Sample records for method includes oxidizing

  1. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  2. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  3. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    DOEpatents

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  4. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOEpatents

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  5. Method of making controlled morphology metal-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less

  6. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOEpatents

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  7. Formulation and method for preparing gels comprising hydrous cerium oxide

    DOEpatents

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  8. Formulation and method for preparing gels comprising hydrous hafnium oxide

    DOEpatents

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  9. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  10. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    DOEpatents

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  11. Method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael

    2004-03-30

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  12. Fuel processor and method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  13. Organized energetic composites based on micro and nanostructures and methods thereof

    DOEpatents

    Gash, Alexander E.; Han, Thomas Yong-Jin; Sirbuly, Donald J.

    2012-09-04

    An ordered energetic composite structure according to one embodiment includes an ordered array of metal fuel portions; and an oxidizer in gaps located between the metal fuel portions. An ordered energetic composite structure according to another embodiment includes at least one metal fuel portion having an ordered array of nanopores; and an oxidizer in the nanopores. A method for forming an ordered energetic composite structure according to one embodiment includes forming an ordered array of metal fuel portions; and depositing an oxidizer in gaps located between the metal fuel portions. A method for forming an ordered energetic composite structure according to another embodiment includes forming an ordered array of nanopores in at least one metal fuel portion; and depositing an oxidizer in the nanopores.

  14. Highly oxidized graphene oxide and methods for production thereof

    DOEpatents

    Tour, James M.; Kosynkin, Dmitry V.

    2016-08-30

    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  15. Superlubricating graphene and graphene oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  16. Method of forming supported doped palladium containing oxidation catalysts

    DOEpatents

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  17. Synthesis of soluble conducting polymers by acoustic mixing

    DOEpatents

    Kane, Marie C.

    2016-09-13

    A method including combining an aniline monomer, an oxidant, water and an organic solvent; subjecting the combination to acoustic mixing to form an emulsion; and recovering a polyaniliine from the combination. A method including combining a aniline monomer, an oxidant, water and an organic solvent; forming a polyaniline by acoustic mixing the combination; and recovering the polyaniliine from the combination. A method including forming a combination of an aniline monomer, an oxidant, water and an organic solvent in the absence of an emulsifier; acoustic mixing the combination for a time period to form a polyaniline; and recovering a polyaniliine from the combination.

  18. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOEpatents

    Yeh, James T.; Ekmann, James M.; Pennline, Henry W.; Drummond, Charles J.

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  19. Methods to improve oxidative stability of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Oxidative degradation is one of the chief technical deficiencies of biodiesel relative to petrodiesel. Traditional methods to mitigate susceptibility to oxidation include employment of synthetic antioxidants, switching to more stable feedstocks, reducing the storage time of the fuel, and improving t...

  20. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  1. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  2. Highly active thermally stable nanoporous gold catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  3. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    DOEpatents

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  4. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  5. Operation of staged membrane oxidation reactor systems

    DOEpatents

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  6. Nondestructive method for chemically machining crucibles or molds from their enclosed ingots and castings

    DOEpatents

    Stout, Norman D.; Newkirk, Herbert W.

    1991-01-01

    An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.

  7. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  8. Low loss, high and low index contrast waveguides in semiconductors

    DOEpatents

    Bond, Tiziana [Livermore, CA; Cole, Garrett [Berkeley, CA; Goddard, Lynford [Champaign, IL; Kallman, Jeff [Pleasanton, CA

    2011-08-09

    A system in one general embodiment includes a waveguide structure comprising a core of an alloy of Group III-V materials surrounded by an oxide (which may include one or more Group III-V metals), wherein an interface of the oxide and core is characterized by oxidation of the alloy for defining the core. A method in one general approach includes oxidizing a waveguide structure comprising an alloy of Group III-V materials for forming a core of the alloy surrounded by an oxide.

  9. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  10. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  11. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  12. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...

  13. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...

  14. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...

  15. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan [Havana, IL; Silver, Ronald G [Peoria, IL; Zemskova, Svetlana Mikhailovna [Edelstein, IL; Eckstein, Colleen J [Metamora, IL

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  16. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2012-08-07

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  17. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Amit; Shin, Junsoo

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  18. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  19. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan [Santa Fe, NM; Mendoza, Daniel [Santa Fe, NM; Chen, Chun-Ku [Albuquerque, NM

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  20. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  1. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  2. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  3. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  4. Method of coating an iron-based article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.

    A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.

  5. High temperature cooling system and method

    DOEpatents

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  6. Tritium monitor with improved gamma-ray discrimination

    DOEpatents

    Cox, S.A.; Bennett, E.F.; Yule, T.J.

    1982-10-21

    Apparatus and method are presented for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  7. Tritium monitor with improved gamma-ray discrimination

    DOEpatents

    Cox, Samson A.; Bennett, Edgar F.; Yule, Thomas J.

    1985-01-01

    Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  8. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  9. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOEpatents

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  10. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOEpatents

    Popov, Branko N [Columbia, SC; Subramanian, Nalini [Kennesaw, GA; Colon-Mercado, Hector R [Columbia, SC

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  11. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  12. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  13. Method to fabricate high performance tubular solid oxide fuel cells

    DOEpatents

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  14. System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer

    NASA Technical Reports Server (NTRS)

    Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)

    2017-01-01

    A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.

  15. OXIDATIVE TREATMENT OF INDUSTRIAL WASTEWATER

    EPA Science Inventory

    This paper defines industrial waste treatment process as falling into categories of oxidative destruction, reductive destruction, and non-destructive, separation operations. The various oxidative approaches, including biological, chemical and thermal methods, are then discussed i...

  16. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    DTIC Science & Technology

    2016-06-01

    simulations of the oxidation of Al4Cp * 4 show reasonable comparison with a DFT-based Car -Parrinello method, including correct prediction of hydride transfers...comparison with a DFT-based Car -Parrinello method, including correct prediction of hydride transfers from Cp* to the metal centers during the...initio molecular dynamics of the oxidation of Al4Cp * 4 using a DFT-based Car -Parrinello method. This simulation, which 43 several months on the

  17. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  18. System and method for producing substitute natural gas from coal

    DOEpatents

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  19. Thermal oxidation of single crystal aluminum antimonide and materials having the same

    DOEpatents

    Sherohman, John William; Yee, Jick Hong; Coombs, III, Arthur William; Wu, Kuang Jen J.

    2012-12-25

    In one embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a partial vacuum atmosphere at a temperature conducive for air adsorbed molecules to desorb, surface molecule groups to decompose, and elemental Sb to evaporate from a surface of the AlSb crystal and exposing the AlSb crystal to an atmosphere comprising oxygen to form a crystalline oxide layer on the surface of the AlSb crystal. In another embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a non-oxidizing atmosphere at a temperature conducive for decomposition of an amorphous oxidized surface layer and evaporation of elemental Sb from the AlSb crystal surface and forming stable oxides of Al and Sb from residual surface oxygen to form a crystalline oxide layer on the surface of the AlSb crystal.

  20. ZnO nanoparticle catalysts for use in biodiesel production and method of making

    DOEpatents

    Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon

    2014-11-25

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.

  1. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  2. Sulfate radical oxidation of aromatic contaminants: a detailed assessment of density functional theory and high-level quantum chemical methods.

    PubMed

    Pari, Sangavi; Wang, Inger A; Liu, Haizhou; Wong, Bryan M

    2017-03-22

    Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO 4 ˙ - ) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO 4 ˙ - in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO 4 ˙ - -driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies of SO 4 ˙ - -driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompass a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for OH - additions than for SO 4 ˙ - reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO 4 ˙ - and other inorganic species.

  3. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  4. ADVANTAGES/DISADVANTAGES FOR ISCO METHODS IN-SITU FENTON OXIDATION IN-SITU PERMANGANATE OXIDATION

    EPA Science Inventory

    The advantages and disadvantages of in-situ Fenton oxidation and in-situ permanganate oxidation will be presented. This presentation will provide a brief overview of each technology and a detailed analysis of the advantages and disadvantages of each technology. Included in the ...

  5. Systems and methods for separation and purification of products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Michael Joseph; Gilliam, Ryan J.; Self, Kyle

    There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with an unsaturated hydrocarbon and/or a saturated hydrocarbon to form products. Separation and/or purification of the products as well as of the metal ions in the lower oxidation state and the higher oxidation state, is provided herein.

  6. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  7. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  8. Method of forming a joint

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  9. Composite wire microelectrode and method of making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Hugh S.; Aldykiewicz, Jr., Antonio J.

    1996-12-03

    A composite wire microelectrode for making electro-chemical measurements, and method of making same. The microelectrode includes an inner conductive sensing wire and an outer tube that is oxidized to form a dielectric, self-healing oxide layer around the sensing wire.

  10. Air Quality Criteria for Sulfur Oxides.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  11. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li, E-mail: chenli1981@lut.cn; Li, Na; Zhang, Mingxia

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed tomore » analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.« less

  12. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOEpatents

    Liang, Yong [Richland, WA; Daschbach, John L [Richland, WA; Su, Yali [Richland, WA; Chambers, Scott A [Kennewick, WA

    2006-08-22

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  13. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOEpatents

    Liang, Yong [Richland, WA; Daschbach, John L [Richland, WA; Su, Yali [Richland, WA; Chambers, Scott A [Kennewick, WA

    2003-03-18

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  14. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents and methods of use thereof

    DOEpatents

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2006-06-27

    Reduced sulfur gas species (e.g., H.sub.2S, COS and CS.sub.2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.

  15. Carbonate thermochemical cycle for the production of hydrogen

    DOEpatents

    Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis, Jr, Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN

    2010-02-23

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  16. Systems and methods for preparation and separation of products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliam, Ryan J.; Boggs, Bryan; Self, Kyle

    There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.

  17. Systems and methods for preparation and separation of products

    DOEpatents

    Gilliam, Ryan J.; Boggs, Bryan; Self, Kyle; Leclerc, Margarete K.; Gorer, Alexander; Weiss, Michael J.; Miller, John H.; Mohanta, Samaresh

    2015-12-01

    There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.

  18. Composite wire microelectrode and method of making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Aldykiewicz, A.J. Jr.

    1996-12-03

    A composite wire microelectrode for making electro-chemical measurements, and method of making same, are disclosed. The microelectrode includes an inner conductive sensing wire and an outer tube that is oxidized to form a dielectric, self-healing oxide layer around the sensing wire. 4 figs.

  19. Nanoporous materials for reducing the over potential of creating hydrogen by water electrolysis

    DOEpatents

    Anderson, Marc A.; Leonard, Kevin C.

    2016-06-14

    Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.

  20. Application of graphene oxide in water treatment

    NASA Astrophysics Data System (ADS)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  1. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry

    PubMed Central

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-01-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions. PMID:27594817

  2. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry.

    PubMed

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-10-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.

  3. Method of making a silicon nanowire device

    DOEpatents

    None, None

    2017-05-23

    There is provided an electronic device and a method for its manufacture. The device comprises an elongate silicon nanowire less than 0.5 .mu.m in cross-sectional dimensions and having a hexagonal cross-sectional shape due to annealing-induced energy relaxation. The method, in examples, includes thinning the nanowire through iterative oxidation and etching of the oxidized portion.

  4. Method of forming particulate materials for thin-film solar cells

    DOEpatents

    Eberspacher, Chris; Pauls, Karen Lea

    2004-11-23

    A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

  5. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?

    PubMed Central

    Halliwell, Barry; Whiteman, Matthew

    2004-01-01

    Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent ‘probes' of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results. PMID:15155533

  6. Ultrasound enhanced process for extracting metal species in supercritical fluids

    DOEpatents

    Wai, Chien M.; Enokida, Youichi

    2006-10-31

    Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.

  7. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    PubMed

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  8. Validation of an analytical method for nitrous oxide (N2O) laughing gas by headspace gas chromatography coupled to mass spectrometry (HS-GC-MS): forensic application to a lethal intoxication.

    PubMed

    Giuliani, N; Beyer, J; Augsburger, M; Varlet, V

    2015-03-01

    Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  10. Method of manufacturing tin-doped indium oxide nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Naskar, Amit K

    2017-06-06

    A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form anmore » indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.« less

  11. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  12. Tension-Compression Fatigue of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature in Air and Steam Environments

    DTIC Science & Technology

    2015-03-26

    method has been successfully used with several materials such as silicon carbide fiber - silicon carbide matrix ( SiC / SiC ) CMCs with carbon and boron...elements [14]. These advanced ceramics include oxides, nitrides and carbides of silicon , aluminum, titanium, and zirconium [12]. One of the most...oxides over silicon carbide and other non-oxide materials. In fact, it is the inherent stability of oxides in oxidizing environments which originally

  13. Assessment of anti-oxidant activity of plant extracts using microbial test systems.

    PubMed

    Oktyabrsky, O; Vysochina, G; Muzyka, N; Samoilova, Z; Kukushkina, T; Smirnova, G

    2009-04-01

    To evaluate the anti-oxidant properties of extracts from 20 medicinal herbs growing in western Siberia using microbial test systems and different in vitro methods. In vivo anti-oxidant activity of extracts was evaluated for their capacity to protect bacteria, Escherichia coli, against bacteriostatic and bactericidal effects of H(2)O(2) and menadione, and action on anti-oxidant gene expression. In vitro anti-oxidant activity has been examined by a number of methods including: the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(*))-scavenging assay, chelating activity and capacity to protect plasmid DNA against oxidative damage. In addition, total polyphenol content was determined. The extracts of Fragaria vesca, Rosa majalis, Pentaphylloides fruticosa, Alchemilla vulgaris and Pulmonaria mollis possessed the highest levels of anti-oxidant activity in vivo and in vitro. The protective properties were more closely related to the DPPH(*) radical-scavenging activity, tannin content and action on anti-oxidant gene expression than to other parameters. The extracts of medicinal plants may have anti-oxidant effects on bacteria simultaneously through several different pathways, including direct inhibition of reactive oxygen species, iron chelation and anti-oxidant genes induction. Using microbial test systems, we revealed herbs that may be used as potential sources of natural anti-oxidants.

  14. Multifunctional cerium-based nanomaterials and methods for producing the same

    DOEpatents

    O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.

    2018-01-09

    Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.

  15. Microparticles with hierarchical porosity

    DOEpatents

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  16. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  17. Solid oxide fuel cells fueled with reducible oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.; Fan, Liang Shih

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less

  18. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  19. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  20. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOEpatents

    Janikowski, Stuart K.

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  1. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  2. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  3. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  4. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  5. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  6. Patterning by area selective oxidation

    DOEpatents

    Nam, Chang-Yong; Kamcev, Jovan; Black, Charles T.; Grubbs, Robert

    2015-12-29

    Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.

  7. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  8. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  9. Method for Production of Powders

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1997-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be achieved into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  10. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    NASA Astrophysics Data System (ADS)

    Gerosa, M.; E Bottani, C.; Di Valentin, C.; Onida, G.; Pacchioni, G.

    2018-01-01

    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).

  11. Selection criteria for oxidation method in total organic carbon measurement.

    PubMed

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. [Oxidative stress. Should it be measured in the diabetic patient?].

    PubMed

    Villa-Caballero, L; Nava-Ocampo, A A; Frati-Munari, A C; Ponce-Monter, H

    2000-01-01

    Oxidative stress has been defined as a loss of counterbalance between free radical or reactive oxygen species production and the antioxidant systems, with negative effects on carbohydrates, lipids, and proteins. It is also involved in the progression of different chronic diseases and apoptosis. Diabetes mellitus is associated to a high oxidative stress level through different biochemical pathways, i.e. protein glycosylation, glucose auto-oxidation, and the polyol pathway, mainly induced by hyperglycemia. Oxidative stress could also be involved in the pathogenesis of atherosclerotic lesions and other chronic diabetic complications. Measurement of oxidative stress could be useful to investigate its role in the initiation and development processes of chronic diabetic complications and also to evaluate preventive actions, including antioxidative therapy. Different attempts have been made to obtain a practical, accurate, specific, and sensitive method to evaluate oxidative stress in clinical practice. However, this ideal method is not currently available to date and the usefulness of the current methods needs to be confirmed in daily practice. We suggest quantifying oxidated and reduced glutation (GSSG/GSH) and the thiobarbituric reactive substances (TBARS) with currently alternatives. Currently available alternative methods while we await better options.

  13. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    DOEpatents

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  14. Medical implants and methods of making medical implants

    DOEpatents

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  15. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOEpatents

    Jia, Quanxi; Arendt, Paul N.

    2001-01-01

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  16. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  17. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  18. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  19. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

    1998-07-07

    A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

  20. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, David W.; Ingersoll, David; Delnick, Frank M.

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  1. Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols.

    PubMed

    Zeb, A

    2015-05-01

    Triacylglycerols (TAGs) are one of the major components of the cells in higher biological systems, which can act as an energy reservoir in the living cells. The unsaturated fatty acid moiety is the key site of oxidation and formation of oxidation compounds. The TAG free radical generates several primary oxidation compounds. These include hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxyl epidioxides, and epoxides. The presence of these oxidized TAGs in the cell increases the chances of several detrimental processes. For this purpose, several liquid chromatography (LC) methods were reported in their analyses. This review is therefore focused on the chemistry, oxidation, extraction, and the LC methods reported in the analyses of oxidized TAGs. The studies on thin-layer chromatography were mostly focused on the total oxidized TAGs separation and employ hexane as major solvent. High-performance LC (HPLC) methods were discussed in details along with their merits and demerits. It was found that most of the HPLC methods employed isocratic elution with methanol and acetonitrile as major solvents with an ultraviolet detector. The coupling of HPLC with mass spectrometry (MS) highly increases the efficiency of analysis as well as enables reliable structural elucidation. The use of MS was found to be helpful in studying the oxidation chemistry of TAGs and needs to be extended to the complex biological systems.

  2. Volume-labeled nanoparticles and methods of preparation

    DOEpatents

    Wang, Wei; Gu, Baohua; Retterer, Scott T; Doktycz, Mitchel J

    2015-04-21

    Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.

  3. Method and apparatus for production of powders

    NASA Technical Reports Server (NTRS)

    Stolzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1995-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be advanced into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  4. Synthesis of metal oxide nanoparticles via a robust ``solvent-deficient'' method

    NASA Astrophysics Data System (ADS)

    Smith, Stacey J.; Huang, Baiyu; Liu, Shengfeng; Liu, Qingyuan; Olsen, Rebecca E.; Boerio-Goates, Juliana; Woodfield, Brian F.

    2014-11-01

    We report an efficient, general methodology for producing high-surface area metal oxide nanomaterials for a vast range of metal oxides, including at least one metal oxide nanomaterial from nearly every transition metal and semi-metal group in the periodic table (groups 3-4 and 6-15) as well as several from the lanthanide group (see Table 1). The method requires only 2-3 simple steps; a hydrated metal salt (usually a nitrate or chloride salt) is ground with bicarbonate (usually NH4HCO3) for 10-30 minutes to form a precursor that is then either untreated or rinsed before being calcined at relatively low temperatures (220-550 °C) for 1-3 hours. The method is thus similar to surfactant-free aqueous methods such as co-precipitation but is unique in that no solvents are added. The resulting ``solvent-deficient'' environment has interesting and unique consequences, including increased crystallinity of the products over other aqueous methods and a mesoporous nature in the inevitable agglomerates. The products are chemically pure and phase pure with crystallites generally 3-30 nm in average size that aggregate into high surface area, mesoporous agglomerates 50-300 nm in size that would be useful for catalyst and gas sensing applications. The versatility of products and efficiency of the method lend its unique potential for improving the industrial viability of a broad family of useful metal oxide nanomaterials. In this paper, we outline the methodology of the solvent-deficient method using our understanding of its mechanism, and we describe the range and quality of nanomaterials it has produced thus far.We report an efficient, general methodology for producing high-surface area metal oxide nanomaterials for a vast range of metal oxides, including at least one metal oxide nanomaterial from nearly every transition metal and semi-metal group in the periodic table (groups 3-4 and 6-15) as well as several from the lanthanide group (see Table 1). The method requires only 2-3 simple steps; a hydrated metal salt (usually a nitrate or chloride salt) is ground with bicarbonate (usually NH4HCO3) for 10-30 minutes to form a precursor that is then either untreated or rinsed before being calcined at relatively low temperatures (220-550 °C) for 1-3 hours. The method is thus similar to surfactant-free aqueous methods such as co-precipitation but is unique in that no solvents are added. The resulting ``solvent-deficient'' environment has interesting and unique consequences, including increased crystallinity of the products over other aqueous methods and a mesoporous nature in the inevitable agglomerates. The products are chemically pure and phase pure with crystallites generally 3-30 nm in average size that aggregate into high surface area, mesoporous agglomerates 50-300 nm in size that would be useful for catalyst and gas sensing applications. The versatility of products and efficiency of the method lend its unique potential for improving the industrial viability of a broad family of useful metal oxide nanomaterials. In this paper, we outline the methodology of the solvent-deficient method using our understanding of its mechanism, and we describe the range and quality of nanomaterials it has produced thus far. Electronic supplementary information (ESI) available: (1) Preliminary Netzsch milling results for Al2O3 and CeO2, (2) XRD patterns/analyses of the dried and rinsed precursors plotted with the ICDD standard patterns of the materials they contain, (3) all TG/DTA-MS data. See DOI: 10.1039/c4nr04964k

  5. Study on the poisoning effect-of non-vanadium catalysts by potassium

    NASA Astrophysics Data System (ADS)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  6. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOEpatents

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  7. Polymerization method for formation of thermally exfoliated graphite oxide containing polymer

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor)

    2010-01-01

    A process for polymerization of at least one monomer including polymerizing the at least one monomer in the presence of a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(esp 2)/g to 2600 m(esp 2/g.

