Methods for forming particles from single source precursors
Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID
2011-08-23
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Methods of forming semiconductor devices and devices formed using such methods
Fox, Robert V; Rodriguez, Rene G; Pak, Joshua
2013-05-21
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Method of manufacture of atomically thin boron nitride
Zettl, Alexander K
2013-08-06
The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.
Single Cell Spectroscopy: Noninvasive Measures of Small-Scale Structure and Function
Mousoulis, Charilaos; Xu, Xin; Reiter, David A.; Neu, Corey P.
2013-01-01
The advancement of spectroscopy methods attained through increases in sensitivity, and often with the coupling of complementary techniques, has enabled real-time structure and function measurements of single cells. The purpose of this review is to illustrate, in light of advances, the strengths and the weaknesses of these methods. Included also is an assessment of the impact of the experimental setup and conditions of each method on cellular function and integrity. A particular emphasis is placed on noninvasive and nondestructive techniques for achieving single cell detection, including nuclear magnetic resonance, in addition to physical, optical, and vibrational methods. PMID:23886910
Documentation of spreadsheets for the analysis of aquifer-test and slug-test data
Halford, Keith J.; Kuniansky, Eve L.
2002-01-01
Several spreadsheets have been developed for the analysis of aquifer-test and slug-test data. Each spreadsheet incorporates analytical solution(s) of the partial differential equation for ground-water flow to a well for a specific type of condition or aquifer. The derivations of the analytical solutions were previously published. Thus, this report abbreviates the theoretical discussion, but includes practical information about each method and the important assumptions for the applications of each method. These spreadsheets were written in Microsoft Excel 9.0 (use of trade names does not constitute endorsement by the USGS). Storage properties should not be estimated with many of the spreadsheets because most are for analyzing single-well tests. Estimation of storage properties from single-well tests is generally discouraged because single-well tests are affected by wellbore storage and by well construction. These non-ideal effects frequently cause estimates of storage to be erroneous by orders of magnitude. Additionally, single-well tests are not sensitive to aquifer-storage properties. Single-well tests include all slug tests (Bouwer and Rice Method, Cooper, Bredehoeft, Papadopulos Method, and van der Kamp Method), the Cooper-Jacob straight-line Method, Theis recovery-data analysis, Jacob-Lohman method for flowing wells in a confined aquifer, and the step-drawdown test. Multi-well test spreadsheets included in this report are; Hantush-Jacob Leaky Aquifer Method and Distance-Drawdown Methods. The distance-drawdown method is an equilibrium or steady-state method, thus storage cannot be estimated.
A Quick Method for Determining the Density of Single Crystals.
ERIC Educational Resources Information Center
Roman, Pascual; Gutierrez-Zorrilla, Juan M.
1985-01-01
Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)
Single crystal micromechanical resonator and fabrication methods thereof
Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.
2016-12-20
The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwater, Harry A.; Leite, Marina S.; Warmann, Emily C.
A virtual substrate includes a handle support and a strain-relieved single crystalline layer on the handle support. A method of making the virtual substrate includes growing a coherently-strained single crystalline layer on an initial growth substrate, removing the initial growth substrate to relieve the strain on the single crystalline layer, and applying the strain-relieved single crystalline layer on a handle support.
Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications.
Huang, Lei; Ma, Fei; Chapman, Alec; Lu, Sijia; Xie, Xiaoliang Sunney
2015-01-01
We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.
Whole-genome multiple displacement amplification from single cells.
Spits, Claudia; Le Caignec, Cédric; De Rycke, Martine; Van Haute, Lindsey; Van Steirteghem, André; Liebaers, Inge; Sermon, Karen
2006-01-01
Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.
Method for single crystal growth of photovoltaic perovskite material and devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinsong; Dong, Qingfeng
Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.
Goyal, Amit; Shin, Junsoo
2014-04-01
A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.
Multiple node remote messaging
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos
2010-08-31
A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).
Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference
Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.
2015-01-01
The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922
Single beam write and/or replay of spatial heterodyne holograms
Thomas, Clarence E.; Hanson, Gregory R.
2007-11-20
A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2016-04-19
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2014-09-09
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Production of single-walled carbon nanotube grids
Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean
2013-12-03
A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.
Methods for making thin layers of crystalline materials
Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy
2013-07-23
Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.
Compositions and methods for detecting single nucleotide polymorphisms
Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.
2016-11-22
Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding.
Shahi, Payam; Kim, Samuel C; Haliburton, John R; Gartner, Zev J; Abate, Adam R
2017-03-14
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding
NASA Astrophysics Data System (ADS)
Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.
2017-03-01
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding
Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.
2017-01-01
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing. PMID:28290550
A method of combined single-cell electrophysiology and electroporation.
Graham, Lyle J; Del Abajo, Ricardo; Gener, Thomas; Fernandez, Eduardo
2007-02-15
This paper describes a method of extracellular recording and subsequent electroporation with the same electrode in single retinal ganglion cells in vitro. We demonstrate anatomical identification of neurons whose receptive fields were measured quantitatively. We discuss how this simple method should also be applicable for the delivery of a variety of intracellular agents, including gene delivery, to physiologically characterized neurons, both in vitro and in vivo.
Caricato, Marco
2018-04-07
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
NASA Astrophysics Data System (ADS)
Caricato, Marco
2018-04-01
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
The potential for increased power from combining P-values testing the same hypothesis.
Ganju, Jitendra; Julie Ma, Guoguang
2017-02-01
The conventional approach to hypothesis testing for formal inference is to prespecify a single test statistic thought to be optimal. However, we usually have more than one test statistic in mind for testing the null hypothesis of no treatment effect but we do not know which one is the most powerful. Rather than relying on a single p-value, combining p-values from prespecified multiple test statistics can be used for inference. Combining functions include Fisher's combination test and the minimum p-value. Using randomization-based tests, the increase in power can be remarkable when compared with a single test and Simes's method. The versatility of the method is that it also applies when the number of covariates exceeds the number of observations. The increase in power is large enough to prefer combined p-values over a single p-value. The limitation is that the method does not provide an unbiased estimator of the treatment effect and does not apply to situations when the model includes treatment by covariate interaction.
Material appearance acquisition from a single image
NASA Astrophysics Data System (ADS)
Zhang, Xu; Cui, Shulin; Cui, Hanwen; Yang, Lin; Wu, Tao
2017-01-01
The scope of this paper is to present a method of material appearance acquisition(MAA) from a single image. In this paper, material appearance is represented by spatially varying bidirectional reflectance distribution function(SVBRDF). Therefore, MAA can be reduced to the problem of recovery of each pixel's BRDF parameters from an original input image, which include diffuse coefficient, specular coefficient, normal and glossiness based on the Blinn-Phone model. In our method, the workflow of MAA includes five main phases: highlight removal, estimation of intrinsic images, shape from shading(SFS), initialization of glossiness and refining SVBRDF parameters based on IPOPT. The results indicate that the proposed technique can effectively extract the material appearance from a single image.
Phosphors with long-persistent green phosphorescence
Yen, William M; Jia, Weiyi; Lu, Lizhu; Yuan, Huabiao
2001-01-01
This invention relates to phosphors including long-persistence green phosphors. Phosphors of the invention are represented by the general formula: M.sub.k Al.sub.2 O.sub.4 :2xEu.sup.2+,2yR.sup.3+ wherein k-1-2x-2y, x is a number ranging from about 0.0001 to about 0.05, y is a number ranging from about x to about 3x, M is an alkaline earth metal, and R.sup.3+ is one or more trivalent metal ions. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2012-12-04
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Room temperature aluminum antimonide radiation detector and methods thereof
Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W
2015-03-03
In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).
Clustering Methods; Part IV of Scientific Report No. ISR-18, Information Storage and Retrieval...
ERIC Educational Resources Information Center
Cornell Univ., Ithaca, NY. Dept. of Computer Science.
Two papers are included as Part Four of this report on Salton's Magical Automatic Retriever of Texts (SMART) project report. The first paper: "A Controlled Single Pass Classification Algorithm with Application to Multilevel Clustering" by D. B. Johnson and J. M. Laferente presents a single pass clustering method which compares favorably…
Method of manufacturing a hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2017-02-07
A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.
NASA Technical Reports Server (NTRS)
Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)
2011-01-01
Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.
Method and apparatus for synthesizing filamentary structures
Height, Murray J [Somerville, MA; Howard, Jack B [Winchester, MA; Vandersande, John B [Newbury, MA
2008-02-26
Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.
Quantitative analysis of single-molecule superresolution images
Coltharp, Carla; Yang, Xinxing; Xiao, Jie
2014-01-01
This review highlights the quantitative capabilities of single-molecule localization-based superresolution imaging methods. In addition to revealing fine structural details, the molecule coordinate lists generated by these methods provide the critical ability to quantify the number, clustering, and colocalization of molecules with 10 – 50 nm resolution. Here we describe typical workflows and precautions for quantitative analysis of single-molecule superresolution images. These guidelines include potential pitfalls and essential control experiments, allowing critical assessment and interpretation of superresolution images. PMID:25179006
2012-01-01
Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population. Methods The data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect. Results Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods. Conclusions The single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix. PMID:22455934
von Diezmann, Alex; Shechtman, Yoav; Moerner, W. E.
2017-01-01
Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers, or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information of single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field-dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems. PMID:28151646
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876
Linnorm: improved statistical analysis for single cell RNA-seq expression data
Yip, Shun H.; Wang, Panwen; Kocher, Jean-Pierre A.; Sham, Pak Chung
2017-01-01
Abstract Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy. PMID:28981748
Review of methods to probe single cell metabolism and bioenergetics
Vasdekis, Andreas E.; Stephanopoulos, Gregory
2015-01-01
Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed. PMID:25448400
Method for nucleic acid hybridization using single-stranded DNA binding protein
Tabor, Stanley; Richardson, Charles C.
1996-01-01
Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.
Study report on a double isotope method of calcium absorption
NASA Technical Reports Server (NTRS)
1978-01-01
Some of the pros and cons of three methods to study gastrointestinal calcium absorption are briefly discussed. The methods are: (1) a balance study; (2) a single isotope method; and (3) a double isotope method. A procedure for the double isotope method is also included.
Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Birk, Udo J; Dobrucki, Jurek W; Cremer, Christoph
2016-05-01
Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10(6) signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. Copyright © 2016. Published by Elsevier Inc.
Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics.
Farlik, Matthias; Sheffield, Nathan C; Nuzzo, Angelo; Datlinger, Paul; Schönegger, Andreas; Klughammer, Johanna; Bock, Christoph
2015-03-03
Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS) assay that enables DNA methylation mapping in very small cell populations (μWGBS) and single cells (scWGBS). Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Najafi, Amir Abbas; Pourahmadi, Zahra
2016-04-01
Selecting the optimal combination of assets in a portfolio is one of the most important decisions in investment management. As investment is a long term concept, looking into a portfolio optimization problem just in a single period may cause loss of some opportunities that could be exploited in a long term view. Hence, it is tried to extend the problem from single to multi-period model. We include trading costs and uncertain conditions to this model which made it more realistic and complex. Hence, we propose an efficient heuristic method to tackle this problem. The efficiency of the method is examined and compared with the results of the rolling single-period optimization and the buy and hold method which shows the superiority of the proposed method.
Method and device for measuring single-shot transient signals
Yin, Yan
2004-05-18
Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.
Linnorm: improved statistical analysis for single cell RNA-seq expression data.
Yip, Shun H; Wang, Panwen; Kocher, Jean-Pierre A; Sham, Pak Chung; Wang, Junwen
2017-12-15
Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Processing multiphoton states through operation on a single photon: Methods and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Qing; He Bing; Bergou, Janos A.
2009-10-15
Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inversemore » transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.« less
Single-molecule spectroscopic methods.
Haustein, Elke; Schwille, Petra
2004-10-01
Being praised for the mere fact of enabling the detection of individual fluorophores a dozen years ago, single-molecule techniques nowadays represent standard methods for the elucidation of the structural rearrangements of biologically relevant macromolecules. Single-molecule-sensitive techniques, such as fluorescence correlation spectroscopy, allow real-time access to a multitude of molecular parameters (e.g. diffusion coefficients, concentration and molecular interactions). As a result of various recent advances, this technique shows promise even for intracellular applications. Fluorescence imaging can reveal the spatial localization of fluorophores on nanometer length scales, whereas fluorescence resonance energy transfer supports a wide range of different applications, including real-time monitoring of conformational rearrangements (as in protein folding). Still in their infancy, single-molecule spectroscopic methods thus provide unprecedented insights into basic molecular mechanisms. Copyright 2004 Elsevier Ltd.
Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin
2010-01-01
In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
Specialized physiological studies in support of manned space flight
NASA Technical Reports Server (NTRS)
Luft, U. C.
1973-01-01
The areas of physiological research reported include: (1) evaluation of the single-breath method for determining cardiac output, (2) optimum protocol for the assessment of cardio-pulmonary competence, (3) body fluids and electrolytes under conditions of single and combined stress, (4) re-evaluation of the open-circuit method for measuring metabolic rate with regard to the alleged metabolic production of gaseous nitrogen, and (5) the use of the forced-oscillation method to determine total respiratory conductance in healthy subjects and pulmonary patients.
Matsumoto, Hirotaka; Kiryu, Hisanori
2016-06-08
Single-cell technologies make it possible to quantify the comprehensive states of individual cells, and have the power to shed light on cellular differentiation in particular. Although several methods have been developed to fully analyze the single-cell expression data, there is still room for improvement in the analysis of differentiation. In this paper, we propose a novel method SCOUP to elucidate differentiation process. Unlike previous dimension reduction-based approaches, SCOUP describes the dynamics of gene expression throughout differentiation directly, including the degree of differentiation of a cell (in pseudo-time) and cell fate. SCOUP is superior to previous methods with respect to pseudo-time estimation, especially for single-cell RNA-seq. SCOUP also successfully estimates cell lineage more accurately than previous method, especially for cells at an early stage of bifurcation. In addition, SCOUP can be applied to various downstream analyses. As an example, we propose a novel correlation calculation method for elucidating regulatory relationships among genes. We apply this method to a single-cell RNA-seq data and detect a candidate of key regulator for differentiation and clusters in a correlation network which are not detected with conventional correlation analysis. We develop a stochastic process-based method SCOUP to analyze single-cell expression data throughout differentiation. SCOUP can estimate pseudo-time and cell lineage more accurately than previous methods. We also propose a novel correlation calculation method based on SCOUP. SCOUP is a promising approach for further single-cell analysis and available at https://github.com/hmatsu1226/SCOUP.
Barteneva, Natasha S; Vorobjev, Ivan A
2018-01-01
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Apparatus And Method For Producing Single Crystal Metallic Objects
Huang, Shyh-Chin; Gigliotti, Jr., Michael Francis X.; Rutkowski, Stephen Francis; Petterson, Roger John; Svec, Paul Steven
2006-03-14
A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.
NASA Astrophysics Data System (ADS)
Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang
2018-05-01
The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.
Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system
Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.
1998-01-01
A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eV
Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system
Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.
1998-06-23
A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)
1994-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.
2001-01-01
Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.
ERIC Educational Resources Information Center
Alaska State Commission on Postsecondary Education, Juneau.
The feasibility of awarding a single annual appropriation for the operating budget to the University of Alaska was investigated in 1982. Study methods included a literature review and a survey of practitioners concerning the advantages and disadvantages of a single appropriation versus several appropriations. In addition to surveying directors of…
Rotation of single live mammalian cells using dynamic holographic optical tweezers
NASA Astrophysics Data System (ADS)
Bin Cao; Kelbauskas, Laimonas; Chan, Samantha; Shetty, Rishabh M.; Smith, Dean; Meldrum, Deirdre R.
2017-05-01
We report on a method for rotating single mammalian cells about an axis perpendicular to the optical system axis through the imaging plane using dynamic holographic optical tweezers (HOTs). Two optical traps are created on the opposite edges of a mammalian cell and are continuously transitioned through the imaging plane along the circumference of the cell in opposite directions, thus providing the torque to rotate the cell in a controlled fashion. The method enables a complete 360° rotation of live single mammalian cells with spherical or near-to spherical shape in 3D space, and represents a useful tool suitable for the single cell analysis field, including tomographic imaging.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Stowe, Ashley; Burger, Arnold
2016-05-10
A method for synthesizing I-III-VI.sub.2 compounds, including: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound under heat, with mixing, and/or via vapor transport. The Group III element is melted at a temperature of between about 200 degrees C. and about 700 degrees C. Preferably, the Group I element consists of a neutron absorber and the group III element consists of In or Ga. The Group VI element and the single phase I-III compound are heated to a temperature of between about 700 degrees C. and about 1000 degrees C. Preferably, the Group VI element consists of S, Se, or Te. Optionally, the method also includes doping with a Group IV element activator.
miRNA detection at single-cell resolution using microfluidic LNA flow-FISH
Wu, Meiye; Piccini, Matthew Ernest; Koh, Chung -Yan; ...
2014-08-20
Flow cytometry in combination with fluorescent in situ hybridization (flow-FISH) is a powerful technique that can be utilized to rapidly detect nucleic acids at single-cell resolution without the need for homogenization or nucleic acid extraction. Here, we describe a microfluidic-based method which enables the detection of microRNAs or miRNAs in single intact cells by flow-FISH using locked nucleic acid (LNA)-containing probes. Our method can be applied to all RNA species including mRNA and small noncoding RNA and is suitable for multiplexing with protein immunostaining in the same cell. For demonstration of our method, this chapter details the detection of miR155more » and CD69 protein in PMA and ionomycin-stimulated Jurkat cells. Here, we also include instructions on how to set up a microfluidic chip sample preparation station to prepare cells for imaging and analysis on a commercial flow cytometer or a custom-built micro-flow cytometer.« less
Method for preparation and readout of polyatomic molecules in single quantum states
NASA Astrophysics Data System (ADS)
Patterson, David
2018-03-01
Polyatomic molecular ions contain many desirable attributes of a useful quantum system, including rich internal degrees of freedom and highly controllable coupling to the environment. To date, the vast majority of state-specific experimental work on molecular ions has concentrated on diatomic species. The ability to prepare and read out polyatomic molecules in single quantum states would enable diverse experimental avenues not available with diatomics, including new applications in precision measurement, sensitive chemical and chiral analysis at the single-molecule level, and precise studies of Hz-level molecular tunneling dynamics. While cooling the motional state of a polyatomic ion via sympathetic cooling with a laser-cooled atomic ion is straightforward, coupling this motional state to the internal state of the molecule has proven challenging. Here we propose a method for readout and projective measurement of the internal state of a trapped polyatomic ion. The method exploits the rich manifold of technically accessible rotational states in the molecule to realize robust state preparation and readout with far less stringent engineering than quantum logic methods recently demonstrated on diatomic molecules. The method can be applied to any reasonably small (≲10 atoms) polyatomic ion with an anisotropic polarizability.
NASA Technical Reports Server (NTRS)
Roth, Don J.
1998-01-01
NASA Lewis Research Center's Life Prediction Branch, in partnership with Sonix, Inc., and Cleveland State University, recently advanced the development of, refined, and commercialized an advanced nondestructive evaluation (NDE) inspection method entitled the Single Transducer Thickness-Independent Ultrasonic Imaging Method. Selected by R&D Magazine as one of the 100 most technologically significant new products of 1996, the method uses a single transducer to eliminate the superimposing effects of thickness variation in the ultrasonic images of materials. As a result, any variation seen in the image is due solely to microstructural variation. This nondestructive method precisely and accurately characterizes material gradients (pore fraction, density, or chemical) that affect the uniformity of a material's physical performance (mechanical, thermal, or electrical). Advantages of the method over conventional ultrasonic imaging include (1) elimination of machining costs (for precision thickness control) during the quality control stages of material processing and development and (2) elimination of labor costs and subjectivity involved in further image processing and image interpretation. At NASA Lewis, the method has been used primarily for accurate inspections of high temperature structural materials including monolithic ceramics, metal matrix composites, and polymer matrix composites. Data were published this year for platelike samples, and current research is focusing on applying the method to tubular components. The initial publicity regarding the development of the method generated 150 requests for further information from a wide variety of institutions and individuals including the Federal Bureau of Investigation (FBI), Lockheed Martin Corporation, Rockwell International, Hewlett Packard Company, and Procter & Gamble Company. In addition, NASA has been solicited by the 3M Company and Allison Abrasives to use this method to inspect composite materials that are manufactured by these companies.
Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method
NASA Astrophysics Data System (ADS)
He, Nuotian; Tang, Huili; Liu, Bo; Zhu, Zhichao; Li, Qiu; Guo, Chao; Gu, Mu; Xu, Jun; Liu, Jinliang; Xu, Mengxuan; Chen, Liang; Ouyang, Xiaoping
2018-04-01
In this investigation, β-Ga2O3 single crystals were grown by the Floating Zone method. At room temperature, the X-ray excited emission spectrum includes ultraviolet and blue emission bands. The scintillation light output is comparable to the commercial BGO scintillator. The scintillation decay times are composed of the dominant ultra-fast component of 0.368 ns and a small amount of slightly slow components of 8.2 and 182 ns. Such fast component is superior to most commercial inorganic scintillators. In contrast to most semiconductor crystals prepared by solution method such as ZnO, β-Ga2O3 single crystals can be grown by traditional melt-growth method. Thus we can easily obtain large bulk crystals and mass production.
Oriented nanofibers embedded in a polymer matrix
NASA Technical Reports Server (NTRS)
Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)
2011-01-01
A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.
Process for derivatizing carbon nanotubes with diazonium species and compositions thereof
NASA Technical Reports Server (NTRS)
Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)
2011-01-01
Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors
Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI
2011-07-12
Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.
Method for conversion of carbohydrate polymers to value-added chemical products
Zhang, Zongchao C [Norwood, NJ; Brown, Heather M [Kennewick, WA; Su, Yu [Richland, WA
2012-02-07
Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.
Lukeš, Tomáš; Pospíšil, Jakub; Fliegel, Karel; Lasser, Theo; Hagen, Guy M
2018-03-01
Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.
[A research on real-time ventricular QRS classification methods for single-chip-microcomputers].
Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J
1997-05-01
Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.
Long-persistence blue phosphors
NASA Technical Reports Server (NTRS)
Yen, William M. (Inventor); Jia, Weiyi (Inventor); Lu, Lizhu (Inventor); Yuan, Huabiao (Inventor)
2000-01-01
This invention relates to phosphors including long-persistence blue phosphors. Phosphors of the invention are represented by the general formula: MO . mAl.sub.2 O.sub.3 :Eu.sup.2+,R.sup.3+ wherein m is a number ranging from about 1.6 to about 2.2, M is Sr or a combination of Sr with Ca and Ba or both, R.sup.3+ is a trivalent metal ion or trivalent Bi or a mixture of these trivalent ions, Eu.sup.2+ is present at a level up to about 5 mol % of M, and R.sup.3+ is present at a level up to about 5 mol % of M. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.
Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects.
Zhang, Xiaoyan; Marjani, Sadie L; Hu, Zhaoyang; Weissman, Sherman M; Pan, Xinghua; Wu, Shixiu
2016-03-15
Advances in genomic technology have enabled the faithful detection and measurement of mutations and the gene expression profile of cancer cells at the single-cell level. Recently, several single-cell sequencing methods have been developed that permit the comprehensive and precise analysis of the cancer-cell genome, transcriptome, and epigenome. The use of these methods to analyze cancer cells has led to a series of unanticipated discoveries, such as the high heterogeneity and stochastic changes in cancer-cell populations, the new driver mutations and the complicated clonal evolution mechanisms, and the novel identification of biomarkers of variant tumors. These methods and the knowledge gained from their utilization could potentially improve the early detection and monitoring of rare cancer cells, such as circulating tumor cells and disseminated tumor cells, and promote the development of personalized and highly precise cancer therapy. Here, we discuss the current methods for single cancer-cell sequencing, with a strong focus on those practically used or potentially valuable in cancer research, including single-cell isolation, whole genome and transcriptome amplification, epigenome profiling, multi-dimensional sequencing, and next-generation sequencing and analysis. We also examine the current applications, challenges, and prospects of single cancer-cell sequencing. ©2016 American Association for Cancer Research.
Engineering calculations for the Delta S method of solving the orbital allotment problem
NASA Technical Reports Server (NTRS)
Kohnhorst, P. A.; Levis, C. A.; Walton, E. K.
1987-01-01
The method of calculating single-entry separation requirements for pairs of satellites is extended to include the interference on the top link as well as on the down link. Several heuristic models for analyzing the effects of shaped-beam antenna designs on required satellite separations are introduced and demonstrated with gain contour plots. The calculation of aggregate interference is extended to include the effects of up-link interference. The relationship between the single-entry C/I requirements, used in determining satellite separation constraints for various optimization procedures, and the aggregate C/I values of the resulting solutions is discussed.
Adjustable permanent magnet assembly for NMR and MRI
Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard
2013-10-29
System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.
Recent advances in the development and application of nanoelectrodes.
Fan, Yunshan; Han, Chu; Zhang, Bo
2016-10-07
Nanoelectrodes have key advantages compared to electrodes of conventional size and are the tool of choice for numerous applications in both fundamental electrochemistry research and bioelectrochemical analysis. This Minireview summarizes recent advances in the development, characterization, and use of nanoelectrodes in nanoscale electroanalytical chemistry. Methods of nanoelectrode preparation include laser-pulled glass-sealed metal nanoelectrodes, mass-produced nanoelectrodes, carbon nanotube based and carbon-filled nanopipettes, and tunneling nanoelectrodes. Several new topics of their recent application are covered, which include the use of nanoelectrodes for electrochemical imaging at ultrahigh spatial resolution, imaging with nanoelectrodes and nanopipettes, electrochemical analysis of single cells, single enzymes, and single nanoparticles, and the use of nanoelectrodes to understand single nanobubbles.
Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
Majumdar, Arun [Orinda, CA; Shakouri, Ali [Santa Cruz, CA; Sands, Timothy D [Moraga, CA; Yang, Peidong [Berkeley, CA; Mao, Samuel S [Berkeley, CA; Russo, Richard E [Walnut Creek, CA; Feick, Henning [Kensington, CA; Weber, Eicke R [Oakland, CA; Kind, Hannes [Schaffhausen, CH; Huang, Michael [Los Angeles, CA; Yan, Haoquan [Albany, CA; Wu, Yiying [Albany, CA; Fan, Rong [El Cerrito, CA
2009-08-04
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Methods Of Fabricating Nanosturctures And Nanowires And Devices Fabricated Therefrom
Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong
2006-02-07
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong
2010-11-16
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong
2018-01-30
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Bao, Jie J; Gagliardi, Laura; Truhlar, Donald G
2017-11-15
Multiconfiguration pair-density functional theory (MC-PDFT) is a post multiconfiguration self-consistent field (MCSCF) method with similar performance to complete active space second-order perturbation theory (CASPT2) but with greater computational efficiency. Cyano radical (CN) is a molecule whose spectrum is well established from experiments and whose excitation energies have been used as a testing ground for theoretical methods to treat excited states of open-shell systems, which are harder and much less studied than excitation energies of closed-shell singlets. In the present work, we studied the adiabatic excitation energies of CN with MC-PDFT. Then we compared this multireference (MR) method to some single-reference (SR) methods, including time-dependent density functional theory (TDDFT) and completely renormalized equation-of-motion coupled-cluster theory with singles, doubles and noniterative triples [CR-EOM-CCSD(T)]; we also compared to some other MR methods, including configuration interaction singles and doubles (MR-CISD) and multistate CASPT2 (MS-CASPT2). Through a comparison between SR and MR methods, we achieved a better appreciation of the need to use MR methods to accurately describe higher excited states, and we found that among the MR methods, MC-PDFT stands out for its accuracy for the first four states out of the five doublet states studied this paper; this shows its efficiency for calculating doublet excited states.
Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors
Johnson, Jr., Alan T
2013-12-17
Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.
Single-step affinity purification for fungal proteomics.
Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A
2010-05-01
A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.
Hohnadel, Marisa; Maumy, Myriam; Chollet, Renaud
2018-01-01
For nearly a century, conventional microbiological methods have been standard practice for detecting and identifying pathogens in food. Nevertheless, the microbiological safety of food has improved and various rapid methods have been developed to overcome the limitations of conventional methods. Alternative methods are expected to detect low cell numbers, since the presence in food of even a single cell of a pathogenic organism may be infectious. With respect to low population levels, the performance of a detection method is assessed by producing serial dilutions of a pure bacterial suspension to inoculate representative food matrices with highly diluted bacterial cells (fewer than 10 CFU/ml). The accuracy of data obtained by multiple dilution techniques is not certain and does not exclude some colonies arising from clumps of cells. Micromanipulation techniques to capture and isolate single cells from environmental samples were introduced more than 40 years ago. The main limitation of the current micromanipulation technique is still the low recovery rate for the growth of a single cell in culture medium. In this study, we describe a new single cell isolation method and demonstrate that it can be used successfully to grow various types of microorganism from picked individual cells. Tests with Gram-positive and Gram-negative organisms, including cocci, rods, aerobes, anaerobes, yeasts and molds showed growth recovery rates from 60% to 100% after micromanipulation. We also highlight the use of our method to evaluate and challenge the detection limits of standard detection methods in food samples contaminated by a single cell of Salmonella enterica.
