Sample records for method involves precipitation

  1. Assessment of Drought Severity Using Normal Precipitation Index (Case Study: Sistan and Baluchistan Province)

    NASA Astrophysics Data System (ADS)

    Rahimi, D.; Movahedi, S.

    2009-04-01

    In the last decades, water crisis is one of the most important critical phenomenons in the environment planning and human society's management which affecting on development aspects in the international, national and regional levels. In this research, have been considered the Drought as the main parameter in water rare serious. For drought assessment, can treat the different methods, such as statistical model, meteorological and hydrological methods. In this research, have been used the Normal Precipitation index to meteorological analysis of drought severity in Sistan and Baluchistan province with high drought severity during recent years. According to the obtained result, the annual precipitation of studied area was between 36 to 52 percent more than mean precipitation of province. 10%-23 percent of precipitation amount involved the drought threshold border, 3%-13 percent of precipitations contain the weakness drought, 6.7% -23 percent were considered for moderate drought, 6%-20 percent involved the severe drought and ultimately, 6.7% to 23 percent of precipitations were considered as very severe drought. Keywords: Drought, Normal index, precipitation, Sistan and Baluchistan

  2. Geophysical methods for monitoring soil stabilization processes

    NASA Astrophysics Data System (ADS)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  3. Method for determining processability of a hydrocarbon containing feedstock

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  4. An optimal merging technique for high-resolution precipitation products: OPTIMAL MERGING OF PRECIPITATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.

    2011-04-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutionsmore » and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.« less

  5. Microwave Observations of Precipitation and the Atmosphere

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Rosenkranz, Philip W.

    2004-01-01

    This research effort had three elements devoted to improving satellite-derived passive microwave retrievals of precipitation rate: morphological rain-rate retrievals, warm rain retrievals, and extension of a study of geostationary satellite options. The morphological precipitation-rate retrieval method uses for the first time the morphological character of the observed storm microwave spectra. The basic concept involves: 1) retrieval of point rainfall rates using current algorithms, 2) using spatial feature vectors of the observations over segmented multi-pixel storms to estimate the integrated rainfall rate for that storm (cu m/s), and 3) normalization of the point rain-rate retrievals to ensure consistency with the storm-wide retrieval. This work is ongoing, but two key steps have been completed: development of a segmentation algorithm for defining spatial regions corresponding to single storms for purposes of estimation, and reduction of some of the data from NAST-M that will be used to support this research going forward. The warm rain retrieval method involved extension of Aquai/AIRS/AMSU/HSB algorithmic work on cloud water retrievals. The central concept involves the fact that passive microwave cloud water retrievals over approx. 0.4 mm are very likely associated with precipitation. Since glaciated precipitation is generally detected quite successfully using scattering signatures evident in the surface-blind 54- and 183-GHz bands, this new method complements the first by permitting precipitation retrievals of non-glaciated events. The method is most successful over ocean, but has detected non-glaciated convective cells over land, perhaps in their early formative stages. This work will require additional exploration and validation prior to publication. Passive microwave instrument configurations for use in geostationary orbit were studied. They employ parabolic reflectors between 2 and 4 meters in diameter, and frequencies up to approx.430 GHz; this corresponds to nadir spot diameters as small as 10 km.

  6. Uncertainty in determining extreme precipitation thresholds

    NASA Astrophysics Data System (ADS)

    Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili

    2013-10-01

    Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.

  7. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar

    2014-09-07

    In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.

  8. Evaluation of an alternative extraction procedure for enterotoxin determination in dairy products.

    PubMed

    Meyrand, A; Atrache, V; Bavai, C; Montet, M P; Vernozy-Rozand, C

    1999-06-01

    A concentration protocol based on trichloroacetic acid precipitation was evaluated and compared with the reference method using dialysis concentration. Different quantities of purified staphylococcal enterotoxins were added to pasteurized Camembert-type cheeses. Detection of enterotoxins in these cheeses was performed using an automated detection system. Raw goat milk Camembert-type cheeses involved in a staphylococcal food poisoning were also tested. Both enterotoxin extraction methods allowed detection of the lowest enterotoxin concentration level used in this study (0.5 ng g-1). Compared with the dialysis concentration method, TCA precipitation of staphylococcal enterotoxins was 'user-friendly' and less time-consuming. These results suggest that TCA precipitation is a rapid (1 h), simple and reliable method of extracting enterotoxin from food which gives excellent recovery from dairy products.

  9. Preparation, composition and functional properties of pennycress (Thlaspi arvense L.) seed protein isolates

    USDA-ARS?s Scientific Manuscript database

    This study evaluated two methods, saline extraction (SE) and conventional acid precipitation (AP), to recover proteins from pennycress (Thlaspi arvense L.) seed meal. SE was done using 0.1 M NaCl at 50ºC while AP involved alkaline extraction (pH 10) first followed by protein precipitation at pH 4. C...