  8. Benzyl Alcohol-Mediated Versatile Method to Fabricate Nonstoichiometric Metal Oxide Nanostructures.

    PubMed

    Qamar, Mohammad; Adam, Alaaldin; Azad, Abdul-Majeed; Kim, Yong-Wah

    2017-11-22

    Nanostructured metal oxides with cationic or anionic deficiency find applications in a wide range of technological areas including the energy sector and environment. However, a facile route to prepare such materials in bulk with acceptable reproducibility is still lacking; many synthesis techniques are still only bench-top and cannot be easily scaled-up. Here, we report that the benzyl alcohol (BA)-mediated method is capable of producing a host of nanostructured metal oxides (MO x , where M = Ti, Zn, Ce, Sn, In, Ga, or Fe) with inherent nonstoichiometry. It employs multifunctional BA as a solvent, a reducing agent, and a structure-directing agent. Depending on the oxidation states of metal, elemental or nonstoichiometric oxide forms are obtained. Augmented photoelectrochemical oxidation of water under visible light by some of these nonstoichiometric oxides highlights the versatility of the BA-mediated synthesis protocol.

  9. Method for producing highly conformal transparent conducting oxides

    DOEpatents

    Elam, Jeffrey W.; Mane, Anil U.

    2016-07-26

    A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.

  10. Selective extraction of metal ions with polymeric extractants by ion exchange/redox

    DOEpatents

    Alexandratos, Spiro D.

    1987-01-01

    The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.

  11. Contamination control by use of ethylene oxide

    NASA Technical Reports Server (NTRS)

    Stroud, R. H.; Lyle, R. G.

    1972-01-01

    The uses of ethylene oxide as a decontaminating agent for planetary quarantine related applications are reported. Aspects discussed include: applications and limitations, chemical and physical properties, germicidal activity, methods of applications, and effects on personnel.

  12. Surface Passivation in Empirical Tight Binding

    NASA Astrophysics Data System (ADS)

    He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann

    2016-03-01

    Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameters. This method is applied to a Si quantum well and a Si ultra-thin body transistor oxidized with SiO2 in several oxidation configurations. Comparison with ab-initio results and experiments verifies the presented method. Oxidation configurations that severely hamper the transistor performance are identified. It is also shown that the commonly used implicit H atom passivation overestimates the transistor performance.

  13. Methods and systems for fuel production in electrochemical cells and reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marina, Olga A.; Pederson, Larry R.

    Methods and systems for fuel, chemical, and/or electricity production from electrochemical cells are disclosed. A voltage is applied between an anode and a cathode of an electrochemical cell. The anode includes a metal or metal oxide electrocatalyst. Oxygen is supplied to the cathode, producing oxygen ions. The anode electrocatalyst is at least partially oxidized by the oxygen ions transported through an electrolyte from the cathode to the anode. A feed gas stream is supplied to the anode electrocatalyst, which is converted to a liquid fuel. The anode electrocatalyst is re-oxidized to higher valency oxides, or a mixture of oxide phases,more » by supplying the oxygen ions to the anode. The re-oxidation by the ions is controlled or regulated by the amount of voltage applied.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitcher, C.E.; Zimmerman, D.C.; Tonn, E.M.

    Methods were developed for controlling the dental team's occupational exposure to nitrous oxide. The most applicable and effective use of these methods included the use of properly maintained gas delivery equipment, a double-walled scavenging nosepiece and vented suction machine, and minimizing speech by the patient. These methods were evaluated by measuring concentrations of nitrous oxide present in the air inspired by dental personnel. Before their use, the dentist inhaled 900 ppM nitrous oxide; their application reduced his inhaled concentration to 31 ppM, representing a 97% reduction. These methods were well accepted during 157 procedures completed by a group of eightmore » dentists engaged in private practice (four general practitioners, two pedodontists, and two oral surgeons).« less

  15. Method for the detection of nitro-containing compositions using ultraviolet photolysis

    DOEpatents

    Reagen, William K.; Lancaster, Gregory D.; Partin, Judy K.; Moore, Glenn A.

    2000-01-01

    A method for detecting nitro-containing compositions (e.g. nitrate/nitrite materials) in water samples and on solid substrates. In a water sample, ultraviolet light is applied to the sample so that dissolved nitro compositions therein will photolytically dissociate into gaseous nitrogen oxides (NO.sub.2(g) and/or NO.sub.(g)). A carrier gas is then introduced into the sample to generate a gaseous stream which includes the carrier gas combined with any gaseous nitrogen oxides. The carrier gas is thereafter directed into a detector. To detect nitro-compositions on solid substrates, ultraviolet light is applied thereto. A detector is then used to detect any gaseous nitrogen oxides which are photolytically generated during ultraviolet illumination. An optional carrier gas may be applied to the substrate during illumination to produce a gaseous stream which includes the carrier gas and any gaseous nitrogen oxides. The gaseous stream is then supplied to the detector.

  16. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  17. Mechanisms of MDMA (Ecstasy)-Induced Oxidative Stress, Mitochondrial Dysfunction, and Organ Damage

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V.; Eddington, Natalie D.; Lee, Insong J.

    2010-01-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage. PMID:20420575

  18. Synthesis of transparent conducting oxide coatings

    DOEpatents

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  19. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    DOEpatents

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  20. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  1. Apparatus and method for two-stage oxidation of wastes

    DOEpatents

    Fleischman, Scott D.

    1995-01-01

    An apparatus and method for oxidizing wastes in a two-stage process. The apparatus includes an oxidation device, a gas-liquid contacting column and an electrocell. In the first stage of the process, wastes are heated in the presence of air to partially oxidize the wastes. The heated wastes produce an off-gas stream containing oxidizable materials. In the second stage, the off-gas stream is cooled and flowed through the contacting column, where the off-gas stream is contacted with an aqueous acid stream containing an oxidizing agent having at least two positive valence states. At least a portion of the oxidizable materials are transferred to the acid stream and destroyed by the oxidizing agent. During oxidation, the valence of the oxidizing agent is decreased from its higher state to its lower state. The acid stream is flowed to the electrocell, where an electric current is applied to the stream to restore the oxidizing agent to its higher valence state. The regenerated acid stream is recycled to the contacting column.

  2. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  3. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.

    PubMed

    Nagasaka, Masanari; Kondoh, Hiroshi; Nakai, Ikuyo; Ohta, Toshiaki

    2007-01-28

    The dynamics of adsorbate structures during CO oxidation on Pt(111) surfaces and its effects on the reaction were studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. The lateral interaction energies between adsorbed species were calculated by the density functional theory method. Dynamic Monte Carlo simulations were performed for the oxidation reaction over a mesoscopic scale, where the experimentally determined activation energies of elementary paths were altered by the calculated lateral interaction energies. The simulated results reproduced the characteristics of the microscopic and mesoscopic scale adsorbate structures formed during the reaction, and revealed that the complicated reaction kinetics is comprehensively explained by a single reaction path affected by the surrounding adsorbates. We also propose from the simulations that weakly adsorbed CO molecules at domain boundaries promote the island-periphery specific reaction.

  4. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    PubMed Central

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  5. Method for removing soot from exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less

  6. Oxidation of Benzoin to Benzil Using Alumina-Supported Active MnO2

    NASA Astrophysics Data System (ADS)

    Crouch, R. David; Holden, Michael S.; Burger, Jennifer S.

    2001-07-01

    The use of alumina-supported active MnO2 to oxidize benzoin to benzil is described. The advantages of this reagent include ease of handling and separation from the product and lower toxicity than previously reported supported oxidizing agents. The product is purified by elution through a simple chromatography column consisting of a silica gel-packed Pasteur pipet. Students' yields are comparable to yields from other reported oxidation methods.

  7. Chemical Methods for the Direct Detection and Labeling of S-Nitrosothiols

    PubMed Central

    Bechtold, Erika

    2012-01-01

    Abstract Significance: Posttranslational modification of proteins through phosphorylation, glycosylation, and oxidation adds complexity to the proteome by reversibly altering the structure and function of target proteins in a highly controlled fashion. Recent Advances: The study of reversible cysteine oxidation highlights a role for this oxidative modification in complex signal transduction pathways. Nitric oxide (NO), and its respective metabolites (including reactive nitrogen species), participates in a variety of these cellular redox processes, including the reversible oxidation of cysteine to S-nitrosothiols (RSNOs). RSNOs act as endogenous transporters of NO, but also possess beneficial effects independent of NO-related signaling, which suggests a complex and versatile biological role. In this review, we highlight the importance of RSNOs as a required posttranslational modification and summarize the current methods available for detecting S-nitrosation. Critical Issues: Given the limitations of these indirect detection methods, the review covers recent developments toward the direct detection of RSNOs by phosphine-based chemical probes. The intrinsic properties that dictate this phosphine/RSNO reactivity are summarized. In general, RSNOs (both small molecule and protein) react with phosphines to yield reactive S-substituted aza-ylides that undergo further reactions leading to stable RSNO-based adducts. Future Directions: This newly explored chemical reactivity forms the basis of a number of exciting potential chemical methods for protein RSNO detection in biological systems. Antioxid. Redox Signal. 17, 981–991. PMID:22356122

  8. Electrochromic nanocomposite films

    DOEpatents

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  9. Manganese oxide octahedral molecular sieves: Synthesis, self-assembly, control over morphologies and tunnel structure

    NASA Astrophysics Data System (ADS)

    Yuan, Jikang

    Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.

  10. Nanoparticle-based etching of silicon surfaces

    DOEpatents

    Branz, Howard [Boulder, CO; Duda, Anna [Denver, CO; Ginley, David S [Evergreen, CO; Yost, Vernon [Littleton, CO; Meier, Daniel [Atlanta, GA; Ward, James S [Golden, CO

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  11. A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography.

    PubMed

    Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C

    2007-09-21

    A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.

  12. Method of determining methane and electrochemical sensor therefor

    DOEpatents

    Zaromb, Solomon; Otagawa, Takaaki; Stetter, Joseph R.

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  13. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    DOEpatents

    O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  14. Engineered glass seals for solid-oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry

    2017-02-07

    A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.

  15. Effect of temperature modulations on TEMPO-mediated regioselective oxidation of unprotected carbohydrates and nucleosides.

    PubMed

    Yadav, Mahipal; Liotta, Charles L; Krishnamurthy, Ramanarayanan

    2018-02-02

    Regioselective oxidation of unprotected and partially protected oligosaccharides is a much sought-after goal. Herein, we report a notable improvement in the efficiency of TEMPO-catalyzed oxidation by modulating the temperature of the reaction. Mono-, di-, and tri-saccharides are oxidized regioselectively in yields of 75 to 92%. The present method is simple to implement and is also applicable for selective oxidations of other mono- and poly-hydroxy compounds including unprotected and partially protected nucleosides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    DOEpatents

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  17. Method of joining ITM materials using a partially or fully-transient liquid phase

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-03-14

    A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.

  18. Laser modification of graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Malinský, Petr; Macková, Anna; Cutroneo, Mariapompea; Siegel, Jakub; Bohačová, Marie; Klímova, Kateřina; Švorčík, Václav; Sofer, Zdenĕk

    2018-01-01

    The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density.

  19. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    NASA Astrophysics Data System (ADS)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of user-friendly methods and analysis techniques is emphasized.

  20. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and aminoethylchlorides using a C18 Hilic column. Critical isomeric compounds can be confirmed by LC-MS/MS experiments, after detecting the N-oxides from the neutral loss scanning method.

  1. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    PubMed Central

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  2. Semi-continuous detection of mercury in gases

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  3. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  4. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  5. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  6. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  7. Exploring oxidative ageing behaviour of hydrocarbons using ab initio molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Pan, Tongyan; Cheng, Cheng

    2016-06-01

    With a proper approximate solution to the Schrödinger Equation of a multi-electron system, the method of ab initio molecular dynamics (AIMD) performs first-principles molecular dynamics analysis without pre-defining interatomic potentials as are mandatory in traditional molecular dynamics analyses. The objective of this study is to determine the oxidative-ageing pathway of petroleum asphalt as a typical hydrocarbon system, using the AIMD method. This objective was accomplished in three steps, including (1) identifying a group of representative asphalt molecules to model, (2) determining an atomistic modelling method that can effectively simulate the production of critical functional groups in oxidative ageing of hydrocarbons and (3) evaluating the oxidative-ageing pathway of a hydrocarbon system. The determination of oxidative-ageing pathway of hydrocarbons was done by tracking the generations of critical functional groups in the course of oxidative ageing. The chemical elements of carbon, nitrogen and sulphur all experience oxidative reactions, producing polarised functional groups such as ketones, aldehydes or carboxylic acids, pyrrolic groups and sulphoxides. The electrostatic forces of the polarised groups generated in oxidation are responsible for the behaviour of aged hydrocarbons. The developed AIMD model can be used for modelling the ageing of generic hydrocarbon polymers and developing antioxidants without running expensive experiments.

  8. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  9. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  10. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    PubMed Central

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  11. Method for forming porous platinum films

    DOEpatents

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  12. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  13. Method for enhancing growth of SiO.sub.2 in Si by the implantation of germanium

    DOEpatents

    Holland, Orin W.; Fathy, Dariush; White, Clark W.

    1990-04-24

    A method for enhancing the conversion of Si to SiO.sub.2 in a directional fashion wherein steam or wet oxidation of Si is enhanced by the prior implantation of Ge into the Si. The unique advantages of the Ge impurity include the directional enhancement of oxidation and the reduction in thermal budget, while at the same time, Ge is an electrically inactive impurity.

  14. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  15. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    DOEpatents

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  16. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    DOEpatents

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  17. In situ oxidation of subsurface formations

    DOEpatents

    Beer, Gary Lee [Houston, TX; Mo, Weijian [Sugar Land, TX; Li, Busheng [Houston, TX; Shen, Chonghui [Calgary, CA

    2011-01-11

    Methods and systems for treating a hydrocarbon containing formation described herein include providing heat to a first portion of the formation from a plurality of heaters in the first portion, producing produced through one or more production wells in a second portion of the formation, reducing or turning off heat provided to the first portion after a selected time, providing an oxidizing fluid through one or more of the heater wells in the first portion, providing heat to the first portion and the second portion through oxidation of at least some hydrocarbons in the first portion, and producing fluids through at least one of the production wells in the second portion. The produced fluids may include at least some oxidized hydrocarbons produced in the first portion.

  18. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    DOEpatents

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  19. Innovative Technology Reduces Power Plant Emissions - Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2004-01-01

    Emission control system development includes: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on. power plant (3) Development of method to oxidize NO. to N02 (4) Experience gained from licensing NASA technology

  20. Compositions and methods for removing arsenic in water

    DOEpatents

    Gadgil, Ashok Jagannth [El Cerrito, CA

    2011-02-22

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  1. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  2. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  3. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  4. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facultative lagoons. (C) Supported growth biological reactors. (D) Microbial biodegradation. (ii) Chemical...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A...

  5. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2016-05-10

    A device fabrication method includes: (1) providing a growth substrate including an oxide layer; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing fluid-assisted interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  6. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    PubMed

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  8. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less

  9. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOEpatents

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  10. Porous polymeric materials for hydrogen storage

    DOEpatents

    Yu, Luping [Hoffman Estates, IL; Liu, Di-Jia [Naperville, IL; Yuan, Shengwen [Chicago, IL; Yang, Junbing [Westmont, IL

    2011-12-13

    Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  11. Porous polymeric materials for hydrogen storage

    DOEpatents

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  12. Method for repair of thin glass coatings. [on space shuttle orbiter tiles

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Helman, D. D.; Smiser, L. W.

    1982-01-01

    A method of repairing cracks or damaged areas in glass, in particular, glass coatings provided on tile. The method includes removing the damaged area using a high speed diamond burr drilling out a cavity that extends slightly into the base material of the tile. All loose material is then cleaned from the drilled out cavity and the cavity is filled adjacent the upper surface of the coating with a filler material including chopped silica fibers mixed with a binder. The filler material is packed into the cavity and a repair coating is applied by means of a brush or sprayed thereover. The repair includes borosilicate suspended in solution. Heat is applied at approximately 2100 F. for approximately five minutes for curing the coating, causing boron silicide particles of the coating to oxidize forming a very fluid boron-oxide rich glass which reacts with the other frits to form an impervious, highly refractory layer.

  13. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOEpatents

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  14. [Corrective effects of electromagnetic radiation in a millimeter wavelength range on the parameters of oxidative stress after standard anti-helicobacterial therapy in patients with ulcer disease].

    PubMed

    Ivanishkina, E V; Podoprigorova, V G

    2012-01-01

    We assessed the possibilities of correction of oxidative stress parameters in the serum and gastroduodenal mucosa using electromagnetic radiation in a millimeter wavelength range in 127 patients with gastric and duodenal ulcer after eradication therapy. Control group included 230 healthy subjects. Parameter of lipid oxidation by free radicals were measured by direct methods (hemiluminescence and EPR-spectroscopy). The results show that standard eradication therapy does not influence parameters of oxidative stress. More pronounced effect of electromagnetic radiation in a millimeter wavelength range may be due to the correction of prooxidant-antioxidant and antioxidant disbalance. This observation provides pathogenetic substantiation for the inclusion of this physical method in modern therapeutic modalities.

  15. Mechanism of Arsenic Adsorption Using Wheat Biomass -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Calvo, Oscar; Manciu, Felicia; Maldonado, Josefina; Gardea-Torresdey, Jorge

    2006-10-01

    Arsenic is a trace element that is toxic to animals, humans included. Since the current Environmental Protection Agency guidelines regarding water quality standards indicate that arsenic concentrations in excess of 50 ppb are hazardous to welfare of humans, the search for new water remediation methods or improvements of previous methods have been a focus in environmental technology. Investigations of arsenic uptake have used wide range of sorbents including iron oxides and oxyhydroxides, for which it have been proved that arsenic shows high affinity. In this study, we used far-infrared spectroscopy to examine the arsenic reduction using biomaterials. pH dependence analysis by FTIR demonstrates the sorption of iron oxides and oxyhydroxides by the wheat biomass. The splitting of 350 cm-1 amorphous iron oxide vibrations is a direct proof of the arsenic uptake. In addition, there is evidence of sorption of arsenic at sulfhydryl group of cysteine existent in wheat.

  16. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  17. Oxidative particle mixtures for groundwater treatment

    DOEpatents

    Siegrist, Robert L.; Murdoch, Lawrence C.

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  18. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  19. Fermentative process for making inorganic nanoparticles

    DOEpatents

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Roh, Yul

    2006-06-13

    A method for producing mixed metal oxide compounds includes the steps of: providing a supply of a metal reducing bacteria; providing a culture medium suitable for growth of the bacteria; providing a first mixed metal oxide phase comprising at least a first and a second metal, at least one of the first and second metal being reducible from a higher to a lower oxidation state by the bacteria; and, combining the bacteria, the culture medium, the first mixed metal oxide, and at least one electron donor in a reactor, wherein the bacteria reduces at least one of the first metal and the second metal from the higher to the lower oxidation state to form a second mixed metal oxide phase.

  20. One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting

    NASA Astrophysics Data System (ADS)

    Wang, Fengyun; Song, Longfei; Zhang, Hongchao; Luo, Linqu; Wang, Dong; Tang, Jie

    2017-08-01

    Because of their unique physical and chemical properties, one-dimensional (1-D) metal-oxide nanostructures have been extensively applied in the areas of gas sensors, electrochromic devices, nanogenerators, and so on. Solar water-splitting has attracted extensive research interest because hydrogen generated from solar-driven water splitting is a clean, sustainable, and abundant energy source that not only solves the energy crisis, but also protects the environment. In this comprehensive review, the main synthesis methods, properties, and especially prominent applications in solar water splitting of 1-D metal-oxides, including titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide (WO3), iron oxide (Fe2O3), and copper oxide (CuO) are fully discussed.

  1. Liquid flow cells having graphene on nitride for microscopy

    DOEpatents

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  2. Decal transfer microfabrication

    DOEpatents

    Nuzzo, Ralph G.; Childs, William Robert

    2004-10-19

    A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.

  3. Production of battery grade materials via an oxalate method

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2016-05-17

    An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.

  4. Production of battery grade materials via an oxalate method

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2014-04-29

    An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.

  5. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Fanglin; Liu, Qiang

    In accordance with the present disclosure, a method for fabricating a symmetrical solid oxide fuel cell is described. The method includes synthesizing a composition comprising perovskite and applying the composition on an electrolyte support to form both an anode and a cathode.

  7. Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

    NASA Technical Reports Server (NTRS)

    Tabatabaie-Raissi, Ali (Inventor); Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor)

    2012-01-01

    A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.

  8. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  9. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOEpatents

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  10. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, William A.

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  11. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  12. Arsenic removal from water

    DOEpatents

    Moore, Robert C [Edgewood, NM; Anderson, D Richard [Albuquerque, NM

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  13. Nanoparticle-based gas sensors and methods of using the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickelson, William; Zettl, Alex

    Gas sensors are provided. The gas sensors include a gas sensing element having metal oxide nanoparticles and a thin-film heating element. Systems that include the gas sensors, as well as methods of using the gas sensors, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a gaseous sample.

  14. NOx adsorber and method of regenerating same

    DOEpatents

    Endicott, Dennis L [Peoria, IL; Verkiel, Maarten [Metamora, IL; Driscoll, James J [Dunlap, IL

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  15. Comparison of Phenoldisulfonic Acid, Nondispersive Infrared, and Saltzman methods for the determination of oxides of nitrogen in automotive exhaust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, G.E.; Huls, T.A.

    1970-10-01

    The Saltzman, Phenoldisulfonic Acid and Nondispersive Infrared methods have been compared for the determination of oxides of nitrogen in automobile exhaust. The main purpose of this investigation was to determine whether the Nondispersive Infrared method could be used as a possible replacement for the Saltzman method. Results show that the Nondispersive Infrared analyzer can be used to measure NO/sub x/ in exhaust gases with advantages over both the Saltzman and Phenoldisulfonic Acid methods. These advantages include simplicity, speed, less complicated analytical technique, and the fact that it is better adapted to be carried out by technicians at the test site.

  16. Methods of selectively incorporating metals onto substrates

    DOEpatents

    Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  17. Investigation of DBS electro-oxidation reaction in the aqueous-organic solution of LiClO4.