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.
Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.
Methods of preparing and using single chain anti-tumor antibodies
Cheung, Nai-Kong; Guo, Hong-Fen
2010-02-23
This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.
Method for preparation of single chain antibodies
Cheung, Nai-Kong V [New York, NY; Guo, Hong-fen [New York, NY
2012-04-03
This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.
High-throughput microfluidic single-cell digital polymerase chain reaction.
White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L
2013-08-06
Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.
Subsurface damage in some single crystalline optical materials.
Randi, Joseph A; Lambropoulos, John C; Jacobs, Stephen D
2005-04-20
We present a nondestructive method for estimating the depth of subsurface damage (SSD) in some single crystalline optical materials (silicon, lithium niobate, calcium fluoride, magnesium fluoride, and sapphire); the method is established by correlating surface microroughness measurements, specifically, the peak-to-valley (p-v) microroughness, to the depth of SSD found by a novel destructive method. Previous methods for directly determining the depth of SSD may be insufficient when applied to single crystals that are very soft or very hard. Our novel destructive technique uses magnetorheological finishing to polish spots onto a ground surface. We find that p-v surface microroughness, appropriately scaled, gives an upper bound to SSD. Our data suggest that SSD in the single crystalline optical materials included in our study (deterministically microground, lapped, and sawed) is always less than 1.4 times the p-v surface microroughness found by white-light interferometry. We also discuss another way of estimating SSD based on the abrasive size used.
Hayashi, Tetsutaro; Ozaki, Haruka; Sasagawa, Yohei; Umeda, Mana; Danno, Hiroki; Nikaido, Itoshi
2018-02-12
Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells.
Universal single level implicit algorithm for gasdynamics
NASA Technical Reports Server (NTRS)
Lombard, C. K.; Venkatapthy, E.
1984-01-01
A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.
Strength of single-pole utility structures
Ronald W. Wolfe
2006-01-01
This section presents three basic methods for deriving and documenting Rn as an LTL value along with the coefficient of variation (COVR) for single-pole structures. These include the following: 1. An empirical analysis based primarily on tests of full-sized poles. 2. A theoretical analysis of mechanics-based models used in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti
Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less
Flood-frequency prediction methods for unregulated streams of Tennessee, 2000
Law, George S.; Tasker, Gary D.
2003-01-01
Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.
Möhlendick, Birte; Bartenhagen, Christoph; Behrens, Bianca; Honisch, Ellen; Raba, Katharina; Knoefel, Wolfram T; Stoecklein, Nikolas H
2013-01-01
Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.
Single layer multi-color luminescent display and method of making
NASA Technical Reports Server (NTRS)
Robertson, James B. (Inventor)
1992-01-01
The invention is a multi-color luminescent display comprising an insulator substrate and a single layer of host material, which may be a phosphor deposited thereon that hosts one or more different impurities, therein forming a pattern of selected and distinctly colored phosphors such as blue, green, and red phosphors in a single layer of host material. Transparent electrical conductor means may be provided for subjecting selected portions of the pattern of colored phosphors to an electric field, thereby forming a multi-color, single layer electroluminescent display. A method of forming a multi-color luminescent display includes the steps of depositing on an insulator substrate a single layer of host material, which itself may be a phosphor, with the properties to host varying quantities of different impurities and introducing one or more of said different impurities into selected areas of the said single layer of host material by thermal diffusion or ion implantation to form a pattern of phosphors of different colors in the said single layer of host material.
Pollen, Alex A; Nowakowski, Tomasz J; Shuga, Joe; Wang, Xiaohui; Leyrat, Anne A; Lui, Jan H; Li, Nianzhen; Szpankowski, Lukasz; Fowler, Brian; Chen, Peilin; Ramalingam, Naveen; Sun, Gang; Thu, Myo; Norris, Michael; Lebofsky, Ronald; Toppani, Dominique; Kemp, Darnell W; Wong, Michael; Clerkson, Barry; Jones, Brittnee N; Wu, Shiquan; Knutsson, Lawrence; Alvarado, Beatriz; Wang, Jing; Weaver, Lesley S; May, Andrew P; Jones, Robert C; Unger, Marc A; Kriegstein, Arnold R; West, Jay A A
2014-10-01
Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.
Yuan, XiaoDong; Tang, Wei; Shi, WenWei; Yu, Libao; Zhang, Jing; Yuan, Qing; You, Shan; Wu, Ning; Ao, Guokun; Ma, Tingting
2018-07-01
To develop a convenient and rapid single-kidney CT-GFR technique. One hundred and twelve patients referred for multiphasic renal CT and 99mTc-DTPA renal dynamic imaging Gates-GFR measurement were prospectively included and randomly divided into two groups of 56 patients each: the training group and the validation group. On the basis of the nephrographic phase images, the fractional renal accumulation (FRA) was calculated and correlated with the Gates-GFR in the training group. From this correlation a formula was derived for single-kidney CT-GFR calculation, which was validated by a paired t test and linear regression analysis with the single-kidney Gates-GFR in the validation group. In the training group, the FRA (x-axis) correlated well (r = 0.95, p < 0.001) with single-kidney Gates-GFR (y-axis), producing a regression equation of y = 1665x + 1.5 for single-kidney CT-GFR calculation. In the validation group, the difference between the methods of single-kidney GFR measurements was 0.38 ± 5.57 mL/min (p = 0.471); the regression line is identical to the diagonal (intercept = 0 and slope = 1) (p = 0.727 and p = 0.473, respectively), with a standard deviation of residuals of 5.56 mL/min. A convenient and rapid single-kidney CT-GFR technique was presented and validated in this investigation. • The new CT-GFR method takes about 2.5 min of patient time. • The CT-GFR method demonstrated identical results to the Gates-GFR method. • The CT-GFR method is based on the fractional renal accumulation of iodinated CM. • The CT-GFR method is achieved without additional radiation dose to the patient.
Imaging indicator for ESD safety testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whinnery, LeRoy L.,; Nissen, April; Keifer, Patrick N.
2013-05-01
This report describes the development of a new detection method for electrostatic discharge (ESD) testing of explosives, using a single-lens reflex (SLR) digital camera and a 200-mm macro lens. This method has demonstrated several distinct advantages to other current ESD detection methods, including the creation of a permanent record, an enlarged image for real-time viewing as well as extended periods of review, and ability to combine with most other Go/No-Go sensors. This report includes details of the method, including camera settings and position, and results with wellcharacterized explosives PETN and RDX, and two ESD-sensitive aluminum powders.
Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.
Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less
Process for separating metallic from semiconducting single-walled carbon nanotubes
NASA Technical Reports Server (NTRS)
Sun, Ya-Ping (Inventor)
2008-01-01
A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.
Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun
2014-10-01
By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-Molecule Electronics: Chemical and Analytical Perspectives.
Nichols, Richard J; Higgins, Simon J
2015-01-01
It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.
Single-cell sequencing in stem cell biology.
Wen, Lu; Tang, Fuchou
2016-04-15
Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.
NASA Astrophysics Data System (ADS)
Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.
2017-12-01
The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.
Sanada, Akira; Tanaka, Nobuo
2012-08-01
This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.
Method of depositing epitaxial layers on a substrate
Goyal, Amit
2003-12-30
An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.
USDA-ARS?s Scientific Manuscript database
The development of genomic selection methodology, with accompanying substantial gains in reliability for low-heritability traits, may dramatically improve the feasibility of genetic improvement of dairy cow health. Many methods for genomic analysis have now been developed, including the “Bayesian Al...
Fox, Glen; Manley, Marena
2014-01-30
Single kernel (SK) near infrared (NIR) reflectance and transmittance technologies have been developed during the last two decades for a range of cereal grain physical quality and chemical traits as well as detecting and predicting levels of toxins produced by fungi. Challenges during the development of single kernel near infrared (SK-NIR) spectroscopy applications are modifications of existing NIR technology to present single kernels for scanning as well as modifying reference methods for the trait of interest. Numerous applications have been developed, and cover almost all cereals although most have been for key traits including moisture, protein, starch and oil in the globally important food grains, i.e. maize, wheat, rice and barley. An additional benefit in developing SK-NIR applications has been to demonstrate the value in sorting grain infected with a fungus or mycotoxins such as deoxynivalenol, fumonisins and aflatoxins. However, there is still a need to develop cost-effective technologies for high-speed sorting which can be used for small grain samples such as those from breeding programmes or commercial sorting; capable of sorting tonnes per hour. Development of SK-NIR technologies also includes standardisation of SK reference methods to analyse single kernels. For protein content, the use of the Dumas method would require minimal standardisation; for starch or oil content, considerable development would be required. SK-NIR, including the use of hyperspectral imaging, will improve our understanding of grain quality and the inherent variation in the range of a trait. In the area of food safety, this technology will benefit farmers, industry and consumers if it enables contaminated grain to be removed from the human food chain. © 2013 Society of Chemical Industry.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2015-07-21
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David; Cousins, Peter
2012-12-04
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2014-07-22
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.
Incidence of retear with double-row versus single-row rotator cuff repair.
Shen, Chong; Tang, Zhi-Hong; Hu, Jun-Zu; Zou, Guo-Yao; Xiao, Rong-Chi
2014-11-01
Rotator cuff tears have a high recurrence rate, even after arthroscopic rotator cuff repair. Although some biomechanical evidence suggests the superiority of the double-row vs the single-row technique, clinical findings regarding these methods have been controversial. The purpose of this study was to determine whether the double-row repair method results in a lower incidence of recurrent tearing compared with the single-row method. Electronic databases were systematically searched to identify reports of randomized, controlled trials (RCTs) comparing single-row with double-row rotator cuff repair. The primary outcome assessed was retear of the repaired cuff. Secondary outcome measures were the American Shoulder and Elbow Surgeons (ASES) shoulder score, the Constant shoulder score, and the University of California, Los Angeles (UCLA) score. Heterogeneity between the included studies was assessed. Six studies involving 428 patients were included in the review. Compared with single-row repair, double-row repair demonstrated a lower retear incidence (risk ratio [RR]=1.71 [95% confidence interval (CI), 1.18-2.49]; P=.005; I(2)=0%) and a reduced incidence of partial-thickness retears (RR=2.16 [95% CI, 1.26-3.71]; P=.005; I(2)=26%). Functional ASES, Constant, and UCLA scores showed no difference between single- and double-row cuff repairs. Use of the double-row technique decreased the incidence of retears, especially partial-thickness retears, compared with the single-row technique. The functional outcome was not significantly different between the 2 techniques. To improve the structural outcome of the repaired rotator cuff, surgeons should use the double-row technique. However, further long-term RCTs on this topic are needed. Copyright 2014, SLACK Incorporated.
Channel Temperature Determination for AlGaN/GaN HEMTs on SiC and Sapphire
NASA Technical Reports Server (NTRS)
Freeman, Jon C.; Mueller, Wolfgang
2008-01-01
Numerical simulation results (with emphasis on channel temperature) for a single gate AlGaN/GaN High Electron Mobility Transistor (HEMT) with either a sapphire or SiC substrate are presented. The static I-V characteristics, with concomitant channel temperatures (T(sub ch)) are calculated using the software package ATLAS, from Silvaco, Inc. An in-depth study of analytical (and previous numerical) methods for the determination of T(sub ch) in both single and multiple gate devices is also included. We develop a method for calculating T(sub ch) for the single gate device with the temperature dependence of the thermal conductivity of all material layers included. We also present a new method for determining the temperature on each gate in a multi-gate array. These models are compared with experimental results, and show good agreement. We demonstrate that one may obtain the channel temperature within an accuracy of +/-10 C in some cases. Comparisons between different approaches are given to show the limits, sensitivities, and needed approximations, for reasonable agreement with measurements.
A "reverse direction" technique of single-port left upper pulmonary resection.
Zhang, Min; Sihoe, Alan D L; Du, Ming
2016-08-01
Single-port video-assisted thoracoscopic surgery (VATS) left upper lobectomy is difficult amongst all the lobes. At the beginning of single-port lobectomies, the upper lobes were believed not to be amenable for single-port approach due to the difficult angulation for staplers. Gonzalez reported the first single-port VATS left upper lobectomy in 2011. We report a new technique of single-port VATS left upper lobectomy with the concept of "reverse direction". We divide the apical-anterior arterial trunk with upper vein in the last. The procedure sequence is described as follows: posterior artery, lingular artery, bronchus and finally upper vein & apical-anterior arterial trunk. This method could overcome the angular limitations frequently encountered in single-port VATS procedures; reduce the risk of injuries to pulmonary artery; broaden the indications of single-port the upper lobe of the left lung (LUL) to include hypoplastic lung fissures. Limitations of this new practice include the enlargement or severe calcifications of hilar and bronchial lymph nodes. A "reverse direction" technique of single-port left upper pulmonary resection is feasible and safe.
A simple and rapid method for high-resolution visualization of single-ion tracks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omichi, Masaaki; Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017; Choi, Wookjin
2014-11-15
Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic forcemore » microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.« less
Financial aspects of partial cutting practices in central Appalachian hardwoods
Gary W. Miller; Gary W. Miller
1993-01-01
Uneven-aged silvicultural practices can be used to regenerate and manage many eastern hardwood stands. Single-tree selection methods are feasible in stands where a desirable shade-tolerant commercial species can be regenerated following periodic harvests. A variety of partial cutting practices, including single-tree selection and diameter-limit cutting have been used...
Practicing uneven age management: does it pay? Some economic considerations
Gary W. Miller
1991-01-01
Unevenage silvicultural practices can be used to regenerate and manage many eastern hardwood stands. Single-tree cutting methods are feasible in stands where a desirable shade tolerant commercial species can be regenerated following periodic harvests. A variety of partial harvest practices, including single-tree selection and diameterlimit cutting have been used for 30...
ERIC Educational Resources Information Center
Patterson, Stephanie Y.; Smith, Veronica; Mirenda, Pat
2012-01-01
Aim: The purpose of this systematic review was to examine research utilizing single subject research designs (SSRD) to explore the effectiveness of interventions designed to increase parents' ability to support communication and social development in children with autism spectrum disorders (ASDs). Method: Included studies were systematically…
The U.S. Environmental Protection Agency (EPA) held a workshop in January 2003 on the detection of viruses in water using polymerase chain reaction (PCR)-based methods. Speakers were asked to address a series of specific questions, including whether a single standard method coul...
PET/CT and contrast enhanced CT in single vs. two separate sessions: a cost analysis study.
Picchio, M; Mansueto, M; Crivellaro, C; Guerra, L; Marcelli, S; Arosio, M; Sironi, S; Gianolli, L; Grimaldi, A; Messa, C
2012-06-01
Aim of the study was to quantify the economic impact of PET/CT and contrast enhanced (c.e.) CT performed in a single session examination vs. stand-alone modalities in oncological patients. One-hundred-forty-five cancer patients referred to both PET/CT and c.e. CT, to either stage (N.=46) or re-stage (N.=99) the disease, were included. Seventy-two/145 performed both studies in a single session (innovative method) and 73/145 in two different sessions (traditional method). The cost-minimization analysis was performed by evaluating: 1) institutional costs, data obtained by hospital accountability (staff, medical materials, equipment maintenance and depreciation, departments utilities); 2) patients costs, data obtained by a specific survey provided to patients (travel, food, accommodation costs, productivity loss). Economic data analysis showed that the costs for innovative method was lower than those of traditional method, both for Institution (106 € less per test) and for patient (21 € less per patient). The loss of productivity for patient and caregivers resulted lower for the innovative method than the traditional method (3 work-hour less per person). PET/CT and c.e. CT performed in a single session is more cost-effective than stand-alone modalities, by reducing both Institutional and patients costs. These advantages are mainly due to lower Institutional cost (single procedure) and to lower cost related to travel and housing.
Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves
Collins, David J.; Morahan, Belinda; Garcia-Bustos, Jose; Doerig, Christian; Plebanski, Magdalena; Neild, Adrian
2015-01-01
In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions. PMID:26522429
A novel method for multiparameter physiological phenotype characterization at the single-cell level
NASA Astrophysics Data System (ADS)
Kelbauskas, Laimonas; Ashili, Shashanka; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen; Kumar, Ashok; Anis, Yasser; Paulson, Tom; Youngbull, Cody; Tian, Yanqing; Johnson, Roger; Holl, Mark; Meldrum, Deirdre
2011-02-01
Non-genetic intercellular heterogeneity has been increasingly recognized as one of the key factors in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis and drug resistance. Many diseases, including cancer, originate in a single or a few cells. Early detection and characterization of these abnormal cells can provide new insights into the pathogenesis and serve as a tool for better disease diagnosis and treatment. We report on a novel technology for multiparameter physiological phenotype characterization at the single-cell level. It is based on real-time measurements of concentrations of several metabolites by means of extracellular optical sensors in microchambers of sub-nL volume containing single cells. In its current configuration, the measurement platform features the capability to detect oxygen consumption rate and pH changes under normoxic and hypoxic conditions at the single-cell level. We have conceived, designed and developed a semi-automated method for single-cell manipulation and loading into microwells utilizing custom, high-precision fluid handling at the nanoliter scale. We present the results of a series of measurements of oxygen consumption rates (OCRs) of single human metaplastic esophageal epithelial cells. In addition, to assess the effects of cell-to-cell interactions, we have measured OCRs of two and three cells placed in a single well. The major advantages of the approach are a) multiplexed characterization of cell phenotype at the single-cell level, b) minimal invasiveness due to the distant positioning of sensors, and c) flexibility in terms of accommodating measurements of other metabolites or biomolecules of interest.
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
2001-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
1999-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
CREME96 and Related Error Rate Prediction Methods
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2012-01-01
Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and Analysis of Cosmic Ray Effects in Electronics). The Single Event Figure of Merit method was also revised to use the solar minimum galactic cosmic ray spectrum and extended to circular orbits down to 200 km at any inclination. More recently a series of commercial codes was developed by TRAD (Test & Radiations) which includes the OMERE code which calculates single event effects. There are other error rate prediction methods which use Monte Carlo techniques. In this chapter the analytic methods for estimating the environment within spacecraft will be discussed.
NASA Technical Reports Server (NTRS)
Banyukevich, A.; Ziolkovski, K.
1975-01-01
A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Stephenson, William; Wan, Gorby; Tenenbaum, Scott A.; Li, Pan T. X.
2014-01-01
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed. PMID:25177917
Method to fabricate micro and nano diamond devices
Morales, Alfredo M.; Anderson, Richard J.; Yang, Nancy Y. C.; Skinner, Jack L.; Rye, Michael J.
2017-04-11
A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.
Method to fabricate micro and nano diamond devices
Morales, Alfredo M; Anderson, Richard J; Yang, Nancy Y. C.; Skinner, Jack L; Rye, Michael J
2014-10-07
A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.
Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo
2011-01-01
In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077
Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J
2017-02-01
This study assessed the agreement between K vert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that K vert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m -1 ) and 95% limits of agreement (-1.89 to 3.75 kN⋅m -1 ). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m -1 ), sacral marker cluster and double integration (-3.25 kN⋅m -1 ), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m -1 ). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of K vert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of K vert during single-leg, on-the-spot hopping.
Physical-geometric optics method for large size faceted particles.
Sun, Bingqiang; Yang, Ping; Kattawar, George W; Zhang, Xiaodong
2017-10-02
A new physical-geometric optics method is developed to compute the single-scattering properties of faceted particles. It incorporates a general absorption vector to accurately account for inhomogeneous wave effects, and subsequently yields the relevant analytical formulas effective and computationally efficient for absorptive scattering particles. A bundle of rays incident on a certain facet can be traced as a single beam. For a beam incident on multiple facets, a systematic beam-splitting technique based on computer graphics is used to split the original beam into several sub-beams so that each sub-beam is incident only on an individual facet. The new beam-splitting technique significantly reduces the computational burden. The present physical-geometric optics method can be generalized to arbitrary faceted particles with either convex or concave shapes and with a homogeneous or an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared to their counterparts from two other methods including a numerically rigorous method.
Assessment of six different collagenase-based methods to isolate feline pancreatic islets.
Zini, Eric; Franchini, Marco; Guscetti, Franco; Osto, Melania; Kaufmann, Karin; Ackermann, Mathias; Lutz, Thomas A; Reusch, Claudia E
2009-12-01
Isolation of pancreatic islets is necessary to study the molecular mechanisms underlying beta-cell demise in diabetic cats. Six collagenase-based methods of isolation were compared in 10 cat pancreata, including single and double course of collagenase, followed or not by Ficoll centrifugation or accutase, and collagenase plus accutase. Morphometric analysis was performed to measure the relative area of islet and exocrine tissue. Islet specific mRNA transcripts were quantified in isolates by real-time PCR. The single and double course of collagenase digestion was successful in each cat and provided similar islet-to-exocrine tissue ratio. Quantities of insulin mRNA did not differ between the two methods. However, on histological examination either method yielded only approximately 2% of pure islets. The other methods provided disrupted islets or insufficient samples in 1-7 cats. Although pancreas digestion with single and double course of collagenase was superior, further studies are needed to improve islet isolation in cats.
Márquez, G.; Pinto, A.; Alamo, L.; Baumann, B.; Ye, F.; Winkler, H.; Taylor, K.; Padrón, R.
2014-01-01
Summary Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament –calculated without any image averaging and/or imposition of helical symmetry- only reveals MIH motifs infrequently. This is –to our knowledge- the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133
Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R
2014-05-01
Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinkusch, Stefan; Tremblay, Jean Christophe
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electronmore » ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.« less
2014-01-01
In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method. PMID:24899871
Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun
2014-01-01
In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.
West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID
2012-05-29
Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.
West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID
2011-09-27
Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.
USDA-ARS?s Scientific Manuscript database
A rapid method for the determination of some volatile aromatic compounds (VACs), including citronellal, citronellol, neral, geranial, geraniol, and eugenol in citronella grass and lemongrass leaves, was developed using surfactant as a surface tension modifier while performing headspace single drop m...
Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions
Giese, Roger W.; Wang, Poguang
1996-01-01
Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##
Zhang, Changsheng; Cai, Hongmin; Huang, Jingying; Song, Yan
2016-09-17
Variations in DNA copy number have an important contribution to the development of several diseases, including autism, schizophrenia and cancer. Single-cell sequencing technology allows the dissection of genomic heterogeneity at the single-cell level, thereby providing important evolutionary information about cancer cells. In contrast to traditional bulk sequencing, single-cell sequencing requires the amplification of the whole genome of a single cell to accumulate enough samples for sequencing. However, the amplification process inevitably introduces amplification bias, resulting in an over-dispersing portion of the sequencing data. Recent study has manifested that the over-dispersed portion of the single-cell sequencing data could be well modelled by negative binomial distributions. We developed a read-depth based method, nbCNV to detect the copy number variants (CNVs). The nbCNV method uses two constraints-sparsity and smoothness to fit the CNV patterns under the assumption that the read signals are negatively binomially distributed. The problem of CNV detection was formulated as a quadratic optimization problem, and was solved by an efficient numerical solution based on the classical alternating direction minimization method. Extensive experiments to compare nbCNV with existing benchmark models were conducted on both simulated data and empirical single-cell sequencing data. The results of those experiments demonstrate that nbCNV achieves superior performance and high robustness for the detection of CNVs in single-cell sequencing data.
Hybrid spread spectrum radio system
Smith, Stephen F.; Dress, William B.
2010-02-02
Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.
Tamaoka, Katsuo; Asano, Michiko; Miyaoka, Yayoi; Yokosawa, Kazuhiko
2014-04-01
Using the eye-tracking method, the present study depicted pre- and post-head processing for simple scrambled sentences of head-final languages. Three versions of simple Japanese active sentences with ditransitive verbs were used: namely, (1) SO₁O₂V canonical, (2) SO₂O₁V single-scrambled, and (3) O₁O₂SV double-scrambled order. First pass reading times indicated that the third noun phrase just before the verb in both single- and double-scrambled sentences required longer reading times compared to canonical sentences. Re-reading times (the sum of all fixations minus the first pass reading) showed that all noun phrases including the crucial phrase before the verb in double-scrambled sentences required longer re-reading times than those required for single-scrambled sentences; single-scrambled sentences had no difference from canonical ones. Therefore, a single filler-gap dependency can be resolved in pre-head anticipatory processing whereas two filler-gap dependencies require much greater cognitive loading than a single case. These two dependencies can be resolved in post-head processing using verb agreement information.
Optimized catalytic DNA-cleaving ribozymes
NASA Technical Reports Server (NTRS)
Joyce, Gerald F. (Inventor)
1996-01-01
The present invention discloses nucleic acid enzymes capable of cleaving nucleic acid molecules, including single-stranded DNA, in a site-specific manner under physiologic conditions, as well as compositions including same. The present invention also discloses methods of making and using the disclosed enzymes and compositions.
A method for predicting the noise levels of coannular jets with inverted velocity profiles
NASA Technical Reports Server (NTRS)
Russell, J. W.
1979-01-01
A coannular jet was equated with a single stream equivalent jet with the same mass flow, energy, and thrust. The acoustic characteristics of the coannular jet were then related to the acoustic characteristics of the single jet. Forward flight effects were included by incorporating a forward exponent, a Doppler amplification factor, and a Strouhal frequency shift. Model test data, including 48 static cases and 22 wind tunnel cases, were used to evaluate the prediction method. For the static cases and the low forward velocity wind tunnel cases, the spectral mean square pressure correlation coefficients were generally greater than 90 percent, and the spectral sound pressure level standard deviation were generally less than 3 decibels. The correlation coefficient and the standard deviation were not affected by changes in equivalent jet velocity. Limitations of the prediction method are also presented.
Methods for producing single crystal mixed halide perovskites
Zhu, Kai; Zhao, Yixin
2017-07-11
An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.
Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.
Siettos, Constantinos; Starke, Jens
2016-09-01
The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Traditional Pricing or Something Else?
ERIC Educational Resources Information Center
Epple, John H.
1980-01-01
It is argued tha alternate pricing methods for college textbooks--including net pricing, net billing, and single copy order pricing--would be detrimental to college bookstores. Publishers are urged to continue with the traditional method, and other publisher practices that could help bookstore managers are suggested. (JMD)
Power control apparatus and methods for electric vehicles
Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li
2016-03-22
Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.
[Physical methods and molecular biology].
Serdiuk, I N
2009-01-01
The review is devoted to the description of the current state of physical and chemical methods used for studying the structural and functional bases of living processes. Special attention is focused on the physical methods that have opened a new page in the research of the structure of biological macromolecules. They include primarily the methods of detecting and manipulating single molecules using optical and magnetic traps. New physical methods, such as two-dimensional infrared spectroscopy, fluorescence correlation spectroscopy and magnetic resonance microscopy are also analyzed briefly in the review. The path that physics and biology have passed for the latest 55 years shows that there is no single method providing all necessary information on macromolecules and their interactions. Each method provides its space-time view of the system. All physical methods are complementary. It is just complementarity that is the fundamental idea justifying the existence in practice of all physical methods, whose description is the aim of the review.
NASA Technical Reports Server (NTRS)
Martin, J. A.
1974-01-01
A general analytical treatment is presented of a single-stage vehicle with multiple propulsion phases. A closed-form solution for the cost and for the performance and a derivation of the optimal phasing of the propulsion are included. Linearized variations in the inert weight elements are included, and the function to be minimized can be selected. The derivation of optimal phasing results in a set of nonlinear algebraic equations for optimal fuel volumes, for which a solution method is outlined. Three specific example cases are analyzed: minimum gross lift-off weight, minimum inert weight, and a minimized general function for a two-phase vehicle. The results for the two-phase vehicle are applied to the dual-fuel rocket. Comparisons with single-fuel vehicles indicate that dual-fuel vehicles can have lower inert weight either by development of a dual-fuel engine or by parallel burning of separate engines from lift-off.