  10. Multi-site precipitation downscaling using a stochastic weather generator

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Chen, Hua; Guo, Shenglian

    2018-03-01

    Statistical downscaling is an efficient way to solve the spatiotemporal mismatch between climate model outputs and the data requirements of hydrological models. However, the most commonly-used downscaling method only produces climate change scenarios for a specific site or watershed average, which is unable to drive distributed hydrological models to study the spatial variability of climate change impacts. By coupling a single-site downscaling method and a multi-site weather generator, this study proposes a multi-site downscaling approach for hydrological climate change impact studies. Multi-site downscaling is done in two stages. The first stage involves spatially downscaling climate model-simulated monthly precipitation from grid scale to a specific site using a quantile mapping method, and the second stage involves the temporal disaggregating of monthly precipitation to daily values by adjusting the parameters of a multi-site weather generator. The inter-station correlation is specifically considered using a distribution-free approach along with an iterative algorithm. The performance of the downscaling approach is illustrated using a 10-station watershed as an example. The precipitation time series derived from the National Centers for Environment Prediction (NCEP) reanalysis dataset is used as the climate model simulation. The precipitation time series of each station is divided into 30 odd years for calibration and 29 even years for validation. Several metrics, including the frequencies of wet and dry spells and statistics of the daily, monthly and annual precipitation are used as criteria to evaluate the multi-site downscaling approach. The results show that the frequencies of wet and dry spells are well reproduced for all stations. In addition, the multi-site downscaling approach performs well with respect to reproducing precipitation statistics, especially at monthly and annual timescales. The remaining biases mainly result from the non-stationarity of NCEP precipitation. Overall, the proposed approach is efficient for generating multi-site climate change scenarios that can be used to investigate the spatial variability of climate change impacts on hydrology.

  11. Geophysical Methods for Monitoring Soil Stabilization Processes

    EPA Science Inventory

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  12. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  13. Amperometric, Bipotentiometric, and Coulometric Titration.

    ERIC Educational Resources Information Center

    Stock, John T.

    1984-01-01

    Reviews literature on amperometric, bipotentiometric, and coulometric titration methods examining: apparatus and methodology; acid-base reactions; precipitation and complexing reactions (considering methods involving silver, mercury, EDTA or analogous reagents, and other organic compounds); and oxidation-reduction reactions (considering methods…

  14. Reconstructing missing information on precipitation datasets: impact of tails on adopted statistical distributions.

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Beckie, Roger Daniel

    2014-05-01

    Missing data in hydrological time-series databases are ubiquitous in practical applications, yet it is of fundamental importance to make educated decisions in problems involving exhaustive time-series knowledge. This includes precipitation datasets, since recording or human failures can produce gaps in these time series. For some applications, directly involving the ratio between precipitation and some other quantity, lack of complete information can result in poor understanding of basic physical and chemical dynamics involving precipitated water. For instance, the ratio between precipitation (recharge) and outflow rates at a discharge point of an aquifer (e.g. rivers, pumping wells, lysimeters) can be used to obtain aquifer parameters and thus to constrain model-based predictions. We tested a suite of methodologies to reconstruct missing information in rainfall datasets. The goal was to obtain a suitable and versatile method to reduce the errors given by the lack of data in specific time windows. Our analyses included both a classical chronologically-pairing approach between rainfall stations and a probability-based approached, which accounted for the probability of exceedence of rain depths measured at two or multiple stations. Our analyses proved that it is not clear a priori which method delivers the best methodology. Rather, this selection should be based considering the specific statistical properties of the rainfall dataset. In this presentation, our emphasis is to discuss the effects of a few typical parametric distributions used to model the behavior of rainfall. Specifically, we analyzed the role of distributional "tails", which have an important control on the occurrence of extreme rainfall events. The latter strongly affect several hydrological applications, including recharge-discharge relationships. The heavy-tailed distributions we considered were parametric Log-Normal, Generalized Pareto, Generalized Extreme and Gamma distributions. The methods were first tested on synthetic examples, to have a complete control of the impact of several variables such as minimum amount of data required to obtain reliable statistical distributions from the selected parametric functions. Then, we applied the methodology to precipitation datasets collected in the Vancouver area and on a mining site in Peru.

  15. Selective Precipitation and Purification of Monovalent Proteins Using Oligovalent Ligands and Ammonium Sulfate

    PubMed Central

    Mirica, Katherine A.; Lockett, Matthew R.; Snyder, Phillip W.; Shapiro, Nathan D.; Mack, Eric T.; Nam, Sarah; Whitesides, George M.

    2012-01-01

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: i) the removal of high-molecular weight impurities through the addition of ammonium sulfate to the crude cell lysate; ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins—for which appropriate oligovalent ligands can be synthesized—and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation. PMID:22188202

  16. Selective precipitation and purification of monovalent proteins using oligovalent ligands and ammonium sulfate.

    PubMed

    Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W; Shapiro, Nathan D; Mack, Eric T; Nam, Sarah; Whitesides, George M

    2012-02-15

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: (i) the removal of high-molecular-weight impurities through the addition of ammonium sulfate to the crude cell lysate; (ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and (iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins--for which appropriate oligovalent ligands can be synthesized--and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation.

