Sample records for method include automatic

  1. Comparison of liver volumetry on contrast-enhanced CT images: one semiautomatic and two automatic approaches.

    PubMed

    Cai, Wei; He, Baochun; Fan, Yingfang; Fang, Chihua; Jia, Fucang

    2016-11-08

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods- one interactive method, an in-house-developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)-based segmentation, and one automatic probabilistic atlas (PA)-guided segmentation method on clinical contrast-enhanced CT images. Forty-two datasets, including 27 normal liver and 15 space-occupying liver lesion patients, were retrospectively included in this study. The three methods - one semiautomatic 3DMIA, one automatic ASM-based, and one automatic PA-based liver volumetry - achieved an accuracy with VD (volume difference) of -1.69%, -2.75%, and 3.06% in the normal group, respectively, and with VD of -3.20%, -3.35%, and 4.14% in the space-occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excel-lent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p < 0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p < 0.001). The semiautomatic interactive 3DMIA, automatic ASM-based, and automatic PA-based liver volum-etry agreed well with manual gold standard in both the normal liver group and the space-occupying lesion group. The ASM- and PA-based automatic segmentation have better efficiency in clinical use. © 2016 The Authors.

  2. Comparison of liver volumetry on contrast‐enhanced CT images: one semiautomatic and two automatic approaches

    PubMed Central

    Cai, Wei; He, Baochun; Fang, Chihua

    2016-01-01

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods— one interactive method, an in‐house‐developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)‐based segmentation, and one automatic probabilistic atlas (PA)‐guided segmentation method on clinical contrast‐enhanced CT images. Forty‐two datasets, including 27 normal liver and 15 space‐occupying liver lesion patients, were retrospectively included in this study. The three methods — one semiautomatic 3DMIA, one automatic ASM‐based, and one automatic PA‐based liver volumetry — achieved an accuracy with VD (volume difference) of −1.69%,−2.75%, and 3.06% in the normal group, respectively, and with VD of −3.20%,−3.35%, and 4.14% in the space‐occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excellent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p<0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p<0.001). The semiautomatic interactive 3DMIA, automatic ASM‐based, and automatic PA‐based liver volumetry agreed well with manual gold standard in both the normal liver group and the space‐occupying lesion group. The ASM‐ and PA‐based automatic segmentation have better efficiency in clinical use. PACS number(s): 87.55.‐x PMID:27929487

  3. An overview of very high level software design methods

    NASA Technical Reports Server (NTRS)

    Asdjodi, Maryam; Hooper, James W.

    1988-01-01

    Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems.

  4. Systems and methods for data quality control and cleansing

    DOEpatents

    Wenzel, Michael; Boettcher, Andrew; Drees, Kirk; Kummer, James

    2016-05-31

    A method for detecting and cleansing suspect building automation system data is shown and described. The method includes using processing electronics to automatically determine which of a plurality of error detectors and which of a plurality of data cleansers to use with building automation system data. The method further includes using processing electronics to automatically detect errors in the data and cleanse the data using a subset of the error detectors and a subset of the cleansers.

  5. Fully automatic assignment of small molecules' NMR spectra without relying on chemical shift predictions.

    PubMed

    Castillo, Andrés M; Bernal, Andrés; Patiny, Luc; Wist, Julien

    2015-08-01

    We present a method for the automatic assignment of small molecules' NMR spectra. The method includes an automatic and novel self-consistent peak-picking routine that validates NMR peaks in each spectrum against peaks in the same or other spectra that are due to the same resonances. The auto-assignment routine used is based on branch-and-bound optimization and relies predominantly on integration and correlation data; chemical shift information may be included when available to fasten the search and shorten the list of viable assignments, but in most cases tested, it is not required in order to find the correct assignment. This automatic assignment method is implemented as a web-based tool that runs without any user input other than the acquired spectra. Copyright © 2015 John Wiley & Sons, Ltd.

  6. [Wearable Automatic External Defibrillators].

    PubMed

    Luo, Huajie; Luo, Zhangyuan; Jin, Xun; Zhang, Leilei; Wang, Changjin; Zhang, Wenzan; Tu, Quan

    2015-11-01

    Defibrillation is the most effective method of treating ventricular fibrillation(VF), this paper introduces wearable automatic external defibrillators based on embedded system which includes EGG measurements, bioelectrical impedance measurement, discharge defibrillation module, which can automatic identify VF signal, biphasic exponential waveform defibrillation discharge. After verified by animal tests, the device can realize EGG acquisition and automatic identification. After identifying the ventricular fibrillation signal, it can automatic defibrillate to abort ventricular fibrillation and to realize the cardiac electrical cardioversion.

  7. A new artefacts resistant method for automatic lineament extraction using Multi-Hillshade Hierarchic Clustering (MHHC)

    NASA Astrophysics Data System (ADS)

    Šilhavý, Jakub; Minár, Jozef; Mentlík, Pavel; Sládek, Ján

    2016-07-01

    This paper presents a new method of automatic lineament extraction which includes the removal of the 'artefacts effect' which is associated with the process of raster based analysis. The core of the proposed Multi-Hillshade Hierarchic Clustering (MHHC) method incorporates a set of variously illuminated and rotated hillshades in combination with hierarchic clustering of derived 'protolineaments'. The algorithm also includes classification into positive and negative lineaments. MHHC was tested in two different territories in Bohemian Forest and Central Western Carpathians. The original vector-based algorithm was developed for comparison of the individual lineaments proximity. Its use confirms the compatibility of manual and automatic extraction and their similar relationships to structural data in the study areas.

  8. Automatic tracking of wake vortices using ground-wind sensor data

    DOT National Transportation Integrated Search

    1977-01-03

    Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...

  9. Systems and methods for automatically identifying and linking names in digital resources

    DOEpatents

    Parker, Charles T.; Lyons, Catherine M.; Roston, Gerald P.; Garrity, George M.

    2017-06-06

    The present invention provides systems and methods for automatically identifying name-like-strings in digital resources, matching these name-like-string against a set of names held in an expertly curated database, and for those name-like-strings found in said database, enhancing the content by associating additional matter with the name, wherein said matter includes information about the names that is held within said database and pointers to other digital resources which include the same name and it synonyms.

  10. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  11. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  12. An automatic brain tumor segmentation tool.

    PubMed

    Diaz, Idanis; Boulanger, Pierre; Greiner, Russell; Hoehn, Bret; Rowe, Lindsay; Murtha, Albert

    2013-01-01

    This paper introduces an automatic brain tumor segmentation method (ABTS) for segmenting multiple components of brain tumor using four magnetic resonance image modalities. ABTS's four stages involve automatic histogram multi-thresholding and morphological operations including geodesic dilation. Our empirical results, on 16 real tumors, show that ABTS works very effectively, achieving a Dice accuracy compared to expert segmentation of 81% in segmenting edema and 85% in segmenting gross tumor volume (GTV).

  13. ARES v2: new features and improved performance

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Adibekyan, V.; Delgado-Mena, E.; Israelian, G.

    2015-05-01

    Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library. Automatic Routine for line Equivalent widths in stellar Spectra - ARES webpage: http://www.astro.up.pt/~sousasag/ares/Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 075.D-0800(A).

  14. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Omitaomu, Olufemi A; Kotikot, Susan

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  15. Basic forest cover mapping using digitized remote sensor data and automated data processing techniques

    NASA Technical Reports Server (NTRS)

    Coggeshall, M. E.; Hoffer, R. M.

    1973-01-01

    Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.

  16. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  17. Automatic Extraction of Urban Built-Up Area Based on Object-Oriented Method and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, H.; Wen, Q.; Chen, T.; Guan, F.; Ren, B.; Yu, H.; Wang, Z.

    2018-04-01

    Built-up area marks the use of city construction land in the different periods of the development, the accurate extraction is the key to the studies of the changes of urban expansion. This paper studies the technology of automatic extraction of urban built-up area based on object-oriented method and remote sensing data, and realizes the automatic extraction of the main built-up area of the city, which saves the manpower cost greatly. First, the extraction of construction land based on object-oriented method, the main technical steps include: (1) Multi-resolution segmentation; (2) Feature Construction and Selection; (3) Information Extraction of Construction Land Based on Rule Set, The characteristic parameters used in the rule set mainly include the mean of the red band (Mean R), Normalized Difference Vegetation Index (NDVI), Ratio of residential index (RRI), Blue band mean (Mean B), Through the combination of the above characteristic parameters, the construction site information can be extracted. Based on the degree of adaptability, distance and area of the object domain, the urban built-up area can be quickly and accurately defined from the construction land information without depending on other data and expert knowledge to achieve the automatic extraction of the urban built-up area. In this paper, Beijing city as an experimental area for the technical methods of the experiment, the results show that: the city built-up area to achieve automatic extraction, boundary accuracy of 2359.65 m to meet the requirements. The automatic extraction of urban built-up area has strong practicality and can be applied to the monitoring of the change of the main built-up area of city.

  18. Automatic Correction Algorithm of Hyfrology Feature Attribute in National Geographic Census

    NASA Astrophysics Data System (ADS)

    Li, C.; Guo, P.; Liu, X.

    2017-09-01

    A subset of the attributes of hydrologic features data in national geographic census are not clear, the current solution to this problem was through manual filling which is inefficient and liable to mistakes. So this paper proposes an automatic correction algorithm of hydrologic features attribute. Based on the analysis of the structure characteristics and topological relation, we put forward three basic principles of correction which include network proximity, structure robustness and topology ductility. Based on the WJ-III map workstation, we realize the automatic correction of hydrologic features. Finally, practical data is used to validate the method. The results show that our method is highly reasonable and efficient.

  19. A quality score for coronary artery tree extraction results

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Broersen, Alexander; Kitslaar, Pieter H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2018-02-01

    Coronary artery trees (CATs) are often extracted to aid the fully automatic analysis of coronary artery disease on coronary computed tomography angiography (CCTA) images. Automatically extracted CATs often miss some arteries or include wrong extractions which require manual corrections before performing successive steps. For analyzing a large number of datasets, a manual quality check of the extraction results is time-consuming. This paper presents a method to automatically calculate quality scores for extracted CATs in terms of clinical significance of the extracted arteries and the completeness of the extracted CAT. Both right dominant (RD) and left dominant (LD) anatomical statistical models are generated and exploited in developing the quality score. To automatically determine which model should be used, a dominance type detection method is also designed. Experiments are performed on the automatically extracted and manually refined CATs from 42 datasets to evaluate the proposed quality score. In 39 (92.9%) cases, the proposed method is able to measure the quality of the manually refined CATs with higher scores than the automatically extracted CATs. In a 100-point scale system, the average scores for automatically and manually refined CATs are 82.0 (+/-15.8) and 88.9 (+/-5.4) respectively. The proposed quality score will assist the automatic processing of the CAT extractions for large cohorts which contain both RD and LD cases. To the best of our knowledge, this is the first time that a general quality score for an extracted CAT is presented.

  20. Breaking the Cost Barrier in Automatic Classification.

    ERIC Educational Resources Information Center

    Doyle, L. B.

    A low-cost automatic classification method is reported that uses computer time in proportion to NlogN, where N is the number of information items and the base is a parameter, some barriers besides cost are treated briefly in the opening section, including types of intellectual resistance to the idea of doing classification by content-word…

  1. Automatic Cataloguing and Searching for Retrospective Data by Use of OCR Text.

    ERIC Educational Resources Information Center

    Tseng, Yuen-Hsien

    2001-01-01

    Describes efforts in supporting information retrieval from OCR (optical character recognition) degraded text. Reports on approaches used in an automatic cataloging and searching contest for books in multiple languages, including a vector space retrieval model, an n-gram indexing method, and a weighting scheme; and discusses problems of Asian…

  2. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  3. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  4. Improved spatial coverage for brain 3D PRESS MRSI by automatic placement of outer-volume suppression saturation bands.

    PubMed

    Ozhinsky, Eugene; Vigneron, Daniel B; Nelson, Sarah J

    2011-04-01

    To develop a technique for optimizing coverage of brain 3D (1) H magnetic resonance spectroscopic imaging (MRSI) by automatic placement of outer-volume suppression (OVS) saturation bands (sat bands) and to compare the performance for point-resolved spectroscopic sequence (PRESS) MRSI protocols with manual and automatic placement of sat bands. The automated OVS procedure includes the acquisition of anatomic images from the head, obtaining brain and lipid tissue maps, calculating optimal sat band placement, and then using those optimized parameters during the MRSI acquisition. The data were analyzed to quantify brain coverage volume and data quality. 3D PRESS MRSI data were acquired from three healthy volunteers and 29 patients using protocols that included either manual or automatic sat band placement. On average, the automatic sat band placement allowed the acquisition of PRESS MRSI data from 2.7 times larger brain volumes than the conventional method while maintaining data quality. The technique developed helps solve two of the most significant problems with brain PRESS MRSI acquisitions: limited brain coverage and difficulty in prescription. This new method will facilitate routine clinical brain 3D MRSI exams and will be important for performing serial evaluation of response to therapy in patients with brain tumors and other neurological diseases. Copyright © 2011 Wiley-Liss, Inc.

  5. Parametric Representation of the Speaker's Lips for Multimodal Sign Language and Speech Recognition

    NASA Astrophysics Data System (ADS)

    Ryumin, D.; Karpov, A. A.

    2017-05-01

    In this article, we propose a new method for parametric representation of human's lips region. The functional diagram of the method is described and implementation details with the explanation of its key stages and features are given. The results of automatic detection of the regions of interest are illustrated. A speed of the method work using several computers with different performances is reported. This universal method allows applying parametrical representation of the speaker's lipsfor the tasks of biometrics, computer vision, machine learning, and automatic recognition of face, elements of sign languages, and audio-visual speech, including lip-reading.

  6. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  7. Sample processor for the automatic extraction of families of compounds from liquid samples and/or homogenized solid samples suspended in a liquid

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor); Campen, Jr., Charles F. (Inventor)

    1980-01-01

    A sample processor and method for the automatic extraction of families of compounds, known as extracts, from liquid and/or homogenized solid samples are disclosed. The sample processor includes a tube support structure which supports a plurality of extraction tubes, each containing a sample from which families of compounds are to be extracted. The support structure is moveable automatically with respect to one or more extraction stations, so that as each tube is at each station a solvent system, consisting of a solvent and reagents, is introduced therein. As a result an extract is automatically extracted from the tube. The sample processor includes an arrangement for directing the different extracts from each tube to different containers, or to direct similar extracts from different tubes to the same utilization device.

  8. Comparison of manual and automatic techniques for substriatal segmentation in 11C-raclopride high-resolution PET studies.

    PubMed

    Johansson, Jarkko; Alakurtti, Kati; Joutsa, Juho; Tohka, Jussi; Ruotsalainen, Ulla; Rinne, Juha O

    2016-10-01

    The striatum is the primary target in regional C-raclopride-PET studies, and despite its small volume, it contains several functional and anatomical subregions. The outcome of the quantitative dopamine receptor study using C-raclopride-PET depends heavily on the quality of the region-of-interest (ROI) definition of these subregions. The aim of this study was to evaluate subregional analysis techniques because new approaches have emerged, but have not yet been compared directly. In this paper, we compared manual ROI delineation with several automatic methods. The automatic methods used either direct clustering of the PET image or individualization of chosen brain atlases on the basis of MRI or PET image normalization. State-of-the-art normalization methods and atlases were applied, including those provided in the FreeSurfer, Statistical Parametric Mapping8, and FSL software packages. Evaluation of the automatic methods was based on voxel-wise congruity with the manual delineations and the test-retest variability and reliability of the outcome measures using data from seven healthy male participants who were scanned twice with C-raclopride-PET on the same day. The results show that both manual and automatic methods can be used to define striatal subregions. Although most of the methods performed well with respect to the test-retest variability and reliability of binding potential, the smallest average test-retest variability and SEM were obtained using a connectivity-based atlas and PET normalization (test-retest variability=4.5%, SEM=0.17). The current state-of-the-art automatic ROI methods can be considered good alternatives for subjective and laborious manual segmentation in C-raclopride-PET studies.

  9. Automatic blood vessel based-liver segmentation using the portal phase abdominal CT

    NASA Astrophysics Data System (ADS)

    Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen

    2018-02-01

    Liver segmentation is the basis for computer-based planning of hepatic surgical interventions. In diagnosis and analysis of hepatic diseases and surgery planning, automatic segmentation of liver has high importance. Blood vessel (BV) has showed high performance at liver segmentation. In our previous work, we developed a semi-automatic method that segments the liver through the portal phase abdominal CT images in two stages. First stage was interactive segmentation of abdominal blood vessels (ABVs) and subsequent classification into hepatic (HBVs) and non-hepatic (non-HBVs). This stage had 5 interactions that include selective threshold for bone segmentation, selecting two seed points for kidneys segmentation, selection of inferior vena cava (IVC) entrance for starting ABVs segmentation, identification of the portal vein (PV) entrance to the liver and the IVC-exit for classifying HBVs from other ABVs (non-HBVs). Second stage is automatic segmentation of the liver based on segmented ABVs as described in [4]. For full automation of our method we developed a method [5] that segments ABVs automatically tackling the first three interactions. In this paper, we propose full automation of classifying ABVs into HBVs and non- HBVs and consequently full automation of liver segmentation that we proposed in [4]. Results illustrate that the method is effective at segmentation of the liver through the portal abdominal CT images.

  10. Automatic rapid attachable warhead section

    DOEpatents

    Trennel, A.J.

    1994-05-10

    Disclosed are a method and apparatus for automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly. 10 figures.

  11. Automatic rapid attachable warhead section

    DOEpatents

    Trennel, Anthony J.

    1994-05-10

    Disclosed are a method and apparatus for (1) automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, (2) automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, (3) manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and (4) automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly.

  12. Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography

    PubMed Central

    Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2013-01-01

    OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418

  13. Application of image recognition-based automatic hyphae detection in fungal keratitis.

    PubMed

    Wu, Xuelian; Tao, Yuan; Qiu, Qingchen; Wu, Xinyi

    2018-03-01

    The purpose of this study is to evaluate the accuracy of two methods in diagnosis of fungal keratitis, whereby one method is automatic hyphae detection based on images recognition and the other method is corneal smear. We evaluate the sensitivity and specificity of the method in diagnosis of fungal keratitis, which is automatic hyphae detection based on image recognition. We analyze the consistency of clinical symptoms and the density of hyphae, and perform quantification using the method of automatic hyphae detection based on image recognition. In our study, 56 cases with fungal keratitis (just single eye) and 23 cases with bacterial keratitis were included. All cases underwent the routine inspection of slit lamp biomicroscopy, corneal smear examination, microorganism culture and the assessment of in vivo confocal microscopy images before starting medical treatment. Then, we recognize the hyphae images of in vivo confocal microscopy by using automatic hyphae detection based on image recognition to evaluate its sensitivity and specificity and compare with the method of corneal smear. The next step is to use the index of density to assess the severity of infection, and then find the correlation with the patients' clinical symptoms and evaluate consistency between them. The accuracy of this technology was superior to corneal smear examination (p < 0.05). The sensitivity of the technology of automatic hyphae detection of image recognition was 89.29%, and the specificity was 95.65%. The area under the ROC curve was 0.946. The correlation coefficient between the grading of the severity in the fungal keratitis by the automatic hyphae detection based on image recognition and the clinical grading is 0.87. The technology of automatic hyphae detection based on image recognition was with high sensitivity and specificity, able to identify fungal keratitis, which is better than the method of corneal smear examination. This technology has the advantages when compared with the conventional artificial identification of confocal microscope corneal images, of being accurate, stable and does not rely on human expertise. It was the most useful to the medical experts who are not familiar with fungal keratitis. The technology of automatic hyphae detection based on image recognition can quantify the hyphae density and grade this property. Being noninvasive, it can provide an evaluation criterion to fungal keratitis in a timely, accurate, objective and quantitative manner.

  14. Evaluation of ultraviolet radiation, ozone and aerosol interactions in the troposphere using automatic differentiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, G.R.; Potra, F.

    1998-10-06

    A major goal of this research was to quantify the interactions between UVR, ozone and aerosols. One method of quantification was to calculate sensitivity coefficients. A novel aspect of this work was the use of Automatic Differentiation software to calculate the sensitivities. The authors demonstrated the use of ADIFOR for the first time in a dimensional framework. Automatic Differentiation was used to calculate such quantities as: sensitivities of UV-B fluxes to changes in ozone and aerosols in the stratosphere and the troposphere; changes in ozone production/destruction rates to changes in UV-B flux; aerosol properties including loading, scattering properties (including relativemore » humidity effects), and composition (mineral dust, soot, and sulfate aerosol, etc.). The combined radiation/chemistry model offers an important test of the utility of Automatic Differentiation as a tool in atmospheric modeling.« less

  15. Automatic contact in DYNA3D for vehicle crashworthiness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whirley, R.G.; Engelmann, B.E.

    1993-07-15

    This paper presents a new formulation for the automatic definition and treatment of mechanical contact in explicit nonlinear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. This paper discusses in detail a new four-step automatic contact algorithm. Key aspects of the proposed method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a smoothly varying surface normal which allows a consistent treatment of shell intersection and corner contact conditions without ad-hocmore » rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public DYNA3D code.« less

  16. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  17. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  18. [A wavelet-transform-based method for the automatic detection of late-type stars].

    PubMed

    Liu, Zhong-tian; Zhao, Rrui-zhen; Zhao, Yong-heng; Wu, Fu-chao

    2005-07-01

    The LAMOST project, the world largest sky survey project, urgently needs an automatic late-type stars detection system. However, to our knowledge, no effective methods for automatic late-type stars detection have been reported in the literature up to now. The present study work is intended to explore possible ways to deal with this issue. Here, by "late-type stars" we mean those stars with strong molecule absorption bands, including oxygen-rich M, L and T type stars and carbon-rich C stars. Based on experimental results, the authors find that after a wavelet transform with 5 scales on the late-type stars spectra, their frequency spectrum of the transformed coefficient on the 5th scale consistently manifests a unimodal distribution, and the energy of frequency spectrum is largely concentrated on a small neighborhood centered around the unique peak. However, for the spectra of other celestial bodies, the corresponding frequency spectrum is of multimodal and the energy of frequency spectrum is dispersible. Based on such a finding, the authors presented a wavelet-transform-based automatic late-type stars detection method. The proposed method is shown by extensive experiments to be practical and of good robustness.

  19. Daylight control system device and method

    DOEpatents

    Paton, John Douglas

    2007-03-13

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  20. Daylight control system, device and method

    DOEpatents

    Paton, John Douglas

    2012-08-28

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  1. Daylight control system device and method

    DOEpatents

    Paton, John Douglas

    2009-12-01

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  2. A Comparison of Two Methods for Boolean Query Relevancy Feedback.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1984-01-01

    Evaluates and compares two recently proposed automatic methods for relevance feedback of Boolean queries (Dillon method, which uses probabilistic approach as basis, and disjunctive normal form method). Conclusions are drawn concerning the use of effective feedback methods in a Boolean query environment. Nineteen references are included. (EJS)

  3. A semi-automatic computer-aided method for surgical template design

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan

    2016-02-01

    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.

  4. A semi-automatic computer-aided method for surgical template design

    PubMed Central

    Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan

    2016-01-01

    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method. PMID:26843434

  5. A semi-automatic computer-aided method for surgical template design.

    PubMed

    Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan

    2016-02-04

    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.

  6. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  7. Computational methods for global/local analysis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.

  8. CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang

    2014-06-01

    Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.

  9. Automatic identification of abstract online groups

    DOEpatents

    Engel, David W; Gregory, Michelle L; Bell, Eric B; Cowell, Andrew J; Piatt, Andrew W

    2014-04-15

    Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.

  10. Exploiting the systematic review protocol for classification of medical abstracts.

    PubMed

    Frunza, Oana; Inkpen, Diana; Matwin, Stan; Klement, William; O'Blenis, Peter

    2011-01-01

    To determine whether the automatic classification of documents can be useful in systematic reviews on medical topics, and specifically if the performance of the automatic classification can be enhanced by using the particular protocol of questions employed by the human reviewers to create multiple classifiers. The test collection is the data used in large-scale systematic review on the topic of the dissemination strategy of health care services for elderly people. From a group of 47,274 abstracts marked by human reviewers to be included in or excluded from further screening, we randomly selected 20,000 as a training set, with the remaining 27,274 becoming a separate test set. As a machine learning algorithm we used complement naïve Bayes. We tested both a global classification method, where a single classifier is trained on instances of abstracts and their classification (i.e., included or excluded), and a novel per-question classification method that trains multiple classifiers for each abstract, exploiting the specific protocol (questions) of the systematic review. For the per-question method we tested four ways of combining the results of the classifiers trained for the individual questions. As evaluation measures, we calculated precision and recall for several settings of the two methods. It is most important not to exclude any relevant documents (i.e., to attain high recall for the class of interest) but also desirable to exclude most of the non-relevant documents (i.e., to attain high precision on the class of interest) in order to reduce human workload. For the global method, the highest recall was 67.8% and the highest precision was 37.9%. For the per-question method, the highest recall was 99.2%, and the highest precision was 63%. The human-machine workflow proposed in this paper achieved a recall value of 99.6%, and a precision value of 17.8%. The per-question method that combines classifiers following the specific protocol of the review leads to better results than the global method in terms of recall. Because neither method is efficient enough to classify abstracts reliably by itself, the technology should be applied in a semi-automatic way, with a human expert still involved. When the workflow includes one human expert and the trained automatic classifier, recall improves to an acceptable level, showing that automatic classification techniques can reduce the human workload in the process of building a systematic review. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Efficient Semi-Automatic 3D Segmentation for Neuron Tracing in Electron Microscopy Images

    PubMed Central

    Jones, Cory; Liu, Ting; Cohan, Nathaniel Wood; Ellisman, Mark; Tasdizen, Tolga

    2015-01-01

    0.1. Background In the area of connectomics, there is a significant gap between the time required for data acquisition and dense reconstruction of the neural processes contained in the same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art accuracy so far is insufficient for use without user corrections. If completed naively, this process of correction can be tedious and time consuming. 0.2. New Method We present a new semi-automatic method that can be used to perform 3D segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a hierarchical structure for recommended merges of superpixels. The user is then guided through each predicted region to quickly identify errors and establish correct links. 0.3. Results We tested our method on three datasets with both novice and expert users. Accuracy and timing were compared with published automatic, semi-automatic, and manual results. 0.4. Comparison with Existing Methods Post-automatic correction methods have also been used in [1] and [2]. These methods do not provide navigation or suggestions in the manner we present. Other semi-automatic methods require user input prior to the automatic segmentation such as [3] and [4] and are inherently different than our method. 0.5. Conclusion Using this method on the three datasets, novice users achieved accuracy exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full manual labeling but with a 70% time improvement when compared with other examples in publication. PMID:25769273

  12. Visual perception system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor); Wells, James W. (Inventor); Mc Kay, Neil David (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  13. Flexible methods for segmentation evaluation: results from CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2014-01-01

    Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.

  14. ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Laloo, Jalal Z. A.; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-07-01

    The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.

  15. ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations.

    PubMed

    Laloo, Jalal Z A; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-07-01

    The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.

  16. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    PubMed

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  17. Wind Tunnel Force Balance Calibration Study - Interim Results

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2012-01-01

    Wind tunnel force balance calibration is preformed utilizing a variety of different methods and does not have a direct traceable standard such as standards used for most calibration practices (weights, and voltmeters). These different calibration methods and practices include, but are not limited to, the loading schedule, the load application hardware, manual and automatic systems, re-leveling and non-re-leveling. A study of the balance calibration techniques used by NASA was undertaken to develop metrics for reviewing and comparing results using sample calibrations. The study also includes balances of different designs, single and multi-piece. The calibration systems include, the manual, and the automatic that are provided by NASA and its vendors. The results to date will be presented along with the techniques for comparing the results. In addition, future planned calibrations and investigations based on the results will be provided.

  18. Automatic methods of the processing of data from track detectors on the basis of the PAVICOM facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. B.; Goncharova, L. A.; Davydov, D. A.; Publichenko, P. A.; Roganova, T. M.; Polukhina, N. G.; Feinberg, E. L.

    2007-02-01

    New automatic methods essentially simplify and increase the rate of the processing of data from track detectors. This provides a possibility of processing large data arrays and considerably improves their statistical significance. This fact predetermines the development of new experiments which plan to use large-volume targets, large-area emulsion, and solid-state track detectors [1]. In this regard, the problem of training qualified physicists who are capable of operating modern automatic equipment is very important. Annually, about ten Moscow students master the new methods, working at the Lebedev Physical Institute at the PAVICOM facility [2 4]. Most students specializing in high-energy physics are only given an idea of archaic manual methods of the processing of data from track detectors. In 2005, on the basis of the PAVICOM facility and the physicstraining course of Moscow State University, a new training work was prepared. This work is devoted to the determination of the energy of neutrons passing through a nuclear emulsion. It provides the possibility of acquiring basic practical skills of the processing of data from track detectors using automatic equipment and can be included in the educational process of students of any physical faculty. Those who have mastered the methods of automatic data processing in a simple and pictorial example of track detectors will be able to apply their knowledge in various fields of science and technique. Formulation of training works for pregraduate and graduate students is a new additional aspect of application of the PAVICOM facility described earlier in [4].

  19. Automatic Match between Delimitation Line and Real Terrain Based on Least-Cost Path Analysis

    NASA Astrophysics Data System (ADS)

    Feng, C. Q.; Jiang, N.; Zhang, X. N.; Ma, J.

    2013-11-01

    Nowadays, during the international negotiation on separating dispute areas, manual adjusting is lonely applied to the match between delimitation line and real terrain, which not only consumes much time and great labor force, but also cannot ensure high precision. Concerning that, the paper mainly explores automatic match between them and study its general solution based on Least -Cost Path Analysis. First, under the guidelines of delimitation laws, the cost layer is acquired through special disposals of delimitation line and terrain features line. Second, a new delimitation line gets constructed with the help of Least-Cost Path Analysis. Third, the whole automatic match model is built via Module Builder in order to share and reuse it. Finally, the result of automatic match is analyzed from many different aspects, including delimitation laws, two-sided benefits and so on. Consequently, a conclusion is made that the method of automatic match is feasible and effective.

  20. Galaxy morphology - An unsupervised machine learning approach

    NASA Astrophysics Data System (ADS)

    Schutter, A.; Shamir, L.

    2015-09-01

    Structural properties poses valuable information about the formation and evolution of galaxies, and are important for understanding the past, present, and future universe. Here we use unsupervised machine learning methodology to analyze a network of similarities between galaxy morphological types, and automatically deduce a morphological sequence of galaxies. Application of the method to the EFIGI catalog show that the morphological scheme produced by the algorithm is largely in agreement with the De Vaucouleurs system, demonstrating the ability of computer vision and machine learning methods to automatically profile galaxy morphological sequences. The unsupervised analysis method is based on comprehensive computer vision techniques that compute the visual similarities between the different morphological types. Rather than relying on human cognition, the proposed system deduces the similarities between sets of galaxy images in an automatic manner, and is therefore not limited by the number of galaxies being analyzed. The source code of the method is publicly available, and the protocol of the experiment is included in the paper so that the experiment can be replicated, and the method can be used to analyze user-defined datasets of galaxy images.

  1. Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods.

    PubMed

    Kong, Xiangyi; Gong, Shun; Su, Lijuan; Howard, Newton; Kong, Yanguo

    2018-01-01

    Automatic early detection of acromegaly is theoretically possible from facial photographs, which can lessen the prevalence and increase the cure probability. In this study, several popular machine learning algorithms were used to train a retrospective development dataset consisting of 527 acromegaly patients and 596 normal subjects. We firstly used OpenCV to detect the face bounding rectangle box, and then cropped and resized it to the same pixel dimensions. From the detected faces, locations of facial landmarks which were the potential clinical indicators were extracted. Frontalization was then adopted to synthesize frontal facing views to improve the performance. Several popular machine learning methods including LM, KNN, SVM, RT, CNN, and EM were used to automatically identify acromegaly from the detected facial photographs, extracted facial landmarks, and synthesized frontal faces. The trained models were evaluated using a separate dataset, of which half were diagnosed as acromegaly by growth hormone suppression test. The best result of our proposed methods showed a PPV of 96%, a NPV of 95%, a sensitivity of 96% and a specificity of 96%. Artificial intelligence can automatically early detect acromegaly with a high sensitivity and specificity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Implementation of Automatic Clustering Algorithm and Fuzzy Time Series in Motorcycle Sales Forecasting

    NASA Astrophysics Data System (ADS)

    Rasim; Junaeti, E.; Wirantika, R.

    2018-01-01

    Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.

  3. Man vs. Machine: An interactive poll to evaluate hydrological model performance of a manual and an automatic calibration

    NASA Astrophysics Data System (ADS)

    Wesemann, Johannes; Burgholzer, Reinhard; Herrnegger, Mathew; Schulz, Karsten

    2017-04-01

    In recent years, a lot of research in hydrological modelling has been invested to improve the automatic calibration of rainfall-runoff models. This includes for example (1) the implementation of new optimisation methods, (2) the incorporation of new and different objective criteria and signatures in the optimisation and (3) the usage of auxiliary data sets apart from runoff. Nevertheless, in many applications manual calibration is still justifiable and frequently applied. The hydrologist performing the manual calibration, with his expert knowledge, is able to judge the hydrographs simultaneously concerning details but also in a holistic view. This integrated eye-ball verification procedure available to man can be difficult to formulate in objective criteria, even when using a multi-criteria approach. Comparing the results of automatic and manual calibration is not straightforward. Automatic calibration often solely involves objective criteria such as Nash-Sutcliffe Efficiency Coefficient or the Kling-Gupta-Efficiency as a benchmark during the calibration. Consequently, a comparison based on such measures is intrinsically biased towards automatic calibration. Additionally, objective criteria do not cover all aspects of a hydrograph leaving questions concerning the quality of a simulation open. This contribution therefore seeks to examine the quality of manually and automatically calibrated hydrographs by interactively involving expert knowledge in the evaluation. Simulations have been performed for the Mur catchment in Austria with the rainfall-runoff model COSERO using two parameter sets evolved from a manual and an automatic calibration. A subset of resulting hydrographs for observation and simulation, representing the typical flow conditions and events, will be evaluated in this study. In an interactive crowdsourcing approach experts attending the session can vote for their preferred simulated hydrograph without having information on the calibration method that produced the respective hydrograph. Therefore, the result of the poll can be seen as an additional quality criterion for the comparison of the two different approaches and help in the evaluation of the automatic calibration method.

  4. Automatic identification of species with neural networks.

    PubMed

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  5. Reliability model generator

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C. (Inventor); McMann, Catherine M. (Inventor)

    1991-01-01

    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.

  6. Tomographic brain imaging with nucleolar detail and automatic cell counting

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-09-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.

  7. Automatic Network Fingerprinting through Single-Node Motifs

    PubMed Central

    Echtermeyer, Christoph; da Fontoura Costa, Luciano; Rodrigues, Francisco A.; Kaiser, Marcus

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs—a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks. PMID:21297963

  8. Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization

    PubMed Central

    Cruz-Roa, Angel; Díaz, Gloria; Romero, Eduardo; González, Fabio A.

    2011-01-01

    Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. PMID:22811960

  9. [Application of automatic photography in Schistosoma japonicum miracidium hatching experiments].

    PubMed

    Ming-Li, Zhou; Ai-Ling, Cai; Xue-Feng, Wang

    2016-05-20

    To explore the value of automatic photography in the observation of results of Schistosoma japonicum miracidium hatching experiments. Some fresh S. japonicum eggs were added into cow feces, and the samples of feces were divided into a low infested experimental group and a high infested group (40 samples each group). In addition, there was a negative control group with 40 samples of cow feces without S. japonicum eggs. The conventional nylon bag S. japonicum miracidium hatching experiments were performed. The process was observed with the method of flashlight and magnifying glass combined with automatic video (automatic photography method), and, at the same time, with the naked eye observation method. The results were compared. In the low infested group, the miracidium positive detection rates were 57.5% and 85.0% by the naked eye observation method and automatic photography method, respectively ( χ 2 = 11.723, P < 0.05). In the high infested group, the positive detection rates were 97.5% and 100% by the naked eye observation method and automatic photography method, respectively ( χ 2 = 1.253, P > 0.05). In the two infested groups, the average positive detection rates were 77.5% and 92.5% by the naked eye observation method and automatic photography method, respectively ( χ 2 = 6.894, P < 0.05). The automatic photography can effectively improve the positive detection rate in the S. japonicum miracidium hatching experiments.

  10. Flexible methods for segmentation evaluation: Results from CT-based luggage screening

    PubMed Central

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2017-01-01

    BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346

  11. Statistical Evaluation of Biometric Evidence in Forensic Automatic Speaker Recognition

    NASA Astrophysics Data System (ADS)

    Drygajlo, Andrzej

    Forensic speaker recognition is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). This paper aims at presenting forensic automatic speaker recognition (FASR) methods that provide a coherent way of quantifying and presenting recorded voice as biometric evidence. In such methods, the biometric evidence consists of the quantified degree of similarity between speaker-dependent features extracted from the trace and speaker-dependent features extracted from recorded speech of a suspect. The interpretation of recorded voice as evidence in the forensic context presents particular challenges, including within-speaker (within-source) variability and between-speakers (between-sources) variability. Consequently, FASR methods must provide a statistical evaluation which gives the court an indication of the strength of the evidence given the estimated within-source and between-sources variabilities. This paper reports on the first ENFSI evaluation campaign through a fake case, organized by the Netherlands Forensic Institute (NFI), as an example, where an automatic method using the Gaussian mixture models (GMMs) and the Bayesian interpretation (BI) framework were implemented for the forensic speaker recognition task.