Zhao, Guang; Sun, Long; Geng, Guojun; Liu, Hongming; Li, Ning; Liu, Suhuan; Hao, Bing
2017-01-01
Background The aim of this study was to compare the effects of currently available preoperative localization methods, including semi-rigid single hook-wire, double-thorn hook-wire, and microcoil, in localizing the pulmonary nodules, thus to select the best technology to assist video-assisted thoracoscopic surgery (VATS) for small ground glass opacities (GGO). Methods Preoperative CT-guided localizing techniques including semi-rigid single hook-wire, double-thorn hook-wire and microcoil were used in re-aerated fresh swine lung for location experiments. The advantages and drawbacks of the three positioning technologies were compared, and then the most optimal technique was used in patients with GGO. Technical success and post-operative complications were used as primary endpoints. Results All three localizing techniques were successfully performed in the re-aerated fresh swine lung. The median tractive force of semi-rigid single hook wire, double-thorn hook wire and microcoil were 6.5, 4.85 and 0.2 N, which measured by a spring dynamometer. The wound sizes in the superficial pleura, caused by unplugging the needles, were 2 mm in double-thorn hook wire, 1 mm in semi-rigid single hook and 1 mm in microcoil, respectively. In patients with GGOs, the semi-rigid hook wires localizations were successfully performed, without any complication that need to be intervened. Dislodgement was reported in one patient before VATS. No major complications related to the preoperative hook wire localization and VATS were observed. Conclusions We found from our localization experiments in the swine lung that, among the commonly used three localization methods, semi-rigid hook wire showed the best operability and practicability than double-thorn hook wire and microcoil. Preoperative localization of small pulmonary nodules with single semi-rigid hook wire system shows a high success rate, acceptable utility and especially low dislodgement in VATS. PMID:29312722
Spreading devices into a 2-D module layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.; Gupta, Vipin P.; Nielson, Gregory N.
An apparatus, method, and system, the apparatus including a receiving member dimensioned to receive an array of microelectronic devices; and a linkage member coupled to the receiving member, the linkage member configured to move the receiving member in at least two dimensions so as to modify a spacing between the electronic devices within the array of microelectronic devices received by the receiving member. The method including coupling an array of microelectronic devices to an expansion assembly; and expanding the expansion assembly so as to expand the array of microelectronic devices in at least two directions within a single plane. Themore » system including a support member; an expansion assembly coupled to the support member, the expansion assembly having a plurality of receiving members configured to move in at least two dimensions within a single plane; and a plurality of microelectronic devices coupled to each of the plurality of receiving members.« less
Evacuate and backfill apparatus and method
Oakley, David J.; Groves, Oliver J.
1985-01-01
An apparatus and method for treatment of hollow articles by evacuating existing gas or gases therefrom and purging or backfilling the articles with a second gas such as helium. The apparatus includes a sealed enclosure having an article storage drum mounted therein. A multiplicity of such articles are fed singly into the enclosure and loaded into radial slots formed in the drum. The enclosure is successively evacuated and purged with helium to replace the existing gas in the articles with helium. The purged articles are then discharged singly from the drum and transported out of the enclosure.
Investigation on growth and macro-defects of Er3+-doped BaY2F8 laser crystal
NASA Astrophysics Data System (ADS)
Wang, Shuai; Ruan, Yongfeng; Tsuboi, Taiju; Zhang, Shouchao; Wang, Youfa; Tong, Hongshuang
2013-08-01
Large BaY2F8 and Er3+-doped BaY2F8 single crystals were grown by the temperature gradient method. Three kinds of macro-defects were found in BaY2F8 single crystals. These macro-defects include cracks, growth striations and straight pipes. The morphologies and distribution regularities of these macro-defects were observed and studied using a solid polarization microscope. The formation mechanisms and the methods of eliminating these defects were discussed.
Strategies for the acquisition of transcriptional and epigenetic information in single cells.
Li, Guang; Dzilic, Elda; Flores, Nick; Shieh, Alice; Wu, Sean M
2017-03-01
As the basic unit of living organisms, each single cell has unique molecular signatures and functions. Our ability to uncover the transcriptional and epigenetic signature of single cells has been hampered by the lack of tools to explore this area of research. The advent of microfluidic single cell technology along with single cell genome-wide DNA amplification methods had greatly improved our understanding of the expression variation in single cells. Transcriptional expression profile by multiplex qPCR or genome-wide RNA sequencing has enabled us to examine genes expression in single cells in different tissues. With the new tools, the identification of new cellular heterogeneity, novel marker genes, unique subpopulations, and spatial locations of each single cell can be acquired successfully. Epigenetic modifications for each single cell can also be obtained via similar methods. Based on single cell genome sequencing, single cell epigenetic information including histone modifications, DNA methylation, and chromatin accessibility have been explored and provided valuable insights regarding gene regulation and disease prognosis. In this article, we review the development of strategies to obtain single cell transcriptional and epigenetic data. Furthermore, we discuss ways in which single cell studies may help to provide greater understanding of the mechanisms of basic cardiovascular biology that will eventually lead to improvement in our ability to diagnose disease and develop new therapies.
Microoptoelectromechanical system (MOEMS) based laser
Hutchinson, Donald P.
2003-11-04
A method for forming a folded laser and associated laser device includes providing a waveguide substrate, micromachining the waveguide substrate to form a folded waveguide structure including a plurality of intersecting folded waveguide paths, forming a single fold mirror having a plurality of facets which bound all ends of said waveguide paths except those reserved for resonator mirrors, and disposing a pair of resonator mirrors on opposite sides of the waveguide to form a lasing cavity. A lasing material is provided in the lasing cavity. The laser can be sealed by disposing a top on the waveguide substrate. The laser can include a re-entrant cavity, where the waveguide substrate is disposed therein, the re-entrant cavity including the single fold mirror.
Method of forming particulate materials for thin-film solar cells
Eberspacher, Chris; Pauls, Karen Lea
2004-11-23
A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.
Range of sound levels in the outdoor environment
Lewis S. Goodfriend
1977-01-01
Current methods of measuring and rating noise in a metropolitan area are examined, including real-time spectrum analysis and sound-level integration, producing a single-number value representing the noise impact for each hour or each day. Methods of noise rating for metropolitan areas are reviewed, and the various measures from multidimensional rating methods such as...
2010-08-01
available). It is assumed after this method is formally published that various standard vendors will offer other sources than the current single standard... single isomer. D Alkyl PAHs used to determine the SPME-GC/MS relative response factors including alkyl naphthalenes (1-methyl-, 2-methyl-, 1,2...Flag all compound results in the sample which were estimated above the upper calibration level with an “E” qualifier. 15. Precision and Bias 15.1 Single
Ordering of the O-O stretching vibrational frequencies in ozone
NASA Technical Reports Server (NTRS)
Scuseria, Gustavo E.; Lee, Timothy J.; Scheiner, Andrew C.; Schaefer, Henry F., III
1989-01-01
The ordering of nu1 and nu3 for O3 is incorrectly predicted by most theoretical methods, including some very high level methods. The first systematic electron correlation method based on one-reference configuration to solve this problem is the coupled cluster single and double excitation method. However, a relatively large basis set, triple zeta plus double polarization is required. Comparison with other theoretical methods is made.
In-line manufacture of carbon nanotubes
Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique
2015-04-28
Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.
Mixed Methods Research Designs in Counseling Psychology
ERIC Educational Resources Information Center
Hanson, William E.; Creswell, John W.; Clark, Vicki L. Plano; Petska, Kelly S.; Creswell, David J.
2005-01-01
With the increased popularity of qualitative research, researchers in counseling psychology are expanding their methodologies to include mixed methods designs. These designs involve the collection, analysis, and integration of quantitative and qualitative data in a single or multiphase study. This article presents an overview of mixed methods…
An ab initio study of the C3(+) cation using multireference methods
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Martin, J. M. L.; Francois, J. P.; Gijbels, R.
1991-01-01
The energy difference between the linear 2 sigma(sup +, sub u) and cyclic 2B(sub 2) structures of C3(+) has been investigated using large (5s3p2d1f) basis sets and multireference electron correlation treatments, including complete active space self consistent fields (CASSCF), multireference configuration interaction (MRCI), and averaged coupled-pair functional (ACPF) methods, as well as the single-reference quadratic configuration interaction (QCISD(T)) method. Our best estimate, including a correction for basis set incompleteness, is that the linear form lies above the cyclic from by 5.2(+1.5 to -1.0) kcal/mol. The 2 sigma(sup +, sub u) state is probably not a transition state, but a local minimum. Reliable computation of the cyclic/linear energy difference in C3(+) is extremely demanding of the electron correlation treatment used: of the single-reference methods previously considered, CCSD(T) and QCISD(T) perform best. The MRCI + Q(0.01)/(4s2p1d) energy separation of 1.68 kcal/mol should provide a comparison standard for other electron correlation methods applied to this system.
Genome amplification of single sperm using multiple displacement amplification.
Jiang, Zhengwen; Zhang, Xingqi; Deka, Ranjan; Jin, Li
2005-06-07
Sperm typing is an effective way to study recombination rate on a fine scale in regions of interest. There are two strategies for the amplification of single meiotic recombinants: repulsion-phase allele-specific PCR and whole genome amplification (WGA). The former can selectively amplify single recombinant molecules from a batch of sperm but is not scalable for high-throughput operation. Currently, primer extension pre-amplification is the only method used in WGA of single sperm, whereas it has limited capacity to produce high-coverage products enough for the analysis of local recombination rate in multiple large regions. Here, we applied for the first time a recently developed WGA method, multiple displacement amplification (MDA), to amplify single sperm DNA, and demonstrated its great potential for producing high-yield and high-coverage products. In a 50 mul reaction, 76 or 93% of loci can be amplified at least 2500- or 250-fold, respectively, from single sperm DNA, and second-round MDA can further offer >200-fold amplification. The MDA products are usable for a variety of genetic applications, including sequencing and microsatellite marker and single nucleotide polymorphism (SNP) analysis. The use of MDA in single sperm amplification may open a new era for studies on local recombination rates.
Crystal growth and scintillation properties of Pr-doped SrI2 single crystals
NASA Astrophysics Data System (ADS)
Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira
2018-04-01
Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.
Diba, K; Mirhendi, H; Kordbacheh, P; Rezaie, S
2014-01-01
In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species.
Diba, K.; Mirhendi, H.; Kordbacheh, P.; Rezaie, S.
2014-01-01
In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species. PMID:25242934
A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenlan; Köhn, Andreas; InnovationLab GmbH, Speyerer St. 4, D-69115 Heidelberg
2015-08-28
We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the targetmore » system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.« less
NASA Astrophysics Data System (ADS)
Higginson, Drew P.
2017-11-01
We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.
Method for fabricating silicon cells
Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent
1998-08-11
A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.
NASA Technical Reports Server (NTRS)
Bendura, R. J.; Renfroe, P. G.
1974-01-01
A detailed discussion of the application of a previously method to determine vehicle flight attitude using a single camera onboard the vehicle is presented with emphasis on the digital computer program format and data reduction techniques. Application requirements include film and earth-related coordinates of at least two landmarks (or features), location of the flight vehicle with respect to the earth, and camera characteristics. Included in this report are a detailed discussion of the program input and output format, a computer program listing, a discussion of modifications made to the initial method, a step-by-step basic data reduction procedure, and several example applications. The computer program is written in FORTRAN 4 language for the Control Data 6000 series digital computer.
Approximation of reliabilities for multiple-trait model with maternal effects.
Strabel, T; Misztal, I; Bertrand, J K
2001-04-01
Reliabilities for a multiple-trait maternal model were obtained by combining reliabilities obtained from single-trait models. Single-trait reliabilities were obtained using an approximation that supported models with additive and permanent environmental effects. For the direct effect, the maternal and permanent environmental variances were assigned to the residual. For the maternal effect, variance of the direct effect was assigned to the residual. Data included 10,550 birth weight, 11,819 weaning weight, and 3,617 postweaning gain records of Senepol cattle. Reliabilities were obtained by generalized inversion and by using single-trait and multiple-trait approximation methods. Some reliabilities obtained by inversion were negative because inbreeding was ignored in calculating the inverse of the relationship matrix. The multiple-trait approximation method reduced the bias of approximation when compared with the single-trait method. The correlations between reliabilities obtained by inversion and by multiple-trait procedures for the direct effect were 0.85 for birth weight, 0.94 for weaning weight, and 0.96 for postweaning gain. Correlations for maternal effects for birth weight and weaning weight were 0.96 to 0.98 for both approximations. Further improvements can be achieved by refining the single-trait procedures.
Perruche, Sylvain; Kleinclauss, François; Lienard, Agnès; Robinet, Eric; Tiberghien, Pierre; Saas, Philippe
2004-11-01
The monitoring of immune reconstitution in murine models of HC transplantation, using accurate and automated methods, is necessary in view of the recent developments of hematopoietic cell (HC) transplantation (including reduced intensity conditioning regimens) as well as emerging immunological concepts (such as the involvement of dendritic cells or regulatory T cells). Here, we describe the use of a single-platform approach based on flow cytometry and tubes that contain a defined number of microbeads to evaluate absolute blood cell counts in mice. This method, previously used in humans to quantify CD34+ stem cells or CD4+ T cells in HIV infected patients, was adapted for mouse blood samples. A CD45 gating strategy in this "lyse no wash" protocol makes it possible to discriminate erythroblasts or red blood cell debris from CD45+ leukocytes, thus avoiding cell loss. Tubes contain a lyophilized brightly fluorescent microbead pellet permitting the acquisition of absolute counts of leukocytes after flow cytometric analysis. We compared this method to determine absolute counts of circulating cells with another method combining Unopette reservoir diluted blood samples, hemocytometer, microscopic examination and flow cytometry. The sensitivity of this single-platform approach was evaluated in different situations encountered in allogeneic HC transplantation, including immune cell depletion after different conditioning regimens, activation status of circulating cells after transplantation, evaluation of in vivo cell depletion and hematopoietic progenitor mobilization in the periphery. This single-platform flow cytometric assay can also be proposed to standardize murine (or other mammalian species) leukocyte count determination for physiological, pharmacological/toxicological and diagnostic applications in veterinary practice.
NASA Astrophysics Data System (ADS)
D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.
2012-05-01
A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e
New insulation attachment method eliminates compatibility bondline stresses
NASA Technical Reports Server (NTRS)
Schneider, W. C.
1975-01-01
Auger-shaped single-point fastener attaches rigid surface insulation tiles to orbiter shuttle spacecraft. Method can be used to bond wide variety of materials, including insulation, elastomers, and fibrous materials. Since insulation is attached at only one point, insulation and structure are free to form without inducing bond separation.
Implementation of radiation shielding calculation methods. Volume 2: Seminar/Workshop notes
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.
1971-01-01
Detailed descriptions are presented of the input data for each of the MSFC computer codes applied to the analysis of a realistic nuclear propelled vehicle. The analytical techniques employed include cross section data, preparation, one and two dimensional discrete ordinates transport, point kernel, and single scatter methods.
ERIC Educational Resources Information Center
Curtis, Dan
2010-01-01
This article gives a simple method for determining the maximum interval of existence for a solution of a single, autonomous, first-order differential equation as well as the behavior of the solution as the independent variable approaches the ends of the interval. The methods used are elementary enough to be included in an introductory differential…
Conceptual Scoring and Classification Accuracy of Vocabulary Testing in Bilingual Children
ERIC Educational Resources Information Center
Anaya, Jissel B.; Peña, Elizabeth D.; Bedore, Lisa M.
2018-01-01
Purpose: This study examined the effects of single-language and conceptual scoring on the vocabulary performance of bilingual children with and without specific language impairment. We assessed classification accuracy across 3 scoring methods. Method: Participants included Spanish-English bilingual children (N = 247) aged 5;1 (years;months) to…
Technical aspects and recommendations for single-cell qPCR.
Ståhlberg, Anders; Kubista, Mikael
2018-02-01
Single cells are basic physiological and biological units that can function individually as well as in groups in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be able to distinguish different kinds, to understand their functions and determine how they interact with each other. During the last decade several technologies for single-cell profiling have been developed and used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most developed methods for single-cell profiling that can be used to interrogate several analytes, including DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the technique is still challenging, as it involves several experimental steps and few molecules are handled. Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental details and data will promote further development and make validation studies possible. Efforts aiming to standardize single-cell qPCR open up means to move single-cell analysis from specialized research settings to standard research laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C
2013-04-08
In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.
Single event mass spectrometry
Conzemius, Robert J.
1990-01-16
A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.
Targeting excited states in all-trans polyenes with electron-pair states.
Boguslawski, Katharina
2016-12-21
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
Method for implantation of high dopant concentrations in wide band gap materials
Usov, Igor [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM
2009-09-15
A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.
M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features
Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.
1998-06-02
Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.
Uncovering the single top: observation of electroweak top quark production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez, Jorge Armando
2009-01-01
The top quark is generally produced in quark and anti-quark pairs. However, the Standard Model also predicts the production of only one top quark which is mediated by the electroweak interaction, known as 'Single Top'. Single Top quark production is important because it provides a unique and direct way to measure the CKM matrix element V tb, and can be used to explore physics possibilities beyond the Standard Model predictions. This dissertation presents the results of the observation of Single Top using 2.3 fb -1 of Data collected with the D0 detector at the Fermilab Tevatron collider. The analysis includes the Single Top muon+jets and electron+jets final states and employs Boosted Decision Tress as a method to separate the signal from the background. The resulting Single Top cross section measurement is: (1) σ(pmore » $$\\bar{p}$$→ tb + X, tqb + X) = 3.74 -0.74 +0.95 pb, where the errors include both statistical and systematic uncertainties. The probability to measure a cross section at this value or higher in the absence of signal is p = 1.9 x 10 -6. This corresponds to a standard deviation Gaussian equivalence of 4.6. When combining this result with two other analysis methods, the resulting cross section measurement is: (2) σ(p$$\\bar{p}$$ → tb + X, tqb + X) = 3.94 ± 0.88 pb, and the corresponding measurement significance is 5.0 standard deviations.« less
Cascading pressure reactor and method for solar-thermochemical reactions
Ermanoski, Ivan
2017-11-14
Reactors and methods for solar thermochemical reactions are disclosed. The reactors and methods include a cascade of reduction chambers at successively lower pressures that leads to over an order of magnitude pressure decrease compared to a single-chambered design. The resulting efficiency gains are substantial, and represent an important step toward practical and efficient solar fuel production on a large scale.
Combining single-molecule manipulation and single-molecule detection.
Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J
2014-10-01
Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Braun, Joerg E; Serebrov, Victor
2017-01-01
Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.
Band structures in coupled-cluster singles-and-doubles Green's function (GFCCSD)
NASA Astrophysics Data System (ADS)
Furukawa, Yoritaka; Kosugi, Taichi; Nishi, Hirofumi; Matsushita, Yu-ichiro
2018-05-01
We demonstrate that the coupled-cluster singles-and-doubles Green's function (GFCCSD) method is a powerful and prominent tool drawing the electronic band structures and the total energies, which many theoretical techniques struggle to reproduce. We have calculated single-electron energy spectra via the GFCCSD method for various kinds of systems, ranging from ionic to covalent and van der Waals, for the first time: the one-dimensional LiH chain, one-dimensional C chain, and one-dimensional Be chain. We have found that the bandgap becomes narrower than in HF due to the correlation effect. We also show that the band structures obtained from the GFCCSD method include both quasiparticle and satellite peaks successfully. Besides, taking one-dimensional LiH as an example, we discuss the validity of restricting the active space to suppress the computational cost of the GFCCSD method. We show that the calculated results without bands that do not contribute to the chemical bonds are in good agreement with full-band calculations. With the GFCCSD method, we can calculate the total energies and spectral functions for periodic systems in an explicitly correlated manner.
Yan, Yifei; Zhang, Lisong; Yan, Xiangzhen
2016-01-01
In this paper, a single-slope tunnel pipeline was analysed considering the effects of vertical earth pressure, horizontal soil pressure, inner pressure, thermal expansion force and pipeline—soil friction. The concept of stagnation point for the pipeline was proposed. Considering the deformation compatibility condition of the pipeline elbow, the push force of anchor blocks of a single-slope tunnel pipeline was derived based on an energy method. Then, the theoretical formula for this force is thus generated. Using the analytical equation, the push force of the anchor block of an X80 large-diameter pipeline from the West—East Gas Transmission Project was determined. Meanwhile, to verify the results of the analytical method, and the finite element method, four categories of finite element codes were introduced to calculate the push force, including CAESARII, ANSYS, AutoPIPE and ALGOR. The results show that the analytical results agree well with the numerical results, and the maximum relative error is only 4.1%. Therefore, the results obtained with the analytical method can satisfy engineering requirements. PMID:26963097
Single image super-resolution based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia
2018-03-01
We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.
Fabrication method for cores of structural sandwich materials including star shaped core cells
Christensen, Richard M.
1997-01-01
A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded.
Method for fabricating silicon cells
Ruby, D.S.; Basore, P.A.; Schubert, W.K.
1998-08-11
A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.
Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus
2012-01-01
Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. Keywords: single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit PMID:22594601
Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2016-05-02
We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.
Device for calorimetric measurement
King, William P; Lee, Jungchul
2015-01-13
In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.
Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions
Giese, R.W.; Wang, P.
1996-04-30
Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.
Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications
NASA Astrophysics Data System (ADS)
Chen, Wen; Yu, Chao; Cai, Miaomiao
2017-04-01
GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic
Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen
2012-01-01
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130
Evacuate and backfill apparatus and method
Oakley, D.J.; Groves, O.J.
1984-06-27
An apparatus and method as described for treatment of hollow articles by evacuating existing gas or gases therefrom and purging or backfilling the articles with a second gas such as helium. The apparatus includes a sealed enclosure having an article storage drum mounted therein. A multiplicity of such articles are fed singly into the enclosure and loaded into radial slots formed in the drum. The enclosure is successively evacuated and purged with helium to replace the existing gas in the articles with helium. The purged articles are then discharged singly from the drum and transported out of the enclosure.
Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.
Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji
2013-01-01
The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.
Wu, Jian; Dai, Wei; Wu, Lin; Wang, Jinke
2018-02-13
Next-generation sequencing (NGS) is fundamental to the current biological and biomedical research. Construction of sequencing library is a key step of NGS. Therefore, various library construction methods have been explored. However, the current methods are still limited by some shortcomings. This study developed a new NGS library construction method, Single strand Adaptor Library Preparation (SALP), by using a novel single strand adaptor (SSA). SSA is a double-stranded oligonucleotide with a 3' overhang of 3 random nucleotides, which can be efficiently ligated to the 3' end of single strand DNA by T4 DNA ligase. SALP can be started with any denatured DNA fragments such as those sheared by Tn5 tagmentation, enzyme digestion and sonication. When started with Tn5-tagmented chromatin, SALP can overcome a key limitation of ATAC-seq and become a high-throughput NGS library construction method, SALP-seq, which can be used to comparatively characterize the chromatin openness state of multiple cells unbiasly. In this way, this study successfully characterized the comparative chromatin openness states of four different cell lines, including GM12878, HepG2, HeLa and 293T, with SALP-seq. Similarly, this study also successfully characterized the chromatin openness states of HepG2 cells with SALP-seq by using 10 5 to 500 cells. This study developed a new NGS library construction method, SALP, by using a novel kind of single strand adaptor (SSA), which should has wide applications in the future due to its unique performance.
Santoso, Yusdi; Kapanidis, Achillefs N.
2009-01-01
Gel electrophoresis is a standard biochemical technique used for separating biomolecules on the basis of size and charge. Despite the use of gels in early single-molecule experiments, gel electrophoresis has not been widely adopted for single-molecule fluorescence spectroscopy. We present a novel method that combines gel electrophoresis and single-molecule fluorescence spectroscopy to simultaneously purify and analyze biomolecules in a gel matrix. Our method, in-gel ALEX, uses non-denaturing gels to purify biomolecular complexes of interest from free components, aggregates, and non-specific complexes. The gel matrix also slows down translational diffusion of molecules, giving rise to long, high-resolution time traces without surface immobilization, which allow extended observations of conformational dynamics in a biologically friendly environment. We demonstrated the compatibility of this method with different types of single molecule spectroscopy techniques, including confocal detection and fluorescence-correlation spectroscopy. We demonstrated that in-gel ALEX can be used to study conformational dynamics at the millisecond timescale; by studying a DNA hairpin in gels, we directly observed fluorescence fluctuations due to conformational interconversion between folded and unfolded states. Our method is amenable to the addition of small molecules that can alter the equilibrium and dynamic properties of the system. In-gel ALEX will be a versatile tool for studying structures and dynamics of complex biomolecules and their assemblies. PMID:19863108
Single well surfactant test to evaluate surfactant floods using multi tracer method
Sheely, Clyde Q.
1979-01-01
Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.
Single image super-resolution based on approximated Heaviside functions and iterative refinement
Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian
2018-01-01
One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298
A Multiscale Software Tool for Field/Circuit Co-Simulation
2011-12-15
technology fields: Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): Number of graduating undergraduates funded by a...times more efficient than FDTD for such a problem in 3D . The techniques in class (c) above include the discontinuous Galerkin method and multidomain...implements a finite-differential-time-domain method on single field propagation in a 3D space. We consider a cavity model which includes two electric
High sensitivity fluorescent single particle and single molecule detection apparatus and method
Mathies, Richard A.; Peck, Konan; Stryer, Lubert
1990-01-01
Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.
Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level
Chen, Zixi; Chen, Lei; Zhang, Weiwen
2017-01-01
Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented. PMID:28979258
A single cell penetration system by ultrasonic driving
NASA Astrophysics Data System (ADS)
Zhou, Zhaoying; Xiao, Mingfei; Yang, Xing; Wu, Ting
2008-12-01
The researches of single cell's control and operation are the hotspots in whole world. Among the various technologies, the transmission of ectogenic genetic materials between cell membrane is very significant. Imitating the Chinese traditional acupuncture therapy, a new ultrasonic resonance driving method, is imported to drive a cell's penetration probe. A set of the single cell penetration system was established to perform this function. This system includes four subsystems: driving part, micromanipulation part, observation and measurement part, and actuation part. Some fish egg experiments indicate that this system is workable and effective.
One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features
Tsapstsis, Michael; Zhang, Xueyi
2015-11-17
A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.
Wang, Rong; Xu, Xin
2015-12-01
To compare the effect of 2 methods of occlusion adjustment on occlusal balance and muscles of mastication in patients with dental implant restoration. Twenty patients, each with a single edentulous posterior dentition with no distal dentition were selected, and divided into 2 groups. Patients in group A underwent original occlusion adjustment method and patients in group B underwent occlusal plane reduction technique. Ankylos implants were implanted in the edentulous space in each patient and restored with fixed prosthodontics single unit crown. Occlusion was adjusted in each restoration accordingly. Electromyograms were conducted to determine the effect of adjustment methods on occlusion and muscles of mastication 3 months and 6 months after initial restoration and adjustment. Data was collected and measurements for balanced occlusal measuring standards were obtained, including central occlusion force (COF), asymmetry index of molar occlusal force(AMOF). Balanced muscles of mastication measuring standards were also obtained including measurements from electromyogram for the muscles of mastication and the anterior bundle of the temporalis muscle at the mandibular rest position, average electromyogram measurements of the anterior bundle of the temporalis muscle at the intercuspal position(ICP), Astot, masseter muscle asymmetry index, and anterior temporalis asymmetry index (ASTA). Statistical analysis was performed using Student 's t test with SPSS 18.0 software package. Three months after occlusion adjustment, parameters of the original occlusion adjustment method were significantly different between group A and group B in balanced occlusal measuring standards and balanced muscles of mastication measuring standards. Six months after occlusion adjustment, parameters of the original occlusion adjustment methods were significantly different between group A and group B in balanced muscles of mastication measuring standards, but was no significant difference in balanced occlusal measuring standards. Using occlusion plane reduction adjustment technique, it is possible to obtain occlusion index and muscles of mastication's electromyogram index similar to the opposite side's natural dentition in patients with single unit fix prosthodontics crown and single posterior edentulous dentition without distal dentitions.
Vonhofen, Geraldine; Evangelista, Tonya; Lordeon, Patricia
2012-04-01
The traditional method of administering radioactive isotopes to pediatric patients undergoing ictal brain single photon emission computed tomography testing has been by manual injections. This method presents certain challenges for nursing, including time requirements and safety risks. This quality improvement project discusses the implementation of an automated injection system for isotope administration and its impact on staffing, safety, and nursing satisfaction. It was conducted in an epilepsy monitoring unit at a large urban pediatric facility. Results of this project showed a decrease in the number of nurses exposed to radiation and improved nursing satisfaction with the use of the automated injection system. In addition, there was a decrease in the number of nursing hours required during ictal brain single photon emission computed tomography testing.
Sampling methods for terrestrial amphibians and reptiles.