  17. Installation Restoration Program. Phase 1. Records Search for the Ohio National Guard, Rickenbacker Air National Guard Base, Columbus, Ohio.

    DTIC Science & Technology

    1987-06-01

    Each of these sites involves POL releases, detection of which is amenable to geophysical/geochemi- cal methods . ES-8 I A I A I I I I ~ i I I ii I VN...Precipitation in Columbus, Ohio, averages 36.71 inches per year. By calcu- lating net precipitation according to the method outlined in the Federal Regis- ter...spill absorption devices. Fuel that was not recovered either evaporated, was absorbed into the ground, or entered the base drainage system from the west

  18. Scaling Linguistic Characterization of Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Primo, C.; Gutierrez, J. M.

    2003-04-01

    Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  20. A data centred method to estimate and map how the local distribution of daily precipitation is changing

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Stainforth, David; Watkins, Nick

    2014-05-01

    Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles in distributions of variables such as daily temperature or precipitation. Here we focus on these local changes and on a method to transform daily observations of precipitation into patterns of local climate change. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results show regionally consistent patterns of systematic increase in precipitation on the wettest days, and of drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013, S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, Environ. Res. Lett. 8, 034031 [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119

  1. A Data Centred Method to Estimate and Map Changes in the Full Distribution of Daily Precipitation and Its Exceedances

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.

    2014-12-01

    Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily temperature or precipitation. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by 'heavy tailed' distributed variables such as daily precipitation. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those extreme precipitation days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results identify regionally consistent patterns which, dependent on location, show systematic increase in precipitation on the wettest days, shifts in precipitation patterns to less moderate days and more heavy days, and drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013 Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, S. C. Chapman, N. W. Watkins, 2013 Environ. Res. Lett. 8, 034031 [2] Haylock et al. 2008 J. Geophys. Res (Atmospheres), 113, D20119

  2. Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model.

    PubMed

    Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim

    2017-06-15

    Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.

  3. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  4. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  5. A rapid method for preparation of the cerebrospinal fluid proteome.

    PubMed

    Larssen, Eivind; Brede, Cato; Hjelle, Anne Bjørnstad; Øysaed, Kjell Birger; Tjensvoll, Anne Bolette; Omdal, Roald; Ruoff, Peter

    2015-01-01

    The cerebrospinal fluid (CSF) proteome is of great interest for investigation of diseases and conditions involving the CNS. However, the presence of high-abundance proteins (HAPs) can interfere with the detection of low-abundance proteins, potentially hindering the discovery of new biomarkers. Therefore, an assessment of the CSF subproteome composition requires depletion strategies. Existing methods are time consuming, often involving multistep protocols. Here, we present a rapid, accurate, and reproducible method for preparing the CSF proteome, which allows the identification of a high number of proteins. This method involves acetonitrile (ACN) precipitation for depleting HAPs, followed by immediate trypsination. As an example, we demonstrate that this method allows discrimination between multiple sclerosis patients and healthy subjects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James R

    2014-11-04

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  7. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  8. Phase-field simulations of coherent precipitate morphologies and coarsening kinetics

    NASA Astrophysics Data System (ADS)

    Vaithyanathan, Venugopalan

    2002-09-01

    The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)

  9. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2017-04-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  10. ¡Si, Se Puede! Achieving Academic Excellence Online

    ERIC Educational Resources Information Center

    Lumbreras, Ricardo, Jr.; Rupley, William H.

    2017-01-01

    Twenty-first century learners in post-secondary educational environments find themselves involved in online learning. Acquiring graduate degrees, especially for working professionals, has precipitated the need for effective, rigorous, relevant, and timely coursework online. Utilizing the qualitative research method of auto-ethnographic reporting,…

  11. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  12. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  13. Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

    DOE PAGES

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...

    2015-10-24

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  14. Extreme daily precipitation in the Northern Sierra Precipitation 8-Station index: The combined impact of landfalling atmospheric rivers and the Sierra barrier jet

    NASA Astrophysics Data System (ADS)

    Cordeira, J. M.; Ralph, F. M.; Neiman, P. J.; Hughes, M.

    2014-12-01

    The Upper Sacramento River area is vital to California's water supply, and is susceptible to major floods. Recent studies indicate that orographic precipitation in this complex terrain involves both inland penetrating atmospheric rivers (ARs) and the Sierra barrier jet (SBJ). The southerly SBJ induces orographic precipitation along south-facing slopes in the Shasta region, whereas landfalling ARs ascend up and over the statically stable SBJ and induce orographic precipitation along west-facing upper slopes in the Northern Sierra Nevada. This paper explores the hypothesis that extreme daily precipitation here is controlled by the presence of both a landfalling AR and a SBJ. Three 10-year-long (2000-2011) observational datasets are used. ARs are identified from the Neiman et al. (2008) AR catalog that uses an SSM/I satellite-based AR-detection method from Ralph et al. (2004), whereas SBJ conditions are determined from Chico, CA wind profiler data using the method from Neiman et al. (2010). Extreme daily precipitation is identified from the average of 8 rain gauges spanning the region known as the "Northern Sierra 8-Station Index." The "index" is used by water managers to assess water supply. Extreme events are defined as the 50 largest daily precipitation totals in the index for the 10-year period (the top ~1.37%). These dates in the 8-station index are compared with the catalogs of landfalling ARs and SBJs. In summary, 46 of 50 (92%) extreme daily precipitation events are associated with landfalling ARs on either the day before or the day of precipitation, whereas 45 of 50 (90%) extreme daily precipitation events are associated with SBJ conditions. 38 of 50 (76%) extreme daily precipitation events are associated with both a landfalling AR and an SBJ. The 10 days with the largest daily precipitation in the index were all associated with both a landfalling AR and an SBJ. Thus, extreme daily precipitation in Northern California is strongly controlled by the presence of both a landfalling AR and a SBJ.