  12. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  13. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  14. Automatic Evidence Retrieval for Systematic Reviews

    PubMed Central

    Choong, Miew Keen; Galgani, Filippo; Dunn, Adam G

    2014-01-01

    Background Snowballing involves recursively pursuing relevant references cited in the retrieved literature and adding them to the search results. Snowballing is an alternative approach to discover additional evidence that was not retrieved through conventional search. Snowballing’s effectiveness makes it best practice in systematic reviews despite being time-consuming and tedious. Objective Our goal was to evaluate an automatic method for citation snowballing’s capacity to identify and retrieve the full text and/or abstracts of cited articles. Methods Using 20 review articles that contained 949 citations to journal or conference articles, we manually searched Microsoft Academic Search (MAS) and identified 78.0% (740/949) of the cited articles that were present in the database. We compared the performance of the automatic citation snowballing method against the results of this manual search, measuring precision, recall, and F1 score. Results The automatic method was able to correctly identify 633 (as proportion of included citations: recall=66.7%, F1 score=79.3%; as proportion of citations in MAS: recall=85.5%, F1 score=91.2%) of citations with high precision (97.7%), and retrieved the full text or abstract for 490 (recall=82.9%, precision=92.1%, F1 score=87.3%) of the 633 correctly retrieved citations. Conclusions The proposed method for automatic citation snowballing is accurate and is capable of obtaining the full texts or abstracts for a substantial proportion of the scholarly citations in review articles. By automating the process of citation snowballing, it may be possible to reduce the time and effort of common evidence surveillance tasks such as keeping trial registries up to date and conducting systematic reviews. PMID:25274020

  15. MRI to predict nipple-areola complex (NAC) involvement: An automatic method to compute the 3D distance between the NAC and tumor.

    PubMed

    Giannini, Valentina; Bianchi, Veronica; Carabalona, Silvia; Mazzetti, Simone; Maggiorotto, Furio; Kubatzki, Franziska; Regge, Daniele; Ponzone, Riccardo; Martincich, Laura

    2017-12-01

    To assess the role in predicting nipple-areola complex (NAC) involvement of a newly developed automatic method which computes the 3D tumor-NAC distance. Ninety-nine patients scheduled to nipple sparing mastectomy (NSM) underwent magnetic resonance (MR) examination at 1.5 T, including sagittal T2w and dynamic contrast enhanced (DCE)-MR imaging. An automatic method was developed to segment the NAC and the tumor and to compute the 3D distance between them. The automatic measurement was compared with manual axial and sagittal 2D measurements. NAC involvement was defined by the presence of invasive ductal or lobular carcinoma and/or ductal carcinoma in situ or ductal intraepithelial neoplasia (DIN1c - DIN3). Tumor-NAC distance was computed on 95/99 patients (25 NAC+), as three tumors were not correctly segmented (sensitivity = 97%), and 1 NAC was not detected (sensitivity = 99%). The automatic 3D distance reached the highest area under the receiver operating characteristic (ROC) curve (0.830) with respect to the manual axial (0.676), sagittal (0.664), and minimum distances (0.664). At the best cut-off point of 21 mm, the 3D distance obtained sensitivity = 72%, specificity = 80%, positive predictive value = 56%, and negative predictive value = 89%. This method could provide a reproducible biomarker to preoperatively select breast cancer patients candidates to NSM, thus helping surgical planning and intraoperative management of patients. © 2017 Wiley Periodicals, Inc.

  16. Automatic evidence retrieval for systematic reviews.

    PubMed

    Choong, Miew Keen; Galgani, Filippo; Dunn, Adam G; Tsafnat, Guy

    2014-10-01

    Snowballing involves recursively pursuing relevant references cited in the retrieved literature and adding them to the search results. Snowballing is an alternative approach to discover additional evidence that was not retrieved through conventional search. Snowballing's effectiveness makes it best practice in systematic reviews despite being time-consuming and tedious. Our goal was to evaluate an automatic method for citation snowballing's capacity to identify and retrieve the full text and/or abstracts of cited articles. Using 20 review articles that contained 949 citations to journal or conference articles, we manually searched Microsoft Academic Search (MAS) and identified 78.0% (740/949) of the cited articles that were present in the database. We compared the performance of the automatic citation snowballing method against the results of this manual search, measuring precision, recall, and F1 score. The automatic method was able to correctly identify 633 (as proportion of included citations: recall=66.7%, F1 score=79.3%; as proportion of citations in MAS: recall=85.5%, F1 score=91.2%) of citations with high precision (97.7%), and retrieved the full text or abstract for 490 (recall=82.9%, precision=92.1%, F1 score=87.3%) of the 633 correctly retrieved citations. The proposed method for automatic citation snowballing is accurate and is capable of obtaining the full texts or abstracts for a substantial proportion of the scholarly citations in review articles. By automating the process of citation snowballing, it may be possible to reduce the time and effort of common evidence surveillance tasks such as keeping trial registries up to date and conducting systematic reviews.

  17. Objective assessment of the aesthetic outcomes of breast cancer treatment: toward automatic localization of fiducial points on digital photographs

    NASA Astrophysics Data System (ADS)

    Udpa, Nitin; Sampat, Mehul P.; Kim, Min Soon; Reece, Gregory P.; Markey, Mia K.

    2007-03-01

    The contemporary goals of breast cancer treatment are not limited to cure but include maximizing quality of life. All breast cancer treatment can adversely affect breast appearance. Developing objective, quantifiable methods to assess breast appearance is important to understand the impact of deformity on patient quality of life, guide selection of current treatments, and make rational treatment advances. A few measures of aesthetic properties such as symmetry have been developed. They are computed from the distances between manually identified fiducial points on digital photographs. However, this is time-consuming and subject to intra- and inter-observer variability. The purpose of this study is to investigate methods for automatic localization of fiducial points on anterior-posterior digital photographs taken to document the outcomes of breast reconstruction. Particular emphasis is placed on automatic localization of the nipple complex since the most widely used aesthetic measure, the Breast Retraction Assessment, quantifies the symmetry of nipple locations. The nipple complexes are automatically localized using normalized cross-correlation with a template bank of variants of Gaussian and Laplacian of Gaussian filters. A probability map of likely nipple locations determined from the image database is used to reduce the number of false positive detections from the matched filter operation. The accuracy of the nipple detection was evaluated relative to markings made by three human observers. The impact of using the fiducial point locations as identified by the automatic method, as opposed to the manual method, on the calculation of the Breast Retraction Assessment was also evaluated.

  18. Evaluation of a simple method for the automatic assignment of MeSH descriptors to health resources in a French online catalogue.

    PubMed

    Névéol, Aurélie; Pereira, Suzanne; Kerdelhué, Gaetan; Dahamna, Badisse; Joubert, Michel; Darmoni, Stéfan J

    2007-01-01

    The growing number of resources to be indexed in the catalogue of online health resources in French (CISMeF) calls for curating strategies involving automatic indexing tools while maintaining the catalogue's high indexing quality standards. To develop a simple automatic tool that retrieves MeSH descriptors from documents titles. In parallel to research on advanced indexing methods, a bag-of-words tool was developed for timely inclusion in CISMeF's maintenance system. An evaluation was carried out on a corpus of 99 documents. The indexing sets retrieved by the automatic tool were compared to manual indexing based on the title and on the full text of resources. 58% of the major main headings were retrieved by the bag-of-words algorithm and the precision on main heading retrieval was 69%. Bag-of-words indexing has effectively been used on selected resources to be included in CISMeF since August 2006. Meanwhile, on going work aims at improving the current version of the tool.

  19. Optimization and automation of quantitative NMR data extraction.

    PubMed

    Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos

    2013-06-18

    NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.

  20. Natural language processing of spoken diet records (SDRs).

    PubMed

    Lacson, Ronilda; Long, William

    2006-01-01

    Dietary assessment is a fundamental aspect of nutritional evaluation that is essential for management of obesity as well as for assessing dietary impact on chronic diseases. Various methods have been used for dietary assessment including written records, 24-hour recalls, and food frequency questionnaires. The use of mobile phones to provide real-time dietary records provides potential advantages for accessibility, ease of use and automated documentation. However, understanding even a perfect transcript of spoken dietary records (SDRs) is challenging for people. This work presents a first step towards automatic analysis of SDRs. Our approach consists of four steps - identification of food items, identification of food quantifiers, classification of food quantifiers and temporal annotation. Our method enables automatic extraction of dietary information from SDRs, which in turn allows automated mapping to a Diet History Questionnaire dietary database. Our model has an accuracy of 90%. This work demonstrates the feasibility of automatically processing SDRs.

  1. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  2. Real-time automatic registration in optical surgical navigation

    NASA Astrophysics Data System (ADS)

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming

    2016-05-01

    An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.

  3. A Batch Feeder for Inhomogeneous Bulk Materials

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  4. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas

    NASA Astrophysics Data System (ADS)

    Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Lhissou, Rachid; Maacha, Lhou; Azmi, Mohamed; Zouhair, Mohamed; Bachaoui, El Mostafa

    2017-12-01

    Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.

  5. Automatic 3D reconstruction of electrophysiology catheters from two-view monoplane C-arm image sequences.

    PubMed

    Baur, Christoph; Milletari, Fausto; Belagiannis, Vasileios; Navab, Nassir; Fallavollita, Pascal

    2016-07-01

    Catheter guidance is a vital task for the success of electrophysiology interventions. It is usually provided through fluoroscopic images that are taken intra-operatively. The cardiologists, who are typically equipped with C-arm systems, scan the patient from multiple views rotating the fluoroscope around one of its axes. The resulting sequences allow the cardiologists to build a mental model of the 3D position of the catheters and interest points from the multiple views. We describe and compare different 3D catheter reconstruction strategies and ultimately propose a novel and robust method for the automatic reconstruction of 3D catheters in non-synchronized fluoroscopic sequences. This approach does not purely rely on triangulation but incorporates prior knowledge about the catheters. In conjunction with an automatic detection method, we demonstrate the performance of our method compared to ground truth annotations. In our experiments that include 20 biplane datasets, we achieve an average reprojection error of 0.43 mm and an average reconstruction error of 0.67 mm compared to gold standard annotation. In clinical practice, catheters suffer from complex motion due to the combined effect of heartbeat and respiratory motion. As a result, any 3D reconstruction algorithm via triangulation is imprecise. We have proposed a new method that is fully automatic and highly accurate to reconstruct catheters in three dimensions.

  6. Presentation of Repeated Phrases in a Computer-Assisted Abstracting Tool Kit.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    2001-01-01

    Discusses automatic indexing methods and describes the development of a prototype computerized abstractor's assistant. Highlights include the text network management system, TEXNET; phrase selection that follows indexing; phrase display, including Boolean capabilities; results of preliminary testing; and availability of TEXNET software. (LRW)

  7. Automatic aortic root segmentation in CTA whole-body dataset

    NASA Astrophysics Data System (ADS)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  8. The Impact of the Implementation of Edge Detection Methods on the Accuracy of Automatic Voltage Reading

    NASA Astrophysics Data System (ADS)

    Sidor, Kamil; Szlachta, Anna

    2017-04-01

    The article presents the impact of the edge detection method in the image analysis on the reading accuracy of the measured value. In order to ensure the automatic reading of the measured value by an analog meter, a standard webcam and the LabVIEW programme were applied. NI Vision Development tools were used. The Hough transform was used to detect the indicator. The programme output was compared during the application of several methods of edge detection. Those included: the Prewitt operator, the Roberts cross, the Sobel operator and the Canny edge detector. The image analysis was made for an analog meter indicator with the above-mentioned methods, and the results of that analysis were compared with each other and presented.

  9. A rule-based automatic sleep staging method.

    PubMed

    Liang, Sheng-Fu; Kuo, Chin-En; Hu, Yu-Han; Cheng, Yu-Shian

    2012-03-30

    In this paper, a rule-based automatic sleep staging method was proposed. Twelve features including temporal and spectrum analyses of the EEG, EOG, and EMG signals were utilized. Normalization was applied to each feature to eliminating individual differences. A hierarchical decision tree with fourteen rules was constructed for sleep stage classification. Finally, a smoothing process considering the temporal contextual information was applied for the continuity. The overall agreement and kappa coefficient of the proposed method applied to the all night polysomnography (PSG) of seventeen healthy subjects compared with the manual scorings by R&K rules can reach 86.68% and 0.79, respectively. This method can integrate with portable PSG system for sleep evaluation at-home in the near future. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Automatic grid azimuth by hour angle of the sun, a star or a planet using an electronic theodolite Kern E2

    NASA Astrophysics Data System (ADS)

    Solaric, Nikola

    1991-03-01

    The paper describes a procedure for automatic determinations of the grid azimuth of an object on the earth surface by the hour angle of a celestial object (the sun, a star, or a planet), using the electronic theodolite Kern E2. The observation procedure is simple because the electronic calculator is directing the procedure, and the degree of accuracy is immediately determined. With this method, the external rms error of a single set is approximately two times smaller than in the case of the altitude method. The paper includes a flowchart of the program.

  11. Towards the Real-Time Evaluation of Collaborative Activities: Integration of an Automatic Rater of Collaboration Quality in the Classroom from the Teacher's Perspective

    ERIC Educational Resources Information Center

    Chounta, Irene-Angelica; Avouris, Nikolaos

    2016-01-01

    This paper presents the integration of a real time evaluation method of collaboration quality in a monitoring application that supports teachers in class orchestration. The method is implemented as an automatic rater of collaboration quality and studied in a real time scenario of use. We argue that automatic and semi-automatic methods which…

  12. Automatic image enhancement based on multi-scale image decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong

    2014-01-01

    In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.

  13. Offline Arabic handwriting recognition: a survey.

    PubMed

    Lorigo, Liana M; Govindaraju, Venu

    2006-05-01

    The automatic recognition of text on scanned images has enabled many applications such as searching for words in large volumes of documents, automatic sorting of postal mail, and convenient editing of previously printed documents. The domain of handwriting in the Arabic script presents unique technical challenges and has been addressed more recently than other domains. Many different methods have been proposed and applied to various types of images. This paper provides a comprehensive review of these methods. It is the first survey to focus on Arabic handwriting recognition and the first Arabic character recognition survey to provide recognition rates and descriptions of test data for the approaches discussed. It includes background on the field, discussion of the methods, and future research directions.

  14. An automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography method for high-throughput screening of antioxidants from natural products.

    PubMed

    Lu, Yanzhen; Wu, Nan; Fang, Yingtong; Shaheen, Nusrat; Wei, Yun

    2017-10-27

    Many natural products are rich in antioxidants which play an important role in preventing or postponing a variety of diseases, such as cardiovascular and inflammatory disease, diabetes as well as breast cancer. In this paper, an automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography (DPPH-HPLC) method was established for antioxidants screening with nine standards including organic acids (4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, and benzoic acid), alkaloids (coptisine and berberine), and flavonoids (quercitrin, astragalin, and quercetin). The optimal concentration of DPPH was determined, and six potential antioxidants including 4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, quercitrin, astragalin, and quercetin, and three non-antioxidants including benzoic acid, coptisine, and berberine, were successfully screened out and validated by conventional DPPH radical scavenging activity assay. The established method has been applied to the crude samples of Saccharum officinarum rinds, Coptis chinensis powders, and Malus pumila leaves, consecutively. Two potential antioxidant compounds from Saccharum officinarum rinds and five potential antioxidant compounds from Malus pumila eaves were rapidly screened out. Then these seven potential antioxidants were purified and identified as p-coumaric acid, ferulic acid, phloridzin, isoquercitrin, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside using countercurrent chromatography combined with mass spectrometry and their antioxidant activities were further evaluated by conventional DPPH radical scavenging assay. The activity result was in accordance with that of the established method. This established method is cheap and automatic, and could be used as an efficient tool for high-throughput antioxidant screening from various complex natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This...

  16. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1977

    1977-01-01

    Includes methods for demonstrating Schlieren effect, measuring refractive index, measuring acceleration, presenting concepts of optics, automatically recording weather, constructing apparaturs for sound experiments, using thermistor thermometers, using the 741 operational amplifier in analog computing, measuring inductance, electronically ringing…

  17. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  18. The research of full automatic oil filtering control technology of high voltage insulating oil

    NASA Astrophysics Data System (ADS)

    Gong, Gangjun; Zhang, Tong; Yan, Guozeng; Zhang, Han; Chen, Zhimin; Su, Chang

    2017-09-01

    In this paper, the design scheme of automatic oil filter control system for transformer oil in UHV substation is summarized. The scheme specifically includes the typical double tank filter connection control method of the transformer oil of the UHV substation, which distinguishes the single port and the double port connection structure of the oil tank. Finally, the design scheme of the temperature sensor and respirator is given in detail, and the detailed evaluation and application scenarios are given for reference.

  19. Feature extraction and descriptor calculation methods for automatic georeferencing of Philippines' first microsatellite imagery

    NASA Astrophysics Data System (ADS)

    Tupas, M. E. A.; Dasallas, J. A.; Jiao, B. J. D.; Magallon, B. J. P.; Sempio, J. N. H.; Ramos, M. K. F.; Aranas, R. K. D.; Tamondong, A. M.

    2017-10-01

    The FAST-SIFT corner detector and descriptor extractor combination was used to automatically georeference DIWATA-1 Spaceborne Multispectral Imager images. Features from the Fast Accelerated Segment Test (FAST) algorithm detects corners or keypoints in an image, and these robustly detected keypoints have well-defined positions. Descriptors were computed using Scale-Invariant Feature Transform (SIFT) extractor. FAST-SIFT method effectively SMI same-subscene images detected by the NIR sensor. The method was also tested in stitching NIR images with varying subscene swept by the camera. The slave images were matched to the master image. The keypoints served as the ground control points. Random sample consensus was used to eliminate fall-out matches and ensure accuracy of the feature points from which the transformation parameters were derived. Keypoints are matched based on their descriptor vector. Nearest-neighbor matching is employed based on a metric distance between the descriptors. The metrics include Euclidean and city block, among others. Rough matching outputs not only the correct matches but also the faulty matches. A previous work in automatic georeferencing incorporates a geometric restriction. In this work, we applied a simplified version of the learning method. RANSAC was used to eliminate fall-out matches and ensure accuracy of the feature points. This method identifies if a point fits the transformation function and returns inlier matches. The transformation matrix was solved by Affine, Projective, and Polynomial models. The accuracy of the automatic georeferencing method were determined by calculating the RMSE of interest points, selected randomly, between the master image and transformed slave image.

  20. Fully automatic region of interest selection in glomerular filtration rate estimation from 99mTc-DTPA renogram.

    PubMed

    Lin, Kun-Ju; Huang, Jia-Yann; Chen, Yung-Sheng

    2011-12-01

    Glomerular filtration rate (GFR) is a common accepted standard estimation of renal function. Gamma camera-based methods for estimating renal uptake of (99m)Tc-diethylenetriaminepentaacetic acid (DTPA) without blood or urine sampling have been widely used. Of these, the method introduced by Gates has been the most common method. Currently, most of gamma cameras are equipped with a commercial program for GFR determination, a semi-quantitative analysis by manually drawing region of interest (ROI) over each kidney. Then, the GFR value can be computed from the scintigraphic determination of (99m)Tc-DTPA uptake within the kidney automatically. Delineating the kidney area is difficult when applying a fixed threshold value. Moreover, hand-drawn ROIs are tedious, time consuming, and dependent highly on operator skill. Thus, we developed a fully automatic renal ROI estimation system based on the temporal changes in intensity counts, intensity-pair distribution image contrast enhancement method, adaptive thresholding, and morphological operations that can locate the kidney area and obtain the GFR value from a (99m)Tc-DTPA renogram. To evaluate the performance of the proposed approach, 30 clinical dynamic renograms were introduced. The fully automatic approach failed in one patient with very poor renal function. Four patients had a unilateral kidney, and the others had bilateral kidneys. The automatic contours from the remaining 54 kidneys were compared with the contours of manual drawing. The 54 kidneys were included for area error and boundary error analyses. There was high correlation between two physicians' manual contours and the contours obtained by our approach. For area error analysis, the mean true positive area overlap is 91%, the mean false negative is 13.4%, and the mean false positive is 9.3%. The boundary error is 1.6 pixels. The GFR calculated using this automatic computer-aided approach is reproducible and may be applied to help nuclear medicine physicians in clinical practice.

  1. Automatic building LOD copies for multitextured objects

    NASA Astrophysics Data System (ADS)

    Souetov, Andrew E.

    2000-01-01

    This article is dedicated to the research of geometry level of detail technology for systems of real-time 3D visualization. The article includes the conditions of applicability of the method, overview of existing approaches, their drawbacks and advantages. New technology guidelines are suggested as an alternative to existing methods.

  2. A Review of Automatic Methods Based on Image Processing Techniques for Tuberculosis Detection from Microscopic Sputum Smear Images.

    PubMed

    Panicker, Rani Oomman; Soman, Biju; Saini, Gagan; Rajan, Jeny

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused by the bacteria Mycobacterium tuberculosis. It primarily affects the lungs, but it can also affect other parts of the body. TB remains one of the leading causes of death in developing countries, and its recent resurgences in both developed and developing countries warrant global attention. The number of deaths due to TB is very high (as per the WHO report, 1.5 million died in 2013), although most are preventable if diagnosed early and treated. There are many tools for TB detection, but the most widely used one is sputum smear microscopy. It is done manually and is often time consuming; a laboratory technician is expected to spend at least 15 min per slide, limiting the number of slides that can be screened. Many countries, including India, have a dearth of properly trained technicians, and they often fail to detect TB cases due to the stress of a heavy workload. Automatic methods are generally considered as a solution to this problem. Attempts have been made to develop automatic approaches to identify TB bacteria from microscopic sputum smear images. In this paper, we provide a review of automatic methods based on image processing techniques published between 1998 and 2014. The review shows that the accuracy of algorithms for the automatic detection of TB increased significantly over the years and gladly acknowledges that commercial products based on published works also started appearing in the market. This review could be useful to researchers and practitioners working in the field of TB automation, providing a comprehensive and accessible overview of methods of this field of research.

  3. A New Automatic Method of Urban Areas Mapping in East Asia from LANDSAT Data

    NASA Astrophysics Data System (ADS)

    XU, R.; Jia, G.

    2012-12-01

    Cities, as places where human activities are concentrated, account for a small percent of global land cover but are frequently cited as the chief causes of, and solutions to, climate, biogeochemistry, and hydrology processes at local, regional, and global scales. Accompanying with uncontrolled economic growth, urban sprawl has been attributed to the accelerating integration of East Asia into the world economy and involved dramatic changes in its urban form and land use. To understand the impact of urban extent on biogeophysical processes, reliable mapping of built-up areas is particularly essential in eastern cities as a result of their characteristics of smaller patches, more fragile, and a lower fraction of the urban landscape which does not have natural than in the West. Segmentation of urban land from other land-cover types using remote sensing imagery can be done by standard classification processes as well as a logic rule calculation based on spectral indices and their derivations. Efforts to establish such a logic rule with no threshold for automatically mapping are highly worthwhile. Existing automatic methods are reviewed, and then a proposed approach is introduced including the calculation of the new index and the improved logic rule. Following this, existing automatic methods as well as the proposed approach are compared in a common context. Afterwards, the proposed approach is tested separately in cities of large, medium, and small scale in East Asia selected from different LANDSAT images. The results are promising as the approach can efficiently segment urban areas, even in the presence of more complex eastern cities. Key words: Urban extraction; Automatic Method; Logic Rule; LANDSAT images; East AisaThe Proposed Approach of Extraction of Urban Built-up Areas in Guangzhou, China

  4. Zolpidem Ingestion, Automatisms, and Sleep Driving: A Clinical and Legal Case Series

    PubMed Central

    Poceta, J. Steven

    2011-01-01

    Study Objectives: To describe zolpidem-associated complex behaviors, including both daytime automatisms and sleep-related parasomnias. Methods: A case series of eight clinical patients and six legal defendants is presented. Patients presented to the author after an episode of confusion, amnesia, or somnambulism. Legal defendants were being prosecuted for driving under the influence, and the author reviewed the cases as expert witness for the defense. Potential predisposing factors including comorbidities, social situation, physician instruction, concomitant medications, and patterns of medication management were considered. Results: Patients and defendants exhibited abnormal behavior characterized by poor motor control and confusion. Although remaining apparently interactive with the environment, all reported amnesia for 3 to 5 hours. In some cases, the episodes began during daytime wakefulness because of accidental or purposeful ingestion of the zolpidem and are considered automatisms. Other cases began after ingestion of zolpidem at the time of going to bed and are considered parasomnias. Risk factors for both wake and sleep-related automatic complex behaviors include the concomitant ingestion of other sedating drugs, a higher dose of zolpidem, a history of parasomnia, ingestion at times other than bedtime or when sleep is unlikely, poor management of pill bottles, and living alone. In addition, similar size and shape of two medications contributed to accidental ingestion in at least one case. Conclusions: Sleep driving and other complex behaviors can occur after zolpidem ingestion. Physicians should assess patients for potential risk factors and inquire about parasomnias. Serious legal and medical complications can occur as a result of these forms of automatic complex behaviors. Citation: Poceta JS. Zolpidem ingestion, automatisms, and sleep driving: a clinical and legal case series. J Clin Sleep Med 2011;7(6):632-638. PMID:22171202

  5. 10 CFR 431.134 - Uniform test methods for the measurement of energy and water consumption of automatic commercial...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF... Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy and water consumption of automatic commercial ice makers. (a) Scope. This section provides the test...

  6. 10 CFR 431.134 - Uniform test methods for the measurement of energy and water consumption of automatic commercial...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF... Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy and water consumption of automatic commercial ice makers. (a) Scope. This section provides the test...

  7. Automatic vehicle counting using background subtraction method on gray scale images and morphology operation

    NASA Astrophysics Data System (ADS)

    Adi, K.; Widodo, A. P.; Widodo, C. E.; Pamungkas, A.; Putranto, A. B.

    2018-05-01

    Traffic monitoring on road needs to be done, the counting of the number of vehicles passing the road is necessary. It is more emphasized for highway transportation management in order to prevent efforts. Therefore, it is necessary to develop a system that is able to counting the number of vehicles automatically. Video processing method is able to counting the number of vehicles automatically. This research has development a system of vehicle counting on toll road. This system includes processes of video acquisition, frame extraction, and image processing for each frame. Video acquisition is conducted in the morning, at noon, in the afternoon, and in the evening. This system employs of background subtraction and morphology methods on gray scale images for vehicle counting. The best vehicle counting results were obtained in the morning with a counting accuracy of 86.36 %, whereas the lowest accuracy was in the evening, at 21.43 %. Differences in morning and evening results are caused by different illumination in the morning and evening. This will cause the values in the image pixels to be different.

  8. Strategies for distributing cancer screening decision aids in primary care.

    PubMed

    Brackett, Charles; Kearing, Stephen; Cochran, Nan; Tosteson, Anna N A; Blair Brooks, W

    2010-02-01

    Decision aids (DAs) have been shown to facilitate shared decision making about cancer screening. However, little data exist on optimal strategies for dissemination. Our objective was to compare different decision aid distribution models. Eligible patients received video decision aids for prostate cancer (PSA) or colon cancer screening (CRC) through 4 distribution methods. Outcome measures included DA loans (N), % of eligible patients receiving DA, and patient and provider satisfaction. Automatically mailing DAs to all age/gender appropriate patients led to near universal receipt by screening-eligible patients, but also led to ineligible patients receiving DAs. Three different elective (non-automatic) strategies led to low rates of receipt. Clinician satisfaction was higher when patients viewed the DA before the visit, and this model facilitated implementation of the screening choice. Regardless of timing or distribution method, patient satisfaction was high. An automatic DA distribution method is more effective than relying on individual initiative. Enabling patients to view the DA before the visit is preferred. Systematically offering DAs to all eligible patients before their appointments is the ideal strategy, but may be challenging to implement. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Least-Squares Camera Calibration Including Lens Distortion and Automatic Editing of Calibration Points

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.

    1998-01-01

    A method is described for calibrating cameras including radial lens distortion, by using known points such as those measured from a calibration fixture. The distortion terms are relative to the optical axis, which is included in the model so that it does not have to be orthogonal to the image sensor plane.

  10. Content-aware automatic cropping for consumer photos

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Tretter, Daniel; Lin, Qian

    2013-03-01

    Consumer photos are typically authored once, but need to be retargeted for reuse in various situations. These include printing a photo on different size paper, changing the size and aspect ratio of an embedded photo to accommodate the dynamic content layout of web pages or documents, adapting a large photo for browsing on small displays such as mobile phone screens, and improving the aesthetic quality of a photo that was badly composed at the capture time. In this paper, we propose a novel, effective, and comprehensive content-aware automatic cropping (hereafter referred to as "autocrop") method for consumer photos to achieve the above purposes. Our autocrop method combines the state-of-the-art context-aware saliency detection algorithm, which aims to infer the likely intent of the photographer, and the "branch-and-bound" efficient subwindow search optimization technique, which seeks to locate the globally optimal cropping rectangle in a fast manner. Unlike most current autocrop methods, which can only crop a photo into an arbitrary rectangle, our autocrop method can automatically crop a photo into either a rectangle of arbitrary dimensions or a rectangle of the desired aspect ratio specified by the user. The aggressiveness of the cropping operation may be either automatically determined by the method or manually indicated by the user with ease. In addition, our autocrop method is extended to support the cropping of a photo into non-rectangular shapes such as polygons of any number of sides. It may also be potentially extended to return multiple cropping suggestions, which will enable the creation of new photos to enrich the original photo collections. Our experimental results show that the proposed autocrop method in this paper can generate high-quality crops for consumer photos of various types.

  11. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  12. Automated retinal vessel type classification in color fundus images

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.

    2013-02-01

    Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.

  13. Automatic luminous reflections detector using global threshold with increased luminosity contrast in images

    NASA Astrophysics Data System (ADS)

    Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany

    2018-01-01

    The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.

  14. Reevaluation of pollen quantitation by an automatic pollen counter.

    PubMed

    Muradil, Mutarifu; Okamoto, Yoshitaka; Yonekura, Syuji; Chazono, Hideaki; Hisamitsu, Minako; Horiguchi, Shigetoshi; Hanazawa, Toyoyuki; Takahashi, Yukie; Yokota, Kunihiko; Okumura, Satoshi

    2010-01-01

    Accurate and detailed pollen monitoring is useful for selection of medication and for allergen avoidance in patients with allergic rhinitis. Burkard and Durham pollen samplers are commonly used, but are labor and time intensive. In contrast, automatic pollen counters allow simple real-time pollen counting; however, these instruments have difficulty in distinguishing pollen from small nonpollen airborne particles. Misidentification and underestimation rates for an automatic pollen counter were examined to improve the accuracy of the pollen count. The characteristics of the automatic pollen counter were determined in a chamber study with exposure to cedar pollens or soil grains. The cedar pollen counts were monitored in 2006 and 2007, and compared with those from a Durham sampler. The pollen counts from the automatic counter showed a good correlation (r > 0.7) with those from the Durham sampler when pollen dispersal was high, but a poor correlation (r < 0.5) when pollen dispersal was low. The new correction method, which took into account the misidentification and underestimation, improved this correlation to r > 0.7 during the pollen season. The accuracy of automatic pollen counting can be improved using a correction to include rates of underestimation and misidentification in a particular geographical area.

  15. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.

    PubMed

    Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin

    2008-09-01

    We propose a novel method for the automatic detection and measurement of fetal anatomical structures in ultrasound images. This problem offers a myriad of challenges, including: difficulty of modeling the appearance variations of the visual object of interest, robustness to speckle noise and signal dropout, and large search space of the detection procedure. Previous solutions typically rely on the explicit encoding of prior knowledge and formulation of the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are constrained by the validity of the underlying assumptions and usually are not enough to capture the complex appearances of fetal anatomies. We propose a novel system for fast automatic detection and measurement of fetal anatomies that directly exploits a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns automatically to distinguish between the appearance of the object of interest and background by training a constrained probabilistic boosting tree classifier. This system is able to produce the automatic segmentation of several fetal anatomies using the same basic detection algorithm. We show results on fully automatic measurement of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), humerus length (HL), and crown rump length (CRL). Notice that our approach is the first in the literature to deal with the HL and CRL measurements. Extensive experiments (with clinical validation) show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer.

  16. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  17. StochKit2: software for discrete stochastic simulation of biochemical systems with events.

    PubMed

    Sanft, Kevin R; Wu, Sheng; Roh, Min; Fu, Jin; Lim, Rone Kwei; Petzold, Linda R

    2011-09-01

    StochKit2 is the first major upgrade of the popular StochKit stochastic simulation software package. StochKit2 provides highly efficient implementations of several variants of Gillespie's stochastic simulation algorithm (SSA), and tau-leaping with automatic step size selection. StochKit2 features include automatic selection of the optimal SSA method based on model properties, event handling, and automatic parallelism on multicore architectures. The underlying structure of the code has been completely updated to provide a flexible framework for extending its functionality. StochKit2 runs on Linux/Unix, Mac OS X and Windows. It is freely available under GPL version 3 and can be downloaded from http://sourceforge.net/projects/stochkit/. petzold@engineering.ucsb.edu.

  18. An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orCaScore framework.

    PubMed

    Wolterink, Jelmer M; Leiner, Tim; de Vos, Bob D; Coatrieux, Jean-Louis; Kelm, B Michael; Kondo, Satoshi; Salgado, Rodrigo A; Shahzad, Rahil; Shu, Huazhong; Snoeren, Miranda; Takx, Richard A P; van Vliet, Lucas J; van Walsum, Theo; Willems, Tineke P; Yang, Guanyu; Zheng, Yefeng; Viergever, Max A; Išgum, Ivana

    2016-05-01

    The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular disease (CVD) events. In clinical practice, CAC is manually identified and automatically quantified in cardiac CT using commercially available software. This is a tedious and time-consuming process in large-scale studies. Therefore, a number of automatic methods that require no interaction and semiautomatic methods that require very limited interaction for the identification of CAC in cardiac CT have been proposed. Thus far, a comparison of their performance has been lacking. The objective of this study was to perform an independent evaluation of (semi)automatic methods for CAC scoring in cardiac CT using a publicly available standardized framework. Cardiac CT exams of 72 patients distributed over four CVD risk categories were provided for (semi)automatic CAC scoring. Each exam consisted of a noncontrast-enhanced calcium scoring CT (CSCT) and a corresponding coronary CT angiography (CCTA) scan. The exams were acquired in four different hospitals using state-of-the-art equipment from four major CT scanner vendors. The data were divided into 32 training exams and 40 test exams. A reference standard for CAC in CSCT was defined by consensus of two experts following a clinical protocol. The framework organizers evaluated the performance of (semi)automatic methods on test CSCT scans, per lesion, artery, and patient. Five (semi)automatic methods were evaluated. Four methods used both CSCT and CCTA to identify CAC, and one method used only CSCT. The evaluated methods correctly detected between 52% and 94% of CAC lesions with positive predictive values between 65% and 96%. Lesions in distal coronary arteries were most commonly missed and aortic calcifications close to the coronary ostia were the most common false positive errors. The majority (between 88% and 98%) of correctly identified CAC lesions were assigned to the correct artery. Linearly weighted Cohen's kappa for patient CVD risk categorization by the evaluated methods ranged from 0.80 to 1.00. A publicly available standardized framework for the evaluation of (semi)automatic methods for CAC identification in cardiac CT is described. An evaluation of five (semi)automatic methods within this framework shows that automatic per patient CVD risk categorization is feasible. CAC lesions at ambiguous locations such as the coronary ostia remain challenging, but their detection had limited impact on CVD risk determination.

  19. Developments in Titrimetry.

    ERIC Educational Resources Information Center

    Parry-Jones, R.

    1980-01-01

    Described are some new uses and procedures of titration procedures. Topics included are titration in non-aqueous solvents, thermometric titration and catalytic methods for end-point detection, titration finish in organic elemental analysis, and sub-micro analysis and automatic titration procedures. (CS)

  20. A benchmark for comparison of dental radiography analysis algorithms.

    PubMed

    Wang, Ching-Wei; Huang, Cheng-Ta; Lee, Jia-Hong; Li, Chung-Hsing; Chang, Sheng-Wei; Siao, Ming-Jhih; Lai, Tat-Ming; Ibragimov, Bulat; Vrtovec, Tomaž; Ronneberger, Olaf; Fischer, Philipp; Cootes, Tim F; Lindner, Claudia

    2016-07-01

    Dental radiography plays an important role in clinical diagnosis, treatment and surgery. In recent years, efforts have been made on developing computerized dental X-ray image analysis systems for clinical usages. A novel framework for objective evaluation of automatic dental radiography analysis algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2015 Bitewing Radiography Caries Detection Challenge and Cephalometric X-ray Image Analysis Challenge. In this article, we present the datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. The main contributions of the challenge include the creation of the dental anatomy data repository of bitewing radiographs, the creation of the anatomical abnormality classification data repository of cephalometric radiographs, and the definition of objective quantitative evaluation for comparison and ranking of the algorithms. With this benchmark, seven automatic methods for analysing cephalometric X-ray image and two automatic methods for detecting bitewing radiography caries have been compared, and detailed quantitative evaluation results are presented in this paper. Based on the quantitative evaluation results, we believe automatic dental radiography analysis is still a challenging and unsolved problem. The datasets and the evaluation software will be made available to the research community, further encouraging future developments in this field. (http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Optimization of Endotracheal Tube Cuff Pressure by Monitoring CO2 Levels in the Subglottic Space in Mechanically Ventilated Patients: A Randomized Controlled Trial.