Paul Stephen Corn; R. Bruce Bury
1990-01-01
Methods described for sampling amphibians and reptiles in Douglas-fir forests in the Pacific Northwest include pitfall trapping, time-constrained collecting, and surveys of coarse woody debris. The herpetofauna of this region differ in breeding and nonbreeding habitats and vagility, so that no single technique is sufficient for a community study. A combination of...
ERIC Educational Resources Information Center
Kirst, Scott; Flood, Tim
2017-01-01
The integration of an undergraduate science content course and science methods course into a single combined course for preservice teachers, including a precourse field experience, was undertaken at a small, liberal arts college. The conceptual framework for this new delivery system was grounded in the "Next Generation Science Standards…
Equine recurrent uveitis: treatment.
Curling, Amanda
2011-06-01
Equine recurrent uveitis has traditionally been treated with medical management to reduce ocular inflammation and control pain during a single episode. Newer management methods include surgical options such as cyclosporine implantation and vitrectomy. These methods were developed not only to control inflammation but also to eliminate the underlying cause of uveitis in order to prevent recurrence.
Imparting Desired Attributes by Optimization in Structural Design
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2003-01-01
Commonly available optimization methods typically produce a single optimal design as a Constrained minimum of a particular objective function. However, in engineering design practice it is quite often important to explore as much of the design space as possible with respect to many attributes to find out what behaviors are possible and not possible within the initially adopted design concept. The paper shows that the very simple method of the sum of objectives is useful for such exploration. By geometrical argument it is demonstrated that if every weighting coefficient is allowed to change its magnitude and its sign then the method returns a set of designs that are all feasible, diverse in their attributes, and include the Pareto and non-Pareto solutions, at least for convex cases. Numerical examples in the paper include a case of an aircraft wing structural box with thousands of degrees of freedom and constraints, and over 100 design variables, whose attributes are structural mass, volume, displacement, and frequency. The method is inherently suitable for parallel, coarse-grained implementation that enables exploration of the design space in the elapsed time of a single structural optimization.
Souza e Silva, Rebeca de; Vieira, Elisabeth Meloni
2009-01-01
This article presents the results of a study in the city of São Paulo, Brazil, aimed at estimating the frequency of induced abortion among women 15 to 49 years of age. The objective was to characterize the occurrence of induced abortion by comparing the ideal number of children, age, and contraceptive use between married and single women. Based on random sampling, 1,749 interviews were held, including 764 married women, 658 single women, and 327 with other marital status. The analysis included: mean number of abortions per woman by analysis of variance and proportions of abortions and pregnancy, using the chi-square test. The mean abortion rate for married women (45 per thousand) did not differ statistically from that of single women. However, the pregnancy rate was much lower in single women, and when single women became pregnant they used abortion more frequently; while fewer than 2% of pregnancies in married women ended in induced abortions, among single women the abortion rate exceeded 18%. Therefore, the priority in the reproductive health field should be to invest in the supply and dissemination of appropriate contraceptive methods for women's early sexually active life.
A NEW METHOD FOR FINDING POINT SOURCES IN HIGH-ENERGY NEUTRINO DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Miller, M. Coleman
The IceCube collaboration has reported the first detection of high-energy astrophysical neutrinos, including ∼50 high-energy starting events, but no individual sources have been identified. It is therefore important to develop the most sensitive and efficient possible algorithms to identify the point sources of these neutrinos. The most popular current method works by exploring a dense grid of possible directions to individual sources, and identifying the single direction with the maximum probability of having produced multiple detected neutrinos. This method has numerous strengths, but it is computationally intensive and because it focuses on the single best location for a point source,more » additional point sources are not included in the evidence. We propose a new maximum likelihood method that uses the angular separations between all pairs of neutrinos in the data. Unlike existing autocorrelation methods for this type of analysis, which also use angular separations between neutrino pairs, our method incorporates information about the point-spread function and can identify individual point sources. We find that if the angular resolution is a few degrees or better, then this approach reduces both false positive and false negative errors compared to the current method, and is also more computationally efficient up to, potentially, hundreds of thousands of detected neutrinos.« less
Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin
2010-01-01
In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.
TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.
Cordero, Pablo; Stuart, Joshua M
2017-01-01
The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.
Single-mode fiber, velocity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.
2011-04-15
In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, wemore » demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.« less
Single-mode fiber, velocity interferometry.
Krauter, K G; Jacobson, G F; Patterson, J R; Nguyen, J H; Ambrose, W P
2011-04-01
In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats-this interference occurs between the "recently" shifted and "formerly unshifted" paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber. © 2011 American Institute of Physics
You, Shan; Ma, XianWu; Zhang, ChangZhu; Li, Qiang; Shi, WenWei; Zhang, Jing; Yuan, XiaoDong
2018-03-01
To present a single-kidney CT-GFR measurement and compare it with the renal dynamic imaging Gates-GFR. Thirty-six patients with hydronephrosis referred for CT urography and 99mTc-DTPA renal dynamic imaging were prospectively included. Informed consent was obtained from all patients. The CT urography protocol included non-contrast, nephrographic, and excretory phase imaging. The total CT-GFR was calculated by dividing the CT number increments of the total urinary system between the nephrographic and excretory phase by the products of iodine concentration in the aorta and the elapsed time, then multiplied by (1- Haematocrit). The total CT-GFR was then split into single-kidney CT-GFR by a left and right kidney proportionality factor. The results were compared with single-kidney Gates-GFR by using paired t-test, correlation analysis, and Bland-Altman plots. Paired difference between single-kidney CT-GFR (45.02 ± 13.91) and single-kidney Gates-GFR (51.21 ± 14.76) was 6.19 ± 5.63 ml/min, p<0.001, demonstrating 12.1% systematic underestimation with ±11.03 ml/min (±21.5%) measurement deviation. A good correlation was revealed between both measurements (r=0.87, p<0.001). The proposed single-kidney CT-GFR correlates and agrees well with the reference standard despite a systematic underestimation, therefore it could be a one-stop-shop for evaluating urinary tract morphology and split renal function. • A new CT method can assess split renal function • Only using images from CT urography and the value of haematocrit • A one-stop-shop CT technique without additional radiation dose.
Logging-while-coring method and apparatus
Goldberg, David S.; Myers, Gregory J.
2007-11-13
A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.
Logging-while-coring method and apparatus
Goldberg, David S.; Myers, Gregory J.
2007-01-30
A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.
Fabrication method for cores of structural sandwich materials including star shaped core cells
Christensen, R.M.
1997-07-15
A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells is disclosed. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded. 3 figs.
Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic
NASA Astrophysics Data System (ADS)
Ignatiev, V. K.; Lebedev, N. G.; Orlov, A. A.
2018-01-01
A quantum model of a single-domain magnetically soft ferromagnetic is proposed. The α-Fe crystal in a state of the saturation magnetization and a variable magnetic field is considered as a sample. The method of an effective Hamiltonian, including the operators of the Zeeman energy, the spin-orbit interaction and the interaction with the crystal field, is used in the model. An expansion of trial single-electron wave function in a series in small parameter of the spin-orbit interaction is suggested to account for the magnetic anisotropy. Within the framework of the Heisenberg representation, the nonlinear equations of motion for the magnetization and the orbital moment of single domain are obtained. Parameters of the modelling Hamiltonian are found from a comparison with experimental data on the magnetic anisotropy of iron. A phenomenological term of the magnetic friction is introduced into equation of the magnetization motion. Nonlinear equations are solved numerically by the Runge-Kutta method. A dependence of the single domain magnetization on magnetic field intensity has a characteristic form of a hysteresis loop which parameters are quantitatively coordinated with experimental data of researches of magnetic properties of nanoparticles of iron and iron oxide. The method is extended for modelling the magnetization dynamics of multi-domain ferromagnetic in the approximation of a strong crystal field.
Single bus star connected reluctance drive and method
Fahimi, Babak; Shamsi, Pourya
2016-05-10
A system and methods for operating a switched reluctance machine includes a controller, an inverter connected to the controller and to the switched reluctance machine, a hysteresis control connected to the controller and to the inverter, a set of sensors connected to the switched reluctance machine and to the controller, the switched reluctance machine further including a set of phases the controller further comprising a processor and a memory connected to the processor, wherein the processor programmed to execute a control process and a generation process.
Replica amplification of nucleic acid arrays
Church, George M.; Mitra, Robi D.
2010-08-31
Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
Methods and apparatus for determining cardiac output
NASA Technical Reports Server (NTRS)
Cohen, Richard J. (Inventor); Sherman, Derin A. (Inventor); Mukkamala, Ramakrishna (Inventor)
2010-01-01
The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.
Elbing, Karen; Brent, Roger
2002-08-01
The procedure for inoculating overnight (starter) cultures of E. coli from a single colony is described along with considerations for growing larger cultures. Also included are two methods for monitoring cell growth using a spectrophotometer or a hemacytometer.
Goyal, Amit; Kroeger, Donald M.
2003-11-11
A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.
Zhang, Wei-Ya; Sun, Yin; Wang, Cheng-Ming; Wu, Cai-Ying
2011-09-01
Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol-gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol-gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol-gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L(-1) (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L(-1) for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.
Liu, Na; Liu, Lin; Pan, Xinghua
2014-07-01
Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.
Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.
2013-01-01
We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231
NASA Technical Reports Server (NTRS)
Mark, W. D.
1982-01-01
A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.
An evaluation of methods for estimating decadal stream loads
NASA Astrophysics Data System (ADS)
Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-11-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
An evaluation of methods for estimating decadal stream loads
Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-01-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo
2015-04-01
This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.
Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo
2015-01-01
This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, Drew P.
Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less
Higginson, Drew P.
2017-08-12
Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less
Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.
Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline
2012-05-17
The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit.
Thom, Howard H Z; Capkun, Gorana; Cerulli, Annamaria; Nixon, Richard M; Howard, Luke S
2015-04-12
Network meta-analysis (NMA) is a methodology for indirectly comparing, and strengthening direct comparisons of two or more treatments for the management of disease by combining evidence from multiple studies. It is sometimes not possible to perform treatment comparisons as evidence networks restricted to randomized controlled trials (RCTs) may be disconnected. We propose a Bayesian NMA model that allows to include single-arm, before-and-after, observational studies to complete these disconnected networks. We illustrate the method with an indirect comparison of treatments for pulmonary arterial hypertension (PAH). Our method uses a random effects model for placebo improvements to include single-arm observational studies into a general NMA. Building on recent research for binary outcomes, we develop a covariate-adjusted continuous-outcome NMA model that combines individual patient data (IPD) and aggregate data from two-arm RCTs with the single-arm observational studies. We apply this model to a complex comparison of therapies for PAH combining IPD from a phase-III RCT of imatinib as add-on therapy for PAH and aggregate data from RCTs and single-arm observational studies, both identified by a systematic review. Through the inclusion of observational studies, our method allowed the comparison of imatinib as add-on therapy for PAH with other treatments. This comparison had not been previously possible due to the limited RCT evidence available. However, the credible intervals of our posterior estimates were wide so the overall results were inconclusive. The comparison should be treated as exploratory and should not be used to guide clinical practice. Our method for the inclusion of single-arm observational studies allows the performance of indirect comparisons that had previously not been possible due to incomplete networks composed solely of available RCTs. We also built on many recent innovations to enable researchers to use both aggregate data and IPD. This method could be used in similar situations where treatment comparisons have not been possible due to restrictions to RCT evidence and where a mixture of aggregate data and IPD are available.
ERIC Educational Resources Information Center
Ingram, Deborah D.; Parker, Jennifer D.; Schenker, Nathaniel; Weed, James A.; Hamilton, Brady; Arias, Elizabeth; Madans, Jennifer H.
This report documents the National Center for Health Statistics' (NCHS) methods for bridging the Census 2000 multiple-race resident population to single-race categories and describing bridged race resident population estimates. Data came from the pooled 1997-2000 National Health Interview Surveys. The bridging models included demographic and…
A Comparison of Methods to Test for Mediation in Multisite Experiments
ERIC Educational Resources Information Center
Pituch, Keenan A.; Whittaker, Tiffany A.; Stapleton, Laura M.
2005-01-01
A Monte Carlo study extended the research of MacKinnon, Lockwood, Hoffman, West, and Sheets (2002) for single-level designs by examining the statistical performance of four methods to test for mediation in a multilevel experimental design. The design studied was a two-group experiment that was replicated across several sites, included a single…
Vitali, Francesca; Li, Qike; Schissler, A Grant; Berghout, Joanne; Kenost, Colleen; Lussier, Yves A
2017-12-18
The development of computational methods capable of analyzing -omics data at the individual level is critical for the success of precision medicine. Although unprecedented opportunities now exist to gather data on an individual's -omics profile ('personalome'), interpreting and extracting meaningful information from single-subject -omics remain underdeveloped, particularly for quantitative non-sequence measurements, including complete transcriptome or proteome expression and metabolite abundance. Conventional bioinformatics approaches have largely been designed for making population-level inferences about 'average' disease processes; thus, they may not adequately capture and describe individual variability. Novel approaches intended to exploit a variety of -omics data are required for identifying individualized signals for meaningful interpretation. In this review-intended for biomedical researchers, computational biologists and bioinformaticians-we survey emerging computational and translational informatics methods capable of constructing a single subject's 'personalome' for predicting clinical outcomes or therapeutic responses, with an emphasis on methods that provide interpretable readouts. (i) the single-subject analytics of the transcriptome shows the greatest development to date and, (ii) the methods were all validated in simulations, cross-validations or independent retrospective data sets. This survey uncovers a growing field that offers numerous opportunities for the development of novel validation methods and opens the door for future studies focusing on the interpretation of comprehensive 'personalomes' through the integration of multiple -omics, providing valuable insights into individual patient outcomes and treatments. © The Author 2017. Published by Oxford University Press.
Nguyen, Quan; Lukowski, Samuel; Chiu, Han; Senabouth, Anne; Bruxner, Timothy; Christ, Angelika; Palpant, Nathan; Powell, Joseph
2018-05-11
Heterogeneity of cell states represented in pluripotent cultures have not been described at the transcriptional level. Since gene expression is highly heterogeneous between cells, single-cell RNA sequencing can be used to identify how individual pluripotent cells function. Here, we present results from the analysis of single-cell RNA sequencing data from 18,787 individual WTC CRISPRi human induced pluripotent stem cells. We developed an unsupervised clustering method, and through this identified four subpopulations distinguishable on the basis of their pluripotent state including: a core pluripotent population (48.3%), proliferative (47.8%), early-primed for differentiation (2.8%) and late-primed for differentiation (1.1%). For each subpopulation we were able to identify the genes and pathways that define differences in pluripotent cell states. Our method identified four discrete predictor gene sets comprised of 165 unique genes that denote the specific pluripotency states; and using these sets, we developed a multigenic machine learning prediction method to accurately classify single cells into each of the subpopulations. Compared against a set of established pluripotency markers, our method increases prediction accuracy by 10%, specificity by 20%, and explains a substantially larger proportion of deviance (up to 3-fold) from the prediction model. Finally, we developed an innovative method to predict cells transitioning between subpopulations, and support our conclusions with results from two orthogonal pseudotime trajectory methods. Published by Cold Spring Harbor Laboratory Press.
System, Apparatus, and Method for Active Debris Removal
NASA Technical Reports Server (NTRS)
Hickey, Christopher J. (Inventor); Spehar, Peter T. (Inventor); Griffith, Sr., Anthony D. (Inventor); Kohli, Rajiv (Inventor); Burns, Susan H. (Inventor); Gruber, David J. (Inventor); Lee, David E. (Inventor); Robinson, Travis M. (Inventor); Damico, Stephen J. (Inventor); Smith, Jason T. (Inventor)
2017-01-01
Systems, apparatuses, and methods for removal of orbital debris are provided. In one embodiment, an apparatus includes a spacecraft control unit configured to guide and navigate the apparatus to a target. The apparatus also includes a dynamic object characterization unit configured to characterize movement, and a capture feature, of the target. The apparatus further includes a capture and release unit configured to capture a target and deorbit or release the target. The collection of these apparatuses is then employed as multiple, independent and individually operated vehicles launched from a single launch vehicle for the purpose of disposing of multiple debris objects.
Amplification of biological targets via on-chip culture for biosensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason C.; Edwards, Thayne L.; Carson, Bryan
The present invention, in part, relates to methods and apparatuses for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. In some examples, the microculture apparatus includes a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.
A single-pixel X-ray imager concept and its application to secure radiographic inspections
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.; ...
2017-07-01
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
Port, Johannes; Tao, Ziran; Junger, Annika; Joppek, Christoph; Tempel, Philipp; Husemann, Kim; Singer, Florian; Latzin, Philipp; Yammine, Sophie; Nagel, Joachim H; Kohlhäufl, Martin
2017-11-01
For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF 6 ) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.
A single-pixel X-ray imager concept and its application to secure radiographic inspections
NASA Astrophysics Data System (ADS)
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.; White, Timothy A.; Pitts, William Karl; Jarman, Kenneth D.; Seifert, Allen
2017-07-01
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixel optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. In particular, it is found that an inspection with low noise ( < 1 %) and high undersampling ( > 256 ×) exhibits high robustness and security.
Nanopipette Apparatus for Manipulating Cells
NASA Technical Reports Server (NTRS)
Vilozny, Boaz (Inventor); Seger, R. Adam (Inventor); Actis, Paolo (Inventor); Pourmand, Nader (Inventor)
2017-01-01
Disclosed herein are methods and systems for controlled ejection of desired material onto surfaces including in single cells using nanopipettes, as well as ejection onto and into cells. Some embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller for depositing a user defined pattern on an arbitrary substrate for the purpose of controlled cell adhesion and growth. Alternate embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller and electronic control of a voltage differential in a bore of the nanopipette electroosmotically injecting material into a cell in a high-throughput manner and with minimal damage to the cell. Yet other embodiments are directed to method and system comprising functionalized nanopipettes combined with scanning ion conductance microscopy for studying molecular interactions and detection of biomolecules inside a single living cell.
Multi-ball and one-ball geolocation
NASA Astrophysics Data System (ADS)
Nelson, D. J.; Townsend, J. L.
2017-05-01
We present analysis methods that may be used to geolocate emitters using one or more moving receivers. While some of the methods we present may apply to a broader class of signals, our primary interest is locating and tracking ships from short pulsed transmissions, such as the maritime Automatic Identification System (AIS.) The AIS signal is difficult to process and track since the pulse duration is only 25 milliseconds, and the pulses may only be transmitted every six to ten seconds. In this article, we address several problems including accurate TDOA and FDOA estimation methods that do not require searching a two dimensional surface such as the cross-ambiguity surface. As an example, we apply these methods to identify and process AIS pulses from a single emitter, making it possible to geolocate the AIS signal using a single moving receiver.
Assessments of Fracture Toughness of Monolithic Ceramics-SEPB Versus SEVNB Methods
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2006-01-01
Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent in R-curve, and stable crack growth determined using back-face strain gaging.
Single-cell sequencing technologies: current and future.
Liang, Jialong; Cai, Wanshi; Sun, Zhongsheng
2014-10-20
Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Gole, Jeff; Gore, Athurva; Richards, Andrew; Chiu, Yu-Jui; Fung, Ho-Lim; Bushman, Diane; Chiang, Hsin-I; Chun, Jerold; Lo, Yu-Hwa; Zhang, Kun
2013-01-01
Genome sequencing of single cells has a variety of applications, including characterizing difficult-to-culture microorganisms and identifying somatic mutations in single cells from mammalian tissues. A major hurdle in this process is the bias in amplifying the genetic material from a single cell, a procedure known as polymerase cloning. Here we describe the microwell displacement amplification system (MIDAS), a massively parallel polymerase cloning method in which single cells are randomly distributed into hundreds to thousands of nanoliter wells and simultaneously amplified for shotgun sequencing. MIDAS reduces amplification bias because polymerase cloning occurs in physically separated nanoliter-scale reactors, facilitating the de novo assembly of near-complete microbial genomes from single E. coli cells. In addition, MIDAS allowed us to detect single-copy number changes in primary human adult neurons at 1–2 Mb resolution. MIDAS will further the characterization of genomic diversity in many heterogeneous cell populations. PMID:24213699
Churgin, Matthew A.; He, Liping; Murray, John I.; Fang-Yen, Christopher
2014-01-01
The spatial and temporal control of transgene expression is an important tool in C. elegans biology. We previously described a method for evoking gene expression in arbitrary cells by using a focused pulsed infrared laser to induce a heat shock response (Churgin et al 2013). Here we describe detailed methods for building and testing a system for performing single-cell heat shock. Steps include setting up the laser and associated components, coupling the laser beam to a microscope, and testing heat shock protocols. All steps can be carried out using readily available off-the-shelf components. PMID:24835576
Applications of the hybrid coordinate method to the TOPS autopilot
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1978-01-01
Preliminary results are presented from the application of the hybrid coordinate method to modeling TOPS (thermoelectric outer planet spacecraft) structural dynamics. Computer simulated responses of the vehicle are included which illustrate the interaction of relatively flexible appendages with an autopilot control system. Comparisons were made between simplified single-axis models of the control loop, with spacecraft flexibility represented by hinged rigid bodies, and a very detailed three-axis spacecraft model whose flexible portions are described by modal coordinates. While single-axis system, root loci provided reasonable qualitative indications of stability margins in this case, they were quantitatively optimistic when matched against responses of the detailed model.
The Use of Rapid Review Methods for the U.S. Preventive Services Task Force.
Patnode, Carrie D; Eder, Michelle L; Walsh, Emily S; Viswanathan, Meera; Lin, Jennifer S
2018-01-01
Rapid review products are intended to synthesize available evidence in a timely fashion while still meeting the needs of healthcare decision makers. Various methods and products have been applied for rapid evidence syntheses, but no single approach has been uniformly adopted. Methods to gain efficiency and compress the review time period include focusing on a narrow clinical topic and key questions; limiting the literature search; performing single (versus dual) screening of abstracts and full-text articles for relevance; and limiting the analysis and synthesis. In order to maintain the scientific integrity, including transparency, of rapid evidence syntheses, it is imperative that procedures used to streamline standard systematic review methods are prespecified, based on sound review principles and empiric evidence when possible, and provide the end user with an accurate and comprehensive synthesis. The collection of clinical preventive service recommendations maintained by the U.S. Preventive Services Task Force, along with its commitment to rigorous methods development, provide a unique opportunity to refine, implement, and evaluate rapid evidence synthesis methods and add to an emerging evidence base on rapid review methods. This paper summarizes the U.S. Preventive Services Task Force's use of rapid review methodology, its criteria for selecting topics for rapid evidence syntheses, and proposed methods to streamline the review process. Copyright © 2018 American Journal of Preventive Medicine. All rights reserved.
Prediction of a service demand using combined forecasting approach
NASA Astrophysics Data System (ADS)
Zhou, Ling
2017-08-01
Forecasting facilitates cutting down operational and management costs while ensuring service level for a logistics service provider. Our case study here is to investigate how to forecast short-term logistic demand for a LTL carrier. Combined approach depends on several forecasting methods simultaneously, instead of a single method. It can offset the weakness of a forecasting method with the strength of another, which could improve the precision performance of prediction. Main issues of combined forecast modeling are how to select methods for combination, and how to find out weight coefficients among methods. The principles of method selection include that each method should apply to the problem of forecasting itself, also methods should differ in categorical feature as much as possible. Based on these principles, exponential smoothing, ARIMA and Neural Network are chosen to form the combined approach. Besides, least square technique is employed to settle the optimal weight coefficients among forecasting methods. Simulation results show the advantage of combined approach over the three single methods. The work done in the paper helps manager to select prediction method in practice.
2017-01-01
Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described. PMID:28542338
Young, Brian; King, Jonathan L; Budowle, Bruce; Armogida, Luigi
2017-01-01
Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described.
Manganese oxide nanowires, films, and membranes and methods of making
Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT
2008-10-21
Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.
Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan
2015-01-01
The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102
Design and fabrication of N x N optical couplers based on organic polymer optical waveguides
NASA Astrophysics Data System (ADS)
Krchnavek, Robert R.; Rode, Daniel L.
1994-08-01
In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.
Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong
2015-11-17
We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.
Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R
2017-07-05
Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell.
Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter
2010-01-01
Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925
2010-01-01
0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...body screening effect. In addition, a radial cutoff function is also applied to reduce calculation time . The MEAM for an alloy system is based on the...moduli Real materials are usually polycrystalline aggregates of randomly oriented single-crystal grains, each exhibiting single-crystalline elastic
Continuous throughput and long-term observation of single-molecule FRET without immobilization.
Tyagi, Swati; VanDelinder, Virginia; Banterle, Niccolò; Fuertes, Gustavo; Milles, Sigrid; Agez, Morgane; Lemke, Edward A
2014-03-01
We present an automated microfluidic platform that performs multisecond observation of single molecules with millisecond time resolution while bypassing the need for immobilization procedures. With this system, we confine biomolecules to a thin excitation field by reversibly collapsing microchannels to nanochannels. We demonstrate the power of our method by studying a variety of complex nucleic acid and protein systems, including DNA Holliday junctions, nucleosomes and human transglutaminase 2.
Litwin, S. D.; Ochs, H.; Pollara, B.
1973-01-01
Surface immunoglobulins on human peripheral blood lymphocytes were investigated by the mixed antiglobulin technique—using the single layer mixed antiglobulin method as originally described (SLMA), and a modification employing a double layer of antibody (DLMA). Lymphocytes isolated from the blood of normal individuals had a mean of 7.8 and 18.4 per cent Ig + cells by the SLMA and DLMA techniques respectively. The DLMA data are similar to results obtained by other methods of detecting membrane Igs indicating that the mixed antiglobulin method is comparable in sensitivity. When the total numbers of Ig + cells, obtained by separate κ and λ testing, were compared with results obtained using single anti-light chain antisera, there was no significant difference, suggesting that most positive lymphocytes carry a single variety of light chain. Lymphocytes from the blood of seventeen patients with primary immunodeficiency were analysed. Four patients with variable immunodeficiency and four others with absent serum IgA all had normal surface Igs including α chains. All members of a family having an X-linked immunodeficiency had normal surface Igs including the affected members and a presumed carrier. Four cases of immunodeficiency associated with thymoma proved to have disparate findings. One patient exhibited a selective absence of μ antigens on the membranes of blood lymphocytes of over 2800 tested cells. Two other cases had normal surface Igs while a fourth patient, previously reported, lacked all surface Igs. PMID:4796276
Developing and investigating the use of single-item measures in organizational research.
Fisher, Gwenith G; Matthews, Russell A; Gibbons, Alyssa Mitchell
2016-01-01
The validity of organizational research relies on strong research methods, which include effective measurement of psychological constructs. The general consensus is that multiple item measures have better psychometric properties than single-item measures. However, due to practical constraints (e.g., survey length, respondent burden) there are situations in which certain single items may be useful for capturing information about constructs that might otherwise go unmeasured. We evaluated 37 items, including 18 newly developed items as well as 19 single items selected from existing multiple-item scales based on psychometric characteristics, to assess 18 constructs frequently measured in organizational and occupational health psychology research. We examined evidence of reliability; convergent, discriminant, and content validity assessments; and test-retest reliabilities at 1- and 3-month time lags for single-item measures using a multistage and multisource validation strategy across 3 studies, including data from N = 17 occupational health subject matter experts and N = 1,634 survey respondents across 2 samples. Items selected from existing scales generally demonstrated better internal consistency reliability and convergent validity, whereas these particular new items generally had higher levels of content validity. We offer recommendations regarding when use of single items may be more or less appropriate, as well as 11 items that seem acceptable, 14 items with mixed results that might be used with caution due to mixed results, and 12 items we do not recommend using as single-item measures. Although multiple-item measures are preferable from a psychometric standpoint, in some circumstances single-item measures can provide useful information. (c) 2016 APA, all rights reserved).
Lee, James W.; Thundat, Thomas G.
2005-06-14
An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.
Method of Making Lightweight, Single Crystal Mirror
NASA Technical Reports Server (NTRS)
Bly, Vincent T. (Inventor)
2015-01-01
A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1995-01-01
Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.
Application of single-cell sequencing in human cancer.
Rantalainen, Mattias
2017-11-02
Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells, while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to characterize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the field. © The Author 2017. Published by Oxford University Press.
Approaches to Quality Risk Management When Using Single-Use Systems in the Manufacture of Biologics.
Ishii-Watabe, Akiko; Hirose, Akihiko; Katori, Noriko; Hashii, Norikata; Arai, Susumu; Awatsu, Hirotoshi; Eiza, Akira; Hara, Yoshiaki; Hattori, Hideshi; Inoue, Tomomi; Isono, Tetsuya; Iwakura, Masahiro; Kajihara, Daisuke; Kasahara, Nobuo; Matsuda, Hiroyuki; Murakami, Sei; Nakagawa, Taishiro; Okumura, Takehiro; Omasa, Takeshi; Takuma, Shinya; Terashima, Iyo; Tsukahara, Masayoshi; Tsutsui, Maiko; Yano, Takahiro; Kawasaki, Nana
2015-10-01
Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
A New Method for Single-Epoch Ambiguity Resolution with Indoor Pseudolite Positioning.