  15. Recovery of cesium and palladium from nuclear reactor fuel processing waste

    DOEpatents

    Campbell, David O.

    1976-01-01

    A method of recovering cesium and palladium values from nuclear reactor fission product waste solution involves contacting the solution with a source of chloride ions and oxidizing palladium ions present in the solution to precipitate cesium and palladium as Cs.sub.2 PdCl.sub.6.

  16. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soner Yorgun, M.; Rood, Richard B.

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  17. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE PAGES

    Soner Yorgun, M.; Rood, Richard B.

    2016-11-11

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  18. a Study of Precipitation Using Dual-Frequency and Interferometric Doppler Radars.

    NASA Astrophysics Data System (ADS)

    Chilson, Phillip Bruce

    The primary focus of this dissertation involves the investigation of precipitation using Doppler radar but using distinctly different methods. Each method will be treated separately. The first part describes an investigation of a tropical thunderstorm that occurred in the summer of 1991 over the National Astronomy and Ionosphere Center in Arecibo, Puerto Rico. Observations were made using a vertically pointing, dual-wavelength, collinear beam Doppler radar which permits virtually simultaneous observations of the same pulse volume using transmission and reception of coherent UHF and VHF signals on alternate pulses. This made it possible to measure directly the vertical wind within the sampling volume using the VHF signal while using the UHF signal to study the nature of the precipitation. The observed storm showed strong similarities with systems observed in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) study. The experiment provided a means of determining various parameters associated with the storm, such as the vertical air velocity, the mean fall speeds of the precipitation, and the reflectivity. Rogers proposed a means of deducing the mean fall speed of precipitation particles using the radar reflectivity factor. Using the data from our experiment, the mean precipitation fall speeds were calculated and compared with those that would be inferred from Rogers' method. The results suggest the Rogers method of estimating mean precipitation fall speeds to be unreliable in turbulent environments. The second part reports observations made with the 50 MHz Middle and Upper Atmosphere (MU) radar located at Shigaraki, Japan during May of 1992. The facility was operated in a spatial interferometry (SI) mode while observing frontal precipitation. The data suggest that the presence of precipitation can produce a bias in the SI cross-spectral phase that in turn creates an overestimation of the horizontal wind. The process is likened to turbulent fading which produces a temporal decorrelation in the time history of the complex radar voltages. In the case of precipitation, it is proposed that the size distribution of the hydrometeors produces a similar effect. This work examines the supposition by creating mathematical and computer simulations to test for any biases introduced by an exponential form of the drop-size distribution. The simulations were run for both the cases of Bragg scatter from turbulent variations in the refractive index and Rayleigh scatter from precipitation particles. Finally the simulation results were compared with actual radar data. It is shown that particle size distributions do indeed influence the cross -spectral phase which in turn leads to erroneous horizontal wind estimates.

  19. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    PubMed

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  20. Effect of Co on Discontinuous Precipitation Transformation with TCP Phase in Ni-based Alloy Containing Re

    NASA Astrophysics Data System (ADS)

    Shi, Qianying; An, Ning; Huo, Jiajie; Zheng, Yunrong; Feng, Qiang

    2017-05-01

    The effect of Co on discontinuous precipitation (DP) transformation involving the formation of topologically close-packed (TCP) phase was investigated in three Ni-Cr-Re model alloys containing different levels of Co. One typical TCP phase, σ, was generated within DP cellular colonies along the migrating grain boundaries in experimental alloys during aging treatment. As a result of the increased solubility of Re in the γ matrix and enlarged interlamellar spacing of σ precipitates inside of growing DP colonies, Co addition suppressed the formation of σ phase and associated DP colonies. This study suggests that Co could potentially serve as a microstructural stabilizer in Re-containing Ni-base superalloys, which provides an alternative method for the composition optimization of superalloys.

  1. LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, M.; Pierce, R.

    2012-08-22

    H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed testmore » conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the presence of oxalate by thermogravimetric analysis-mass spectrometry (TGA-MS). To use the TGA-MS for carbon or oxalate content, some method development will be required. However, the TGA-MS is already used for moisture measurements. Therefore, SRNL initiated method development for the TGA-MS to allow quantification of oxalate or total carbon. That work continues at this time and is not yet ready for use in this study. However, the collected test data can be reviewed later as those analysis tools are available.« less

  2. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  3. Precipitates and boundaries interaction in ferritic ODS steels

    NASA Astrophysics Data System (ADS)

    Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves

    2016-04-01

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.