    PubMed

    Efrati, Shai; Bolotin, Gil; Levi, Leon; Zaaroor, Menashe; Guralnik, Ludmila; Weksler, Natan; Levinger, Uriel; Soroksky, Arie; Denman, William T; Gurman, Gabriel M

    2017-10-01

    Many of the complications of mechanical ventilation are related to inappropriate endotracheal tube (ETT) cuff pressure. The aim of the current study was to evaluate the effectiveness of automatic cuff pressure closed-loop control in patients under prolonged intubation, where presence of carbon dioxide (CO2) in the subglottic space is used as an indicator for leaks. The primary outcome of the study is leakage around the cuff quantified using the area under the curve (AUC) of CO2 leakage over time. This was a multicenter, prospective, randomized controlled, noninferiority trial including intensive care unit patients. All patients were intubated with the AnapnoGuard ETT, which has an extra lumen used to monitor CO2 levels in the subglottic space.The study group was connected to the AnapnoGuard system operating with cuff control adjusted automatically based on subglottic CO2 (automatic group). The control group was connected to the AnapnoGuard system, while cuff pressure was managed manually using a manometer 3 times/d (manual group). The system recorded around cuff CO2 leakage in both groups. Seventy-two patients were recruited and 64 included in the final analysis. The mean hourly around cuff CO2 leak (mm Hg AUC/h) was 0.22 ± 0.32 in the manual group and 0.09 ± 0.04 in the automatic group (P = .01) where the lower bound of the 1-sided 95% confidence interval was 0.05, demonstrating noninferiority (>-0.033). Additionally, the 2-sided 95% confidence interval was 0.010 to 0.196, showing superiority (>0.0) as well. Significant CO2 leakage (CO2 >2 mm Hg) was 0.027 ± 0.057 (mm Hg AUC/h) in the automatic group versus 0.296 ± 0.784 (mm Hg AUC/h) in the manual group (P = .025). In addition, cuff pressures were in the predefined safety range 97.6% of the time in the automatic group compared to 48.2% in the automatic group (P < .001). This study shows that the automatic cuff pressure group is not only noninferior but also superior compared to the manual cuff pressure group. Thus, the use of automatic cuff pressure control based on subglottic measurements of CO2 levels is an effective method for ETT cuff pressure optimization. The method is safe and can be easily utilized with any intubated patient.

  2. Automatic sentence extraction for the detection of scientific paper relations

    NASA Astrophysics Data System (ADS)

    Sibaroni, Y.; Prasetiyowati, S. S.; Miftachudin, M.

    2018-03-01

    The relations between scientific papers are very useful for researchers to see the interconnection between scientific papers quickly. By observing the inter-article relationships, researchers can identify, among others, the weaknesses of existing research, performance improvements achieved to date, and tools or data typically used in research in specific fields. So far, methods that have been developed to detect paper relations include machine learning and rule-based methods. However, a problem still arises in the process of sentence extraction from scientific paper documents, which is still done manually. This manual process causes the detection of scientific paper relations longer and inefficient. To overcome this problem, this study performs an automatic sentences extraction while the paper relations are identified based on the citation sentence. The performance of the built system is then compared with that of the manual extraction system. The analysis results suggested that the automatic sentence extraction indicates a very high level of performance in the detection of paper relations, which is close to that of manual sentence extraction.

  3. Does the use of automated fetal biometry improve clinical work flow efficiency?

    PubMed

    Espinoza, Jimmy; Good, Sara; Russell, Evie; Lee, Wesley

    2013-05-01

    This study was designed to compare the work flow efficiency of manual measurements of 5 fetal parameters with a novel technique that automatically measures these parameters from 2-dimensional sonograms. This prospective study included 200 singleton pregnancies between 15 and 40 weeks' gestation. Patients were randomly allocated to either manual (n = 100) or automatic (n = 100) fetal biometry. The automatic measurement was performed using a commercially available software application. A digital video recorder captured all on-screen activity associated with the sonographic examination. The examination time and number of steps required to obtain fetal measurements were compared between manual and automatic methods. The mean time required to obtain the biometric measurements was significantly shorter using the automated technique than the manual approach (P < .001 for all comparisons). Similarly, the mean number of steps required to perform these measurements was significantly fewer with automatic measurements compared to the manual technique (P < .001). In summary, automated biometry reduced the examination time required for standard fetal measurements. This approach may improve work flow efficiency in busy obstetric sonography practices.

  4. Design of automatic leveling and centering system of theodolite

    NASA Astrophysics Data System (ADS)

    Liu, Chun-tong; He, Zhen-Xin; Huang, Xian-xiang; Zhan, Ying

    2012-09-01

    To realize the theodolite automation and improve the azimuth Angle measurement instrument, the theodolite automatic leveling and centering system with the function of leveling error compensation is designed, which includes the system solution, key components selection, the mechanical structure of leveling and centering, and system software solution. The redesigned leveling feet are driven by the DC servo motor; and the electronic control center device is installed. Using high precision of tilt sensors as horizontal skew detection sensors ensures the effectiveness of the leveling error compensation. Aiming round mark center is located using digital image processing through surface array CCD; and leveling measurement precision can reach the pixel level, which makes the theodolite accurate centering possible. Finally, experiments are conducted using the automatic leveling and centering system of the theodolite. The results show the leveling and centering system can realize automatic operation with high centering accuracy of 0.04mm.The measurement precision of the orientation angle after leveling error compensation is improved, compared with that of in the traditional method. Automatic leveling and centering system of theodolite can satisfy the requirements of the measuring precision and its automation.

  5. Automatic Query Formulations in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1983-01-01

    Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…

  6. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1994-01-01

    The straightforward automatic-differentiation and the hand-differentiated incremental iterative methods are interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise, discrete aerodynamic sensitivity derivatives are calculated with the efficient incremental iterative solution algorithm of the original flow code. Moreover, the principal advantage of automatic differentiation is retained (i.e., all complicated source code for the derivative calculations is constructed quickly with accuracy). The basic equations for second-order sensitivity derivatives are presented; four methods are compared. Each scheme requires that large systems are solved first for the first-order derivatives and, in all but one method, for the first-order adjoint variables. Of these latter three schemes, two require no solutions of large systems thereafter. For the other two for which additional systems are solved, the equations and solution procedures are analogous to those for the first order derivatives. From a practical viewpoint, implementation of the second-order methods is feasible only with software tools such as automatic differentiation, because of the extreme complexity and large number of terms. First- and second-order sensitivities are calculated accurately for two airfoil problems, including a turbulent flow example; both geometric-shape and flow-condition design variables are considered. Several methods are tested; results are compared on the basis of accuracy, computational time, and computer memory. For first-order derivatives, the hybrid incremental iterative scheme obtained with automatic differentiation is competitive with the best hand-differentiated method; for six independent variables, it is at least two to four times faster than central finite differences and requires only 60 percent more memory than the original code; the performance is expected to improve further in the future.

  7. Automatic tracking of labeled red blood cells in microchannels.

    PubMed

    Pinho, Diana; Lima, Rui; Pereira, Ana I; Gayubo, Fernando

    2013-09-01

    The current study proposes an automatic method for the segmentation and tracking of red blood cells flowing through a 100- μm glass capillary. The original images were obtained by means of a confocal system and then processed in MATLAB using the Image Processing Toolbox. The measurements obtained with the proposed automatic method were compared with the results determined by a manual tracking method. The comparison was performed by using both linear regressions and Bland-Altman analysis. The results have shown a good agreement between the two methods. Therefore, the proposed automatic method is a powerful way to provide rapid and accurate measurements for in vitro blood experiments in microchannels. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Automatic Atlas Based Electron Density and Structure Contouring for MRI-based Prostate Radiation Therapy on the Cloud

    NASA Astrophysics Data System (ADS)

    Dowling, J. A.; Burdett, N.; Greer, P. B.; Sun, J.; Parker, J.; Pichler, P.; Stanwell, P.; Chandra, S.; Rivest-Hénault, D.; Ghose, S.; Salvado, O.; Fripp, J.

    2014-03-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  9. The Potential of Automatic Word Comparison for Historical Linguistics.

    PubMed

    List, Johann-Mattis; Greenhill, Simon J; Gray, Russell D

    2017-01-01

    The amount of data from languages spoken all over the world is rapidly increasing. Traditional manual methods in historical linguistics need to face the challenges brought by this influx of data. Automatic approaches to word comparison could provide invaluable help to pre-analyze data which can be later enhanced by experts. In this way, computational approaches can take care of the repetitive and schematic tasks leaving experts to concentrate on answering interesting questions. Here we test the potential of automatic methods to detect etymologically related words (cognates) in cross-linguistic data. Using a newly compiled database of expert cognate judgments across five different language families, we compare how well different automatic approaches distinguish related from unrelated words. Our results show that automatic methods can identify cognates with a very high degree of accuracy, reaching 89% for the best-performing method Infomap. We identify the specific strengths and weaknesses of these different methods and point to major challenges for future approaches. Current automatic approaches for cognate detection-although not perfect-could become an important component of future research in historical linguistics.

  10. The Potential of Automatic Word Comparison for Historical Linguistics

    PubMed Central

    Greenhill, Simon J.; Gray, Russell D.

    2017-01-01

    The amount of data from languages spoken all over the world is rapidly increasing. Traditional manual methods in historical linguistics need to face the challenges brought by this influx of data. Automatic approaches to word comparison could provide invaluable help to pre-analyze data which can be later enhanced by experts. In this way, computational approaches can take care of the repetitive and schematic tasks leaving experts to concentrate on answering interesting questions. Here we test the potential of automatic methods to detect etymologically related words (cognates) in cross-linguistic data. Using a newly compiled database of expert cognate judgments across five different language families, we compare how well different automatic approaches distinguish related from unrelated words. Our results show that automatic methods can identify cognates with a very high degree of accuracy, reaching 89% for the best-performing method Infomap. We identify the specific strengths and weaknesses of these different methods and point to major challenges for future approaches. Current automatic approaches for cognate detection—although not perfect—could become an important component of future research in historical linguistics. PMID:28129337

  11. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  12. Automatic extraction of planetary image features

    NASA Technical Reports Server (NTRS)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  13. Automatic peak selection by a Benjamini-Hochberg-based algorithm.

    PubMed

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.

  14. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    PubMed Central

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. PMID:23308147

  15. Online automatic tuning and control for fed-batch cultivation

    PubMed Central

    van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.

    2007-01-01

    Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554

  16. Discontinuous Galerkin Finite Element Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.

  17. A software tool to automatically assure and report daily treatment deliveries by a cobalt‐60 radiation therapy device

    PubMed Central

    Wooten, H. Omar; Green, Olga; Li, Harold H.; Liu, Shi; Li, Xiaoling; Rodriguez, Vivian; Mutic, Sasa; Kashani, Rojano

    2016-01-01

    The aims of this study were to develop a method for automatic and immediate verification of treatment delivery after each treatment fraction in order to detect and correct errors, and to develop a comprehensive daily report which includes delivery verification results, daily image‐guided radiation therapy (IGRT) review, and information for weekly physics reviews. After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a commercial MRI‐guided radiotherapy treatment machine, we designed a procedure to use 1) treatment plan files, 2) delivery log files, and 3) beam output information to verify the accuracy and completeness of each daily treatment delivery. The procedure verifies the correctness of delivered treatment plan parameters including beams, beam segments and, for each segment, the beam‐on time and MLC leaf positions. For each beam, composite primary fluence maps are calculated from the MLC leaf positions and segment beam‐on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. A daily treatment delivery report is designed to include all required information for IGRT and weekly physics reviews including the plan and treatment fraction information, daily beam output information, and the treatment delivery verification results. A computer program was developed to implement the proposed procedure of the automatic delivery verification and daily report generation for an MRI guided radiation therapy system. The program was clinically commissioned. Sensitivity was measured with simulated errors. The final version has been integrated into the commercial version of the treatment delivery system. The method automatically verifies the EBRT treatment deliveries and generates the daily treatment reports. Already in clinical use for over one year, it is useful to facilitate delivery error detection, and to expedite physician daily IGRT review and physicist weekly chart review. PACS number(s): 87.55.km PMID:27167269

  18. Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study

    NASA Astrophysics Data System (ADS)

    Kamiya, Naoki; Ieda, Kosuke; Zhou, Xiangrong; Yamada, Megumi; Kato, Hiroki; Muramatsu, Chisako; Hara, Takeshi; Miyoshi, Toshiharu; Inuzuka, Takashi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    Amyotrophic lateral sclerosis (ALS) causes functional disorders such as difficulty in breathing and swallowing through the atrophy of voluntary muscles. ALS in its early stages is difficult to diagnose because of the difficulty in differentiating it from other muscular diseases. In addition, image inspection methods for aggressive diagnosis for ALS have not yet been established. The purpose of this study is to develop an automatic analysis system of the whole skeletal muscle to support the early differential diagnosis of ALS using whole-body CT images. In this study, the muscular atrophy parts including ALS patients are automatically identified by recognizing and segmenting whole skeletal muscle in the preliminary steps. First, the skeleton is identified by its gray value information. Second, the initial area of the body cavity is recognized by the deformation of the thoracic cavity based on the anatomical segmented skeleton. Third, the abdominal cavity boundary is recognized using ABM for precisely recognizing the body cavity. The body cavity is precisely recognized by non-rigid registration method based on the reference points of the abdominal cavity boundary. Fourth, the whole skeletal muscle is recognized by excluding the skeleton, the body cavity, and the subcutaneous fat. Additionally, the areas of muscular atrophy including ALS patients are automatically identified by comparison of the muscle mass. The experiments were carried out for ten cases with abnormality in the skeletal muscle. Global recognition and segmentation of the whole skeletal muscle were well realized in eight cases. Moreover, the areas of muscular atrophy including ALS patients were well identified in the lower limbs. As a result, this study indicated the basic technology to detect the muscle atrophy including ALS. In the future, it will be necessary to consider methods to differentiate other kinds of muscular atrophy as well as the clinical application of this detection method for early ALS detection and examine a large number of cases with stage and disease type.

  19. SU-G-TeP1-05: Development and Clinical Introduction of Automated Radiotherapy Treatment Planning for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkel, D; Bol, GH; Asselen, B van

    Purpose: To develop an automated radiotherapy treatment planning and optimization workflow for prostate cancer in order to generate clinical treatment plans. Methods: A fully automated radiotherapy treatment planning and optimization workflow was developed based on the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). To evaluate our method, a retrospective planning study (n=100) was performed on patients treated for prostate cancer with 5 field intensity modulated radiotherapy, receiving a dose of 35×2Gy to the prostate and vesicles and a simultaneous integrated boost of 35×0.2Gy to the prostate only. A comparison was made between the dosimetric values of the automatically andmore » manually generated plans. Operator time to generate a plan and plan efficiency was measured. Results: A comparison of the dosimetric values show that automatically generated plans yield more beneficial dosimetric values. In automatic plans reductions of 43% in the V72Gy of the rectum and 13% in the V72Gy of the bladder are observed when compared to the manually generated plans. Smaller variance in dosimetric values is seen, i.e. the intra- and interplanner variability is decreased. For 97% of the automatically generated plans and 86% of the clinical plans all criteria for target coverage and organs at risk constraints are met. The amount of plan segments and monitor units is reduced by 13% and 9% respectively. Automated planning requires less than one minute of operator time compared to over an hour for manual planning. Conclusion: The automatically generated plans are highly suitable for clinical use. The plans have less variance and a large gain in time efficiency has been achieved. Currently, a pilot study is performed, comparing the preference of the clinician and clinical physicist for the automatic versus manual plan. Future work will include expanding our automated treatment planning method to other tumor sites and develop other automated radiotherapy workflows.« less

  20. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  1. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  2. Clustering Methods; Part IV of Scientific Report No. ISR-18, Information Storage and Retrieval...

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Dept. of Computer Science.

    Two papers are included as Part Four of this report on Salton's Magical Automatic Retriever of Texts (SMART) project report. The first paper: "A Controlled Single Pass Classification Algorithm with Application to Multilevel Clustering" by D. B. Johnson and J. M. Laferente presents a single pass clustering method which compares favorably…

  3. Method and apparatus for extraction of low-frequency artifacts from brain waves for alertness detection

    DOEpatents

    Clapp, Ned E.; Hively, Lee M.

    1997-01-01

    Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness.

  4. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  5. A method for studying the hunting oscillations of an airplane with a simple type of automatic control

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1944-01-01

    A method is presented for predicting the amplitude and frequency, under certain simplifying conditions, of the hunting oscillations of an automatically controlled aircraft with lag in the control system or in the response of the aircraft to the controls. If the steering device is actuated by a simple right-left type of signal, the series of alternating fixed-amplified signals occurring during the hunting may ordinarily be represented by a "square wave." Formulas are given expressing the response to such a variations of signal in terms of the response to a unit signal. A more complex type of hunting, which may involve cyclic repetition of signals of varying duration, has not been treated and requires further analysis. Several examples of application of the method are included and the results discussed.

  6. Automatic choroid cells segmentation and counting in fluorescence microscopic image

    NASA Astrophysics Data System (ADS)

    Fei, Jianjun; Zhu, Weifang; Shi, Fei; Xiang, Dehui; Lin, Xiao; Yang, Lei; Chen, Xinjian

    2016-03-01

    In this paper, we proposed a method to automatically segment and count the rhesus choroid-retinal vascular endothelial cells (RF/6A) in fluorescence microscopic images which is based on shape classification, bottleneck detection and accelerated Dijkstra algorithm. The proposed method includes four main steps. First, a thresholding filter and morphological operations are applied to reduce the noise. Second, a shape classifier is used to decide whether a connected component is needed to be segmented. In this step, the AdaBoost classifier is applied with a set of shape features. Third, the bottleneck positions are found based on the contours of the connected components. Finally, the cells segmentation and counting are completed based on the accelerated Dijkstra algorithm with the gradient information between the bottleneck positions. The results show the feasibility and efficiency of the proposed method.

  7. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  8. Automatic rule generation for high-level vision

    NASA Technical Reports Server (NTRS)

    Rhee, Frank Chung-Hoon; Krishnapuram, Raghu

    1992-01-01

    A new fuzzy set based technique that was developed for decision making is discussed. It is a method to generate fuzzy decision rules automatically for image analysis. This paper proposes a method to generate rule-based approaches to solve problems such as autonomous navigation and image understanding automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.

  9. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  10. The SIETTE Automatic Assessment Environment

    ERIC Educational Resources Information Center

    Conejo, Ricardo; Guzmán, Eduardo; Trella, Monica

    2016-01-01

    This article describes the evolution and current state of the domain-independent Siette assessment environment. Siette supports different assessment methods--including classical test theory, item response theory, and computer adaptive testing--and integrates them with multidimensional student models used by intelligent educational systems.…

  11. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics1[OPEN

    PubMed Central

    Poeschl, Yvonne; Plötner, Romina

    2017-01-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. PMID:28931626

  12. Automatically Detecting Likely Edits in Clinical Notes Created Using Automatic Speech Recognition

    PubMed Central

    Lybarger, Kevin; Ostendorf, Mari; Yetisgen, Meliha

    2017-01-01

    The use of automatic speech recognition (ASR) to create clinical notes has the potential to reduce costs associated with note creation for electronic medical records, but at current system accuracy levels, post-editing by practitioners is needed to ensure note quality. Aiming to reduce the time required to edit ASR transcripts, this paper investigates novel methods for automatic detection of edit regions within the transcripts, including both putative ASR errors but also regions that are targets for cleanup or rephrasing. We create detection models using logistic regression and conditional random field models, exploring a variety of text-based features that consider the structure of clinical notes and exploit the medical context. Different medical text resources are used to improve feature extraction. Experimental results on a large corpus of practitioner-edited clinical notes show that 67% of sentence-level edits and 45% of word-level edits can be detected with a false detection rate of 15%. PMID:29854187

  13. Automatic updating and 3D modeling of airport information from high resolution images using GIS and LIDAR data

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Sui, Haigang; Zhang, Xilin; Huang, Xianfeng

    2007-11-01

    As one of the most important geo-spatial objects and military establishment, airport is always a key target in fields of transportation and military affairs. Therefore, automatic recognition and extraction of airport from remote sensing images is very important and urgent for updating of civil aviation and military application. In this paper, a new multi-source data fusion approach on automatic airport information extraction, updating and 3D modeling is addressed. Corresponding key technologies including feature extraction of airport information based on a modified Ostu algorithm, automatic change detection based on new parallel lines-based buffer detection algorithm, 3D modeling based on gradual elimination of non-building points algorithm, 3D change detecting between old airport model and LIDAR data, typical CAD models imported and so on are discussed in detail. At last, based on these technologies, we develop a prototype system and the results show our method can achieve good effects.

  14. Fully Automatic Segmentation of Fluorescein Leakage in Subjects With Diabetic Macular Edema

    PubMed Central

    Rabbani, Hossein; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Farsiu, Sina

    2015-01-01

    Purpose. To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Methods. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. Results. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Conclusions. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. PMID:25634978

  15. Automatic Temporal Tracking of Supra-Glacial Lakes

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Lv, Q.; Gallaher, D. W.; Fanning, D.

    2010-12-01

    During the recent years, supra-glacial lakes in Greenland have attracted extensive global attention as they potentially play an important role in glacier movement, sea level rise, and climate change. Previous works focused on classification methods and individual cloud-free satellite images, which have limited capabilities in terms of tracking changes of lakes over time. The challenges of tracking supra-glacial lakes automatically include (1) massive amount of satellite images with diverse qualities and frequent cloud coverage, and (2) diversity and dynamics of large number of supra-glacial lakes on the Greenland ice sheet. In this study, we develop an innovative method to automatically track supra-glacial lakes temporally using the Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data. The method works for both cloudy and cloud-free data and is unsupervised, i.e., no manual identification is required. After selecting the highest-quality image within each time interval, our method automatically detects supra-glacial lakes in individual images, using adaptive thresholding to handle diverse image qualities. We then track lakes across time series of images as lakes appear, change in size, and disappear. Using multi-year MODIS data during melting season, we demonstrate that this new method can detect and track supra-glacial lakes in both space and time with 95% accuracy. Attached figure shows an example of the current result. Detailed analysis of the temporal variation of detected lakes will be presented. (a) One of our experimental data. The Investigated region is centered at Jakobshavn Isbrae glacier in west Greenland. (b) Enlarged view of part of ice sheet. It is partially cloudy and with supra-glacial lakes on it. Lakes are shown as dark spots. (c) Current result. Red spots are detected lakes.

  16. Automatic MRI 2D brain segmentation using graph searching technique.

    PubMed

    Pedoia, Valentina; Binaghi, Elisabetta

    2013-09-01

    Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints.

    PubMed

    Albà, Xènia; Figueras I Ventura, Rosa M; Lekadir, Karim; Tobon-Gomez, Catalina; Hoogendoorn, Corné; Frangi, Alejandro F

    2014-12-01

    Magnetic resonance imaging (MRI), specifically late-enhanced MRI, is the standard clinical imaging protocol to assess cardiac viability. Segmentation of myocardial walls is a prerequisite for this assessment. Automatic and robust multisequence segmentation is required to support processing massive quantities of data. A generic rule-based framework to automatically segment the left ventricle myocardium is presented here. We use intensity information, and include shape and interslice smoothness constraints, providing robustness to subject- and study-specific changes. Our automatic initialization considers the geometrical and appearance properties of the left ventricle, as well as interslice information. The segmentation algorithm uses a decoupled, modified graph cut approach with control points, providing a good balance between flexibility and robustness. The method was evaluated on late-enhanced MRI images from a 20-patient in-house database, and on cine-MRI images from a 15-patient open access database, both using as reference manually delineated contours. Segmentation agreement, measured using the Dice coefficient, was 0.81±0.05 and 0.92±0.04 for late-enhanced MRI and cine-MRI, respectively. The method was also compared favorably to a three-dimensional Active Shape Model approach. The experimental validation with two magnetic resonance sequences demonstrates increased accuracy and versatility. © 2013 Wiley Periodicals, Inc.

  18. Carotid stenosis assessment with multi-detector CT angiography: comparison between manual and automatic segmentation methods.

    PubMed

    Zhu, Chengcheng; Patterson, Andrew J; Thomas, Owen M; Sadat, Umar; Graves, Martin J; Gillard, Jonathan H

    2013-04-01

    Luminal stenosis is used for selecting the optimal management strategy for patients with carotid artery disease. The aim of this study is to evaluate the reproducibility of carotid stenosis quantification using manual and automated segmentation methods using submillimeter through-plane resolution Multi-Detector CT angiography (MDCTA). 35 patients having carotid artery disease with >30 % luminal stenosis as identified by carotid duplex imaging underwent contrast enhanced MDCTA. Two experienced CT readers quantified carotid stenosis from axial source images, reconstructed maximum intensity projection (MIP) and 3D-carotid geometry which was automatically segmented by an open-source toolkit (Vascular Modelling Toolkit, VMTK) using NASCET criteria. Good agreement among the measurement using axial images, MIP and automatic segmentation was observed. Automatic segmentation methods show better inter-observer agreement between the readers (intra-class correlation coefficient (ICC): 0.99 for diameter stenosis measurement) than manual measurement of axial (ICC = 0.82) and MIP (ICC = 0.86) images. Carotid stenosis quantification using an automatic segmentation method has higher reproducibility compared with manual methods.

  19. Diagnostic accuracy of automatic normalization of CBV in glioma grading using T1- weighted DCE-MRI.

    PubMed

    Sahoo, Prativa; Gupta, Rakesh K; Gupta, Pradeep K; Awasthi, Ashish; Pandey, Chandra M; Gupta, Mudit; Patir, Rana; Vaishya, Sandeep; Ahlawat, Sunita; Saha, Indrajit

    2017-12-01

    Aim of this retrospective study was to compare diagnostic accuracy of proposed automatic normalization method to quantify the relative cerebral blood volume (rCBV) with existing contra-lateral region of interest (ROI) based CBV normalization method for glioma grading using T1-weighted dynamic contrast enhanced MRI (DCE-MRI). Sixty patients with histologically confirmed gliomas were included in this study retrospectively. CBV maps were generated using T1-weighted DCE-MRI and are normalized by contralateral ROI based method (rCBV_contra), unaffected white matter (rCBV_WM) and unaffected gray matter (rCBV_GM), the latter two of these were generated automatically. An expert radiologist with >10years of experience in DCE-MRI and a non-expert with one year experience were used independently to measure rCBVs. Cutoff values for glioma grading were decided from ROC analysis. Agreement of histology with rCBV_WM, rCBV_GM and rCBV_contra respectively was studied using Kappa statistics and intra-class correlation coefficient (ICC). The diagnostic accuracy of glioma grading using the measured rCBV_contra by expert radiologist was found to be high (sensitivity=1.00, specificity=0.96, p<0.001) compared to the non-expert user (sensitivity=0.65, specificity=0.78, p<0.001). On the other hand, both the expert and non-expert user showed similar diagnostic accuracy for automatic rCBV_WM (sensitivity=0.89, specificity=0.87, p=0.001) and rCBV_GM (sensitivity=0.81, specificity=0.78, p=0.001) measures. Further, it was also observed that, contralateral based method by expert user showed highest agreement with histological grading of tumor (kappa=0.96, agreement 98.33%, p<0.001), however; automatic normalization method showed same percentage of agreement for both expert and non-expert user. rCBV_WM showed an agreement of 88.33% (kappa=0.76,p<0.001) with histopathological grading. It was inferred from this study that, in the absence of expert user, automated normalization of CBV using the proposed method could provide better diagnostic accuracy compared to the manual contralateral based approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans

    NASA Astrophysics Data System (ADS)

    Shahzad, Rahil; Bos, Daniel; Budde, Ricardo P. J.; Pellikaan, Karlijn; Niessen, Wiro J.; van der Lugt, Aad; van Walsum, Theo

    2017-05-01

    Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is 1.4+/- 1.7 mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.

  1. Automatic crown cover mapping to improve forest inventory

    Treesearch

    Claude Vidal; Jean-Guy Boureau; Nicolas Robert; Nicolas Py; Josiane Zerubia; Xavier Descombes; Guillaume Perrin

    2009-01-01

    To automatically analyze near infrared aerial photographs, the French National Institute for Research in Computer Science and Control developed together with the French National Forest Inventory (NFI) a method for automatic crown cover mapping. This method uses a Reverse Jump Monte Carlo Markov Chain algorithm to locate the crowns and describe those using ellipses or...

  2. Holographic radar imaging privacy techniques utilizing dual-frequency implementation

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.

    2008-04-01

    Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhance the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.

  3. Holographic Radar Imaging Privacy Techniques Utilizing Dual-Frequency Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.

    2008-04-18

    Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhancemore » the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.« less

  4. Accurate computer-aided quantification of left ventricular parameters: experience in 1555 cardiac magnetic resonance studies from the Framingham Heart Study.

    PubMed

    Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J

    2012-05-01

    Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.

  5. 3D automatic anatomy recognition based on iterative graph-cut-ASM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Udupa, Jayaram K.; Bagci, Ulas; Alavi, Abass; Torigian, Drew A.

    2010-02-01

    We call the computerized assistive process of recognizing, delineating, and quantifying organs and tissue regions in medical imaging, occurring automatically during clinical image interpretation, automatic anatomy recognition (AAR). The AAR system we are developing includes five main parts: model building, object recognition, object delineation, pathology detection, and organ system quantification. In this paper, we focus on the delineation part. For the modeling part, we employ the active shape model (ASM) strategy. For recognition and delineation, we integrate several hybrid strategies of combining purely image based methods with ASM. In this paper, an iterative Graph-Cut ASM (IGCASM) method is proposed for object delineation. An algorithm called GC-ASM was presented at this symposium last year for object delineation in 2D images which attempted to combine synergistically ASM and GC. Here, we extend this method to 3D medical image delineation. The IGCASM method effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. We propose a new GC cost function, which effectively integrates the specific image information with the ASM shape model information. The proposed methods are tested on a clinical abdominal CT data set. The preliminary results show that: (a) it is feasible to explicitly bring prior 3D statistical shape information into the GC framework; (b) the 3D IGCASM delineation method improves on ASM and GC and can provide practical operational time on clinical images.

  6. Accuracy and reproducibility of novel echocardiographic three-dimensional automated software for the assessment of the aortic root in candidates for thanscatheter aortic valve replacement.

    PubMed

    García-Martín, Ana; Lázaro-Rivera, Carla; Fernández-Golfín, Covadonga; Salido-Tahoces, Luisa; Moya-Mur, Jose-Luis; Jiménez-Nacher, Jose-Julio; Casas-Rojo, Eduardo; Aquila, Iolanda; González-Gómez, Ariana; Hernández-Antolín, Rosana; Zamorano, José Luis

    2016-07-01

    A specialized three-dimensional transoesophageal echocardiography (3D-TOE) reconstruction tool has recently been introduced; the system automatically configures a geometric model of the aortic root from the images obtained by 3D-TOE and performs quantitative analysis of these structures. The aim of this study was to compare the measurements of the aortic annulus (AA) obtained by the new model to that obtained by 3D-TOE and multidetector computed tomography (MDCT) in candidates to transcatheter aortic valve implantation (TAVI) and to assess the reproducibility of this new method. We included 31 patients who underwent TAVI. The AA diameters and area were evaluated by the manual 3D-TOE method and by the automatic software. We showed an excellent correlation between the measurements obtained by both methods: intra-class correlation coefficient (ICC): 0.731 (0.508-0.862), r: 0.742 for AA diameter and ICC: 0.723 (0.662-0.923), r: 0.723 for the AA area, with no significant differences regardless of the method used. The interobserver variability was superior for the automatic measurements than for the manual ones. In a subgroup of 10 patients, we also found an excellent correlation between the automatic measurements and those obtained by MDCT, ICC: 0.941 (0.761-0.985), r: 0.901 for AA diameter and ICC: 0.853 (0.409-0.964), r: 0.744 for the AA area. The new automatic 3D-TOE software allows modelling and quantifying the aortic root from 3D-TOE data with high reproducibility. There is good correlation between the automated measurements and other 3D validated techniques. Our results support its use in clinical practice as an alternative to MDCT previous to TAVI. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Hanson, Bradley D; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin

    2015-07-28

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images.

  8. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Hanson, Bradley D.; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin

    2015-01-01

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images. PMID:26225982

  9. Tools for a Document Image Utility.

    ERIC Educational Resources Information Center

    Krishnamoorthy, M.; And Others

    1993-01-01

    Describes a project conducted at Rensselaer Polytechnic Institute (New York) that developed methods for automatically subdividing pages from technical journals into smaller semantic units for transmission, display, and further processing in an electronic environment. Topics discussed include optical scanning and image compression, digital image…

  10. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  11. Automatic alignment method for calibration of hydrometers

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Chang, K. H.; Chon, J. C.; Oh, C. Y.

    2004-04-01

    This paper presents a new method to automatically align specific scale-marks for the calibration of hydrometers. A hydrometer calibration system adopting the new method consists of a vision system, a stepping motor, and software to control the system. The vision system is composed of a CCD camera and a frame grabber, and is used to acquire images. The stepping motor moves the camera, which is attached to the vessel containing a reference liquid, along the hydrometer. The operating program has two main functions: to process images from the camera to find the position of the horizontal plane and to control the stepping motor for the alignment of the horizontal plane with a particular scale-mark. Any system adopting this automatic alignment method is a convenient and precise means of calibrating a hydrometer. The performance of the proposed method is illustrated by comparing the calibration results using the automatic alignment method with those obtained using the manual method.

  12. Improved automatic adjustment of density and contrast in FCR system using neural network

    NASA Astrophysics Data System (ADS)

    Takeo, Hideya; Nakajima, Nobuyoshi; Ishida, Masamitsu; Kato, Hisatoyo

    1994-05-01

    FCR system has an automatic adjustment of image density and contrast by analyzing the histogram of image data in the radiation field. Advanced image recognition methods proposed in this paper can improve the automatic adjustment performance, in which neural network technology is used. There are two methods. Both methods are basically used 3-layer neural network with back propagation. The image data are directly input to the input-layer in one method and the histogram data is input in the other method. The former is effective to the imaging menu such as shoulder joint in which the position of interest region occupied on the histogram changes by difference of positioning and the latter is effective to the imaging menu such as chest-pediatrics in which the histogram shape changes by difference of positioning. We experimentally confirm the validity of these methods (about the automatic adjustment performance) as compared with the conventional histogram analysis methods.

  13. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    PubMed

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  14. DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D.

    PubMed

    Shuvaev, Sergey A; Lazutkin, Alexander A; Kedrov, Alexander V; Anokhin, Konstantin V; Enikolopov, Grigori N; Koulakov, Alexei A

    2017-01-01

    Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software.

  15. Template-based automatic extraction of the joint space of foot bones from CT scan

    NASA Astrophysics Data System (ADS)

    Park, Eunbi; Kim, Taeho; Park, Jinah

    2016-03-01

    Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).

  16. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  17. Clinical significance of automatic warning function of cardiac remote monitoring systems in preventing acute cardiac episodes

    PubMed Central

    Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing

    2014-01-01

    Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124

  18. Method and apparatus for extraction of low-frequency artifacts from brain waves for alertness detection

    DOEpatents

    Clapp, N.E.; Hively, L.M.

    1997-05-06

    Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness. 4 figs.

  19. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  20. Automatic classification of seismic events within a regional seismograph network

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Kortström, Jari; Uski, Marja

    2015-04-01

    A fully automatic method for seismic event classification within a sparse regional seismograph network is presented. The tool is based on a supervised pattern recognition technique, Support Vector Machine (SVM), trained here to distinguish weak local earthquakes from a bulk of human-made or spurious seismic events. The classification rules rely on differences in signal energy distribution between natural and artificial seismic sources. Seismic records are divided into four windows, P, P coda, S, and S coda. For each signal window STA is computed in 20 narrow frequency bands between 1 and 41 Hz. The 80 discrimination parameters are used as a training data for the SVM. The SVM models are calculated for 19 on-line seismic stations in Finland. The event data are compiled mainly from fully automatic event solutions that are manually classified after automatic location process. The station-specific SVM training events include 11-302 positive (earthquake) and 227-1048 negative (non-earthquake) examples. The best voting rules for combining results from different stations are determined during an independent testing period. Finally, the network processing rules are applied to an independent evaluation period comprising 4681 fully automatic event determinations, of which 98 % have been manually identified as explosions or noise and 2 % as earthquakes. The SVM method correctly identifies 94 % of the non-earthquakes and all the earthquakes. The results imply that the SVM tool can identify and filter out blasts and spurious events from fully automatic event solutions with a high level of confidence. The tool helps to reduce work-load in manual seismic analysis by leaving only ~5 % of the automatic event determinations, i.e. the probable earthquakes for more detailed seismological analysis. The approach presented is easy to adjust to requirements of a denser or wider high-frequency network, once enough training examples for building a station-specific data set are available.

  1. An Evaluation of Feature Learning Methods for High Resolution Image Classification

    NASA Astrophysics Data System (ADS)

    Tokarczyk, P.; Montoya, J.; Schindler, K.

    2012-07-01

    Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.

  2. An ERTS-1 investigation for Lake Ontario and its basin

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Falconer, A. (Principal Investigator); Wagner, T. W.; Rebel, D. L.

    1975-01-01

    The author has identified the following significant results. Methods of manual, semi-automatic, and automatic (computer) data processing were evaluated, as were the requirements for spatial physiographic and limnological information. The coupling of specially processed ERTS data with simulation models of the watershed precipitation/runoff process provides potential for water resources management. Optimal and full use of the data requires a mix of data processing and analysis techniques, including single band editing, two band ratios, and multiband combinations. A combination of maximum likelihood ratio and near-IR/red band ratio processing was found to be particularly useful.

