning based Approach With Application to Breast Cancer Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Tourassi, Georgia

    2012-01-01

    The purpose of this study is to develop and evaluate a novel local learning-based approach for computer-assisted diagnosis of breast cancer. Our new local learning based algorithm using the linear logistic regression method as its base learner is described. Overall, our algorithm will perform its stochastic searching process until the total allowed computing time is used up by our random walk process in identifying the most suitable population subdivision scheme and their corresponding individual base learners. The proposed local learning-based approach was applied for the prediction of breast cancer given 11 mammographic and clinical findings reported by physicians using themore » BI-RADS lexicon. Our database consisted of 850 patients with biopsy confirmed diagnosis (290 malignant and 560 benign). We also compared the performance of our method with a collection of publicly available state-of-the-art machine learning methods. Predictive performance for all classifiers was evaluated using 10-fold cross validation and Receiver Operating Characteristics (ROC) analysis. Figure 1 reports the performance of 54 machine learning methods implemented in the machine learning toolkit Weka (version 3.0). We introduced a novel local learning-based classifier and compared it with an extensive list of other classifiers for the problem of breast cancer diagnosis. Our experiments show that the algorithm superior prediction performance outperforming a wide range of other well established machine learning techniques. Our conclusion complements the existing understanding in the machine learning field that local learning may capture complicated, non-linear relationships exhibited by real-world datasets.« less

  16. Generalization of mixed multiscale finite element methods with applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C S

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less

  17. Development and validation of a rapid LC-MS/MS method for simultaneous determination of netupitant and palonosetron in human plasma and its application to a pharmacokinetic study.

    PubMed

    Xu, Mingzhen; Ni, Yang; Li, Shihong; Du, Juan; Li, Huqun; Zhou, Ying; Li, Weiyong; Chen, Hui

    2016-08-01

    A simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was firstly developed and validated for simultaneous determination of netupitant and palonosetron in human plasma using ibrutinib as the internal standard (IS). Following liquid-liquid extraction, the compounds were eluted isocratically on a Phenomenex C18 column (50mm×2.0mm, 3μm) with the mobile phase consisting of acetonitrile and 10mM ammonium acetate buffer (pH 9.0) (89:11, v/v) at the flow rate of 0.3mL/min. The monitored ion transitions were m/z 579.5→522.4 for netupitant, m/z 297.3→110.2 for palonosetron and m/z 441.2→138.1 for IS. Chromatographic run time was 2.5min per injection, which made it possible to analyze more than 300 of samples per day. The assay exhibited a linear dynamic range of 5-1000ng/mL for netupitant and 0.02-10ng/mL for palonosetron in plasma. The values for both within- and between-day precision and accuracy were well within the generally accepted criteria for analytical methods (<15%). Selectivity, linearity, lower limit of quantification (LLOQ), accuracy, precision, stability, matrix effect, recovery and carry-over effect were evaluated for all analytes. The method is simple, rapid, and has been applied successfully to a pharmacokinetic study of netupitant and palonosetron in healthy volunteers. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Predicting financial market crashes using ghost singularities.

    PubMed

    Smug, Damian; Ashwin, Peter; Sornette, Didier

    2018-01-01

    We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of 'ghosts of finite-time singularities' is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts.

  19. Targeted profiling of hydrophilic constituents of royal jelly by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Pina, Athanasia; Begou, Olga; Kanelis, Dimitris; Gika, Helen; Kalogiannis, Stavros; Tananaki, Chrysoula; Theodoridis, Georgios; Zotou, Anastasia

    2018-01-05

    In the present work a Hydrophilic Interaction Liquid Chromatography-tandem Mass Spectrometry (HILIC-MS/MS) method was developed for the efficient separation and quantification of a large number of small polar bioactive molecules in Royal Jelly. The method was validated and provided satisfactory detection sensitivity for 88 components. Quantification was proven to be precise for 64 components exhibiting good linearity, recoveries R% >90% for the majority of analytes and intra- and inter-day precision from 0.14 to 20% RSD. Analysis of 125 fresh royal jelly samples of Greek origin provided useful information on royal jelly's hydrophilic bioactive components revealing lysine, ribose, proline, melezitose and glutamic acid to be in high abundance. In addition the occurrence of 18 hydrophilic nutrients which have not been reported previously as royal jelly constituents is shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film.

    PubMed

    Şenel, Mehmet

    2015-03-01

    A film of chitosan-polypyrrole-gold nanoparticles was fabricated by in-situ chemical synthesis method and its application in glucose biosensor was investigated. The obtained biosensor exhibited a high and reproducible sensitivity of 0.58μA/mM, response time ~4s, linear dynamic range from 1 to 20mM, correlation coefficient of R(2)=0.9981, and limit of detection (LOD), based on S/N ratio (S/N=3) of 0.068mM. A value of 1.83mM for the apparent Michaelis-Menten constant was obtained. The resulting bio-nanocomposite provided a suitable environment for the enzyme to retain its bioactivity at considerably extreme conditions, and the decorated gold nanoparticles in the bio-nanocomposite offer good affinity to enzyme. Copyright © 2014. Published by Elsevier B.V.

  1. Predicting financial market crashes using ghost singularities

    PubMed Central

    2018-01-01

    We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of ‘ghosts of finite-time singularities’ is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts. PMID:29596485

  2. Liquid chromatographic separation of zalcitabine and its stereoisomers.

    PubMed

    Scypinski, S; Ross, A J

    1994-10-01

    A liquid chromatographic method capable of separating and quantitating the stereoisomers of zalcitabine has been developed and validated. The separation was achieved with an Astec Cyclobond I--RSP column and a mobile phase of 0.25% triethylamine in water adjusted to a pH of 6.5 with glacial acetic acid. All enantiomers were found to exhibit a linear response in the range of 0.1-10% in the presence of 100% zalcitabine. Precision of analysis was found to be less than 1.5% at a level of 1% relative to zalcitabine. The limit of detection for two of the three enantiomeric impurities was determined to be 0.05% relative to zalcitabine. The detection limit for the third was found to be 0.1%. This method was successfully applied to the analysis of reference standards and several production scale batches. All of these materials were found to be stereochemically pure to a level of 99.8% or better.

  3. Analytical performances of the Diazyme ADA assay on the Cobas® 6000 system.

    PubMed

    Delacour, Hervé; Sauvanet, Christophe; Ceppa, Franck; Burnat, Pascal

    2010-12-01

    To evaluate the analytical performance of the Diazyme ADA assay on the Cobas® 6000 system for pleural fluid samples analysis. Imprecision, linearity, calibration curve stability, interference, and correlation studies were completed. The Diazyme ADA assay demonstrated excellent precision (CV<4%) over the analytical measurement range (0.5-117 U/L). Bilirubin above 50 μmol/L and haemoglobin above 177 μmol/L interfered with the test, inducing a negative and a positive interference respectively. The Diazyme ADA assay correlated well with the Giusti method (r(2)=0.93) but exhibited a negative bias (~ -30%). The Diazyme ADA assay on the Cobas® 6000 system represents a rapid, accurate, precise and reliable method for determination of ADA activity in pleural fluid samples. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Low potential detection of indole-3-acetic acid based on the peroxidase-like activity of hemin/reduced graphene oxide nanocomposite.