Li, Xin; Zhang, Peng; Guo, Jiming; Wang, Jinling; Qiu, Weining
2017-04-21
Ambiguity resolution (AR) is crucial for high-precision indoor pseudolite positioning. Due to the existing characteristics of the pseudolite positioning system, such as the geometry structure of the stationary pseudolite which is consistently invariant, the indoor signal is easy to interrupt and the first order linear truncation error cannot be ignored, and a new AR method based on the idea of the ambiguity function method (AFM) is proposed in this paper. The proposed method is a single-epoch and nonlinear method that is especially well-suited for indoor pseudolite positioning. Considering the very low computational efficiency of conventional AFM, we adopt an improved particle swarm optimization (IPSO) algorithm to search for the best solution in the coordinate domain, and variances of a least squares adjustment is conducted to ensure the reliability of the solving ambiguity. Several experiments, including static and kinematic tests, are conducted to verify the validity of the proposed AR method. Numerical results show that the IPSO significantly improved the computational efficiency of AFM and has a more elaborate search ability compared to the conventional grid searching method. For the indoor pseudolite system, which had an initial approximate coordinate precision better than 0.2 m, the AFM exhibited good performances in both static and kinematic tests. With the corrected ambiguity gained from our proposed method, indoor pseudolite positioning can achieve centimeter-level precision using a low-cost single-frequency software receiver.
Odendaal, Willem; Atkins, Salla; Lewin, Simon
2016-12-15
Formative programme evaluations assess intervention implementation processes, and are seen widely as a way of unlocking the 'black box' of any programme in order to explore and understand why a programme functions as it does. However, few critical assessments of the methods used in such evaluations are available, and there are especially few that reflect on how well the evaluation achieved its objectives. This paper describes a formative evaluation of a community-based lay health worker programme for TB and HIV/AIDS clients across three low-income communities in South Africa. It assesses each of the methods used in relation to the evaluation objectives, and offers suggestions on ways of optimising the use of multiple, mixed-methods within formative evaluations of complex health system interventions. The evaluation's qualitative methods comprised interviews, focus groups, observations and diary keeping. Quantitative methods included a time-and-motion study of the lay health workers' scope of practice and a client survey. The authors conceptualised and conducted the evaluation, and through iterative discussions, assessed the methods used and their results. Overall, the evaluation highlighted programme issues and insights beyond the reach of traditional single methods evaluations. The strengths of the multiple, mixed-methods in this evaluation included a detailed description and nuanced understanding of the programme and its implementation, and triangulation of the perspectives and experiences of clients, lay health workers, and programme managers. However, the use of multiple methods needs to be carefully planned and implemented as this approach can overstretch the logistic and analytic resources of an evaluation. For complex interventions, formative evaluation designs including multiple qualitative and quantitative methods hold distinct advantages over single method evaluations. However, their value is not in the number of methods used, but in how each method matches the evaluation questions and the scientific integrity with which the methods are selected and implemented.
Lamm, Ayelet T; Stadler, Michael R; Zhang, Huibin; Gent, Jonathan I; Fire, Andrew Z
2011-02-01
We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well-studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single-stranded RNA fragments and one involving circular-template PCR (CircLigase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of CircLigase-based and ssRNA-based capture for defining sequences and structures of the precise 5' ends (which were lost using the double-strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the poly(A) junction. Using data sets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures.
Single-Molecule Spectroscopy and Imaging Over the Decades
Moerner, W. E.; Shechtman, Yoav; Wang, Quan
2016-01-01
As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990's, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many talented scientists all over the world have extended our knowledge of the nanoscale and microscopic mechanisms previously hidden by ensemble averaging. PMID:26616210
[The principle and application of the single-molecule real-time sequencing technology].
Yanhu, Liu; Lu, Wang; Li, Yu
2015-03-01
Last decade witnessed the explosive development of the third-generation sequencing strategy, including single-molecule real-time sequencing (SMRT), true single-molecule sequencing (tSMSTM) and the single-molecule nanopore DNA sequencing. In this review, we summarize the principle, performance and application of the SMRT sequencing technology. Compared with the traditional Sanger method and the next-generation sequencing (NGS) technologies, the SMRT approach has several advantages, including long read length, high speed, PCR-free and the capability of direct detection of epigenetic modifications. However, the disadvantage of its low accuracy, most of which resulted from insertions and deletions, is also notable. So, the raw sequence data need to be corrected before assembly. Up to now, the SMRT is a good fit for applications in the de novo genomic sequencing and the high-quality assemblies of small genomes. In the future, it is expected to play an important role in epigenetics, transcriptomic sequencing, and assemblies of large genomes.
Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
Kussell, Edo
2017-01-01
Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748
Nagasawa, Takayuki; Sugai, Tamotsu; Shoji, Tadahiro; Habano, Wataru; Sugiyama, Toru
2016-11-01
Endometrial adenocarcinomas are characterized by the presence of many single tumor glands in which multiple genetic changes have accumulated. To elucidate the differences in molecular abnormalities among single tumor glands, individual tumor glands were analyzed and microsatellite alterations (loss of heterozygosity (LOH) and microsatellite instability [MSI]) were examined using the crypt isolation method in glands from each tumor from patients with endometrial carcinoma. Twenty-five patients with endometrial adenocarcinoma who underwent surgery were included in this study. We obtained cancerous individual isolated tumor glands from each patient using the crypt isolation method. For LOH and MSI analyses, we used 15 microsatellite markers (3p, 5q, 10q, 13q, 17p, 18q, BAT25, and BAT26) and the promoter regions of 6 genes (transforming growth factor beta receptor II, BAX, insulin-like growth factor II receptor, E2F4, MutS homolog 3, and MSH6). Loss of heterozygosity was detected in 8 (32%) of 25 patients, and MSI was detected in 9 (36%) of 25 patients. Some MSI-positive carcinomas had LOH in single tumor gland samples, and the coexistence of LOH and MSI was confirmed. In 16 (64%) of 25 cases, intratumoral genetic heterogeneity among single tumor gland samples was detected. By analyzing multiple single tumor glands within the same tumor, we found that endometrial adenocarcinoma was composed of various tumor glands with different molecular abnormalities, even in a limited region within the same tumor.
Multiple-3D-object secure information system based on phase shifting method and single interference.
Li, Wei-Na; Shi, Chen-Xiao; Piao, Mei-Lan; Kim, Nam
2016-05-20
We propose a multiple-3D-object secure information system for encrypting multiple three-dimensional (3D) objects based on the three-step phase shifting method. During the decryption procedure, five phase functions (PFs) are decreased to three PFs, in comparison with our previous method, which implies that one cross beam splitter is utilized to implement the single decryption interference. Moreover, the advantages of the proposed scheme also include: each 3D object can be decrypted discretionarily without decrypting a series of other objects earlier; the quality of the decrypted slice image of each object is high according to the correlation coefficient values, none of which is lower than 0.95; no iterative algorithm is involved. The feasibility of the proposed scheme is demonstrated by computer simulation results.
G/hiwot, Yirgalem; Degarege, Abraham; Erko, Berhanu
2014-01-01
Intestinal parasite infections are major public health problems of children in developing countries causing undernutrition, anemia, intestinal obstruction and mental and physical growth retardation. This study was conducted to assess the prevalence of intestinal helminthic infections among children under five years of age with emphasis on Schistosoma mansoni in Wonji Shoa Sugar Estate, Ethiopia. A cross-sectional parasitological survey was conducted in under-five children living in Wonji Shoa Sugar Estate Ethiopia, April, 2013. Stool samples were collected and examined for intestinal parasites using single Kato-Katz and single Sodium acetate-acetic acid-formalin (SAF) solution concentration methods. Out of 374 children examined using single Kato-Katz and single SAF-concentration methods, 24.3% were infected with at least one intestinal parasite species. About 10.4%, 8.8%, 4.6%, 2.9%, 1.6% and 0.8% of the children were infected with Hymenolepis nana, Schistosoma mansoni, Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworm, respectively. Prevalence of double, triple and quadruple intestinal helminthic infection was 6.4%, 0.54% and 1.1%, respectively. A significant increase in prevalence of S. mansoni (8.3% versus 3.2%) and T. trichiura (2.7% versus 0.5%) infection was observed when determined via the single Kato-Katz method compared to the prevalence of the parasites determined via the single SAF-concentration method. On the other hand, the single SAF-concentration method (9.1%) revealed a significantly higher prevalence of H. nana infection than the single Kato-Katz (1.6%) does. In conclusion, intestinal helminths infections particularly S. mansoni and H. nana were prevalent in under-five children of Wonji Shoa Sugar Estate. Including praziquantel treatment in the deworming program as per the World Health Organization guidelines would be vital to reduce the burden of these diseases in areas where S. mansoni and H. nana infections are prevalent among under-fives. Kato-Katz can be used in estimating the prevalence of S. mansoni and other helminth infections.
An Introduction to Photomicrography.
ERIC Educational Resources Information Center
Judson, Peter
1979-01-01
Described are various methods for producing black and white photographs of microscope slides using single lens reflex, fixed lens, and plate cameras. Procedures for illumination, film processing, mounting, and projection are also discussed. A table of comparative film speeds is included. (CS)
NASA Astrophysics Data System (ADS)
Shikhaliev, I. I.; Gainov, V. V.; Dorozhkin, A. N.; Nanii, O. E.; Konyshev, V. A.; Treshchikov, V. N.
2017-11-01
This paper describes techniques for measuring the SRS coefficient in a wide spectral range, including the region of small Stokes shifts. A simple, approximate method is proposed for evaluating the SRS coefficient near a gain peak. Spectral dependences of the SRS coefficient are presented for various telecom fibres.
Advances in phage display technology for drug discovery.
Omidfar, Kobra; Daneshpour, Maryam
2015-06-01
Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
NASA Astrophysics Data System (ADS)
Hosseini-Hashemi, Shahrokh; Sepahi-Boroujeni, Amin; Sepahi-Boroujeni, Saeid
2018-04-01
Normal impact performance of a system including a fullerene molecule and a single-layered graphene sheet is studied in the present paper. Firstly, through a mathematical approach, a new contact law is derived to describe the overall non-bonding interaction forces of the "hollow indenter-target" system. Preliminary verifications show that the derived contact law gives a reliable picture of force field of the system which is in good agreements with the results of molecular dynamics (MD) simulations. Afterwards, equation of the transversal motion of graphene sheet is utilized on the basis of both the nonlocal theory of elasticity and the assumptions of classical plate theory. Then, to derive dynamic behavior of the system, a set including the proposed contact law and the equations of motion of both graphene sheet and fullerene molecule is solved numerically. In order to evaluate outcomes of this method, the problem is modeled by MD simulation. Despite intrinsic differences between analytical and MD methods as well as various errors arise due to transient nature of the problem, acceptable agreements are established between analytical and MD outcomes. As a result, the proposed analytical method can be reliably used to address similar impact problems. Furthermore, it is found that a single-layered graphene sheet is capable of trapping fullerenes approaching with low velocities. Otherwise, in case of rebound, the sheet effectively absorbs predominant portion of fullerene energy.
Applications of Single-Cell Sequencing for Multiomics.
Xu, Yungang; Zhou, Xiaobo
2018-01-01
Single-cell sequencing interrogates the sequence or chromatin information from individual cells with advanced next-generation sequencing technologies. It provides a higher resolution of cellular differences and a better understanding of the underlying genetic and epigenetic mechanisms of an individual cell in the context of its survival and adaptation to microenvironment. However, it is more challenging to perform single-cell sequencing and downstream data analysis, owing to the minimal amount of starting materials, sample loss, and contamination. In addition, due to the picogram level of the amount of nucleic acids used, heavy amplification is often needed during sample preparation of single-cell sequencing, resulting in the uneven coverage, noise, and inaccurate quantification of sequencing data. All these unique properties raise challenges in and thus high demands for computational methods that specifically fit single-cell sequencing data. We here comprehensively survey the current strategies and challenges for multiple single-cell sequencing, including single-cell transcriptome, genome, and epigenome, beginning with a brief introduction to multiple sequencing techniques for single cells.
Method for forming silicon on a glass substrate
McCarthy, Anthony M.
1995-01-01
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.
Method for forming silicon on a glass substrate
McCarthy, A.M.
1995-03-07
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.
Zhou, Dong; Deng, Xu-Feng; Liu, Quan-Xing; Chen, Qian; Min, Jia-Xin; Dai, Ji-Gang
2016-05-27
In this meta-analysis, we conducted a pooled analysis of clinical studies comparing the efficacy of single chest tube versus double chest tube after a lobectomy. According to the recommendations of the Cochrane Collaboration, we established a rigorous study protocol. We performed a systematic electronic search of the PubMed, Embase, Cochrane Library and Web of Science databases to identify articles to include in our meta-analysis. A literature search was performed using relevant keywords. A meta-analysis was performed using RevMan© software. Five studies, published between 2003 and 2014, including 630 patients (314 patients with a single chest tube and 316 patients with a double chest tube), met the selection criteria. From the available data, the patients using a single tube demonstrated significantly decreased postoperative pain [weighted mean difference [WMD] -0.60; 95 % confidence intervals [CIs] -0.68-- 0.52; P < 0.00001], duration of drainage [WMD -0.70; 95 % CIs -0.90-- 0.49; P < 0.00001] and hospital stay [WMD -0.51; 95 % CIs -0.91-- 0.12; P = 0.01] compared to patients using a double tube after a pulmonary lobectomy. However, there were no significant differences in postoperative complications [OR 0.91; 95 % CIs 0.57-1.44; P = 0.67] and re-drainage rates [OR 0.81; 95 % CIs 0.42-1.58; P = 0.54]. Our results showed that a single-drain method is effective, reducing postoperative pain, hospitalization times and duration of drainage in patients who undergo a lobectomy. Moreover, the single-drain method does not increase the occurrence of postoperative complications and re-drainage rates.
Defect reduction in seeded aluminum nitride crystal growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.
2017-04-18
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Analytic approach to photoelectron transport.
NASA Technical Reports Server (NTRS)
Stolarski, R. S.
1972-01-01
The equation governing the transport of photoelectrons in the ionosphere is shown to be equivalent to the equation of radiative transfer. In the single-energy approximation this equation is solved in closed form by the method of discrete ordinates for isotropic scattering and for a single-constituent atmosphere. The results include prediction of the angular distribution of photoelectrons at all altitudes and, in particular, the angular distribution of the escape flux. The implications of these solutions in real atmosphere calculations are discussed.
Defect reduction in seeded aluminum nitride crystal growth
Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.
2017-06-06
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Defect reduction in seeded aluminum nitride crystal growth
Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert
2017-09-26
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
CD-ROM technology at the EROS data center
Madigan, Michael E.; Weinheimer, Mary C.
1993-01-01
The vast amount of digital spatial data often required by a single user has created a demand for media alternatives to 1/2" magnetic tape. One such medium that has been recently adopted at the U.S. Geological Survey's EROS Data Center is the compact disc (CD). CD's are a versatile, dynamic, and low-cost method for providing a variety of data on a single media device and are compatible with various computer platforms. CD drives are available for personal computers, UNIX workstations, and mainframe systems, either directly connected, or through a network. This medium furnishes a quick method of reproducing and distributing large amounts of data on a single CD. Several data sets are already available on CD's, including collections of historical Landsat multispectral scanner data and biweekly composites of Advanced Very High Resolution Radiometer data for the conterminous United States. The EROS Data Center intends to provide even more data sets on CD's. Plans include specific data sets on a customized disc to fulfill individual requests, and mass production of unique data sets for large-scale distribution. Requests for a single compact disc-read only memory (CD-ROM) containing a large volume of data either for archiving or for one-time distribution can be addressed with a CD-write once (CD-WO) unit. Mass production and large-scale distribution will require CD-ROM replication and mastering.
Article separation apparatus and method for unit operations
Pardini, Allan F.; Gervais, Kevin L.; Mathews, Royce A.; Hockey, Ronald L.
2010-06-22
An apparatus and method are disclosed for separating articles from a group of articles. The apparatus includes a container for containing one or more articles coupled to a suitable fluidizer for suspending articles within the container and transporting articles to an induction tube. A portal in the induction tube introduces articles singly into the induction tube. A vacuum pulls articles through the induction tube separating the articles from the group of articles in the container. The apparatus and method can be combined with one or more unit operations or modules, e.g., for inspecting articles, assessing quality of articles, or ascertaining material properties and/or parameters of articles, including layers thereof.
White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William; ...
2017-06-21
The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less
Synthesis and screening of one-bead-one-compound cyclic peptide libraries.
Qian, Ziqing; Upadhyaya, Punit; Pei, Dehua
2015-01-01
Cyclic peptides have been a rich source of biologically active molecules. Herein we present a method for the combinatorial synthesis and screening of large one-bead-one-compound (OBOC) libraries of cyclic peptides against biological targets such as proteins. Up to ten million different cyclic peptides are rapidly synthesized on TentaGel microbeads by the split-and-pool synthesis method and subjected to a multistage screening protocol which includes magnetic sorting, on-bead enzyme-linked and fluorescence-based assays, and in-solution binding analysis of cyclic peptides selectively released from single beads by fluorescence anisotropy. Finally, the most active hit(s) is identified by the partial Edman degradation-mass spectrometry (PED-MS) method. This method allows a single researcher to synthesize and screen up to ten million cyclic peptides and identify the most active ligand(s) in ~1 month, without the time-consuming and expensive hit resynthesis or the use of any special equipment.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William
The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less
Airborne sound transmission loss characteristics of wood-frame construction
NASA Astrophysics Data System (ADS)
Rudder, F. F., Jr.
1985-03-01
This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the sound transmission loss characteristics of other building components, such as windows and doors, are discussed. The second part of the report presents the prediction of the sound transmission loss of wood-frame construction. Appropriate calculation methods are described both for single-panel and for double-panel construction with sound absorption material in the cavity. With available methods, single-panel construction and double-panel construction with the panels connected by studs may be adequately characterized. Technical appendices are included that summarize laboratory measurements, compare measurement with theory, describe details of the prediction methods, and present sound transmission loss data for common building materials.
OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Gray, Justin S.
2012-01-01
The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.
Crystal growth of LiIn 1–xGa xSe 2 crystals
Wiggins, Brenden; Bell, Joseph; Woodward, Jonathan; ...
2016-10-22
Lithium containing chalcogenide single crystals have become very promising materials for photonics and radiation detection. Detection applications include nuclear nonproliferation, neutron science, and stellar investigations for the search of life. Synthesis and single crystal growth methods for lithium containing chalcogenide, specifically LiIn 1-xGa xSe 2, single crystals are discussed. This study elucidates the possibility of improving neutron detection by reducing the indium capture contribution; with the incorporation of the lithium-6 isotope, gallium substitution may overcome the neutron detection efficiency limitation of 6LiInSe 2 due to appreciable neutron capture by the indium-115 isotope. As a figure of merit, the ternary parentmore » compounds 6LiInSe 2 and 6LiGaSe 2 were included in this study. Quality crystals can be obtained utilizing the vertical Bridgman method to produce quaternary compounds with tunable optical properties. Here, quaternary crystals of varying quality depending on the gallium concentration, approximately 5 x 5 x 2 mm 3 or larger in volume, were harvested, analyzed and revealed tunable absorption characteristics between 2.8-3.4 eV.« less
Urtnasan, Erdenebayar; Park, Jong-Uk; Joo, Eun-Yeon; Lee, Kyoung-Joung
2018-04-23
In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F 1 -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
NASA Astrophysics Data System (ADS)
Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W.; Siddiqui, L.; Datta, S.
2005-08-01
We present a transport model for molecular conduction involving an extended Hückel theoretical treatment of the molecular chemistry combined with a nonequilibrium Green's function treatment of quantum transport. The self-consistent potential is approximated by CNDO (complete neglect of differential overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode configurations employing only a single adjustable parameter to locate the Fermi energy. As this model is based on semiempirical methods it is computationally inexpensive and flexible compared to ab initio models, yet at the same time it is able to capture salient qualitative features as well as several relevant quantitative details of transport. We apply our model to investigate recent experimental data on alkane dithiol molecules obtained in a nanopore setup. We also present a comparison study of single molecule transistors and identify electronic properties that control their performance.
Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)
1995-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
Single Molecule Electronics and Devices
Tsutsui, Makusu; Taniguchi, Masateru
2012-01-01
The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345
Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy
Woodside, Michael T.; Block, Steven M.
2015-01-01
Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850
NASA Astrophysics Data System (ADS)
Qian, Yu; Xing, Xing; Xu, Ya; Lu, Zhenda; Zhang, Weihua
2017-11-01
We report a simple yet robust method for fabricating single perovskite quantum dot (QD) decorated fiber nanotips. In this method, a single QD is directly picked up and subsequently glued on the apex of a specially fabricated cantilever fiber tip with a high success rate (approx. 70%) without using expensive close-loop feedback systems. Thanks to the flexibility and robustness of the fiber tips, no damage of the tips was observed in the process. Moreover, nanocrystal (NC) dispersing technique was developed to avoid undesired aggregations of QDs, and it guarantees that only one QD is glued each time. Finally, we demonstrate that this technique can also be applied to other oil-phase synthesized NCs, including CdSe QDs and upconversion luminescent NCs. It leads to many important applications on probing the local environment using high performance luminescent nanoprobes.
Single molecule targeted sequencing for cancer gene mutation detection.
Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui
2016-05-19
With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis.
Assessment Methods of Groundwater Overdraft Area and Its Application
NASA Astrophysics Data System (ADS)
Dong, Yanan; Xing, Liting; Zhang, Xinhui; Cao, Qianqian; Lan, Xiaoxun
2018-05-01
Groundwater is an important source of water, and long-term large demand make groundwater over-exploited. Over-exploitation cause a lot of environmental and geological problems. This paper explores the concept of over-exploitation area, summarizes the natural and social attributes of over-exploitation area, as well as expounds its evaluation methods, including single factor evaluation, multi-factor system analysis and numerical method. At the same time, the different methods are compared and analyzed. And then taking Northern Weifang as an example, this paper introduces the practicality of appraisal method.
NASA Astrophysics Data System (ADS)
Huang, Haifeng; Long, Jingjing; Yi, Wu; Yi, Qinglin; Zhang, Guodong; Lei, Bangjun
2017-11-01
In recent years, unmanned aerial vehicles (UAVs) have become widely used in emergency investigations of major natural hazards over large areas; however, UAVs are less commonly employed to investigate single geo-hazards. Based on a number of successful investigations in the Three Gorges Reservoir area, China, a complete UAV-based method for performing emergency investigations of single geo-hazards is described. First, a customized UAV system that consists of a multi-rotor UAV subsystem, an aerial photography subsystem, a ground control subsystem and a ground surveillance subsystem is described in detail. The implementation process, which includes four steps, i.e., indoor preparation, site investigation, on-site fast processing and application, and indoor comprehensive processing and application, is then elaborated, and two investigation schemes, automatic and manual, that are used in the site investigation step are put forward. Moreover, some key techniques and methods - e.g., the layout and measurement of ground control points (GCPs), route planning, flight control and image collection, and the Structure from Motion (SfM) photogrammetry processing - are explained. Finally, three applications are given. Experience has shown that using UAVs for emergency investigation of single geo-hazards greatly reduces the time, intensity and risks associated with on-site work and provides valuable, high-accuracy, high-resolution information that supports emergency responses.
Apel, William A.; Dugan, Patrick R.
1995-01-01
An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.
Apel, William A.; Dugan, Patrick R.
1995-04-04
An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.
DEsingle for detecting three types of differential expression in single-cell RNA-seq data.
Miao, Zhun; Deng, Ke; Wang, Xiaowo; Zhang, Xuegong
2018-04-24
The excessive amount of zeros in single-cell RNA-seq data include "real" zeros due to the on-off nature of gene transcription in single cells and "dropout" zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy. The R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor's consideration now. zhangxg@tsinghua.edu.cn. Supplementary data are available at Bioinformatics online.
Optofluidic Cell Selection from Complex Microbial Communities for Single-Genome Analysis
Landry, Zachary C.; Giovanonni, Stephen J.; Quake, Stephen R.; Blainey, Paul C.
2013-01-01
Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy. PMID:24060116
PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yildiz, Ahmet
2016-02-01
Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.
Current methods and advances in bone densitometry
NASA Technical Reports Server (NTRS)
Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.
1995-01-01
Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.
Single-reactor process for producing liquid-phase organic compounds from biomass
Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.
2015-12-08
Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.
Single-reactor process for producing liquid-phase organic compounds from biomass
Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI
2011-12-13
Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.
Ensemble of single quadrupolar nuclei in rotating solids: sidebands in NMR spectrum.
Kundla, Enn
2006-07-01
A novel way is proposed to describe the evolution of nuclear magnetic polarization and the induced NMR spectrum. In this method, the effect of a high-intensity external static magnetic field and the effects of proper Hamiltonian left over interaction components, which commute with the first, are taken into account simultaneously and equivalently. The method suits any concrete NMR problem. This brings forth the really existing details in the registered spectra, evoked by Hamiltonian secular terms, which may be otherwise smoothed due to approximate treatment of the effects of the secular terms. Complete analytical expressions are obtained describing the NMR spectra including the rotational sideband sets of single quadrupolar nuclei in rotating solids.
Handling, storage, and preparation of human tissues.
Dressler, L G; Visscher, D
2001-05-01
Human tissue for flow cytometry must be prepared as an adequate single-cell suspension. The appropriate methods for tissue collection, transport, storage, and dissociation depend on the cell parameters being measured and the localization of the markers. This unit includes a general method for collecting and transporting human tissue and preparing a tissue imprint. Protocols are supplied for tissue disaggregation by either mechanical or enzymatic means and for preparation of single-cell suspensions of whole cells from fine-needle aspirates, pleural effusions, abdominal fluids, or other body fluids. Other protocols detail preparation of intact nuclei from fresh, frozen, or paraffin-embedded tissue. Support protocols cover fixation, cryospin preparation, cryopreservation, and removal of debris.
Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays
NASA Astrophysics Data System (ADS)
Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim
2017-08-01
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.
Ion beam and plasma methods of producing diamondlike carbon films
NASA Technical Reports Server (NTRS)
Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.
1988-01-01
A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.
Chen, Shuonan; Mar, Jessica C
2018-06-19
A fundamental fact in biology states that genes do not operate in isolation, and yet, methods that infer regulatory networks for single cell gene expression data have been slow to emerge. With single cell sequencing methods now becoming accessible, general network inference algorithms that were initially developed for data collected from bulk samples may not be suitable for single cells. Meanwhile, although methods that are specific for single cell data are now emerging, whether they have improved performance over general methods is unknown. In this study, we evaluate the applicability of five general methods and three single cell methods for inferring gene regulatory networks from both experimental single cell gene expression data and in silico simulated data. Standard evaluation metrics using ROC curves and Precision-Recall curves against reference sets sourced from the literature demonstrated that most of the methods performed poorly when they were applied to either experimental single cell data, or simulated single cell data, which demonstrates their lack of performance for this task. Using default settings, network methods were applied to the same datasets. Comparisons of the learned networks highlighted the uniqueness of some predicted edges for each method. The fact that different methods infer networks that vary substantially reflects the underlying mathematical rationale and assumptions that distinguish network methods from each other. This study provides a comprehensive evaluation of network modeling algorithms applied to experimental single cell gene expression data and in silico simulated datasets where the network structure is known. Comparisons demonstrate that most of these assessed network methods are not able to predict network structures from single cell expression data accurately, even if they are specifically developed for single cell methods. Also, single cell methods, which usually depend on more elaborative algorithms, in general have less similarity to each other in the sets of edges detected. The results from this study emphasize the importance for developing more accurate optimized network modeling methods that are compatible for single cell data. Newly-developed single cell methods may uniquely capture particular features of potential gene-gene relationships, and caution should be taken when we interpret these results.
Analysis of gene expression in single live neurons.