  4. An Investigation of High Ability Adolescent Students' Affective and Motivational Responses to Mathematics

    ERIC Educational Resources Information Center

    Carmody, Heather Jean

    2017-01-01

    Students' motivational and affective responses to mathematics are related to their academic performance. This mixed methods study involved survey results from 394 middle and high school high ability students. Data revealed that students believed success was possible, and that the usefulness and enjoyment of mathematics precipitated high…

  5. Method for determining asphaltene stability of a hydrocarbon-containing material

    DOEpatents

    Schabron, John F; Rovani, Jr., Joseph F

    2013-02-05

    A method for determining asphaltene stability in a hydrocarbon-containing material having solvated asphaltenes therein is disclosed. In at least one embodiment, it involves the steps of: (a) precipitating an amount of the asphaltenes from a liquid sample of the hydrocarbon-containing material with an alkane mobile phase solvent in a column; (b) dissolving a first amount and a second amount of the precipitated asphaltenes by changing the alkane mobile phase solvent to a final mobile phase solvent having a solubility parameter that is higher than the alkane mobile phase solvent; (c) monitoring the concentration of eluted fractions from the column; (d) creating a solubility profile of the dissolved asphaltenes in the hydrocarbon-containing material; and (e) determining one or more asphaltene stability parameters of the hydrocarbon-containing material.

  6. [Diagnosis of primary hyperlipoproteinemia in umbilical cord blood (author's transl)].

    PubMed

    Parwaresch, M R; Radzun, H J; Mäder, C

    1977-10-01

    The aim of the present investigation was to assay the frequency of primary dyslipoproteinemia in a random sample of one hundred newborns and to describe the minimal methodical requirements for sound diagnosis. After comparison of different methods total lipids were determined by gravimetry, cholesterol and triglycerides by enzymatic methods, nonesterified fatty acids by direct colorimetry; phospholipids were estimated indirectly. All measurements were applied to umbilical cord sera and to lipoprotein fractions separated by selective precipitation. The diagnosis of hyperlipoproteinemia type IV, which is the most frequent one in adults, is highly afflicted with pitfalls in the postnatal period. A primary hyper-alpha-liproteinemia occured in one case and type II-hyperlipoproteinemia in two cases, one of the parents being involved in each case. For mass screening triglycerides should be assayed in serum and cholesterol in precipitated and resolubilized LDL-fraction, for which the minimal requirements are described.

  7. Students' mental models on the solubility and solubility product concept

    NASA Astrophysics Data System (ADS)

    Rahmi, Chusnur; Katmiati, Siti; Wiji, Mulyani, Sri

    2017-05-01

    This study aims to obtain some information regarding profile of students' mental models on the solubility and solubility product concept. A descriptive qualitative method was the method employed in the study. The participants of the study were students XI grade of a senior high school in Bandung. To collect the data, diagnostic test on mental model-prediction, observation, explanation (TDM-POE) instrument was employed in the study. The results of the study revealed that on the concept of precipitation formation of a reaction, 30% of students were not able to explain the precipitation formation of a reaction either in submicroscopic or symbolic level although the microscopic have been shown; 26% of students were able to explain the precipitation formation of a reaction based on the relation of Qsp and Ksp, but they were not able to explain the interaction of particles that involved in the reaction and to calculate Qsp; 26% of students were able to explain the precipitation formation of a reaction based on the relation of Qsp and Ksp, and determine the particles involved, but they did not have the knowledge about the interactions occured and were uncapable of calculating Qsp; and 18% of students were able to explain the precipitation formation of a reaction based on the relation of Qsp and Ksp, and determine the interactions of the particles involved in the reactions but they were not able to calculate Qsp. On the effect of adding common ions and decreasing pH towards the solubility concept, 96% of students were not able to explain the effect of adding common ions and decreasing pH towards the solubility either in submicroscopic or symbolic level although the microscopic have been shown; while 4% of students were only able to explain the effect of adding common ions towards the solubility based on the chemical equilibrium shifts and predict the effect of decreasing pH towards the solubility. However, they were not able to calculate the solubility before and after adding common ions and explain it up to the submicroscopic level either based on the shift of equilibrium solubility or the comparison of solubility calculation results before and after decreasing pH. Overall, the present study showed that most students obtain incomplete mental model on the solubility and solubility product concept. From the findings, it is recommended for the teachers to improve students' learning activity.

  8. Flood hydrology for Dry Creek, Lake County, Northwestern Montana

    USGS Publications Warehouse

    Parrett, C.; Jarrett, R.D.

    2004-01-01

    Dry Creek drains about 22.6 square kilometers of rugged mountainous terrain upstream from Tabor Dam in the Mission Range near St. Ignatius, Montana. Because of uncertainty about plausible peak discharges and concerns regarding the ability of the Tabor Dam spillway to safely convey these discharges, the flood hydrology for Dry Creek was evaluated on the basis of three hydrologic and geologic methods. The first method involved determining an envelope line relating flood discharge to drainage area on the basis of regional historical data and calculating a 500-year flood for Dry Creek using a regression equation. The second method involved paleoflood methods to estimate the maximum plausible discharge for 35 sites in the study area. The third method involved rainfall-runoff modeling for the Dry Creek basin in conjunction with regional precipitation information to determine plausible peak discharges. All of these methods resulted in estimates of plausible peak discharges that are substantially less than those predicted by the more generally applied probable maximum flood technique. Copyright ASCE 2004.