    PubMed

    Liu, Fengping; Tang, Jiaqian; Xu, Jun; Shu, Yun; Xu, Qin; Wang, Hongmei; Hu, Xiaoya

    2016-12-15

    An amperometric sensor was firstly established for the detection of indole-3-acetic acid (IAA) at low potential based on the hemin/reduced graphene oxide (hemin/rGO) composite. The hemin/rGO nanocomposite was prepared by a simple and facile hydrothermal method without using any reducing agent. It exhibited peroxidase-like activity for the catalytic oxidation of IAA in the presence of oxygen. The consumption of oxygen has a linear relationship with the concentration of IAA in the range from 0.1 to 43μM and from 43 to 183μM. The detection limit was down to 0.074μM. This sensor was unaffected by many interfering substances and stable over time. Such work broadened the application of hemin/rGO and provided a new method for IAA detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Simultaneous HPLC analysis of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid dosage forms.

    PubMed

    Manassra, Adnan; Khamis, Mustafa; El-Dakiky, Magdy; Abdel-Qader, Zuhair; Al-Rimawi, Fuad

    2010-03-11

    An HPLC method using UV detection is proposed for the simultaneous determination of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid formulation. C18 column (250mmx4.0mm) is used as the stationary phase with a mixture of methanol:acetate buffer:acetonitrile (85:5:10, v/v) as the mobile phase. The factors affecting column separation of the analytes were studied. The calibration graphs exhibited a linear concentration range of 0.06-1.0mg/ml for pseudophedrine hydrochloride, 0.02-1.0mg/ml for codeine phosphate, and 0.0025-1.0mg/ml for triprolidine hydrochloride for a sample size of 5microl with correlation coefficients of better than 0.999 for all active ingredients studied. The results demonstrate that this method is reliable, reproducible and suitable for routine use with analysis time of less than 4min. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  7. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  8. Effect of environmental torques on short-term attitude prediction for a rolling-wheel spacecraft in a sun-synchronous orbit

    NASA Technical Reports Server (NTRS)

    Hodge, W. F.

    1972-01-01

    A numerical evaluation and an analysis of the effects of environmental disturbance torques on the attitude of a hexagonal cylinder rolling wheel spacecraft were performed. The resulting perturbations caused by five such torques were found to be very small and exhibited linearity such that linearized equations of motion yielded accurate results over short periods and the separate perturbations contributed by each torque were additive in the sense of superposition. Linearity of the torque perturbations was not affected by moderate system design changes and persisted for torque-to-angular momentum ratios up to 100 times the nominal expected value. As these conditions include many possible applications, similar linear behavior might be anticipated for other rolling-wheel spacecraft.

  9. Expansion in chickpea (Cicer arietinum L.) seed during soaking and cooking

    NASA Astrophysics Data System (ADS)

    Sayar, Sedat; Turhan, Mahir; Köksel, Hamit

    2016-01-01

    The linear and volumetric expansion of chickpea seeds during water absorption at 20, 30, 50, 70, 85 and 100°C was studied. Length, width and thickness of chickpea seeds linearly increased with the increase in moisture content at all temperatures studied, where the greatest increase was found in length. Two different mathematical approaches were used for the determination of the expansion coefficients. The plots of the both linear and volumetric expansion coefficients versus temperature exhibited two linear lines, the first one was through 20, 30 and 50ºC and the second one was trough 70, 85 and 100ºC. The crossing point (58ºC) of these lines was very close to the gelatinisation temperature (60ºC) of chickpea starch.

  10. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Taxonomy of Individual Variations in Aesthetic Responses to Fractal Patterns

    PubMed Central

    Spehar, Branka; Walker, Nicholas; Taylor, Richard P.

    2016-01-01

    In two experiments, we investigate group and individual preferences in a range of different types of patterns with varying fractal-like scaling characteristics. In Experiment 1, we used 1/f filtered grayscale images as well as their thresholded (black and white) and edges only counterparts. Separate groups of observers viewed different types of images varying in slope of their amplitude spectra. Although with each image type, the groups exhibited the “universal” pattern of preference for intermediate amplitude spectrum slopes, we identified 4 distinct sub-groups in each case. Sub-group 1 exhibited a typical peak preference for intermediate amplitude spectrum slopes (“intermediate”; approx. 50%); sub-group 2 exhibited a linear increase in preference with increasing amplitude spectrum slope (“smooth”; approx. 20%), while sub-group 3 exhibited a linear decrease in preference as a function of the amplitude spectrum slope (“sharp”; approx. 20%). Sub-group 4 revealed no significant preference (“other”; approx. 10%). In Experiment 2, we extended the range of different image types and investigated preferences within the same observers. We replicate the results of our first experiment and show that individual participants exhibit stable patterns of preference across a wide range of image types. In both experiments, Q-mode factor analysis identified two principal factors that were able to explain more than 80% of interindividual variations in preference across all types of images, suggesting a highly similar dimensional structure of interindividual variations in preference for fractal-like scaling characteristics. PMID:27458365

  12. Cotton fabric-based electrochemical device for lactate measurement in saliva.

    PubMed

    Malon, Radha S P; Chua, K Y; Wicaksono, Dedy H B; Córcoles, Emma P

    2014-06-21

    Lactate measurement is vital in clinical diagnostics especially among trauma and sepsis patients. In recent years, it has been shown that saliva samples are an excellent applicable alternative for non-invasive measurement of lactate. In this study, we describe a method for the determination of lactate concentration in saliva samples by using a simple and low-cost cotton fabric-based electrochemical device (FED). The device was fabricated using template method for patterning the electrodes and wax-patterning technique for creating the sample placement/reaction zone. Lactate oxidase (LOx) enzyme was immobilised at the reaction zone using a simple entrapment method. The LOx enzymatic reaction product, hydrogen peroxide (H2O2) was measured using chronoamperometric measurements at the optimal detection potential (-0.2 V vs. Ag/AgCl), in which the device exhibited a linear working range between 0.1 to 5 mM, sensitivity (slope) of 0.3169 μA mM(-1) and detection limit of 0.3 mM. The low detection limit and wide linear range were suitable to measure salivary lactate (SL) concentration, thus saliva samples obtained under fasting conditions and after meals were evaluated using the FED. The measured SL varied among subjects and increased after meals randomly. The proposed device provides a suitable analytical alternative for rapid and non-invasive determination of lactate in saliva samples. The device can also be adapted to a variety of other assays that requires simplicity, low-cost, portability and flexibility.

  13. Quantitation of low molecular weight sugars by chemical derivatization-liquid chromatography/multiple reaction monitoring/mass spectrometry.

    PubMed

    Han, Jun; Lin, Karen; Sequria, Carita; Yang, Juncong; Borchers, Christoph H

    2016-07-01

    A new method for the separation and quantitation of 13 mono- and disaccharides has been developed by chemical derivatization/ultra-HPLC/negative-ion ESI-multiple-reaction monitoring MS. 3-Nitrophenylhydrazine (at 50°C for 60 min) was shown to be able to quantitatively derivatize low-molecular weight (LMW) reducing sugars. The nonreducing sugar, sucrose, was not derivatized. A pentafluorophenyl-bonded phase column was used for the chromatographic separation of the derivatized sugars. This method exhibits femtomole-level sensitivity, high precision (CVs of ≤ 4.6%) and high accuracy for the quantitation of LMW sugars in wine. Excellent linearity (R(2) ≥ 0.9993) and linear ranges of ∼500-fold for disaccharides and ∼1000-4000-fold for monosaccharides were achieved. With internal calibration ((13) C-labeled internal standards), recoveries were between 93.6% ± 1.6% (xylose) and 104.8% ± 5.2% (glucose). With external calibration, recoveries ranged from 82.5% ± 0.8% (ribulose) to 105.2% ± 2.1% (xylulose). Quantitation of sugars in two red wines and two white wines was performed using this method; quantitation of the central carbon metabolism-related carboxylic acids and tartaric acid was carried out using a previously established derivatization procedure with 3-nitrophenylhydrazine as well. The results showed that these two classes of compounds-both of which have important organoleptic properties-had different compositions in red and white wines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  15. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues.