Eberwine, J; Yeh, H; Miyashiro, K; Cao, Y; Nair, S; Finnell, R; Zettel, M; Coleman, P
1992-01-01
We present here a method for broadly characterizing single cells at the molecular level beyond the more common morphological and transmitter/receptor classifications. The RNA from defined single cells is amplified by microinjecting primer, nucleotides, and enzyme into acutely dissociated cells from a defined region of rat brain. Further processing yields amplified antisense RNA. A second round of amplification results in greater than 10(6)-fold amplification of the original starting material, which is adequate for analysis--e.g., use as a probe, making of cDNA libraries, etc. We demonstrate this method by constructing expression profiles of single live cells from rat hippocampus. This profiling suggests that cells that appear to be morphologically similar may show marked differences in patterns of expression. In addition, we characterize several mRNAs from a single cell, some of which were previously undescribed, perhaps due to "rarity" when averaged over many cell types. Electrophysiological analysis coupled with molecular biology within the same cell will facilitate a better understanding of how changes at the molecular level are manifested in functional properties. This approach should be applicable to a wide variety of studies, including development, mutant models, aging, and neurodegenerative disease. Images PMID:1557406
Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster
NASA Astrophysics Data System (ADS)
Jaisankar, S.; Sheshadri, T. S.
2018-05-01
Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.
2014-01-01
Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231
Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin
2014-04-28
It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.
Sequetyping: Serotyping Streptococcus pneumoniae by a Single PCR Sequencing Strategy
Leung, Marcus H.; Bryson, Kevin; Freystatter, Kathrin; Pichon, Bruno; Edwards, Giles; Gillespie, Stephen H.
2012-01-01
The introduction of pneumococcal conjugate vaccines necessitates continued monitoring of circulating strains to assess vaccine efficacy and replacement serotypes. Conventional serological methods are costly, labor-intensive, and prone to misidentification, while current DNA-based methods have limited serotype coverage requiring multiple PCR primers. In this study, a computer algorithm was developed to interrogate the capsulation locus (cps) of vaccine serotypes to locate primer pairs in conserved regions that border variable regions and could differentiate between serotypes. In silico analysis of cps from 92 serotypes indicated that a primer pair spanning the regulatory gene cpsB could putatively amplify 84 serotypes and differentiate 46. This primer set was specific to Streptococcus pneumoniae, with no amplification observed for other species, including S. mitis, S. oralis, and S. pseudopneumoniae. One hundred thirty-eight pneumococcal strains covering 48 serotypes were tested. Of 23 vaccine serotypes included in the study, most (19/22, 86%) were identified correctly at least to the serogroup level, including all of the 13-valent conjugate vaccine and other replacement serotypes. Reproducibility was demonstrated by the correct sequetyping of different strains of a serotype. This novel sequence-based method employing a single PCR primer pair is cost-effective and simple. Furthermore, it has the potential to identify new serotypes that may evolve in the future. PMID:22553238
Micro pulling down growth of very thin shape memory alloys single crystals
NASA Astrophysics Data System (ADS)
López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.
Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.
Haegele, Justin A; Hodge, Samuel Russell
2015-10-01
There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.
Siennicka, J; Trzcińska, A; Litwińska, B; Durlik, M; Seferyńska, I; Pałynyczko, G; Kańtoch, M
2000-01-01
In diagnosis of CMV infection various laboratory methods are used. The methods based on detection of viral nucleic acids have been introduced routinely in many laboratories. The aim of this study was to compare nucleic acid hybridisation method and various variants of PCR methods with respect to their ability to detect CMV DNA. The studied material comprised 60 blood samples from 19 patients including 13 renal transplant recipients and 6 with acute leukaemia. The samples were subjected to hybridisation (Murex Hybrid Capture System CMV DNA) and PCR carried out in 3 variants: with one pair of primers (single PCR), nested PCR and Digene SHARP System with detection of PCR product using a genetic probe in ELISA system. The sensitivity of the variants ranged from 10(0) particles of viral DNA in nested PCR to 10(2) in single PCR. The producer claimed the sensitivity of the hybridisation test to be 3 x 10(5) and it seems to be sufficient for detection of CMV infection. The obtained results show that sensitivity of hybridisation was comparable to that of single PCR and the possibility of obtaining quantitative results makes it superior, on efficacy of antiviral therapy, especially in monitoring CMV infection in immunossuppressed patients and in following the efficacy of antiviral treatment.
NASA Astrophysics Data System (ADS)
Berdanier, Reid A.; Key, Nicole L.
2016-03-01
The single slanted hot-wire technique has been used extensively as a method for measuring three velocity components in turbomachinery applications. The cross-flow orientation of probes with respect to the mean flow in rotating machinery results in detrimental prong interference effects when using multi-wire probes. As a result, the single slanted hot-wire technique is often preferred. Typical data reduction techniques solve a set of nonlinear equations determined by curve fits to calibration data. A new method is proposed which utilizes a look-up table method applied to a simulated triple-wire sensor with application to turbomachinery environments having subsonic, incompressible flows. Specific discussion regarding corrections for temperature and density changes present in a multistage compressor application is included, and additional consideration is given to the experimental error which accompanies each data reduction process. Hot-wire data collected from a three-stage research compressor with two rotor tip clearances are used to compare the look-up table technique with the traditional nonlinear equation method. The look-up table approach yields velocity errors of less than 5 % for test conditions deviating by more than 20 °C from calibration conditions (on par with the nonlinear solver method), while requiring less than 10 % of the computational processing time.
Ultrasonic characterization of single drops of liquids
Sinha, Dipen N.
1998-01-01
Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.
Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging.
Wu, Kui; Jia, Feifei; Zheng, Wei; Luo, Qun; Zhao, Yao; Wang, Fuyi
2017-07-01
Secondary ion mass spectrometry, including nanoscale secondary ion mass spectrometry (NanoSIMS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), has emerged as a powerful tool for biological imaging, especially for single cell imaging. SIMS imaging can provide information on subcellular distribution of endogenous and exogenous chemicals, including metallodrugs, from membrane through to cytoplasm and nucleus without labeling, and with high spatial resolution and chemical specificity. In this mini-review, we summarize recent progress in the field of SIMS imaging, particularly in the characterization of the subcellular distribution of metallodrugs. We anticipate that the SIMS imaging method will be widely applied to visualize subcellular distributions of drugs and drug candidates in single cells, exerting significant influence on early drug evaluation and metabolism in medicinal and pharmaceutical chemistry. Recent progress of SIMS applications in characterizing the subcellular distributions of metallodrugs was summarized.
1967-01-01
triple-screw ships exhibit better controllability than twin-screw and single-screw ships since they combine the favorable characteristics of both...transferring them from one space to another symmetrically located space; - by counterflooding; - through a combined method including counterflooding...with the partial righting of the ship, can pre- vent her from capsizing. The combined method of righting a ship (Fig. 3.5) is used in order to
ERIC Educational Resources Information Center
Kalchman, Mindy; Kozoll, Richard H.
2017-01-01
Methods for teaching early childhood mathematics and science are often addressed in a single, dual-content course. Approaches to teaching this type of course include integrating the content and the pedagogy of both subjects, or keeping the subject areas distinct. In this article, the authors discuss and illustrate their approach to such a combined…
Ground vibration test of the laminar flow control JStar airplane
NASA Technical Reports Server (NTRS)
Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.
1985-01-01
A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.
Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
2017-03-26
logistic constraints and associated travel time between points in the central and western Great Basin. The geographic and temporal breadth of our...surveys (MacKenzie and Royle 2005). In most cases, less time is spent traveling between sites on a given day when the single-day design is implemented...with the single-day design (110 hr). These estimates did not include return- travel time , which did not limit sampling effort. As a result, we could
Flight test techniques for the X-29A aircraft
NASA Technical Reports Server (NTRS)
Hicks, John W.; Cooper, James M., Jr.; Sefic, Walter J.
1987-01-01
The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches.
Soldering to a single atomic layer
NASA Astrophysics Data System (ADS)
Girit, ćaǧlar Ö.; Zettl, A.
2007-11-01
The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.
Soldering to a single atomic layer
NASA Astrophysics Data System (ADS)
Girit, Caglar; Zettl, Alex
2008-03-01
The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Tsui, C. Y.
1972-01-01
Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.
Noninvasive Prenatal Diagnosis of Single-Gene Disorders by Use of Droplet Digital PCR.
Camunas-Soler, Joan; Lee, Hojae; Hudgins, Louanne; Hintz, Susan R; Blumenfeld, Yair J; El-Sayed, Yasser Y; Quake, Stephen R
2018-02-01
Prenatal diagnosis in pregnancies at risk of single-gene disorders is currently performed using invasive methods such as chorionic villus sampling and amniocentesis. This is in contrast with screening for common aneuploidies, for which noninvasive methods with a single maternal blood sample have become standard clinical practice. We developed a protocol for noninvasive prenatal diagnosis of inherited single-gene disorders using droplet digital PCR from circulating cell-free DNA (cfDNA) in maternal plasma. First, the amount of cfDNA and fetal fraction is determined using a panel of TaqMan assays targeting high-variability single-nucleotide polymorphisms. Second, the ratio of healthy and diseased alleles in maternal plasma is quantified using TaqMan assays targeting the mutations carried by the parents. Two validation approaches of the mutation assay are presented. We collected blood samples from 9 pregnancies at risk for different single-gene disorders, including common conditions and rare metabolic disorders. We measured cases at risk of hemophilia, ornithine transcarbamylase deficiency, cystic fibrosis, β-thalassemia, mevalonate kinase deficiency, acetylcholine receptor deficiency, and DFNB1 nonsyndromic hearing loss. We correctly differentiated affected and unaffected pregnancies (2 affected, 7 unaffected), confirmed by neonatal testing. We successfully measured an affected pregnancy as early as week 11 and with a fetal fraction as low as 3.7% (0.3). Our method detects single-nucleotide mutations of autosomal recessive diseases as early as the first trimester of pregnancy. This is of importance for metabolic disorders in which early diagnosis can affect management of the disease and reduce complications and anxiety related to invasive testing. © 2017 American Association for Clinical Chemistry.
Single cell analysis of normal and leukemic hematopoiesis.
Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J
2018-02-01
The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.
Puszka, Agathe; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Derouard, Jacques; Dinten, Jean-Marc
2013-01-01
We show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board. Simulations and experiments are illustrated for a probe featuring the interfiber distance of 1.5 cm and show the potential of time-resolved techniques for imaging absorption contrast in depth with this geometry. PMID:23577292
Single shot multi-wavelength phase retrieval with coherent modulation imaging.
Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-04-15
A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.
Prince, H Miles; Adena, Michael; Smith, Dell Kingsford; Hertel, Judy
2007-01-01
Objective: To conduct a systematic review of the efficacy of single-agent bortezomib vs. single-agent thalidomide in patients with relapsed/refractory multiple. Methods: Publications in English from 1966 to June 2005 (MEDLINE, EMBASE, Cochrane library), publication reference lists, Janssen-Cilag data-on-file and abstracts from recent multiple myeloma conferences were reviewed. Prospective studies containing at least a single arm of either treatment group with n ≥ 30 were included. Studies adding dexamethasone for non-responders were excluded. Statistical pooling was performed for response rate and overall survival. Results: One bortezomib study (n = 333, NEJM 2005, 352; 2487–98) and 15 thalidomide (n = 1007) studies met these criteria and were included. Patient baseline characteristics including age, gender, IgG:IgA, disease duration and beta-2 microglobulin were well matched except that 48% of bortezomib patients had received prior thalidomide. Response rate, defined as serum M-protein reduction ≥ 50%, was 53% for patients receiving bortezomib vs. 32% for thalidomide (P < 0.001, n = 10 studies). Response rate determined by European Group for Blood and Marrow Transplantation (EBMT) criteria was 41% for patients receiving bortezomib vs. 22% for thalidomide (P < 0.001, n = 4 studies). Conclusion: Bortezomib was associated with a significantly higher response rate and complete remission rate using both M-protein and EBMT criteria. PMID:17608711
Corney, Roslyn; Puthussery, Shuby; Swinglehurst, Jane
2014-02-01
Marital or partnership status is seldom investigated as a primary contributing factor to women's wellbeing after a diagnosis of breast cancer. It has been suggested, however, that single childless women with breast cancer may face unique stressors. This paper explores the stressors and vulnerabilities of young single childless women with a first episode of breast cancer. A qualitative descriptive method was used. As part of a larger study examining fertility concerns of young childless women with first episode of breast cancer, in-depth semi-structured interviews were conducted with 10 single women. Recorded interviews were analysed using the framework approach. Findings cover three main themes: partnership worries; fertility concerns; and views about emotional and practical support received. Partnership worries included concerns about having to undergo treatment without a partner to support them; the fear of rejection by potential partners; and feelings about the precious time lost in diagnosis and treatment. Fertility concerns included dilemmas about having children and feelings about the options of pursuing Assisted Reproductive Techniques. Views about the emotional and practical support received included the overall support received as well as perceptions about the attitudes of health professionals towards fertility issues. Findings indicate that single childless women with breast cancer face additional vulnerabilities and may benefit from tailored support from health care professionals and interventions specifically targeted at them. Copyright © 2013 Elsevier Ltd. All rights reserved.
Weed Control for Establishing Intensively Cultured Hybrid Poplar Plantations
Edward Hansen; Daniel Netzer; W.J. Rietveld
1984-01-01
Compares effeects of various wee-control methods, including hericides, cultivation, and legume cover crop, on tree survival and height growth of 2-year-old hybrid poplars. Cultivation and herbicides singly or in combination gave consistently better results than the other treatment tested.
Gene expression profiling of single cells on large-scale oligonucleotide arrays
Hartmann, Claudia H.; Klein, Christoph A.
2006-01-01
Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717
Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R
2017-01-01
Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell. DOI: http://dx.doi.org/10.7554/eLife.26580.001 PMID:28678007
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.; Tang, Keqi
2014-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations. PMID:25267087
On the ionization and ion transmission efficiencies of different ESI-MS interfaces.
Cox, Jonathan T; Marginean, Ioan; Smith, Richard D; Tang, Keqi
2015-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas-phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method, we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations.
Single-molecule techniques in biophysics: a review of the progress in methods and applications.
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J M; Leake, Mark C
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Single-molecule techniques in biophysics: a review of the progress in methods and applications
NASA Astrophysics Data System (ADS)
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J. M.; Leake, Mark C.
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in ‘force spectroscopy’ techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.
2014-01-01
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618
Delorme, Arnaud; Miyakoshi, Makoto; Jung, Tzyy-Ping; Makeig, Scott
2014-01-01
With the advent of modern computing methods, modeling trial-to-trial variability in biophysical recordings including electroencephalography (EEG) has become of increasingly interest. Yet no widely used method exists for comparing variability in ordered collections of single-trial data epochs across conditions and subjects. We have developed a method based on an ERP-image visualization tool in which potential, spectral power, or some other measure at each time point in a set of event-related single-trial data epochs are represented as color coded horizontal lines that are then stacked to form a 2-D colored image. Moving-window smoothing across trial epochs can make otherwise hidden event-related features in the data more perceptible. Stacking trials in different orders, for example ordered by subject reaction time, by context-related information such as inter-stimulus interval, or some other characteristic of the data (e.g., latency-window mean power or phase of some EEG source) can reveal aspects of the multifold complexities of trial-to-trial EEG data variability. This study demonstrates new methods for computing and visualizing grand ERP-image plots across subjects and for performing robust statistical testing on the resulting images. These methods have been implemented and made freely available in the EEGLAB signal-processing environment that we maintain and distribute. PMID:25447029
Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.
Zheng, Xuelian; Yang, Shixin; Zhang, Dengwei; Zhong, Zhaohui; Tang, Xu; Deng, Kejun; Zhou, Jianping; Qi, Yiping; Zhang, Yong
2016-07-01
A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.
Ye, Qing
2013-06-01
In this work, microwave distillation assisted by Fe2 O3 magnetic microspheres (FMMS) and headspace single-drop microextraction were combined, and developed for determination of essential oil compounds in dried Zanthoxylum bungeanum Maxim (ZBM). The FMMS were used as microwave absorption solid medium for dry distillation of dried ZBM. Using the proposed method, isolation, extraction, and concentration of essential oil compounds can be carried out in a single step. The experimental parameters including extraction solvent, solvent volume, microwave power, irradiation time, and the amount of added FMMS, were studied. The optimal analytical conditions were: 2.0 μL decane as the extraction solvent, microwave power of 300 W, irradiation time of 2 min, and the addition of 0.1 g FMMS to ZBM. The method precision was from 4 to 10%. A total of 52 compounds were identified by the proposed method. The conventional steam distillation method was also used for the analysis of essential oil in dried ZBM and only 31 compounds were identified by steam distillation method. It was found that the proposed method is a simple, rapid, reliable, and solvent-free technique for the determination of volatile compounds in Chinese herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Incidence of Port-Site Incisional Hernia After Single-Incision Laparoscopic Surgery
Rainville, Harvey; Ikedilo, Ojinika; Vemulapali, Pratibha
2014-01-01
Background and Objectives: Single-incision laparoscopic surgery is gaining popularity among minimally invasive surgeons and is now being applied to a broad number of surgical procedures. Although this technique uses only 1 port, the diameter of the incision is larger than in standard laparoscopic surgery. The long-term incidence of port-site hernias after single-incision laparoscopic surgery has yet to be determined. Methods: All patients who underwent a single-incision laparoscopic surgical procedure from May 2008 through May 2009 were included in the study. Single-incision laparoscopic surgical operations were performed either by a multiport technique or with a 3-trocar single-incision laparoscopic surgery port. The patients were seen at 30 to 36 months' follow-up, at which time they were examined for any evidence of port-site incisional hernia. Patients found to have hernias on clinical examination underwent repairs with mesh. Results: A total of 211 patients met the criteria for inclusion in the study. The types of operations included were cholecystectomy, appendectomy, sleeve gastrectomy, gastric banding, Nissen fundoplication, colectomy, and gastrojejunostomy. We found a port-site hernia rate of 2.9% at 30 to 36 months' follow-up. Conclusion: Port-site incisional hernia after single-incision laparoscopic surgical procedures remains a major setback for patients. The true incidence remains largely unknown because most patients are asymptomatic and therefore do not seek surgical aid. PMID:24960483
Method of texturing a superconductive oxide precursor
DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.
1999-01-01
A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.
Theoretical study of the electric dipole moment function of the ClO molecule
NASA Technical Reports Server (NTRS)
Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.
1986-01-01
The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.
Cell structure for electrochemical devices and method of making same
Kaun, Thomas D.
1993-01-01
An electrochemical device comprises a plurality of cells, each cell including a laminate cell membrane, made up of a separator/electrolyte means interposed between alternating positive and negative electrodes, each type of electrode being respectively in common contact to a single current collector.
Cowan, Richard J; Abel, Leah; Candel, Lindsay
2017-05-01
We conducted a meta-analysis of single-subject research studies investigating the effectiveness of antecedent strategies grounded in behavioral momentum for improving compliance and on-task performance for students with autism. First, we assessed the research rigor of those studies meeting our inclusionary criteria. Next, in order to apply a universal metric to help determine the effectiveness of this category of antecedent strategies investigated via single-subject research methods, we calculated effect sizes via omnibus improvement rate differences (IRDs). Outcomes provide additional support for behavioral momentum, especially interventions incorporating the high-probability command sequence. Implications for research and practice are discussed, including the consideration of how single-subject research is systematically reviewed to assess the rigor of studies and assist in determining overall intervention effectiveness .
Whalon, Kelly J; Conroy, Maureen A; Martinez, Jose R; Werch, Brittany L
2015-06-01
The purpose of this review was to critically examine and summarize the impact of school-based interventions designed to facilitate the peer-related social competence of children with autism spectrum disorder (ASD). Reviewed studies employed a single-case experimental design, targeted peer-related social competence, included children 3-12 years old with an ASD, and took place in school settings. Articles were analyzed descriptively and using the evaluative method to determine study quality. Additionally, effect size estimates were calculated using nonoverlap of all pairs method and Tau-U. A total of 37 studies including 105 children were reviewed. Overall, ES estimates ranged from weak to strong, but on average, the reviewed interventions produced a moderate to strong effect, and quality ratings were generally in the acceptable to high range. Findings suggest that children with ASD can benefit from social skill interventions implemented with peers in school settings.
Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images
Frey, Eric C.; Humm, John L.; Ljungberg, Michael
2012-01-01
The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429
MICROBIAL LABORATORY GUIDANCE MANUAL FOR THE ...
The Long-Term 2 Enhanced Surface Water Treatment Rule Laboratory Instruction Manual will be a compilation of all information needed by laboratories and field personnel to collect, analyze, and report the microbiological data required under the rule. The manual will provide laboratories with a single source of information that currently is available from various sources including the latest versions of Methods 1622 and 1623, including all approved, equivalent modifications; the procedures for E.coli methods approved for use under the LT2ESWTR; lists of vendor sources; data recording forms; data reporting requirements; information on the Laboratory Quality Assurance Evaluation Program for the Analysis of Cryptosporidium in Water; and sample collection procedures. Although most of this information is available elsewhere, a single, comprehensive compendium containing this information is needed to aid utilities and laboratories performing the sampling and analysis activities required under the LT2 rule. This manual will serve as an instruction manual for laboratories to use when collecting data for Crypto, E. coli and turbidity.
Effect of genotyped cows in the reference population on the genomic evaluation of Holstein cattle.
Uemoto, Y; Osawa, T; Saburi, J
2017-03-01
This study evaluated the dependence of reliability and prediction bias on the prediction method, the contribution of including animals (bulls or cows), and the genetic relatedness, when including genotyped cows in the progeny-tested bull reference population. We performed genomic evaluation using a Japanese Holstein population, and assessed the accuracy of genomic enhanced breeding value (GEBV) for three production traits and 13 linear conformation traits. A total of 4564 animals for production traits and 4172 animals for conformation traits were genotyped using Illumina BovineSNP50 array. Single- and multi-step methods were compared for predicting GEBV in genotyped bull-only and genotyped bull-cow reference populations. No large differences in realized reliability and regression coefficient were found between the two reference populations; however, a slight difference was found between the two methods for production traits. The accuracy of GEBV determined by single-step method increased slightly when genotyped cows were included in the bull reference population, but decreased slightly by multi-step method. A validation study was used to evaluate the accuracy of GEBV when 800 additional genotyped bulls (POPbull) or cows (POPcow) were included in the base reference population composed of 2000 genotyped bulls. The realized reliabilities of POPbull were higher than those of POPcow for all traits. For the gain of realized reliability over the base reference population, the average ratios of POPbull gain to POPcow gain for production traits and conformation traits were 2.6 and 7.2, respectively, and the ratios depended on heritabilities of the traits. For regression coefficient, no large differences were found between the results for POPbull and POPcow. Another validation study was performed to investigate the effect of genetic relatedness between cows and bulls in the reference and test populations. The effect of genetic relationship among bulls in the reference population was also assessed. The results showed that it is important to account for relatedness among bulls in the reference population. Our studies indicate that the prediction method, the contribution ratio of including animals, and genetic relatedness could affect the prediction accuracy in genomic evaluation of Holstein cattle, when including genotyped cows in the reference population.
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong
2017-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.
He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R
2015-07-14
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection
He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.
2015-01-01
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong
2016-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
New Method Developed To Purify Single Wall Carbon Nanotubes for Aerospace Applications
NASA Technical Reports Server (NTRS)
Lebron, Marisabel; Meador, Michael A.
2003-01-01
Single wall carbon nanotubes have attracted considerable attention because of their remarkable mechanical properties and electrical and thermal conductivities. Use of these materials as primary or secondary reinforcements in polymers or ceramics could lead to new materials with significantly enhanced mechanical strength and electrical and thermal conductivity. Use of carbon-nanotube-reinforced materials in aerospace components will enable substantial reductions in component weight and improvements in durability and safety. Potential applications for single wall carbon nanotubes include lightweight components for vehicle structures and propulsion systems, fuel cell components (bipolar plates and electrodes) and battery electrodes, and ultra-lightweight materials for use in solar sails. A major barrier to the successful use of carbon nanotubes in these components is the need for methods to economically produce pure carbon nanotubes in large enough quantities to not only evaluate their suitability for certain applications but also produce actual components. Most carbon nanotube synthesis methods, including the HiPCO (high pressure carbon monoxide) method developed by Smalley and others, employ metal catalysts that remain trapped in the final product. These catalyst impurities can affect nanotube properties and accelerate their decomposition. The development of techniques to remove most, if not all, of these impurities is essential to their successful use in practical applications. A new method has been developed at the NASA Glenn Research Center to purify gram-scale quantities of single wall carbon nanotubes. This method, a modification of a gas phase purification technique previously reported by Smalley and others, uses a combination of high-temperature oxidations and repeated extractions with nitric and hydrochloric acid. This improved procedure significantly reduces the amount of impurities (catalyst and nonnanotube forms of carbon) within the nanotubes, increasing their stability significantly. The onset of decomposition of the purified nanotubes (determined by thermal gravimetric analysis in air) is more than 300 C higher than that of the crude nanotubes. Transmission electron microscopy analysis of nanotubes purified by this method reveals near complete removal of iron catalyst particles. Analysis of the nanotubes using inductively coupled plasma spectroscopy revealed that the iron content of the nanotubes was reduced from 22.7 wt% in the crude nanotubes to less than 0.02 wt%. X-ray photoelectron spectroscopy revealed a decrease in iron content after purification as well as an increase in oxygen content due to the formation of carboxylic acid groups on the surface of the nanotubes. Nanotubes purified by this improved method can be readily dispersed in common organic solvents, in particular N,N-dimethylformamide, using prolonged ultrasonic treatment. These dispersions can then be used to incorporate single wall carbon nanotubes into polymer films.
A rapid single-tube protocol for HAV detection by nested real-time PCR.
Hu, Yuan; Arsov, Ivica
2014-09-01
Infections by food-borne viruses such as hepatitis A virus (HAV) and norovirus are significant public health concerns worldwide. Since food-borne viruses are rarely confirmed through direct isolation from contaminated samples, highly sensitive molecular techniques remain the methods of choice for the detection of viral genetic material. Our group has previously developed a specific nested real-time PCR (NRT-PCR) assay for HAV detection that improved overall sensitivity. Furthermore in this study, we have developed a single-tube NRT-PCR approach for HAV detection in food samples that reduces the likelihood of cross contamination between tubes during sample manipulation. HAV RNA was isolated from HAV-spiked food samples and HAV-infected cell cultures. All reactions following HAV RNA isolation, including conventional reverse transcriptase PCR, nested-PCR, and RT-PCR were performed in a single tube. Our results demonstrated that all the samples tested positive by RT-PCR and nested-PCR were also positive by a single-tube NRT-PCR. The detection limits observed for HAV-infected cell cultures and HAV-spiked green onions were 0.1 and 1 PFU, respectively. This novel method retained the specificity and robustness of the original NRT-PCR method, while greatly reducing sample manipulation, turnaround time, and the risk of carry-over contamination. Single-tube NRT-PCR thus represents a promising new tool that can potentially facilitate the detection of HAV in foods thereby improving food safety and public health.
Validation of electronic structure methods for isomerization reactions of large organic molecules.
Luo, Sijie; Zhao, Yan; Truhlar, Donald G
2011-08-14
In this work the ISOL24 database of isomerization energies of large organic molecules presented by Huenerbein et al. [Phys. Chem. Chem. Phys., 2010, 12, 6940] is updated, resulting in the new benchmark database called ISOL24/11, and this database is used to test 50 electronic model chemistries. To accomplish the update, the very expensive and highly accurate CCSD(T)-F12a/aug-cc-pVDZ method is first exploited to investigate a six-reaction subset of the 24 reactions, and by comparison of various methods with the benchmark, MCQCISD-MPW is confirmed to be of high accuracy. The final ISOL24/11 database is composed of six reaction energies calculated by CCSD(T)-F12a/aug-cc-pVDZ and 18 calculated by MCQCISD-MPW. We then tested 40 single-component density functionals (both local and hybrid), eight doubly hybrid functionals, and two other methods against ISOL24/11. It is found that the SCS-MP3/CBS method, which is used as benchmark for the original ISOL24, has an MUE of 1.68 kcal mol(-1), which is close to or larger than some of the best tested DFT methods. Using the new benchmark, we find ωB97X-D and MC3MPWB to be the best single-component and doubly hybrid functionals respectively, with PBE0-D3 and MC3MPW performing almost as well. The best single-component density functionals without molecular mechanics dispersion-like terms are M08-SO, M08-HX, M05-2X, and M06-2X. The best single-component density functionals without Hartree-Fock exchange are M06-L-D3 when MM terms are included and M06-L when they are not.