  9. Precipitation event tracking reveals that precipitation characteristics respond differently under seasonal, interannual, and anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Chen, C.; Chang, W.; Kong, W.; Wang, J.; Kotamarthi, V. R.; Stein, M.; Moyer, E. J.

    2017-12-01

    Change in precipitation characteristics is an especially concerning potential impact of climate change, and both model and observational studies suggest that increases in precipitation intensity are likely. However, studies to date have focused on mean accumulated precipitation rather than on the characteristics of individual events. We report here on a study using a novel rainstorm identification tracking algorithm (Chang et al. 2016) that allows evaluating changes in spatio-temporal characteristics of events. We analyze high-resolution precipitation from dynamically downscaled regional climate simulations over the continental U.S. (WRF driven by CCSM4) of present and future climate conditions. We show that precipitation events show distinct characteristic changes for natural seasonal and interannual variations and for anthropogenic greenhouse-gas forcing. In all cases, wetter seasons/years/future climate states are associated with increased precipitation intensity, but other precipitation characteristics respond differently to the different drivers. For example, under anthropogenic forcing, future wetter climate states involve smaller individual event sizes (partially offsetting their increased intensity). Under natural variability, however, wetter years involve larger mean event sizes. Event identification and tracking algorithms thus allow distinguishing drivers of different types of precipitation changes, and in relating those changes to large-scale processes.

  10. The Effect of Hurricanes on Annual Precipitation in Maryland and the Connection to Global Climate Change

    NASA Technical Reports Server (NTRS)

    Liu, Jackie; Liu, Zhong

    2015-01-01

    Precipitation is a vital aspect of our lives droughts, floods and other related disasters that involve precipitation can cause costly damage in the economic system and general society. Purpose of this project is to determine what, if any effect do hurricanes have on annual precipitation in Maryland Research will be conducted on Marylands terrain, climatology, annual precipitation, and precipitation contributed from hurricanes Possible connections to climate change

  11. Method for determination of small amounts of rare earths and thorium in phosphate rocks

    USGS Publications Warehouse

    Waring, C.L.; Mela, H.

    1953-01-01

    In laboratory investigations, interest developed in the possible rare-earth content of phosphate samples from Florida and the northwestern United States. Because of the difficulty of making chemical determinations of traces of individual rare earths, a combined chemical-spectrographic method was investigated. After removal of iron by the extraction of the chloride with ether, the rare earths and thorium are concentrated by double oxalate precipitation, using calcium as a carrier. The rare earths are freed from calcium by an ammonium hydroxide precipitation with a fixed amount of aluminum as a carrier. The aluminum also serves as an internal standard in the final spectrographic analysis. The method will determine from 0.02 to 2 mg. of each rare earth with an error no greater than 10%. The investigation has resulted in a fairly rapid and precise procedure, involving no special spectrographic setup. The method could be applied to other types of geologic materials with the same expected accuracy.

  12. Investigation of discharged aerosol nanoparticles during chemical precipitation and spray pyrolysis for developing safety measures in the nano research laboratory.

    PubMed

    Kolesnikov, Еvgeny; Karunakaran, Gopalu; Godymchuk, Anna; Vera, Levina; Yudin, Andrey Grigorjevich; Gusev, Alexander; Kuznetsov, Denis

    2017-05-01

    Nowadays, the demands for the nanoparticles are increasing due to their tremendous applications in various fields. As a consequence, the discharge of nanoparticles into the atmosphere and environment is also increasing, posing a health threat and environmental damage in terms of pollution. Thus, an extensive research is essential to evaluate the discharge of these nanoparticles into the environment. Keeping this in mind, the present investigation aimed to analyze the discharge of aerosol nanoparticles that are synthesized in the laboratory via chemical precipitation and spray pyrolysis methods. The results indicated that the chemical precipitation method discharges a higher concentration of nanoparticles in the work site when compared to the spray pyrolysis method. The aerosol concentration also varied with the different steps involved during the synthesis of nanoparticles. The average particle's concentration in air for chemical precipitation and spray pyrolysis methods was around 1,037,476 and 883,421particles/cm 3 . In addition, the average total discharge of nanoparticles in the entire laboratory was also examined. A significant variation in the concentration of nanoparticles was noticed, during the processing of materials and the concentration of particles (14-723nm) exceeding the daily allowed concentration to about 70-170 times was observed over a period of 6 months. Thus, the results of the present study will be very useful in developing safety measures and would help in organizing the rules for people working in nanotechnology laboratories to minimize the hazardous effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.