    PubMed

    Ji, Wei; Yao, Weirong

    2015-06-05

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm(-1), 1344 cm(-1), 1596 cm(-1), which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm(-1) was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R(2)=0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mixtures of Berkson and classical covariate measurement error in the linear mixed model: Bias analysis and application to a study on ultrafine particles.

    PubMed

    Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette

    2018-05-01

    The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection

    PubMed Central

    Dong, Wenbo; Wang, Kaiyin; Chen, Yu; Li, Weiping; Ye, Yanchun; Jin, Shaohua

    2017-01-01

    An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H2O2. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin. PMID:28773229

  18. Crystal growth, perfection, linear and nonlinear optical, photoconductivity, dielectric, thermal and laser damage threshold properties of 4-methylimidazolium picrate: an interesting organic crystal for photonic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.

    2016-10-01

    The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.

  19. Eutrophic water purification efficiency using a combination of hydrodynamic cavitation and ozonation on a pilot scale.

    PubMed

    Li, Wei-Xin; Tang, Chuan-Dong; Wu, Zhi-Lin; Wang, Wei-Min; Zhang, Yu-Feng; Zhao, Yi; Cravotto, Giancarlo

    2015-04-01

    This paper presents the purification of eutrophic water using a combination of hydrodynamic cavitation (HC) and ozonation (O3) at a continuous flow of 0.8 m(3) h(-1) on a pilot scale. The maximum removal rate of chlorophyll a using O3 alone and the HC/O3 combination was 62.3 and 78.8%, respectively, under optimal conditions, where the ozone utilization efficiency was 64.5 and 94.8% and total energy consumption was 8.89 and 8.25 kWh m(-3), respectively. Thus, the removal rate of chlorophyll a and the ozone utilization efficiency were improved by 26.5% and 46.9%, respectively, by using the combined technique. Meanwhile, total energy consumption was reduced by 7.2%. Turbidity linearly decreased with chlorophyll a removal rate, but no linear relationship exists between the removal of COD or UV254 and chlorophyll a. As expected, the suction-cavitation-assisted O3 exhibited higher energy efficiency than the extrusion-cavitation-assisted O3 and O3 alone methods.

  20. Design, synthesis, and anti-melanogenic effects of (E)-2-benzoyl-3-(substituted phenyl)acrylonitriles

    PubMed Central

    Yun, Hwi Young; Kim, Do Hyun; Son, Sujin; Ullah, Sultan; Kim, Seong Jin; Kim, Yeon-Jeong; Yoo, Jin-Wook; Jung, Yunjin; Chun, Pusoon; Moon, Hyung Ryong

    2015-01-01

    Background Tyrosinase is the most prominent target for inhibitors of hyperpigmentation because it plays a critical role in melaninogenesis. Although many tyrosinase inhibitors have been identified, from both natural and synthetic sources, there remains a considerable demand for novel tyrosinase inhibitors that are safer and more effective. Methods (E)-2-Benzoyl-3-(substituted phenyl)acrylonitriles (BPA analogs) with a linear β-phenyl-α,β-unsaturated carbonyl scaffold were designed and synthesized as potential tyrosinase inhibitors. We evaluated their effects on cellular tyrosinase activity and melanin biosynthesis in murine B16F10 melanoma cells and their ability to inhibit mushroom tyrosinase activity. Results BPA analogs exhibited inhibitory activity against mushroom tyrosinase. In particular, BPA13 significantly suppressed melanin biosynthesis and inhibited cellular tyrosinase activity in B16F10 cells in a dose-dependent manner. A docking study revealed that BPA13 had higher binding affinity for tyrosinase than kojic acid. Conclusion BPA13, which possesses a linear β-phenyl-α,β-unsaturated carbonyl scaffold, is a potential candidate skin-whitening agent and treatment for diseases associated with hyperpigmentation. PMID:26347064

  1. Advanced Computational Methods for Security Constrained Financial Transmission Rights: Structure and Parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, Stephen T.; Kalsi, Karanjit; Vlachopoulou, Maria

    Financial Transmission Rights (FTRs) help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, a novel non-linear dynamical system (NDS) approach is proposed tomore » solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on large-scale systems using data from the Western Electricity Coordinating Council (WECC). The NDS is demonstrated to outperform the widely used CPLEX algorithms while exhibiting superior scalability. Furthermore, the NDS based solver can be easily parallelized which results in significant computational improvement.« less

  2. Flow-induced translocation of star polymers through a nanopore.

    PubMed

    Ding, Mingming; Duan, Xiaozheng; Shi, Tongfei

    2016-03-21

    We study the flow-induced translocation of the star polymers through a nanopore using a hybrid simulation method that incorporates a lattice-Boltzmann approach for the fluid into a molecular dynamics model for the polymer. Our simulation demonstrates the existence of an optimal forward arm number of the star polymers captured by the nanopore, and illustrates its significance in determining the critical velocity flux of the star polymer translocation through the nanopore. Importantly, we find that the critical velocity flux of the star polymers is independent of the arm polymerization degree, but exhibits a linear dependence on the arm number. Based on previous scaling arguments and our simulation results, we conclude a linear dependence of the critical velocity flux on the arm number of the star polymers, which can successfully describe the dynamics of the star polymer translocation. Our simulation results rationalize the experimental results for the dependence of the critical velocity flux on the arm polymerization degree and the arm number of the star polymers, which provide new insights for the characterization and the purification of the star polymers.

  3. Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber.

    PubMed

    Mohammed, Nazmi A; Solaiman, Mohammad; Aly, Moustafa H

    2014-10-10

    In this work, various dispersion compensation methods are designed and evaluated to search for a cost-effective technique with remarkable dispersion compensation and a good pulse shape. The techniques consist of different chirp functions applied to a tanh fiber Bragg grating (FBG), a dispersion compensation fiber (DCF), and a DCF merged with an optimized linearly chirped tanh FBG (joint technique). The techniques are evaluated using a standard 10 Gb/s optical link over a 100 km long haul. The linear chirp function is the most appropriate choice of chirping function, with a pulse width reduction percentage (PWRP) of 75.15%, lower price, and poor pulse shape. The DCF yields an enhanced PWRP of 93.34% with a better pulse quality; however, it is the most costly of the evaluated techniques. Finally, the joint technique achieved the optimum PWRP (96.36%) among all the evaluated techniques and exhibited a remarkable pulse shape; it is less costly than the DCF, but more expensive than the chirped tanh FBG.

  4. Spectroscopic, DFT and Z-scan supported investigation of dicyanoisophorone based push-pull NLOphoric styryl dyes

    NASA Astrophysics Data System (ADS)

    Erande, Yogesh; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2017-04-01

    The dicyanoisophorone acceptor based NLOphores with Intramolecular Charge Transfer (ICT) character are newly synthesised, characterised and explored for linear and non linear optical (NLO) property investigation. Strong ICT character of these D-π-A styryl NLOphores is established with support of emission solvatochromism, polarity functions and Generalised Mulliken Hush (GMH) analysis. First, second and third order polarizability of these NLOphores is investigated by spectroscopic and TDDFT computational approach using CAM/B3LYP-6-311 + g (d, p) method. BLA and BOA values of these chromophores are evaluated from ground and excited state optimized geometries and found that the respective structures are approaching towards cyanine limit. Third order nonlinear susceptibility (X(3)) along with nonlinear absorption coefficient (β) and nonlinear refraction (n2) are evaluated for these NLOphores using Z-scan experiment. All four chromophores exhibit large polarization anisotropy (Δα), first order hyperpolarizability (β0), second order hyperpolarizability (γ) and third order nonlinear susceptibility (X(3)). TGA analysis proved these NLOphores are stable up to 320 °C and hence can be used in device fabrication.