    PubMed

    Darlewski, Witold; Popiel, Stanisław; Nalepa, Tomasz; Gromotowicz, Waldemar; Szewczyk, Rafał; Stankiewicz, Romuald

    2010-03-15

    A process of dibutyl sulphide (DBS) electro-oxidation using electrolysis and cyclic voltamperometry was investigated in water-methanol solution using different electrodes (platinum, boron doped diamond, graphite and glassy carbon). Obtained results indicate that the DBS electro-oxidation process is irreversible in voltamperometric conditions. It was shown that during DBS electrolytic oxidation on Pt, at the low anode potential (1.8 V), DBS was oxidized to sulphoxide and sulphone. Electrolysis at higher potential (up to 3.0 V) resulted in complete DBS oxidation and formation of various products, including: butyric acid, sulphuric acid, butanesulphinic acid, butanesulphonic acid, identified using gas chromatography (GC-AED) and mass spectrometry (GC-MS) methods. (c) 2009 Elsevier B.V. All rights reserved.

  18. Electroactive compositions with poly(arylene oxide) and stabilized lithium metal particles

    DOEpatents

    Zhang, Zhengcheng; Yuan, Shengwen; Amine, Khalil

    2015-05-12

    An electroactive composition includes an anodic material; a poly(arylene oxide); and stabilized lithium metal particles; where the stabilized lithium metal particles have a size less than about 200 .mu.m in diameter, are coated with a lithium salt, are present in an amount of about 0.1 wt % to about 5 wt %, and are dispersed throughout the composition. Lithium secondary batteries including the electroactive composition along with methods of making the electroactive composition are also discussed.

  19. Organocatalyzed asymmetric alpha-oxidation, alpha-aminoxylation and alpha-amination of carbonyl compounds.

    PubMed

    Vilaivan, Tirayut; Bhanthumnavin, Worawan

    2010-02-11

    Organocatalytic asymmetric alpha-oxidation and amination reactions of carbonyl compounds are highly useful synthetic methodologies, especially in generating chiral building blocks that previously have not been easily accessible by traditional methods. The concept is relatively new and therefore the list of new catalysts, oxidizing and aminating reagents, as well as new substrates, are expanding at an amazing rate. The scope of this review includes new reactions and catalysts, mechanistic aspects and synthetic applications of alpha-oxidation, hydroxylation, aminoxylation, amination, hydrazination, hydroxyamination and related alpha-heteroatom functionalization of aldehydes, ketones and related active methylene compounds published during 2005-2009.

  20. Electrochemical methane sensor

    DOEpatents

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  1. Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis.

    PubMed

    Xu, Mengchuan; Rui, Dongsheng; Yan, Yizhong; Xu, Shangzhi; Niu, Qiang; Feng, Gangling; Wang, Yan; Li, Shugang; Jing, Mingxia

    2017-03-01

    In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As 3+ than to As 5+ . Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.

  2. Low temperature chemical processing of graphite-clad nuclear fuels

    DOEpatents

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  3. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOEpatents

    Gopalan, Srikanth [Westborough, MA; Pal, Uday B [Dover, MA; Karthikeyan, Annamalai [Quincy, MA; Hengdong, Cui [Allston, MA

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  4. High conducting oxide--sulfide composite lithium superionic conductor

    DOEpatents

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  5. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  6. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  7. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  8. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  9. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  10. Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties

    NASA Astrophysics Data System (ADS)

    Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki

    2018-01-01

    The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.

  11. Composition and methods for improved fuel production

    DOEpatents

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  12. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    PubMed

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-05

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  14. Cassettes for solid-oxide fuel cell stacks and methods of making the same

    DOEpatents

    Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L

    2012-10-23

    Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.

  15. Diluted magnetic oxides

    NASA Astrophysics Data System (ADS)

    Li, XiaoLi; Qi, ShiFei; Jiang, FengXian; Quan, ZhiYong; Xu, XiaoHong

    2013-01-01

    In this review, we review the progress of research on ZnO- and In2O3-based diluted magnetic oxides (DMOs). Firstly, we present the preparation and characterization of DMOs. The former includes the preparation methods and conditions, and the latter includes the characterization techniques for measuring microstructures. Secondly, we introduce the magnetic and transport properties of DMOs, as well as the relationship between them. Thirdly, the origin and mechanism of the ferromagnetism are discussed. Fourthly, we introduce other related work, including computational work and pertinent heterogeneous structures, such as multilayers and magnetic tunnel junctions. Finally, we provide an overview and outlook for DMOs.

  16. Method for improving performance of high temperature superconductors within a magnetic field

    DOEpatents

    Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo

    2010-01-05

    The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.

  17. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  18. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    PubMed

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  19. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.

    PubMed

    Unni, Mythreyi; Uhl, Amanda M; Savliwala, Shehaab; Savitzky, Benjamin H; Dhavalikar, Rohan; Garraud, Nicolas; Arnold, David P; Kourkoutis, Lena F; Andrew, Jennifer S; Rinaldi, Carlos

    2017-02-28

    Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick "magnetically dead layer" experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.

  20. Oxide strengthened molybdenum-rhenium alloy

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  1. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOEpatents

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  2. Research on oxidation by air and tempering of Raney nickel electrocatalysts for the H2 anodes of alkali combustion materials cells. Thesis - Braunschweig Technische Univ., 1982

    NASA Technical Reports Server (NTRS)

    Selbach, H. J.

    1984-01-01

    The controlled oxidation in air of Raney nickel electrocatalysts was studied, with special attention paid to the quantitative analysis of nickel hydroxide. The content of the latter was determined through X-ray studies, thermogravimetric measurements, and spectral photometric examinations. The dependence of the content on the drying of activated catalyst is determined. The influence of nickel hydroxide on the electrochemical parameters of the catalyst, such as diffusion polarization, is studied, including a measurement of the exchange current density using the potential drop method. Conservation by oxidation in air with ancillary stabilization of the oxide in an H2 flow at 300 C is explored, including reduction by H2, the influence of tempering time, and structural studies on conserved and stabilized catalyst, long term research on the catalyst, including the influence of aging on the reduced catalyst, and the results of impedance measurements are presented.

  3. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    PubMed

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-18

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  4. Low temperature ozone oxidation of solid waste surrogates

    NASA Astrophysics Data System (ADS)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  5. Assessment of DNA damage in a group of professional dancers during a 10-month dancing season.

    PubMed

    Esteves, Filipa; Teixeira, Eduardo; Amorim, Tânia; Costa, Carla; Pereira, Cristiana; Fraga, Sónia; De Andrade, Vanessa Moraes; Teixeira, João Paulo; Costa, Solange

    2017-01-01

    Despite the numerous health benefits of physical activity, some studies reported that increased intensity and duration may induce oxidative stress in several cellular components including DNA. The aim of this study was to assess the level of basal DNA damage as well as oxidative DNA damage in a group of professional dancers before and after a 10-month dancing season. A group of individuals from general population was also assessed as a control. The alkaline version of the comet assay was the method selected to measure both basal DNA damage and oxidative stress, since this method quantifies both endpoints. In order to measure oxidative stress, the comet assay was coupled with a lesion-specific endonuclease (formamidopyrimidine glycosylase) to detect oxidized purines. The levels of oxidative DNA damage in dancers were significantly increased after the dancing season. Pre-season levels of oxidative DNA damage were lower in dancers than those obtained from the general population, suggesting an adaptation of antioxidant system in dancers. Results of the present biomonitoring study indicate the need for more effective measures to protect ballet dancers from potentially occupational health risks related to regular intensive physical exercise.

  6. Method of Analysis by the U.S. Geological Survey California District Sacramento Laboratory-- Determination of Dissolved Organic Carbon in Water by High Temperature Catalytic Oxidation, Method Validation, and Quality-Control Practices

    USGS Publications Warehouse

    Bird, Susan M.; Fram, Miranda S.; Crepeau, Kathryn L.

    2003-01-01

    An analytical method has been developed for the determination of dissolved organic carbon concentration in water samples. This method includes the results of the tests used to validate the method and the quality-control practices used for dissolved organic carbon analysis. Prior to analysis, water samples are filtered to remove suspended particulate matter. A Shimadzu TOC-5000A Total Organic Carbon Analyzer in the nonpurgeable organic carbon mode is used to analyze the samples by high temperature catalytic oxidation. The analysis usually is completed within 48 hours of sample collection. The laboratory reporting level is 0.22 milligrams per liter.

  7. Surface control alloy substrates and methods of manufacture therefor

    DOEpatents

    Fritzemeier, Leslie G.; Li, Qi; Rupich, Martin W.; Thompson, Elliott D.; Siegal, Edward J.; Thieme, Cornelis Leo Hans; Annavarapu, Suresh; Arendt, Paul N.; Foltyn, Stephen R.

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  8. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to produce GNRs. Therefore the developed laser scanning method optimally exploited the thermal laser-CNT interaction, successfully transforming CNTs into 2D GNRs. The solid-state laser unzipping process effectively addressed the issues of contamination and scalability encountered by the current unzipping methods. Additionally, the produced GNRs were uniquely featured with the freestanding structure and the smooth surfaces. If the scanning process was performed in an inert environment without the appearance of oxygen, the oxidation of CNTs would not happen. Instead, the greatly mobile carbon atoms of the heated CNTs would reorganize the crystal structure, inducing the graphitization process to improve the crystallinity. Many observations showing the structural improvement of CNTs under laser irradiation has been reported, confirming the capability of laser to heal graphitic defects. Laser methods were more time-efficient and energy-efficient than other annealing methods because laser can quickly heat CNTs to generate graphitization in less than one second. This subsecond heating process of laser irradiation was more effective than other heating methods because it avoided the undesired coalescence of CNTs. In my research, the laser scanning method was applied to generate the graphitization, healing the structural defects of CNTs. Different from the reported laser methods, the laser scanning directed the locally annealed areas to move along the CNT axes, migrating and coalescencing the graphitic defects to achieve better healing results. The critical information describing the CNT structural transformation caused by the moving laser irradiation was explored from the successful applications of the developed laser method. This knowledge inspires an important method to modifiy the general graphitic structure for important applications, such as carbon fiber production, CNT self-assembly process and CNT welding. This method will be effective, facile, versatile, and adaptable for laboratory and industrial facilities.

  9. Large-Scale, Three–Dimensional, Free–Standing, and Mesoporous Metal Oxide Networks for High–Performance Photocatalysis

    PubMed Central

    Bai, Hua; Li, Xinshi; Hu, Chao; Zhang, Xuan; Li, Junfang; Yan, Yan; Xi, Guangcheng

    2013-01-01

    Mesoporous nanostructures represent a unique class of photocatalysts with many applications, including splitting of water, degradation of organic contaminants, and reduction of carbon dioxide. In this work, we report a general Lewis acid catalytic template route for the high–yield producing single– and multi–component large–scale three–dimensional (3D) mesoporous metal oxide networks. The large-scale 3D mesoporous metal oxide networks possess large macroscopic scale (millimeter–sized) and mesoporous nanostructure with huge pore volume and large surface exposure area. This method also can be used for the synthesis of large–scale 3D macro/mesoporous hierarchical porous materials and noble metal nanoparticles loaded 3D mesoporous networks. Photocatalytic degradation of Azo dyes demonstrated that the large–scale 3D mesoporous metal oxide networks enable high photocatalytic activity. The present synthetic method can serve as the new design concept for functional 3D mesoporous nanomaterials. PMID:23857595

  10. Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelikowsky, James R.

    2014-04-14

    We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plusmore » Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.« less

  11. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A [Idaho Falls, ID; Heaps, Ronald J [Idaho Falls, ID; Steffler, Eric D [Idaho Falls, ID; Swank, William D [Idaho Falls, ID

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  12. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  13. Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid

    NASA Astrophysics Data System (ADS)

    Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin

    2018-01-01

    The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.

  14. Process of making porous ceramic materials with controlled porosity

    DOEpatents

    Anderson, Marc A.; Ku, Qunyin

    1993-01-01

    A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.

  15. Metal oxide based multisensor array and portable database for field analysis of antioxidants

    PubMed Central

    Sharpe, Erica; Bradley, Ryan; Frasco, Thalia; Jayathilaka, Dilhani; Marsh, Amanda; Andreescu, Silvana

    2014-01-01

    We report a novel chemical sensing array based on metal oxide nanoparticles as a portable and inexpensive paper-based colorimetric method for polyphenol detection and field characterization of antioxidant containing samples. Multiple metal oxide nanoparticles with various polyphenol binding properties were used as active sensing materials to develop the sensor array and establish a database of polyphenol standards that include epigallocatechin gallate, gallic acid, resveratrol, and Trolox among others. Unique charge-transfer complexes are formed between each polyphenol and each metal oxide on the surface of individual sensors in the array, creating distinct optically detectable signals which have been quantified and logged into a reference database for polyphenol identification. The field-portable Pantone/X-Rite© CapSure® color reader was used to create this database and to facilitate rapid colorimetric analysis. The use of multiple metal-oxide sensors allows for cross-validation of results and increases accuracy of analysis. The database has enabled successful identification and quantification of antioxidant constituents within real botanical extractions including green tea. Formation of charge-transfer complexes is also correlated with antioxidant activity exhibiting electron transfer capabilities of each polyphenol. The antioxidant activity of each sample was calculated and validated against the oxygen radical absorbance capacity (ORAC) assay showing good comparability. The results indicate that this method can be successfully used for a more comprehensive analysis of antioxidant containing samples as compared to conventional methods. This technology can greatly simplify investigations into plant phenolics and make possible the on-site determination of antioxidant composition and activity in remote locations. PMID:24610993

  16. Electrode structure and methods of making same

    DOEpatents

    Ruud, James Anthony; Browall, Kenneth Walter; Rehg, Timothy Joseph; Renou, Stephane; Striker, Todd-Michael

    2010-04-06

    A method of making an electrode structure is provided. The method includes disposing an electrocatalytic material on an electrode, applying heat to the electrocatalytic material to form a volatile oxide of the electrocatalytic material, and applying a voltage to the electrode to reduce the volatile oxide to provide a number of nano-sized electrocatalytic particles on or proximate to a triple phase boundary, where the number of nano-sized electrocatalytic particles is greater on or proximate to the triple phase boundary than in an area that is not on or proximate to the triple phase boundary, and where the triple phase boundary is disposed on the electrode.

  17. Nonhazardous Urine Pretreatment Method

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.

    2012-01-01

    A method combines solid phase acidification with two non-toxic biocides to prevent ammonia volatilization and microbial proliferation. The safe, non-oxidizing biocide combination consists of a quaternary amine and a food preservative. This combination has exhibited excellent stabilization of both acidified and unacidified urine. During pretreatment tests, composite urine collected from donors was challenged with a microorganism known to proliferate in urine, and then was processed using the nonhazardous urine pre-treatment method. The challenge microorganisms included Escherichia coli, a common gram-negative bacteria; Enterococcus faecalis, a ureolytic gram-positive bacteria; Candida albicans, a yeast commonly found in urine; and Aspergillus niger, a problematic mold that resists urine pre-treatment. Urine processed in this manner remained microbially stable for over 57 days. Such effective urine stabilization was achieved using non-toxic, non-oxidizing biocides at higher pH (3.6 to 5.8) than previous methods in use or projected for use aboard the International Space Station (ISS). ISS urine pretreatment methods employ strong oxidants including ozone and hexavalent chromium (Cr(VI)), a carcinogenic material, under very acidic conditions (pH = 1.8 to 2.4). The method described here offers a much more benign chemical environment than previous pretreatment methods, and will lower equivalent system mass (ESM) by reducing containment volume and mass, system complexity, and crew time needed to handle pre-treatment chemicals. The biocides, being non-oxidizing, minimize the potential for chemical reactions with urine constituents to produce volatile, airborne contaminants such as cyanogen chloride. Additionally, the biocides are active under significantly less acidic conditions than those used in the current system, thereby reducing the degree of required acidification. A simple flow-through solid phase acidification (SPA) bed is employed to overcome the natural buffering capacity of urine, and to lower the pH to levels that fix ammoniacal nitrogen in the non-volatile and highly water soluble NH4 + form. Citric acid, a highly soluble, solid tricarboxylic acid essential to cellular metabolism, and typically used as a food preservative, has also been shown to efficiently acidify urine in conjunction with non-oxidizing biocides to provide effective stabilization with respect to both microbial growth and ammonia volatilization.

  18. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOEpatents

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  19. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF.

    PubMed

    Wallace, Ryan A; Sepaniak, Michael J; Lavrik, Nickolay V; Datskos, Panos G

    2017-06-06

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this work, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  20. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Ryan A.; Sepaniak, Michael J.; Lavrik, Nickolay V.

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this paper, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Finally, profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  1. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF

    DOE PAGES

    Wallace, Ryan A.; Sepaniak, Michael J.; Lavrik, Nickolay V.; ...

    2017-05-10

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this paper, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Finally, profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  2. Method for fluorination of uranium oxide

    DOEpatents

    Petit, George S.

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  3. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  4. Interagency comparison of iodometric methods for ozone determination

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Romanovsky, J. C.; Feldstein, M.; Mueller, P. K.; Hamming, W. J.

    1976-01-01

    The California Air Resources Board appointed an Oxidant Calibration Committee for the purpose of evaluating the accuracy of the different agency calibration procedures. The committee chose UV absorption photometry as the reference method for ozone measurement. Interagency comparisons of the various iodometric methods were conducted relative to the ultraviolet standard. The tests included versions of the iodometric methods as employed by the Air Resources Board, the Los Angeles Air Pollution Control District, and the EPA. An alternative candidate reference method for ozone measurement, gas phase titration, was also included in the test series.

  5. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  6. Robust, self-assembled, biocompatible films

    DOEpatents

    Swanson, Basil I; Anderson, Aaron S.; Dattelbaum, Andrew M.; Schmidt, Jurgen G.

    2014-06-24

    The present invention provides a composite material including a substrate having an oxide surface, and, a continuous monolayer on the oxide surface, the monolayer including a silicon atom from a trifunctional alkyl/alkenyl/alkynyl silane group that attaches to the oxide surface, an alkyl/alkenyl/alkynyl portion of at least three carbon atoms, a polyalkylene glycol spacer group, and either a reactive site (e.g., a recognition ligand) or a site resistant to non-specific binding (e.g., a methoxy or the like) at the terminus of each modified SAM. The present invention further provides a sensor element, a sensor array and a method of sensing, each employing the composite material. Patterning is also provided together with backfilling to minimize non-specific binding.

  7. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  8. Carbothermic reduction with parallel heat sources

    DOEpatents

    Troup, Robert L.; Stevenson, David T.

    1984-12-04

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  9. Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application

    NASA Astrophysics Data System (ADS)

    Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran

    2017-11-01

    A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.

  10. Effects of Liposomal Compositions with Oxidized Dextrans on Functional Activity of U937 Macrophage-Like Cells In Vitro.

    PubMed

    Kozhin, P M; Chechushkov, A V; Zaitseva, N S; Lemza, A E; Men'shchikova, E B; Troitskii, A V; Shkurupy, V A

    2015-11-01

    We studied the effects of liposomal pharmaceutical compositions with oxidized dextrans on functional activity of U937 monocyte/macrophage-like cells. Liposomes in the emulsion contained oxidized dextran with a molecular weights of 40 kDa or 70 kDa or isonicotinic acid hydrazide (INAH) conjugated with oxidized dextran (40 kDa). Cell viability was evaluated by MTT test; mitochondrial transmembrane potential and production of superoxide anion and H2O2 were studied by fluorescent methods. The studied compositions exhibited no cytotoxic effect and even improved cell viability and mitochondrial respiration. Liposomes with oxidized 40 kDa dextran, including those with INAH-conjugated dextran, inhibited production of superoxide anion, but increased H2O2 generation.

  11. Selective reduction of N-oxides to amines: application to drug metabolism.

    PubMed

    Kulanthaivel, Palaniappan; Barbuch, Robert J; Davidson, Rita S; Yi, Ping; Rener, Gregory A; Mattiuz, Edward L; Hadden, Chad E; Goodwin, Lawrence A; Ehlhardt, William J

    2004-09-01

    Phase I oxidative metabolism of nitrogen-containing drug molecules to their corresponding N-oxides is a common occurrence. There are instances where liquid chromatography/tandem mass spectometry techniques are inadequate to distinguish this pathway from other oxidation processes, including C-hydroxylations and other heteroatom oxidations, such as sulfur to sulfoxide. Therefore, the purpose of the present study was to develop and optimize an efficient and practical chemical method to selectively convert N-oxides to their corresponding amines suitable for drug metabolism applications. Our results indicated that efficient conversion of N-oxides to amines could be achieved with TiCl(3) and poly(methylhydrosiloxane). Among them, we found TiCl(3) to be a facile and easy-to-use reagent, specifically applicable to drug metabolism. There are a few reports describing the use of TiCl(3) to reduce N-O bonds in drug metabolism studies, but this methodology has not been widely used. Our results indicated that TiCl(3) is nearly as efficient when the reductions were carried out in the presence of biological matrices, including plasma and urine. Finally, we have shown a number of examples where TiCl(3) can be successfully used to selectively reduce N-oxides in the presence of sulfoxides and other labile groups.

  12. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology

    PubMed Central

    Jaquet, Vincent; Trabace, Luigia; Krause, Karl-Heinz

    2013-01-01

    Abstract Significance: Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. Recent Advances: Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. Critical Issues: In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. Future Directions: The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues. Antioxid. Redox Signal. 18, 1475–1490. PMID:22746161

  13. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  14. Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adzic, Radoslav R.; Gong, Kuanping; Cai, Yun

    A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.

  15. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  16. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  17. An analytical method for 14C in environmental water based on a wet-oxidation process.

    PubMed

    Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong

    2015-04-01

    An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Method for production of magnesium

    DOEpatents

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  19. Method for production of magnesium

    DOEpatents

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  20. Efficient growth of HTS films with volatile elements

    DOEpatents

    Siegal, M.P.; Overmyer, D.L.; Dominguez, F.

    1998-12-22

    A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.

  1. Two-step iron(0)-mediated N-demethylation of N-methyl alkaloids.

    PubMed

    Kok, Gaik B; Pye, Cory C; Singer, Robert D; Scammells, Peter J

    2010-07-16

    A mild and simple two-step Fe(0)-mediated N-demethylation of a number of tertiary N-methyl alkaloids is described. The tertiary N-methylamine is first oxidized to the corresponding N-oxide, which is isolated as the hydrochloride salt. Subsequent treatment of the N-oxide hydrochloride with iron powder readily provides the N-demethylated amine. Representative substrates include a number of opiate and tropane alkaloids. Key intermediates in the synthesis of semisynthetic 14-hydroxy pharmaceutical opiates such as oxycodone and oxymorphone are also readily N-demethylated using this method.