  3. Method of automatic measurement and focus of an electron beam and apparatus therefore

    DOEpatents

    Giedt, W.H.; Campiotti, R.

    1996-01-09

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

  4. Method of automatic measurement and focus of an electron beam and apparatus therefor

    DOEpatents

    Giedt, Warren H.; Campiotti, Richard

    1996-01-01

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

  5. A method of automatic control procedures cardiopulmonary resuscitation

    NASA Astrophysics Data System (ADS)

    Bureev, A. Sh.; Zhdanov, D. S.; Kiseleva, E. Yu.; Kutsov, M. S.; Trifonov, A. Yu.

    2015-11-01

    The study is to present the results of works on creation of methods of automatic control procedures of cardiopulmonary resuscitation (CPR). A method of automatic control procedure of CPR by evaluating the acoustic data of the dynamics of blood flow in the bifurcation of carotid arteries and the dynamics of air flow in a trachea according to the current guidelines for CPR is presented. Evaluation of the patient is carried out by analyzing the respiratory noise and blood flow in the interspaces between the chest compressions and artificial pulmonary ventilation. The device operation algorithm of automatic control procedures of CPR and its block diagram has been developed.

  6. Automatic color preference correction for color reproduction

    NASA Astrophysics Data System (ADS)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  7. Automatic Synthesis of Panoramic Radiographs from Dental Cone Beam Computed Tomography Data.

    PubMed

    Luo, Ting; Shi, Changrong; Zhao, Xing; Zhao, Yunsong; Xu, Jinqiu

    2016-01-01

    In this paper, we propose an automatic method of synthesizing panoramic radiographs from dental cone beam computed tomography (CBCT) data for directly observing the whole dentition without the superimposition of other structures. This method consists of three major steps. First, the dental arch curve is generated from the maximum intensity projection (MIP) of 3D CBCT data. Then, based on this curve, the long axial curves of the upper and lower teeth are extracted to create a 3D panoramic curved surface describing the whole dentition. Finally, the panoramic radiograph is synthesized by developing this 3D surface. Both open-bite shaped and closed-bite shaped dental CBCT datasets were applied in this study, and the resulting images were analyzed to evaluate the effectiveness of this method. With the proposed method, a single-slice panoramic radiograph can clearly and completely show the whole dentition without the blur and superimposition of other dental structures. Moreover, thickened panoramic radiographs can also be synthesized with increased slice thickness to show more features, such as the mandibular nerve canal. One feature of the proposed method is that it is automatically performed without human intervention. Another feature of the proposed method is that it requires thinner panoramic radiographs to show the whole dentition than those produced by other existing methods, which contributes to the clarity of the anatomical structures, including the enamel, dentine and pulp. In addition, this method can rapidly process common dental CBCT data. The speed and image quality of this method make it an attractive option for observing the whole dentition in a clinical setting.

  8. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOEpatents

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  9. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  10. Advanced Feedback Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1985-01-01

    In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…

  11. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  12. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles.

    PubMed

    Zhang, Duona; Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong

    2018-03-20

    Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.

  13. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis.

    PubMed

    Suurmond, Robert; van Rhee, Henk; Hak, Tony

    2017-12-01

    We present a new tool for meta-analysis, Meta-Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta-analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta-Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta-analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp-Hartung adjustment of the DerSimonian-Laird estimator. However, more advanced meta-analysis methods such as meta-analytical structural equation modelling and meta-regression with multiple covariates are not available. In summary, Meta-Essentials may prove a valuable resource for meta-analysts, including researchers, teachers, and students. © 2017 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

  14. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles

    PubMed Central

    Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong

    2018-01-01

    Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network. PMID:29558434

  15. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOEpatents

    Muhs, Jeffrey D.; Scudiere, Matthew B.; Jordan, John K.

    2002-01-01

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  16. FROM THE HISTORY OF PHYSICS: Georgii L'vovich Shnirman: designer of fast-response instruments

    NASA Astrophysics Data System (ADS)

    Bashilov, I. P.

    1994-07-01

    A biography is given of the outstanding Russian scientist Georgii L'vovich Shnirman, whose scientific life had been 'top secret'. He was an experimental physicist and instrument designer, the founder of many branches of the Soviet instrument-making industry, the originator of a theory of electric methods of integration and differentiation, a theory of astasisation of pendulums, and also of original measurement methods. He was the originator and designer of automatic systems for the control of the measuring apparatus used at nuclear test sites and of automatic seismic station systems employed in monitoring nuclear tests. He also designed the first loop oscilloscopes in the Soviet Union, high-speed photographic and cine cameras (streak cameras, etc.), and many other unique instruments, including some mounted on moving objects.

  17. 30 CFR 27.23 - Automatic warning device.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic warning device. 27.23 Section 27.23... Automatic warning device. (a) An automatic warning device shall be suitably constructed for incorporation in... automatic warning device shall include an alarm signal (audible or colored light), which shall be made to...

  18. 30 CFR 27.23 - Automatic warning device.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic warning device. 27.23 Section 27.23... Automatic warning device. (a) An automatic warning device shall be suitably constructed for incorporation in... automatic warning device shall include an alarm signal (audible or colored light), which shall be made to...

  19. 30 CFR 27.23 - Automatic warning device.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic warning device. 27.23 Section 27.23... Automatic warning device. (a) An automatic warning device shall be suitably constructed for incorporation in... automatic warning device shall include an alarm signal (audible or colored light), which shall be made to...

  20. 30 CFR 27.23 - Automatic warning device.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic warning device. 27.23 Section 27.23... Automatic warning device. (a) An automatic warning device shall be suitably constructed for incorporation in... automatic warning device shall include an alarm signal (audible or colored light), which shall be made to...

  1. Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis.

    PubMed

    Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D

    2017-05-01

    MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q

    Purpose: According to clinical and research requirement, we develop a function of automatic reading dose of interest from dose volume histogram(DVH), to replace the traditional method with a mouse one by one point, and it's also verified. Methods: The DVH automatic reading function will be developed in an in-house developed radiotherapy information management system(RTIMS), which is based on Apache+PHP+MySQL. A DVH ASCII file is exported from Varian Eclipse V8.6, which includes the following contents: 1. basic information of patient; 2. dose information of plan; 3. dose information of structures, including basic information and dose volume data of target volume andmore » organ at risk. And the default exported dose volume data also includes relative doses by 1% step and corresponding absolute doses and cumulative relative volumes, and the volumes are 4 decimal fraction. Clinically, we often need read the doses of some integer percent volumes, such as D50 and D30. So it couldn't be directly obtained from the above data, but we can use linear interpolation bye the near volumes and doses: Dx=D2−(V2−Vx)*(D2−D1)/(V2−V1), and program a function to search, read and calculate the corresponding data. And the doses of all preseted volume of interest of all structures can be automatically read one by one patient, and saved as a CSV file. To verify it, we select 24 IMRT plans for prostate cancer, and doses of interest are PTV D98/D95/D5/D2, bladder D30/D50, and rectum D25/D50. Two groups of data, using the automatic reading method(ARM) and pointed dose method(PDM), are analyzed with SPSS 16. The absolute difference=D-ARM-D-PDM, relative difference=absolute difference*100%/prescription dose(7600cGy). Results: The differences are as following: PTV D98/D95/D5/D2: −0.04%/− 0.04%/0.13%/0.19%, bladder D30/D50: −0.02%/0.01%, and rectum D25/D50: 0.03%/0.01%. Conclusion: Using this function, the error is very small, and can be neglected. It could greatly improve the efficiency of clinical work. Project supported by the National Natural Science Foundation of China (Grant No.81101694)« less

  3. Predictability of monthly temperature and precipitation using automatic time series forecasting methods

    NASA Astrophysics Data System (ADS)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2018-02-01

    We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.

  4. Automatic identification of the reference system based on the fourth ventricular landmarks in T1-weighted MR images.

    PubMed

    Fu, Yili; Gao, Wenpeng; Chen, Xiaoguang; Zhu, Minwei; Shen, Weigao; Wang, Shuguo

    2010-01-01

    The reference system based on the fourth ventricular landmarks (including the fastigial point and ventricular floor plane) is used in medical image analysis of the brain stem. The objective of this study was to develop a rapid, robust, and accurate method for the automatic identification of this reference system on T1-weighted magnetic resonance images. The fully automated method developed in this study consisted of four stages: preprocessing of the data set, expectation-maximization algorithm-based extraction of the fourth ventricle in the region of interest, a coarse-to-fine strategy for identifying the fastigial point, and localization of the base point. The method was evaluated on 27 Brain Web data sets qualitatively and 18 Internet Brain Segmentation Repository data sets and 30 clinical scans quantitatively. The results of qualitative evaluation indicated that the method was robust to rotation, landmark variation, noise, and inhomogeneity. The results of quantitative evaluation indicated that the method was able to identify the reference system with an accuracy of 0.7 +/- 0.2 mm for the fastigial point and 1.1 +/- 0.3 mm for the base point. It took <6 seconds for the method to identify the related landmarks on a personal computer with an Intel Core 2 6300 processor and 2 GB of random-access memory. The proposed method for the automatic identification of the reference system based on the fourth ventricular landmarks was shown to be rapid, robust, and accurate. The method has potentially utility in image registration and computer-aided surgery.

  5. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures andmore » ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1.46%) and margin error (0.49  ±  0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. Conclusions: The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.« less

  6. Automatic x-ray image contrast enhancement based on parameter auto-optimization.

    PubMed

    Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan

    2017-11-01

    Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more accurate treatment setup and facilitating the subsequent offline review and verification. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.

    PubMed

    Rabbani, Hossein; Allingham, Michael J; Mettu, Priyatham S; Cousins, Scott W; Farsiu, Sina

    2015-01-29

    To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  8. New conversion factors between human and automatic readouts of the CDMAM phantom for CR systems

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Homolka, Peter; Osanna-Elliot, Angelika; Kaar, Marcus; Semtrus, Friedrich; Figl, Michael

    2016-03-01

    Mammography screenings demand for profound image quality (IQ) assessment to guarantee their screening success. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests a contrast detail phantom such as the CDMAM phantom to evaluate IQ. For automatic evaluation a software is provided by the EUREF. As human and automatic readouts differ systematically conversion factors were published by the official reference organisation (EUREF). As we experienced a significant difference for these factors for Computed Radiography (CR) systems we developed an objectifying analysis software which presents the cells including the gold disks randomly in thickness and rotation. This allows to overcome the problem of an inevitable learning effect where observers know the position of the disks in advance. Applying this software, 45 computed radiography (CR) systems were evaluated and the conversion factors between human and automatic readout determined. The resulting conversion factors were compared with the ones resulting from the two methods published by EUREF. We found our conversion factors to be substantially lower than those suggested by EUREF, in particular 1.21 compared to 1.42 (EUREF EU method) and 1.62 (EUREF UK method) for 0.1 mm, and 1.40 compared to 1.73 (EUREF EU) and 1.83 (EUREF UK) for 0.25 mm disc diameter, respectively. This can result in a dose increase of up to 90% using either of these factors to adjust patient dose in order to fulfill image quality requirements. This suggests the need of an agreement on their proper application and limits the validity of the assessment methods. Therefore, we want to stress the need for clear criteria for CR systems based on appropriate studies.

  9. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test...

  10. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test...

  11. A method for the automatic reconstruction of fetal cardiac signals from magnetocardiographic recordings

    NASA Astrophysics Data System (ADS)

    Mantini, D.; Alleva, G.; Comani, S.

    2005-10-01

    Fetal magnetocardiography (fMCG) allows monitoring the fetal heart function through algorithms able to retrieve the fetal cardiac signal, but no standardized automatic model has become available so far. In this paper, we describe an automatic method that restores the fetal cardiac trace from fMCG recordings by means of a weighted summation of fetal components separated with independent component analysis (ICA) and identified through dedicated algorithms that analyse the frequency content and temporal structure of each source signal. Multichannel fMCG datasets of 66 healthy and 4 arrhythmic fetuses were used to validate the automatic method with respect to a classical procedure requiring the manual classification of fetal components by an expert investigator. ICA was run with input clusters of different dimensions to simulate various MCG systems. Detection rates, true negative and false positive component categorization, QRS amplitude, standard deviation and signal-to-noise ratio of reconstructed fetal signals, and real and per cent QRS differences between paired fetal traces retrieved automatically and manually were calculated to quantify the performances of the automatic method. Its robustness and reliability, particularly evident with the use of large input clusters, might increase the diagnostic role of fMCG during the prenatal period.

  12. Automatic identification of physical activity types and sedentary behaviors from triaxial accelerometer: laboratory-based calibrations are not enough.

    PubMed

    Bastian, Thomas; Maire, Aurélia; Dugas, Julien; Ataya, Abbas; Villars, Clément; Gris, Florence; Perrin, Emilie; Caritu, Yanis; Doron, Maeva; Blanc, Stéphane; Jallon, Pierre; Simon, Chantal

    2015-03-15

    "Objective" methods to monitor physical activity and sedentary patterns in free-living conditions are necessary to further our understanding of their impacts on health. In recent years, many software solutions capable of automatically identifying activity types from portable accelerometry data have been developed, with promising results in controlled conditions, but virtually no reports on field tests. An automatic classification algorithm initially developed using laboratory-acquired data (59 subjects engaging in a set of 24 standardized activities) to discriminate between 8 activity classes (lying, slouching, sitting, standing, walking, running, and cycling) was applied to data collected in the field. Twenty volunteers equipped with a hip-worn triaxial accelerometer performed at their own pace an activity set that included, among others, activities such as walking the streets, running, cycling, and taking the bus. Performances of the laboratory-calibrated classification algorithm were compared with those of an alternative version of the same model including field-collected data in the learning set. Despite good results in laboratory conditions, the performances of the laboratory-calibrated algorithm (assessed by confusion matrices) decreased for several activities when applied to free-living data. Recalibrating the algorithm with data closer to real-life conditions and from an independent group of subjects proved useful, especially for the detection of sedentary behaviors while in transports, thereby improving the detection of overall sitting (sensitivity: laboratory model = 24.9%; recalibrated model = 95.7%). Automatic identification methods should be developed using data acquired in free-living conditions rather than data from standardized laboratory activity sets only, and their limits carefully tested before they are used in field studies. Copyright © 2015 the American Physiological Society.

  13. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.

    PubMed

    Möller, Birgit; Poeschl, Yvonne; Plötner, Romina; Bürstenbinder, Katharina

    2017-11-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  15. Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration.

    PubMed

    Yang, Minglei; Ding, Hui; Zhu, Lei; Wang, Guangzhi

    2016-12-01

    Ultrasound fusion imaging is an emerging tool and benefits a variety of clinical applications, such as image-guided diagnosis and treatment of hepatocellular carcinoma and unresectable liver metastases. However, respiratory liver motion-induced misalignment of multimodal images (i.e., fusion error) compromises the effectiveness and practicability of this method. The purpose of this paper is to develop a subject-specific liver motion model and automatic registration-based method to correct the fusion error. An online-built subject-specific motion model and automatic image registration method for 2D ultrasound-3D magnetic resonance (MR) images were combined to compensate for the respiratory liver motion. The key steps included: 1) Build a subject-specific liver motion model for current subject online and perform the initial registration of pre-acquired 3D MR and intra-operative ultrasound images; 2) During fusion imaging, compensate for liver motion first using the motion model, and then using an automatic registration method to further correct the respiratory fusion error. Evaluation experiments were conducted on liver phantom and five subjects. In the phantom study, the fusion error (superior-inferior axis) was reduced from 13.90±2.38mm to 4.26±0.78mm by using the motion model only. The fusion error further decreased to 0.63±0.53mm by using the registration method. The registration method also decreased the rotation error from 7.06±0.21° to 1.18±0.66°. In the clinical study, the fusion error was reduced from 12.90±9.58mm to 6.12±2.90mm by using the motion model alone. Moreover, the fusion error decreased to 1.96±0.33mm by using the registration method. The proposed method can effectively correct the respiration-induced fusion error to improve the fusion image quality. This method can also reduce the error correction dependency on the initial registration of ultrasound and MR images. Overall, the proposed method can improve the clinical practicability of ultrasound fusion imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Complete denture tooth arrangement technology driven by a reconfigurable rule.

    PubMed

    Dai, Ning; Yu, Xiaoling; Fan, Qilei; Yuan, Fulai; Liu, Lele; Sun, Yuchun

    2018-01-01

    The conventional technique for the fabrication of complete dentures is complex, with a long fabrication process and difficult-to-control restoration quality. In recent years, digital complete denture design has become a research focus. Digital complete denture tooth arrangement is a challenging issue that is difficult to efficiently implement under the constraints of complex tooth arrangement rules and the patient's individualized functional aesthetics. The present study proposes a complete denture automatic tooth arrangement method driven by a reconfigurable rule; it uses four typical operators, including a position operator, a scaling operator, a posture operator, and a contact operator, to establish the constraint mapping association between the teeth and the constraint set of the individual patient. By using the process reorganization of different constraint operators, this method can flexibly implement different clinical tooth arrangement rules. When combined with a virtual occlusion algorithm based on progressive iterative Laplacian deformation, the proposed method can achieve automatic and individual tooth arrangement. Finally, the experimental results verify that the proposed method is flexible and efficient.

  17. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  18. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1999-01-01

    Methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming.

  19. System for definition of the central-chest vasculature

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2009-02-01

    Accurate definition of the central-chest vasculature from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. For instance, the aorta and pulmonary artery help in automatic definition of the Mountain lymph-node stations for lung-cancer staging. This work presents a system for defining major vascular structures in the central chest. The system provides automatic methods for extracting the aorta and pulmonary artery and semi-automatic methods for extracting the other major central chest arteries/veins, such as the superior vena cava and azygos vein. Automatic aorta and pulmonary artery extraction are performed by model fitting and selection. The system also extracts certain vascular structure information to validate outputs. A semi-automatic method extracts vasculature by finding the medial axes between provided important sites. Results of the system are applied to lymph-node station definition and guidance of bronchoscopic biopsy.

  20. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    NASA Astrophysics Data System (ADS)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  1. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  2. Use of emergency department electronic medical records for automated epidemiological surveillance of suicide attempts: a French pilot study.

    PubMed

    Metzger, Marie-Hélène; Tvardik, Nastassia; Gicquel, Quentin; Bouvry, Côme; Poulet, Emmanuel; Potinet-Pagliaroli, Véronique

    2017-06-01

    The aim of this study was to determine whether an expert system based on automated processing of electronic health records (EHRs) could provide a more accurate estimate of the annual rate of emergency department (ED) visits for suicide attempts in France, as compared to the current national surveillance system based on manual coding by emergency practitioners. A feasibility study was conducted at Lyon University Hospital, using data for all ED patient visits in 2012. After automatic data extraction and pre-processing, including automatic coding of medical free-text through use of the Unified Medical Language System, seven different machine-learning methods were used to classify the reasons for ED visits into "suicide attempts" versus "other reasons". The performance of these different methods was compared by using the F-measure. In a test sample of 444 patients admitted to the ED in 2012 (98 suicide attempts, 48 cases of suicidal ideation, and 292 controls with no recorded non-fatal suicidal behaviour), the F-measure for automatic detection of suicide attempts ranged from 70.4% to 95.3%. The random forest and naïve Bayes methods performed best. This study demonstrates that machine-learning methods can improve the quality of epidemiological indicators as compared to current national surveillance of suicide attempts. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Ratbot automatic navigation by electrical reward stimulation based on distance measurement in unknown environments.

    PubMed

    Gao, Liqiang; Sun, Chao; Zhang, Chen; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2013-01-01

    Traditional automatic navigation methods for bio-robots are constrained to configured environments and thus can't be applied to tasks in unknown environments. With no consideration of bio-robot's own innate living ability and treating bio-robots in the same way as mechanical robots, those methods neglect the intelligence behavior of animals. This paper proposes a novel ratbot automatic navigation method in unknown environments using only reward stimulation and distance measurement. By utilizing rat's habit of thigmotaxis and its reward-seeking behavior, this method is able to incorporate rat's intrinsic intelligence of obstacle avoidance and path searching into navigation. Experiment results show that this method works robustly and can successfully navigate the ratbot to a target in the unknown environment. This work might put a solid base for application of ratbots and also has significant implication of automatic navigation for other bio-robots as well.

  4. Comparison between refractometer and retinoscopy in determining refractive errors in children--false doubt.

    PubMed

    Pokupec, Rajko; Mrazovac, Danijela; Popović-Suić, Smiljka; Mrazovac, Visnja; Kordić, Rajko; Petricek, Igor

    2013-04-01

    Early detection of a refractive error and its correction are extremely important for the prevention of amblyopia (poor vision). The golden standard in the detection of refractive errors is retinoscopy--a method where the pupils are dilated in order to exclude accomodation. This results in a more accurate measurement of a refractive error. Automatic computer refractometer is also in use. The study included 30 patients, 15 boys, 15 girls aged 4-16. The first examination was conducted with refractometer on narrow pupils. Retinoscopy, followed by another examination with refractometer was performed on pupils dilated with mydriatic drops administered 3 times. The results obtained with three methods were compared. They indicate that in narrow pupils the autorefractometer revealed an increased diopter value in nearsightedness (myopia), the minus overcorrection, whereas findings obtained with retinoscopy and autorefractometer in mydriasis cycloplegia, were much more accurate. The results were statistically processed, which confirmed the differences between obtained measurements. These findings are consistent with the results of studies conducted by other authors. Automatic refractometry on narrow pupils has proven to be a method for detection of refractive errors in children. However, the exact value of the refractive error is obtained only in mydriasis--with retinoscopy or an automatic refractometer on dilated pupils.

  5. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  6. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  7. Automatic atlas-based three-label cartilage segmentation from MR knee images

    PubMed Central

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2016-01-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683

  8. A study on ship automatic berthing with assistance of auxiliary devices

    NASA Astrophysics Data System (ADS)

    Tran, Van Luong; Im, Namkyun

    2012-09-01

    The recent researches on the automatic berthing control problems have used various kinds of tools as a control method such as expert system, fuzzy logic controllers and artificial neural network (ANN). Among them, ANN has proved to be one of the most effective and attractive options. In a marine context, the berthing maneuver is a complicated procedure in which both human experience and intensive control operations are involved. Nowadays, in most cases of berthing operation, auxiliary devices are used to make the schedule safer and faster but none of above researches has taken into account. In this study, ANN is applied to design the controllers for automatic ship berthing using assistant devices such as bow thruster and tug. Using back-propagation algorithm, we trained ANN with set of teaching data to get a minimal error between output values and desired values of four control outputs including rudder, propeller revolution, bow thruster and tug. Then, computer simulations of automatic berthing were carried out to verify the effecttiveness of the system. The results of the simulations showed good performance for the proposed berthing control system.

  9. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis

    PubMed Central

    Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra

    2014-01-01

    Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario. Objective The aims were to describe how to: (i) develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and (ii) automatically identify the features that best distinguish the groups. Methods The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described – simple or complex; presentation order – which type of picture was described first; and age). In this study, the descriptions by 144 of the subjects studied in Toledo18 were used,which included 200 healthy Brazilians of both genders. Results and Conclusion A Support Vector Machine (SVM) with a radial basis function (RBF) kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS) is a strong candidate to replace manual feature selection methods. PMID:29213908

  10. Highly automatic quantification of myocardial oedema in patients with acute myocardial infarction using bright blood T2-weighted CMR

    PubMed Central

    2013-01-01

    Background T2-weighted cardiovascular magnetic resonance (CMR) is clinically-useful for imaging the ischemic area-at-risk and amount of salvageable myocardium in patients with acute myocardial infarction (MI). However, to date, quantification of oedema is user-defined and potentially subjective. Methods We describe a highly automatic framework for quantifying myocardial oedema from bright blood T2-weighted CMR in patients with acute MI. Our approach retains user input (i.e. clinical judgment) to confirm the presence of oedema on an image which is then subjected to an automatic analysis. The new method was tested on 25 consecutive acute MI patients who had a CMR within 48 hours of hospital admission. Left ventricular wall boundaries were delineated automatically by variational level set methods followed by automatic detection of myocardial oedema by fitting a Rayleigh-Gaussian mixture statistical model. These data were compared with results from manual segmentation of the left ventricular wall and oedema, the current standard approach. Results The mean perpendicular distances between automatically detected left ventricular boundaries and corresponding manual delineated boundaries were in the range of 1-2 mm. Dice similarity coefficients for agreement (0=no agreement, 1=perfect agreement) between manual delineation and automatic segmentation of the left ventricular wall boundaries and oedema regions were 0.86 and 0.74, respectively. Conclusion Compared to standard manual approaches, the new highly automatic method for estimating myocardial oedema is accurate and straightforward. It has potential as a generic software tool for physicians to use in clinical practice. PMID:23548176

  11. Automatic Neural Processing of Disorder-Related Stimuli in Social Anxiety Disorder: Faces and More

    PubMed Central

    Schulz, Claudia; Mothes-Lasch, Martin; Straube, Thomas

    2013-01-01

    It has been proposed that social anxiety disorder (SAD) is associated with automatic information processing biases resulting in hypersensitivity to signals of social threat such as negative facial expressions. However, the nature and extent of automatic processes in SAD on the behavioral and neural level is not entirely clear yet. The present review summarizes neuroscientific findings on automatic processing of facial threat but also other disorder-related stimuli such as emotional prosody or negative words in SAD. We review initial evidence for automatic activation of the amygdala, insula, and sensory cortices as well as for automatic early electrophysiological components. However, findings vary depending on tasks, stimuli, and neuroscientific methods. Only few studies set out to examine automatic neural processes directly and systematic attempts are as yet lacking. We suggest that future studies should: (1) use different stimulus modalities, (2) examine different emotional expressions, (3) compare findings in SAD with other anxiety disorders, (4) use more sophisticated experimental designs to investigate features of automaticity systematically, and (5) combine different neuroscientific methods (such as functional neuroimaging and electrophysiology). Finally, the understanding of neural automatic processes could also provide hints for therapeutic approaches. PMID:23745116

  12. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  13. Automatic Text Structuring and Summarization.

    ERIC Educational Resources Information Center

    Salton, Gerard; And Others

    1997-01-01

    Discussion of the use of information retrieval techniques for automatic generation of semantic hypertext links focuses on automatic text summarization. Topics include World Wide Web links, text segmentation, and evaluation of text summarization by comparing automatically generated abstracts with manually prepared abstracts. (Author/LRW)

  14. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

    PubMed

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa

    2016-08-01

    For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1.46%) and margin error (0.49  ±  0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.

  15. Introduction to Adjoint Models

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  16. Design of Automatic Extraction Algorithm of Knowledge Points for MOOCs

    PubMed Central

    Chen, Haijian; Han, Dongmei; Zhao, Lina

    2015-01-01

    In recent years, Massive Open Online Courses (MOOCs) are very popular among college students and have a powerful impact on academic institutions. In the MOOCs environment, knowledge discovery and knowledge sharing are very important, which currently are often achieved by ontology techniques. In building ontology, automatic extraction technology is crucial. Because the general methods of text mining algorithm do not have obvious effect on online course, we designed automatic extracting course knowledge points (AECKP) algorithm for online course. It includes document classification, Chinese word segmentation, and POS tagging for each document. Vector Space Model (VSM) is used to calculate similarity and design the weight to optimize the TF-IDF algorithm output values, and the higher scores will be selected as knowledge points. Course documents of “C programming language” are selected for the experiment in this study. The results show that the proposed approach can achieve satisfactory accuracy rate and recall rate. PMID:26448738

  17. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis.

    PubMed

    Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki

    2014-09-01

    Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.

  18. A two-dimensional air-to-air combat game - Toward an air-combat advisory system

    NASA Technical Reports Server (NTRS)

    Neuman, Frank

    1987-01-01

    Air-to-air combat is modeled as a discrete differential game, and by constraining the game to searching for the best guidance laws from the sets of those considered for each opponent, feedback and outcome charts are obtained which can be used to turn one of the automatic opponents into an intelligent opponent against a human pilot. A one-on-one two-dimensional fully automatic, or manned versus automatic, air-to-air combat game has been designed which includes both attack and evasion alternatives for both aircraft. Guidance law selection occurs by flooding the initial-condition space with four simulated fights for each initial condition, depicting the various attack/evasion strategies for the two opponents, and recording the outcomes. For each initial condition, the minimax method from differential games is employed to determine the best choice from the available strategies.

  19. Assessment of Automatically Exported Clinical Data from a Hospital Information System for Clinical Research in Multiple Myeloma.

    PubMed

    Torres, Viviana; Cerda, Mauricio; Knaup, Petra; Löpprich, Martin

    2016-01-01

    An important part of the electronic information available in Hospital Information System (HIS) has the potential to be automatically exported to Electronic Data Capture (EDC) platforms for improving clinical research. This automation has the advantage of reducing manual data transcription, a time consuming and prone to errors process. However, quantitative evaluations of the process of exporting data from a HIS to an EDC system have not been reported extensively, in particular comparing with manual transcription. In this work an assessment to study the quality of an automatic export process, focused in laboratory data from a HIS is presented. Quality of the laboratory data was assessed in two types of processes: (1) a manual process of data transcription, and (2) an automatic process of data transference. The automatic transference was implemented as an Extract, Transform and Load (ETL) process. Then, a comparison was carried out between manual and automatic data collection methods. The criteria to measure data quality were correctness and completeness. The manual process had a general error rate of 2.6% to 7.1%, obtaining the lowest error rate if data fields with a not clear definition were removed from the analysis (p < 10E-3). In the case of automatic process, the general error rate was 1.9% to 12.1%, where lowest error rate is obtained when excluding information missing in the HIS but transcribed to the EDC from other physical sources. The automatic ETL process can be used to collect laboratory data for clinical research if data in the HIS as well as physical documentation not included in HIS, are identified previously and follows a standardized data collection protocol.

  20. Automatic query formulations in information retrieval.

    PubMed

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.

  1. Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks.

    PubMed

    Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Thornton, A Roger D; Sainz, Manuel; Vargas, Jose Luis

    2014-05-01

    The recording of the auditory brainstem response (ABR) is used worldwide for hearing screening purposes. In this process, a precise estimation of the most relevant components is essential for an accurate interpretation of these signals. This evaluation is usually carried out subjectively by an audiologist. However, the use of automatic methods for this purpose is being encouraged nowadays in order to reduce human evaluation biases and ensure uniformity among test conditions, patients, and screening personnel. This article describes a new method that performs automatic quality assessment and identification of the peaks, the fitted parametric peaks (FPP). This method is based on the use of synthesized peaks that are adjusted to the ABR response. The FPP is validated, on one hand, by an analysis of amplitudes and latencies measured manually by an audiologist and automatically by the FPP method in ABR signals recorded at different stimulation rates; and on the other hand, contrasting the performance of the FPP method with the automatic evaluation techniques based on the correlation coefficient, FSP, and cross correlation with a predefined template waveform by comparing the automatic evaluations of the quality of these methods with subjective evaluations provided by five experienced evaluators on a set of ABR signals of different quality. The results of this study suggest (a) that the FPP method can be used to provide an accurate parameterization of the peaks in terms of amplitude, latency, and width, and (b) that the FPP remains as the method that best approaches the averaged subjective quality evaluation, as well as provides the best results in terms of sensitivity and specificity in ABR signals validation. The significance of these findings and the clinical value of the FPP method are highlighted on this paper. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Fast Quantitative Susceptibility Mapping with L1-Regularization and Automatic Parameter Selection

    PubMed Central

    Bilgic, Berkin; Fan, Audrey P.; Polimeni, Jonathan R.; Cauley, Stephen F.; Bianciardi, Marta; Adalsteinsson, Elfar; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable fast reconstruction of quantitative susceptibility maps with Total Variation penalty and automatic regularization parameter selection. Methods ℓ1-regularized susceptibility mapping is accelerated by variable-splitting, which allows closed-form evaluation of each iteration of the algorithm by soft thresholding and FFTs. This fast algorithm also renders automatic regularization parameter estimation practical. A weighting mask derived from the magnitude signal can be incorporated to allow edge-aware regularization. Results Compared to the nonlinear Conjugate Gradient (CG) solver, the proposed method offers 20× speed-up in reconstruction time. A complete pipeline including Laplacian phase unwrapping, background phase removal with SHARP filtering and ℓ1-regularized dipole inversion at 0.6 mm isotropic resolution is completed in 1.2 minutes using Matlab on a standard workstation compared to 22 minutes using the Conjugate Gradient solver. This fast reconstruction allows estimation of regularization parameters with the L-curve method in 13 minutes, which would have taken 4 hours with the CG algorithm. Proposed method also permits magnitude-weighted regularization, which prevents smoothing across edges identified on the magnitude signal. This more complicated optimization problem is solved 5× faster than the nonlinear CG approach. Utility of the proposed method is also demonstrated in functional BOLD susceptibility mapping, where processing of the massive time-series dataset would otherwise be prohibitive with the CG solver. Conclusion Online reconstruction of regularized susceptibility maps may become feasible with the proposed dipole inversion. PMID:24259479

  3. [Target volume segmentation of PET images by an iterative method based on threshold value].

    PubMed

    Castro, P; Huerga, C; Glaría, L A; Plaza, R; Rodado, S; Marín, M D; Mañas, A; Serrada, A; Núñez, L

    2014-01-01

    An automatic segmentation method is presented for PET images based on an iterative approximation by threshold value that includes the influence of both lesion size and background present during the acquisition. Optimal threshold values that represent a correct segmentation of volumes were determined based on a PET phantom study that contained different sizes spheres and different known radiation environments. These optimal values were normalized to background and adjusted by regression techniques to a two-variable function: lesion volume and signal-to-background ratio (SBR). This adjustment function was used to build an iterative segmentation method and then, based in this mention, a procedure of automatic delineation was proposed. This procedure was validated on phantom images and its viability was confirmed by retrospectively applying it on two oncology patients. The resulting adjustment function obtained had a linear dependence with the SBR and was inversely proportional and negative with the volume. During the validation of the proposed method, it was found that the volume deviations respect to its real value and CT volume were below 10% and 9%, respectively, except for lesions with a volume below 0.6 ml. The automatic segmentation method proposed can be applied in clinical practice to tumor radiotherapy treatment planning in a simple and reliable way with a precision close to the resolution of PET images. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  4. Automated spectrophotometric bicarbonate analysis in duodenal juice compared to the back titration method.

    PubMed

    Erchinger, Friedemann; Engjom, Trond; Gudbrandsen, Oddrun Anita; Tjora, Erling; Gilja, Odd H; Dimcevski, Georg

    2016-01-01

    We have recently evaluated a short endoscopic secretin test for exocrine pancreatic function. Bicarbonate concentration in duodenal juice is an important parameter in this test. Measurement of bicarbonate by back titration as the gold standard method is time consuming, expensive and technically difficult, thus a simplified method is warranted. We aimed to evaluate an automated spectrophotometric method in samples spanning the effective range of bicarbonate concentrations in duodenal juice. We also evaluated if freezing of samples before analyses would affect its results. Patients routinely examined with short endoscopic secretin test suspected to have decreased pancreatic function of various reasons were included. Bicarbonate in duodenal juice was quantified by back titration and automatic spectrophotometry. Both fresh and thawed samples were analysed spectrophotometrically. 177 samples from 71 patients were analysed. Correlation coefficient of all measurements was r = 0.98 (p < 0.001). Correlation coefficient of fresh versus frozen samples conducted with automatic spectrophotometry (n = 25): r = 0.96 (p < 0.001) CONCLUSIONS: The measurement of bicarbonate in fresh and thawed samples by automatic spectrophotometrical analysis correlates excellent with the back titration gold standard. This is a major simplification of direct pancreas function testing, and allows a wider distribution of bicarbonate testing in duodenal juice. Extreme values for Bicarbonate concentration achieved by the autoanalyser method have to be interpreted with caution. Copyright © 2016 IAP and EPC. Published by Elsevier India Pvt Ltd. All rights reserved.

  5. Semi-automatic tracking, smoothing and segmentation of hyoid bone motion from videofluoroscopic swallowing study.

    PubMed

    Kim, Won-Seok; Zeng, Pengcheng; Shi, Jian Qing; Lee, Youngjo; Paik, Nam-Jong

    2017-01-01

    Motion analysis of the hyoid bone via videofluoroscopic study has been used in clinical research, but the classical manual tracking method is generally labor intensive and time consuming. Although some automatic tracking methods have been developed, masked points could not be tracked and smoothing and segmentation, which are necessary for functional motion analysis prior to registration, were not provided by the previous software. We developed software to track the hyoid bone motion semi-automatically. It works even in the situation where the hyoid bone is masked by the mandible and has been validated in dysphagia patients with stroke. In addition, we added the function of semi-automatic smoothing and segmentation. A total of 30 patients' data were used to develop the software, and data collected from 17 patients were used for validation, of which the trajectories of 8 patients were partly masked. Pearson correlation coefficients between the manual and automatic tracking are high and statistically significant (0.942 to 0.991, P-value<0.0001). Relative errors between automatic tracking and manual tracking in terms of the x-axis, y-axis and 2D range of hyoid bone excursion range from 3.3% to 9.2%. We also developed an automatic method to segment each hyoid bone trajectory into four phases (elevation phase, anterior movement phase, descending phase and returning phase). The semi-automatic hyoid bone tracking from VFSS data by our software is valid compared to the conventional manual tracking method. In addition, the ability of automatic indication to switch the automatic mode to manual mode in extreme cases and calibration without attaching the radiopaque object is convenient and useful for users. Semi-automatic smoothing and segmentation provide further information for functional motion analysis which is beneficial to further statistical analysis such as functional classification and prognostication for dysphagia. Therefore, this software could provide the researchers in the field of dysphagia with a convenient, useful, and all-in-one platform for analyzing the hyoid bone motion. Further development of our method to track the other swallowing related structures or objects such as epiglottis and bolus and to carry out the 2D curve registration may be needed for a more comprehensive functional data analysis for dysphagia with big data.