  5. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  6. Polarization holographic optical recording of a new photochromic diarylethene

    NASA Astrophysics Data System (ADS)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  7. Bolted joints in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1976-01-01

    All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.

  8. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  9. Highly sensitive fluorescence and SERS detection of azide through a simple click reaction of 8-chloroquinoline and phenylacetylene.

    PubMed

    Zeng, Qing; Ye, Lingling; Ma, Lu; Yin, Wenqing; Li, Tingsheng; Liang, Aihui; Jiang, Zhiliang

    2015-05-01

    In 0.19 mol/L acetic acid (HAc), a click reaction of 8-chloroquinoline/azide/phenylacetylene take places in aqueous solution without Cu(I) as a catalyst. 8-Chloroquinoline (CQN) exhibited a strong fluorescence peak at 430 nm that was quenched linearly as the concentration of azide increased from 20 to 1000 ng/mL. This quenching was due to consumption of CQN in the click reaction and a decrease in the number of efficiently excited photons due to the presence of triazole-quinoline ramification molecules with strong hydrophobicity. Using blue nanosilver sol as the substrate, CQN absorbed onto the surface of nanosilver particles, showing a strong surface-enhanced Raman scattering (SERS) peak at 1585 cm(-1) that decreased linearly as the azide concentration increased from 8 to 500 ng/mL; the detection limit was 4 ng/mL. Thus, two new, simple and sensitive fluorescence and SERS methods have been developed for the determination of azide via the click reaction. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    PubMed

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  11. Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-08-21

    The experimental equilibrium data of malachite green onto activated carbon were fitted to the Freundlich, Langmuir and Redlich-Peterson isotherms by linear and non-linear method. A comparison between linear and non-linear of estimating the isotherm parameters was discussed. The four different linearized form of Langmuir isotherm were also discussed. The results confirmed that the non-linear method as a better way to obtain isotherm parameters. The best fitting isotherm was Langmuir and Redlich-Peterson isotherm. Redlich-Peterson is a special case of Langmuir when the Redlich-Peterson isotherm constant g was unity.

  12. Development of a Stability-Indicating Stereoselective Method for Quantification of the Enantiomer in the Drug Substance and Pharmaceutical Dosage Form of Rosuvastatin Calcium by an Enhanced Approach

    PubMed Central

    Rajendra Reddy, Gangireddy; Ravindra Reddy, Papammagari; Siva Jyothi, Polisetty

    2015-01-01

    A novel, simple, precise, and stability-indicating stereoselective method was developed and validated for the accurate quantification of the enantiomer in the drug substance and pharmaceutical dosage forms of Rosuvastatin Calcium. The method is capable of quantifying the enantiomer in the presence of other related substances. The chromatographic separation was achieved with an immobilized cellulose stationary phase (Chiralpak IB) 250 mm x 4.6 mm x 5.0 μm particle size column with a mobile phase containing a mixture of n-hexane, dichloromethane, 2-propanol, and trifluoroacetic acid in the ratio 82:10:8:0.2 (v/v/v/v). The eluted compounds were monitored at 243 nm and the run time was 18 min. Multivariate analysis and statistical tools were used to develop this highly robust method in a short span of time. The stability-indicating power of the method was established by subjecting Rosuvastatin Calcium to the stress conditions (forced degradation) of acid, base, oxidative, thermal, humidity, and photolytic degradation. Major degradation products were identified and found to be well-resolved from the enantiomer peak, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection and limit of quantification, precision, linearity, accuracy, and robustness. The method exhibited consistent, high-quality recoveries (100 ± 10%) with a high precision for the enantiomer. Linear regression analysis revealed an excellent correlation between the peak responses and concentrations (r2 value of 0.9977) for the enantiomer. The method is sensitive enough to quantify the enantiomer above 0.04% and detect the enantiomer above 0.015% in Rosuvastatin Calcium. The stability tests were also performed on the drug substances as per ICH norms. PMID:26839815

  13. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent.

    PubMed

    Rodriguez, Alex; Mokoema, Pol; Corcho, Francesc; Bisetty, Khrisna; Perez, Juan J

    2011-02-17

    The prediction capabilities of atomistic simulations of peptides are hampered by different difficulties, including the reliability of force fields, the treatment of the solvent or the adequate sampling of the conformational space. In this work, we have studied the conformational profile of the 10 residue miniprotein CLN025 known to exhibit a β-hairpin in its native state to understand the limitations of implicit methods to describe solvent effects and how these may be compensated by using different force fields. For this purpose, we carried out a thorough sampling of the conformational space of CLN025 in explicit solvent using the replica exchange molecular dynamics method as a sampling technique and compared the results with simulations of the system modeled using the analytical linearized Poisson-Boltzmann (ALPB) method with three different AMBER force fields: parm94, parm96, and parm99SB. The results show the peptide to exhibit a funnel-like free energy landscape with two minima in explicit solvent. In contrast, the higher minimum nearly disappears from the energy surface when the system is studied with an implicit representation of the solvent. Moreover, the different force fields used in combination with the ALPB method do not describe the system in the same manner. The results of this work suggest that the balance between intra- and intermolecular interactions is the cause of the differences between implicit and explicit solvent simulations in this system, stressing the role of the environment to define properly the conformational profile of a peptide in solution.

  14. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  15. Reporting numeric values of complete crowns. Part 2: Retention and resistance theories.

    PubMed

    Tiu, Janine; Al-Amleh, Basil; Waddell, J Neil; Duncan, Warwick J

    2015-07-01

    Determining the retention and resistance of a tooth preparation for a complete crown has only existed in theory, and these theories have never been measured on tooth preparations performed in vivo. The purpose of this study was to measure the theoretical retention and resistance of clinically produced complete crown preparations by using an objective measuring method. Stone dies from 236 complete crown preparations were collected from dental laboratories. The dies were scanned and analyzed with the coordinate geometry method. Cross-sectional images were captured, and the surface area was measured with a cone frustum and right truncated pyramid formula. Two different theories of resistance form, the "on" or "off" theory (limiting taper) and the linear model (resistance length), were calculated for premolar and molar preparations. The mean surface areas ranged from 33.97 mm(2) to 105.44 mm(2) for the cone frustum formula and 41.75 mm(2) to 117.50 mm(2) for the right truncated pyramid formula. The facial side of maxillary premolars exhibited the highest percentage of resistance form with the limiting taper, at 58%, and the mesial side of the mandibular molars exhibited the lowest percentage of resistance form, at 6%. The objective method used in this study provides a way for retention and resistance theories to be tested and for further clinical implications to be investigated. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Comparative Study of Erythrina indica Lam. (Febaceae) Leaves Extracts for Antioxidant Activity