  2. Manganese oxide nanoparticles, methods and applications

    DOEpatents

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  3. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments

    USGS Publications Warehouse

    Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.

    2010-01-01

    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.

  4. Biomarkers for oxidative stress: clinical application in pediatric medicine.

    PubMed

    Tsukahara, Hirokazu

    2007-01-01

    Loads of reactive oxygen species (ROS), including superoxide anion and nitric oxide, that overburden antioxidant systems induce oxidative stress in the body. Major cellular targets of ROS are membrane lipids, proteins, nucleic acids, and carbohydrates. Circumstantial evidence suggests that ROS play a crucial role in the initiation and progression of various diseases in children and adolescents. The involvement of ROS and oxidative stress in pediatric diseases is an important concern, but oxidative stress status in young subjects and appropriate methods for its measurement remain to be defined. Recently, specific biomarkers for oxidative damage and antioxidant defense have been introduced into the field of pediatric medicine. This review is intended to provide an overview of clinical applications of oxidative stress biomarkers in the field of pediatric medicine. First, this review presents the biochemistry and pathophysiology of ROS and antioxidant defense systems. Second, it presents a list of clinically applicable biomarkers, along with pediatric diseases in which enhanced oxidative stress might be involved. The discussion emphasizes that several reliable biomarkers are easily measurable using enzyme-linked immunosorbent assay. Third, this review presents age-related reference normal ranges of oxidative stress biomarkers, including urinary acrolein-lysine, 8-hydroxy-2'-deoxyguanosine, nitrite/nitrate, and pentosidine, and the changes of the parameters in several clinical conditions, including atopic dermatitis and diabetes mellitus. New and interesting data on oxidative stress and antioxidant defenses in neonatal biology are also presented. Fourth, this review discusses the ever-accumulating body of data linking oxidative stress to disturbances of the nitric oxide system and vascular endothelial activation/dysfunction. Finally, this review describes the reported clinical trials that have evaluated the efficacy of antioxidants for oxidative-stress related diseases. Suggestions are advanced for the direction of future trials using antioxidant therapies. Repeated measurement of appropriate parameters will enable us to discern the pathophysiological patterns of pediatric diseases and guide our therapies appropriately.

  5. Chemical of the Month: Nitric Acid.

    ERIC Educational Resources Information Center

    Pannu, Sardul S.

    1984-01-01

    Presents background information on nitric acid including old names, history, occurrence, methods of preparation, uses, production, and price. Includes such chemical properties as decomposition; acidity, oxidation of metals and nonmetals; reactions with organic and inorganic compounds; gaseous fluorine; and nitrating properties. Also discusses bond…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S; Atkinson, David A; Bays, John T

    An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.

  7. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    USDA-ARS?s Scientific Manuscript database

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  8. Refractory ceramic compositions and method for preparing same

    DOEpatents

    Holcombe, Jr., Cressie E.; Morrow, Margaret K.

    1976-07-13

    This invention relates to ceramic compositions of tungsten and tantalum oxides including 0 to 33 1/3 mole percent of a metal oxide such as hafnia. These ceramics are characterized by melting points greater than about 1400.degree.C and selectively controlled coefficients of thermal expansion of essentially zero to a negative value in the temperature range of 20.degree. to 1000.degree.C.

  9. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    DOEpatents

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  10. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOEpatents

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  11. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    PubMed

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  12. Chemical stabilization of graphite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bistrika, Alexander A.; Lerner, Michael M.

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditionsmore » for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.« less

  13. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} ismore » also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.« less

  14. In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

    PubMed

    Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya

    2017-01-25

    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

  15. Conceptual designs for in situ analysis of Mars soil

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Zent, A. P.; Hartman, H.

    1991-01-01

    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

  16. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications.

    PubMed

    Ruan, Yinlan; Ding, Liyun; Duan, Jingjing; Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2016-02-22

    Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure.

  17. Iron-phosphate ceramics for solidification of mixed low-level waste

    DOEpatents

    Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

    2000-01-01

    A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

  18. A convenient spectrophotometric assay for the determination of l-ergothioneine in blood

    PubMed Central

    Carlsson, Jan; Kierstan, Marek P. J.; Brocklehurst, Keith

    1974-01-01

    1. A convenient spectrophotometric assay for the determination of l-ergothioneine in solution including deproteinized blood haemolysate was developed. 2. The method consists of deproteinization by heat precipitation and Cu2+-catalysed oxidation of thiols such as glutathione and of l-ascorbic acid, both in alkaline media, and titration of l-ergothioneine (which is not oxidized under these conditions) by its virtually instantaneous reaction with 2,2′-dipyridyl disulphide at pH1. 3. This method and the results obtained with it for the analysis of human, horse, sheep and pig blood are compared with existing methods of l-ergothioneine analysis and the results obtained thereby. PMID:4463946

  19. Projectile containing metastable intermolecular composites and spot fire method of use

    DOEpatents

    Asay, Blaine W.; Son, Steven F.; Sanders, V. Eric; Foley, Timothy; Novak, Alan M.; Busse, James R.

    2012-07-31

    A method for altering the course of a conflagration involving firing a projectile comprising a powder mixture of oxidant powder and nanosized reductant powder at velocity sufficient for a violent reaction between the oxidant powder and the nanosized reductant powder upon impact of the projectile, and causing impact of the projectile at a location chosen to draw a main fire to a spot fire at such location and thereby change the course of the conflagration, whereby the air near the chosen location is heated to a temperature sufficient to cause a spot fire at such location. The invention also includes a projectile useful for such method and said mixture preferably comprises a metastable intermolecular composite.

  20. Improved method for producing catalytic carbon and the potential for increasing its use in commercial applications

    USGS Publications Warehouse

    Kruse, C.W.; Lizzio, A.A.; DeBarr, J.A.; Feizoulof, C.A.

    1997-01-01

    This paper describes an improved method for producing a catalytic carbon, which was first produced in the late 1960s. The new activated carbon (AC) removes and destroys organic pollutants in aqueous solutions. To determine the effects of altering the pore structure and surface chemistry of activated carbons, carbons differing in the amount of functional groups on their surfaces were prepared in three steps: (1) oxidizing AC with boiling nitric acid, (2) washing oxidized AC with water to remove the acid, and (3) heating oxidized AC to temperatures beteween 100 and 925 ??C. The surfaces of the products were characterized by determining the amount of CO2 and CO evolved during temperature-programmed desorption. Depending on the desorption temperature, these modified carbons showed enhanced adsorptive and/or catalytic properties that included (1) carbon molecular sieves for separating oxygen from nitrogen, (2) increased capacity for adsorbing sulfur dioxide, (3) stronger adsorption of p-nitrophenol from water, and (4) catalysis of dehydrochlorination reactions. A dehydrohalogenation catalyst produced by the oxidation/ desorption steps was found to be similar to one prepared in the 1960s by oxidizing AC with air at 500-700 ??C. The dehydrohalogenation catalyst produced by either the old method or the new method involves an oxidized surface that has been exposed to a 500-700 ??C temperature range. This carbon catalyst retains modified adsorptive properties of the AC from which it is produced. It can be used both to adsorb pollutants from liquid or gaseous streams and to convert them to recyclable products.

  1. A systematic review of observational studies on oxidative/nitrosative stress involvement in dengue pathogenesis

    PubMed Central

    Pinzón, Hernando Samuel; Alvis-Guzman, Nelson

    2015-01-01

    Objective: Our objective was to systematically review the published observational research related to the role of oxidative-nitrosative stress in pathogenesis of dengue. Methods: We searched electronic databases (PubMed, EMBASE, The COCHRANE library, ScienceDirect, Scopus, SciELO, LILACS via Virtual Health Library, Google Scholar) using the term: dengue, dengue virus, severe dengue, oxidative stress, nitrosative stress, antioxidants, oxidants, free radicals, oxidized lipid products, lipid peroxides, nitric oxide, and nitric oxide synthase. Articles were selected for review by title and abstract excluding letter, review, in vivo and in vitro studies, and duplicates studies. Selected articles were reviewed for study design, original purposes, sample size, main outcomes, methods, and oxidative-nitrosative stress markers values. Results: In total, 4,331 non-duplicates articles were identified from electronic databases searches, of which 16 were eligible for full text searching. Data from the observational studies originate from Asian countries (50%; 8/16), South American countries (31.2%; 5/16), and Central America and the Caribbean countries (18.8%; 3/16). Case-control study was the type of design most common in researches reviewed. The 1997 World Health Organization (WHO) dengue case classification criteria were used in all studies included in this review. Conclusions: Based on published data found in peer-reviewed literature, oxidative and nitrosative stress are demonstrated by changes in plasma levels of nitric oxide, antioxidants, lipid peroxidation and protein oxidation markers in patients with dengue infection. Additionally, elevated serum protein carbonyls and malondialdehyde levels appear to be associated with dengue disease severity. PMID:26600629

  2. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  3. Photopolymerization-based fabrication of chemical sensing films

    DOEpatents

    Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian

    2003-12-30

    A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.

  4. Methods of producing continuous boron carbide fibers

    DOEpatents

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  5. New disinfection and sterilization methods.

    PubMed Central

    Rutala, W. A.; Weber, D. J.

    2001-01-01

    New disinfection methods include a persistent antimicrobial coating that can be applied to inanimate and animate objects (Surfacine), a high-level disinfectant with reduced exposure time (ortho-phthalaldehyde), and an antimicrobial agent that can be applied to animate and inanimate objects (superoxidized water). New sterilization methods include a chemical sterilization process for endoscopes that integrates cleaning (Endoclens), a rapid (4-hour) readout biological indicator for ethylene oxide sterilization (Attest), and a hydrogen peroxide plasma sterilizer that has a shorter cycle time and improved efficacy (Sterrad 50). PMID:11294738

  6. Review of Options for Ammonia/Ammonium Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C. A.

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processesmore » and provides reasoning to not consider those processes further for this application.« less

  7. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  8. Parameters for measurement of oxidative stress in diabetes mellitus: applicability of enzyme-linked immunosorbent assay for clinical evaluation.

    PubMed

    Noiri, Eisei; Tsukahara, Hirokazu

    2005-05-01

    Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.

  9. Combination of different methods to assess the fate of lignin in decomposing needle and leave litter

    NASA Astrophysics Data System (ADS)

    Klotzbücher, Thimo; Filley, Timothy; Kaiser, Klaus; Kalbitz, Karsten

    2010-05-01

    Lignin is a major component of plant litter. However, its fate during litter decay is still poorly understood. One reason is the difficult analysis. Commonly used methods utilize different methodological approaches and focus on different aspects, e.g., content of lignin and/or of lignin-derived phenols and the degree of oxidation. The comparability and feasibility of the methods has not been tested so far. Our aims were: (1) to compare different methods with respect to track lignin degradation during plant litter decay and (2) to evaluate possible advantages of combining the different results. We assessed lignin degradation in decaying litter by 13C-TMAH thermochemolysis and CuO oxidation (each combined with GC/MS) and by determination of acid-detergent lignin (ADL) combined with near infrared spectroscopy. Furthermore, water-extractable organic matter produced during litter decay was examined for indicators of lignin-derived compounds by UV absorbance at 280 nm, fluorescence spectroscopy, and 13C-TMAH GC/MS. The study included litter samples from 5 different tree species (acer, ash, beech, pine, spruce), exposed in litterbags to degradation in a spruce stand for 27 months. First results suggested stronger lignin degradation in coniferous than in deciduous litter. This was indicated by complementary results from various methods: Conifer litter showed a more pronounced decrease in ADL content and a stronger increase in oxidation degree of side chains (Ac/Al ratios of CuO oxidation and 13C-TMAH products). Furthermore water extracted organic matter from needles showed a higher aromaticity and molecule complexity. Thus properties of water extractable organic matter seemed to reflect the extents of lignin degradation in solid litter samples. Contents of lignin-derived phenols determined with the CuO method (VSC content) hardly changed during decay of needles and leaves. These results thus not matched the trends found with the ADL method. Our results suggested that water-soluble phenolic acids that are included in the CuO oxidation products, accumulated during decay of litter with less stable lignin and then contributed to VSC contents and to the pool of water- extractable organic matter. By combining results from different methods we gained a better understanding about the differences in lignin degradation between the litter species.

  10. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.

    PubMed

    Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan

    2017-09-05

    Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.

  11. Color stable phosphors for LED lamps and methods for preparing them

    DOEpatents

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  12. Electrochemical process for the preparation of nitrogen fertilizers

    DOEpatents

    Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V

    2015-04-14

    Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.

  13. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    NASA Astrophysics Data System (ADS)

    Gazzarri, J. I.; Kesler, O.

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes.

  14. Method and apparatus for capturing carbon dioxide during combustion of carbon containing fuel

    DOEpatents

    Axelbaum, Richard L.; Kumfer, Benjamin M.; Xia, Fei; Gopan, Akshay; Dhungel, Bhupesh

    2018-04-10

    A boiler system having a series of boilers. Each boiler includes a shell having an upstream end, a downstream end, and a hollow interior. The boilers also have an oxidizer inlet entering the hollow interior adjacent the upstream end of the shell and a fuel nozzle positioned adjacent the upstream end of the shell for introducing fuel into the hollow interior of the shell. Each boiler includes a flue duct connected to the shell adjacent the downstream end for transporting flue gas from the hollow interior. Oxygen is delivered to the oxidizer inlet of the first boiler in the series. Flue gas from the immediately preceding boiler in the series is delivered through the oxidizer inlet of each boiler subsequent to the first boiler in the series.

  15. A facile synthesis and carbon-13 nuclear magnetic resonance spectral properties of 7-ketocholesteryl benzoate.

    PubMed

    Parish, E J; Wei, T Y; Livant, P

    1987-10-01

    This paper presents a modified method of the selective allylic oxidation of cholesteryl benzoate. Pyridinium chlorochromate, in refluxing benzene, has been found to be an effective and convenient reagent for the efficient oxidation of cholesteryl benzoate to 7-ketocholesteryl benzoate in high yield. Also included herein are the carbon-13 nuclear magnetic resonance spectral properties of 7-ketocholesteryl benzoate and cholesteryl benzoate.

  16. Is automated kinetic measurement superior to end-point for advanced oxidation protein product?

    PubMed

    Oguz, Osman; Inal, Berrin Bercik; Emre, Turker; Ozcan, Oguzhan; Altunoglu, Esma; Oguz, Gokce; Topkaya, Cigdem; Guvenen, Guvenc

    2014-01-01

    Advanced oxidation protein product (AOPP) was first described as an oxidative protein marker in chronic uremic patients and measured with a semi-automatic end-point method. Subsequently, the kinetic method was introduced for AOPP assay. We aimed to compare these two methods by adapting them to a chemistry analyzer and to investigate the correlation between AOPP and fibrinogen, the key molecule responsible for human plasma AOPP reactivity, microalbumin, and HbA1c in patients with type II diabetes mellitus (DM II). The effects of EDTA and citrate-anticogulated tubes on these two methods were incorporated into the study. This study included 93 DM II patients (36 women, 57 men) with HbA1c levels > or = 7%, who were admitted to the diabetes and nephrology clinics. The samples were collected in EDTA and in citrate-anticoagulated tubes. Both methods were adapted to a chemistry analyzer and the samples were studied in parallel. In both types of samples, we found a moderate correlation between the kinetic and the endpoint methods (r = 0.611 for citrate-anticoagulated, r = 0.636 for EDTA-anticoagulated, p = 0.0001 for both). We found a moderate correlation between fibrinogen-AOPP and microalbumin-AOPP levels only in the kinetic method (r = 0.644 and 0.520 for citrate-anticoagulated; r = 0.581 and 0.490 for EDTA-anticoagulated, p = 0.0001). We conclude that adaptation of the end-point method to automation is more difficult and it has higher between-run CV% while application of the kinetic method is easier and it may be used in oxidative stress studies.

  17. Transparent ceramics and methods of preparation thereof

    DOEpatents

    Hollingsworth, Joel P [Oakland, CA; Kuntz, Joshua D [Livermore, CA; Seeley, Zachary M [Pullman, WA; Soules, Thomas F [Livermore, CA

    2011-10-18

    According to one embodiment, a method for forming a transparent ceramic preform includes forming a suspension of oxide particles in a solvent, adding the suspension to a mold of a desired shape, and uniformly curing the suspension in the mold for forming a preform. The suspension includes a dispersant but does not include a gelling agent. In another embodiment, a method includes creating a mixture without a gelling agent, the mixture including: inorganic particles, a solvent, and a dispersant. The inorganic particles have a mean diameter of less than about 2000 nm. The method also includes agitating the mixture, adding the mixture to a mold, and curing the mixture in the mold at a temperature of less than about 80.degree. C. for forming a preform. Other methods for forming a transparent ceramic preform are also described according to several embodiments.

  18. Method for fabricating silicon cells

    DOEpatents

    Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  19. Vanadium based materials as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  20. Method for forming ammonia

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  1. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  2. Review of Fabrication Methods, Physical Properties, and Applications of Nanostructured Copper Oxides Formed via Electrochemical Oxidation.

    PubMed

    Stepniowski, Wojciech J; Misiolek, Wojciech Z

    2018-05-29

    Typically, anodic oxidation of metals results in the formation of hexagonally arranged nanoporous or nanotubular oxide, with a specific oxidation state of the transition metal. Recently, the majority of transition metals have been anodized; however, the formation of copper oxides by electrochemical oxidation is yet unexplored and offers numerous, unique properties and applications. Nanowires formed by copper electrochemical oxidation are crystalline and composed of cuprous (CuO) or cupric oxide (Cu₂O), bringing varied physical and chemical properties to the nanostructured morphology and different band gaps: 1.44 and 2.22 eV, respectively. According to its Pourbaix (potential-pH) diagram, the passivity of copper occurs at ambient and alkaline pH. In order to grow oxide nanostructures on copper, alkaline electrolytes like NaOH and KOH are used. To date, no systemic study has yet been reported on the influence of the operating conditions, such as the type of electrolyte, its temperature, and applied potential, on the morphology of the grown nanostructures. However, the numerous reports gathered in this paper will provide a certain view on the matter. After passivation, the formed nanostructures can be also post-treated. Post-treatments employ calcinations or chemical reactions, including the chemical reduction of the grown oxides. Nanostructures made of CuO or Cu₂O have a broad range of potential applications. On one hand, with the use of surface morphology, the wetting contact angle is tuned. On the other hand, the chemical composition (pure Cu₂O) and high surface area make such materials attractive for renewable energy harvesting, including water splitting. While compared to other fabrication techniques, self-organized anodization is a facile, easy to scale-up, time-efficient approach, providing high-aspect ratio one-dimensional (1D) nanostructures. Despite these advantages, there are still numerous challenges that have to be faced, including the strict control of the chemical composition and morphology of the grown nanostructures, their uniformity, and understanding the mechanism of their growth.

  3. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOEpatents

    Manthiram, Arumugam; Choi, Wongchang

    2014-05-13

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  4. Chemical Analysis through CL-Detection Assisted by Periodate Oxidation

    PubMed Central

    Evmiridis, Nicholaos P.; Vlessidis, Athanasios G.; Thanasoulias, Nicholas C.

    2007-01-01

    The progress of the research work of the author and his colleagues on the field of CL-emission generated by pyrogallol oxidation and further application for the direct determination of periodate and indirect or direct determination of other compounds through flow-injection manifold/CL-detection set up is described. The instrumentation used for these studies was a simple flow-injection manifold that provides good reproducibility, coupled to a red sensitive photomultiplier that gives sensitive CL-detection. In addition, recent reports on studies and analytical methods based on CL-emission generated by periodate oxidation by other authors are included. PMID:17611611

  5. High power density fuel cell comprising an array of microchannels

    DOEpatents

    Morse, Jeffrey D.; Upadhye, Ravindra S.; Spadaccini, Christopher M.; Park, Hyung Gyu

    2013-10-15

    A fuel cell according to one embodiment includes a porous electrolyte support structure defining an array of microchannels, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and oxidant electrodes formed along other of the microchannels. A method of making a fuel cell according to one embodiment includes forming an array of walls defining microchannels therebetween using at least one of molding, stamping, extrusion, injection and electrodeposition; processing the walls to make the walls porous, thereby creating a porous electrolyte support structure; forming anode electrodes along some of the microchannels; and forming cathode electrodes along other of the microchannels. Additional embodiments are also disclosed.

  6. Nano-sized particles, processes of making, compositions and uses thereof

    DOEpatents

    O'Brien, Stephen [New York, NY; Yin, Ming [Los Alamos, NM

    2012-05-22

    The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.

  7. Advantages and limitations of common testing methods for antioxidants.

    PubMed

    Amorati, R; Valgimigli, L

    2015-05-01

    Owing to the importance of antioxidants in the protection of both natural and man-made materials, a large variety of testing methods have been proposed and applied. These include methods based on inhibited autoxidation studies, which are better followed by monitoring the kinetics of oxygen consumption or of the formation of hydroperoxides, the primary oxidation products. Analytical determination of secondary oxidation products (e.g. carbonyl compounds) has also been used. The majority of testing methods, however, do not involve substrate autoxidation. They are based on the competitive bleaching of a probe (e.g. ORAC assay, β-carotene, crocin bleaching assays, and luminol assay), on reaction with a different probe (e.g. spin-trapping and TOSC assay), or they are indirect methods based on the reduction of persistent radicals (e.g. galvinoxyl, DPPH and TEAC assays), or of inorganic oxidizing species (e.g. FRAP, CUPRAC and Folin-Ciocalteu assays). Yet other methods are specific for preventive antioxidants. The relevance, advantages, and limitations of these methods are critically discussed, with respect to their chemistry and the mechanisms of antioxidant activity. A variety of cell-based assays have also been proposed, to investigate the biological activity of antioxidants. Their importance and critical aspects are discussed, along with arguments for the selection of the appropriate testing methods according to the different needs.