  6. Using Machine Learning to Increase Research Efficiency: A New Approach in Environmental Sciences

    USDA-ARS?s Scientific Manuscript database

    Data collection has evolved from tedious in-person fieldwork to automatic data gathering from multiple sensor remotely. Scientist in environmental sciences have not fully exploited this data deluge, including legacy and new data, because the traditional scientific method is focused on small, high qu...

  7. Testing methods and techniques: Environmental testing: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Various devices and techniques are described for testing hardware and components in four special environments: low temperature, high temperature, high pressure, and vibration. Items ranging from an automatic calibrator for pressure transducers to a fixture for testing the susceptibility of materials to ignition by electric spark are included.

  8. Semi-automatic knee cartilage segmentation

    NASA Astrophysics Data System (ADS)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  9. Validation of semi-automatic segmentation of the left atrium

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R., III; Camp, J. J.; Packer, D. L.; Robb, R. A.

    2008-03-01

    Catheter ablation therapy has become increasingly popular for the treatment of left atrial fibrillation. The effect of this treatment on left atrial morphology, however, has not yet been completely quantified. Initial studies have indicated a decrease in left atrial size with a concomitant decrease in pulmonary vein diameter. In order to effectively study if catheter based therapies affect left atrial geometry, robust segmentations with minimal user interaction are required. In this work, we validate a method to semi-automatically segment the left atrium from computed-tomography scans. The first step of the technique utilizes seeded region growing to extract the entire blood pool including the four chambers of the heart, the pulmonary veins, aorta, superior vena cava, inferior vena cava, and other surrounding structures. Next, the left atrium and pulmonary veins are separated from the rest of the blood pool using an algorithm that searches for thin connections between user defined points in the volumetric data or on a surface rendering. Finally, pulmonary veins are separated from the left atrium using a three dimensional tracing tool. A single user segmented three datasets three times using both the semi-automatic technique as well as manual tracing. The user interaction time for the semi-automatic technique was approximately forty-five minutes per dataset and the manual tracing required between four and eight hours per dataset depending on the number of slices. A truth model was generated using a simple voting scheme on the repeated manual segmentations. A second user segmented each of the nine datasets using the semi-automatic technique only. Several metrics were computed to assess the agreement between the semi-automatic technique and the truth model including percent differences in left atrial volume, DICE overlap, and mean distance between the boundaries of the segmented left atria. Overall, the semi-automatic approach was demonstrated to be repeatable within and between raters, and accurate when compared to the truth model. Finally, we generated a visualization to assess the spatial variability in the segmentation errors between the semi-automatic approach and the truth model. The visualization demonstrates the highest errors occur at the boundaries between the left atium and pulmonary veins as well as the left atrium and left atrial appendage. In conclusion, we describe a semi-automatic approach for left atrial segmentation that demonstrates repeatability and accuracy, with the advantage of significant time reduction in user interaction time.

  10. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping.

    PubMed

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-07-27

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.

  11. Rapid automatic keyword extraction for information retrieval and analysis

    DOEpatents

    Rose, Stuart J [Richland, WA; Cowley,; E, Wendy [Richland, WA; Crow, Vernon L [Richland, WA; Cramer, Nicholas O [Richland, WA

    2012-03-06

    Methods and systems for rapid automatic keyword extraction for information retrieval and analysis. Embodiments can include parsing words in an individual document by delimiters, stop words, or both in order to identify candidate keywords. Word scores for each word within the candidate keywords are then calculated based on a function of co-occurrence degree, co-occurrence frequency, or both. Based on a function of the word scores for words within the candidate keyword, a keyword score is calculated for each of the candidate keywords. A portion of the candidate keywords are then extracted as keywords based, at least in part, on the candidate keywords having the highest keyword scores.

  12. Automatic generation of stop word lists for information retrieval and analysis

    DOEpatents

    Rose, Stuart J

    2013-01-08

    Methods and systems for automatically generating lists of stop words for information retrieval and analysis. Generation of the stop words can include providing a corpus of documents and a plurality of keywords. From the corpus of documents, a term list of all terms is constructed and both a keyword adjacency frequency and a keyword frequency are determined. If a ratio of the keyword adjacency frequency to the keyword frequency for a particular term on the term list is less than a predetermined value, then that term is excluded from the term list. The resulting term list is truncated based on predetermined criteria to form a stop word list.

  13. Automatic protein structure solution from weak X-ray data

    NASA Astrophysics Data System (ADS)

    Skubák, Pavol; Pannu, Navraj S.

    2013-11-01

    Determining new protein structures from X-ray diffraction data at low resolution or with a weak anomalous signal is a difficult and often an impossible task. Here we propose a multivariate algorithm that simultaneously combines the structure determination steps. In tests on over 140 real data sets from the protein data bank, we show that this combined approach can automatically build models where current algorithms fail, including an anisotropically diffracting 3.88 Å RNA polymerase II data set. The method seamlessly automates the process, is ideal for non-specialists and provides a mathematical framework for successfully combining various sources of information in image processing.

  14. Automatic Registration of GF4 Pms: a High Resolution Multi-Spectral Sensor on Board a Satellite on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Gao, M.; Li, J.

    2018-04-01

    Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.

  15. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.

    PubMed

    Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi

    2014-01-01

    EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei

    2017-02-01

    Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

  17. Automatic detection of articulation disorders in children with cleft lip and palate.

    PubMed

    Maier, Andreas; Hönig, Florian; Bocklet, Tobias; Nöth, Elmar; Stelzle, Florian; Nkenke, Emeka; Schuster, Maria

    2009-11-01

    Speech of children with cleft lip and palate (CLP) is sometimes still disordered even after adequate surgical and nonsurgical therapies. Such speech shows complex articulation disorders, which are usually assessed perceptually, consuming time and manpower. Hence, there is a need for an easy to apply and reliable automatic method. To create a reference for an automatic system, speech data of 58 children with CLP were assessed perceptually by experienced speech therapists for characteristic phonetic disorders at the phoneme level. The first part of the article aims to detect such characteristics by a semiautomatic procedure and the second to evaluate a fully automatic, thus simple, procedure. The methods are based on a combination of speech processing algorithms. The semiautomatic method achieves moderate to good agreement (kappa approximately 0.6) for the detection of all phonetic disorders. On a speaker level, significant correlations between the perceptual evaluation and the automatic system of 0.89 are obtained. The fully automatic system yields a correlation on the speaker level of 0.81 to the perceptual evaluation. This correlation is in the range of the inter-rater correlation of the listeners. The automatic speech evaluation is able to detect phonetic disorders at an experts'level without any additional human postprocessing.

  18. YIP Formal Synthesis of Software-Based Control Protocols for Fractionated,Composable Autonomous Systems

    DTIC Science & Technology

    2016-07-08

    Systems Using Automata Theory and Barrier Certifi- cates We developed a sound but incomplete method for the computational verification of specifications...method merges ideas from automata -based model checking with those from control theory including so-called barrier certificates and optimization-based... Automata theory meets barrier certificates: Temporal logic verification of nonlinear systems,” IEEE Transactions on Automatic Control, 2015. [J2] R

  19. High speed inviscid compressible flow by the finite element method

    NASA Technical Reports Server (NTRS)

    Zienkiewicz, O. C.; Loehner, R.; Morgan, K.

    1984-01-01

    The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.

  20. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Day, C.S.; Lawkins, W.F.

    1999-01-12

    This research discloses methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming. 76 figs.

  1. 2D Automatic body-fitted structured mesh generation using advancing extraction method

    USDA-ARS?s Scientific Manuscript database

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...

  2. 2D automatic body-fitted structured mesh generation using advancing extraction method

    USDA-ARS?s Scientific Manuscript database

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...

  3. The Influence of Endmember Selection Method in Extracting Impervious Surface from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Wang, J.; Feng, B.

    2016-12-01

    Impervious surface area (ISA) has long been studied as an important input into moisture flux models. In general, ISA impedes groundwater recharge, increases stormflow/flood frequency, and alters in-stream and riparian habitats. Urban area is recognized as one of the richest ISA environment. Urban ISA mapping assists flood prevention and urban planning. Hyperspectral imagery (HI), for its ability to detect subtle spectral signature, becomes an ideal candidate in urban ISA mapping. To map ISA from HI involves endmember (EM) selection. The high degree of spatial and spectral heterogeneity of urban environment puts great difficulty in this task: a compromise point is needed between the automatic degree and the good representativeness of the method. The study tested one manual and two semi-automatic EM selection strategies. The manual and the first semi-automatic methods have been widely used in EM selection. The second semi-automatic EM selection method is rather new and has been only proposed for moderate spatial resolution satellite. The manual method visually selected the EM candidates from eight landcover types in the original image. The first semi-automatic method chose the EM candidates using a threshold over the pixel purity index (PPI) map. The second semi-automatic method used the triangle shape of the HI scatter plot in the n-Dimension visualizer to identify the V-I-S (vegetation-impervious surface-soil) EM candidates: the pixels locate at the triangle points. The initial EM candidates from the three methods were further refined by three indexes (EM average RMSE, minimum average spectral angle, and count based EM selection) and generated three spectral libraries, which were used to classify the test image. Spectral angle mapper was applied. The accuracy reports for the classification results were generated. The overall accuracy are 85% for the manual method, 81% for the PPI method, and 87% for the V-I-S method. The V-I-S EM selection method performs best in this study. This fact proves the value of V-I-S EM selection method in not only moderate spatial resolution satellite image but also the more and more accessible high spatial resolution airborne image. This semi-automatic EM selection method can be adopted into a wide range of remote sensing images and provide ISA map for hydrology analysis.

  4. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.

    PubMed

    Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen

    2014-08-01

    A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.

  5. Automatic categorization of diverse experimental information in the bioscience literature

    PubMed Central

    2012-01-01

    Background Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. Results We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Conclusions Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort. PMID:22280404

  6. Automatic categorization of diverse experimental information in the bioscience literature.

    PubMed

    Fang, Ruihua; Schindelman, Gary; Van Auken, Kimberly; Fernandes, Jolene; Chen, Wen; Wang, Xiaodong; Davis, Paul; Tuli, Mary Ann; Marygold, Steven J; Millburn, Gillian; Matthews, Beverley; Zhang, Haiyan; Brown, Nick; Gelbart, William M; Sternberg, Paul W

    2012-01-26

    Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort.

  7. MO-G-BRE-04: Automatic Verification of Daily Treatment Deliveries and Generation of Daily Treatment Reports for a MR Image-Guided Treatment Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, D; Li, X; Li, H

    2014-06-15

    Purpose: Two aims of this work were to develop a method to automatically verify treatment delivery accuracy immediately after patient treatment and to develop a comprehensive daily treatment report to provide all required information for daily MR-IGRT review. Methods: After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a novel MR-IGRT treatment machine, we designed a method to use 1) treatment plan files, 2) delivery log files, and 3) dosimetric calibration information to verify the accuracy and completeness of daily treatment deliveries. The method verifies the correctness of delivered treatment plans and beams, beammore » segments, and for each segment, the beam-on time and MLC leaf positions. Composite primary fluence maps are calculated from the MLC leaf positions and the beam-on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. We also designed the daily treatment delivery report by including all required information for MR-IGRT and physics weekly review - the plan and treatment fraction information, dose verification information, daily patient setup screen captures, and the treatment delivery verification results. Results: The parameters in the log files (e.g. MLC positions) were independently verified and deemed accurate and trustable. A computer program was developed to implement the automatic delivery verification and daily report generation. The program was tested and clinically commissioned with sufficient IMRT and 3D treatment delivery data. The final version has been integrated into a commercial MR-IGRT treatment delivery system. Conclusion: A method was developed to automatically verify MR-IGRT treatment deliveries and generate daily treatment reports. Already in clinical use since December 2013, the system is able to facilitate delivery error detection, and expedite physician daily IGRT review and physicist weekly chart review.« less

  8. Automatic inoculating apparatus. [includes movable carraige, drive motor, and swabbing motor

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1974-01-01

    An automatic inoculating apparatus for agar trays is described and using a simple inoculating element, such as a cotton swab or inoculating loop. The apparatus includes a movable carriage for supporting the tray to be inoculated, a drive motor for moving the tray along a trackway, and a swabbing motor for automatically swabbing the tray during the movement. An actuator motor controls lowering of the inoculating element onto the tray and lifting of the inoculating element. An electrical control system, including limit microswitches, enables automatic control of the actuator motor and return of the carriage to the initial position after inoculating is completed.

  9. The Extraction of Terrace in the Loess Plateau Based on radial method

    NASA Astrophysics Data System (ADS)

    Liu, W.; Li, F.

    2016-12-01

    The terrace of Loess Plateau, as a typical kind of artificial landform and an important measure of soil and water conservation, its positioning and automatic extraction will simplify the work of land use investigation. The existing methods of terrace extraction mainly include visual interpretation and automatic extraction. The manual method is used in land use investigation, but it is time-consuming and laborious. Researchers put forward some automatic extraction methods. For example, Fourier transform method can recognize terrace and find accurate position from frequency domain image, but it is more affected by the linear objects in the same direction of terrace; Texture analysis method is simple and have a wide range application of image processing. The disadvantage of texture analysis method is unable to recognize terraces' edge; Object-oriented is a new method of image classification, but when introduce it to terrace extracting, fracture polygons will be the most serious problem and it is difficult to explain its geological meaning. In order to positioning the terraces, we use high- resolution remote sensing image to extract and analyze the gray value of the pixels which the radial went through. During the recognition process, we firstly use the DEM data analysis or by manual selecting, to roughly confirm the position of peak points; secondly, take each of the peak points as the center to make radials in all directions; finally, extracting the gray values of the pixels which the radials went through, and analyzing its changing characteristics to confirm whether the terrace exists. For the purpose of getting accurate position of terrace, terraces' discontinuity, extension direction, ridge width, image processing algorithm, remote sensing image illumination and other influence factors were fully considered when designing the algorithms.

  10. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method

    PubMed Central

    Veta, Mitko; van Diest, Paul J.; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, Josien P. W.

    2016-01-01

    Background Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far. Methods The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an “external” dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method. Results The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased way, with substantial agreement with human experts. PMID:27529701

  11. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1992-01-01

    A rotor assembly for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water, includes a rotor body for rotation about an axis and including a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses.

  12. Self adaptive solution strategies: Locally bound constrained Newton Raphson solution algorithms

    NASA Technical Reports Server (NTRS)

    Padovan, Joe

    1991-01-01

    A summary is given of strategies which enable the automatic adjustment of the constraint surfaces recently used to extend the range and numerical stability/efficiency of nonlinear finite element equation solvers. In addition to handling kinematic and material induced nonlinearity, both pre-and postbuckling behavior can be treated. The scheme employs localized bounds on various hierarchical partitions of the field variables. These are used to resize, shape, and orient the global constraint surface, thereby enabling essentially automatic load/deflection incrementation. Due to the generality of the approach taken, it can be implemented in conjunction with the constraints of an arbitrary functional type. To benchmark the method, several numerical experiments are presented. These include problems involving kinematic and material nonlinearity, as well as pre- and postbuckling characteristics. Also included is a list of papers published in the course of the work.

  13. Effectiveness-weighted control method for a cooling system

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  14. Aortic Curvature Instead of Angulation Allows Improved Estimation of the True Aorto-iliac Trajectory.

    PubMed

    Schuurmann, R C L; Kuster, L; Slump, C H; Vahl, A; van den Heuvel, D A F; Ouriel, K; de Vries, J-P P M

    2016-02-01

    Supra- and infrarenal aortic neck angulation have been associated with complications after endovascular aortic aneurysm repair. However, a uniform angulation measurement method is lacking and the concept of angulation suggests a triangular oversimplification of the aortic anatomy. (Semi-)automated calculation of curvature along the center luminal line describes the actual trajectory of the aorta. This study proposes a methodology for calculating aortic (neck) curvature and suggests an additional method based on available tools in current workstations: curvature by digital calipers (CDC). Proprietary custom software was developed for automatic calculation of the severity and location of the largest supra- and infrarenal curvature over the center luminal line. Twenty-four patients with severe supra- or infrarenal angulations (≥45°) and 11 patients with small to moderate angulations (<45°) were included. Both CDC and angulation were measured by two independent observers on the pre- and postoperative computed tomographic angiography scans. The relationships between actual curvature and CDC and angulation were visualized and tested with Pearson's correlation coefficient. The CDC was also fully automatically calculated with proprietary custom software. The difference between manual and automatic determination of CDC was tested with a paired Student t test. A p-value was considered significant when two-tailed α < .05. The correlation between actual curvature and manual CDC is strong (.586-.962) and even stronger for automatic CDC (.865-.961). The correlation between actual curvature and angulation is much lower (.410-.737). Flow direction angulation values overestimate CDC measurements by 60%, with larger variance. No significant difference was found in automatically calculated CDC values and manually measured CDC values. Curvature calculation of the aortic neck improves determination of the true aortic trajectory. Automatic calculation of the actual curvature is preferable, but measurement or calculation of the curvature by digital calipers is a valid alternative if actual curvature is not at hand. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  15. [The mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents].

    PubMed

    Yavuzer, Yasemin; Karataş, Zeynep

    2013-01-01

    This study aimed to examine the mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents. The study included 224 adolescents in the 9th grade of 3 different high schools in central Burdur during the 2011-2012 academic year. Participants completed the Aggression Questionnaire and Automatic Thoughts Scale in their classrooms during counseling sessions. Data were analyzed using simple and multiple linear regression analysis. There were positive correlations between the adolescents' automatic thoughts, and physical aggression, and anger. According to regression analysis, automatic thoughts effectively predicted the level of physical aggression (b= 0.233, P < 0.001)) and anger (b= 0.325, P < 0.001). Analysis of the mediating role of anger showed that anger fully mediated the relationship between automatic thoughts and physical aggression (Sobel z = 5.646, P < 0.001). Anger fully mediated the relationship between automatic thoughts and physical aggression. Providing adolescents with anger management skills training is very important for the prevention of physical aggression. Such training programs should include components related to the development of an awareness of dysfunctional and anger-triggering automatic thoughts, and how to change them. As the study group included adolescents from Burdur, the findings can only be generalized to groups with similar characteristics.

  16. Bio-robots automatic navigation with electrical reward stimulation.

    PubMed

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  17. An automatic method for segmentation of fission tracks in epidote crystal photomicrographs

    NASA Astrophysics Data System (ADS)

    de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo

    2014-08-01

    Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.

  18. Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis.

    PubMed

    Gordaliza, P M; Muñoz-Barrutia, A; Via, L E; Sharpe, S; Desco, M; Vaquero, J J

    2018-05-29

    Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R 2  ≈ 0.8). We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.

  19. Supporting the education evidence portal via text mining

    PubMed Central

    Ananiadou, Sophia; Thompson, Paul; Thomas, James; Mu, Tingting; Oliver, Sandy; Rickinson, Mark; Sasaki, Yutaka; Weissenbacher, Davy; McNaught, John

    2010-01-01

    The UK Education Evidence Portal (eep) provides a single, searchable, point of access to the contents of the websites of 33 organizations relating to education, with the aim of revolutionizing work practices for the education community. Use of the portal alleviates the need to spend time searching multiple resources to find relevant information. However, the combined content of the websites of interest is still very large (over 500 000 documents and growing). This means that searches using the portal can produce very large numbers of hits. As users often have limited time, they would benefit from enhanced methods of performing searches and viewing results, allowing them to drill down to information of interest more efficiently, without having to sift through potentially long lists of irrelevant documents. The Joint Information Systems Committee (JISC)-funded ASSIST project has produced a prototype web interface to demonstrate the applicability of integrating a number of text-mining tools and methods into the eep, to facilitate an enhanced searching, browsing and document-viewing experience. New features include automatic classification of documents according to a taxonomy, automatic clustering of search results according to similar document content, and automatic identification and highlighting of key terms within documents. PMID:20643679

  20. Towards automatic planning for manufacturing generative processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from themore » original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.« less

  1. Method for automatic measurement of second language speaking proficiency

    NASA Astrophysics Data System (ADS)

    Bernstein, Jared; Balogh, Jennifer

    2005-04-01

    Spoken language proficiency is intuitively related to effective and efficient communication in spoken interactions. However, it is difficult to derive a reliable estimate of spoken language proficiency by situated elicitation and evaluation of a person's communicative behavior. This paper describes the task structure and scoring logic of a group of fully automatic spoken language proficiency tests (for English, Spanish and Dutch) that are delivered via telephone or Internet. Test items are presented in spoken form and require a spoken response. Each test is automatically-scored and primarily based on short, decontextualized tasks that elicit integrated listening and speaking performances. The tests present several types of tasks to candidates, including sentence repetition, question answering, sentence construction, and story retelling. The spoken responses are scored according to the lexical content of the response and a set of acoustic base measures on segments, words and phrases, which are scaled with IRT methods or parametrically combined to optimize fit to human listener judgments. Most responses are isolated spoken phrases and sentences that are scored according to their linguistic content, their latency, and their fluency and pronunciation. The item development procedures and item norming are described.

  2. Automated Tracking and Quantification of Autistic Behavioral Symptoms Using Microsoft Kinect.

    PubMed

    Kang, Joon Young; Kim, Ryunhyung; Kim, Hyunsun; Kang, Yeonjune; Hahn, Susan; Fu, Zhengrui; Khalid, Mamoon I; Schenck, Enja; Thesen, Thomas

    2016-01-01

    The prevalence of autism spectrum disorder (ASD) has risen significantly in the last ten years, and today, roughly 1 in 68 children has been diagnosed. One hallmark set of symptoms in this disorder are stereotypical motor movements. These repetitive movements may include spinning, body-rocking, or hand-flapping, amongst others. Despite the growing number of individuals affected by autism, an effective, accurate method of automatically quantifying such movements remains unavailable. This has negative implications for assessing the outcome of ASD intervention and drug studies. Here we present a novel approach to detecting autistic symptoms using the Microsoft Kinect v.2 to objectively and automatically quantify autistic body movements. The Kinect camera was used to film 12 actors performing three separate stereotypical motor movements each. Visual Gesture Builder (VGB) was implemented to analyze the skeletal structures in these recordings using a machine learning approach. In addition, movement detection was hard-coded in Matlab. Manual grading was used to confirm the validity and reliability of VGB and Matlab analysis. We found that both methods were able to detect autistic body movements with high probability. The machine learning approach yielded highest detection rates, supporting its use in automatically quantifying complex autistic behaviors with multi-dimensional input.

  3. Cascaded deep decision networks for classification of endoscopic images

    NASA Astrophysics Data System (ADS)

    Murthy, Venkatesh N.; Singh, Vivek; Sun, Shanhui; Bhattacharya, Subhabrata; Chen, Terrence; Comaniciu, Dorin

    2017-02-01

    Both traditional and wireless capsule endoscopes can generate tens of thousands of images for each patient. It is desirable to have the majority of irrelevant images filtered out by automatic algorithms during an offline review process or to have automatic indication for highly suspicious areas during an online guidance. This also applies to the newly invented endomicroscopy, where online indication of tumor classification plays a significant role. Image classification is a standard pattern recognition problem and is well studied in the literature. However, performance on the challenging endoscopic images still has room for improvement. In this paper, we present a novel Cascaded Deep Decision Network (CDDN) to improve image classification performance over standard Deep neural network based methods. During the learning phase, CDDN automatically builds a network which discards samples that are classified with high confidence scores by a previously trained network and concentrates only on the challenging samples which would be handled by the subsequent expert shallow networks. We validate CDDN using two different types of endoscopic imaging, which includes a polyp classification dataset and a tumor classification dataset. From both datasets we show that CDDN can outperform other methods by about 10%. In addition, CDDN can also be applied to other image classification problems.

  4. Automatic single questionnaire intensity (SQI, EMS98 scale) estimation using ranking models built on the existing BCSF database

    NASA Astrophysics Data System (ADS)

    Schlupp, A.; Sira, C.; Schmitt, K.; Schaming, M.

    2013-12-01

    In charge of intensity estimations in France, BCSF has collected and manually analyzed more than 47000 online individual macroseismic questionnaires since 2000 up to intensity VI. These macroseismic data allow us to estimate one SQI value (Single Questionnaire Intensity) for each form following the EMS98 scale. The reliability of the automatic intensity estimation is important as they are today used for automatic shakemaps communications and crisis management. Today, the automatic intensity estimation at BCSF is based on the direct use of thumbnails selected on a menu by the witnesses. Each thumbnail corresponds to an EMS-98 intensity value, allowing us to quickly issue an intensity map of the communal intensity by averaging the SQIs at each city. Afterwards an expert, to determine a definitive SQI, manually analyzes each form. This work is time consuming and not anymore suitable considering the increasing number of testimonies at BCSF. Nevertheless, it can take into account incoherent answers. We tested several automatic methods (USGS algorithm, Correlation coefficient, Thumbnails) (Sira et al. 2013, IASPEI) and compared them with 'expert' SQIs. These methods gave us medium score (between 50 to 60% of well SQI determined and 35 to 40% with plus one or minus one intensity degree). The best fit was observed with the thumbnails. Here, we present new approaches based on 3 statistical ranking methods as 1) Multinomial logistic regression model, 2) Discriminant analysis DISQUAL and 3) Support vector machines (SVMs). The two first methods are standard methods, while the third one is more recent. Theses methods could be applied because the BCSF has already in his database more then 47000 forms and because their questions and answers are well adapted for a statistical analysis. The ranking models could then be used as automatic method constrained on expert analysis. The performance of the automatic methods and the reliability of the estimated SQI can be evaluated thanks to the fact that each definitive BCSF SQIs is determined by an expert analysis. We compare the SQIs obtained by these methods from our database and discuss the coherency and variations between automatic and manual processes. These methods lead to high scores with up to 85% of the forms well classified and most of the remaining forms classified with only a shift of one intensity degree. This allows us to use the ranking methods as the best automatic methods to fast SQIs estimation and to produce fast shakemaps. The next step, to improve the use of these methods, will be to identify explanations for the forms not classified at the correct value and a way to select the few remaining forms that should be analyzed by the expert. Note that beyond intensity VI, on-line questionnaires are insufficient and a field survey is indispensable to estimate intensity. For such survey, in France, BCSF leads a macroseismic intervention group (GIM).

  5. Automatic calibration method for plenoptic camera

    NASA Astrophysics Data System (ADS)

    Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao

    2016-04-01

    An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.

  6. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information.

    PubMed

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Yan, Bin; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition.

  7. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information

    PubMed Central

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition. PMID:26380294

  8. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    PubMed

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  9. The Use of Automatic Indexing for Authority Control.

    ERIC Educational Resources Information Center

    Dillon, Martin; And Others

    1981-01-01

    Uses an experimental system for authority control on a collection of bibliographic records to demonstrate the resemblance between thesaurus-based automatic indexing and automatic authority control. Details of the automatic indexing system are given, results discussed, and the benefits of the resemblance examined. Included are a rules appendix and…

  10. 75 FR 80886 - Ninth Meeting-RTCA Special Committee 220: Automatic Flight Guidance and Control

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... 220: Automatic Flight Guidance and Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 220: Automatic Flight Guidance and Control meeting. SUMMARY: The FAA is... for a Special Committee 220: Automatic Flight Guidance and Control meeting. The agenda will include...

  11. Comparison of Document Index Graph Using TextRank and HITS Weighting Method in Automatic Text Summarization

    NASA Astrophysics Data System (ADS)

    Hadyan, Fadhlil; Shaufiah; Arif Bijaksana, Moch.

    2017-01-01

    Automatic summarization is a system that can help someone to take the core information of a long text instantly. The system can help by summarizing text automatically. there’s Already many summarization systems that have been developed at this time but there are still many problems in those system. In this final task proposed summarization method using document index graph. This method utilizes the PageRank and HITS formula used to assess the web page, adapted to make an assessment of words in the sentences in a text document. The expected outcome of this final task is a system that can do summarization of a single document, by utilizing document index graph with TextRank and HITS to improve the quality of the summary results automatically.

  12. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  13. Automatic allograft bone selection through band registration and its application to distal femur.

    PubMed

    Zhang, Yu; Qiu, Lei; Li, Fengzan; Zhang, Qing; Zhang, Li; Niu, Xiaohui

    2017-09-01

    Clinical reports suggest that large bone defects could be effectively restored by allograft bone transplantation, where allograft bone selection acts an important role. Besides, there is a huge demand for developing the automatic allograft bone selection methods, as the automatic methods could greatly improve the management efficiency of the large bone banks. Although several automatic methods have been presented to select the most suitable allograft bone from the massive allograft bone bank, these methods still suffer from inaccuracy. In this paper, we propose an effective allograft bone selection method without using the contralateral bones. Firstly, the allograft bone is globally aligned to the recipient bone by surface registration. Then, the global alignment is further refined through band registration. The band, defined as the recipient points within the lifted and lowered cutting planes, could involve more local structure of the defected segment. Therefore, our method could achieve robust alignment and high registration accuracy of the allograft and recipient. Moreover, the existing contour method and surface method could be unified into one framework under our method by adjusting the lift and lower distances of the cutting planes. Finally, our method has been validated on the database of distal femurs. The experimental results indicate that our method outperforms the surface method and contour method.

  14. Comparison of histomorphometrical data obtained with two different image analysis methods.

    PubMed

    Ballerini, Lucia; Franke-Stenport, Victoria; Borgefors, Gunilla; Johansson, Carina B

    2007-08-01

    A common way to determine tissue acceptance of biomaterials is to perform histomorphometrical analysis on histologically stained sections from retrieved samples with surrounding tissue, using various methods. The "time and money consuming" methods and techniques used are often "in house standards". We address light microscopic investigations of bone tissue reactions on un-decalcified cut and ground sections of threaded implants. In order to screen sections and generate results faster, the aim of this pilot project was to compare results generated with the in-house standard visual image analysis tool (i.e., quantifications and judgements done by the naked eye) with a custom made automatic image analysis program. The histomorphometrical bone area measurements revealed no significant differences between the methods but the results of the bony contacts varied significantly. The raw results were in relative agreement, i.e., the values from the two methods were proportional to each other: low bony contact values in the visual method corresponded to low values with the automatic method. With similar resolution images and further improvements of the automatic method this difference should become insignificant. A great advantage using the new automatic image analysis method is that it is time saving--analysis time can be significantly reduced.

  15. A fast and automatic mosaic method for high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  16. Automated meter reading. (Latest citations from the INSPEC database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    The bibliography contains citations concerning the automatic collection of data from utility meters. Citations focus on line carrier communications, radio communications, and telecommunication methods of data transmission. Applications for water, gas, and electric power meters are discussed. (Contains a minimum of 56 citations and includes a subject term index and title list.)

  17. Automatic Selection of Suitable Sentences for Language Learning Exercises

    ERIC Educational Resources Information Center

    Pilán, Ildikó; Volodina, Elena; Johansson, Richard

    2013-01-01

    In our study we investigated second and foreign language (L2) sentence readability, an area little explored so far in the case of several languages, including Swedish. The outcome of our research consists of two methods for sentence selection from native language corpora based on Natural Language Processing (NLP) and machine learning (ML)…

  18. Fast modal extraction in NASTRAN via the FEER computer program. [based on automatic matrix reduction method for lower modes of structures with many degrees of freedom

    NASA Technical Reports Server (NTRS)

    Newman, M. B.; Pipano, A.

    1973-01-01

    A new eigensolution routine, FEER (Fast Eigensolution Extraction Routine), used in conjunction with NASTRAN at Israel Aircraft Industries is described. The FEER program is based on an automatic matrix reduction scheme whereby the lower modes of structures with many degrees of freedom can be accurately extracted from a tridiagonal eigenvalue problem whose size is of the same order of magnitude as the number of required modes. The process is effected without arbitrary lumping of masses at selected node points or selection of nodes to be retained in the analysis set. The results of computational efficiency studies are presented, showing major arithmetic operation counts and actual computer run times of FEER as compared to other methods of eigenvalue extraction, including those available in the NASTRAN READ module. It is concluded that the tridiagonal reduction method used in FEER would serve as a valuable addition to NASTRAN for highly increased efficiency in obtaining structural vibration modes.

  19. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis.

    PubMed

    Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra

    2014-01-01

    Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario. The aims were to describe how to:(i) develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and(ii) automatically identify the features that best distinguish the groups. The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described - simple or complex; presentation order - which type of picture was described first; and age). In this study, the descriptions by 144 of the subjects studied in Toledo 18 were used,which included 200 healthy Brazilians of both genders. A Support Vector Machine (SVM) with a radial basis function (RBF) kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS) is a strong candidate to replace manual feature selection methods.

  20. Development of an Automatic Differentiation Version of the FPX Rotor Code

    NASA Technical Reports Server (NTRS)

    Hu, Hong

    1996-01-01

    The ADIFOR2.0 automatic differentiator is applied to the FPX rotor code along with the grid generator GRGN3. The FPX is an eXtended Full-Potential CFD code for rotor calculations. The automatic differentiation version of the code is obtained, which provides both non-geometry and geometry sensitivity derivatives. The sensitivity derivatives via automatic differentiation are presented and compared with divided difference generated derivatives. The study shows that automatic differentiation method gives accurate derivative values in an efficient manner.

  1. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  2. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  3. Automatic Identification of Messages Related to Adverse Drug Reactions from Online User Reviews using Feature-based Classification.

    PubMed

    Liu, Jingfang; Zhang, Pengzhu; Lu, Yingjie

    2014-11-01

    User-generated medical messages on Internet contain extensive information related to adverse drug reactions (ADRs) and are known as valuable resources for post-marketing drug surveillance. The aim of this study was to find an effective method to identify messages related to ADRs automatically from online user reviews. We conducted experiments on online user reviews using different feature set and different classification technique. Firstly, the messages from three communities, allergy community, schizophrenia community and pain management community, were collected, the 3000 messages were annotated. Secondly, the N-gram-based features set and medical domain-specific features set were generated. Thirdly, three classification techniques, SVM, C4.5 and Naïve Bayes, were used to perform classification tasks separately. Finally, we evaluated the performance of different method using different feature set and different classification technique by comparing the metrics including accuracy and F-measure. In terms of accuracy, the accuracy of SVM classifier was higher than 0.8, the accuracy of C4.5 classifier or Naïve Bayes classifier was lower than 0.8; meanwhile, the combination feature sets including n-gram-based feature set and domain-specific feature set consistently outperformed single feature set. In terms of F-measure, the highest F-measure is 0.895 which was achieved by using combination feature sets and a SVM classifier. In all, we can get the best classification performance by using combination feature sets and SVM classifier. By using combination feature sets and SVM classifier, we can get an effective method to identify messages related to ADRs automatically from online user reviews.

  4. ARCOCT: Automatic detection of lumen border in intravascular OCT images.

    PubMed

    Cheimariotis, Grigorios-Aris; Chatzizisis, Yiannis S; Koutkias, Vassilis G; Toutouzas, Konstantinos; Giannopoulos, Andreas; Riga, Maria; Chouvarda, Ioanna; Antoniadis, Antonios P; Doulaverakis, Charalambos; Tsamboulatidis, Ioannis; Kompatsiaris, Ioannis; Giannoglou, George D; Maglaveras, Nicos

    2017-11-01

    Intravascular optical coherence tomography (OCT) is an invaluable tool for the detection of pathological features on the arterial wall and the investigation of post-stenting complications. Computational lumen border detection in OCT images is highly advantageous, since it may support rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typically include various artifacts that impact image clarity, including features such as side branches and intraluminal blood presence. This paper presents ARCOCT, a segmentation method for fully-automatic detection of lumen border in OCT images. ARCOCT relies on multiple, consecutive processing steps, accounting for image preparation, contour extraction and refinement. In particular, for contour extraction ARCOCT employs the transformation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue and, for contour refinement, local regression using weighted linear least squares and a 2nd degree polynomial model is employed to achieve artifact and small-branch correction as well as smoothness of the artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT images, i.e., even in challenging cases with branches and artifacts. ARCOCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native segments) obtained from 20 patients. ARCOCT was compared against ground-truth manual segmentation performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diameter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and the undirected average distance), using standard statistical analysis methods. The proposed method was proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for most of the examined metrics. ARCOCT allows accurate and fully-automated lumen border detection in OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. ED09-0290-32

    NASA Image and Video Library

    2009-10-01

    The F-16D Automatic Collision Avoidance Technology aircraft tests of the Automatic Ground Collision Avoidance System, or Auto-GCAS, included flights in areas of potentially hazardous terrain, including canyons and mountains.

  6. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1998-01-01

    Methods and apparatus for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence.

  7. A dual growing method for the automatic extraction of individual trees from mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Li, Lin; Li, Dalin; Zhu, Haihong; Li, You

    2016-10-01

    Street trees interlaced with other objects in cluttered point clouds of urban scenes inhibit the automatic extraction of individual trees. This paper proposes a method for the automatic extraction of individual trees from mobile laser scanning data, according to the general constitution of trees. Two components of each individual tree - a trunk and a crown can be extracted by the dual growing method. This method consists of coarse classification, through which most of artifacts are removed; the automatic selection of appropriate seeds for individual trees, by which the common manual initial setting is avoided; a dual growing process that separates one tree from others by circumscribing a trunk in an adaptive growing radius and segmenting a crown in constrained growing regions; and a refining process that draws a singular trunk from the interlaced other objects. The method is verified by two datasets with over 98% completeness and over 96% correctness. The low mean absolute percentage errors in capturing the morphological parameters of individual trees indicate that this method can output individual trees with high precision.