    PubMed Central

    Sakat, SS; Juvekar, AR

    2010-01-01

    The present study was designed to investigate the antioxidant activity of aqueous and methanol extracts of Erythrina indica Lam leaves by in vitro methods viz. 1, 1-Diphenyl-2-Picrylhydrazyl, nitric oxide radical scavenging activity, and inhibition of lipid peroxidation by thiobarbituric acid reactive substances (TBARS) method on isolated rat liver tissues. Quantitative analysis of antioxidative components like total amount of phenolics, flavonoids, and flavonols were estimated using the spectrophotometric method. Linear regression analysis was used to calculate the IC50 value. Results showed that the aqueous and methanol extracts exhibited significant DPPH radicals scavenging activity with an IC50 value 342.59 ± 19.59, 283.24 ± 12.28 µg/mL respectively. Nitric oxide radicals were significantly scavenged by the aqueous and methanol extracts (IC50 = 250.12 ± 10.66; 328.29 ± 3.74 µg/mL). Lipid peroxidation induced by the Fe2+ was inhibited by the aqueous extract with low IC50 value (97.29 ± 2.05 µg/mL) as compared to methanol extract (IC50 = 283.74 ± 5.70 µg/mL). Both the extracts were exhibited similar quantities of total phenolics. Total flavonoids were found to be in higher quantities than total flavonols in aqueous extract as compared to methanol extract. From the results, it is concluded that the aqueous and methanol extracts of E. indica leaves possesses significant antioxidant activity that may be due to the presence of flavonoids and related polyphenolic compounds. PMID:21331194

  17. Determination of patellofemoral pain sub-groups and development of a method for predicting treatment outcome using running gait kinematics.

    PubMed

    Watari, Ricky; Kobsar, Dylan; Phinyomark, Angkoon; Osis, Sean; Ferber, Reed

    2016-10-01

    Not all patients with patellofemoral pain exhibit successful outcomes following exercise therapy. Thus, the ability to identify patellofemoral pain subgroups related to treatment response is important for the development of optimal therapeutic strategies to improve rehabilitation outcomes. The purpose of this study was to use baseline running gait kinematic and clinical outcome variables to classify patellofemoral pain patients on treatment response retrospectively. Forty-one individuals with patellofemoral pain that underwent a 6-week exercise intervention program were sub-grouped as treatment Responders (n=28) and Non-responders (n=13) based on self-reported measures of pain and function. Baseline three-dimensional running kinematics, and self-reported measures underwent a linear discriminant analysis of the principal components of the variables to retrospectively classify participants based on treatment response. The significance of the discriminant function was verified with a Wilk's lambda test (α=0.05). The model selected 2 gait principal components and had a 78.1% classification accuracy. Overall, Non-responders exhibited greater ankle dorsiflexion, knee abduction and hip flexion during the swing phase and greater ankle inversion during the stance phase, compared to Responders. This is the first study to investigate an objective method to use baseline kinematic and self-report outcome variables to classify on patellofemoral pain treatment outcome. This study represents a significant first step towards a method to help clinicians make evidence-informed decisions regarding optimal treatment strategies for patients with patellofemoral pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data.

    PubMed

    Nielsen, Allan Aasbjerg

    2002-01-01

    This paper describes two- and multiset canonical correlations analysis (CCA) for data fusion, multisource, multiset, or multitemporal exploratory data analysis. These techniques transform multivariate multiset data into new orthogonal variables called canonical variates (CVs) which, when applied in remote sensing, exhibit ever-decreasing similarity (as expressed by correlation measures) over sets consisting of 1) spectral variables at fixed points in time (R-mode analysis), or 2) temporal variables with fixed wavelengths (T-mode analysis). The CVs are invariant to linear and affine transformations of the original variables within sets which means, for example, that the R-mode CVs are insensitive to changes over time in offset and gain in a measuring device. In a case study, CVs are calculated from Landsat Thematic Mapper (TM) data with six spectral bands over six consecutive years. Both Rand T-mode CVs clearly exhibit the desired characteristic: they show maximum similarity for the low-order canonical variates and minimum similarity for the high-order canonical variates. These characteristics are seen both visually and in objective measures. The results from the multiset CCA R- and T-mode analyses are very different. This difference is ascribed to the noise structure in the data. The CCA methods are related to partial least squares (PLS) methods. This paper very briefly describes multiset CCA-based multiset PLS. Also, the CCA methods can be applied as multivariate extensions to empirical orthogonal functions (EOF) techniques. Multiset CCA is well-suited for inclusion in geographical information systems (GIS).

  19. A harmonic analysis approach to joint inversion of P-receiver functions and wave dispersion data in high dense seismic profiles

    NASA Astrophysics Data System (ADS)

    Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.

    2017-12-01

    Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.

  20. Monolithic graphene fibers for solid-phase microextraction.

    PubMed

    Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2013-12-13

    Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Feature-based Alignment of Volumetric Multi-modal Images

    PubMed Central

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  2. Reinforcement Learning Trees

    PubMed Central

    Zhu, Ruoqing; Zeng, Donglin; Kosorok, Michael R.

    2015-01-01

    In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later splits, rather than choosing the one with largest marginal effect from the immediate split, the constructed tree utilizes the available samples in a more efficient way. Moreover, such an approach enables linear combination cuts at little extra computational cost. Second, we propose a variable muting procedure that progressively eliminates noise variables during the construction of each individual tree. The muting procedure also takes advantage of reinforcement learning and prevents noise variables from being considered in the search for splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules are still constructed from only strong variables. Last, we investigate asymptotic properties of the proposed method under basic assumptions and discuss rationale in general settings. PMID:26903687

  3. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties.

    PubMed

    Borrel, Alexandre; Regad, Leslie; Xhaard, Henri; Petitjean, Michel; Camproux, Anne-Claude

    2015-04-27

    Predicting protein druggability is a key interest in the target identification phase of drug discovery. Here, we assess the pocket estimation methods' influence on druggability predictions by comparing statistical models constructed from pockets estimated using different pocket estimation methods: a proximity of either 4 or 5.5 Å to a cocrystallized ligand or DoGSite and fpocket estimation methods. We developed PockDrug, a robust pocket druggability model that copes with uncertainties in pocket boundaries. It is based on a linear discriminant analysis from a pool of 52 descriptors combined with a selection of the most stable and efficient models using different pocket estimation methods. PockDrug retains the best combinations of three pocket properties which impact druggability: geometry, hydrophobicity, and aromaticity. It results in an average accuracy of 87.9% ± 4.7% using a test set and exhibits higher accuracy (∼5-10%) than previous studies that used an identical apo set. In conclusion, this study confirms the influence of pocket estimation on pocket druggability prediction and proposes PockDrug as a new model that overcomes pocket estimation variability.

  4. Development of a Method for the Determination of Chromium and Cadmium in Tannery Wastewater Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Bukhari, Mahwish; Awan, M. Ali; Qazi, Ishtiaq A.; Baig, M. Anwar

    2012-01-01

    This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium. PMID:22567570

  5. Rapid analysis of ultraviolet filters using dispersive liquid-liquid microextraction coupled to headspace gas chromatography and mass spectrometry.

    PubMed

    Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L

    2018-05-29

    An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Validation of AN Hplc-Dad Method for the Classification of Green Teas

    NASA Astrophysics Data System (ADS)

    Yu, Jingbo; Ye, Nengsheng; Gu, Xuexin; Liu, Ni

    A reversed phase high performance liquid chromatography (RP-HPLC) separation coupled with diode array detection (DAD) and electrospray ionization mass spectrometer (ESI/MS) was developed and optimized for the classification of green teas. Five catechins [epigallocatechin (EGC), epigallocatechin gallate (EGCG), epicatechin (EC), gallocatechin gallate (GCG), epicatechin gallate (ECG)] had been identified and quantified by the HPLC-DAD-ESI/MS/MS method. The limit of detection (LOD) of five catechins was within the range of 1.25-15 ng. All the analytes exhibited good linearity up to 2500 ng. These compounds were considered as chemical descriptors to define groups of green teas. Chemometric methods including principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied for the purpose. Twelve green tea samples originating from different regions were subjected to reveal the natural groups. The results showed that the analyzed green teas were differentiated mainly by provenance; HCA afforded an excellent performance in terms of recognition and prediction abilities. This method was accurate and reproducible, providing a potential approach for authentication of green teas.