    1989-05-01

    A storm transposition approach is investigated as a possible tool of assessing the frequency of extreme precipitation depths, that is, depths of return period much greater than 100 years. This paper focuses on estimation of the annual exceedance probability of extreme average precipitation depths over a catchment. The probabilistic storm transposition methodology is presented, and the several conceptual and methodological difficulties arising in this approach are identified. The method is implemented and is partially evaluated by means of a semihypothetical example involving extreme midwestern storms and two hypothetical catchments (of 100 and 1000 mi2 (˜260 and 2600 km2)) located in central Iowa. The results point out the need for further research to fully explore the potential of this approach as a tool for assessing the probabilities of rare storms, and eventually floods, a necessary element of risk-based analysis and design of large hydraulic structures.

  14. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be otherwise possible. These developments have taken place in parallel with the growth of an increasingly interconnected scientific environment. Scientists from different disciplines can easily interact with each other via information and materials they encounter online, and collaborate remotely without ever meeting each other in person. Likewise, these precipitation datasets are quickly and easily available via various data portals and are widely used. Within the framework of the NASA/JAXA Global Precipitation Measurement (GPM mission, these applications will become increasingly interconnected. We emphasize that precipitation observations by themselves provide an incomplete picture of the state of the atmosphere. For example, it is unlikely that a richer understanding of the global water cycle will be possible by standalone missions and algorithms, but must also involve some component of data, where model analyses of the physical state are constrained alongside multiple observations (e.g., precipitation, evaporation, radiation). The next section provides examples extracted from the many applications that use various high-resolution precipitation products. The final section summarizes the future system for global precipitation processing.

  15. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam

    2011-12-01

    Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Levine, Lyle E.; Allen, Andrew J.

    The precipitate structure and precipitation kinetics in an Al-Cu-Mg alloy (AA2024) aged at 190 °C, 208 °C, and 226 °C have been studied using ex situ Transmission Electron Microscopy (TEM) and in situ synchrotron-based, combined ultra-small angle X-ray scattering, small angle X-ray scattering (SAXS), and wide angle X-ray scattering (WAXS) across a length scale from sub-Angstrom to several micrometers. TEM brings information concerning the nature, morphology, and size of the precipitates while SAXS and WAXS provide qualitative and quantitative information concerning the time-dependent size and volume fraction evolution of the precipitates at different stages of the precipitation sequence. Within themore » experimental time resolution, precipitation at these ageing temperatures involves dissolution of nanometer-sized small clusters and formation of the planar S phase precipitates. Using a three-parameter scattering model constructed on the basis of TEM results, we established the temperature-dependent kinetics for the cluster-dissolution and S-phase formation processes simultaneously. These two processes are shown to have different kinetic rates, with the cluster-dissolution rate approximately double the S-phase formation rate. We identified a dissolution activation energy at (149.5 ± 14.6) kJ mol-1, which translates to (1.55 ± 0.15) eV/atom, as well as an activation energy for the formation of S precipitates at (129.2 ± 5.4) kJ mol-1, i.e. (1.33 ± 0.06) eV/atom. Importantly, the SAXS/WAXS results show the absence of an intermediate Guinier-Preston Bagaryatsky 2 (GPB2)/S" phase in the samples under the experimental ageing conditions. These results are further validated by precipitation simulations that are based on Langer-Schwartz theory and a Kampmann-Wagner numerical method.« less

  17. Random Forest Application for NEXRAD Radar Data Quality Control

    NASA Astrophysics Data System (ADS)

    Keem, M.; Seo, B. C.; Krajewski, W. F.

    2017-12-01

    Identification and elimination of non-meteorological radar echoes (e.g., returns from ground, wind turbines, and biological targets) are the basic data quality control steps before radar data use in quantitative applications (e.g., precipitation estimation). Although WSR-88Ds' recent upgrade to dual-polarization has enhanced this quality control and echo classification, there are still challenges to detect some non-meteorological echoes that show precipitation-like characteristics (e.g., wind turbine or anomalous propagation clutter embedded in rain). With this in mind, a new quality control method using Random Forest is proposed in this study. This classification algorithm is known to produce reliable results with less uncertainty. The method introduces randomness into sampling and feature selections and integrates consequent multiple decision trees. The multidimensional structure of the trees can characterize the statistical interactions of involved multiple features in complex situations. The authors explore the performance of Random Forest method for NEXRAD radar data quality control. Training datasets are selected using several clear cases of precipitation and non-precipitation (but with some non-meteorological echoes). The model is structured using available candidate features (from the NEXRAD data) such as horizontal reflectivity, differential reflectivity, differential phase shift, copolar correlation coefficient, and their horizontal textures (e.g., local standard deviation). The influence of each feature on classification results are quantified by variable importance measures that are automatically estimated by the Random Forest algorithm. Therefore, the number and types of features in the final forest can be examined based on the classification accuracy. The authors demonstrate the capability of the proposed approach using several cases ranging from distinct to complex rain/no-rain events and compare the performance with the existing algorithms (e.g., MRMS). They also discuss operational feasibility based on the observed strength and weakness of the method.

  18. A rapid and sensitive method for the quantitation of montelukast in sheep plasma using liquid chromatography/tandem mass spectrometry.