  8. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    PubMed

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  9. Method for fabricating silicon cells

    DOEpatents

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  10. Serum paraoxonase, TAS, TOS and ceruloplasmin in brucellosis

    PubMed Central

    Demirpençe, Özlem; Sevim, Bünyamin; Yıldırım, Mustafa; Ayan Nurlu, Nilhan; Mert, Duygu; Evliyaoğlu, Osman

    2014-01-01

    It is possible that brucellosis may be related to increase free radical production and antioxidant depletion. Thus, in the present study we aimed to evaluate the oxidative status in patient with brucellosis and healthy controls. Methods: This study includes the patients with brucellosis diagnosed by clinical findings and positive agglutination titer. The paraoxonase, ceruloplasmin, total antioxidant capacity and total oxidant status values were measured from the samples taken. The oxidative stress index value was calculated through the total antioxidant capacity and total oxidant status values. Results: A total number of 93 people, 40 women (43%) and 53 men (57%) were included to the study. The levels of ceruloplasmin were found higher in patients when compared to the control group (p < 0.001). The total antioxidant capacity level was found significantly higher in the patients group when compared to the control group (p < 0.001). The oxidative stress index value was significantly lower in the patients group when compared to the control group (p < 0.001). The paraoxonase-1 level was not different in control and patient groups (p = 0.077). Conclusions: Brucellosis is an infection that is frequently seen in Mediterranean countries. This infection breaks the oxidant and antioxidant balance. In this disease, oxidant-antioxidant system indicators such as ceruloplasmin, total antioxidant capacity, total oxidant status and oxidative stress index can be used for showing the role of the brucella infection and for the monitoring of the treatment results. PMID:25035784

  11. The Obtaining of Nano Oxide Systems SiO2-REE with Alkoxide Technology

    NASA Astrophysics Data System (ADS)

    Amelina, Anna; Grinberg, Evgenii

    A lot of oxides systems with REE as dopants are used in catalytic processes in organic synthesis. They are very perspectives as thermostable coating in aerospace technics. These systems are usually based on silicon or aluminium oxides and doped with rare-earth elements. This systems can be produced by different methods. One of the most perspective of them is “sol-gel”-method with silicium, aluminium and rare-earth alkoxides as a precursor of doped silica and alumina, or their derivatives. Thus the obtaining of composite SiO _{2} - REE oxide materials by the hydrolysis doped with rare-earth elements was suggested. Some of alcoholate derivatives such as El(OR)n were used in this processes. The SiO _{2}- REE oxides were precipitated during the sol-gel process, where tetraethoxysilane (TEOS) as used as SiO _{2} sources. Also it is known that alkoxides of alkali metals, including lithium alkoxides, are widely used in industry and synthetic chemistry, as well as a source of lithium in various mixed oxide compositions, such as lithium niobate, lithium tantalate or lithium silicate. Therefore, we attempted to obtain the lithium silicate, which is also doped with rare-earth elements. Lithium silicate was obtained by alkaline hydrolysis of tetraethoxysilane with lithium alkoxide. Lithium alkoxide were synthesized by dissolving at metal in the corresponding alcohol are examined. The dependence of the rate of dissolving of the metal on the method of mixing of the reaction mixture and the degree of metal dispersion was investigated. The mathematical model of the process was composed and also optimization of process was carried out. Some oxide SiO _{2}, Al _{2}O _{3} and rare-earth nanostructured systems were obtained by sol-gel-method. The size of particle was determined by electron and X-ray spectroscopy and was in the range of 5 - 15 nm. Purity of this oxide examples for contaminating of heavy metals consists n.(1E-4...1E-5) wt%. Sols obtained by this method may be used for producing of thin coats on ceramics and metallic surfaces.

  12. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  13. Multiscale atomistic simulation of metal-oxygen surface interactions: Methodological development, theoretical investigation, and correlation with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Judith C.

    The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for acceleratedmore » materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.« less

  14. Photo-oxidation method using MoS2 nanocluster materials

    DOEpatents

    Wilcoxon, Jess P.

    2001-01-01

    A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.

  15. Glutathione and zebrafish: Old assays to address a current issue.

    PubMed

    Massarsky, Andrey; Kozal, Jordan S; Di Giulio, Richard T

    2017-02-01

    Several xenobiotic agents (e.g. metals, polycyclic aromatic hydrocarbons, nanoparticles, etc.) commonly involve the generation of reactive oxygen species (ROS) and oxidative stress as part of their toxic mode of action. Among piscine models, the zebrafish is a popular vertebrate model to study toxicity of various xenobiotic agents. Similarly to other vertebrates, zebrafish possess an extensive antioxidant system, including the reduced form of glutathione (GSH), which is an important antioxidant that acts alone or in conjunction with enzymes, such as glutathione peroxidase (GPx). Upon interaction with ROS, GSH is oxidized, resulting in the formation of glutathione disulfide (GSSG). GSSG is recycled by an auxiliary antioxidant enzyme glutathione reductase (GR). This article outlines detailed methods to measure the concentrations of GSH and GSSG, as well as the activities of GPx and GR in zebrafish larvae as robust and economical means to assess oxidative stress. The studies that have assessed these endpoints in zebrafish and alternative methods are also discussed. We conclude that the availability of these robust and economical methods support the use of zebrafish as a model organism in studies evaluating redox biology, as well as the induction of oxidative stress following exposure to toxic agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps

    PubMed Central

    Sharma, Abeera; Bhattarai, Jay K.; Alla, Allan J.; Demchenko, Alexei V.; Stine, Keith J.

    2015-01-01

    An electrochemical method for annealing the pore sizes of nanoporous gold is reported. The pore sizes of nanoporous gold can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of nanoporous gold due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the nanoporous gold surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in nanoporous gold are also reported. The effect of the annealing process on the application of nanoporous gold as a substrate for glucose electro-oxidation is briefly examined. PMID:25649027

  17. Mediation of the Relationship between Maternal Phthalate Exposure and Preterm Birth by Oxidative Stress with Repeated Measurements across Pregnancy.

    PubMed

    Ferguson, Kelly K; Chen, Yin-Hsiu; VanderWeele, Tyler J; McElrath, Thomas F; Meeker, John D; Mukherjee, Bhramar

    2017-03-01

    Mediation analysis is useful for understanding mechanisms and has been used minimally in the study of the environment and disease. We examined mediation of the association between phthalate exposure during pregnancy and preterm birth by oxidative stress. This nested case-control study of preterm birth ( n = 130 cases, 352 controls) included women who delivered in Boston, Massachusestts, from 2006 through 2008. Phthalate metabolites and 8-isoprostane, an oxidative stress biomarker, were measured in urine from three visits in pregnancy. We applied four counterfactual mediation methods: method 1, utilizing exposure and mediator averages; method 2, using averages but allowing for an exposure-mediator interaction; method 3, incorporating longitudinal measurements of the exposure and mediator; and method 4, using longitudinal measurements and allowing for an exposure-mediator interaction. We observed mediation of the associations between phthalate metabolites and all preterm birth by 8-isoprostane, with the greatest estimated proportion mediated observed for spontaneous preterm births specifically. Fully utilizing repeated measures of the exposure and mediator improved precision of indirect (i.e., mediated) effect estimates, and including an exposure-mediator interaction increased the estimated proportion mediated. For example, for mono(2-ethyl-carboxy-propyl) phthalate (MECPP), a metabolite of di(2-ethylhexyl) phthalate (DEHP), the percent of the total effect mediated by 8-isoprostane increased from 47% to 60% with inclusion of an exposure-mediator interaction term, in reference to a total adjusted odds ratio of 1.67 or 1.48, respectively. This demonstrates mediation of the phthalate-preterm birth relationship by oxidative stress, and the utility of complex regression models in capturing mediated associations when repeated measures of exposure and mediator are available and an exposure-mediator interaction may exist. Citation: Ferguson KK, Chen YH, VanderWeele TJ, McElrath TF, Meeker JD, Mukherjee B. 2017. Mediation of the relationship between maternal phthalate exposure and preterm birth by oxidative stress with repeated measurements across pregnancy. Environ Health Perspect 125:488-494; http://dx.doi.org/10.1289/EHP282.

  18. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  19. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  20. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy.

    PubMed

    Muzyka, Roksana; Drewniak, Sabina; Pustelny, Tadeusz; Chrubasik, Maciej; Gryglewicz, Grażyna

    2018-06-21

    In this paper, the influences of the graphite precursor and the oxidation method on the resulting reduced graphene oxide (especially its composition and morphology) are shown. Three types of graphite were used to prepare samples for analysis, and each of the precursors was oxidized by two different methods (all samples were reduced by the same method of thermal reduction). Each obtained graphite oxide and reduced graphene oxide was analysed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS).

  1. Evaluation of oxidative status in patients with brucellosis.

    PubMed

    Serefhanoglu, Kivanc; Taskin, Abdullah; Turan, Hale; Timurkaynak, Funda Ergin; Arslan, Hande; Erel, Ozcan

    2009-08-01

    Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. We aimed to determine total antioxidant capacity (TAC), total peroxide, malondialdehyde and catalase levels in plasma samples, and calculation of oxidative stress index (OSI) in patients with brucellosis to evaluate their oxidative status using a novel automated method. Sixty-nine patients with brucellosis and 69 healthy control subjects were included in the present study. Plasma levels of total peroxide and malondialdehyde were significantly increased in patients as compared with healthy controls (p<0.001 and p<0.001, respectively). In contrast, TAC level was significantly lower in patients as compared with controls (p<0.001). There was no statistically significant difference between the catalase results of the two groups (p>0.05). OSI level was significantly increased in patients as compared with healthy controls (p<0.001). In conclusion, oxidants were increased and antioxidants were decreased in patients with brucellosis. Oxidative stress was increased in patients with brucellosis.

  2. Method and apparatus for depositing a coating on a tape carrier

    DOEpatents

    Storer, Jonathan; Matias, Vladimir

    2010-06-15

    A system and method for depositing ceramic materials, such as nitrides and oxides, including high temperature superconducting oxides on a tape substrate. The system includes a tape support assembly that comprises a rotatable drum. The rotatable drum supports at least one tape substrate axially disposed on the surface of the drum during the deposition of metals on the tape and subsequent oxidation to form the ceramic materials. The drum is located within a stator having a slot that is axially aligned with the drum. A space exists between the drum and stator. The space is filled with a predetermined partial pressure of a reactive gas. The drum, stator, and space are heated to a predetermined temperature. To form the ceramic material on the tape substrate, the drum is first rotated to align the tape substrate with the slot, and at least one metal is deposited on the substrate. The drum then continues to rotate, bringing the tape substrate into the space, where the metal deposited on the tape substrate reacts with the reactive gas to form the ceramic material. In one embodiment, the tape support system also includes a pay-out/take-up system that co-rotates with the drum and provides a continuous length of tape substrate.

  3. Immunohistochemical and ELISA assays for biomarkers of oxidative stress in aging and disease.

    PubMed

    Onorato, J M; Thorpe, S R; Baynes, J W

    1998-11-20

    Oxidative stress is apparent in pathology associated with aging and many age-related, chronic diseases, including atherosclerosis, diabetes mellitus, rheumatoid arthritis, and neurodegenerative diseases. Although it cannot be measured directly in biological systems, several biomarkers have been identified that provide a measure of oxidative damage to biomolecules. These include amino acid oxidation products (methionine sulfoxide, ortho-tyrosine (o-tyr) and dityrosine, chlorotyrosine and nitrotyrosine), as well as chemical modifications of protein following carbohydrate or lipid oxidation, such as N epsilon-(carboxymethyl)lysine and N epsilon-(carboxyethyl)lysine, and malondialdehyde and 4-hydroxynonenal adducts to amino acids. Other biomarkers include the amino acid cross-link pentosidine, the imidazolone adducts formed by reaction of 3-deoxyglucosone or methylglyoxal with arginine, and the imidazolium cross-links formed by the reaction of glyoxal and methylglyoxal with lysine residues in protein. These compounds have been measured in short-lived intracellular proteins, plasma proteins, long-lived extracellular proteins, and in urine, making them valuable tools for monitoring tissue-specific and systemic chemical and oxidative damage to proteins in biological systems. They are normally measured by sensitive high-performance liquid chromatography or gas chromatography-mass spectrometry methods, requiring both complex analytical instrumentation and derivatization procedures. However, sensitive immunohistochemical and ELISA assays are now available for many of these biomarkers. Immunochemical assays should facilitate studies on the role of oxidative stress in aging and chronic disease and simplify the evaluation of therapeutic approaches for limiting oxidative damage in tissues and treating pathologies associated with aging and disease. In this article we summarize recent data and conclusions based on immunohistochemical and ELISA assays, emphasizing the strengths and limitations of the techniques.

  4. Composite materials comprising two jonal functions and methods for making the same

    DOEpatents

    Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol

    2001-01-01

    The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

  5. Versatile apparatus for thermoelectric characterization of oxides at high temperatures

    NASA Astrophysics Data System (ADS)

    Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G.

    2014-10-01

    An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.

  6. Versatile apparatus for thermoelectric characterization of oxides at high temperatures.

    PubMed

    Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G

    2014-10-01

    An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.

  7. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort

    PubMed Central

    Zhang, Xian; Staimer, Norbert; Gillen, Daniel L.; Tjoa, Tomas; Schauer, James J.; Shafer, Martin M.; Hasheminassab, Sina; Pakbin, Payam; Vaziri, Nosratola D.; Sioutas, Constantinos; Delfino, Ralph J.

    2016-01-01

    Background Exposure to air pollution has been associated with cardiorespiratory morbidity and mortality. However, the chemical constituents and pollution sources underlying these associations remain unclear. Method We conducted a cohort panel study involving 97 elderly subjects living in the Los Angeles metropolitan area. Airway and circulating biomarkers of oxidative stress and inflammation were measured weekly over 12 weeks and included, exhaled breath condensate malondialdehyde (EBC MDA), fractional exhaled nitric oxide (FeNO), plasma oxidized low-density lipoprotein (oxLDL), and plasma interleukin-6 (IL-6). Exposures included 7-day personal nitrogen oxides (NOX), daily criteria-pollutant data, five-day average particulate matter (PM) measured in three size-fractions and characterized by chemical components including transition metals, and in vitro PM oxidative potential (dithiothreitol and macrophage reactive oxygen species). Associations between biomarkers and pollutants were assessed using linear mixed effects regression models. Results We found significant positive associations of airway oxidative stress and inflammation with traffic-related air pollutants, ultrafine particles and transition metals. Positive but nonsignificant associations were observed with PM oxidative potential. The strongest associations were observed among PM variables in the ultrafine range (PM <0.18 μm). It was estimated that an interquartile increase in 5-day average ultrafine polycyclic aromatic hydrocarbons was associated with a 6.3% (95% CI: 1.1%, 11.6%) increase in EBC MDA and 6.7% (95% CI: 3.4%, 10.2%) increase in FeNO. In addition, positive but nonsignificant associations were observed between oxLDL and traffic-related pollutants, ultrafine particles and transition metals while plasma IL-6 was positively associated with 1-day average traffic-related pollutants. Conclusion Our results suggest that exposure to pollutants with high oxidative potential (traffic-related pollutants, ultrafine particles, and transition metals) may lead to increased airway oxidative stress and inflammation in elderly adults. This observation was less clear with circulating biomarkers. PMID:27336235

  8. Mixed ionic and electronic conductor based on Sr.sub.2Fe.sub.2-xM0.sub.XO.sub.6 perovskite

    DOEpatents

    Chen, Fanglin; Liu, Qiang

    2014-07-15

    In accordance with the present disclosure, a method for fabricating a symmetrical solid oxide fuel cell is described. The method includes synthesizing a composition comprising perovskite and applying the composition on an electrolyte support to form both an anode and a cathode.

  9. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2010-01-01

    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  10. Evaluation of three simple direct or indirect carbonyl detection methods for characterization of oxidative modifications of proteins.

    PubMed

    Vásquez-Garzón, Verónica R; Rouimi, Patrick; Jouanin, Isabelle; Waeg, Georg; Zarkovic, Neven; Villa-Treviño, Saul; Guéraud, Françoise

    2012-05-01

    Among disruptions induced by oxidative stress, modifications of proteins, particularly irreversible carbonylation, are associated with the development of several diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Carbonylation of proteins can occur directly or indirectly through the adduction of lipid oxidation products. In this study, three classical and easy-to-perform techniques to detect direct or indirect carbonylation of proteins were compared. A model protein apomyoglobin and a complex mixture of rat liver cytosolic proteins were exposed to cumene hydroperoxide oxidation or adduction to the lipid peroxidation product 4-hydroxynonenal in order to test direct or indirect carbonylation, respectively. The technique using a specific anti-4-hydroxynonenal-histidine adduct antibody was effective to detect in vitro modification of model apomyoglobin and cytosolic proteins by 4-hydroxynonenal but not by direct carbonylation which was achieved by techniques using biotin-coupled hydrazide or dinitrophenylhydrazine derivatization of carbonyls. Sequential use of these methods enabled the detection of both direct and indirect carbonyl modification in proteins, although constitutively biotinylated proteins were detected by biotin-hydrazide. Although rather classical and efficient, methods for carbonyl detection on proteins in oxidative stress studies may be biased by some artifactual detections and complicated by proteins multimerizations. The use of more and more specific available antibodies is recommended to complete detection of lipid peroxidation product adducts on proteins.

  11. A Stability-Indicating HPLC Method for the Determination of Nitrosylcobalamin (NO-Cbl), a Novel Vitamin B12 Analog.

    PubMed

    Dunphy, Michael J; Sysel, Annette M; Lupica, Joseph A; Griffith, Kristie; Sherrod, Taylor; Bauer, Joseph A

    2014-04-01

    Nitrosylcobalamin (NO-Cbl), a novel vitamin B 12 analog and anti-tumor agent, functions as a biologic 'Trojan horse', utilizing the vitamin B 12 transcobalamin II transport protein and cell surface receptor to specifically target cancer cells. a stability-indicating HPLC method was developed for the detection of NO-Cbl during forced degradation studies. This method utilized an ascentis ® RP-amide (150 mm × 4.6 mm, 5 μm) column at 35 °C with a mobile phase (1.0 mL min -1 ) combining a gradient of methanol and an acetate buffer at pH 6.0. Detection wavelengths of 450 and 254 nm were used to detect corrin and non-corrin-based products, respectively. NO-Cbl, synthesized from hydroxocobalamin and pure nitric oxide gas, was subjected to degradative stress conditions including oxidation, hydrolysis and thermal and radiant energy challenge. The method was validated by assessing linearity, accuracy, precision, detection and quantitation limits and robustness. The method was applied successfully for purity assessment of synthesized NO-Cbl and for the determination of NO-Cbl during kinetic studies in aqueous solution and in solid-state degradation assessments. This HPLC method is suitable for the separation of cobalamins in aqueous and methanolic solutions, for routine detection of NO-Cbl and for purity assessment of synthesized NO-Cbl. additionally, this method has potential application in identification and monitoring of diseases involving altered nitric oxide homeostasis where vitamin B 12 therapy is utilized to scavenge excess nitric oxide, subsequently resulting in the in vivo production of NO-Cbl.

  12. A Stability-Indicating HPLC Method for the Determination of Nitrosylcobalamin (NO-Cbl), a Novel Vitamin B12 Analog

    PubMed Central

    Dunphy, Michael J.; Sysel, Annette M.; Lupica, Joseph A.; Griffith, Kristie; Sherrod, Taylor

    2014-01-01

    Nitrosylcobalamin (NO-Cbl), a novel vitamin B12 analog and anti-tumor agent, functions as a biologic ‘Trojan horse’, utilizing the vitamin B12 transcobalamin II transport protein and cell surface receptor to specifically target cancer cells. a stability-indicating HPLC method was developed for the detection of NO-Cbl during forced degradation studies. This method utilized an ascentis® RP-amide (150 mm × 4.6 mm, 5 μm) column at 35 °C with a mobile phase (1.0 mL min−1) combining a gradient of methanol and an acetate buffer at pH 6.0. Detection wavelengths of 450 and 254 nm were used to detect corrin and non-corrin-based products, respectively. NO-Cbl, synthesized from hydroxocobalamin and pure nitric oxide gas, was subjected to degradative stress conditions including oxidation, hydrolysis and thermal and radiant energy challenge. The method was validated by assessing linearity, accuracy, precision, detection and quantitation limits and robustness. The method was applied successfully for purity assessment of synthesized NO-Cbl and for the determination of NO-Cbl during kinetic studies in aqueous solution and in solid-state degradation assessments. This HPLC method is suitable for the separation of cobalamins in aqueous and methanolic solutions, for routine detection of NO-Cbl and for purity assessment of synthesized NO-Cbl. additionally, this method has potential application in identification and monitoring of diseases involving altered nitric oxide homeostasis where vitamin B12 therapy is utilized to scavenge excess nitric oxide, subsequently resulting in the in vivo production of NO-Cbl. PMID:24855323

  13. Transparent ceramics and methods of preparation thereof

    DOEpatents

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Seeley, Zachary M.; Soules, Thomas F.

    2012-12-25

    A method for forming a transparent ceramic preform in one embodiment includes forming a suspension of oxide particles in a solvent, wherein the suspension includes a dispersant, with the proviso that the suspension does not include a gelling agent; and uniformly curing the suspension for forming a preform of gelled suspension. A method according to another embodiment includes creating a mixture of inorganic particles, a solvent and a dispersant, the inorganic particles having a mean diameter of less than about 2000 nm; agitating the mixture; adding the mixture to a mold; and curing the mixture in the mold for gelling the mixture, with the proviso that no gelling agent is added to the mixture.

  14. Magnetic mesoporous material for the sequestration of algae

    DOEpatents

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  15. Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug Thioguanine on Graphene oxide surface as a nanocarrier: Density functional theory investigation and a molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hasanzade, Zohre; Raissi, Heidar

    2017-11-01

    In this work, the adsorption of Thioguanine (TG) anticancer drug on the surface of Graphene oxide (GO) nanosheet has investigated using density functional theory (DFT) and molecular dynamics simulation (MDs). Quantum mechanics calculations by two methods including M06-2X/6-31G**and ωB97X-D/6-31G** have been employed to calculate the details of energetic, geometric, and electronic properties of the TG molecule interacting with Graphene oxide nanosheet (GONS). DFT calculations confirmed that the strongest adsorption is observed when hydrogen bond interactions between TG molecule and the functional groups of Graphene oxide nanosheet are predominate. In all calculations, solvent effects have been considered in water using the PCM method. It is found that TG molecule can be adsorbed on Graphene oxide with negative solvation energy, indicating the TG adsorption on Graphene oxide surfaces is thermodynamically favored. Moreover, MD simulations are examined to understand the solvent/co-solvent effect (water, ethanol, nicotine) on the Thioguanine drug delivery through Graphene oxide. The results of RDF patterns and the van der Waals energy calculations show that interaction between TG drugs and the Graphene oxide surface is stronger in water solvent compared to the other co-solvent. The obtained MD results illustrate that when nicotine and ethanol exist in the system, the drug takes longer time to bind with GO nanosheet and the system becomes unstable. It can be concluded that Graphene oxide can be a promising candidate in water media for delivery the TG molecule.