  8. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  9. Use of seatbelts in cars with automatic belts.

    PubMed Central

    Williams, A F; Wells, J K; Lund, A K; Teed, N J

    1992-01-01

    Use of seatbelts in late model cars with automatic or manual belt systems was observed in suburban Washington, DC, Chicago, Los Angeles, and Philadelphia. In cars with automatic two-point belt systems, the use of shoulder belts by drivers was substantially higher than in the same model cars with manual three-point belts. This finding was true in varying degrees whatever the type of automatic belt, including cars with detachable nonmotorized belts, cars with detachable motorized belts, and especially cars with nondetachable motorized belts. Most of these automatic shoulder belts systems include manual lap belts. Use of lap belts was lower in cars with automatic two-point belt systems than in the same model cars with manual three-point belts; precisely how much lower could not be reliably estimated in this survey. Use of shoulder and lap belts was slightly higher in General Motors cars with detachable automatic three-point belts compared with the same model cars with manual three-point belts; in Hondas there was no difference in the rates of use of manual three-point belts and the rates of use of automatic three-point belts. PMID:1561301

  10. Automatic Keyword Extraction from Individual Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Stuart J.; Engel, David W.; Cramer, Nicholas O.

    2010-05-03

    This paper introduces a novel and domain-independent method for automatically extracting keywords, as sequences of one or more words, from individual documents. We describe the method’s configuration parameters and algorithm, and present an evaluation on a benchmark corpus of technical abstracts. We also present a method for generating lists of stop words for specific corpora and domains, and evaluate its ability to improve keyword extraction on the benchmark corpus. Finally, we apply our method of automatic keyword extraction to a corpus of news articles and define metrics for characterizing the exclusivity, essentiality, and generality of extracted keywords within a corpus.

  11. Automatic Topography Using High Precision Digital Moire Methods

    NASA Astrophysics Data System (ADS)

    Yatagai, T.; Idesawa, M.; Saito, S.

    1983-07-01

    Three types of moire topographic methods using digital techniques are proposed. Deformed gratings obtained by projecting a reference grating onto an object under test are subjected to digital analysis. The electronic analysis procedures of deformed gratings described here enable us to distinguish between depression and elevation of the object, so that automatic measurement of 3-D shapes and automatic moire fringe interpolation are performed. Based on the digital moire methods, we have developed a practical measurement system, with a linear photodiode array on a micro-stage as a scanning image sensor. Examples of fringe analysis in medical applications are presented.

  12. Automatic and manual segmentation of healthy retinas using high-definition optical coherence tomography.

    PubMed

    Golbaz, Isabelle; Ahlers, Christian; Goesseringer, Nina; Stock, Geraldine; Geitzenauer, Wolfgang; Prünte, Christian; Schmidt-Erfurth, Ursula Margarethe

    2011-03-01

    This study compared automatic- and manual segmentation modalities in the retina of healthy eyes using high-definition optical coherence tomography (HD-OCT). Twenty retinas in 20 healthy individuals were examined using an HD-OCT system (Carl Zeiss Meditec, Inc.). Three-dimensional imaging was performed with an axial resolution of 6 μm at a maximum scanning speed of 25,000 A-scans/second. Volumes of 6 × 6 × 2 mm were scanned. Scans were analysed using a matlab-based algorithm and a manual segmentation software system (3D-Doctor). The volume values calculated by the two methods were compared. Statistical analysis revealed a high correlation between automatic and manual modes of segmentation. The automatic mode of measuring retinal volume and the corresponding three-dimensional images provided similar results to the manual segmentation procedure. Both methods were able to visualize retinal and subretinal features accurately. This study compared two methods of assessing retinal volume using HD-OCT scans in healthy retinas. Both methods were able to provide realistic volumetric data when applied to raster scan sets. Manual segmentation methods represent an adequate tool with which to control automated processes and to identify clinically relevant structures, whereas automatic procedures will be needed to obtain data in larger patient populations. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  13. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method.

    PubMed

    Veta, Mitko; van Diest, Paul J; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, Josien P W

    2016-01-01

    Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far. The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an "external" dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method. The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased way, with substantial agreement with human experts.

  14. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  15. volBrain: An Online MRI Brain Volumetry System

    PubMed Central

    Manjón, José V.; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results. PMID:27512372

  16. Automatic liquid handling for life science: a critical review of the current state of the art.

    PubMed

    Kong, Fanwei; Yuan, Liang; Zheng, Yuan F; Chen, Weidong

    2012-06-01

    Liquid handling plays a pivotal role in life science laboratories. In experiments such as gene sequencing, protein crystallization, antibody testing, and drug screening, liquid biosamples frequently must be transferred between containers of varying sizes and/or dispensed onto substrates of varying types. The sample volumes are usually small, at the micro- or nanoliter level, and the number of transferred samples can be huge when investigating large-scope combinatorial conditions. Under these conditions, liquid handling by hand is tedious, time-consuming, and impractical. Consequently, there is a strong demand for automated liquid-handling methods such as sensor-integrated robotic systems. In this article, we survey the current state of the art in automatic liquid handling, including technologies developed by both industry and research institutions. We focus on methods for dealing with small volumes at high throughput and point out challenges for future advancements.

  17. Application of program generation technology in solving heat and flow problems

    NASA Astrophysics Data System (ADS)

    Wan, Shui; Wu, Bangxian; Chen, Ningning

    2007-05-01

    Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.

  18. volBrain: An Online MRI Brain Volumetry System.

    PubMed

    Manjón, José V; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.

  19. A method for real-time implementation of HOG feature extraction

    NASA Astrophysics Data System (ADS)

    Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai

    2011-08-01

    Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.

  20. Advances in Modal Analysis Using a Robust and Multiscale Method

    NASA Astrophysics Data System (ADS)

    Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.

    2010-12-01

    This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  1. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    DOEpatents

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  2. Gradual cut detection using low-level vision for digital video

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Choi, Yeun-Sung; Jang, Ok-bae

    1996-09-01

    Digital video computing and organization is one of the important issues in multimedia system, signal compression, or database. Video should be segmented into shots to be used for identification and indexing. This approach requires a suitable method to automatically locate cut points in order to separate shot in a video. Automatic cut detection to isolate shots in a video has received considerable attention due to many practical applications; our video database, browsing, authoring system, retrieval and movie. Previous studies are based on a set of difference mechanisms and they measured the content changes between video frames. But they could not detect more special effects which include dissolve, wipe, fade-in, fade-out, and structured flashing. In this paper, a new cut detection method for gradual transition based on computer vision techniques is proposed. And then, experimental results applied to commercial video are presented and evaluated.

  3. Automatic quality assessment of planetary images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-10-01

    A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.

  4. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping

    PubMed Central

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-01-01

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work. PMID:26225994

  5. Automated Meteor Detection by All-Sky Digital Camera Systems

    NASA Astrophysics Data System (ADS)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  6. Experimental and Analytical Determination of the Motion of Hydraulically Operated Valve Stems in Oil Engine Injection Systems

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Rothrock, A M

    1930-01-01

    This research on the pressure variations in the injection system of the N.A.C.A. Spray Photography Equipment and on the effects of these variations on the motion of the timing valve stem was undertaken in connection with the study of fuel injection systems for high-speed oil engines. The methods of analysis of the pressure variations and the general equation for the motion of the spring-loaded stem for the timing valve are applicable to a spring-loaded automatic injection valve, and in general to all hydraulically operated valves. A sample calculation for a spring-loaded automatic injection valve is included.

  7. Adaptive Self Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Matthew; Draelos, Timothy; Knox, Hunter

    2017-05-02

    The AST software includes numeric methods to 1) adjust STA/LTA signal detector trigger level (TL) values and 2) filter detections for a network of sensors. AST adapts TL values to the current state of the environment by leveraging cooperation within a neighborhood of sensors. The key metric that guides the dynamic tuning is consistency of each sensor with its nearest neighbors: TL values are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The AST algorithm adapts in near real-time to changing conditions in an attempt tomore » automatically self-tune a signal detector to identify (detect) only signals from events of interest.« less

  8. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  9. fgui: A Method for Automatically Creating Graphical User Interfaces for Command-Line R Packages

    PubMed Central

    Hoffmann, Thomas J.; Laird, Nan M.

    2009-01-01

    The fgui R package is designed for developers of R packages, to help rapidly, and sometimes fully automatically, create a graphical user interface for a command line R package. The interface is built upon the Tcl/Tk graphical interface included in R. The package further facilitates the developer by loading in the help files from the command line functions to provide context sensitive help to the user with no additional effort from the developer. Passing a function as the argument to the routines in the fgui package creates a graphical interface for the function, and further options are available to tweak this interface for those who want more flexibility. PMID:21625291

  10. B-737 Linear Autoland Simulink Model

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste (Technical Monitor); Hogge, Edward F.

    2004-01-01

    The Linear Autoland Simulink model was created to be a modular test environment for testing of control system components in commercial aircraft. The input variables, physical laws, and referenced frames used are summarized. The state space theory underlying the model is surveyed and the location of the control actuators described. The equations used to realize the Dryden gust model to simulate winds and gusts are derived. A description of the pseudo-random number generation method used in the wind gust model is included. The longitudinal autopilot, lateral autopilot, automatic throttle autopilot, engine model and automatic trim devices are considered as subsystems. The experience in converting the Airlabs FORTRAN aircraft control system simulation to a graphical simulation tool (Matlab/Simulink) is described.

  11. Development of Generation System of Simplified Digital Maps

    NASA Astrophysics Data System (ADS)

    Uchimura, Keiichi; Kawano, Masato; Tokitsu, Hiroki; Hu, Zhencheng

    In recent years, digital maps have been used in a variety of scenarios, including car navigation systems and map information services over the Internet. These digital maps are formed by multiple layers of maps of different scales; the map data most suitable for the specific situation are used. Currently, the production of map data of different scales is done by hand due to constraints related to processing time and accuracy. We conducted research concerning technologies for automatic generation of simplified map data from detailed map data. In the present paper, the authors propose the following: (1) a method to transform data related to streets, rivers, etc. containing widths into line data, (2) a method to eliminate the component points of the data, and (3) a method to eliminate data that lie below a certain threshold. In addition, in order to evaluate the proposed method, a user survey was conducted; in this survey we compared maps generated using the proposed method with the commercially available maps. From the viewpoint of the amount of data reduction and processing time, and on the basis of the results of the survey, we confirmed the effectiveness of the automatic generation of simplified maps using the proposed methods.

  12. Development of Advanced Verification and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen; Schumann, Johann; Gupta, Pramod; Richard, Michael; Guenther, Kurt; Soares, Fola

    2005-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance.

  13. Improvement of the matching speed of AIMS for development of an automatic totally tuning system for hyperthermia treatment using a resonant cavity applicator.

    PubMed

    Shindo, Y; Kato, K; Tsuchiya, K; Hirashima, T; Suzuki, M

    2009-01-01

    In this paper, we discuss the improvement of the speed of AIMS (Automatic Impedance Matching System) to automatically make impedance matching for a re-entrant resonant cavity applicator for non-invasive deep brain tumors hyperthermia treatments. We have already discussed the effectiveness of the heating method using the AIMS, with experiments of heating agar phantoms. However, the operating time of AIMS was about 30 minutes. To develop the ATT System (Automatic Totally Tuning System) including the automatic frequency tuning system, we must improve this problem. Because, when using the ATTS, the AIMS is used repeatedly to find the resonant frequency. In order to improve the speed of impedance matching, we developed the new automatic impedance matching system program (AIMS2). In AIMS, the stepping motors were connected to the impedance matching unit's dials. These dials were turned to reduce the reflected power. AIMS consists of two phases: all range searching and detailed searching. We focused on the three factors affecting the operating speed and improved them. The first factor is the interval put between the turning of the motors and AD converter. The second factor is how the steps of the motor when operating all range searching. The third factor is the starting position of the motor when detail searching. We developed the simple ATT System (ATT-beta) based on the AIMS2. To evaluate the developed AIMS2 and ATT- beta, experiments with an agar phantom were performed. From these results, we found that the operating time of the AIMS2 is about 4 minutes, which was approximately 12% of AIMS. From ATT-beta results, it was shown that it is possible to tune frequency and automatically match impedance with the program based on the AIMS2.

  14. Automated segmentation of myocardial scar in late enhancement MRI using combined intensity and spatial information.

    PubMed

    Tao, Qian; Milles, Julien; Zeppenfeld, Katja; Lamb, Hildo J; Bax, Jeroen J; Reiber, Johan H C; van der Geest, Rob J

    2010-08-01

    Accurate assessment of the size and distribution of a myocardial infarction (MI) from late gadolinium enhancement (LGE) MRI is of significant prognostic value for postinfarction patients. In this paper, an automatic MI identification method combining both intensity and spatial information is presented in a clear framework of (i) initialization, (ii) false acceptance removal, and (iii) false rejection removal. The method was validated on LGE MR images of 20 chronic postinfarction patients, using manually traced MI contours from two independent observers as reference. Good agreement was observed between automatic and manual MI identification. Validation results showed that the average Dice indices, which describe the percentage of overlap between two regions, were 0.83 +/- 0.07 and 0.79 +/- 0.08 between the automatic identification and the manual tracing from observer 1 and observer 2, and the errors in estimated infarct percentage were 0.0 +/- 1.9% and 3.8 +/- 4.7% compared with observer 1 and observer 2. The difference between the automatic method and manual tracing is in the order of interobserver variation. In conclusion, the developed automatic method is accurate and robust in MI delineation, providing an objective tool for quantitative assessment of MI in LGE MR imaging.

  15. Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin

    2018-03-01

    Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.

  16. An efficient user-oriented method for calculating compressible flow in an about three-dimensional inlets. [panel method

    NASA Technical Reports Server (NTRS)

    Hess, J. L.; Mack, D. P.; Stockman, N. O.

    1979-01-01

    A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented.

  17. Nucleus segmentation in histology images with hierarchical multilevel thresholding

    NASA Astrophysics Data System (ADS)

    Ahmady Phoulady, Hady; Goldgof, Dmitry B.; Hall, Lawrence O.; Mouton, Peter R.

    2016-03-01

    Automatic segmentation of histological images is an important step for increasing throughput while maintaining high accuracy, avoiding variation from subjective bias, and reducing the costs for diagnosing human illnesses such as cancer and Alzheimer's disease. In this paper, we present a novel method for unsupervised segmentation of cell nuclei in stained histology tissue. Following an initial preprocessing step involving color deconvolution and image reconstruction, the segmentation step consists of multilevel thresholding and a series of morphological operations. The only parameter required for the method is the minimum region size, which is set according to the resolution of the image. Hence, the proposed method requires no training sets or parameter learning. Because the algorithm requires no assumptions or a priori information with regard to cell morphology, the automatic approach is generalizable across a wide range of tissues. Evaluation across a dataset consisting of diverse tissues, including breast, liver, gastric mucosa and bone marrow, shows superior performance over four other recent methods on the same dataset in terms of F-measure with precision and recall of 0.929 and 0.886, respectively.

  18. Mining Patients' Narratives in Social Media for Pharmacovigilance: Adverse Effects and Misuse of Methylphenidate.

    PubMed

    Chen, Xiaoyi; Faviez, Carole; Schuck, Stéphane; Lillo-Le-Louët, Agnès; Texier, Nathalie; Dahamna, Badisse; Huot, Charles; Foulquié, Pierre; Pereira, Suzanne; Leroux, Vincent; Karapetiantz, Pierre; Guenegou-Arnoux, Armelle; Katsahian, Sandrine; Bousquet, Cédric; Burgun, Anita

    2018-01-01

    Background: The Food and Drug Administration (FDA) in the United States and the European Medicines Agency (EMA) have recognized social media as a new data source to strengthen their activities regarding drug safety. Objective: Our objective in the ADR-PRISM project was to provide text mining and visualization tools to explore a corpus of posts extracted from social media. We evaluated this approach on a corpus of 21 million posts from five patient forums, and conducted a qualitative analysis of the data available on methylphenidate in this corpus. Methods: We applied text mining methods based on named entity recognition and relation extraction in the corpus, followed by signal detection using proportional reporting ratio (PRR). We also used topic modeling based on the Correlated Topic Model to obtain the list of the matics in the corpus and classify the messages based on their topics. Results: We automatically identified 3443 posts about methylphenidate published between 2007 and 2016, among which 61 adverse drug reactions (ADR) were automatically detected. Two pharmacovigilance experts evaluated manually the quality of automatic identification, and a f-measure of 0.57 was reached. Patient's reports were mainly neuro-psychiatric effects. Applying PRR, 67% of the ADRs were signals, including most of the neuro-psychiatric symptoms but also palpitations. Topic modeling showed that the most represented topics were related to Childhood and Treatment initiation , but also Side effects . Cases of misuse were also identified in this corpus, including recreational use and abuse. Conclusion: Named entity recognition combined with signal detection and topic modeling have demonstrated their complementarity in mining social media data. An in-depth analysis focused on methylphenidate showed that this approach was able to detect potential signals and to provide better understanding of patients' behaviors regarding drugs, including misuse.

  19. Automatic patient-adaptive bleeding detection in a capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Jung, Yun Sub; Kim, Yong Ho; Lee, Dong Ha; Lee, Sang Ho; Song, Jeong Joo; Kim, Jong Hyo

    2009-02-01

    We present a method for patient-adaptive detection of bleeding region for a Capsule Endoscopy (CE) images. The CE system has 320x320 resolution and transmits 3 images per second to receiver during around 10-hour. We have developed a technique to detect the bleeding automatically utilizing color spectrum transformation (CST) method. However, because of irregular conditions like organ difference, patient difference and illumination condition, detection performance is not uniform. To solve this problem, the detection method in this paper include parameter compensation step which compensate irregular image condition using color balance index (CBI). We have investigated color balance through sequential 2 millions images. Based on this pre-experimental result, we defined ΔCBI to represent deviate of color balance compared with standard small bowel color balance. The ΔCBI feature value is extracted from each image and used in CST method as parameter compensation constant. After candidate pixels were detected using CST method, they were labeled and examined with a bleeding character. We tested our method with 4,800 images in 12 patient data set (9 abnormal, 3 normal). Our experimental results show the proposed method achieves (before patient adaptive method : 80.87% and 74.25%, after patient adaptive method : 94.87% and 96.12%) of sensitivity and specificity.

  20. A novel automatic quantification method for high-content screening analysis of DNA double strand-break response.

    PubMed

    Feng, Jingwen; Lin, Jie; Zhang, Pengquan; Yang, Songnan; Sa, Yu; Feng, Yuanming

    2017-08-29

    High-content screening is commonly used in studies of the DNA damage response. The double-strand break (DSB) is one of the most harmful types of DNA damage lesions. The conventional method used to quantify DSBs is γH2AX foci counting, which requires manual adjustment and preset parameters and is usually regarded as imprecise, time-consuming, poorly reproducible, and inaccurate. Therefore, a robust automatic alternative method is highly desired. In this manuscript, we present a new method for quantifying DSBs which involves automatic image cropping, automatic foci-segmentation and fluorescent intensity measurement. Furthermore, an additional function was added for standardizing the measurement of DSB response inhibition based on co-localization analysis. We tested the method with a well-known inhibitor of DSB response. The new method requires only one preset parameter, which effectively minimizes operator-dependent variations. Compared with conventional methods, the new method detected a higher percentage difference of foci formation between different cells, which can improve measurement accuracy. The effects of the inhibitor on DSB response were successfully quantified with the new method (p = 0.000). The advantages of this method in terms of reliability, automation and simplicity show its potential in quantitative fluorescence imaging studies and high-content screening for compounds and factors involved in DSB response.

  1. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing.

    PubMed

    Hsieh, Thomas M; Liu, Yi-Min; Liao, Chun-Chih; Xiao, Furen; Chiang, I-Jen; Wong, Jau-Min

    2011-08-26

    In recent years, magnetic resonance imaging (MRI) has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images.This paper uses an algorithm integrating fuzzy-c-mean (FCM) and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain. The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT) on a pixel level. Overall data were then evaluated using a quantified system. The quantified parameters, including the "percent match" (PM) and "correlation ratio" (CR), suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain.Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related. Results indicated that, even when using only two sets of non-contrasted MR images, the system is a reliable and efficient method of brain-tumor detection. With further development the system demonstrates high potential for practical clinical use.

  2. Robust extraction of the aorta and pulmonary artery from 3D MDCT image data

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2010-03-01

    Accurate definition of the aorta and pulmonary artery from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents robust methods for defining the aorta and pulmonary artery in the central chest. The methods work on both contrast enhanced and no-contrast 3D MDCT image data. The automatic methods use a common approach employing model fitting and selection and adaptive refinement. During the occasional event that more precise vascular extraction is desired or the method fails, we also have an alternate semi-automatic fail-safe method. The semi-automatic method extracts the vasculature by extending the medial axes into a user-guided direction. A ground-truth study over a series of 40 human 3D MDCT images demonstrates the efficacy, accuracy, robustness, and efficiency of the methods.

  3. Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae).

    PubMed

    Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang

    2017-07-01

    Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. [Modeling and implementation method for the automatic biochemistry analyzer control system].

    PubMed

    Wang, Dong; Ge, Wan-cheng; Song, Chun-lin; Wang, Yun-guang

    2009-03-01

    In this paper the system structure The automatic biochemistry analyzer is a necessary instrument for clinical diagnostics. First of is analyzed. The system problems description and the fundamental principles for dispatch are brought forward. Then this text puts emphasis on the modeling for the automatic biochemistry analyzer control system. The objects model and the communications model are put forward. Finally, the implementation method is designed. It indicates that the system based on the model has good performance.

  5. Automatics adjusment on private pension fund for Asian Mathematics Conferences

    NASA Astrophysics Data System (ADS)

    Purwadi, J.

    2017-10-01

    This paper discussed about how the automatic adjustment mechanism in the pension fund with defined benefits in case conditions beyond assumptions - assumptions that have been determined. Automatic adjustment referred to in this experiment is intended to anticipate changes in economic and demographic conditions. The method discuss in this paper are indexing life expectancy. In this paper discussed about how the methods on private pension fund and how’s the impact of the change of life expectancy on benefit.

  6. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  7. Introduction, comparison, and validation of Meta‐Essentials: A free and simple tool for meta‐analysis

    PubMed Central

    van Rhee, Henk; Hak, Tony

    2017-01-01

    We present a new tool for meta‐analysis, Meta‐Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta‐analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta‐Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta‐analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp‐Hartung adjustment of the DerSimonian‐Laird estimator. However, more advanced meta‐analysis methods such as meta‐analytical structural equation modelling and meta‐regression with multiple covariates are not available. In summary, Meta‐Essentials may prove a valuable resource for meta‐analysts, including researchers, teachers, and students. PMID:28801932

  8. Semi-automatic mapping of cultural heritage from airborne laser scanning using deep learning

    NASA Astrophysics Data System (ADS)

    Due Trier, Øivind; Salberg, Arnt-Børre; Holger Pilø, Lars; Tonning, Christer; Marius Johansen, Hans; Aarsten, Dagrun

    2016-04-01

    This paper proposes to use deep learning to improve semi-automatic mapping of cultural heritage from airborne laser scanning (ALS) data. Automatic detection methods, based on traditional pattern recognition, have been applied in a number of cultural heritage mapping projects in Norway for the past five years. Automatic detection of pits and heaps have been combined with visual interpretation of the ALS data for the mapping of deer hunting systems, iron production sites, grave mounds and charcoal kilns. However, the performance of the automatic detection methods varies substantially between ALS datasets. For the mapping of deer hunting systems on flat gravel and sand sediment deposits, the automatic detection results were almost perfect. However, some false detections appeared in the terrain outside of the sediment deposits. These could be explained by other pit-like landscape features, like parts of river courses, spaces between boulders, and modern terrain modifications. However, these were easy to spot during visual interpretation, and the number of missed individual pitfall traps was still low. For the mapping of grave mounds, the automatic method produced a large number of false detections, reducing the usefulness of the semi-automatic approach. The mound structure is a very common natural terrain feature, and the grave mounds are less distinct in shape than the pitfall traps. Still, applying automatic mound detection on an entire municipality did lead to a new discovery of an Iron Age grave field with more than 15 individual mounds. Automatic mound detection also proved to be useful for a detailed re-mapping of Norway's largest Iron Age grave yard, which contains almost 1000 individual graves. Combined pit and mound detection has been applied to the mapping of more than 1000 charcoal kilns that were used by an iron work 350-200 years ago. The majority of charcoal kilns were indirectly detected as either pits on the circumference, a central mound, or both. However, kilns with a flat interior and a shallow ditch along the circumference were often missed by the automatic detection method. The successfulness of automatic detection seems to depend on two factors: (1) the density of ALS ground hits on the cultural heritage structures being sought, and (2) to what extent these structures stand out from natural terrain structures. The first factor may, to some extent, be improved by using a higher number of ALS pulses per square meter. The second factor is difficult to change, and also highlights another challenge: how to make a general automatic method that is applicable in all types of terrain within a country. The mixed experience with traditional pattern recognition for semi-automatic mapping of cultural heritage led us to consider deep learning as an alternative approach. The main principle is that a general feature detector has been trained on a large image database. The feature detector is then tailored to a specific task by using a modest number of images of true and false examples of the features being sought. Results of using deep learning are compared with previous results using traditional pattern recognition.

  9. Automatic Fastening Large Structures: a New Approach

    NASA Technical Reports Server (NTRS)

    Lumley, D. F.

    1985-01-01

    The external tank (ET) intertank structure for the space shuttle, a 27.5 ft diameter 22.5 ft long externally stiffened mechanically fastened skin-stringer-frame structure, was a labor intensitive manual structure built on a modified Saturn tooling position. A new approach was developed based on half-section subassemblies. The heart of this manufacturing approach will be 33 ft high vertical automatic riveting system with a 28 ft rotary positioner coming on-line in mid 1985. The Automatic Riveting System incorporates many of the latest automatic riveting technologies. Key features include: vertical columns with two sets of independently operating CNC drill-riveting heads; capability of drill, insert and upset any one piece fastener up to 3/8 inch diameter including slugs without displacing the workpiece offset bucking ram with programmable rotation and deep retraction; vision system for automatic parts program re-synchronization and part edge margin control; and an automatic rivet selection/handling system.

  10. Automatic Annotation Method on Learners' Opinions in Case Method Discussion

    ERIC Educational Resources Information Center

    Samejima, Masaki; Hisakane, Daichi; Komoda, Norihisa

    2015-01-01

    Purpose: The purpose of this paper is to annotate an attribute of a problem, a solution or no annotation on learners' opinions automatically for supporting the learners' discussion without a facilitator. The case method aims at discussing problems and solutions in a target case. However, the learners miss discussing some of problems and solutions.…

  11. A level-set method for pathology segmentation in fluorescein angiograms and en face retinal images of patients with age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Mohammad, Fatimah; Ansari, Rashid; Shahidi, Mahnaz

    2013-03-01

    The visibility and continuity of the inner segment outer segment (ISOS) junction layer of the photoreceptors on spectral domain optical coherence tomography images is known to be related to visual acuity in patients with age-related macular degeneration (AMD). Automatic detection and segmentation of lesions and pathologies in retinal images is crucial for the screening, diagnosis, and follow-up of patients with retinal diseases. One of the challenges of using the classical level-set algorithms for segmentation involves the placement of the initial contour. Manually defining the contour or randomly placing it in the image may lead to segmentation of erroneous structures. It is important to be able to automatically define the contour by using information provided by image features. We explored a level-set method which is based on the classical Chan-Vese model and which utilizes image feature information for automatic contour placement for the segmentation of pathologies in fluorescein angiograms and en face retinal images of the ISOS layer. This was accomplished by exploiting a priori knowledge of the shape and intensity distribution allowing the use of projection profiles to detect the presence of pathologies that are characterized by intensity differences with surrounding areas in retinal images. We first tested our method by applying it to fluorescein angiograms. We then applied our method to en face retinal images of patients with AMD. The experimental results included demonstrate that the proposed method provided a quick and improved outcome as compared to the classical Chan-Vese method in which the initial contour is randomly placed, thus indicating the potential to provide a more accurate and detailed view of changes in pathologies due to disease progression and treatment.

  12. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves

    USGS Publications Warehouse

    Zohdy, A.A.R.

    1989-01-01

    A fast iterative method for the automatic interpretation of Schlumberger and Wenner sounding curves is based on obtaining interpreted depths and resistivities from shifted electrode spacings and adjusted apparent resistivities, respectively. The method is fully automatic. It does not require an initial guess of the number of layers, their thicknesses, or their resistivities; and it does not require extrapolation of incomplete sounding curves. The number of layers in the interpreted model equals the number of digitized points on the sounding curve. The resulting multilayer model is always well-behaved with no thin layers of unusually high or unusually low resistivities. For noisy data, interpretation is done in two sets of iterations (two passes). Anomalous layers, created because of noise in the first pass, are eliminated in the second pass. Such layers are eliminated by considering the best-fitting curve from the first pass to be a smoothed version of the observed curve and automatically reinterpreting it (second pass). The application of the method is illustrated by several examples. -Author

  13. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.

  14. Automatic detection of wheezes by evaluation of multiple acoustic feature extraction methods and C-weighted SVM

    NASA Astrophysics Data System (ADS)

    Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.

    2015-01-01

    This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.

  15. AED training and its impact on skill acquisition, retention and performance--a systematic review of alternative training methods.

    PubMed

    Yeung, Joyce; Okamoto, Deems; Soar, Jasmeet; Perkins, Gavin D

    2011-06-01

    The most popular method of training in basic life support and AED use remains instructor-led training courses. This systematic review examines the evidence for different training methods of basic life support providers (laypersons and healthcare providers) using standard instructor-led courses as comparators, to assess whether alternative method of training can lead to effective skill acquisition, skill retention and actual performance whilst using the AED. OVID Medline (including Medline 1950-November 2010; EMBASE 1988-November 2010) was searched using "training" OR "teaching" OR "education" as text words. Search was then combined by using AND "AED" OR "automatic external defibrillator" as MESH words. Additionally, the American Heart Association Endnote library was searched with the terms "AED" and "automatic external defibrillator". Resuscitation journal was hand searched for relevant articles. 285 articles were identified. After duplicates were removed, 172 references were reviewed for relevance. From this 22 papers were scrutinized and 18 were included. All were manikin studies. Four LOE 1 studies, seven LOE 2 studies and three LOE 4 studies were supportive of alternative AED training methods. One LOE 2 study was neutral. Three LOE 1 studies provided opposing evidence. There is good evidence to support alternative methods of AED training including lay instructors, self directed learning and brief training. There is also evidence to support that no training is needed but even brief training can improve speed of shock delivery and electrode pad placement. Features of AED can have an impact on its use and further research should be directed to making devices user-friendly and robust to untrained layperson. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation

    PubMed Central

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-01-01

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  17. Automatic generation of the non-holonomic equations of motion for vehicle stability analysis

    NASA Astrophysics Data System (ADS)

    Minaker, B. P.; Rieveley, R. J.

    2010-09-01

    The mathematical analysis of vehicle stability has been utilised as an important tool in the design, development, and evaluation of vehicle architectures and stability controls. This paper presents a novel method for automatic generation of the linearised equations of motion for mechanical systems that is well suited to vehicle stability analysis. Unlike conventional methods for generating linearised equations of motion in standard linear second order form, the proposed method allows for the analysis of systems with non-holonomic constraints. In the proposed method, the algebraic constraint equations are eliminated after linearisation and reduction to first order. The described method has been successfully applied to an assortment of classic dynamic problems of varying complexity including the classic rolling coin, the planar truck-trailer, and the bicycle, as well as in more recent problems such as a rotor-stator and a benchmark road vehicle with suspension. This method has also been applied in the design and analysis of a novel three-wheeled narrow tilting vehicle with zero roll-stiffness. An application for determining passively stable configurations using the proposed method together with a genetic search algorithm is detailed. The proposed method and software implementation has been shown to be robust and provides invaluable conceptual insight into the stability of vehicles and mechanical systems.

  18. Automatic Syllabification in English: A Comparison of Different Algorithms

    ERIC Educational Resources Information Center

    Marchand, Yannick; Adsett, Connie R.; Damper, Robert I.

    2009-01-01

    Automatic syllabification of words is challenging, not least because the syllable is not easy to define precisely. Consequently, no accepted standard algorithm for automatic syllabification exists. There are two broad approaches: rule-based and data-driven. The rule-based method effectively embodies some theoretical position regarding the…

  19. Masked Priming Effects in Aphasia: Evidence of Altered Automatic Spreading Activation

    ERIC Educational Resources Information Center

    Silkes, JoAnn P.; Rogers, Margaret A.

    2012-01-01

    Purpose: Previous research has suggested that impairments of automatic spreading activation may underlie some aphasic language deficits. The current study further investigated the status of automatic spreading activation in individuals with aphasia as compared with typical adults. Method: Participants were 21 individuals with aphasia (12 fluent, 9…

  20. Automatic learning-based beam angle selection for thoracic IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationallymore » efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume coverage and organ at risk sparing and were superior over plans produced with fixed sets of common beam angles. The great majority of the automatic plans (93%) were approved as clinically acceptable by three radiation therapy specialists. Conclusions: The results demonstrated the feasibility of utilizing a learning-based approach for automatic selection of beam angles in thoracic IMRT planning. The proposed method may assist in reducing the manual planning workload, while sustaining plan quality.« less

  1. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    PubMed

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  2. Expert Knowledge-Based Automatic Sleep Stage Determination by Multi-Valued Decision Making Method

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Kawana, Fusae; Wang, Xingyu; Nakamura, Masatoshi

    In this study, an expert knowledge-based automatic sleep stage determination system working on a multi-valued decision making method is developed. Visual inspection by a qualified clinician is adopted to obtain the expert knowledge database. The expert knowledge database consists of probability density functions of parameters for various sleep stages. Sleep stages are determined automatically according to the conditional probability. Totally, four subjects were participated. The automatic sleep stage determination results showed close agreements with the visual inspection on sleep stages of awake, REM (rapid eye movement), light sleep and deep sleep. The constructed expert knowledge database reflects the distributions of characteristic parameters which can be adaptive to variable sleep data in hospitals. The developed automatic determination technique based on expert knowledge of visual inspection can be an assistant tool enabling further inspection of sleep disorder cases for clinical practice.

  3. Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.

    DTIC Science & Technology

    1982-12-01

    In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for

  4. Semi-automatic for ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan

    1990-02-13

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.

  5. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Daw, C.S.; Lawkins, W.F.

    1998-04-28

    Methods and apparatus are disclosed for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence. 76 figs.

  6. Semi-automatic for ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Li, Y.

    1990-02-13

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figs.

  7. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgmans, Mark Christiaan, E-mail: m.c.burgmans@lumc.nl; Harder, J. Michiel den, E-mail: chiel.den.harder@gmail.com; Meershoek, Philippa, E-mail: P.Meershoek@lumc.nl

    PurposeTo determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions.Materials and MethodsCT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined bymore » measurement of the residual displacement in phantom lesions by two independent observers.ResultsMean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values.ConclusionThe accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.« less

  8. Experimental research on showing automatic disappearance pen handwriting based on spectral imaging technology

    NASA Astrophysics Data System (ADS)

    Su, Yi; Xu, Lei; Liu, Ningning; Huang, Wei; Xu, Xiaojing

    2016-10-01

    Purpose to find an efficient, non-destructive examining method for showing the disappearing words after writing with automatic disappearance pen. Method Using the imaging spectrometer to show the potential disappearance words on paper surface according to different properties of reflection absorbed by various substances in different bands. Results the disappeared words by using different disappearance pens to write on the same paper or the same disappearance pen to write on different papers, both can get good show results through the use of the spectral imaging examining methods. Conclusion Spectral imaging technology can show the disappearing words after writing by using the automatic disappearance pen.

  9. A new method for automatic discontinuity traces sampling on rock mass 3D model

    NASA Astrophysics Data System (ADS)

    Umili, G.; Ferrero, A.; Einstein, H. H.

    2013-02-01

    A new automatic method for discontinuity traces mapping and sampling on a rock mass digital model is described in this work. The implemented procedure allows one to automatically identify discontinuity traces on a Digital Surface Model: traces are detected directly as surface breaklines, by means of maximum and minimum principal curvature values of the vertices that constitute the model surface. Color influence and user errors, that usually characterize the trace mapping on images, are eliminated. Also trace sampling procedures based on circular windows and circular scanlines have been implemented: they are used to infer trace data and to calculate values of mean trace length, expected discontinuity diameter and intensity of rock discontinuities. The method is tested on a case study: results obtained applying the automatic procedure on the DSM of a rock face are compared to those obtained performing a manual sampling on the orthophotograph of the same rock face.

  10. Analysis of lignans in Magnoliae Flos by turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2016-04-01

    In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 77 FR 53914 - Horton Automatics, Inc., a Subsidiary of Overhead Door Corporation Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ...., a Subsidiary of Overhead Door Corporation Including On-Site Leased Workers From Remedy Intelligent..., including on-site leased workers from Remedy Intelligent Staffing, Corpus Christi, Texas. The workers are... Automatics, Inc., a subsidiary of Overhead Door Corporation, including on-site leased workers from Remedy...

  12. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    NASA Astrophysics Data System (ADS)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  13. Automatic extraction of tree crowns from aerial imagery in urban environment

    NASA Astrophysics Data System (ADS)

    Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng

    2006-10-01

    Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.