NASA Astrophysics Data System (ADS)
Yokota, Yuui; Tanaka, Chieko; Kurosawa, Shunsuke; Yamaji, Akihiro; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira
2018-05-01
Eu-doped Li(Ca,Sr)AlF6 [Eu:LiCSAF] single crystals with various Ca/Sr ratios were grown by the micro-pulling-down method, and their optical and scintillation properties were investigated to reveal the effects of Ca/Sr ratio on optical and scintillation properties of the Eu:LiCSAF single crystals. The Li(Ca1-x-ySrxEuy)AlF6 single crystals could be grown in 0 ≤ x ≤ 0.1, 0.5 ≤ x ≤ 1.0 and y = 0.02 while the Eu:LiCSAF crystals with x = 0.2, 0.25 and 0.4 included two colquiriite-type phases with different lattice parameters. The Li(Ca1-x-ySrxEuy)AlF6 single crystal with x = 0.25 and y = 0.02 showed the highest light yield under neutron irradiation.
Method and device for ion mobility separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Smith, Richard D.
2017-07-11
Methods and devices for ion separations or manipulations in gas phase are disclosed. The device includes a single non-planar surface. Arrays of electrodes are coupled to the surface. A combination of RF and DC voltages are applied to the arrays of electrodes to create confining and driving fields that move ions through the device. The DC voltages are static DC voltages or time-dependent DC potentials or waveforms.
Imaging Strategies for Tissue Engineering Applications
Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.
2015-01-01
Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069
Qualitative and quantitative assessment of single fingerprints in forensic DNA analysis.
Ostojic, Lana; Klempner, Stacey A; Patel, Rosni A; Mitchell, Adele A; Axler-DiPerte, Grace L; Wurmbach, Elisa
2014-11-01
Fingerprints and touched items are important sources of DNA for STR profiling, since this evidence can be recovered in a wide variety of criminal offenses. However, there are some fundamental difficulties in working with these samples, including variability in quantity and quality of extracted DNA. In this study, we collected and analyzed over 700 fingerprints. We compared a commercially available extraction protocol (Zygem) to two methods developed in our laboratory, a simple one-tube protocol and a high sensitivity protocol (HighSens) that includes additional steps to concentrate and purify the DNA. The amplification protocols tested were AmpFLSTR® Identifiler® using either 28 or 31 amplification cycles, and Identifiler® Plus using 32 amplification cycles. We found that the HighSens and Zygem extraction methods were significantly better in their DNA yields than the one-tube method. Identifiler® Plus increased the quality of the STR profiles for the one-tube extraction significantly. However, this effect could not be verified for the other extraction methods. Furthermore, microscopic analysis of single fingerprints revealed that some individuals tended to shed more material than others onto glass slides. However, a dense deposition of skin flakes did not strongly correlate with a high quality STR profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
System and method for merging clusters of wireless nodes in a wireless network
Budampati, Ramakrishna S [Maple Grove, MN; Gonia, Patrick S [Maplewood, MN; Kolavennu, Soumitri N [Blaine, MN; Mahasenan, Arun V [Kerala, IN
2012-05-29
A system includes a first cluster having multiple first wireless nodes. One first node is configured to act as a first cluster master, and other first nodes are configured to receive time synchronization information provided by the first cluster master. The system also includes a second cluster having one or more second wireless nodes. One second node is configured to act as a second cluster master, and any other second nodes configured to receive time synchronization information provided by the second cluster master. The system further includes a manager configured to merge the clusters into a combined cluster. One of the nodes is configured to act as a single cluster master for the combined cluster, and the other nodes are configured to receive time synchronization information provided by the single cluster master.
Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.
Matthaeus, W H; Weygand, J M; Dasso, S
2016-06-17
Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.
Shape-Dependent Optoelectronic Cell Lysis**
Kremer, Clemens; Witte, Christian; Neale, Steven L; Reboud, Julien; Barrett, Michael P; Cooper, Jonathan M
2014-01-01
We show an electrical method to break open living cells amongst a population of different cell types, where cell selection is based upon their shape. We implement the technique on an optoelectronic platform, where light, focused onto a semiconductor surface from a video projector creates a reconfigurable pattern of electrodes. One can choose the area of cells to be lysed in real-time, from single cells to large areas, simply by redrawing the projected pattern. We show that the method, based on the “electrical shadow” that the cell casts, allows the detection of rare cell types in blood (including sleeping sickness parasites), and has the potential to enable single cell studies for advanced molecular diagnostics, as well as wider applications in analytical chemistry. PMID:24402800
Folding and unfolding single RNA molecules under tension
Woodside, Michael T; García-García, Cuauhtémoc; Block, Steven M
2010-01-01
Single-molecule force spectroscopy constitutes a powerful method for probing RNA folding: it allows the kinetic, energetic, and structural properties of intermediate and transition states to be determined quantitatively, yielding new insights into folding pathways and energy landscapes. Recent advances in experimental and theoretical methods, including fluctuation theorems, kinetic theories, novel force clamps, and ultrastable instruments, have opened new avenues for study. These tools have been used to probe folding in simple model systems, for example, RNA and DNA hairpins. Knowledge gained from such systems is helping to build our understanding of more complex RNA structures composed of multiple elements, as well as how nucleic acids interact with proteins involved in key cellular activities, such as transcription and translation. PMID:18786653
Real-time detection method and system for identifying individual aerosol particles
Gard, Eric E [San Francisco, CA; Coffee, Keith R [Patterson, CA; Frank, Matthias [Oakland, CA; Tobias, Herbert J [Kensington, CA; Fergenson, David P [Alamo, CA; Madden, Norm [Livermore, CA; Riot, Vincent J [Berkeley, CA; Steele, Paul T [Livermore, CA; Woods, Bruce W [Livermore, CA
2007-08-21
An improved method and system of identifying individual aerosol particles in real time. Sample aerosol particles are collimated, tracked, and screened to determine which ones qualify for mass spectrometric analysis based on predetermined qualification or selection criteria. Screening techniques include one or more of determining particle size, shape, symmetry, and fluorescence. Only qualifying particles passing all screening criteria are subject to desorption/ionization and single particle mass spectrometry to produce corresponding test spectra, which is used to determine the identities of each of the qualifying aerosol particles by comparing the test spectra against predetermined spectra for known particle types. In this manner, activation cycling of a particle ablation laser of a single particle mass spectrometer is reduced.
Laser housing having integral mounts and method of manufacturing same
Herron, Michael Alan; Brickeen, Brian Keith
2004-10-19
A housing adapted to position, support, and facilitate aligning various components, including an optical path assembly, of a laser. In a preferred embodiment, the housing is constructed from a single piece of material and broadly comprises one or more through-holes; one or more cavities; and one or more integral mounts, wherein the through-holes and the cavities cooperate to define the integral mounts. Securement holes machined into the integral mounts facilitate securing components within the integral mounts using set screws, adhesive, or a combination thereof. In a preferred method of making the housing, the through-holes and cavities are first machined into the single piece of material, with at least some of the remaining material forming the integral mounts.
Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.
Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoes, A.Z., E-mail: alezipo@yahoo.com; Riccardi, C.S.; Dos Santos, M.L.
Bismuth ferrite thin films were deposited on Pt/Ti/SiO{sub 2}/Si substrates by a soft chemical method and spin-coating technique. The effect of annealing atmosphere (air, N{sub 2} and O{sub 2}) on the structure and electrical properties of the films are reported. X-ray diffraction analysis reveals that the film annealed in air atmosphere is a single-phase perovskite structure. The films annealed in air showed better crystallinity and the presence of a single BFO phase leading to lower leakage current density and superior ferroelectric hysteresis loops at room temperature. In this way, we reveal that BFO film crystallized in air atmosphere by themore » soft chemical method can be useful for practical applications, including nonvolatile digital memories, spintronics and data-storage media.« less
Methods for constraining fine structure constant evolution with OH microwave transitions.
Darling, Jeremy
2003-07-04
We investigate the constraints that OH microwave transitions in megamasers and molecular absorbers at cosmological distances may place on the evolution of the fine structure constant alpha=e(2)/ variant Planck's over 2pi c. The centimeter OH transitions are a combination of hyperfine splitting and lambda doubling that can constrain the cosmic evolution of alpha from a single species, avoiding systematic errors in alpha measurements from multiple species which may have relative velocity offsets. The most promising method compares the 18 and 6 cm OH lines, includes a calibration of systematic errors, and offers multiple determinations of alpha in a single object. Comparisons of OH lines to the HI 21 cm line and CO rotational transitions also show promise.
Optimal plane search method in blood flow measurements by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz
2004-07-01
This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.
Janssen, Patricia A; Keen, Lois; Soolsma, Jetty; Seymour, Laurie C; Harris, Susan J; Klein, Michael C; Reime, Birgit
2005-01-01
To evaluate the success of a competency-based nursing orientation programme for a single-room maternity care unit by measuring improvement in self-reported competency after six months. Single-room maternity care has challenged obstetrical nurses to provide comprehensive nursing care during all phases of the in-hospital birth experience. In this model, nurses provide intrapartum, postpartum and newborn care in one room. To date, an evaluation of nursing education for single-room maternity care has not been published. A prospective cohort design comparing self-reported competencies prior to starting work in the single-room maternity care and six months after. Nurses completed a competency-based education programme in which they could select from a menu of learning methods and content areas according to their individual needs. Learning methods included classroom lectures, self-paced learning packages, and preceptorships in the clinical area. Competencies were measured by a standardized perinatal self-efficacy tool and a tool developed by the authors for this study, the Single-Room Maternity Care Competency Tool. A paired analysis was undertaken to take into account the paired (before and after) nature of the design. Scores on the perinatal self-efficacy scale and the single-room maternity care competency tool were improved. These differences were statistically significant. Improvements in perinatal and single-room maternity care-specific competencies suggest that our education programme was successful in preparing nurses for their new role in the single-room maternity care setting. This conclusion is supported by reported increases in nursing and patient satisfaction in the single-room maternity care compared with the traditional labour/delivery and postpartum settings. An education programme tailored to the learning needs of experienced clinical nurses contributes to improvements in nursing competencies and patient care.
Vaginal delivery after Misgav-Ladach cesarean section--is the risk of uterine rupture acceptable?
Hudić, Igor; Fatusić, Zlatan; Kamerić, Lejla; Misić, Mladen; Serak, Indira; Latifagić, Anela
2010-10-01
To evaluate whether the single-layer closure as is a routine by the Misgav-Ladach method compared to the double-layer closure as used by the Dörfler cesarean method is associated with an increased risk of uterine rupture in the subsequent pregnancy and delivery. The analysis is retrospective and is based on medical documentation of the Clinic for Gynecology and Obstetrics, University Clinical Centre, Tuzla, Bosnia and Herzegovina. All patients with one previous cesarean section who attempted vaginal birth following cesarean section were managed from 1 January 2002 to 31 December 2008. Exclusion criteria included multiple gestation, greater than one previous cesarean section, previous incision other than low transverse, gestational age at delivery less than 37 weeks and induction of delivery. We identified 448 patients who met inclusion criteria. We found that 303 patients had a single-layer closure (Misgav-Ladach) and 145 had a double-layer closure (Dörffler) of the previous uterine incision. There were 35 cases of uterine rupture. Of those patients with previous single-layer closure, 5.28% (16/303) had a uterine rupture compared to 13.11% (19/145) in the double-layer closure group (p<0.05). We have not found that a Misgav-Ladach cesarean section method (single-layer uterine closure) might be more likely to result in uterine rupture in women who attempted a vaginal birth after a previous cesarean delivery. This cesarean section method should find its confirmation in everyday clinical practice.
Yu, Kaixin; Wang, Xuetong; Li, Qiongling; Zhang, Xiaohui; Li, Xinwei; Li, Shuyu
2018-01-01
Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated that our method could effectively construct an individual morphological brain network based on multiple morphological features and could accurately discriminate MCI from NC and stable MCI from progressive MCI, and may provide a valuable tool for the investigation of individual morphological brain networks.
Parham, Christopher; Zhong, Zhong; Pisano, Etta; Connor, Dean; Chapman, Leroy D.
2010-06-22
Systems and methods for detecting an image of an object using an X-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include detecting an image of an object. The method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a single monochromator crystal in a predetermined position to directly intercept the first X-ray beam such that a second X-ray beam having a predetermined energy level is produced. Further, an object can be positioned in the path of the second X-ray beam for transmission of the second X-ray beam through the object and emission from the object as a transmitted X-ray beam. The transmitted X-ray beam can be directed at an angle of incidence upon a crystal analyzer. Further, an image of the object can be detected from a beam diffracted from the analyzer crystal.
Whole surface image reconstruction for machine vision inspection of fruit
NASA Astrophysics Data System (ADS)
Reese, D. Y.; Lefcourt, A. M.; Kim, M. S.; Lo, Y. M.
2007-09-01
Automated imaging systems offer the potential to inspect the quality and safety of fruits and vegetables consumed by the public. Current automated inspection systems allow fruit such as apples to be sorted for quality issues including color and size by looking at a portion of the surface of each fruit. However, to inspect for defects and contamination, the whole surface of each fruit must be imaged. The goal of this project was to develop an effective and economical method for whole surface imaging of apples using mirrors and a single camera. Challenges include mapping the concave stem and calyx regions. To allow the entire surface of an apple to be imaged, apples were suspended or rolled above the mirrors using two parallel music wires. A camera above the apples captured 90 images per sec (640 by 480 pixels). Single or multiple flat or concave mirrors were mounted around the apple in various configurations to maximize surface imaging. Data suggest that the use of two flat mirrors provides inadequate coverage of a fruit but using two parabolic concave mirrors allows the entire surface to be mapped. Parabolic concave mirrors magnify images, which results in greater pixel resolution and reduced distortion. This result suggests that a single camera with two parabolic concave mirrors can be a cost-effective method for whole surface imaging.
Detecting Unsteady Blade Row Interaction in a Francis Turbine using a Phase-Lag Boundary Condition
NASA Astrophysics Data System (ADS)
Wouden, Alex; Cimbala, John; Lewis, Bryan
2013-11-01
For CFD simulations in turbomachinery, methods are typically used to reduce the computational cost. For example, the standard periodic assumption reduces the underlying mesh to a single blade passage in axisymmetric applications. If the simulation includes only a single array of blades with an uniform inlet condition, this assumption is adequate. However, to compute the interaction between successive blade rows of differing periodicity in an unsteady simulation, the periodic assumption breaks down and may produce inaccurate results. As a viable alternative the phase-lag boundary condition assumes that the periodicity includes a temporal component which, if considered, allows for a single passage to be modeled per blade row irrespective of differing periodicity. Prominently used in compressible CFD codes for the analysis of gas turbines/compressors, the phase-lag boundary condition is adapted to analyze the interaction between the guide vanes and rotor blades in an incompressible simulation of the 1989 GAMM Workshop Francis turbine using OpenFOAM. The implementation is based on the ``direct-storage'' method proposed in 1977 by Erdos and Alzner. The phase-lag simulation is compared with available data from the GAMM workshop as well as a full-wheel simulation. Funding provided by DOE Award number: DE-EE0002667.
Wide coverage biomedical event extraction using multiple partially overlapping corpora
2013-01-01
Background Biomedical events are key to understanding physiological processes and disease, and wide coverage extraction is required for comprehensive automatic analysis of statements describing biomedical systems in the literature. In turn, the training and evaluation of extraction methods requires manually annotated corpora. However, as manual annotation is time-consuming and expensive, any single event-annotated corpus can only cover a limited number of semantic types. Although combined use of several such corpora could potentially allow an extraction system to achieve broad semantic coverage, there has been little research into learning from multiple corpora with partially overlapping semantic annotation scopes. Results We propose a method for learning from multiple corpora with partial semantic annotation overlap, and implement this method to improve our existing event extraction system, EventMine. An evaluation using seven event annotated corpora, including 65 event types in total, shows that learning from overlapping corpora can produce a single, corpus-independent, wide coverage extraction system that outperforms systems trained on single corpora and exceeds previously reported results on two established event extraction tasks from the BioNLP Shared Task 2011. Conclusions The proposed method allows the training of a wide-coverage, state-of-the-art event extraction system from multiple corpora with partial semantic annotation overlap. The resulting single model makes broad-coverage extraction straightforward in practice by removing the need to either select a subset of compatible corpora or semantic types, or to merge results from several models trained on different individual corpora. Multi-corpus learning also allows annotation efforts to focus on covering additional semantic types, rather than aiming for exhaustive coverage in any single annotation effort, or extending the coverage of semantic types annotated in existing corpora. PMID:23731785
Feaster, Tromondae K; Cadar, Adrian G; Wang, Lili; Williams, Charles H; Chun, Young Wook; Hempel, Jonathan E; Bloodworth, Nathaniel; Merryman, W David; Lim, Chee Chew; Wu, Joseph C; Knollmann, Björn C; Hong, Charles C
2015-12-04
The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa). The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing. © 2015 American Heart Association, Inc.
GiniClust: detecting rare cell types from single-cell gene expression data with Gini index.
Jiang, Lan; Chen, Huidong; Pinello, Luca; Yuan, Guo-Cheng
2016-07-01
High-throughput single-cell technologies have great potential to discover new cell types; however, it remains challenging to detect rare cell types that are distinct from a large population. We present a novel computational method, called GiniClust, to overcome this challenge. Validation against a benchmark dataset indicates that GiniClust achieves high sensitivity and specificity. Application of GiniClust to public single-cell RNA-seq datasets uncovers previously unrecognized rare cell types, including Zscan4-expressing cells within mouse embryonic stem cells and hemoglobin-expressing cells in the mouse cortex and hippocampus. GiniClust also correctly detects a small number of normal cells that are mixed in a cancer cell population.
Single-particle properties of the Hubbard model in a novel three-pole approximation
NASA Astrophysics Data System (ADS)
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a precursor of a pseudogap regime.
NASA Astrophysics Data System (ADS)
Kang, Woojin; Jung, Joontaek; Lee, Wonjun; Ryu, Jungho; Choi, Hongsoo
2018-07-01
Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate–lead zirconate titanate (PMN–PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN–PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma–reactive ion etching process was used to etch a brittle PMN–PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1 × 1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN–PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.
Methyl-CpG island-associated genome signature tags
Dunn, John J
2014-05-20
Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.
Prediction of ground effects on aircraft noise
NASA Technical Reports Server (NTRS)
Pao, S. P.; Wenzel, A. R.; Oncley, P. B.
1978-01-01
A unified method is recommended for predicting ground effects on noise. This method may be used in flyover noise predictions and in correcting static test-stand data to free-field conditions. The recommendation is based on a review of recent progress in the theory of ground effects and of the experimental evidence which supports this theory. It is shown that a surface wave must be included sometimes in the prediction method. Prediction equations are collected conveniently in a single section of the paper. Methods of measuring ground impedance and the resulting ground-impedance data are also reviewed because the recommended method is based on a locally reactive impedance boundary model. Current practice of estimating ground effects are reviewed and consideration is given to practical problems in applying the recommended method. These problems include finite frequency-band filters, finite source dimension, wind and temperature gradients, and signal incoherence.
Viewing Ice Crystals Using Polarized Light.
ERIC Educational Resources Information Center
Kinsman, E. M.
1992-01-01
Describes a method for identifying and examining single ice crystals by photographing a thin sheet of ice placed between two inexpensive polarizing filters. Suggests various natural and prepared sources for ice that promote students' insight into crystal structures, and yield colorful optical displays. Includes directions, precautions, and sample…
Andersen, Wendy C; Casey, Christine R; Schneider, Marilyn J; Turnipseed, Sherri B
2015-01-01
Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a single-laboratory validation of method 2012.25 was performed to expand the scope of the method to other seafood matrixes including salmon, catfish, tilapia, and shrimp. The validation included the analysis of fortified and incurred residues over multiple weeks to assess analyte stability in matrix at -80°C, a comparison of calibration methods over the range 0.25 to 4 μg/kg, study of matrix effects for analyte quantification, and qualitative identification of targeted analytes. Method accuracy ranged from 88 to 112% with 13% RSD or less for samples fortified at 0.5, 1.0, and 2.0 μg/kg. Analyte identification and determination limits were determined by procedures recommended both by the U. S. Food and Drug Administration and the European Commission. Method detection limits and decision limits ranged from 0.05 to 0.24 μg/kg and 0.08 to 0.54 μg/kg, respectively. AOAC First Action Method 2012.25 with an extracted matrix calibration curve and internal standard correction is suitable for the determination of triphenylmethane dyes and leuco metabolites in salmon, catfish, tilapia, and shrimp by LC-MS/MS at a residue determination level of 0.5 μg/kg or below.
Single-Case Designs and Qualitative Methods: Applying a Mixed Methods Research Perspective
ERIC Educational Resources Information Center
Hitchcock, John H.; Nastasi, Bonnie K.; Summerville, Meredith
2010-01-01
The purpose of this conceptual paper is to describe a design that mixes single-case (sometimes referred to as single-subject) and qualitative methods, hereafter referred to as a single-case mixed methods design (SCD-MM). Minimal attention has been given to the topic of applying qualitative methods to SCD work in the literature. These two…
Roman, Mark C
2013-01-01
A rapid method has been developed to quantify seven catechins and caffeine in green tea (Camillia sinensis) raw material and powdered extract, and dietary supplements containing green tea extract. The method utilizes RP HPLC with a phenyl-based stationary phase and gradient elution. Detection is by UV absorbance. The total run time, including column re-equilibration, is 13 min. Single-laboratory validation (SLV) has been performed on the method to determine the repeatability, accuracy, selectivity, LOD, LOQ, ruggedness, and linearity for (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-gallocatechin gallate, (-)-epigallocatechin gallate, and (+)-gallocatechin, as well as caffeine. Repeatability precision and recovery results met AOAC guidelines for SLV studies for all catechins and caffeine down to a level of approximately 20 mg/g. Finished products containing high concentrations of minerals require the use of EDTA to prevent decomposition of the catechins.
Partial differential equation-based localization of a monopole source from a circular array.
Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa
2013-10-01
Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.
Dubascoux, Stephane; Nicolas, Marine; Rime, Celine Fragniere; Payot, Janique Richoz; Poitevin, Eric
2015-01-01
A single-laboratory validation (SLV) is presented for the simultaneous determination of 10 ultratrace elements (UTEs) including aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), molybdenum (Mo), lead (Pb), selenium (Se), and tin (Sn) in infant formulas, adult nutritionals, and milk based products by inductively coupled plasma (ICP)/MS after acidic pressure digestion. This robust and routine multielemental method is based on several official methods with modifications of sample preparation using either microwave digestion or high pressure ashing and of analytical conditions using ICP/MS with collision cell technology. This SLV fulfills AOAC method performance criteria in terms of linearity, specificity, sensitivity, precision, and accuracy and fully answers most international regulation limits for trace contaminants and/or recommended nutrient levels established for 10 UTEs in targeted matrixes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping
2011-08-15
Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.
Communication: Multiple atomistic force fields in a single enhanced sampling simulation
NASA Astrophysics Data System (ADS)
Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.
2015-07-01
The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.
Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo
2017-08-01
This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.
Single-channel EEG-based mental fatigue detection based on deep belief network.
Pinyi Li; Wenhui Jiang; Fei Su
2016-08-01
Mental fatigue has a pernicious influence on road and work place safety as well as a negative symptom of many acute and chronic illnesses, since the ability of concentrating, responding and judging quickly decreases during the fatigue or drowsiness stage. Electroencephalography (EEG) has been proven to be a robust physiological indicator of human cognitive state over the last few decades. But most existing EEG-based fatigue detection methods have poor performance in accuracy. This paper proposed a single-channel EEG-based mental fatigue detection method based on Deep Belief Network (DBN). The fused nonliear features from specified sub-bands and dynamic analysis, a total of 21 features are extracted as the input of the DBN to discriminate three classes of mental state including alert, slight fatigue and severe fatigue. Experimental results show the good performance of the proposed model comparing with those state-of-art methods.
Solid phase sequencing of biopolymers
Cantor, Charles; Koster, Hubert
2010-09-28
This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.
The multifacet graphically contracted function method. I. Formulation and implementation
NASA Astrophysics Data System (ADS)
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.
2014-08-01
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N2n4) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
The multifacet graphically contracted function method. I. Formulation and implementation.
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.
2009-01-01
In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448
A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species.
Lin, Chun Chi; Fung, Lai Ling; Chan, Po Kwok; Lee, Cheuk Man; Chow, Kwok Fai; Cheng, Shuk Han
2014-02-01
The increasing occurrence of food frauds suggests that species identification should be part of food authentication. Current molecular-based species identification methods have their own limitations or drawbacks, such as relatively time-consuming experimental steps, expensive equipment and, in particular, these methods cannot identify mixed species in a single experiment. This project proposes an improved method involving PCR amplification of the COI gene and detection of species-specific sequences by hybridisation. Major innovative breakthrough lies in the detection of multiple species, including pork, beef, lamb, horse, cat, dog and mouse, from a mixed sample within a single experiment. The probes used are species-specific either in sole or mixed species samples. As little as 5 pg of DNA template in the PCR is detectable in the proposed method. By designing species-specific probes and adopting reverse dot blot hybridisation and flow-through hybridisation, a low-cost high-density DNA-based multi-detection test suitable for routine inspection of meat species was developed. © 2013.
Hitchcock, Elaine R.; Ferron, John
2017-01-01
Purpose Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of Type I error. In masked visual analysis (MVA), response-guided decisions are made by a researcher who is blinded to participants' identities and treatment assignments. MVA also makes it possible to conduct a hypothesis test assessing the significance of treatment effects. Method This tutorial describes the principles of MVA, including both how experiments can be set up and how results can be used for hypothesis testing. We then report a case study showing how MVA was deployed in a multiple-baseline across-subjects study investigating treatment for residual errors affecting rhotics. Strengths and weaknesses of MVA are discussed. Conclusions Given their important role in the evidence base that informs clinical decision making, it is critical for single-case experimental studies to be conducted in a way that allows researchers to draw valid inferences. As a method that can increase the rigor of single-case studies while preserving the benefits of a response-guided approach, MVA warrants expanded attention from researchers in communication disorders. PMID:28595354
Clark, Stephen J; Smallwood, Sébastien A; Lee, Heather J; Krueger, Felix; Reik, Wolf; Kelsey, Gavin
2017-03-01
DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.
Role of optometry school in single day large scale school vision testing
Anuradha, N; Ramani, Krishnakumar
2015-01-01
Background: School vision testing aims at identification and management of refractive errors. Large-scale school vision testing using conventional methods is time-consuming and demands a lot of chair time from the eye care professionals. A new strategy involving a school of optometry in single day large scale school vision testing is discussed. Aim: The aim was to describe a new approach of performing vision testing of school children on a large scale in a single day. Materials and Methods: A single day vision testing strategy was implemented wherein 123 members (20 teams comprising optometry students and headed by optometrists) conducted vision testing for children in 51 schools. School vision testing included basic vision screening, refraction, frame measurements, frame choice and referrals for other ocular problems. Results: A total of 12448 children were screened, among whom 420 (3.37%) were identified to have refractive errors. 28 (1.26%) children belonged to the primary, 163 to middle (9.80%), 129 (4.67%) to secondary and 100 (1.73%) to the higher secondary levels of education respectively. 265 (2.12%) children were referred for further evaluation. Conclusion: Single day large scale school vision testing can be adopted by schools of optometry to reach a higher number of children within a short span. PMID:25709271
Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang
2014-10-21
The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L
2018-04-24
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko
2018-04-01
Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.
1990-01-01
The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.
Multi-detection of preservatives in cheeses by liquid chromatography-tandem mass spectrometry.
Fuselli, Fabio; Guarino, Chiara; La Mantia, Alessandro; Longo, Lucia; Faberi, Angelo; Marianella, Rosa Maria
2012-10-01
The incorrect use of preservatives in cheeses may compromise food safety and damage consumers. According to the law, more than one preservative may be contemporarily used in cheeses. So a method for their contemporary detection may be useful for both manufacturers and control agencies quality control. In this research a liquid chromatography-tandem mass spectrometric with electrospray ionization method for the multi-determination of seven preservatives (benzoic acid, citric acid, hexamethylenetetramine, lysozyme, natamycin, nisin and sorbic acid) in cheese was developed. The preservatives were contemporarily extracted from cheese by a single procedure, and analyzed by RP-LC/ESI-MS/MS (Ion Trap) in positive ionization mode, with single reaction monitoring (SRM) acquisition. Three sample types (hard, pasta filata and fresh cheese) were used for method evaluation. Recoveries were mostly higher than 90%; MDLs ranged from 0.02 to 0.26 mgkg(-1), and MQLs were included between 0.07 and 0.88 mgkg(-1). Due to matrix effect, quantitation was performed by referring to a matrix matched calibration curve, for each cheese typology. This method was also applied to commercial cheese samples, with good results. It appears fast, reliable and suitable for both screening and confirmation of the presence and quantitation of the preservatives in a single, multi-detection analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi
2013-04-01
A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Ash, Robert L.