  16. Investigation into Spectroscopic Techniques for Thermal Barrier Coating Spall Detection

    NASA Technical Reports Server (NTRS)

    deGroot, Wim; Opila, Beth

    2001-01-01

    Spectroscopic methods are proposed for detection of thermal barrier coating (TBC) spallation from engine hot zone components. These methods include absorption and emission of airborne marker species originally embedded in the TBC bond coat. In this study, candidate marker materials for this application were evaluated. Thermochemical analysis of candidate marker materials combined with additional constraints such as toxicity and uniqueness to engine environment, provided a short list of four potential species: platinum, copper oxide, zinc oxide. and indium. The melting point of indium was considered to be too low for serious consideration. The other three candidate marker materials, platinum, copper oxide, and zinc oxide were placed in a high temperature furnace and emission and absorption properties were measured over a temperature range from 800-1400 C and a spectral range from 250 to 18000 nm. Platinum did not provide the desired response, likely due to the low vapor Pressure of the metallic species and the low absorption of the oxide species. It was also found, however. that platinum caused a broadening of the carbon dioxide absorption at 4300 nm. The nature of this effect is not known. Absorption and emission caused by sodium and potassium impurities in the platinum were found in the platinum tests. Zinc oxide did not provide the desired response, again, most likely due to the low vapor pressure of the metallic species and the low absorption of the oxide species. Copper oxide generated two strongly temperature dependent absorption peaks at 324.8 and 327.4 nm. The melting point of copper oxide was determined to be too low for serious consideration as marker material.

  17. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation

    PubMed Central

    Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2017-01-01

    The aim of this study was to obtain nanocrystalline mixed metal-oxide–ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser’s addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature. PMID:28686190

  18. Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1995-07-01

    Alkaline CuO oxidation of ubiquitous biochemicals such as proteins, polysaccharides, and lipids, yields specific products, including fatty acids, diacids, and carboxylated phenols. Oxidation of a variety of marine organisms, including macrophytes, phytoplankton, zooplankton, and bacteria, yields these CuO products in characteristic patterns that can often differentiate these biological sources. Sediments from Skan Bay (Unalaska Island, Alaska) display organic carbon and total nitrogen profiles which are consistent with three kinetically distinct pools of organic matter. The CuO fingerprints of these sediments distinguish these three pools at the molecular level, indicating a highly labile, fatty acid-rich surface organic layer of likely bacterial origin, intermediately reactive kelp debris and a background of phytoplankton remains that predominates at depth. The CuO method, which has been previously applied only to characterize cutin and lignin constituents of vascular land plants, also provides information on other types of abundant biochemicals, including those indicative of marine sources.

  19. Microstructural characterization of the cycling behavior of electrodeposited manganese oxide supercapacitors using 3D electron tomography

    NASA Astrophysics Data System (ADS)

    Dalili, N.; Clark, M. P.; Davari, E.; Ivey, D. G.

    2016-10-01

    Manganese oxide has been investigated extensively as an electrochemical capacitor or supercapacitor electrode material. Manganese oxide is inexpensive to fabricate and exhibits relatively high capacitance values, i.e., in excess of 200 F g-1 in many cases; the actual value depends very much on the fabrication method and test conditions. The cycling behavior of Mn oxide, fabricated using anodic electrodeposition, is investigated using slice and view techniques, via a dual scanning electron microscope (SEM) and focused ion beam (FIB) instrument to generate three-dimensional (3D) images, coupled with electrochemical characterization. The initial as-fabricated electrode has a rod-like appearance, with a fine-scale, sheet-like morphology within the rods. The rod-like structure remains after cycling, but there are significant morphological changes. These include partial dissolution of Mn oxide followed by redeposition of Mn oxide in regions close to the substrate. The redeposited material has a finer morphology than the original as-fabricated Mn oxide. The Mn oxide coverage is also better near the substrate. These effects result in an increase in the specific capacitance.

  20. High rate buffer layer for IBAD MgO coated conductors

    DOEpatents

    Foltyn, Stephen R [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  1. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste.

    PubMed

    Diaby, Nouhou; Dold, Bernhard; Pfeifer, Hans-Rudolf; Holliger, Christof; Johnson, D Barrie; Hallberg, Kevin B

    2007-02-01

    The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) 'oxidation zone' characterized by low-pH (2.5-4), a 'neutralization zone' (70-80 to 300-400 cm) and an unaltered 'primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.

  2. A method for the determination of vanadium and iron oxidation states in naturally occurring oxides and silicates

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.

    1985-01-01

    A valence-specific analytical method for determining V3+ in ore minerals has been developed that involves two steps: dissolution of a mineral sample without disturbing the V3+/Vtot ratio, followed by determination of V3+ in the presence of V4+. The samples are dissolved in a mixture of hydrofluoric and sulphuric acids at 100?? in Teflon-lined reaction vessels. Tervalent vanadium is then determined colorimetrically by formation of a V3+-thiocyanate complex in aqueous-acetone medium. Fe3+ is measured semi-quantitatively in the same solution. The method has been tested with two naturally occurring samples containing vanadium and iron. The results obtained were supported by those obtained by other methods, including electron spin resonance spectroscopy, thermogravimetric analysis, and Mo??ssbauer spectroscopy. ?? 1985.

  3. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    DOEpatents

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  4. Study of magnetic nanoparticles and overcoatings for biological applications including a sensor device

    NASA Astrophysics Data System (ADS)

    Grancharov, Stephanie G.

    I. A general introduction to the field of nanomaterials is presented, highlighting their special attributes and characteristics. Nanoparticles in general are discussed with respect to their structure, form and properties. Magnetic particles in particular are highlighted, especially the iron oxides. The importance and interest of integrating these materials with biological media is discussed, with emphasis on transferring particles from one medium to another, and subsequent modification of surfaces with different types of materials. II. A general route to making magnetic iron oxide nanoparticles is explained, both as maghemite and magnetite, including properties of the particles and characterization. A novel method of producing magnetite particles without a ligand is then presented, with subsequent characterization and properties described. III. Attempts to coat iron oxide nanoparticles with a view to creating biofunctional magnetic nanoparticles are presented, using a gold overcoating method. Methods of synthesis and characterization are examined, with unique problems to core-shell structures analyzed. IV. Solubility of nanoparticles in both aqueous and organic media is discussed and examined. The subsequent functionalization of the surface of maghemite and magnetite nanoparticles with a variety of biomaterials including block copolypeptides, phospholipids and carboxydextran is then presented. These methods are integral to the use of magnetic nanoparticles in biological applications, and therefore their properties are examined once tailored with these molecules. V. A new type of magnetic nanoparticle sensor-type device is described. This device integrates bio-and DNA-functionalized nanoparticles with conjugate functionalized silicon dioxide surfaces. These techniques to pattern particles to a surface are then incorporated into a device with a magnetic tunnel junction, which measures magnetoresistance in the presence of an external magnetic field. This configuration thereby introduces a new way to detect magnetic nanoparticles via their magnetic properties after conjugation via biological entities.

  5. Reactor and method for production of nanostructures

    DOEpatents

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  6. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  7. Nitrous oxide for the management of labor pain: a systematic review.

    PubMed

    Likis, Frances E; Andrews, Jeffrey C; Collins, Michelle R; Lewis, Rashonda M; Seroogy, Jeffrey J; Starr, Sarah A; Walden, Rachel R; McPheeters, Melissa L

    2014-01-01

    We systematically reviewed evidence addressing the effectiveness of nitrous oxide for the management of labor pain, the influence of nitrous oxide on women's satisfaction with their birth experience and labor pain management, and adverse effects associated with nitrous oxide for labor pain management. We searched the MEDLINE, EMBASE, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases for articles published in English. The study population included pregnant women in labor intending a vaginal birth, birth attendees or health care providers who may be exposed to nitrous oxide during labor, and the fetus/neonate. We identified a total of 58 publications, representing 59 distinct study populations: 2 studies were of good quality, 11 fair, and 46 poor. Inhalation of nitrous oxide provided less effective pain relief than epidural analgesia, but the quality of studies was predominately poor. The heterogeneous outcomes used to assess women's satisfaction with their birth experience and labor pain management made synthesis of studies difficult. Most maternal adverse effects reported in the literature were unpleasant side effects that affect tolerability, such as nausea, vomiting, dizziness, and drowsiness. Apgar scores in newborns whose mothers used nitrous oxide were not significantly different from those of newborns whose mothers used other labor pain management methods or no analgesia. Evidence about occupational harms and exposure was limited. The literature addressing nitrous oxide for the management of labor pain includes few studies of good or fair quality. Further research is needed across all of the areas examined: effectiveness, satisfaction, and adverse effects.

  8. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  9. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  10. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla.

    PubMed

    Jiang, Wei-Wei; Su, Jia; Wu, Xing-De; He, Juan; Peng, Li-Yan; Cheng, Xiao; Zhao, Qin-Shi

    2015-01-01

    Geissoschizine methyl ether N-oxide, a new oxindole alkaloid, along with 14 known alkaloids, was isolated from the aerial part of Uncaria rhynchophylla. Their structures were identified by comprehensive spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In vitro acetylcholinesterase (AChE) inhibitory activity assay showed that the new compound exhibited anti-AChE activity with IC₅₀ value of 23.4 μM.

  11. Method for removal of metal atoms from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1992-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

  12. Method for removal of explosives from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1994-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells was also found to be of use in treating waste directly.

  13. Method of acquiring an image from an optical structure having pixels with dedicated readout circuits

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2006-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  14. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOEpatents

    Manthiram, Arumugam; Choi, Wonchang

    2010-05-18

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  15. Distribution of electrolytes in a flow battery

    DOEpatents

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  16. Understanding Nitrifier Denitrification: How far are we?

    NASA Astrophysics Data System (ADS)

    Wrage-Mönnig, N.

    2014-12-01

    Nitrifier denitrification is the oxidation of ammonia (NH3) via hydroxylamine (NH2OH) to nitrite (NO2-) and subsequent reduction of NO2- via nitric oxide (NO) to the greenhouse gas nitrous oxide (N2O) and possibly to dinitrogen (N2) by autotrophic nitrifiers. Especially in recent years, a lot of research has been conducted on this pathway. Under some conditions, it might dominate the N2O production from soils. Methods for studying nitrifier denitrification include selective inhibition, stable isotope and isotopomer methods, molecular and modelling approaches. They are applied from pure culture and pot studies to the field scale, trying to improve our knowledge of the conditions and factors controlling nitrifier denitrification. But how far are we? What have we learned so far and what remains to be discovered? With this contribution, I am trying to give an update of our understanding of this less well-known but important pathway.

  17. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    DOEpatents

    Yan, Shuli [Detroit, MI; Salley, Steven O [Grosse Pointe Park, MI; Ng, K Y. Simon [West Bloomfield, MI

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  18. Graphene aerogels

    DOEpatents

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  19. In-line charge-trapping characterization of dielectrics for sub-0.5-um CMOS technologies

    NASA Astrophysics Data System (ADS)

    Roy, Pradip K.; Chacon, Carlos M.; Ma, Yi; Horner, Gregory

    1997-09-01

    The advent of ultra-large and giga-scale-integration (ULSI/GSI) has placed considerable emphasis on the development of new gate oxides and interlevel dielectrics capable of meeting strict performance and reliability requirements. The costs and demands associated with ULSI fabrication have in turn fueled the need for cost-effective, rapid and accurate in-line characterization techniques for evaluating dielectric quality. The use of non-contact surface photovoltage characterization techniques provides cost-effective rapid feedback on dielectric quality, reducing costs through the reutilization of control wafers and the elimination of processing time. This technology has been applied to characterize most of the relevant C-V parameters, including flatband voltage (Vfb), density of interface traps (Dit), mobile charge density (Qm), oxide thickness (Tox), oxide resistivity (pox) and total charge (Qtot) for gate and interlevel (ILO) oxides. A novel method of measuring tunneling voltage by this technique on various gate oxides is discussed. For ILO, PECVD and high density plasma dielectrics, surface voltage maps are also presented. Measurements of near-surface silicon quality are described, including minority carrier generation lifetime, and examples of their application in diagnosing manufacturing problems.

  20. NO.sub.x reduction method

    DOEpatents

    Sekar, Ramanujam R.; Hoppie, Lyle O.

    1996-01-01

    A method of reducing oxides of nitrogen (NO.sub.X) in the exhaust of an internal combustion engine includes producing oxygen enriched air and nitrogen enriched air by an oxygen enrichment device. The oxygen enriched air may be provided to the intake of the internal combustion engine for mixing with fuel. In order to reduce the amount of NO.sub.X in the exhaust of the internal combustion engine, the molecular nitrogen in the nitrogen enriched air produced by the oxygen enrichment device is subjected to a corona or arc discharge so as to create a plasma and as a result, atomic nitrogen. The resulting atomic nitrogen then is injected into the exhaust of the internal combustion engine causing the oxides of nitrogen in the exhaust to be reduced into nitrogen and oxygen. In one embodiment of the present invention, the oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  1. Structural analysis of a Petri net model of oxidative stress in atherosclerosis.

    PubMed

    Kozak, Adam; Formanowicz, Dorota; Formanowicz, Piotr

    2018-06-01

    Atherosclerosis is a complex process of gathering sub-endothelial plaques decreasing lumen of the blood vessels. This disorder affects people of all ages, but its progression is asymptomatic for many years. It is regulated by many typical and atypical factors including the immune system response, a chronic kidney disease, a diet rich in lipids, a local inflammatory process and a local oxidative stress that is here one of the key factors. In this study, a Petri net model of atherosclerosis regulation is presented. This model includes also some information about stoichiometric relationships between its components and covers all mentioned factors. For the model, a structural analysis based on invariants was made and biological conclusions are presented. Since the model contains inhibitor arcs, a heuristic method for analysis of such cases is presented. This method can be used to extend the concept of feasible t -invariants.

  2. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  3. C-MEMS for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Song, Yin; Agrawal, Richa; Wang, Chunlei

    2015-05-01

    Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.

  4. Toward more environmentally resistant gas turbines: Progress in NASA-Lewis programs

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Grisaffe, S. J.; Levine, S. R.

    1976-01-01

    A wide range of programs are being conducted for improving the environmental resistance to oxidation and hot corrosion of gas turbine and power system materials. They range from fundamental efforts to delineate attack mechanisms, allow attack modeling and permit life prediction, to more applied efforts to develop potentially more resistant alloys and coatings. Oxidation life prediction efforts have resulted in a computer program which provides an initial method for predicting long time metal loss using short time oxidation data by means of a paralinear attack model. Efforts in alloy development have centered on oxide-dispersion strengthened alloys based on the Ni-Cr-Al system. Compositions have been identified which are compromises between oxidation and thermal fatigue resistance. Fundamental studies of hot corrosion mechanisms include thermodynamic studies of sodium sulfate formation during turbine combustion. Information concerning species formed during the vaporization of Na2SO4 has been developed using high temperature mass spectrometry.

  5. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Kim, Jeom-Soo [Naperville, IL; Johnson, Christopher S [Naperville, IL

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  6. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOEpatents

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  7. Method for selective catalytic reduction of nitrogen oxides

    DOEpatents

    Mowery-Evans, Deborah L [Broomfield, CO; Gardner, Timothy J [Albuquerque, NM; McLaughlin, Linda I [Albuquerque, NM

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  8. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate.

    PubMed

    Hartzfeld, Paul W; Forkner, Rebecca; Hunter, Mark D; Hagerman, Ann E

    2002-03-27

    A widely used method for analyzing hydrolyzable tannins afer reaction with KIO(3) has been modified to include a methanolysis step followed by oxidation with KIO(3). In the new method, hydrolyzable tannins (gallotannins and ellagitannins) are reacted at 85 degrees C for 20 h in methanol/sulfuric acid to quantitatively release methyl gallate. Dried plant samples can be methanolyzed under the same conditions to convert hydrolyzable tannins to methyl gallate. Oxidation of the methyl gallate by KIO(3) at pH 5.5, 30 degrees C, forms a chromophore with lambda(max) 525 nm, which is determined spectrophotometrically. The detection limit of the method is 1.5 microg of methyl gallate, and with plant samples, relative standard deviations of less than 3% were obtained.

  9. Evaluation of Assays for Measurement of Serum (Anti)oxidants in Hemodialysis Patients

    PubMed Central

    Jansen, Eugene H. J. M.; Antarorov, Risto

    2014-01-01

    Background. Various biomarkers and assays have been used for assessment of (anti)oxidant status in hemodialysis patients, including those intended for measurement of serum total (anti)oxidants, most often as a part of panel biomarkers. Methods. Serum (anti)oxidant status was measured in 32 chronically hemodialyzed patients and in 47 healthy persons, using two oxidations and three antioxidant assays. Results. The patients before the hemodialysis session have had higher values of total oxidants in comparison to the healthy persons, with a further increase during the hemodialysis. These findings were confirmed with both oxidation assays, but they differ in the percentage of increase and the statistical significance. All three antioxidant assays showed significantly higher values of the total serum antioxidants in the patients before the hemodialysis session in comparison to the healthy persons, and their significant decrease during the hemodialysis. However, the assays differ in the percentage of decrease, its statistical significance, and the correlations with uric acid. Conclusion. The variability of results of total (anti)oxidants which are obtained using different assays should be taken into account when interpreting data from clinical studies of oxidative stress, especially in complex pathologies such as chronic hemodialysis. PMID:24982909

  10. The role of probe oxide in local surface conductivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.

    2015-05-07

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantummore » dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.« less

  11. Cold blast furnace syndrome: a new source of toxic inhalation by nitrogen oxides

    PubMed Central

    Tague, I; Llewellin, P; Burton, K; Buchan, R; Yates, D

    2004-01-01

    Methods: Fourteen workers developed acute respiratory symptoms shortly after exposure to "air blast" from blast furnace tuyeres. These included chest tightness, dyspnoea, rigors, and diaphoresis. Chest radiographs showed pulmonary infiltrates, and lung function a restrictive abnormality. This report includes a description of clinical features of the affected workers and elucidation of the probable cause of the outbreak. Results: Clinical features and occupational hygiene measurements suggested the most likely cause was inhalation of nitrogen oxides at high pressure and temperature. While the task could not be eliminated, engineering controls were implemented to control the hazard. No further cases have occurred. Conclusions: "Cold blast furnace syndrome" represents a previously undescribed hazard of blast furnace work, probably due to inhalation of nitrogen oxides. It should be considered in the differential diagnosis of acute toxic inhalational injuries in blast furnace workers. PMID:15090669

  12. Inhibitory effects of ethyl acetate extract of Teucrium polium on in vitro protein glycoxidation.

    PubMed

    Ardestani, Amin; Yazdanparast, Razieh

    2007-12-01

    Regarding the involvement of free radicals and oxidative reactions in protein glycoxidation processes, compounds with antioxidant activities have been tested in order to reduce or to stop glycoxidation. In this study, we evaluated the antioxidant potential of several organic fractions of Teucrium polium extract using different model systems including total antioxidant capacity by the phosphomolybdenum method, ferric reducing antioxidant power and Trolox equivalent antioxidant capacity assays, antioxidant activity in linoleic acid emulsion system and scavenging of 1,1-diphenyl-2-picrylhydrazyl radical. The results indicated that the ethyl acetate (EtOAc) fraction of T. polium possesses the highest antioxidant activity and total phenolic and flavonoid contents. Given the link between glycation and oxidation, we proposed that the EtOAc fraction might possess significant in vitro antiglycation activities as well. Our data confirmed the inhibitory effect of EtOAc fraction on bovine serum albumin (BSA) glycoxidation measured in terms of advanced glycation end products (AGEs) and pentosidine formation as well as protein oxidation markers including protein carbonyl formation (PCO) and loss of protein thiols. Reducing sugars such as ribose and glucose increase fluorescence intensity of glycated BSA in terms of total AGEs and pentosidine during 21 day of exposure. Moreover, sugars cause more PCO formation and also oxidize thiol groups more in glycated than in native BSA. EtOAc extract at different concentrations (10-100 microg/ml) has significantly quenched the fluorescence intensity of glycated BSA. Furthermore, we demonstrated that the inhibitory effect of EtOAc extract in preventing oxidative protein damages including effect on PCO formation and thiol oxidation which are believe to form under the glycoxidation process. These results clearly demonstrate that, the EtOAc fraction, owning to its antioxidant content, is capable of suppressing the formation of AGEs and protein oxidation in vitro.

  13. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  14. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  15. Scalable and Sustainable Electrochemical Allylic C–H Oxidation

    PubMed Central

    Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-01-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the fabric of retrosynthetic analysis, impacting the synthesis of natural products, medicines, and even materials1. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization due to the utility of enones and allylic alcohols as versatile intermediates, along with their prevalence in natural and unnatural materials2. Allylic oxidations have been featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”3. Despite many attempts to improve the efficiency and practicality of this powerful transformation, the vast majority of conditions still employ highly toxic reagents (based around toxic elements such as chromium, selenium, etc.) or expensive catalysts (palladium, rhodium, etc.)2. These requirements are highly problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. As such, this oxidation strategy is rarely embraced for large-scale synthetic applications, limiting the adoption of this important retrosynthetic strategy by industrial scientists. In this manuscript, we describe an electrochemical solution to this problem that exhibits broad substrate scope, operational simplicity, and high chemoselectivity. This method employs inexpensive and readily available materials, representing the first example of a scalable allylic C–H oxidation (demonstrated on 100 grams), finally opening the door for the adoption of this C–H oxidation strategy in large-scale industrial settings without significant environmental impact. PMID:27096371

  16. Apparatus and method of manufacture for an imager equipped with a cross-talk barrier

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.