  7. The corrosion performance of high chromium stainless steels and titanium alloys at a reverse osmosis plant in Arabian Gulf seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Odwani, A.; Al-Tabatabaei, M.; Carew, J.

    1997-08-01

    Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion performance of four high chromium stainless steels and Grade 2 titanium in flowing Arabian Gulf natural seawater. The EIS provided information concerning the changes to the interfacial impedance as a function of exposure time for these alloys. The impedance spectra for all the alloys showed slight changes at the low frequency region over the exposure period. The open-circuit potentials (OCP) of these alloys were also monitored as a function of exposure time. The stainless steel alloys exhibited slight fluctuation in potential around the initial exposure potential. However, Grade 2 titaniummore » initial potential was more active and then gradually shifted towards the noble direction. The linear polarization resistance (LPR) method indicated that Grade 2 titanium exhibited the lowest corrosion rate with respect to the stainless steel alloys. The results of the EIS analysis and OCP indicated that Grade 2 titanium performed better than the four high chromium stainless steel alloys.« less

  8. Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples.

    PubMed

    Thirumalraj, Balamurugan; Palanisamy, Selvakumar; Chen, Shen-Ming; Lou, Bih-Show

    2016-01-15

    The research community has continuously paid much attention on the preparation of hybrid of carbon nanomaterials owing to combine their unique properties. Herein, we report the preparation of highly stable fullerene C60 (C60) wrapped graphene oxide (GO) nanocomposite by using a simple sonication method. The fabricated GO-C60 nanocomposite modified glassy carbon electrode shows a good sensitivity and lower oxidation overpotential towards dopamine (DA) than that of pristine GO and C60. The fabricated sensor detects the DA in the linear response range of 0.02-73.5μM. The limit of detection is estimated to be 0.008μM based on 3σ with a sensitivity of 4.23μAμM(-1)cm(-2). The fabricated sensor also exhibits other features such as good selectivity, stability, reproducibility and repeatability. The proposed sensor exhibits good practicality towards the detection of DA in rat brain and commercial DA injection samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Preparation and characterization of ibuprofen-cetyl alcohol beads by melt solidification technique: effect of variables.

    PubMed

    Maheshwari, Manish; Ketkar, Anant R; Chauhan, Bhaskar; Patil, Vinay B; Paradkar, Anant R

    2003-08-11

    Ibuprofen (IBU) exhibits short half-life, poor compressibility, flowability and caking tendency. IBU melt has sufficiently low viscosity and exhibits interfacial tension sufficient to form droplet even at low temperature. A single step novel melt solidification technique (MST) was developed to produce IBU beads with lower amounts of excipient. Effect of variables was studied using a 3(2) factorial approach with speed of agitation and amount of cetyl alcohol (CA) as variables. The beads were evaluated using DSC, FT-IR and scanning electron microscope (SEM). Yield, micromeritic properties, crushing strength and release kinetics were also studied. Spherical beads with a method yield of above 90% were obtained. The data was analyzed by response surface methodology. The variables showed curvilinear relationship with yield in desired particle size range, crushing strength and, bulk and tap density. The drug release followed non-Fickian case II transport and the release rate decreased linearly with respect to amount of CA in the initial stages followed by curvilinearity at later stages of elution. The effect of changing porosity and tortuosity was well correlated.

  10. Design, synthesis, and taste evaluation of a high-intensity umami-imparting oxazole-based compound.

    PubMed

    Amino, Yusuke; Tahara, Yu-Ki; Yamada, Kei; Nakazawa, Masakazu; Tagami, Uno; Tajima, Takaho; Kuroda, Motonaka

    2017-09-01

    Umami taste is imparted predominantly by monosodium glutamate (MSG) and 5'-ribonucleotides. Recently, several different classes of hydrophobic umami-imparting compounds, the structures of which are quite different from MSG, have been reported. To obtain a novel umami-imparting compound, N-cinnamoyl phenethylamine was chosen as the lead compound, and a rational structure-optimization study was conducted on the basis of the pharmacophore model of previously reported compounds. The extremely potent umami-imparting compound 2-[[[2-[(1E)-2-(1,3-benzodioxol-5-yl)ethenyl]-4-oxazolyle]methoxy]methyl]pyridine, which exhibits 27,000 times the umami taste of MSG, was found. Its terminal pyridine residue and linear structure are suggested to be responsible for its strong activity. The time taken to reach maximum taste intensity exhibited by it, as determined by the time-intensity method, is 22.0 s, whereas the maximum taste intensity of MSG occurs immediately. This distinct difference in the time-course taste profile may be due to the hydrophobicity and strong receptor affinity of the new compound.

  11. Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors.

    PubMed

    Liu, Shude; Hui, K S; Hui, K N

    2016-02-10

    Flower-like copper cobaltite (CuCo2O4) nanosheets anchored on graphite paper have been synthesized using a facile hydrothermal method followed by a postannealing treatment. Supercapacitor electrodes employing CuCo2O4 nanosheets exhibit an enhanced capacitance of 1131 F g(-1) at a current density of 1 A g(-1) compared with previously reported supercapacitor electrodes. The CuCo2O4 electrode delivers a specific capacitance of up to 409 F g(-1) at a current density of as high as 50 A g(-1), and a good long-term cycling stability, with 79.7% of its specific capacitance retained after 5000 cycles at 10 A g(-1). Furthermore, the as-prepared CuCo2O4 nanosheets on graphite paper can be fabricated as electrodes and used as enzymeless glucose sensors, which exhibit good sensitivity (3.625 μA μM(-1) cm(-2)) and an extraordinary linear response ranging up to 320 μM with a low detection limit (5 μM).

  12. Determination of Cd2+ and Pb2+ Based on Mesoporous Carbon Nitride/Self-Doped Polyaniline Nanofibers and Square Wave Anodic Stripping Voltammetry

    PubMed Central

    Zhang, Chang; Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Zhang, Jiachao; Peng, Bo; Xie, Xia; Lai, Cui; Long, Beiqing; Zhu, Jingjing

    2016-01-01

    The fabrication and evaluation of a glassy carbon electrode (GCE) modified with self-doped polyaniline nanofibers (SPAN)/mesoporous carbon nitride (MCN) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by square wave anodic stripping voltammetry (SWASV) are presented here. The morphology properties of SPAN and MCN were characterized by transmission electron microscopy (TEM), and the electrochemical properties of the fabricated electrode were characterized by cyclic voltammetry (CV). Experimental parameters, such as deposition time, pulse potential, step potential, bismuth concentration and NaCl concentration, were optimized. Under the optimum conditions, the fabricated electrode exhibited linear calibration curves ranging from 5 to 80 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.7 nM for Cd2+ and 0.2 nM for Pb2+ (S/N = 3). Additionally, the repeatability, reproducibility, anti-interference ability and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for other heavy metal determination. PMID:28344264

  13. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification.

    PubMed

    Qiao, Lu; Guo, Yemin; Sun, Xia; Jiao, Yancui; Wang, Xiangyou

    2015-08-01

    A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.

  14. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid.

    PubMed

    Kanchana, P; Sekar, C

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10(-7) to 3 × 10(-5)M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. Copyright © 2014. Published by Elsevier B.V.