  14. Automatic lumbar spine measurement in CT images

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Zheng, Dong; Liao, Shu; Peng, Zhigang; Yan, Ruyi; Liu, Junhua; Dong, Zhongxing; Gong, Liyan; Zhou, Xiang Sean; Zhan, Yiqiang; Fei, Jun

    2017-03-01

    Accurate lumbar spine measurement in CT images provides an essential way for quantitative spinal diseases analysis such as spondylolisthesis and scoliosis. In today's clinical workflow, the measurements are manually performed by radiologists and surgeons, which is time consuming and irreproducible. Therefore, automatic and accurate lumbar spine measurement algorithm becomes highly desirable. In this study, we propose a method to automatically calculate five different lumbar spine measurements in CT images. There are three main stages of the proposed method: First, a learning based spine labeling method, which integrates both the image appearance and spine geometry information, is used to detect lumbar and sacrum vertebrae in CT images. Then, a multiatlases based image segmentation method is used to segment each lumbar vertebra and the sacrum based on the detection result. Finally, measurements are derived from the segmentation result of each vertebra. Our method has been evaluated on 138 spinal CT scans to automatically calculate five widely used clinical spine measurements. Experimental results show that our method can achieve more than 90% success rates across all the measurements. Our method also significantly improves the measurement efficiency compared to manual measurements. Besides benefiting the routine clinical diagnosis of spinal diseases, our method also enables the large scale data analytics for scientific and clinical researches.

  15. QBIC project: querying images by content, using color, texture, and shape

    NASA Astrophysics Data System (ADS)

    Niblack, Carlton W.; Barber, Ron; Equitz, Will; Flickner, Myron D.; Glasman, Eduardo H.; Petkovic, Dragutin; Yanker, Peter; Faloutsos, Christos; Taubin, Gabriel

    1993-04-01

    In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.

  16. Image analysis for skeletal evaluation of carpal bones

    NASA Astrophysics Data System (ADS)

    Ko, Chien-Chuan; Mao, Chi-Wu; Lin, Chi-Jen; Sun, Yung-Nien

    1995-04-01

    The assessment of bone age is an important field to the pediatric radiology. It provides very important information for treatment and prediction of skeletal growth in a developing child. So far, various computerized algorithms for automatically assessing the skeletal growth have been reported. Most of these methods made attempt to analyze the phalangeal growth. The most fundamental step in these automatic measurement methods is the image segmentation that extracts bones from soft-tissue and background. These automatic segmentation methods of hand radiographs can roughly be categorized into two main approaches that are edge and region based methods. This paper presents a region-based carpal-bone segmentation approach. It is organized into four stages: contrast enhancement, moment-preserving thresholding, morphological processing, and region-growing labeling.

  17. 2D automatic body-fitted structured mesh generation using advancing extraction method

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoxin; Jia, Yafei

    2018-01-01

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.

  18. ADMAP (automatic data manipulation program)

    NASA Technical Reports Server (NTRS)

    Mann, F. I.

    1971-01-01

    Instructions are presented on the use of ADMAP, (automatic data manipulation program) an aerospace data manipulation computer program. The program was developed to aid in processing, reducing, plotting, and publishing electric propulsion trajectory data generated by the low thrust optimization program, HILTOP. The program has the option of generating SC4020 electric plots, and therefore requires the SC4020 routines to be available at excution time (even if not used). Several general routines are present, including a cubic spline interpolation routine, electric plotter dash line drawing routine, and single parameter and double parameter sorting routines. Many routines are tailored for the manipulation and plotting of electric propulsion data, including an automatic scale selection routine, an automatic curve labelling routine, and an automatic graph titling routine. Data are accepted from either punched cards or magnetic tape.

  19. Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.

    NASA Astrophysics Data System (ADS)

    Takemine, S.; Rikimaru, A.; Takahashi, K.

    The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed

  20. Quantitative analysis of the patellofemoral motion pattern using semi-automatic processing of 4D CT data.

    PubMed

    Forsberg, Daniel; Lindblom, Maria; Quick, Petter; Gauffin, Håkan

    2016-09-01

    To present a semi-automatic method with minimal user interaction for quantitative analysis of the patellofemoral motion pattern. 4D CT data capturing the patellofemoral motion pattern of a continuous flexion and extension were collected for five patients prone to patellar luxation both pre- and post-surgically. For the proposed method, an observer would place landmarks in a single 3D volume, which then are automatically propagated to the other volumes in a time sequence. From the landmarks in each volume, the measures patellar displacement, patellar tilt and angle between femur and tibia were computed. Evaluation of the observer variability showed the proposed semi-automatic method to be favorable over a fully manual counterpart, with an observer variability of approximately 1.5[Formula: see text] for the angle between femur and tibia, 1.5 mm for the patellar displacement, and 4.0[Formula: see text]-5.0[Formula: see text] for the patellar tilt. The proposed method showed that surgery reduced the patellar displacement and tilt at maximum extension with approximately 10-15 mm and 15[Formula: see text]-20[Formula: see text] for three patients but with less evident differences for two of the patients. A semi-automatic method suitable for quantification of the patellofemoral motion pattern as captured by 4D CT data has been presented. Its observer variability is on par with that of other methods but with the distinct advantage to support continuous motions during the image acquisition.

  1. Automatic tracking of red blood cells in micro channels using OpenCV

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vânia; Rodrigues, Pedro J.; Pereira, Ana I.; Lima, Rui

    2013-10-01

    The present study aims to developan automatic method able to track red blood cells (RBCs) trajectories flowing through a microchannel using the Open Source Computer Vision (OpenCV). The developed method is based on optical flux calculation assisted by the maximization of the template-matching product. The experimental results show a good functional performance of this method.

  2. Automatic segmentation of coronary arteries from computed tomography angiography data cloud using optimal thresholding

    NASA Astrophysics Data System (ADS)

    Ansari, Muhammad Ahsan; Zai, Sammer; Moon, Young Shik

    2017-01-01

    Manual analysis of the bulk data generated by computed tomography angiography (CTA) is time consuming, and interpretation of such data requires previous knowledge and expertise of the radiologist. Therefore, an automatic method that can isolate the coronary arteries from a given CTA dataset is required. We present an automatic yet effective segmentation method to delineate the coronary arteries from a three-dimensional CTA data cloud. Instead of a region growing process, which is usually time consuming and prone to leakages, the method is based on the optimal thresholding, which is applied globally on the Hessian-based vesselness measure in a localized way (slice by slice) to track the coronaries carefully to their distal ends. Moreover, to make the process automatic, we detect the aorta using the Hough transform technique. The proposed segmentation method is independent of the starting point to initiate its process and is fast in the sense that coronary arteries are obtained without any preprocessing or postprocessing steps. We used 12 real clinical datasets to show the efficiency and accuracy of the presented method. Experimental results reveal that the proposed method achieves 95% average accuracy.

  3. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions.

    PubMed

    Burgmans, Mark Christiaan; den Harder, J Michiel; Meershoek, Philippa; van den Berg, Nynke S; Chan, Shaun Xavier Ju Min; van Leeuwen, Fijs W B; van Erkel, Arian R

    2017-06-01

    To determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions. CT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined by measurement of the residual displacement in phantom lesions by two independent observers. Mean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values. The accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.

  4. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  5. Automatic cloud tracking applied to GOES and Meteosat observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1981-01-01

    An improved automatic processing method for the tracking of cloud motions as revealed by satellite imagery is presented and applications of the method to GOES observations of Hurricane Eloise and Meteosat water vapor and infrared data are presented. The method is shown to involve steps of picture smoothing, target selection and the calculation of cloud motion vectors by the matching of a group at a given time with its best likeness at a later time, or by a cross-correlation computation. Cloud motion computations can be made in as many as four separate layers simultaneously. For data of 4 and 8 km resolution in the eye of Hurricane Eloise, the automatic system is found to provide results comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System, with results obtained by the pattern recognition and cross correlation computations differing by only fractions of a pixel. For Meteosat water vapor data from the tropics and midlatitudes, the automatic motion computations are found to be reliable only in areas where the water vapor fields contained small-scale structure, although excellent results are obtained using Meteosat IR data in the same regions. The automatic method thus appears to be competitive in accuracy and coverage with motion determination by human analysts.

  6. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reflecting on non-reflective action: An exploratory think-aloud study of self-report habit measures

    PubMed Central

    Gardner, Benjamin; Tang, Vinca

    2014-01-01

    Objectives Within health psychology, habit – the tendency to enact action automatically as a learned response to contextual cues – is most commonly quantified using the ‘Self-Report Habit Index’, which assesses behavioural automaticity, or measures combining self-reported behaviour frequency and context stability. Yet, the use of self-report to capture habit has proven controversial. This study used ‘think-aloud’ methods to investigate problems experienced when completing these two measures. Design Cross-sectional survey with think-aloud study. Methods Twenty student participants narrated their thoughts while completing habit measures applied to four health-related behaviours (active commuting, unhealthy snacking, and one context-free and one context-specific variant of alcohol consumption). Data were coded using thematic analysis procedures. Results Problems were found in 10% of responses. Notable findings included participants lacking confidence in reporting automaticity, struggling to recall behaviour or cues, differing in interpretations of ‘commuting’, and misinterpreting items. Conclusions While most responses were unproblematic, and further work is needed to investigate habit self-reports among larger and more diverse samples, findings nonetheless question the sensitivity of the measures, and the conceptualization of habit underpinning common applications of them. We offer suggestions to minimize these problems. PMID:23869847

  8. Automatic rice crop height measurement using a field server and digital image processing.

    PubMed

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  9. Automatic Coding of Short Text Responses via Clustering in Educational Assessment

    ERIC Educational Resources Information Center

    Zehner, Fabian; Sälzer, Christine; Goldhammer, Frank

    2016-01-01

    Automatic coding of short text responses opens new doors in assessment. We implemented and integrated baseline methods of natural language processing and statistical modelling by means of software components that are available under open licenses. The accuracy of automatic text coding is demonstrated by using data collected in the "Programme…

  10. Automatic segmentation of relevant structures in DCE MR mammograms

    NASA Astrophysics Data System (ADS)

    Koenig, Matthias; Laue, Hendrik; Boehler, Tobias; Peitgen, Heinz-Otto

    2007-03-01

    The automatic segmentation of relevant structures such as skin edge, chest wall, or nipple in dynamic contrast enhanced MR imaging (DCE MRI) of the breast provides additional information for computer aided diagnosis (CAD) systems. Automatic reporting using BI-RADS criteria benefits of information about location of those structures. Lesion positions can be automatically described relatively to such reference structures for reporting purposes. Furthermore, this information can assist data reduction for computation expensive preprocessing such as registration, or for visualization of only the segments of current interest. In this paper, a novel automatic method for determining the air-breast boundary resp. skin edge, for approximation of the chest wall, and locating of the nipples is presented. The method consists of several steps which are built on top of each other. Automatic threshold computation leads to the air-breast boundary which is then analyzed to determine the location of the nipple. Finally, results of both steps are starting point for approximation of the chest wall. The proposed process was evaluated on a large data set of DCE MRI recorded by T1 sequences and yielded reasonable results in all cases.

  11. User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy.

    PubMed

    Ramkumar, Anjana; Dolz, Jose; Kirisli, Hortense A; Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Massoptier, Laurent; Varga, Edit; Stappers, Pieter Jan; Niessen, Wiro J; Song, Yu

    2016-04-01

    Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians' expertise and computers' potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the "strokes" and the "contour", to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design.

  12. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    NASA Astrophysics Data System (ADS)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  13. Automated Detection of Actinic Keratoses in Clinical Photographs

    PubMed Central

    Hames, Samuel C.; Sinnya, Sudipta; Tan, Jean-Marie; Morze, Conrad; Sahebian, Azadeh; Soyer, H. Peter; Prow, Tarl W.

    2015-01-01

    Background Clinical diagnosis of actinic keratosis is known to have intra- and inter-observer variability, and there is currently no non-invasive and objective measure to diagnose these lesions. Objective The aim of this pilot study was to determine if automatically detecting and circumscribing actinic keratoses in clinical photographs is feasible. Methods Photographs of the face and dorsal forearms were acquired in 20 volunteers from two groups: the first with at least on actinic keratosis present on the face and each arm, the second with no actinic keratoses. The photographs were automatically analysed using colour space transforms and morphological features to detect erythema. The automated output was compared with a senior consultant dermatologist’s assessment of the photographs, including the intra-observer variability. Performance was assessed by the correlation between total lesions detected by automated method and dermatologist, and whether the individual lesions detected were in the same location as the dermatologist identified lesions. Additionally, the ability to limit false positives was assessed by automatic assessment of the photographs from the no actinic keratosis group in comparison to the high actinic keratosis group. Results The correlation between the automatic and dermatologist counts was 0.62 on the face and 0.51 on the arms, compared to the dermatologist’s intra-observer variation of 0.83 and 0.93 for the same. Sensitivity of automatic detection was 39.5% on the face, 53.1% on the arms. Positive predictive values were 13.9% on the face and 39.8% on the arms. Significantly more lesions (p<0.0001) were detected in the high actinic keratosis group compared to the no actinic keratosis group. Conclusions The proposed method was inferior to assessment by the dermatologist in terms of sensitivity and positive predictive value. However, this pilot study used only a single simple feature and was still able to achieve sensitivity of detection of 53.1% on the arms.This suggests that image analysis is a feasible avenue of investigation for overcoming variability in clinical assessment. Future studies should focus on more sophisticated features to improve sensitivity for actinic keratoses without erythema and limit false positives associated with the anatomical structures on the face. PMID:25615930

  14. SigVox - A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Wang, Jinhu; Lindenbergh, Roderik; Menenti, Massimo

    2017-06-01

    Urban road environments contain a variety of objects including different types of lamp poles and traffic signs. Its monitoring is traditionally conducted by visual inspection, which is time consuming and expensive. Mobile laser scanning (MLS) systems sample the road environment efficiently by acquiring large and accurate point clouds. This work proposes a methodology for urban road object recognition from MLS point clouds. The proposed method uses, for the first time, shape descriptors of complete objects to match repetitive objects in large point clouds. To do so, a novel 3D multi-scale shape descriptor is introduced, that is embedded in a workflow that efficiently and automatically identifies different types of lamp poles and traffic signs. The workflow starts by tiling the raw point clouds along the scanning trajectory and by identifying non-ground points. After voxelization of the non-ground points, connected voxels are clustered to form candidate objects. For automatic recognition of lamp poles and street signs, a 3D significant eigenvector based shape descriptor using voxels (SigVox) is introduced. The 3D SigVox descriptor is constructed by first subdividing the points with an octree into several levels. Next, significant eigenvectors of the points in each voxel are determined by principal component analysis (PCA) and mapped onto the appropriate triangle of a sphere approximating icosahedron. This step is repeated for different scales. By determining the similarity of 3D SigVox descriptors between candidate point clusters and training objects, street furniture is automatically identified. The feasibility and quality of the proposed method is verified on two point clouds obtained in opposite direction of a stretch of road of 4 km. 6 types of lamp pole and 4 types of road sign were selected as objects of interest. Ground truth validation showed that the overall accuracy of the ∼170 automatically recognized objects is approximately 95%. The results demonstrate that the proposed method is able to recognize street furniture in a practical scenario. Remaining difficult cases are touching objects, like a lamp pole close to a tree.

  15. Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions

    NASA Astrophysics Data System (ADS)

    Kurtz, Jason Patrick

    We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.

  16. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  17. Automated Assessment of Cognitive Health Using Smart Home Technologies

    PubMed Central

    Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2014-01-01

    BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177

  18. Automatic Dependent Surveillance Broadcast (ADS-B) System for Ownership and Traffic Situational Awareness

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo A. (Inventor)

    2016-01-01

    The present invention proposes an automatic dependent surveillance broadcast (ADS-B) architecture and process, in which priority aircraft and ADS-B IN traffic information are included in the transmission of data through the telemetry communications to a remote ground control station. The present invention further proposes methods for displaying general aviation traffic information in three and/or four dimension trajectories using an industry standard Earth browser for increased situation awareness and enhanced visual acquisition of traffic for conflict detection. The present invention enable the applications of enhanced visual acquisition of traffic, traffic alerts, and en-route and terminal surveillance used to augment pilot situational awareness through ADS-B IN display and information in three or four dimensions for self-separation awareness.

  19. Statistical Methods in Assembly Quality Management of Multi-Element Products on Automatic Rotor Lines

    NASA Astrophysics Data System (ADS)

    Pries, V. V.; Proskuriakov, N. E.

    2018-04-01

    To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.

  20. Examination of a cognitive model of stress, burnout, and intention to resign for Japanese nurses.

    PubMed

    Ohue, Takashi; Moriyama, Michiko; Nakaya, Takashi

    2011-06-01

    A reduction in burnout is required to decrease the voluntary turnover of nurses. This study was carried out with the aim of establishing a cognitive model of stress, burnout, and intention to resign for nurses. A questionnaire survey was administered to 336 nurses (27 male and 309 female) who had worked for ≤5 years at a hospital with multiple departments. The survey included an evaluation of burnout (Maslach Burnout Inventory), stress (Nursing Job Stressor Scale), automatic thoughts (Automatic Thoughts Questionnaire-Revised), and irrational beliefs (Japanese Irrational Belief Test), in addition to the intention to resign. The stressors that affected burnout in the nurses included conflict with other nursing staff, nursing role conflict, qualitative workload, quantitative workload, and conflict with patients. The irrational beliefs that were related to burnout included dependence, problem avoidance, and helplessness. In order to examine the automatic thoughts affecting burnout, groups with low and high negative automatic thoughts and low and high positive automatic thoughts were established. A two-way ANOVA showed a significant interaction of these factors with emotional exhaustion, but no significant interaction with depersonalization and a personal sense of accomplishment. Only the major effect was significant. The final model showed a process of "stressor → irrational beliefs → negative automatic thoughts/positive automatic thoughts → burnout". In addition, a relationship between burnout and an intention to resign was shown. These results suggest that stress and burnout in nurses might be prevented and that the number of nurses who leave their position could be decreased by changing irrational beliefs to rational beliefs, decreasing negative automatic thoughts, and facilitating positive automatic thoughts. © 2010 The Authors. Japan Journal of Nursing Science © 2010 Japan Academy of Nursing Science.

  1. Focused attention, open monitoring and automatic self-transcending: Categories to organize meditations from Vedic, Buddhist and Chinese traditions.

    PubMed

    Travis, Fred; Shear, Jonathan

    2010-12-01

    This paper proposes a third meditation-category--automatic self-transcending--to extend the dichotomy of focused attention and open monitoring proposed by Lutz. Automatic self-transcending includes techniques designed to transcend their own activity. This contrasts with focused attention, which keeps attention focused on an object; and open monitoring, which keeps attention involved in the monitoring process. Each category was assigned EEG bands, based on reported brain patterns during mental tasks, and meditations were categorized based on their reported EEG. Focused attention, characterized by beta/gamma activity, included meditations from Tibetan Buddhist, Buddhist, and Chinese traditions. Open monitoring, characterized by theta activity, included meditations from Buddhist, Chinese, and Vedic traditions. Automatic self-transcending, characterized by alpha1 activity, included meditations from Vedic and Chinese traditions. Between categories, the included meditations differed in focus, subject/object relation, and procedures. These findings shed light on the common mistake of averaging meditations together to determine mechanisms or clinical effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. [Comparison of different continuous positive airway pressure titration methods for obstructive sleep apnea hypopnea syndrome].

    PubMed

    Li, Jingjing; Ye, Jingying; Zhang, Peng; Kang, Dan; Cao, Xin; Zhang, Yuhuan; Ding, Xiu; Zheng, Li; Li, Hongguang; Bian, Qiuli

    2014-10-01

    To explore whether there were differences between the results of automatic titration and the results of manual titration for positive airway pressure treatment in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and its influencing factors, the results might provide a theoretical basis for the rational use of two pressure titration methods. Sixty one patients with OSAHS were included in this study. All patients underwent a manual titration and an automatic titration within one week. The clinical informations, polysomnography data, and the results of both two titration of all patients were obtained for analysis. The overall apnea/hypopnea index was (63.1 ± 17.7)/h, with a range of 14.9/h to 110.4/h. The treatment pressure of manual titration was (8.4 ± 2.1) cmH(2)O, which was significantly lower than the treatment pressure of automatic titration, (11.5 ± 2.7) cmH(2)O (t = -9.797, P < 0.001). After using a ΔP of 3 cmH(2)O for the cutoff value (ΔP was defined as the difference of automatic titration and manual titration), it was found that the pressure of automatic titration was significantly higher in patients with a ΔP > 3 cmH(2)O than in patients with a ΔP ≤ 3 cmH(2)O, which was (13.3 ± 2.3) cmH(2)O vs (10.0 ± 2.0) cmH(2)O (t = -6.159, P < 0.001). However, there were no differences for the pressure of manual titration between these two groups, which was (8.6 ± 2.4) cmH(2)O vs (8.3 ± 2.0)cmH(2)O (P > 0.05). There was no significant difference in age, body mass index, neck circumference, abdomen circumference, apnea hypopnea index, and arterial oxygen saturation between these two groups. The treatment pressure of automatic titration is usually higher than that of manual titration. For patients with a high treatment pressure which is derived from automatic titration, a suggestion about manual titration could be given to decrease the potential treatment pressure of continuous positive airway pressure, which may be helpful in improving the comfortableness and the compliance of this treatment.

  3. Automatic recognition of conceptualization zones in scientific articles and two life science applications.

    PubMed

    Liakata, Maria; Saha, Shyamasree; Dobnik, Simon; Batchelor, Colin; Rebholz-Schuhmann, Dietrich

    2012-04-01

    Scholarly biomedical publications report on the findings of a research investigation. Scientists use a well-established discourse structure to relate their work to the state of the art, express their own motivation and hypotheses and report on their methods, results and conclusions. In previous work, we have proposed ways to explicitly annotate the structure of scientific investigations in scholarly publications. Here we present the means to facilitate automatic access to the scientific discourse of articles by automating the recognition of 11 categories at the sentence level, which we call Core Scientific Concepts (CoreSCs). These include: Hypothesis, Motivation, Goal, Object, Background, Method, Experiment, Model, Observation, Result and Conclusion. CoreSCs provide the structure and context to all statements and relations within an article and their automatic recognition can greatly facilitate biomedical information extraction by characterizing the different types of facts, hypotheses and evidence available in a scientific publication. We have trained and compared machine learning classifiers (support vector machines and conditional random fields) on a corpus of 265 full articles in biochemistry and chemistry to automatically recognize CoreSCs. We have evaluated our automatic classifications against a manually annotated gold standard, and have achieved promising accuracies with 'Experiment', 'Background' and 'Model' being the categories with the highest F1-scores (76%, 62% and 53%, respectively). We have analysed the task of CoreSC annotation both from a sentence classification as well as sequence labelling perspective and we present a detailed feature evaluation. The most discriminative features are local sentence features such as unigrams, bigrams and grammatical dependencies while features encoding the document structure, such as section headings, also play an important role for some of the categories. We discuss the usefulness of automatically generated CoreSCs in two biomedical applications as well as work in progress. A web-based tool for the automatic annotation of articles with CoreSCs and corresponding documentation is available online at http://www.sapientaproject.com/software http://www.sapientaproject.com also contains detailed information pertaining to CoreSC annotation and links to annotation guidelines as well as a corpus of manually annotated articles, which served as our training data. liakata@ebi.ac.uk Supplementary data are available at Bioinformatics online.

  4. Improve accuracy for automatic acetabulum segmentation in CT images.

    PubMed

    Liu, Hao; Zhao, Jianning; Dai, Ning; Qian, Hongbo; Tang, Yuehong

    2014-01-01

    Separation of the femur head and acetabulum is one of main difficulties in the diseased hip joint due to deformed shapes and extreme narrowness of the joint space. To improve the segmentation accuracy is the key point of existing automatic or semi-automatic segmentation methods. In this paper, we propose a new method to improve the accuracy of the segmented acetabulum using surface fitting techniques, which essentially consists of three parts: (1) design a surface iterative process to obtain an optimization surface; (2) change the ellipsoid fitting to two-phase quadric surface fitting; (3) bring in a normal matching method and an optimization region method to capture edge points for the fitting quadric surface. Furthermore, this paper cited vivo CT data sets of 40 actual patients (with 79 hip joints). Test results for these clinical cases show that: (1) the average error of the quadric surface fitting method is 2.3 (mm); (2) the accuracy ratio of automatically recognized contours is larger than 89.4%; (3) the error ratio of section contours is less than 10% for acetabulums without severe malformation and less than 30% for acetabulums with severe malformation. Compared with similar methods, the accuracy of our method, which is applied in a software system, is significantly enhanced.

  5. Research on Volume Measurement System of Weights with Hydrostatic Technique

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Ren, Xiaoping; Yao, Hong; Cai, Changqing; Zhang, Yue; Zhong, Ruilin; Ding, Jing'an

    According to Annex B.7.4 of OIML R111-1, equipment for measuring volume of weights mass ranging from 1 kg to 20 kg including three methods of hydrostatic comparison is described. The equipment consists of a robot arm for transferring weights, a liquid bath, a mass comparator with 26.1 kg of maximum capacity and 1 mg of readability, glass housing, two weight exchangers including in air and in liquid, two weight holders including in air and in liquid, and a controller. The equipment will enable to perform automatically volume measurements.

  6. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  7. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  8. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  9. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  10. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  11. Satellite radar altimetry over ice. Volume 1: Processing and corrections of Seasat data over Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.

    1990-01-01

    The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.

  12. 46 CFR 160.170-13 - Approval inspections and tests for prototype automatic release mechanisms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as built. The plans must include, in triplicate, the instructions for training and maintenance... determine that the prototype— (A) Conforms with the plans reviewed under § 160.170-9 of this subpart; (B) Is constructed by the methods and with the materials specified in the plans reviewed under § 160.170-9 of this...

  13. 46 CFR 160.170-13 - Approval inspections and tests for prototype automatic release mechanisms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as built. The plans must include, in triplicate, the instructions for training and maintenance... determine that the prototype— (A) Conforms with the plans reviewed under § 160.170-9 of this subpart; (B) Is constructed by the methods and with the materials specified in the plans reviewed under § 160.170-9 of this...

  14. 46 CFR 160.170-13 - Approval inspections and tests for prototype automatic release mechanisms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as built. The plans must include, in triplicate, the instructions for training and maintenance... determine that the prototype— (A) Conforms with the plans reviewed under § 160.170-9 of this subpart; (B) Is constructed by the methods and with the materials specified in the plans reviewed under § 160.170-9 of this...

  15. Melt dumping in string stabilized ribbon growth

    DOEpatents

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  16. OPAD data analysis

    NASA Astrophysics Data System (ADS)

    Buntine, Wray L.; Kraft, Richard; Whitaker, Kevin; Cooper, Anita E.; Powers, W. T.; Wallace, Tim L.

    1993-06-01

    Data obtained in the framework of an Optical Plume Anomaly Detection (OPAD) program intended to create a rocket engine health monitor based on spectrometric detections of anomalous atomic and molecular species in the exhaust plume are analyzed. The major results include techniques for handling data noise, methods for registration of spectra to wavelength, and a simple automatic process for estimating the metallic component of a spectrum.

  17. "Rate My Therapist": Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing.

    PubMed

    Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis G; Atkins, David C; Narayanan, Shrikanth S

    2015-01-01

    The technology for evaluating patient-provider interactions in psychotherapy-observational coding-has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies.

  18. Automatic and Objective Assessment of Alternating Tapping Performance in Parkinson's Disease

    PubMed Central

    Memedi, Mevludin; Khan, Taha; Grenholm, Peter; Nyholm, Dag; Westin, Jerker

    2013-01-01

    This paper presents the development and evaluation of a method for enabling quantitative and automatic scoring of alternating tapping performance of patients with Parkinson's disease (PD). Ten healthy elderly subjects and 95 patients in different clinical stages of PD have utilized a touch-pad handheld computer to perform alternate tapping tests in their home environments. First, a neurologist used a web-based system to visually assess impairments in four tapping dimensions (‘speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’) and a global tapping severity (GTS). Second, tapping signals were processed with time series analysis and statistical methods to derive 24 quantitative parameters. Third, principal component analysis was used to reduce the dimensions of these parameters and to obtain scores for the four dimensions. Finally, a logistic regression classifier was trained using a 10-fold stratified cross-validation to map the reduced parameters to the corresponding visually assessed GTS scores. Results showed that the computed scores correlated well to visually assessed scores and were significantly different across Unified Parkinson's Disease Rating Scale scores of upper limb motor performance. In addition, they had good internal consistency, had good ability to discriminate between healthy elderly and patients in different disease stages, had good sensitivity to treatment interventions and could reflect the natural disease progression over time. In conclusion, the automatic method can be useful to objectively assess the tapping performance of PD patients and can be included in telemedicine tools for remote monitoring of tapping. PMID:24351667

  19. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.

    PubMed

    Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel

    2013-05-01

    The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples. Copyright © 2013 International Society for Advancement of Cytometry.

  20. Automatic and objective assessment of alternating tapping performance in Parkinson's disease.

    PubMed

    Memedi, Mevludin; Khan, Taha; Grenholm, Peter; Nyholm, Dag; Westin, Jerker

    2013-12-09

    This paper presents the development and evaluation of a method for enabling quantitative and automatic scoring of alternating tapping performance of patients with Parkinson's disease (PD). Ten healthy elderly subjects and 95 patients in different clinical stages of PD have utilized a touch-pad handheld computer to perform alternate tapping tests in their home environments. First, a neurologist used a web-based system to visually assess impairments in four tapping dimensions ('speed', 'accuracy', 'fatigue' and 'arrhythmia') and a global tapping severity (GTS). Second, tapping signals were processed with time series analysis and statistical methods to derive 24 quantitative parameters. Third, principal component analysis was used to reduce the dimensions of these parameters and to obtain scores for the four dimensions. Finally, a logistic regression classifier was trained using a 10-fold stratified cross-validation to map the reduced parameters to the corresponding visually assessed GTS scores. Results showed that the computed scores correlated well to visually assessed scores and were significantly different across Unified Parkinson's Disease Rating Scale scores of upper limb motor performance. In addition, they had good internal consistency, had good ability to discriminate between healthy elderly and patients in different disease stages, had good sensitivity to treatment interventions and could reflect the natural disease progression over time. In conclusion, the automatic method can be useful to objectively assess the tapping performance of PD patients and can be included in telemedicine tools for remote monitoring of tapping.

  1. Clinical performance of an objective methodology to categorize tear film lipid layer patterns

    NASA Astrophysics Data System (ADS)

    Garcia-Resua, Carlos; Pena-Verdeal, Hugo; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2017-08-01

    Purpose: To validate the performance of a new objective application designated iDEAS (Dry Eye Assessment System) to categorize different zones of lipid layer patterns (LLPs) in one image. Material and methods: Using the Tearscopeplus and a digital camera attached to a slit-lamp, 50 images were captured and analyzed by 4 experienced optometrists. In each image the observers outlined tear film zones that they clearly identified as a specific LLP. Further, the categorization made by the 4 optometrists (called observer 1, 2, 3 and 4) was compared with the automatic system included in iDEAS (5th observer). Results: In general, observer 3 classified worse than all observers (observers 1, 2, 4 and automatic application, Wilcoxon test, <0.05). The automatic system behaved similar to the remaining three observers (observer 1, 2 and 4) showing differences only for Open meshwork LLP when comparing with observer 4 (Wilcoxon test, p=0.02). For the remaining two observers (observer 1 and 2) there was not found statistical differences (Wilcoxon test, >0.05). Furthermore, we obtained a set of photographs per LLP category for which all optometrists showed agreement by using the new tool. After examining them, we detected the more characteristic features for each LLP to enhance the description of the patterns implemented by Guillon. Conclusions: The automatic application included in the iDEAS framework is able to provide zones similar to the annotations made by experienced optometrists. Thus, the manual process done by experts can be automated with the benefits of being unaffected by subjective factors.

  2. System and method of self-properties for an autonomous and automatic computer environment

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.

  3. Semi-automatic segmentation of brain tumors using population and individual information.

    PubMed

    Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan

    2013-08-01

    Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.

  4. A methodology for the semi-automatic digital image analysis of fragmental impactites

    NASA Astrophysics Data System (ADS)

    Chanou, A.; Osinski, G. R.; Grieve, R. A. F.

    2014-04-01

    A semi-automated digital image analysis method is developed for the comparative textural study of impact melt-bearing breccias. This method uses the freeware software ImageJ developed by the National Institute of Health (NIH). Digital image analysis is performed on scans of hand samples (10-15 cm across), based on macroscopic interpretations of the rock components. All image processing and segmentation are done semi-automatically, with the least possible manual intervention. The areal fraction of components is estimated and modal abundances can be deduced, where the physical optical properties (e.g., contrast, color) of the samples allow it. Other parameters that can be measured include, for example, clast size, clast-preferred orientations, average box-counting dimension or fragment shape complexity, and nearest neighbor distances (NnD). This semi-automated method allows the analysis of a larger number of samples in a relatively short time. Textures, granulometry, and shape descriptors are of considerable importance in rock characterization. The methodology is used to determine the variations of the physical characteristics of some examples of fragmental impactites.

  5. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    PubMed

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.

  6. Automatic short axis orientation of the left ventricle in 3D ultrasound recordings

    NASA Astrophysics Data System (ADS)

    Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan

    2016-04-01

    The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.

  7. Validation of automatic landmark identification for atlas-based segmentation for radiation treatment planning of the head-and-neck region

    NASA Astrophysics Data System (ADS)

    Leavens, Claudia; Vik, Torbjørn; Schulz, Heinrich; Allaire, Stéphane; Kim, John; Dawson, Laura; O'Sullivan, Brian; Breen, Stephen; Jaffray, David; Pekar, Vladimir

    2008-03-01

    Manual contouring of target volumes and organs at risk in radiation therapy is extremely time-consuming, in particular for treating the head-and-neck area, where a single patient treatment plan can take several hours to contour. As radiation treatment delivery moves towards adaptive treatment, the need for more efficient segmentation techniques will increase. We are developing a method for automatic model-based segmentation of the head and neck. This process can be broken down into three main steps: i) automatic landmark identification in the image dataset of interest, ii) automatic landmark-based initialization of deformable surface models to the patient image dataset, and iii) adaptation of the deformable models to the patient-specific anatomical boundaries of interest. In this paper, we focus on the validation of the first step of this method, quantifying the results of our automatic landmark identification method. We use an image atlas formed by applying thin-plate spline (TPS) interpolation to ten atlas datasets, using 27 manually identified landmarks in each atlas/training dataset. The principal variation modes returned by principal component analysis (PCA) of the landmark positions were used by an automatic registration algorithm, which sought the corresponding landmarks in the clinical dataset of interest using a controlled random search algorithm. Applying a run time of 60 seconds to the random search, a root mean square (rms) distance to the ground-truth landmark position of 9.5 +/- 0.6 mm was calculated for the identified landmarks. Automatic segmentation of the brain, mandible and brain stem, using the detected landmarks, is demonstrated.

  8. A comparison of different methods to implement higher order derivatives of density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Dam, Hubertus J.J.

    Density functional theory is the dominant approach in electronic structure methods today. To calculate properties higher order derivatives of the density functionals are required. These derivatives might be implemented manually,by automatic differentiation, or by symbolic algebra programs. Different authors have cited different reasons for using the particular method of their choice. This paper presents work where all three approaches were used and the strengths and weaknesses of each approach are considered. It is found that all three methods produce code that is suffficiently performanted for practical applications, despite the fact that our symbolic algebra generated code and our automatic differentiationmore » code still have scope for significant optimization. The automatic differentiation approach is the best option for producing readable and maintainable code.« less

  9. Wheelchair pushrim kinetics measurement: A method to cancel inaccuracies due to pushrim weight and wheel camber.

    PubMed

    Chénier, Félix; Aissaoui, Rachid; Gauthier, Cindy; Gagnon, Dany H

    2017-02-01

    The commercially available SmartWheel TM is largely used in research and increasingly used in clinical practice to measure the forces and moments applied on the wheelchair pushrims by the user. However, in some situations (i.e. cambered wheels or increased pushrim weight), the recorded kinetics may include dynamic offsets that affect the accuracy of the measurements. In this work, an automatic method to identify and cancel these offsets is proposed and tested. First, the method was tested on an experimental bench with different cambers and pushrim weights. Then, the method was generalized to wheelchair propulsion. Nine experienced wheelchair users propelled their own wheelchairs instrumented with two SmartWheels with anti-slip pushrim covers. The dynamic offsets were correctly identified using the propulsion acquisition, without needing a separate baseline acquisition. A kinetic analysis was performed with and without dynamic offset cancellation using the proposed method. The most altered kinetic variables during propulsion were the vertical and total forces, with errors of up to 9N (p<0.001, large effect size of 5). This method is simple to implement, fully automatic and requires no further acquisitions. Therefore, we advise to use it systematically to enhance the accuracy of existing and future kinetic measurements. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Implicit solution of Navier-Stokes equations on staggered curvilinear grids using a Newton-Krylov method with a novel analytical Jacobian.

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Asgharzadeh, Hafez

    2015-11-01

    Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.

  11. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  12. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  13. Automatic non-proliferative diabetic retinopathy screening system based on color fundus image.