  17. A Spectrophotometric Study of the Permanganate-Oxalate Reaction: An Analytical Laboratory Experiment

    ERIC Educational Resources Information Center

    Kalbus, Gene E.; Lieu, Van T.; Kalbus, Lee H.

    2004-01-01

    The spectrophotometric method assists in the study of potassium permanganate-oxalate reaction. Basic analytical techniques and rules are implemented in the experiment, which can also include the examination of other compounds oxidized by permanganate.

  18. Microbial fuel cell treatment of ethanol fermentation process water

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  19. Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure

    NASA Astrophysics Data System (ADS)

    Nam, Kyungju; Kim, Hyeong-Gwan; Choi, Hyelim; Park, Hyeji; Kang, Jin Soo; Sung, Yung-Eun; Lee, Hee Chul; Choe, Heeman

    2017-06-01

    Tin oxide is a commonly used gas-sensing material, which can be applied as an n- or p-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing `wall' pores ranging from 5.3 μm to 10.7 μm, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p-type semiconductor behavior and was used without the addition of any catalyst.

  20. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence thatmore » other redox active components may have on the oxidation of Am III. Experimental findings indicated that Ce III, Np V, and Ru II are oxidized by peroxydisulfate, but there are no indications that the presence of Ce III, Np V, and Ru II affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.« less

  1. Formation of alcohol conversion catalysts

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2001-01-01

    The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

  2. Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Chen, Yen-Chi; Wu, Chyan-Chyi; Kuo, Chin-Fu

    2010-01-01

    The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively. PMID:22294897

  3. Cobalt oxide nanosheet and CNT micro carbon monoxide sensor integrated with readout circuit on chip.

    PubMed

    Dai, Ching-Liang; Chen, Yen-Chi; Wu, Chyan-Chyi; Kuo, Chin-Fu

    2010-01-01

    The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively.

  4. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  5. Accelerated aging: prediction of chemical stability of pharmaceuticals.

    PubMed

    Waterman, Kenneth C; Adami, Roger C

    2005-04-11

    Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.

  6. Use of gas push-pull tests for the measurement of methane oxidation in different landfill cover soils.

    PubMed

    Streese-Kleeberg, Jan; Rachor, Ingke; Gebert, Julia; Stegmann, Rainer

    2011-05-01

    In order to optimise methane oxidation in landfill cover soils, it is important to be able to accurately quantify the amount of methane oxidised. This research considers the gas push-pull test (GPPT) as a possible method to quantify oxidation rates in situ. During a GPPT, a gas mixture consisting of one or more reactive gases (e.g., CH(4), O(2)) and one or more conservative tracers (e.g., argon), is injected into the soil. Following this, the mixture of injected gas and soil air is extracted from the same location and periodically sampled. The kinetic parameters for the biological oxidation taking place in the soil can be derived from the differences in the breakthrough curves. The original method of Urmann et al. (2005) was optimised for application in landfill cover soils and modified to reduce the analytical effort required. Optimised parameters included the flow rate during the injection phase and the duration of the experiment. 50 GPPTs have been conducted at different landfills in Germany during different seasons. Generally, methane oxidation rates ranged between 0 and 150 g m(soil air)(-3)h(-1). At one location, rates up to 440 g m(soil air)(-3)h(-1) were measured under particularly favourable conditions. The method is simple in operation and does not require expensive equipment besides standard laboratory gas chromatographs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. A comprehensive review of techniques for biofunctionalization of titanium

    PubMed Central

    2011-01-01

    A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and non-stoichiometric TiO2. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin. PMID:22324003

  8. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    NASA Astrophysics Data System (ADS)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  9. Radiochemical Separation and Quantification of Tritium in Metallic Radwastes Generated from CANDU Type NPP - 13279

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, H.J.; Choi, K.C.; Choi, K.S.

    2013-07-01

    As a destructive quantification method of {sup 3}H in low and intermediate level radwastes, bomb oxidation, sample oxidation, and wet oxidation methods have been introduced. These methods have some merits and demerits in the radiochemical separation of {sup 3}H radionuclides. That is, since the bomb oxidation and sample oxidation methods are techniques using heating at high temperature, the separation methods of the radionuclides are relatively simple. However, since {sup 3}H radionuclide has a property of being diffused deeply into the inside of metals, {sup 3}H which is distributed on the surface of the metals can only be extracted if themore » methods are applied. As an another separation method, the wet oxidation method makes {sup 3}H oxidized with an acidic solution, and extracted completely to an oxidized HTO compound. However, incomplete oxidized {sup 3}H compounds, which are produced by reactions of acidic solutions and metallic radwastes, can be released into the air. Thus, in this study, a wet oxidation method to extract and quantify the {sup 3}H radionuclide from metallic radwastes was established. In particular, a complete extraction method and complete oxidation method of incomplete chemical compounds of {sup 3}H using a Pt catalyst were studied. The radioactivity of {sup 3}H in metallic radwastes is extracted and measured using a wet oxidation method and liquid scintillation counter. Considering the surface dose rate of the sample, the appropriate size of the sample was determined and weighed, and a mixture of oxidants was added to a 200 ml round flask with 3 tubes. The flask was quickly connected to the distilling apparatus. 20 mL of 16 wt% H{sub 2}SO{sub 4} was given into the 200-ml round flask through a dropping funnel while under stirring and refluxing. After dropping, the temperature of the mixture was raised to 96 deg. C and the sample was leached and oxidized by refluxing for 3 hours. At that time, the incomplete oxidized {sup 3}H compounds were completely oxidized using the Pt catalysts and produced a stable HTO compound. After that, about a 20 ml solution was distilled in the separation apparatus, and the distillate was mixed with an ultimagold LLT as a cocktail solution. The solution in the vial was left standing for at least 24 hours. The radioactivity of {sup 3}H was counted directly using a liquid scintillation analyzer (Packard, 2500 TR/AB, Alpha and Beta Liquid Scintillation Analyzer). (authors)« less

  10. Simultaneous monitoring of oxidation, deamidation, isomerization, and glycosylation of monoclonal antibodies by liquid chromatography-mass spectrometry method with ultrafast tryptic digestion.

    PubMed

    Wang, Yi; Li, Xiaojuan; Liu, Yan-Hui; Richardson, Daisy; Li, Huijuan; Shameem, Mohammed; Yang, Xiaoyu

    Monoclonal antibodies are subjected to a wide variety of post-translational modifications (PTMs) that cause structural heterogeneity. Characterization and control of these modifications or quality attributes are critical to ensure antibody quality and to define any potential effects on the ultimate safety and potency of antibody therapeutics. The biopharmaceutical industry currently uses numerous tools to analyze these quality attributes individually, which requires substantial time and resources. Here, we report a simple and ultrafast bottom-up liquid chromatography-mass spectrometry (uLC-MS) method with 5 min tryptic digestion to simultaneously analyze multiple modifications, including oxidation, deamidation, isomerization, glycation, glycosylation, and N-terminal pyro-glutamate formation, which can occur during antibody production in mammalian cell culture, during purification and/or on storage. Compared to commonly used preparation procedures, this uLC-MS method eliminates assay artifacts of falsely-increased Met oxidation, Asp isomerization, and Asn deamidation, a problem associated with long digestion times in conventional LC-MS methods. This simple, low artifact multi-attribute uLC-MS method can be used to quickly and accurately analyze samples at any stage of antibody drug development, in particular for clone and media selection during cell culture development.

  11. Fabrication of contacts for silicon solar cells including printing burn through layers

    DOEpatents

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  12. A geochemical examination of humidity cell tests

    USGS Publications Warehouse

    Maest, Ann; Nordstrom, D. Kirk

    2017-01-01

    Humidity cell tests (HCTs) are long-term (20 to >300 weeks) leach tests that are considered by some to be the among the most reliable geochemical characterization methods for estimating the leachate quality of mined materials. A number of modifications have been added to the original HCT method, but the interpretation of test results varies widely. We suggest that the HCTs represent an underutilized source of geochemical data, with a year-long test generating approximately 2500 individual chemical data points. The HCT concentration peaks and valleys can be thought of as a “chromatogram” of reactions that may occur in the field, whereby peaks in concentrations are associated with different geochemical processes, including sulfate salt dissolution, sulfide oxidation, and dissolution of rock-forming minerals, some of which can neutralize acid. Some of these reactions occur simultaneously, some do not, and geochemical modeling can be used to help distinguish the dominant processes. Our detailed examination, including speciation and inverse modeling, of HCTs from three projects with different geology and mineralization shows that rapid sulfide oxidation dominates over a limited period of time that starts between 40 and 200 weeks of testing. The applicability of laboratory tests results to predicting field leachate concentrations, loads, or rates of reaction has not been adequately demonstrated, although early flush releases and rapid sulfide oxidation rates in HCTs should have some relevance to field conditions. Knowledge of possible maximum solute concentrations is needed to design effective treatment and mitigation approaches. Early flush and maximum sulfide oxidation results from HCTs should be retained and used in environmental models. Factors that complicate the use of HCTs include: sample representation, time for microbial oxidizers to grow, sample storage before testing, geochemical reactions that add or remove constituents, and the HCT results chosen for use in modeling the environmental performance at mine sites. Improved guidance is needed for more consistent interpretation and use of HCT results that rely on identifying: the geochemical processes; the mineralogy, including secondary mineralogy; the available surface area for reactions; and the influence of hydrologic processes on leachate concentrations in runoff, streams, and groundwater.

  13. Synthesis and characterisation of PuPO4 - a potential analytical standard for EPMA actinide quantification

    NASA Astrophysics Data System (ADS)

    Wright, K. E.; Popa, K.; Pöml, P.

    2018-01-01

    Transmutation nuclear fuels contain weight percentage quantities of actinide elements, including Pu, Am and Np. Because of the complex spectra presented by actinide elements using electron probe microanalysis (EPMA), it is necessary to have relatively pure actinide element standards to facilitate overlap correction and accurate quantitation. Synthesis of actinide oxide standards is complicated by their multiple oxidation states, which can result in inhomogeneous standards or standards that are not stable at atmospheric conditions. Synthesis of PuP4 results in a specimen that exhibits stable oxidation-reduction chemistry and is sufficiently homogenous to serve as an EPMA standard. This approach shows promise as a method for producing viable actinide standards for microanalysis.

  14. Properties of ZnO nanocrystals prepared by radiation method

    NASA Astrophysics Data System (ADS)

    Čuba, Václav; Gbur, Tomáš; Múčka, Viliam; Nikl, Martin; Kučerková, Romana; Pospíšil, Milan; Jakubec, Ivo

    2010-01-01

    Zinc oxide nanoparticles were prepared by irradiation of aqueous solutions containing zinc(II) ions, propan-2-ol, polyvinyl alcohol, and hydrogen peroxide. Zinc oxide was found in solid phase either directly after irradiation, or after additional heat treatment. Various physicochemical parameters, including scintillation properties of prepared materials, were studied. After decomposition of impurities and annealing of oxygen vacancies, the samples showed intensive emission in visible spectral range and well-shaped exciton luminescence at 390-400 nm. The best scintillating properties had zinc oxide prepared from aqueous solutions containing zinc formate as initial precursor and hydrogen peroxide. Size of the crystalline particles ranged from tens to hundreds nm, depending on type of irradiated solution and post-irradiation thermal treatment.

  15. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-06

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  17. TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan

    2018-01-01

    An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.

  18. Detection of oxidative hair treatment using fluorescence microscopy.

    PubMed

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation

    PubMed Central

    Hoover, Jessica M.; Ryland, Bradford L.; Stahl, Shannon S.

    2013-01-01

    Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)CuI/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic investigation of this catalyst system, in which we compare the reactivity of benzylic and aliphatic alcohols. This work includes analysis of catalytic rates by gas-uptake and in situ IR kinetic methods and characterization of the catalyst speciation during the reaction by EPR and UV–visible spectroscopic methods. The data support a two-stage catalytic mechanism consisting of (1) “catalyst oxidation” in which CuI and TEMPO–H are oxidized by O2 via a binuclear Cu2O2 intermediate and (2) “substrate oxidation” mediated by CuII and the nitroxyl radical of TEMPO via a CuII-alkoxide intermediate. Catalytic rate laws, kinetic isotope effects, and spectroscopic data show that reactions of benzylic and aliphatic alcohols have different turnover-limiting steps. Catalyst oxidation by O2 is turnover limiting with benzylic alcohols, while numerous steps contribute to the turnover rate in the oxidation of aliphatic alcohols. PMID:23317450

  20. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. Copyright © 2013 Wiley Periodicals, Inc.

  1. Metal oxide nanorod arrays on monolithic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can includemore » a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.« less

  2. Materials comprising polydienes and hydrophilic polymers and related methods

    DOEpatents

    Mays, Jimmy W [Knoxville, TN; Deng, Suxiang [Knoxville, TN; Mauritz, Kenneth A [Hattiesburg, MS; Hassan, Mohammad K [Hattiesburg, MS; Gido, Samuel P [Hadley, MA

    2011-11-22

    Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.

  3. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  4. Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications

    DOEpatents

    Ohodnicki, Jr., Paul R; Wang, Congjun; Andio, Mark A

    2014-01-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

  5. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    PubMed Central

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-01-01

    Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p < 0.05/3), while total peroxide level and oxidative stress index were significantly lower (all p < 0.05/3). Hepatitis C (-) hemodialysis subjects had higher total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p < 0.05/3). Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Conclusion Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection. PMID:16842626

  6. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Determination of N epsilon-(carboxymethyl)lysine in foods and related systems.

    PubMed

    Ames, Jennifer M

    2008-04-01

    The sensitive and specific determination of advanced glycation end products (AGEs) is of considerable interest because these compounds have been associated with pro-oxidative and proinflammatory effects in vivo. AGEs form when carbonyl compounds, such as glucose and its oxidation products, glyoxal and methylglyoxal, react with the epsilon-amino group of lysine and the guanidino group of arginine to give structures including N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxyethyl)lysine, and hydroimidazolones. CML is frequently used as a marker for AGEs in general. It exists in both the free or peptide-bound forms. Analysis of CML involves its extraction from the food (including protein hydrolysis to release any peptide-bound adduct) and determination by immunochemical or instrumental means. Various factors must be considered at each step of the analysis. Extraction, hydrolysis, and sample clean-up are all less straight forward for food samples, compared to plasma and tissue. The immunochemical and instrumental methods all have their advantages and disadvantages, and no perfect method exists. Currently, different procedures are being used in different laboratories, and there is an urgent need to compare, improve, and validate methods.

  8. Microfluidic photoinduced chemical oxidation for Ru(bpy)33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation.

    PubMed

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A J; Suliman, Fakhr Eldin O

    2017-08-05

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy) 3 2+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy) 3 2+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL -1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10 -10 M compared to most lowest ever reported 6×10 -9 M. Earlier, penicillamine was detected at 0.1μgmL -1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL -1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microfluidic photoinduced chemical oxidation for Ru(bpy)33 + chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation

    NASA Astrophysics Data System (ADS)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A. J.; Suliman, Fakhr Eldin O.

    2017-08-01

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32 + CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32 + CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N = 3 or above for 1 μgmL- 1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81 × 10- 10 M compared to most lowest ever reported 6 × 10- 9 M. Earlier, penicillamine was detected at 0.1 μg mL- 1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82 ng mL- 1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation.

  10. Mesoporous metal oxides and processes for preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Poyraz, Altug Suleyman

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier,more » a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.« less

  11. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  12. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan

    2012-09-01

    In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

  13. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul

    2016-08-15

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermalmore » reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.« less

  14. Advancing Methods for Estimating Soil Nitrous Oxide Emissions by Incorporating Freeze-Thaw Cycles into a Tier 3 Model-Based Assessment

    NASA Astrophysics Data System (ADS)

    Ogle, S. M.; DelGrosso, S.; Parton, W. J.

    2017-12-01

    Soil nitrous oxide emissions from agricultural management are a key source of greenhouse gas emissions in many countries due to the widespread use of nitrogen fertilizers, manure amendments from livestock production, planting legumes and other practices that affect N dynamics in soils. In the United States, soil nitrous oxide emissions have ranged from 250 to 280 Tg CO2 equivalent from 1990 to 2015, with uncertainties around 20-30 percent. A Tier 3 method has been used to estimate the emissions with the DayCent ecosystem model. While the Tier 3 approach is considerably more accurate than IPCC Tier 1 methods, there is still the possibility of biases in emission estimates if there are processes and drivers that are not represented in the modeling framework. Furthermore, a key principle of IPCC guidance is that inventory compilers estimate emissions as accurately as possible. Freeze-thaw cycles and associated hot moments of nitrous oxide emissions are one of key drivers influencing emissions in colder climates, such as the cold temperate climates of the upper Midwest and New England regions of the United States. Freeze-thaw activity interacts with management practices that are increasing N availability in the plant-soil system, leading to greater nitrous oxide emissions during transition periods from winter to spring. Given the importance of this driver, the DayCent model has been revised to incorproate freeze-thaw cycles, and the results suggests that including this driver can significantly modify the emissions estimates in cold temperate climate regions. Consequently, future methodological development to improve estimation of nitrous oxide emissions from soils would benefit from incorporating freeze-thaw cycles into the modeling framework for national territories with a cold climate.

  15. Procedures for making gaseous industrial waste safe

    NASA Astrophysics Data System (ADS)

    Matros, Yu Sh; Noskov, Aleksandr S.

    1990-10-01

    The application of various methods (adsorption, absorption, thermal afterburning, catalytic purification, and others) for the removal of sulphur and nitrogen oxides, toxic organic compounds, hydrogen sulphide, and carbon monoxide from industrial waste gases is described. Much attention is devoted to the catalytic procedure for making the gases safe using an energy collecting non-stationary method (reversible process). The advantages and limitations of various gas purification methods are considered. The bibliography includes 279 references.

  16. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    NASA Astrophysics Data System (ADS)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  17. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    DOEpatents

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  18. Electrochemical and thermal grafting of alkyl grignard reagents onto (100) silicon surfaces.

    PubMed

    Vegunta, Sri Sai S; Ngunjiri, Johnpeter N; Flake, John C

    2009-11-03

    Passivation of (100) silicon surfaces using alkyl Grignard reagents is explored via electrochemical and thermal grafting methods. The electrochemical behavior of silicon in methyl or ethyl Grignard reagents in tetrahydrofuran is investigated using cyclic voltammetry. Surface morphology and chemistry are investigated using atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that electrochemical pathways provide an efficient and more uniform passivation method relative to thermal methods, and XPS results demonstrate that electrografted terminations are effective at limiting native oxide formation for more than 55 days in ambient conditions. A two-electron per silicon mechanism is proposed for electrografting a single (1:1) alkyl group per (100) silicon atom. The mechanism includes oxidation of two Grignard species and subsequent hydrogen abstraction and alkylation reaction resulting in a covalent attachment of alkyl groups with silicon.

  19. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xue, Yuejun; Ge, Tiantian; Wang, Xuchen

    2015-12-01

    Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%±4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3 µg C) that is critical for 14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

  20. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    PubMed Central

    Ibarra-Hernández, Adriana

    2018-01-01

    Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D) different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A). These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation. PMID:29438280

  1. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOEpatents

    Kim, Yu Seung [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Zelenay, Piotr [Los Alamos, NM

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  2. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants.

    PubMed

    Herraiz, Tomás; Flores, Andrea; Fernández, Lidia

    2018-01-15

    Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of biogenic amines and neurotransmitters and produce ammonia, aldehydes, and hydrogen peroxide which is involved in oxidative processes. Inhibitors of MAO-A and -B isozymes are useful as antidepressants and neuroprotectants. The assays of MAO usually measure amine oxidation products or hydrogen peroxide by spectrophotometric techniques. Those assays are often compromised by interfering compounds resulting in poor results. This research describes a new method that combines in the same assay the oxidative deamination of kynuramine to 4-hydroxyquinoline analyzed by HPLC-DAD with the oxidation of tetramethylbenzidine (TMB) (or Amplex Rex) by horseradish peroxidase (HRP) in presence of hydrogen peroxide. The new method was applied to study the inhibition of human MAO-A and -B by bioactive compounds including β-carboline alkaloids and flavonoids occurring in foods and plants. As determined by HPLC-DAD, β-carbolines, methylene blue, kaempferol and clorgyline inhibited MAO-A and methylene blue, 5-nitroindazole, norharman and deprenyl inhibited MAO-B, and all of them inhibited the oxidation of TMB in the same extent. The flavonoids catechin and cyanidin were not inhibitors of MAO by HPLC-DAD but highly inhibited the oxidation of TMB (or Amplex Red) by peroxidase whereas quercetin and resveratrol were moderate inhibitors of MAO-A by HPLC-DAD, but inhibited the peroxidase assay in a higher level. For some phenolic compounds, using the peroxidase-coupled assay to measure MAO activity led to mistaken results. The new method permits to discern between true inhibitors of MAO from those that are antioxidants and which interfere with peroxidase assays but do not inhibit MAO. For true inhibitors of MAO, inhibition as determined by HPLC-DAD correlated well with inhibition of the oxidation of TMB and this approach can be used to assess the in vitro antioxidant activity (less hydrogen peroxide production) resulting from MAO inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Immobilization of Mitochondria on Graphene

    DTIC Science & Technology

    2013-08-29

    electron transport chain includes 4 complexes (Alberts B, et al ., 2002). The transport of electrons creates a proton gradient across the inner membrane...A.C., et al ., 2010). Various methods of synthesis of graphene include exfoliation and cleavage, thermal chemical vapor deposition, plasma enhanced...potential material for fabrication of glucose sensors. Using glucose oxide enzyme as a model, Shan et al . constructed a polyvinylpyrrolidone protected

  4. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-01-01

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  5. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-04-04

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  6. Theoretical insights into the selective oxidation of methane to methanol in copper-exchanged mordenite

    DOE PAGES

    Zhao, Zhi -Jian; Kulkarni, Ambarish; Vilella, Laia; ...