  15. Fabrication of 3D honeycomb-like porous polyurethane-functionalized reduced graphene oxide for detection of dopamine.

    PubMed

    Vilian, A T Ezhil; An, Suyeong; Choe, Sang Rak; Kwak, Cheol Hwan; Huh, Yun Suk; Lee, Jonghwi; Han, Young-Kyu

    2016-12-15

    A three dimensional reduced graphene oxide/polyurethane (RGO-PU) porous material with connected pores was prepared by physical adsorption of RGO onto the surface of porous PU. The porous PU was prepared by directional melt crystallization of a solvent, which produced high pores with controlled orientation. The prepared RGO-PU was characterized by scanning electron microscopy, spectroscopy and electro-chemical methods. The RGO-PU porous material revealed better electrochemical performance, which might be attributed to the robust structure, superior conductivity, large surface area, and good flexibility. Differential pulse voltammetry (DPV) analysis of DA using the RGO-PU exhibited a linear response range over a wide DA concentration of 100-1150pM, with the detection limit of 1pM. This sensor exhibited outstanding anti-interference ability towards co-existing molecules with good stability, sensitivity, and reproducibility. Furthermore, the fabricated sensor was successfully applied for the quantitative analysis of DA in human serum and urine samples with acceptable recovery, which indicates its feasibility for practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluating the Relationship Between Muscle Activation and Spine Kinematics Through Wavelet Coherence.

    PubMed

    Hay, Dean C; Wachowiak, Mark P; Graham, Ryan B

    2016-10-01

    Advances in time-frequency analysis can provide new insights into the important, yet complex relationship between muscle activation (ie, electromyography [EMG]) and motion during dynamic tasks. We use wavelet coherence to compare a fundamental cyclical movement (lumbar spine flexion and extension) to the surface EMG linear envelope of 2 trunk muscles (lumbar erector spinae and internal oblique). Both muscles cohere to the spine kinematics at the main cyclic frequency, but lumbar erector spinae exhibits significantly greater coherence than internal oblique to kinematics at 0.25, 0.5, and 1.0 Hz. Coherence phase plots of the 2 muscles exhibit different characteristics. The lumbar erector spinae precedes trunk extension at 0.25 Hz, whereas internal oblique is in phase with spine kinematics. These differences may be due to their proposed contrasting functions as a primary spine mover (lumbar erector spinae) versus a spine stabilizer (internal oblique). We believe that this method will be useful in evaluating how a variety of factors (eg, pain, dysfunction, pathology, fatigue) affect the relationship between muscles' motor inputs (ie, activation measured using EMG) and outputs (ie, the resulting joint motion patterns).

  17. Chosen interval methods for solving linear interval systems with special type of matrix

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  18. Spatial analysis of sunshine duration by combination of satellite and station data

    NASA Astrophysics Data System (ADS)

    Frei, C.; Stöckli, R.; Dürr, B.

    2009-09-01

    Sunshine duration can exhibit rich fine scale patterns associated with special meteorological phenomena, such as fog layers and topographically triggered clouds. Networks of climate stations are mostly too coarse and poorly representative to resolve these patterns explicitly. We present a method which combines station observations with satellite-derived cloud-cover data to produce km-scale fields of sunshine duration. The method is not relying on contemporous satellite information, hence it can be applied over climatological time scales. We apply and evaluate the combination method over the territory of Switzerland. The combination method is based on Universal Kriging. First, the satellite data (a Heliosat clear sky index from MSG, extending over a 5 year preiod) is subjected to a S-mode Principal Component (PC) Analysis. Second, a set of leading PC loadings (seasonally stratified) is introduced as external drift covariates and their optimal linear combination is estimated from the station data (70 stations). Finally, the stochastic component is an autocorrelated field with an exponential variogram, estimated climatologically for each calendar month. For Switzerland the leading PCs of the clear sky index depict familiar patterns of cloud variability which are inhereted in the combination process. The resulting sunshine duration fields exhibit fine-scale structures that are physically plausible, linked to the topography and characteristic of the regional climate. These patterns could not be inferred from station data and/or topographic predictors alone. A cross-validation reveals that the combination method explains between 80-90% of the spatial variance in winter and autumn months. In spring and summer the relative performance is lower (60-75% explained spatial variance) but absolute errors are smaller. Our presentation will also discuss some results from a climatology of the derived sunshine duration fields.

  19. PEEK tube-based online solid-phase microextraction-high-performance liquid chromatography for the determination of yohimbine in rat plasma and its application in pharmacokinetics study.

    PubMed

    Xiang, Xiaowei; Shang, Bing; Wang, Xiaozheng; Chen, Qinhua

    2017-04-01

    Yohimbine is a novel compound for the treatment of erectile dysfunction derived from natural products, and pharmacokinetic study is important for its further development as a new medicine. In this work, we developed a novel PEEK tube-based solid-phase microextraction (SPME)-HPLC method for analysis of yohimbine in plasma and further for pharmacokinetic study. Poly (AA-EGDMA) was synthesized inside a PEEK tube as the sorbent for microextraction of yohimbine, and parameters that could influence extraction efficiency were systematically investigated. Under optimum conditions, the PEEK tube-based SPME method exhibits excellent enrichment efficiency towards yohimbine. By using berberine as internal standard, an online SPME-HPLC method was developed for analysis of yohimbine in human plasma sample. The method has wide linear range (2-1000 ng/mL) with an R 2 of 0.9962; the limit of detection was determined and was as low as 0.1 ng/mL using UV detection. Finally, a pharmacokinetic study of yohimbine was carried out by the online SPME-HPLC method and the results have been compared with those of reported methods. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    PubMed

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  1. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  2. Chiral-selective nonlinear optical generation and emission control with plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cai, Wenshan

    2016-09-01

    Metamaterials can be designed to exhibit extraordinarily strong chiral responses. Here we present a chiral metamaterial that produces both distinguishable linear and nonlinear features in the visible to near-infrared range. In additional to the gigantic chiral effects in the linear regime, the metamaterial demonstrates a pronounced contrast between second harmonic responses from the two circular polarizations. Linear and nonlinear images probed with circularly polarized lights show strongly defined contrast. Moreover, the chiral centers of the nanometallic structures with enhanced hotspots can be purposely opened for direct access, where emitters occupying the light-confining regions produce chiral-selective enhancement of two-photon luminescence.

  3. LaRC-RP41: A Tough, High-Performance Composite Matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Johnston, Norman J.; Smith, Ricky E.; Snoha, John J.; Gautreaux, Carol R.; Reddy, Rakasi M.

    1991-01-01

    New polymer exhibits increased toughness and resistance to microcracking. Cross-linking PMR-15 and linear LaRC-TPI combined to provide sequential semi-2-IPN designated as LaRC-RP41. Synthesized from PMR-15 imide prepolymer undergoing cross-linking in immediate presence of LaRC-TPI polyamic acid, also undergoing simultaneous imidization and linear chain extension. Potentially high-temperature matrix resin, adhesive, and molding resin. Applications include automobiles, electronics, aircraft, and aerospace structures.

  4. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  5. On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.

    PubMed

    Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y

    2014-03-26

    We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.