    PubMed

    Xiao, Zhitao; Zhang, Xinpeng; Geng, Lei; Zhang, Fang; Wu, Jun; Tong, Jun; Ogunbona, Philip O; Shan, Chunyan

    2017-10-26

    Non-proliferative diabetic retinopathy is the early stage of diabetic retinopathy. Automatic detection of non-proliferative diabetic retinopathy is significant for clinical diagnosis, early screening and course progression of patients. This paper introduces the design and implementation of an automatic system for screening non-proliferative diabetic retinopathy based on color fundus images. Firstly, the fundus structures, including blood vessels, optic disc and macula, are extracted and located, respectively. In particular, a new optic disc localization method using parabolic fitting is proposed based on the physiological structure characteristics of optic disc and blood vessels. Then, early lesions, such as microaneurysms, hemorrhages and hard exudates, are detected based on their respective characteristics. An equivalent optical model simulating human eyes is designed based on the anatomical structure of retina. Main structures and early lesions are reconstructed in the 3D space for better visualization. Finally, the severity of each image is evaluated based on the international criteria of diabetic retinopathy. The system has been tested on public databases and images from hospitals. Experimental results demonstrate that the proposed system achieves high accuracy for main structures and early lesions detection. The results of severity classification for non-proliferative diabetic retinopathy are also accurate and suitable. Our system can assist ophthalmologists for clinical diagnosis, automatic screening and course progression of patients.

  14. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  15. Dissociable changes in functional network topology underlie early category learning and development of automaticity

    PubMed Central

    Soto, Fabian A.; Bassett, Danielle S.; Ashby, F. Gregory

    2016-01-01

    Recent work has shown that multimodal association areas–including frontal, temporal and parietal cortex–are focal points of functional network reconfiguration during human learning and performance of cognitive tasks. On the other hand, neurocomputational theories of category learning suggest that the basal ganglia and related subcortical structures are focal points of functional network reconfiguration during early learning of some categorization tasks, but become less so with the development of automatic categorization performance. Using a combination of network science and multilevel regression, we explore how changes in the connectivity of small brain regions can predict behavioral changes during training in a visual categorization task. We find that initial category learning, as indexed by changes in accuracy, is predicted by increasingly efficient integrative processing in subcortical areas, with higher functional specialization, more efficient integration across modules, but a lower cost in terms of redundancy of information processing. The development of automaticity, as indexed by changes in the speed of correct responses, was predicted by lower clustering (particularly in subcortical areas), higher strength (highest in cortical areas) and higher betweenness centrality. By combining neurocomputational theories and network scientific methods, these results synthesize the dissociative roles of multimodal association areas and subcortical structures in the development of automaticity during category learning. PMID:27453156

  16. A Review on Automatic Mammographic Density and Parenchymal Segmentation

    PubMed Central

    He, Wenda; Juette, Arne; Denton, Erika R. E.; Oliver, Arnau

    2015-01-01

    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models. PMID:26171249

  17. Higher-order automatic differentiation of mathematical functions

    NASA Astrophysics Data System (ADS)

    Charpentier, Isabelle; Dal Cappello, Claude

    2015-04-01

    Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.

  18. The unbalanced signal measuring of automotive brake drum

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng

    2005-04-01

    For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.

  19. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods

    PubMed Central

    Burlina, Philippe; Billings, Seth; Joshi, Neil

    2017-01-01

    Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220

  20. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  1. Motion estimation of subcellular structures from fluorescence microscopy images.

    PubMed

    Vallmitjana, A; Civera-Tregon, A; Hoenicka, J; Palau, F; Benitez, R

    2017-07-01

    We present an automatic image processing framework to study moving intracellular structures from live cell fluorescence microscopy. The system includes the identification of static and dynamic structures from time-lapse images using data clustering as well as the identification of the trajectory of moving objects with a probabilistic tracking algorithm. The method has been successfully applied to study mitochondrial movement in neurons. The approach provides excellent performance under different experimental conditions and is robust to common sources of noise including experimental, molecular and biological fluctuations.

  2. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision.

    PubMed

    Heinrich, Andreas; Güttler, Felix; Wendt, Sebastian; Schenkl, Sebastian; Hubig, Michael; Wagner, Rebecca; Mall, Gita; Teichgräber, Ulf

    2018-06-18

     In forensic odontology the comparison between antemortem and postmortem panoramic radiographs (PRs) is a reliable method for person identification. The purpose of this study was to improve and automate identification of unknown people by comparison between antemortem and postmortem PR using computer vision.  The study includes 43 467 PRs from 24 545 patients (46 % females/54 % males). All PRs were filtered and evaluated with Matlab R2014b including the toolboxes image processing and computer vision system. The matching process used the SURF feature to find the corresponding points between two PRs (unknown person and database entry) out of the whole database.  From 40 randomly selected persons, 34 persons (85 %) could be reliably identified by corresponding PR matching points between an already existing scan in the database and the most recent PR. The systematic matching yielded a maximum of 259 points for a successful identification between two different PRs of the same person and a maximum of 12 corresponding matching points for other non-identical persons in the database. Hence 12 matching points are the threshold for reliable assignment.  Operating with an automatic PR system and computer vision could be a successful and reliable tool for identification purposes. The applied method distinguishes itself by virtue of its fast and reliable identification of persons by PR. This Identification method is suitable even if dental characteristics were removed or added in the past. The system seems to be robust for large amounts of data.   · Computer vision allows an automated antemortem and postmortem comparison of panoramic radiographs (PRs) for person identification.. · The present method is able to find identical matching partners among huge datasets (big data) in a short computing time.. · The identification method is suitable even if dental characteristics were removed or added.. · Heinrich A, Güttler F, Wendt S et al. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-4744. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Estimation of aortic valve leaflets from 3D CT images using local shape dictionaries and linear coding

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James

    2016-03-01

    Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.

  4. Content-based cell pathology image retrieval by combining different features

    NASA Astrophysics Data System (ADS)

    Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong

    2004-04-01

    Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.

  5. Multiclassifier information fusion methods for microarray pattern recognition

    NASA Astrophysics Data System (ADS)

    Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Herzig-Marx, Rachel

    2004-04-01

    This paper addresses automatic recognition of microarray patterns, a capability that could have a major significance for medical diagnostics, enabling development of diagnostic tools for automatic discrimination of specific diseases. The paper presents multiclassifier information fusion methods for microarray pattern recognition. The input space partitioning approach based on fitness measures that constitute an a-priori gauging of classification efficacy for each subspace is investigated. Methods for generation of fitness measures, generation of input subspaces and their use in the multiclassifier fusion architecture are presented. In particular, two-level quantification of fitness that accounts for the quality of each subspace as well as the quality of individual neighborhoods within the subspace is described. Individual-subspace classifiers are Support Vector Machine based. The decision fusion stage fuses the information from mulitple SVMs along with the multi-level fitness information. Final decision fusion stage techniques, including weighted fusion as well as Dempster-Shafer theory based fusion are investigated. It should be noted that while the above methods are discussed in the context of microarray pattern recognition, they are applicable to a broader range of discrimination problems, in particular to problems involving a large number of information sources irreducible to a low-dimensional feature space.

  6. Modeling and visualizing borehole information on virtual globes using KML

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing

    2014-01-01

    Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.

  7. Automatic correction of intensity nonuniformity from sparseness of gradient distribution in medical images.

    PubMed

    Zheng, Yuanjie; Grossman, Murray; Awate, Suyash P; Gee, James C

    2009-01-01

    We propose to use the sparseness property of the gradient probability distribution to estimate the intensity nonuniformity in medical images, resulting in two novel automatic methods: a non-parametric method and a parametric method. Our methods are easy to implement because they both solve an iteratively re-weighted least squares problem. They are remarkably accurate as shown by our experiments on images of different imaged objects and from different imaging modalities.

  8. Automatic Correction of Intensity Nonuniformity from Sparseness of Gradient Distribution in Medical Images

    PubMed Central

    Zheng, Yuanjie; Grossman, Murray; Awate, Suyash P.; Gee, James C.

    2013-01-01

    We propose to use the sparseness property of the gradient probability distribution to estimate the intensity nonuniformity in medical images, resulting in two novel automatic methods: a non-parametric method and a parametric method. Our methods are easy to implement because they both solve an iteratively re-weighted least squares problem. They are remarkably accurate as shown by our experiments on images of different imaged objects and from different imaging modalities. PMID:20426191

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquier, David; Lacornerie, Thomas; Vermandel, Maximilien

    Purpose: Target-volume and organ-at-risk delineation is a time-consuming task in radiotherapy planning. The development of automated segmentation tools remains problematic, because of pelvic organ shape variability. We evaluate a three-dimensional (3D), deformable-model approach and a seeded region-growing algorithm for automatic delineation of the prostate and organs-at-risk on magnetic resonance images. Methods and Materials: Manual and automatic delineation were compared in 24 patients using a sagittal T2-weighted (T2-w) turbo spin echo (TSE) sequence and an axial T1-weighted (T1-w) 3D fast-field echo (FFE) or TSE sequence. For automatic prostate delineation, an organ model-based method was used. Prostates without seminal vesicles were delineatedmore » as the clinical target volume (CTV). For automatic bladder and rectum delineation, a seeded region-growing method was used. Manual contouring was considered the reference method. The following parameters were measured: volume ratio (Vr) (automatic/manual), volume overlap (Vo) (ratio of the volume of intersection to the volume of union; optimal value = 1), and correctly delineated volume (Vc) (percent ratio of the volume of intersection to the manually defined volume; optimal value 100). Results: For the CTV, the Vr, Vo, and Vc were 1.13 ({+-}0.1 SD), 0.78 ({+-}0.05 SD), and 94.75 ({+-}3.3 SD), respectively. For the rectum, the Vr, Vo, and Vc were 0.97 ({+-}0.1 SD), 0.78 ({+-}0.06 SD), and 86.52 ({+-}5 SD), respectively. For the bladder, the Vr, Vo, and Vc were 0.95 ({+-}0.03 SD), 0.88 ({+-}0.03 SD), and 91.29 ({+-}3.1 SD), respectively. Conclusions: Our results show that the organ-model method is robust, and results in reproducible prostate segmentation with minor interactive corrections. For automatic bladder and rectum delineation, magnetic resonance imaging soft-tissue contrast enables the use of region-growing methods.« less

  10. Segmentation of stereo terrain images

    NASA Astrophysics Data System (ADS)

    George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.

    2000-06-01

    We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.

  11. Automatic Clustering Using FSDE-Forced Strategy Differential Evolution

    NASA Astrophysics Data System (ADS)

    Yasid, A.

    2018-01-01

    Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.

  12. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....35-50. Note: Safety control systems include automatic and manual safety trip controls and automatic... engines. (e) Automatic safety trip control systems must— (1) Be provided where there is an immediate... 46 Shipping 2 2011-10-01 2011-10-01 false Safety control systems. 62.25-15 Section 62.25-15...

  13. Automatic Thesaurus Generation for an Electronic Community System.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; And Others

    1995-01-01

    This research reports an algorithmic approach to the automatic generation of thesauri for electronic community systems. The techniques used include term filtering, automatic indexing, and cluster analysis. The Worm Community System, used by molecular biologists studying the nematode worm C. elegans, was used as the testbed for this research.…

  14. The Role of Item Models in Automatic Item Generation

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis

    2012-01-01

    Automatic item generation represents a relatively new but rapidly evolving research area where cognitive and psychometric theories are used to produce tests that include items generated using computer technology. Automatic item generation requires two steps. First, test development specialists create item models, which are comparable to templates…

  15. 10 CFR 431.133 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.133 Materials..., (“AHRI 810”), Performance Rating of Automatic Commercial Ice-Makers, March 2011; IBR approved for §§ 431... Automatic Ice Makers, (including Errata Sheets issued April 8, 2010 and April 21, 2010), approved January 28...

  16. 10 CFR 431.133 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.133 Materials..., (“AHRI 810”), Performance Rating of Automatic Commercial Ice-Makers, March 2011; IBR approved for §§ 431... Automatic Ice Makers, (including Errata Sheets issued April 8, 2010 and April 21, 2010), approved January 28...

  17. Understanding Cognitive Development: Automaticity and the Early Years Child

    ERIC Educational Resources Information Center

    Gray, Colette

    2004-01-01

    In recent years a growing body of evidence has implicated deficits in the automaticity of fundamental facts such as word and number recognition in a range of disorders: including attention deficit hyperactivity disorder, dyslexia, apraxia and autism. Variously described as habits, fluency, chunking and over learning, automatic processes are best…

  18. Chemometric strategy for automatic chromatographic peak detection and background drift correction in chromatographic data.

    PubMed

    Yu, Yong-Jie; Xia, Qiao-Ling; Wang, Sheng; Wang, Bing; Xie, Fu-Wei; Zhang, Xiao-Bing; Ma, Yun-Ming; Wu, Hai-Long

    2014-09-12

    Peak detection and background drift correction (BDC) are the key stages in using chemometric methods to analyze chromatographic fingerprints of complex samples. This study developed a novel chemometric strategy for simultaneous automatic chromatographic peak detection and BDC. A robust statistical method was used for intelligent estimation of instrumental noise level coupled with first-order derivative of chromatographic signal to automatically extract chromatographic peaks in the data. A local curve-fitting strategy was then employed for BDC. Simulated and real liquid chromatographic data were designed with various kinds of background drift and degree of overlapped chromatographic peaks to verify the performance of the proposed strategy. The underlying chromatographic peaks can be automatically detected and reasonably integrated by this strategy. Meanwhile, chromatograms with BDC can be precisely obtained. The proposed method was used to analyze a complex gas chromatography dataset that monitored quality changes in plant extracts during storage procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Automatic detection of cardiac cycle and measurement of the mitral annulus diameter in 4D TEE images

    NASA Astrophysics Data System (ADS)

    Graser, Bastian; Hien, Maximilian; Rauch, Helmut; Meinzer, Hans-Peter; Heimann, Tobias

    2012-02-01

    Mitral regurgitation is a wide spread problem. For successful surgical treatment quantification of the mitral annulus, especially its diameter, is essential. Time resolved 3D transesophageal echocardiography (TEE) is suitable for this task. Yet, manual measurement in four dimensions is extremely time consuming, which confirms the need for automatic quantification methods. The method we propose is capable of automatically detecting the cardiac cycle (systole or diastole) for each time step and measuring the mitral annulus diameter. This is done using total variation noise filtering, the graph cut segmentation algorithm and morphological operators. An evaluation took place using expert measurements on 4D TEE data of 13 patients. The cardiac cycle was detected correctly on 78% of all images and the mitral annulus diameter was measured with an average error of 3.08 mm. Its full automatic processing makes the method easy to use in the clinical workflow and it provides the surgeon with helpful information.

  20. A hybrid 3D region growing and 4D curvature analysis-based automatic abdominal blood vessel segmentation through contrast enhanced CT

    NASA Astrophysics Data System (ADS)

    Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen

    2017-03-01

    In abdominal disease diagnosis and various abdominal surgeries planning, segmentation of abdominal blood vessel (ABVs) is a very imperative task. Automatic segmentation enables fast and accurate processing of ABVs. We proposed a fully automatic approach for segmenting ABVs through contrast enhanced CT images by a hybrid of 3D region growing and 4D curvature analysis. The proposed method comprises three stages. First, candidates of bone, kidneys, ABVs and heart are segmented by an auto-adapted threshold. Second, bone is auto-segmented and classified into spine, ribs and pelvis. Third, ABVs are automatically segmented in two sub-steps: (1) kidneys and abdominal part of the heart are segmented, (2) ABVs are segmented by a hybrid approach that integrates a 3D region growing and 4D curvature analysis. Results are compared with two conventional methods. Results show that the proposed method is very promising in segmenting and classifying bone, segmenting whole ABVs and may have potential utility in clinical use.

  1. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  2. Terminologies for text-mining; an experiment in the lipoprotein metabolism domain

    PubMed Central

    Alexopoulou, Dimitra; Wächter, Thomas; Pickersgill, Laura; Eyre, Cecilia; Schroeder, Michael

    2008-01-01

    Background The engineering of ontologies, especially with a view to a text-mining use, is still a new research field. There does not yet exist a well-defined theory and technology for ontology construction. Many of the ontology design steps remain manual and are based on personal experience and intuition. However, there exist a few efforts on automatic construction of ontologies in the form of extracted lists of terms and relations between them. Results We share experience acquired during the manual development of a lipoprotein metabolism ontology (LMO) to be used for text-mining. We compare the manually created ontology terms with the automatically derived terminology from four different automatic term recognition (ATR) methods. The top 50 predicted terms contain up to 89% relevant terms. For the top 1000 terms the best method still generates 51% relevant terms. In a corpus of 3066 documents 53% of LMO terms are contained and 38% can be generated with one of the methods. Conclusions Given high precision, automatic methods can help decrease development time and provide significant support for the identification of domain-specific vocabulary. The coverage of the domain vocabulary depends strongly on the underlying documents. Ontology development for text mining should be performed in a semi-automatic way; taking ATR results as input and following the guidelines we described. Availability The TFIDF term recognition is available as Web Service, described at PMID:18460175

  3. Automatic P-S phase picking procedure based on Kurtosis: Vanuatu region case study

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Crawford, W. C.; Ballu, V.; Hibert, C.

    2012-12-01

    Automatic P and S phase picking is indispensable for large seismological data sets. Robust algorithms, based on short term and long term average ratio comparison (Allen, 1982), are commonly used for event detection, but further improvements can be made in phase identification and picking. We present a picking scheme using consecutively Kurtosis-derived Characteristic Functions (CF) and Eigenvalue decompositions on 3-component seismic data to independently pick P and S arrivals. When computed over a sliding window of the signal, a sudden increase in the CF reveals a transition from a gaussian to a non-gaussian distribution, characterizing the phase onset (Saragiotis, 2002). One advantage of the method is that it requires much fewer adjustable parameters than competing methods. We modified the Kurtosis CF to improve pick precision, by computing the CF over several frequency bandwidths, window sizes and smoothing parameters. Once phases were picked, we determined the onset type (P or S) using polarization parameters (rectilinearity, azimuth and dip) calculated using Eigenvalue decompositions of the covariance matrix (Cichowicz, 1993). Finally, we removed bad picks using a clustering procedure and the signal-to-noise ratio (SNR). The pick quality index was also assigned based on the SNR value. Amplitude calculation is integrated into the procedure to enable automatic magnitude calculation. We applied this procedure to data from a network of 30 wideband seismometers (including 10 oceanic bottom seismometers) in Vanuatu that ran for 10 months from May 2008 to February 2009. We manually picked the first 172 events of June, whose local magnitudes range from 0.7 to 3.7. We made a total of 1601 picks, 1094 P and 507 S. We then applied our automatic picking to the same dataset. 70% of the manually picked onsets were picked automatically. For P-picks, the difference between manual and automatic picks is 0.01 ± 0.08 s overall; for the best quality picks (quality index 0: 64% of the P-picks) the difference is -0.01 ± 0.07 s. For S-picks, the difference is -0.09 ± 0.26 s overall and -0.06 ± 0.14 s for good quality picks (index 1: 26% of the S-picks). Residuals showed no dependence on the event magnitudes. The method independently picks S and P waves with good precision and only a few parameters to adjust for relatively small earthquakes (mostly ≤ 2 Ml). The automatic procedure was then applied to the whole dataset. Earthquake locations obtained by inverting onset arrivals revealed clustering and lineations that helped us to constrain the subduction plane. Those key parameters will be integrated to a 3D finite-difference modeling and compared to GPS data in order to better understand the complex geodynamics behavior of the Vanuatu region.

  4. A Noise-Assisted Data Analysis Method for Automatic EOG-Based Sleep Stage Classification Using Ensemble Learning.

    PubMed

    Olesen, Alexander Neergaard; Christensen, Julie A E; Sorensen, Helge B D; Jennum, Poul J

    2016-08-01

    Reducing the number of recording modalities for sleep staging research can benefit both researchers and patients, under the condition that they provide as accurate results as conventional systems. This paper investigates the possibility of exploiting the multisource nature of the electrooculography (EOG) signals by presenting a method for automatic sleep staging using the complete ensemble empirical mode decomposition with adaptive noise algorithm, and a random forest classifier. It achieves a high overall accuracy of 82% and a Cohen's kappa of 0.74 indicating substantial agreement between automatic and manual scoring.

  5. Target recognition based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  6. Automated feature detection and identification in digital point-ordered signals

    DOEpatents

    Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.

    1998-01-01

    A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.

  7. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach.

    PubMed

    Yu, Jin; Abidi, Syed Sibte Raza; Artes, Paul; McIntyre, Andy; Heywood, Malcolm

    2005-01-01

    The availability of modern imaging techniques such as Confocal Scanning Laser Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for diagnosing glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features. The features are then used to train classifers for automatically distinguishing CSLT images of normal and glaucoma patient. As a first, in this paper, we present investigations in feature subset selction methods for reducing the relatively large input space produced by the moment methods. We use neural networks and support vector machines to determine a sub-set of moments that offer high classification accuracy. We demonstratee the efficacy of our methods to discriminate between healthy and glaucomatous optic disks based on shape information automatically derived from optic disk topography and reflectance images.

  8. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Motor automaticity in Parkinson’s disease

    PubMed Central

    Wu, Tao; Hallett, Mark; Chan, Piu

    2017-01-01

    Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020

  10. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  11. Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area

    NASA Astrophysics Data System (ADS)

    Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.

    2018-04-01

    Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.

  12. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  13. Selected Topics from LVCSR Research for Asian Languages at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Furui, Sadaoki

    This paper presents our recent work in regard to building Large Vocabulary Continuous Speech Recognition (LVCSR) systems for the Thai, Indonesian, and Chinese languages. For Thai, since there is no word boundary in the written form, we have proposed a new method for automatically creating word-like units from a text corpus, and applied topic and speaking style adaptation to the language model to recognize spoken-style utterances. For Indonesian, we have applied proper noun-specific adaptation to acoustic modeling, and rule-based English-to-Indonesian phoneme mapping to solve the problem of large variation in proper noun and English word pronunciation in a spoken-query information retrieval system. In spoken Chinese, long organization names are frequently abbreviated, and abbreviated utterances cannot be recognized if the abbreviations are not included in the dictionary. We have proposed a new method for automatically generating Chinese abbreviations, and by expanding the vocabulary using the generated abbreviations, we have significantly improved the performance of spoken query-based search.

  14. High-order space charge effects using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Michael F.; Bruhwiler, David L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996

    1997-02-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach.« less

  15. [A computer tomography assisted method for the automatic detection of region of interest in dynamic kidney images].

    PubMed

    Jing, Xueping; Zheng, Xiujuan; Song, Shaoli; Liu, Kai

    2017-12-01

    Glomerular filtration rate (GFR), which can be estimated by Gates method with dynamic kidney single photon emission computed tomography (SPECT) imaging, is a key indicator of renal function. In this paper, an automatic computer tomography (CT)-assisted detection method of kidney region of interest (ROI) is proposed to achieve the objective and accurate GFR calculation. In this method, the CT coronal projection image and the enhanced SPECT synthetic image are firstly generated and registered together. Then, the kidney ROIs are delineated using a modified level set algorithm. Meanwhile, the background ROIs are also obtained based on the kidney ROIs. Finally, the value of GFR is calculated via Gates method. Comparing with the clinical data, the GFR values estimated by the proposed method were consistent with the clinical reports. This automatic method can improve the accuracy and stability of kidney ROI detection for GFR calculation, especially when the kidney function has been severely damaged.

  16. SU-F-T-94: Plan2pdf - a Software Tool for Automatic Plan Report for Philips Pinnacle TPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C

    Purpose: To implement an automatic electronic PDF plan reporting tool for Philips Pinnacle treatment planning system (TPS) Methods: An electronic treatment plan reporting software is developed by us to enable fully automatic PDF report from Pinnacle TPS to external EMR programs such as MOSAIQ. The tool is named “plan2pdf”. plan2pdf is implemented using Pinnacle scripts, Java and UNIX shell scripts, without any external program needed. plan2pdf supports full auto-mode and manual mode reporting. In full auto-mode, with a single mouse click, plan2pdf will generate a detailed Pinnacle plan report in PDF format, which includes customizable cover page, Pinnacle plan summary,more » orthogonal views through each plan POI and maximum dose point, DRR for each beam, serial transverse views captured throughout the dose grid at a user specified interval, DVH and scorecard windows. The final PDF report is also automatically bookmarked for each section above for convenient plan review. The final PDF report can either be saved on a user specified folder on Pinnacle, or it can be automatically exported to an EMR import folder via a user configured FTP service. In manual capture mode, plan2pdf allows users to capture any Pinnacle plan by full screen, individual window or rectangular ROI drawn on screen. Furthermore, to avoid possible patients’ plan mix-up during auto-mode reporting, a user conflict check feature is included in plan2pdf: it prompts user to wait if another patient is being exported by plan2pdf by another user. Results: plan2pdf is tested extensively and successfully at our institution consists of 5 centers, 15 dosimetrists and 10 physicists, running Pinnacle version 9.10 on Enterprise servers. Conclusion: plan2pdf provides a highly efficient, user friendly and clinical proven platform for all Philips Pinnacle users, to generate a detailed plan report in PDF format for external EMR systems.« less

  17. Commercially Available Digital Game Technology in the Classroom: Improving Automaticity in Mental-Maths in Primary-Aged Students

    ERIC Educational Resources Information Center

    O'Rourke, John; Main, Susan; Hill, Susan M.

    2017-01-01

    In this paper we report on a study of the implementation of handheld game consoles (HGCs) in 10 Year four/five classrooms to develop student automaticity of mathematical calculations. The automaticity of mathematical calculations was compared for those students using the HGC and those being taught using traditional teaching methods. Over a school…

  18. Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation

    NASA Astrophysics Data System (ADS)

    Irshad, Mehreen; Muhammad, Nazeer; Sharif, Muhammad; Yasmeen, Mussarat

    2018-04-01

    Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30% . The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.

  19. NET-VISA, a Bayesian method next-generation automatic association software. Latest developments and operational assessment.

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Kushida, Noriyuki; Mialle, Pierrick; Tomuta, Elena; Arora, Nimar

    2017-04-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been developing a Bayesian method and software to perform the key step of automatic association of seismological, hydroacoustic, and infrasound (SHI) parametric data. In our preliminary testing in the CTBTO, NET_VISA shows much better performance than its currently operating automatic association module, with a rate for automatic events matching the analyst-reviewed events increased by 10%, signifying that the percentage of missed events is lowered by 40%. Initial tests involving analysts also showed that the new software will complete the automatic bulletins of the CTBTO by adding previously missed events. Because products by the CTBTO are also widely distributed to its member States as well as throughout the seismological community, the introduction of a new technology must be carried out carefully, and the first step of operational integration is to first use NET-VISA results within the interactive analysts' software so that the analysts can check the robustness of the Bayesian approach. We report on the latest results both on the progress for automatic processing and for the initial introduction of NET-VISA results in the analyst review process

  20. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy Ruth; Hansman, R. John; Corker, Kevin (Technical Monitor)

    1997-01-01

    Cockpit alerting systems monitor potentially hazardous situations, both inside and outside the aircraft. When a hazard is projected to occur, the alerting system displays alerts and/or command decisions to the pilot. However, pilots have been observed to not conform to alerting system commands by delaying their response or by not following the automatic commands exactly. This non-conformance to the automatic alerting system can reduce its benefit. Therefore, a need exists to understand the causes and effects of pilot non-conformance in order to develop automatic alerting systems whose commands the pilots are more likely to follow. These considerations were examined through flight simulator evaluations of the collision avoidance task during closely spaced parallel approaches. This task provided a useful case-study because the effects of non-conformance can be significant, given the time-critical nature of the task. A preliminary evaluation of alerting systems identified non-conformance in over 40% of the cases and a corresponding drop in collision avoidance performance. A follow-on experiment found subjects' alerting and maneuver selection criteria were consistent with different strategies than those used by automatic systems, indicating the pilot may potentially disagree with the alerting system if the pilot attempts to verify automatic alerts and commanded avoidance maneuvers. A final experiment found supporting automatic alerts with the explicit display of its underlying criteria resulted in more consistent subject reactions. In light of these experimental results, a general discussion of pilot non-conformance is provided. Contributing factors in pilot non-conformance include a lack of confidence in the automatic system and mismatches between the alerting system's commands and the pilots' own decisions based on the information available to them. The effects of non-conformance on system performance are discussed. Possible methods of reconciling mismatches are given, and design considerations for alerting systems which alleviate the problem of non-conformance are provided.

  1. Application of software technology to automatic test data analysis

    NASA Technical Reports Server (NTRS)

    Stagner, J. R.

    1991-01-01

    The verification process for a major software subsystem was partially automated as part of a feasibility demonstration. The methods employed are generally useful and applicable to other types of subsystems. The effort resulted in substantial savings in test engineer analysis time and offers a method for inclusion of automatic verification as a part of regression testing.

  2. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume I. Model Development.

    ERIC Educational Resources Information Center

    Connelly, Edward A.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is documented in this report. The ultimate application of the research is to provide methods for automatically measuring pilot performance in a flight simulator or from recorded in-flight data. An efficient method of…

  3. Automatic Method of Pause Measurement for Normal and Dysarthric Speech

    ERIC Educational Resources Information Center

    Rosen, Kristin; Murdoch, Bruce; Folker, Joanne; Vogel, Adam; Cahill, Louise; Delatycki, Martin; Corben, Louise

    2010-01-01

    This study proposes an automatic method for the detection of pauses and identification of pause types in conversational speech for the purpose of measuring the effects of Friedreich's Ataxia (FRDA) on speech. Speech samples of [approximately] 3 minutes were recorded from 13 speakers with FRDA and 18 healthy controls. Pauses were measured from the…

  4. Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia

    2012-12-01

    We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Image-based red cell counting for wild animals blood.

    PubMed

    Mauricio, Claudio R M; Schneider, Fabio K; Dos Santos, Leonilda Correia

    2010-01-01

    An image-based red blood cell (RBC) automatic counting system is presented for wild animals blood analysis. Images with 2048×1536-pixel resolution acquired on an optical microscope using Neubauer chambers are used to evaluate RBC counting for three animal species (Leopardus pardalis, Cebus apella and Nasua nasua) and the error found using the proposed method is similar to that obtained for inter observer visual counting method, i.e., around 10%. Smaller errors (e.g., 3%) can be obtained in regions with less grid artifacts. These promising results allow the use of the proposed method either as a complete automatic counting tool in laboratories for wild animal's blood analysis or as a first counting stage in a semi-automatic counting tool.

  6. First- and Second-Order Sensitivity Analysis of a P-Version Finite Element Equation Via Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    1998-01-01

    Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.

  7. Affordable non-traditional source data mining for context assessment to improve distributed fusion system robustness

    NASA Astrophysics Data System (ADS)

    Bowman, Christopher; Haith, Gary; Steinberg, Alan; Morefield, Charles; Morefield, Michael

    2013-05-01

    This paper describes methods to affordably improve the robustness of distributed fusion systems by opportunistically leveraging non-traditional data sources. Adaptive methods help find relevant data, create models, and characterize the model quality. These methods also can measure the conformity of this non-traditional data with fusion system products including situation modeling and mission impact prediction. Non-traditional data can improve the quantity, quality, availability, timeliness, and diversity of the baseline fusion system sources and therefore can improve prediction and estimation accuracy and robustness at all levels of fusion. Techniques are described that automatically learn to characterize and search non-traditional contextual data to enable operators integrate the data with the high-level fusion systems and ontologies. These techniques apply the extension of the Data Fusion & Resource Management Dual Node Network (DNN) technical architecture at Level 4. The DNN architecture supports effectively assessment and management of the expanded portfolio of data sources, entities of interest, models, and algorithms including data pattern discovery and context conformity. Affordable model-driven and data-driven data mining methods to discover unknown models from non-traditional and `big data' sources are used to automatically learn entity behaviors and correlations with fusion products, [14 and 15]. This paper describes our context assessment software development, and the demonstration of context assessment of non-traditional data to compare to an intelligence surveillance and reconnaissance fusion product based upon an IED POIs workflow.

  8. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Baochun; Huang, Cheng; Zhou, Shoujun

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.« less

  9. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

    PubMed

    He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang

    2016-05-01

    A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.

  10. Analysis of regional rainfall-runoff parameters for the Lake Michigan Diversion hydrological modeling

    USGS Publications Warehouse

    Soong, David T.; Over, Thomas M.

    2015-01-01

    Recalibration of the HSPF parameters to the updated inputs and land covers was completed on two representative watershed models selected from the nine by using a manual method (HSPEXP) and an automatic method (PEST). The objective of the recalibration was to develop a regional parameter set that improves the accuracy in runoff volume prediction for the nine study watersheds. Knowledge about flow and watershed characteristics plays a vital role for validating the calibration in both manual and automatic methods. The best performing parameter set was determined by the automatic calibration method on a two-watershed model. Applying this newly determined parameter set to the nine watersheds for runoff volume simulation resulted in “very good” ratings in five watersheds, an improvement as compared to “very good” ratings achieved for three watersheds by the North Branch parameter set.

  11. Systems and methods for analyzing building operations sensor data

    DOEpatents

    Mezic, Igor; Eisenhower, Bryan A.

    2015-05-26

    Systems and methods are disclosed for analyzing building sensor information and decomposing the information therein to a more manageable and more useful form. Certain embodiments integrate energy-based and spectral-based analysis methods with parameter sampling and uncertainty/sensitivity analysis to achieve a more comprehensive perspective of building behavior. The results of this analysis may be presented to a user via a plurality of visualizations and/or used to automatically adjust certain building operations. In certain embodiments, advanced spectral techniques, including Koopman-based operations, are employed to discern features from the collected building sensor data.

  12. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.

    PubMed

    Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima

    2017-01-01

    To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.

  13. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  14. Hydrograph matching method for measuring model performance

    NASA Astrophysics Data System (ADS)

    Ewen, John

    2011-09-01

    SummaryDespite all the progress made over the years on developing automatic methods for analysing hydrographs and measuring the performance of rainfall-runoff models, automatic methods cannot yet match the power and flexibility of the human eye and brain. Very simple approaches are therefore being developed that mimic the way hydrologists inspect and interpret hydrographs, including the way that patterns are recognised, links are made by eye, and hydrological responses and errors are studied and remembered. In this paper, a dynamic programming algorithm originally designed for use in data mining is customised for use with hydrographs. It generates sets of "rays" that are analogous to the visual links made by the hydrologist's eye when linking features or times in one hydrograph to the corresponding features or times in another hydrograph. One outcome from this work is a new family of performance measures called "visual" performance measures. These can measure differences in amplitude and timing, including the timing errors between simulated and observed hydrographs in model calibration. To demonstrate this, two visual performance measures, one based on the Nash-Sutcliffe Efficiency and the other on the mean absolute error, are used in a total of 34 split-sample calibration-validation tests for two rainfall-runoff models applied to the Hodder catchment, northwest England. The customised algorithm, called the Hydrograph Matching Algorithm, is very simple to apply; it is given in a few lines of pseudocode.

  15. Evaluation of an automatic MR-based gold fiducial marker localisation method for MR-only prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Maspero, Matteo; van den Berg, Cornelis A. T.; Zijlstra, Frank; Sikkes, Gonda G.; de Boer, Hans C. J.; Meijer, Gert J.; Kerkmeijer, Linda G. W.; Viergever, Max A.; Lagendijk, Jan J. W.; Seevinck, Peter R.

    2017-10-01

    An MR-only radiotherapy planning (RTP) workflow would reduce the cost, radiation exposure and uncertainties introduced by CT-MRI registrations. In the case of prostate treatment, one of the remaining challenges currently holding back the implementation of an RTP workflow is the MR-based localisation of intraprostatic gold fiducial markers (FMs), which is crucial for accurate patient positioning. Currently, MR-based FM localisation is clinically performed manually. This is sub-optimal, as manual interaction increases the workload. Attempts to perform automatic FM detection often rely on being able to detect signal voids induced by the FMs in magnitude images. However, signal voids may not always be sufficiently specific, hampering accurate and robust automatic FM localisation. Here, we present an approach that aims at automatic MR-based FM localisation. This method is based on template matching using a library of simulated complex-valued templates, and exploiting the behaviour of the complex MR signal in the vicinity of the FM. Clinical evaluation was performed on seventeen prostate cancer patients undergoing external beam radiotherapy treatment. Automatic MR-based FM localisation was compared to manual MR-based and semi-automatic CT-based localisation (the current gold standard) in terms of detection rate and the spatial accuracy and precision of localisation. The proposed method correctly detected all three FMs in 15/17 patients. The spatial accuracy (mean) and precision (STD) were 0.9 mm and 0.5 mm respectively, which is below the voxel size of 1.1 × 1.1 × 1.2 mm3 and comparable to MR-based manual localisation. FM localisation failed (3/51 FMs) in the presence of bleeding or calcifications in the direct vicinity of the FM. The method was found to be spatially accurate and precise, which is essential for clinical use. To overcome any missed detection, we envision the use of the proposed method along with verification by an observer. This will result in a semi-automatic workflow facilitating the introduction of an MR-only workflow.

  16. A procedure for automating CFD simulations of an inlet-bleed problem

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1995-01-01

    A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.

  17. Comparison of Airway Control Methods and Ventilation Success with an Automatic Resuscitator

    DTIC Science & Technology

    2015-10-08

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...completing and reviewing this collection of information . Send comments regarding this burden estimate or any other aspect of this collection of information ...including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations

  18. Overview of machine vision methods in x-ray imaging and microtomography

    NASA Astrophysics Data System (ADS)

    Buzmakov, Alexey; Zolotov, Denis; Chukalina, Marina; Nikolaev, Dmitry; Gladkov, Andrey; Ingacheva, Anastasia; Yakimchuk, Ivan; Asadchikov, Victor

    2018-04-01

    Digital X-ray imaging became widely used in science, medicine, non-destructive testing. This allows using modern digital images analysis for automatic information extraction and interpretation. We give short review of scientific applications of machine vision in scientific X-ray imaging and microtomography, including image processing, feature detection and extraction, images compression to increase camera throughput, microtomography reconstruction, visualization and setup adjustment.

  19. Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs

    NASA Astrophysics Data System (ADS)

    Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio

    2017-03-01

    The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.

  20. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

Top