    2016-05-02

    Selective oxidation of methane to methanol is one of the most difficult chemical processes to perform. A potential group of catalysts to achieve CH 4 partial oxidation are Cu-exchanged zeolites mimicking the active structure of the enzyme methane monooxygenase. However, the details of this conversion, including the structure of the active site, are still under debate. In this contribution, periodic density functional theory (DFT) methods were employed to explore the molecular features of the selective oxidation of methane to methanol catalyzed by Cu-exchanged mordenite (Cu-MOR). We focused on two types of previously suggested active species, CuOCu and CuOOCu. Our calculationsmore » indicate that the formation of CuOCu is more feasible than that of CuOOCu. In addition, a much lower C–H dissociation barrier is located on the former active site, indicating that C–H bond activation is easily achieved with CuOCu. We calculated the energy barriers of all elementary steps for the entire process, including catalyst activation, CH 4 activation, and CH 3OH desorption. Finally, our calculations are in agreement with experimental observations and present the first theoretical study examining the entire process of selective oxidation of methane to methanol.« less

  7. Stable carbonous catalyst particles and method for making and utilizing same

    DOEpatents

    Ganguli, Partha S.; Comolli, Alfred G.

    2005-06-14

    Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr.sub.2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m.sup.2 /g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations. This invention also includes method steps for making the stable carbonous catalyst particles having improved particle strength and catalytic activity, and processes for utilizing the active stable carbonous carbon-coated catalysts such as for syn-gas reactions in ebullated/fluidized bed reactors for producing alcohol products and Fischer-Tropsch synthesis liquid products.

  8. An intercomparison of carbon monoxide, nitric oxide, and hydroxyl measurement techniques - Overview of results

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Gregory, G. L.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.; Condon, E. P.

    1984-01-01

    Results from an intercomparison of methods to measure carbon monoxide (CO), nitric oxide (NO), and the hydroxyl radical (OH) are discussed. The intercomparison was conducted at Wallops Island, Virginia, in July 1983 and included a laser differential absorption and three grab sample/gas chromatograph methods for CO, a laser-induced fluorescence (LIF) and two chemiluminescence methods for NO, and two LIF methods and a radiocarbon tracer method for OH. The intercomparison was conducted as a field measurement program involving ambient measurements of CO (150-300 ppbv) and NO (10-180 pptv) from a common manifold with controlled injection of CO in incremental steps from 20 to 500 ppbv and NO in steps from 10 to 220 pptv. Only ambient measurements of OH were made. The agreement between the techniques was on the order of 14 percent for CO and 17 percent for NO. Hardware difficulties during the OH tests resulted in a data base with insufficient data and uncertanties too large to permit a meaningful intercomposition.

  9. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  10. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.

    PubMed

    Wan, Xiangjian; Huang, Yi; Chen, Yongsheng

    2012-04-17

    Carbon is the only element that has stable allotropes in the 0th through the 3rd dimension, all of which have many outstanding properties. Graphene is the basic building block of other important carbon allotropes. Studies of graphene became much more active after the Geim group isolated "free" and "perfect" graphene sheets and demonstrated the unprecedented electronic properties of graphene in 2004. So far, no other individual material combines so many important properties, including high mobility, Hall effect, transparency, mechanical strength, and thermal conductivity. In this Account, we briefly review our studies of bulk scale graphene and graphene oxide (GO), including their synthesis and applications focused on energy and optoelectronics. Researchers use many methods to produce graphene materials: bottom-up and top-down methods and scalable methods such as chemical vapor deposition (CVD) and chemical exfoliation. Each fabrication method has both advantages and limitations. CVD could represent the most important production method for electronic applications. The chemical exfoliation method offers the advantages of easy scale up and easy solution processing but also produces graphene oxide (GO), which leads to defects and the introduction of heavy functional groups. However, most of these additional functional groups and defects can be removed by chemical reduction or thermal annealing. Because solution processing is required for many film and device applications, including transparent electrodes for touch screens, light-emitting devices (LED), field-effect transistors (FET), and photovoltaic devices (OPV), flexible electronics, and composite applications, the use of GO is important for the production of graphene. Because graphene has an intrinsic zero band gap, this issue needs to be tackled for its FET applications. The studies for transparent electrode related applications have made great progress, but researchers need to improve sheet resistance while maintaining reasonable transparency. Proposals for solving these issues include doping or controlling the sheet size and defects, and theory indicates that graphene can match the overall performance of indium tin oxide (ITO). We have significantly improved the specific capacitance in graphene supercapacitor devices, though our results do not yet approach theoretical values. For composite applications, the key issue is to prevent the restacking of graphene sheets, which we achieved by adding blocking molecules. The continued success of graphene studies will require further development in two areas: (1) the large scale and controlled synthesis of graphene, producing different structures and quantities that are needed for a variety of applications and (2) on table applications, such as transparent electrodes and energy storage devices. Overall, graphene has demonstrated performance that equals or surpasses that of other new carbon allotropes. These features, combined with its easier access and better processing ability, offer the potential basis for truly revolutionary applications and as a future fundamental technological material beyond the silicon age.

  11. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    NASA Astrophysics Data System (ADS)

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-09-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.

  12. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  13. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  14. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  15. Methods for removing contaminant matter from a porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  16. Method and apparatus for producing oxygenates from hydrocarbons

    DOEpatents

    Kong, Peter C.; Lessing, Paul A.

    1995-01-01

    A chemical reactor for oxygenating hydrocarbons includes: a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed.

  17. Production of zinc oxide nanowires power with precisely defined morphology

    NASA Astrophysics Data System (ADS)

    Mičová, Júlia; Remeš, Zdeněk; Chan, Yu-Ying

    2017-12-01

    The interest about zinc oxide is increasing thanks to its unique chemical and physical properties. Our attention has focused on preparation powder of 1D nanostructures of ZnO nanowires with precisely defined morphology include characterization size (length and diameter) and shape controlled in the scanning electron microscopy (SEM). We have compared results of SEM with dynamic light scattering (DLS) technique. We have found out that SEM method gives more accurate results. We have proposed transformation process from ZnO nanowires on substrates to ZnO nanowires powder by ultrasound peeling to colloid followed by lyophilization. This method of the mass production of the ZnO nanowires powder has some advantages: simplicity, cost effective, large-scale and environment friendly.

  18. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract.

    PubMed

    Fernandes, R P P; Trindade, M A; Tonin, F G; Pugine, S M P; Lima, C G; Lorenzo, J M; de Melo, M P

    2017-10-15

    The objective was to evaluate replacement of sodium erythorbate with a natural antioxidant (oregano extract) on physicochemical and sensory stability of lamb burgers, and determine the appropriate amount. Five treatments were prepared, including control (without antioxidant), sodium erythorbate, and three concentrations of oregano extract (13.32, 17.79 and 24.01mL/kg), based on antioxidant capacity determined using the Folin-Ciocalteu, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods, respectively. Burgers containing oregano extract, at the concentration determined by FRAP method, had higher oxidative stability, evidenced by an 80% reduction (P<0.001) in thiobarbituric acid reactive substances, effective inhibition of protein oxidation (P<0.01) and less colour loss during frozen storage. Oregano extract did not impair (P>0.05) consumers' sensory acceptance of the lamb burgers. Under the conditions tested, addition of 24mL/kg of oregano extract could be recommended as a natural antioxidant in lamb burgers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  20. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  1. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies.

    PubMed

    Yang, Yuhui; Zhang, Hui; Yan, Biao; Zhang, Tianyu; Gao, Ying; Shi, Yonghui; Le, Guowei

    2017-08-16

    This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.

  2. Cutin-derived CuO reaction products from purified cuticles and tree leaves

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Long chain (C 16-C 18) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple ( Malus pumila) cuticle include 16-hydroxy-hexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly ( Ilex aquifolium) leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.

  3. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  4. Enhanced reactivity in dioxirane C-H oxidations via strain release: a computational and experimental study.

    PubMed

    Zou, Lufeng; Paton, Robert S; Eschenmoser, Albert; Newhouse, Timothy R; Baran, Phil S; Houk, K N

    2013-04-19

    The site selectivities and stereoselectivities of C-H oxidations of substituted cyclohexanes and trans-decalins by dimethyldioxirane (DMDO) were investigated computationally with quantum mechanical density functional theory (DFT). The multiconfiguration CASPT2 method was employed on model systems to establish the preferred mechanism and transition state geometry. The reaction pathway involving a rebound step is established to account for the retention of stereochemistry. The oxidation of sclareolide with dioxirane reagents is reported, including the oxidation by the in situ generated tBu-TFDO, a new dioxirane that better discriminates between C-H bonds on the basis of steric effects. The release of 1,3-diaxial strain in the transition state contributes to the site selectivity and enhanced equatorial C-H bond reactivity for tertiary C-H bonds, a result of the lowering of distortion energy. In addition to this strain release factor, steric and inductive effects contribute to the rates of C-H oxidation by dioxiranes.

  5. Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods.

    PubMed

    Sarangapani, Chaitanya; Ryan Keogh, David; Dunne, Julie; Bourke, Paula; Cullen, P J

    2017-11-15

    The efficacy of cold plasma for inactivation of food-borne pathogens in foods is established. However, insights on cold plasma-food interactions in terms of quality effects, particularly for oils and fats, are sparse. This study evaluated plasma-induced lipid oxidation of model matrices, namely dairy and meat fats. Product characterisation was performed using FTIR, 1 H NMR and chromatographic techniques. The oxidation of lipids by cold plasma followed the Criegee mechanism and typical oxidation products identified included ozonides, aldehydes (hexanal, pentenal, nonanal and nonenal) and carboxylic acids (9-oxononanoic acid, octanoic acid, nonanoic acid), along with hydroperoxides (9- and 13-hydroperoxy-octadecadienoylglycerol species). However, these oxidation products were only identified following extended treatment times of 30min and were also a function of applied voltage level. Understanding cold plasma interactions with food lipids and the critical parameters governing lipid oxidation is required prior to the industrial adoption of this technology for food products with high fat contents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goni, M.A.; Hedges, J.I.

    Long chain (C{sub 16}-C{sub 18}) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple (Malus pumila) cuticle include 16-hydroxyhexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly (Ilex aquifolium)more » leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.« less

  7. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions.

    PubMed

    Capodaglio, Andrea G; Bojanowska-Czajka, Anna; Trojanowicz, Marek

    2018-04-18

    Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.

  8. High Performance Oxides-Based Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Ren, Guangkun; Lan, Jinle; Zeng, Chengcheng; Liu, Yaochun; Zhan, Bin; Butt, Sajid; Lin, Yuan-Hua; Nan, Ce-Wen

    2015-01-01

    Thermoelectric materials have attracted much attention due to their applications in waste-heat recovery, power generation, and solid state cooling. In comparison with thermoelectric alloys, oxide semiconductors, which are thermally and chemically stable in air at high temperature, are regarded as the candidates for high-temperature thermoelectric applications. However, their figure-of-merit ZT value has remained low, around 0.1-0.4 for more than 20 years. The poor performance in oxides is ascribed to the low electrical conductivity and high thermal conductivity. Since the electrical transport properties in these thermoelectric oxides are strongly correlated, it is difficult to improve both the thermoelectric power and electrical conductivity simultaneously by conventional methods. This review summarizes recent progresses on high-performance oxide-based thermoelectric bulk-materials including n-type ZnO, SrTiO3, and In2O3, and p-type Ca3Co4O9, BiCuSeO, and NiO, enhanced by heavy-element doping, band engineering and nanostructuring.

  9. Removal of Perfluorinated Grease Components from NTO Oxidizer

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Ben; Johnson, Harry T.

    2004-01-01

    Perfluorinated greases are typically used as a thread lubricant in the assembly of non-welded nitrogen tetroxide (NTO) oxidizer systems. These greases, typically a perfluoroalkylether, with suspended polytetrafluoroethylene (PTFE) micro-powder, have attractive lubricating properties toward threaded components and are relatively chemically inert toward NTO oxidizers. A major drawback, however, is that perfluoroalkylether greases are soluble or dispersible in NTO oxidizers and can contaminate the propellant. The result is propellant that fails the non-volatile residue (NVR) specification analyses and that may have negative effects on test hardware performance and lifetime. Consequently, removal of the grease contaminants from NTO may be highly desirable. Methods for the removal of perfluorinated grease components from NTO oxidizers including distillation, adsorption, filtration, and adjustment of temperature are investigated and reported in this work. Solubility or dispersibility data for the perfluoroalkylether oil (Krytox(tm)143 AC) component of a perfluorinated grease (Krytox 240 AC) and for Krytox 240 AC in NTO were determined and are reported.

  10. Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method.

    PubMed

    Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng

    2018-05-22

    Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.

  11. Evaluating a vessel for suitability for containing fluid

    DOEpatents

    Barefield, II, James E.; Judge, Elizabeth J.; Le, Loan A.; Lopez, Leon N.; Beveridge, Andrew C.; Chapman, Daniel R.; Taylor, Seth T.

    2017-05-30

    A method for evaluating a vessel for suitability to contain a fluid includes providing a vessel and forming a polished surface portion of the vessel by removing oxidation and/or contaminants from a portion of the vessel. The method further includes applying a focused laser to the polished surface portion to form plasma on the polished surface portion, and determining whether the vessel is suitable for containing a fluid based on silicon content of the polished surface portion. The silicon content is estimated based on light emitted from the plasma.

  12. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation.

    PubMed

    Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L

    2018-01-01

    Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.

  13. EFFECT OF FLOW CHARACTERISTICS ON DO DISTRIBUTION IN A FULL SCALE OXIDATION DITCH WITH DIFFUSED AERATION AND VERTICAL FLOW BOOSTERS

    NASA Astrophysics Data System (ADS)

    Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi

    The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.

  14. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  15. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  16. Iodinated Contrast Media Can Induce Long-Lasting Oxidative Stress in Hemodialysis Patients

    PubMed Central

    Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel

    2013-01-01

    Purpose Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. Materials and Methods We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. Results In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Conclusion Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients. PMID:24142649

  17. Environmental Geochemistry and Acid Mine Drainage Evaluation of an Abandoned Coal Waste Pile at the Alborz-Sharghi Coal Washing Plant, NE Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jodeiri Shokri, Behshad, E-mail: b.jodeiri@hut.ac.ir; Doulati Ardejani, Faramarz; Ramazi, Hamidreza

    In this paper, an abandoned waste coal pile, which is resulted from Alborz-Sharghi coal washing plant, NE of Iran was mineralogically and geochemically characterized to evaluate pyrite oxidation, acid mine drainage (AMD) generation, and trace element mobility. After digging ten trenches and vertical sampling, a quantitative method including the atomic absorption test, and the quality-based methods including optical study were carried out for determination of pyrite fractions in the waste pile. The geochemical results revealed that the fraction of remaining pyrite increased with depth, indicating that pyrite oxidation is limited to the shallower depths of the pile which were confirmedmore » by variations of sulfate, pH, EC, and carbonate with depth of the pile. To evaluate the trend of trace elements and mineralogical constituents of the waste particles, the samples were analyzed by using XRD, ICP-MS, and ICP-OES methods. The results showed the secondary and neutralizing minerals comprising gypsum have been formed below the oxidation zone. Besides, positive values of net neutralization potential indicated that AMD generation has not taken in the waste pile. In addition, variations of trace elements with depth reveal that Pb and Zn exhibited increasing trends from pile surface toward the bottom sampling trenches while another of them such as Cu and Ni had decreasing trends with increasing depth of the waste pile.« less

  18. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    PubMed Central

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  19. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    PubMed

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  20. Subunit mass analysis for monitoring antibody oxidation.

    PubMed

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-04-01

    Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.

  1. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given. This article was submitted as part of a collection of articles on surface nanotechnology for biological applications. Other papers on this topic can be found in issue 2 of vol. 3 (2011). This issue can be found from the Nanoscale homepage [http://www.rsc.org/nanoscale].

  2. Oxidative stress-induced cognitive impairment in obesity can be reversed by vitamin D administration in rats.

    PubMed

    Hajiluian, Ghazaleh; Abbasalizad Farhangi, Mahdieh; Nameni, Ghazaleh; Shahabi, Parviz; Megari-Abbasi, Mehran

    2017-07-06

    There is evidence that obesity leads to cognitive impairments via several markers of oxidative stress including glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in the hippocampus. Increased inflammatory markers in the brain have obesity triggering effects. In the current study we aimed to investigate the effects of vitamin D on cognitive function, nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α concentration and markers of oxidative stress in the hippocampus of high-fat diet-induced obese rats. Forty male Wistar rats were divided into two groups: control diet (CD) and high-fat diet (HFD) for 16 weeks; then each group subdivided into two groups including: CD, CD + vitamin D, HFD and HFD + vitamin D. Vitamin D was administered at 500 IU/kg dosage for 5 weeks. Four weeks after supplementation, Morris water maze test was performed. NF-κB and TNF-α concentration in the hippocampus were determined using ELISA kits. Moreover, oxidative stress markers in the hippocampus including GPx, SOD, MDA and CAT concentrations were measured by spectrophotometry methods. HFD significantly increased TNF-α (P = 0.04) and NF-κB (P = 0.01) concentrations in the hippocampus compared with CD. Vitamin D treatment led to a significant reduction in hippocampus NF-κB concentrations in HFD + vitamin D group (P = 0.001); however, vitamin D had no effect on TNF-α concentrations. Moreover, HFD significantly induced oxidative stress by reducing GPx, SOD and increasing MDA concentrations in the hippocampus. Vitamin D supplementation in HFD group also significantly increased GPx, SOD and reduced MDA concentrations. Vitamin D improved hippocampus oxidative stress and inflammatory markers in HFD-induced obese rats and improved cognitive performance. Further studies are needed to better clarify the underlying mechanisms.

  3. Interactions of Water Vapor with Oxides at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  4. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  5. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  6. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  7. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    DOEpatents

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  8. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  9. Gel-based methods in redox proteomics.

    PubMed

    Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip

    2014-02-01

    The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Isoelectric points and points of zero charge of metal (hydr)oxides: 50years after Parks' review.

    PubMed

    Kosmulski, Marek

    2016-12-01

    The pH-dependent surface charging of metal (hydr)oxides is reviewed on the occasion of the 50th anniversary of the publication by G.A. Parks: "Isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems" in Chemical Reviews. The point of zero charge (PZC) and isoelectric point (IEP) became standard parameters to characterize metal oxides in aqueous dispersions, and they define adsorption (surface excess) of ions, stability against coagulation, rheological properties of dispersions, etc. They are commonly used in many branches of science including mineral processing, soil science, materials science, geochemistry, environmental engineering, and corrosion science. Parks established standard procedures and experimental conditions which are required to obtain reliable and reproducible values of PZC and IEP. The field is very active, and the number of related papers exceeds 300 a year, and the standards established by Parks remain still valid. Relevant experimental techniques improved over the years, especially the measurements of electrophoretic mobility became easier and more reliable, are the numerical values of PZC and IEP compiled by Parks were confirmed by contemporary publications with a few exceptions. The present paper is an up-to-date compilation of the values of PZC and IEP of metal oxides. Unlike in former reviews by the same author, which were more comprehensive, only limited number of selected results are presented and discussed here. On top of the results obtained by means of classical methods (titration and electrokinetic methods), new methods and correlations found over the recent 50years are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  12. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  13. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  14. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  15. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  16. Removal of natural organic matter from drinking water by advanced oxidation processes.

    PubMed

    Matilainen, Anu; Sillanpää, Mika

    2010-06-01

    Over the past 10-20years the amount of the natural organic matter (NOM) has been increased in raw water supplies on several areas. The presence of NOM causes many problems in drinking water treatment processes, including: (i) negative effect on water quality by colour, taste and odor problems, (ii) increased coagulant and disinfectant dose requirements (which in turn results increased sludge and potential harmful disinfection by-product formation), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. Thus, more efficient methods for the removal of NOM have emerged. Among these are advanced oxidation processes (AOPs). These include O(3)/H(2)O(2), O(3)/UV, UV/H(2)O(2), TiO(2)/UV, H(2)O(2)/catalyst, Fenton and photo-Fenton prosesses as well as ultrasound. In the present work, an overview of the recent research studies dealing with AOP methods for the removal of NOM and related compounds from drinking water is presented.

  17. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview

    PubMed Central

    Pallotta, Valeria; Gevi, Federica; D’Alessandro, Angelo; Zolla, Lello

    2014-01-01

    Background Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. Materials and methods In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. Results We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Discussion Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP. PMID:25074788

  18. Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.

    PubMed Central

    LaMontagne, A D; Kelsey, K T

    2001-01-01

    OBJECTIVES: This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. METHODS: An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. RESULTS: After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. CONCLUSIONS: These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts. PMID:11236406

  19. Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species.

    PubMed

    Choi, Kyungsun; Kim, Jinho; Kim, Gyung W; Choi, Chulhee

    2009-11-01

    Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease.

  20. The Oxidant and Antioxidant Status in Pityriasis Rosea

    PubMed Central

    Emre, Selma; Akoglu, Gulsen; Metin, Ahmet; Demirseren, Duriye Deniz; Isikoglu, Semra; Oztekin, Aynure; Erel, Ozcan

    2016-01-01

    Background: Pityriasis rosea (PR) is usually an asymptomatic and self-limiting papulosquamous skin disease with acute onset. The etiology has not been clarified yet. Recently, increased oxidative stress was found to play a role in etiopathogenesis of multiple cutaneous diseases with T cell-mediated immune response. However, there are no studies demonstrating the oxidative stress status in PR. Aim: The aim of the study is to determine the status of oxidative stress (OS) and paraoxonase (PON) 1/arylesterase enzyme activities in PR. Materials and Methods: Study included 51 patients with active PR lesions, and 45 healthy volunteers. Serum levels of total oxidant status (TOS), total antioxidant status (TAS), and PON1/arylesterase (ARES) activity were determined and oxidative stress index (OSI) was calculated in all patients and controls. Results: TAS levels and ARES activities in the patient group were significantly lower than the control group. On the other hand, TOS and OSI levels were significantly higher in patients compared with controls. There was no significant correlation between the duration of disease and TAS, TOS, OSI levels, and ARES activities. Conclusion: A systemic oxidative stress exists in PR, which suggests that OS may be involved in the etiopathogenesis of disease. PMID:26955119

Top