1994-01-01
A method is developed for predicting the radiant heat flux distribution produced by tungsten filament, tubular fused-quartz envelope heating systems with reflectors. The method is an application of Monte Carlo simulation, which takes the form of a random walk or ray tracing scheme. The method is applied to four systems of increasing complexity, including a single lamp without a reflector, a single lamp with a Hat reflector, a single lamp with a parabolic reflector, and up to six lamps in a six-lamp contoured-reflector heating unit. The application of the Monte Carlo method to the simulation of the thermal radiation generated by these systems is discussed. The procedures for numerical implementation are also presented. Experiments were conducted to study these quartz heating systems and to acquire measurements of the corresponding empirical heat flux distributions for correlation with analysis. The experiments were conducted such that several complicating factors could be isolated and studied sequentially. Comparisons of the experimental results with analysis are presented and discussed. Good agreement between the experimental and simulated results was obtained in all cases. This study shows that this method can be used to analyze very complicated quartz heating systems and can account for factors such as spectral properties, specular reflection from curved surfaces, source enhancement due to reflectors and/or adjacent sources, and interaction with a participating medium in a straightforward manner.
Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo
2017-10-25
We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.
Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr. (Inventor)
2002-01-01
A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause the voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. The method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.
Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr. (Inventor)
2002-01-01
A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause tile voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. A method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.
Robust model-based analysis of single-particle tracking experiments with Spot-On
Grimm, Jonathan B; Lavis, Luke D
2018-01-01
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163
Robust model-based analysis of single-particle tracking experiments with Spot-On.
Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier
2018-01-04
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.
Zunder, Eli R.; Finck, Rachel; Behbehani, Gregory K.; Amir, El-ad D.; Krishnaswamy, Smita; Gonzalez, Veronica D.; Lorang, Cynthia G.; Bjornson, Zach; Spitzer, Matthew H.; Bodenmiller, Bernd; Fantl, Wendy J.; Pe’er, Dana; Nolan, Garry P.
2015-01-01
SUMMARY Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption, and shortens instrument measurement time. Here, we present an optimized MCB protocol with several improvements over previously described methods. The use of palladium-based labeling reagents expands the number of measurement channels available for mass cytometry and reduces interference with lanthanide-based antibody measurement. An error-detecting combinatorial barcoding scheme allows cell doublets to be identified and removed from the analysis. A debarcoding algorithm that is single cell-based rather than population-based improves the accuracy and efficiency of sample deconvolution. This debarcoding algorithm has been packaged into software that allows rapid and unbiased sample deconvolution. The MCB procedure takes 3–4 h, not including sample acquisition time of ~1 h per million cells. PMID:25612231
Community Structure in Online Collegiate Social Networks
NASA Astrophysics Data System (ADS)
Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason
2009-03-01
Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.
Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX
NASA Astrophysics Data System (ADS)
Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.
2016-12-01
Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.
NASA Astrophysics Data System (ADS)
Caticha, Ariel
2011-03-01
In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.
NASA Astrophysics Data System (ADS)
Babu Rao, G.; P., Rajesh; Ramasamy, P.
2018-04-01
The 0.1 mol% amaranth added KAP single crystals were grown from aqueous solutions by both slow evaporation solution technique and Sankaranarayanan-Ramasamy method. The single crystal having dimension of 45 mm length and 12 mm diameter was grown with growth rate of 1.5 mm/day using SR method. 87 % transmittance is obtained for SR method grown amaranth added KAP single crystal. The high intense luminescence at 661 nm is obtained from amaranth added conventional and SR method grown KAP single crystal. The amaranth added KAP single crystal possesses good mechanical and laser damage threshold stability.
NASA Technical Reports Server (NTRS)
1972-01-01
The effort to analyze and test the Teledyne/Adcom model G-146 demultiplexer to determine the feasibility and optimum method(s) for modifying the unit for broadband operation is described. The desired bandwidths under consideration included 2, 4, and 8 kHz for double sideband and quadrature double sideband, and 4, 8, and 16 kHz for single sideband.
Application of Density Estimation Methods to Datasets from a Glider
2013-09-30
sperm whales as well as different dolphin species. OBJECTIVES The objective of this research is to extend existing methods for cetacean...Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...a cue counting approach, where a cue has been defined as a clicking event (Küsel et al., 2011), to density estimation from data recorded by single
Biological production of products from waste gases
Gaddy, James L.
2002-01-22
A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.
USDA-ARS?s Scientific Manuscript database
Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide, including the USA. Many S. enterica serotypes known to cause foodborne disease are associated with broiler meat contamination. While some serotypes are specific to birds (S. e...
Effect of a Significant Other on Client Change Talk in Motivational Interviewing
ERIC Educational Resources Information Center
Apodaca, Timothy R.; Magill, Molly; Longabaugh, Richard; Jackson, Kristina M.; Monti, Peter M.
2013-01-01
Objective:To examine significant-other (SO) and therapist behaviors as predictors of client change language within motivational interviewing (MI) sessions. Method: Participants from an emergency department received a single session of MI that included SO participation (N = 157). Sessions were coded using therapy process coding systems. Sessions…
ERIC Educational Resources Information Center
Markle, Ross Edward
2010-01-01
The impact of socioeconomic status (SES) on educational outcomes has been widely demonstrated in the fields of sociology, psychology, and educational research. Across these fields however, measurement models of SES vary, including single indicators (parental income, education, and occupation), multiple indicators, hierarchical models, and most…
Surface water quality is related to conditions in the surrounding geophysical environment, including soils, landcover, and anthropogenic activities. A number of statistical methods may be used to analyze and explore relationships among variables. Single-, multiple- and multivaria...
PREFACE TO SPECIAL SECTION: SOUTHERN OXIDANTS STUDY 1999 ATLANTA SUPERSITE PROJECT (SOS3)
The Atlanta Supersites Project consisted of a one-month intensive field program to compare advanced methods for measurement of PM2.5 mass, chemical composition, including single particle composition in real-time, and aerosol precursor species. The project was the first of EPA's ...
Mechanical and Pharmacologic Methods of Labor Induction: A Randomized Controlled Trial
Levine, Lisa D.; Downes, Katheryne L.; Elovitz, Michal A.; Parry, Samuel; Sammel, Mary D.; Srinivas, Sindhu K
2016-01-01
Objective To evaluate the effectiveness of four commonly used induction methods. Methods This randomized trial compared four induction methods: Misoprostol alone, Foley alone, Misoprostol–cervical Foley concurrently, and Foley–oxytocin concurrently,. Women undergoing labor induction with full term (≥37 weeks), singleton, vertex presenting gestations, with no contraindication to vaginal delivery, intact membranes, Bishop score ≤6, and cervical dilation ≤2cm were included. Women were enrolled only once during the study period. Our primary outcome was time to delivery. Neither patients nor providers were blinded to assigned treatment group since examinations are required for placement of all methods; however, research personnel were blinded during data abstraction. A sample size of 123 per group (N=492) was planned to compare the four groups pairwise (P≤.008), with a 4-hour reduction in delivery time considered clinically meaningful. Results From May 2013 through June 2015, 997 women were screened and 491 were randomized and analyzed. Demographic and clinical characteristics were similar among the four treatment groups. When comparing all induction method groups, combination methods achieved a faster median time to delivery than single-agent methods, (misoprostol–Foley: 13.1 hours, Foley–oxytocin: 14.5 hours, misoprostol: 17.6 hours, Foley: 17.7 hours, p<0.001). When censored for cesarean and adjusting for parity, women who received misoprostol–Foley delivered almost twice as likely to deliver before women who received misoprostol alone (hazard ratio (HR, 95% CI) 1.92 [1.42–2.59]) or Foley alone (HR, 95%CI: 1.87 [1.39–2.52]), whereas Foley–oxytocin was not statistically different from single-agent methods. Conclusion After censoring for cesarean and adjusting for parity, misoprostol–cervical Foley resulted in twice the chance of delivering before either single-agent method. PMID:27824758
Woolacott, Nerys; Corbett, Mark; Jones-Diette, Julie; Hodgson, Robert
2017-10-01
Regulatory authorities are approving innovative therapies with limited evidence. Although this level of data is sufficient for the regulator to establish an acceptable risk-benefit balance, it is problematic for downstream health technology assessment, where assessment of cost-effectiveness requires reliable estimates of effectiveness relative to existing clinical practice. Some key issues associated with a limited evidence base include using data, from nonrandomized studies, from small single-arm trials, or from single-center trials; and using surrogate end points. We examined these methodological challenges through a pragmatic review of the available literature. Methods to adjust nonrandomized studies for confounding are imperfect. The relative treatment effect generated from single-arm trials is uncertain and may be optimistic. Single-center trial results may not be generalizable. Surrogate end points, on average, overestimate treatment effects. Current methods for analyzing such data are limited, and effectiveness claims based on these suboptimal forms of evidence are likely to be subject to significant uncertainty. Assessments of cost-effectiveness, based on the modeling of such data, are likely to be subject to considerable uncertainty. This uncertainty must not be underestimated by decision makers: methods for its quantification are required and schemes to protect payers from the cost of uncertainty should be implemented. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang
2015-03-01
The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.
Relationship between behavioral and physiological spectral-ripple discrimination.
Won, Jong Ho; Clinard, Christopher G; Kwon, Seeyoun; Dasika, Vasant K; Nie, Kaibao; Drennan, Ward R; Tremblay, Kelly L; Rubinstein, Jay T
2011-06-01
Previous studies have found a significant correlation between spectral-ripple discrimination and speech and music perception in cochlear implant (CI) users. This relationship could be of use to clinicians and scientists who are interested in using spectral-ripple stimuli in the assessment and habilitation of CI users. However, previous psychoacoustic tasks used to assess spectral discrimination are not suitable for all populations, and it would be beneficial to develop methods that could be used to test all age ranges, including pediatric implant users. Additionally, it is important to understand how ripple stimuli are processed in the central auditory system and how their neural representation contributes to behavioral performance. For this reason, we developed a single-interval, yes/no paradigm that could potentially be used both behaviorally and electrophysiologically to estimate spectral-ripple threshold. In experiment 1, behavioral thresholds obtained using the single-interval method were compared to thresholds obtained using a previously established three-alternative forced-choice method. A significant correlation was found (r = 0.84, p = 0.0002) in 14 adult CI users. The spectral-ripple threshold obtained using the new method also correlated with speech perception in quiet and noise. In experiment 2, the effect of the number of vocoder-processing channels on the behavioral and physiological threshold in normal-hearing listeners was determined. Behavioral thresholds, using the new single-interval method, as well as cortical P1-N1-P2 responses changed as a function of the number of channels. Better behavioral and physiological performance (i.e., better discrimination ability at higher ripple densities) was observed as more channels added. In experiment 3, the relationship between behavioral and physiological data was examined. Amplitudes of the P1-N1-P2 "change" responses were significantly correlated with d' values from the single-interval behavioral procedure. Results suggest that the single-interval procedure with spectral-ripple phase inversion in ongoing stimuli is a valid approach for measuring behavioral or physiological spectral resolution.
Monitoring Molecules in Neuroscience Then and Now
Rice, Margaret E.
2017-01-01
The 16th International Conference on Monitoring Molecules in Neuroscience (MMiN) was held in Gothenburg, Sweden in late spring 2016. This conference originated as a methods meeting focused on in vivo voltammetric techniques and microdialysis. Over time, however, the scope has evolved to include a number of other methods for neurochemical detection that range from single-cell fluorescence in vitro and in vivo in animal models to whole-brain imaging in humans. Overall, MMiN provides a unique forum for introducing new developments in neurochemical detection, as well as for reporting exciting neurobiological insights provided by established and novel methods. This Viewpoint includes a brief history of the meeting, factors that have contributed its evolution, and some highlights of MMiN 2016. PMID:28169519
Monitoring Molecules in Neuroscience Then and Now.
Rice, Margaret E
2017-02-15
The 16th International Conference on Monitoring Molecules in Neuroscience (MMiN) was held in Gothenburg, Sweden in late spring 2016. This conference originated as a methods meeting focused on in vivo voltammetric techniques and microdialysis. Over time, however, the scope has evolved to include a number of other methods for neurochemical detection that range from single-cell fluorescence in vitro and in vivo in animal models to whole-brain imaging in humans. Overall, MMiN provides a unique forum for introducing new developments in neurochemical detection, as well as for reporting exciting neurobiological insights provided by established and novel methods. This Viewpoint includes a brief history of the meeting, factors that have contributed its evolution, and some highlights of MMiN 2016.
Tube curvature measuring probe and method
Sokol, George J.
1990-01-01
The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.
Yu, Jingkai; Finley, Russell L
2009-01-01
High-throughput experimental and computational methods are generating a wealth of protein-protein interaction data for a variety of organisms. However, data produced by current state-of-the-art methods include many false positives, which can hinder the analyses needed to derive biological insights. One way to address this problem is to assign confidence scores that reflect the reliability and biological significance of each interaction. Most previously described scoring methods use a set of likely true positives to train a model to score all interactions in a dataset. A single positive training set, however, may be biased and not representative of true interaction space. We demonstrate a method to score protein interactions by utilizing multiple independent sets of training positives to reduce the potential bias inherent in using a single training set. We used a set of benchmark yeast protein interactions to show that our approach outperforms other scoring methods. Our approach can also score interactions across data types, which makes it more widely applicable than many previously proposed methods. We applied the method to protein interaction data from both Drosophila melanogaster and Homo sapiens. Independent evaluations show that the resulting confidence scores accurately reflect the biological significance of the interactions.
NASA Technical Reports Server (NTRS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.
2012-01-01
A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.
Multiratio fusion change detection with adaptive thresholding
NASA Astrophysics Data System (ADS)
Hytla, Patrick C.; Balster, Eric J.; Vasquez, Juan R.; Neuroth, Robert M.
2017-04-01
A ratio-based change detection method known as multiratio fusion (MRF) is proposed and tested. The MRF framework builds on other change detection components proposed in this work: dual ratio (DR) and multiratio (MR). The DR method involves two ratios coupled with adaptive thresholds to maximize detected changes and minimize false alarms. The use of two ratios is shown to outperform the single ratio case when the means of the image pairs are not equal. MR change detection builds on the DR method by including negative imagery to produce four total ratios with adaptive thresholds. Inclusion of negative imagery is shown to improve detection sensitivity and to boost detection performance in certain target and background cases. MRF further expands this concept by fusing together the ratio outputs using a routine in which detections must be verified by two or more ratios to be classified as a true changed pixel. The proposed method is tested with synthetically generated test imagery and real datasets with results compared to other methods found in the literature. DR is shown to significantly outperform the standard single ratio method. MRF produces excellent change detection results that exhibit up to a 22% performance improvement over other methods from the literature at low false-alarm rates.
Meng, Fanjie; Kim, Jae-Yeol; McHale, Kevin; Gopich, Irina V.; Louis, John M.
2017-01-01
We describe a method that combines two- and three-color single-molecule FRET spectroscopy with 2D FRET efficiency–lifetime analysis to probe the oligomerization process of intrinsically disordered proteins. This method is applied to the oligomerization of the tetramerization domain (TD) of the tumor suppressor protein p53. TD exists as a monomer at subnanomolar concentrations and forms a dimer and a tetramer at higher concentrations. Because the dissociation constants of the dimer and tetramer are very close, as we determine in this paper, it is not possible to characterize different oligomeric species by ensemble methods, especially the dimer that cannot be readily separated. However, by using single-molecule FRET spectroscopy that includes measurements of fluorescence lifetime and two- and three-color FRET efficiencies with corrections for submillisecond acceptor blinking, we show that it is possible to obtain structural information for individual oligomers at equilibrium and to determine the dimerization kinetics. From these analyses, we show that the monomer is intrinsically disordered and that the dimer conformation is very similar to that of the tetramer but the C terminus of the dimer is more flexible. PMID:28760960
Molecular diagnosis of strongyloidiasis in a population of an endemic area through nested-PCR.
Sharifdini, Meysam; Keyhani, Amir; Eshraghian, Mohammad Reza; Beigom Kia, Eshrat
2018-01-01
This study is aimed to diagnose and analyze strongyloidiasis in a population of an endemic area of Iran using nested-PCR, coupled with parasitological methods. Screening of strongyloidiasis infected people using reliable diagnostic techniques are essential to decrease the mortality and morbidity associated with this infection. Molecular methods have been proved to be highly sensitive and specific for detection of Strongyloides stercoralis in stool samples. A total of 155 fresh single stool samples were randomly collected from residents of north and northwest of Khouzestan Province, Iran. All samples were examined by parasitological methods including formalin-ether concentration and nutrient agar plate culture, and molecular method of nested-PCR. Infections with S. stercoralis were analyzed according to demographic criteria. Based on the results of nested-PCR method 15 cases (9.7%) were strongyloidiasis positive. Nested-PCR was more sensitive than parasitological techniques on single stool sampling. Elderly was the most important population index for higher infectivity with S. stercoralis . In endemic areas of S. stercoralis , old age should be considered as one of the most important risk factors of infection, especially among the immunosuppressed individuals.
An evaluation method for nanoscale wrinkle
NASA Astrophysics Data System (ADS)
Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.
2016-06-01
In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.
Buckling analysis and test correlation of hat stiffened panels for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Percy, Wendy C.; Fields, Roger A.
1990-01-01
The paper discusses the design, analysis, and test of hat stiffened panels subjected to a variety of thermal and mechanical load conditions. The panels were designed using data from structural optimization computer codes and finite element analysis. Test methods included the grid shadow moire method and a single gage force stiffness method. The agreement between the test data and analysis provides confidence in the methods that are currently being used to design structures for hypersonic vehicles. The agreement also indicates that post buckled strength may potentially be used to reduce the vehicle weight.
Methods for detection of GMOs in food and feed.
Marmiroli, Nelson; Maestri, Elena; Gullì, Mariolina; Malcevschi, Alessio; Peano, Clelia; Bordoni, Roberta; De Bellis, Gianluca
2008-10-01
This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed. These methods include quantitative real-time PCR, multiplex PCR, and multiplex real-time PCR. Particular attention is paid to methods able to identify multiple GM events in a single reaction and to the development of microdevices and microsensors, though they have not been fully validated for application.
Lee, Dae-Hee; Kim, Hyun-Jung; Ahn, Hyeong-Sik; Bin, Seong-Il
2016-12-01
Although three-dimensional computed tomography (3D-CT) has been used to compare femoral tunnel position following transtibial and anatomical anterior cruciate ligament (ACL) reconstruction, no consensus has been reached on which technique results in a more anatomical position because methods of quantifying femoral tunnel position on 3D-CT have not been consistent. This meta-analysis was therefore performed to compare femoral tunnel location following transtibial and anatomical ACL reconstruction, in both the low-to-high and deep-to-shallow directions. This meta-analysis included all studies that used 3D-CT to compare femoral tunnel location, using quadrant or anatomical coordinate axis methods, following transtibial and anatomical (AM portal or OI) single-bundle ACL reconstruction. Six studies were included in the meta-analysis. Femoral tunnel location was 18 % higher in the low-to-high direction, but was not significant in the deep-to-shallow direction, using the transtibial technique than the anatomical methods, when measured using the anatomical coordinate axis method. When measured using the quadrant method, however, femoral tunnel positions were significantly higher (21 %) and shallower (6 %) with transtibial than anatomical methods of ACL reconstruction. The anatomical ACL reconstruction techniques led to a lower femoral tunnel aperture location than the transtibial technique, suggesting the superiority of anatomical techniques for creating new femoral tunnels during revision ACL reconstruction in femoral tunnel aperture location in the low-to-high direction. However, the mean difference in the deep-to-shallow direction differed by method of measurement. Meta-analysis, Level II.
Single-cell analysis of population context advances RNAi screening at multiple levels
Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas
2012-01-01
Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome-wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell-based screens at this depth reveals widespread RNAi-induced changes in the population context of individual cells leading to indirect RNAi effects, as well as perturbations of cell-to-cell variability regulators. We find that accounting for indirect effects improves the consistency between siRNAs targeted against the same gene, and between replicate RNAi screens performed in different cell lines, in different labs, and with different siRNA libraries. In an era where large-scale RNAi screens are increasingly performed to reach a systems-level understanding of cellular processes, we show that this is often improved by analyses that account for and incorporate the single-cell microenvironment. PMID:22531119
Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities
Xia, Zhenyang; Song, Haomin; Kim, Munho; ...
2017-07-07
Miniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude. However, two issues arise when one continues to thin down the photoactive layers to the nanometer scale (for example, <50 nm). First, light-matter interaction becomes weak, resulting in incomplete photon absorption and low quantum efficiency. Second, it is difficult to obtain ultrathin materials with single-crystalline quality. Wemore » introduce a method to overcome these two challenges simultaneously. It uses conventional bulk semiconductor wafers, such as Si, Ge, and GaAs, to realize single-crystalline films on foreign substrates that are designed for enhanced light-matter interaction. We use a high-yield and high-throughput method to demonstrate nanometer-thin photodetectors with significantly enhanced light absorption based on nanocavity interference mechanism. As a result, these single-crystalline nanomembrane photodetectors also exhibit unique optoelectronic properties, such as the strong field effect and spectral selectivity.« less
Multi-junction solar cell device
Friedman, Daniel J.; Geisz, John F.
2007-12-18
A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.
Ultrasonic characterization of single drops of liquids
Sinha, D.N.
1998-04-14
Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.
Ultrasonic characterization of single drops of liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, D.N.
Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-qualitymore » measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.« less
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei
1997-01-01
A method of fabricating bulk superconducting material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta. comprising heating compressed powder oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta. in physical contact with an oxide single crystal seed to a temperature sufficient to form a liquid phase in the RBa.sub.2 Cu.sub.3 O.sub.7-.delta. while maintaining the single crystal seed solid to grow the superconducting material and thereafter cooling to provide a material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta.. R is a rare earth or Y or La and the single crystal seed has a lattice mismatch with RBa.sub.2 Cu.sub.3 O.sub.7-.delta. of less than about 2% at the growth temperature. The starting material may be such that the final product contains a minor amount of R.sub.2 BaCuO.sub.5.
KHATAMI, Mehri; HEIDARI, Mohammad Mehdi; HADADZADEH, Mehdi; SCHEIBER-MOJDEHKAR, Barbara; BITARAF SANI, Morteza; HOUSHMAND, Massoud
2017-01-01
Background: A significant role of Renin-angiotensin system (RAS) genetic variants in the pathogenesis of essential hypertension and cardiovascular diseases has been proved. This study aimed to develop a new, fast and cheap method for the simultaneous detection of two missense single nucleotide polymorphisms (T207M or rs4762 and M268T orrs699) of angiotensinogen (AGT) in single-step Multiplex Hexa-Primer Amplification Refractory Mutation System - polymerase chain reaction (H-ARMS-PCR). Methods: In this case-control study, 148 patients with coronary artery disease (CAD) and 135 controls were included. The patients were referred to cardiac centers in Afshar Hospital (Yazd, Iran) from 2012 to 2015. Two sets of inner primer (for each SNP) and one set outer primer pairs were designed for genotyping of rs4762 and rs699 in single tube H-ARMS-PCR. Direct sequencing of all samples was also performed to assess the accuracy of this method. DNA sequencing method validated the results of single tube H-ARMS-PCR. Results: We found full accordance for genotype adscription by sequencing method. The frequency of the AGT T521 and C702 alleles was significantly higher in CAD patients than in the control group (OR: 0.551, 95% CI: 0.359–0.846, P=0.008 and OR: 0.629, 95% CI: 0.422–0.936, P=0.028, respectively). Conclusion: This is the first work describing a rapid, low-cost, high-throughput simultaneous detection of rs4762 and rs699 polymorphisms in AGT gene, used in large clinical studies. PMID:28828324
Ho, Emmie N M; Kwok, W H; Wong, April S Y; Wan, Terence S M
2012-01-13
Quaternary ammonium drugs (QADs) are anticholinergic agents some of which are known to have been abused or misused in equine sports. A recent review of literature shows that the screening methods reported thus far for QADs mainly cover singly-charged QADs. Doubly-charged QADs are extremely polar substances which are difficult to be extracted and poorly retained on reversed-phase columns. It would be ideal if a comprehensive method can be developed which can detect both singly- and doubly-charged QADs. This paper describes an efficient liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the simultaneous detection and confirmation of 38 singly- and doubly-charged QADs at sub-parts-per-billion (ppb) to low-ppb levels in equine urine after solid-phase extraction. Quaternary ammonium drugs were extracted from equine urine by solid-phase extraction (SPE) using an ISOLUTE(®) CBA SPE column and analysed by LC/MS/MS in the positive electrospray ionisation mode. Separation of the 38 QADs was achieved on a polar group embedded C18 LC column with a mixture of aqueous ammonium formate (pH 3.0, 10 mM) and acetonitrile as the mobile phase. Detection and confirmation of the 38 QADs at sub-ppb to low-ppb levels in equine urine could be achieved within 16 min using selected reaction monitoring (SRM). Matrix interference of the target transitions at the expected retention times was not observed. Other method validation data, including precision and recovery, were acceptable. The method was successfully applied to the analyses of drug-administration samples. Copyright © 2011 Elsevier B.V. All rights reserved.
SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang Sunney
Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less
Off-axis silicon carbide substrates
Edgar, James; Dudley, Michael; Kuball, Martin; Zhang, Yi; Wang, Guan; Chen, Hui; Zhang, Yu
2014-09-02
A method of epitaxial growth of a material on a crystalline substrate includes selecting a substrate having a crystal plane that includes a plurality of terraces with step risers that join adjacent terraces. Each terrace of the plurality or terraces presents a lattice constant that substantially matches a lattice constant of the material, and each step riser presents a step height and offset that is consistent with portions of the material nucleating on adjacent terraces being in substantial crystalline match at the step riser. The method also includes preparing a substrate by exposing the crystal plane; and epitaxially growing the material on the substrate such that the portions of the material nucleating on adjacent terraces merge into a single crystal lattice without defects at the step risers.
Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment
Thompson, Jason D.; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue. PMID:22355378
Objective comparison of particle tracking methods.
Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R; Godinez, William J; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E G; Jaldén, Joakim; Blau, Helen M; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P; Dan, Han-Wei; Tsai, Yuh-Show; Ortiz de Solórzano, Carlos; Olivo-Marin, Jean-Christophe; Meijering, Erik
2014-03-01
Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.
Method for promoting specific alignment of short oligonucleotides on nucleic acids
Studier, F. William; Kieleczawa, Jan; Dunn, John J.
1996-01-01
Disclosed is a method for promoting specific alignment of short oligonucleotides on a nucleic acid polymer. The nucleic acid polymer is incubated in a solution containing a single-stranded DNA-binding protein and a plurality of oligonucleotides which are perfectly complementary to distinct but adjacent regions of a predetermined contiguous nucleotide sequence in the nucleic acid polymer. The plurality of oligonucleotides anneal to the nucleic acid polymer to form a contiguous region of double stranded nucleic acid. Specific application of the methods disclosed include priming DNA synthesis and template-directed ligation.
Sorting protein decoys by machine-learning-to-rank
Jing, Xiaoyang; Wang, Kai; Lu, Ruqian; Dong, Qiwen
2016-01-01
Much progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided into three categories: the single-model methods, clustering-based methods and quasi single-model methods. In this study, we develop a single-model method MQAPRank based on the learning-to-rank algorithm firstly, and then implement a quasi single-model method Quasi-MQAPRank. The proposed methods are benchmarked on the 3DRobot and CASP11 dataset. The five-fold cross-validation on the 3DRobot dataset shows the proposed single model method outperforms other methods whose outputs are taken as features of the proposed method, and the quasi single-model method can further enhance the performance. On the CASP11 dataset, the proposed methods also perform well compared with other leading methods in corresponding categories. In particular, the Quasi-MQAPRank method achieves a considerable performance on the CASP11 Best150 dataset. PMID:27530967
Sorting protein decoys by machine-learning-to-rank.
Jing, Xiaoyang; Wang, Kai; Lu, Ruqian; Dong, Qiwen
2016-08-17
Much progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided into three categories: the single-model methods, clustering-based methods and quasi single-model methods. In this study, we develop a single-model method MQAPRank based on the learning-to-rank algorithm firstly, and then implement a quasi single-model method Quasi-MQAPRank. The proposed methods are benchmarked on the 3DRobot and CASP11 dataset. The five-fold cross-validation on the 3DRobot dataset shows the proposed single model method outperforms other methods whose outputs are taken as features of the proposed method, and the quasi single-model method can further enhance the performance. On the CASP11 dataset, the proposed methods also perform well compared with other leading methods in corresponding categories. In particular, the Quasi-MQAPRank method achieves a considerable performance on the CASP11 Best150 dataset.