  6. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    NASA Astrophysics Data System (ADS)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  7. Decoupling analysis for a powertrain mounting system with a combination of hydraulic mounts

    NASA Astrophysics Data System (ADS)

    Hu, Jinfang; Chen, Wuwei; Huang, He

    2013-07-01

    The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally varying stiffness and damping characteristics, and the influence of the spectrally-varying properties of the hydraulic mounts on the powertrain system cannot be ignored. To overcome the deficiency, an analytical quasi-linear model of the hydraulic mount and the coupled properties of the powertrain and hydraulic mounts system are formulated. The influence of the hydraulic mounts on the TRA decoupling of a powertrain system is analytically examined in terms of eigensolutions, frequency, and impulse responses, and then a new analytical axiom is proposed based on the TRA decoupling indices. With the experimental setup of a fixed decoupler hydraulic mount in the context of non-resonant dynamic stiffness testing procedure, the quasi-linear model of the hydraulic mount is verified by comparing the predictions with the measurement. And the quasi-linear formulation of the coupled system is also verified by comparing the frequency responses with the numerical results obtained by the direct inversion method. Finally, the mounting system with a combination of hydraulic mounts is redesigned in terms of the stiffness, damping and mount locations by satisfying the new axiom. The frequency and time domain results of the redesigned system demonstrate that the torque roll axis of the redesigned powertrain mounting system is indeed decoupled in the presence of hydraulic mounts (given oscillating torque or impulsive torque excitation). The proposed research provides an important basis and method for the research on a powertrain system with spectrally-varying mount properties, especially for the TRA decoupling.

  8. BiOCl micro-assembles consisting of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al-air batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlan; Wang, Jin; She, Yiyi; Hu, Jing; Tao, Pengpeng; Lv, Fucong; Lu, Zhouguang; Gu, Yingying

    2014-10-01

    BiOCl micro-assembles appearing spherical and plate-like in shape consisting of ultrafine nanoplates were successfully synthesized by a simple hydrothermal method. The obtained BiOCl micro-assembles were characterized as oxygen reduction reaction (ORR) catalyst for air electrode of aluminum air batteries by using linear polarization and constant-current discharge techniques. The effect of precursor concentration on the electrochemical properties of the air electrodes based on the synthesized BiOCl micro-assembles was intensively investigated. The results demonstrated that the BiOCl catalyst exhibited promising ORR performance. Koutecky-Levich analysis indicated that a two-electron reaction was favored for the ORR mechanism of the BiOCl (0.18) sample.

  9. Structural, electronic and magnetic properties of Pr-based filled skutterudites: A first principle study

    NASA Astrophysics Data System (ADS)

    Yadav, Priya; Nautiyal, Shashank; Verma, U. P.

    2018-04-01

    Ternary skutterudites materials exhibit good electronic properties due to the unpaired d- and f- electrons of the transition and rare-earth metals, respectively. In this communication, we have performed the structural optimization of Pr-based filled skutterudite (PrCo4P12) for the first time and obtained the electronic band structure, density of states and magnetic moments by using the full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). Our obtained magnetic moment of PrCo4P12 is ˜ 1.8 µB in which main contribution is due to Pr atom. Behavior of this material is metallic and it is most stable in body centered cubic (BCC) structure.

  10. Slow Auger Relaxation in HgTe Colloidal Quantum Dots.

    PubMed

    Melnychuk, Christopher; Guyot-Sionnest, Philippe

    2018-05-03

    The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.

  11. Quantitative measurement of indomethacin crystallinity in indomethacin-silica gel binary system using differential scanning calorimetry and X-ray powder diffractometry.

    PubMed

    Pan, Xiaohong; Julian, Thomas; Augsburger, Larry

    2006-02-10

    Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.

  12. Q-switched Yb3+:YAG laser using plasmonic Cu2-xSe quantum dots as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Yimeng; Zhan, Yi; Lee, Sooho; Wang, Li; Zhang, Xinping

    2018-04-01

    Cu2-xSe quantum dots (QDs) were synthesized by organometallic synthesis methods. Due to heavy self-doping, the Cu2-xSe QDs exhibit particle plasmon resonance in the near-infrared. Transient absorption spectroscopic investigation revealed strong nonlinear optical absorption and bleaching performance of the QDs under femtosecond pulse excitation, which enabled the Cu2-xSe QDs to be excellent saturable absorbers and applied in Q-switched or mode-locked lasers. A passively Q-switched Yb3+:YAG solid-state laser at 1.03 μm was achieved by coating Cu2-xSe QDs as saturable absorbers onto one of the output coupler of the V-shaped linear cavity.

  13. Highly fluorescent carbon quantum dots as nanoprobes for sensitive and selective determination of mercury (II) in surface waters

    NASA Astrophysics Data System (ADS)

    Hua, Jianhao; Yang, Jian; Zhu, Yan; Zhao, Chunxi; Yang, Yaling

    2017-12-01

    A novel carbon quantum dots (CQDs) was successfully prepared through one-step green hydrothermal method using polyacrylamide as carbon source. The prepared CQDs were characterized using TEM, XRD, XPS, FT-IR, UV-Vis, and fluorescence spectroscopy. The CQDs was demonstrated as nanoprobes for mercury ion detection, moreover, it demonstrated excitation-dependent and superior stability in acidic and alkaline media. Besides, the probe exhibited a good linearity range (0.25-50 μM) and a low detection limit (13.48 nM). These attractive properties indicated that this novel CQDs can adapt to a variety of complex pH environment, which had extensive prospect and promising application for detection of mercury ions in complex water samples.

  14. Dynamic Analyses Including Joints Of Truss Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1991-01-01

    Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.

  15. Using input command pre-shaping to suppress multiple mode vibration

    NASA Technical Reports Server (NTRS)

    Hyde, James M.; Seering, Warren P.

    1990-01-01

    Spacecraft, space-borne robotic systems, and manufacturing equipment often utilize lightweight materials and configurations that give rise to vibration problems. Prior research has led to the development of input command pre-shapers that can significantly reduce residual vibration. These shapers exhibit marked insensitivity to errors in natural frequency estimates and can be combined to minimize vibration at more than one frequency. This paper presents a method for the development of multiple mode input shapers which are simpler to implement than previous designs and produce smaller system response delays. The new technique involves the solution of a group of simultaneous non-linear impulse constraint equations. The resulting shapers were tested on a model of MACE, an MIT/NASA experimental flexible structure.

  16. Effects of Variable Thermal Conductivity and Non-linear Thermal Radiation Past an Eyring Powell Nanofluid Flow with Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Kanwal, Shamsa; Chung, Jae Dong

    2017-06-01

    Present analysis discusses the boundary layer flow of Eyring Powell nanofluid past a constantly moving surface under the influence of nonlinear thermal radiation. Heat and mass transfer mechanisms are examined under the physically suitable convective boundary condition. Effects of variable thermal conductivity and chemical reaction are also considered. Series solutions of all involved distributions using Homotopy Analysis method (HAM) are obtained. Impacts of dominating embedded flow parameters are discussed through graphical illustrations. It is observed that thermal radiation parameter shows increasing tendency in relation to temperature profile. However, chemical reaction parameter exhibits decreasing behavior versus concentration distribution. Supported by the World Class 300 Project (No. S2367878) of the SMBA (Korea)

  17. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    DOE PAGES

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; ...

    2015-08-14

    The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. Formore » the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  18. Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition.

    PubMed

    Seo, Min-Kyo; Kang, Ju-Hyung; Kim, Myung-Ki; Ahn, Byeong-Hyeon; Kim, Ju-Young; Jeong, Kwang-Yong; Park, Hong-Gyu; Lee, Yong-Hee

    2009-04-13

    A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of approximately 100 microW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.

  19. A feasible DY conjugate gradient method for linear equality constraints

    NASA Astrophysics Data System (ADS)

    LI, Can

    2017-09-01

    In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.

  20. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2006-08-25

    Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.

Top