    PubMed

    Papp, Robert; Luk, Pauline; Mullett, Wayne M; Kwong, Elizabeth

    2007-10-15

    A rapid LC-MS/MS method was developed and partially validated for the quantitation of montelukast in spiked sheep plasma. A total run time of 1.5 min was achieved using a short monolithic column and employing a rapid gradient. Sample preparation involved protein precipitation with twofold acetonitrile by volume during which a deuterated internal standard (montelukast D-6) was incorporated. The MRM transitions for montelukast and the deuterated internal standard were 586/422 and 592/427, respectively. A linear dynamic range of 0.25-500 ng/mL with a correlation coefficient of 0.9999 was achieved. Precision was below 5% at all levels except at the LOQ (0.36 ng/mL) which demonstrated an overall of R.S.D. of 8%. Post-column infusion experiments were performed with precipitated plasma matrix and showed minimal interference with the peaks of interest.

  19. Synthesis procedure optimization and characterization of europium (III) tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Reza Banan, Ali; Ahmadi, Farhad

    2014-09-01

    Taguchi robust design as a statistical method was applied for the optimization of process parameters in order to tunable, facile and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in an aqueous medium. Effects of some synthesis procedure variables on the particle size of europium (III) tungstate nanoparticles were studied. Analysis of variance showed the importance of controlling tungstate concentration, cation feeding flow rate and temperature during preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method. The morphology and chemical composition of the prepared nano-material were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy and fluorescence.

  20. THE MONITORING OF EFFLUENT FOR ALPHA EMITTERS. PART II. METHODS FOR THE DETERMINATION OF URANIUM, POLONIUM AND OTHER ALPHA EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smales, A.A.; Airey, L.; Woodward, J.

    1950-06-01

    Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less

  1. Fabrication and Characterization of Biomimetic Collagen-Apatite Scaffolds with Tunable Structures for Bone Tissue Engineering

    PubMed Central

    Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei

    2013-01-01

    The objective of the current study is to prepare a biomimetic collagen-apatite (Col-Ap) scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in a range 0–54 wt% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, bone forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. PMID:23567944

  2. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  3. Joint probabilities of extreme precipitation and wind gusts in Germany

    NASA Astrophysics Data System (ADS)

    von Waldow, H.; Martius, O.

    2012-04-01

    Extreme meteorological events such as storms, heavy rain, floods, droughts and heat waves can have devastating consequences for human health, infrastructure and ecosystems. Concomitantly occurring extreme events might interact synergistically to produce a particularly hazardous impact. The joint occurrence of droughts and heat waves, for example, can have a very different impact on human health and ecosystems both in quantity and quality, than just one of the two extreme events. The co-occurrence of certain types of extreme events is plausible from physical and dynamical considerations, for example heavy precipitation and high wind speeds in the pathway of strong extratropical cyclones. The winter storm Kyrill not only caused wind gust speeds well in excess of 30 m/s across Europe, but also brought 24 h precipitation sums greater than the mean January accumulations in some regions. However, the existence of such compound risks is currently not accounted for by insurance companies, who assume independence of extreme weather events to calculate their premiums. While there are established statistical methods to model the extremes of univariate meteorological variables, the modelling of multidimensional extremes calls for an approach that is tailored to the specific problem at hand. A first step involves defining extreme bivariate wind/precipitation events. Because precipitation and wind gusts caused by the same cyclone or convective cell do not occur at exactly the same location and at the same time, it is necessary to find a sound definition of "extreme compound event" for this case. We present a data driven method to choose appropriate time and space intervals that define "concomitance" for wind and precipitation extremes. Based on station data of wind speed and gridded precipitation data, we arrive at time and space intervals that compare well with the typical time and space scales of extratropical cyclones, i.e. a maximum time lag of 1 day and a maximum distance of about 300 km between associated wind and rain events. After modelling extreme precipitation and wind separately, we explore the practicability of characterising their joint distribution using a bivariate threshold excess model. In particular, we present different dependence measures and report about the computational feasibility and available computer codes.

  4. Development of a confirmatory method for detecting recombinant bovine somatotropin in plasma by immunomagnetic precipitation followed by ultra-high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Robert, Christelle; Huet, Anne-Catherine; Suárez-Pantaleón, Célia; Brasseur, Amaury; Delahaut, Philippe; Gillard, Nathalie

    2017-11-01

    Recombinant bovine somatotropin (rbST), a synthetic growth hormone, is used to stimulate growth and enhance milk production in dairy cows. Both its use and the sale of dairy products from treated animals are prohibited in the European Union, as well as in Australia, Canada, Japan, and New Zealand, but authorised in several countries (e.g. Brazil, USA). Screening methods involve detecting anti-rbST antibodies (biomarkers) in treated cows. Confirmatory methods are required to prove rbST abuse. The major challenges in determining rbST are its potentially low levels, its high similarity to native bST, and matrix interferences. To overcome these obstacles, we have developed a method involving immunomagnetic precipitation followed by UHPLC-MS/MS for rbST detection. Briefly, protein G magnetic beads pre-coated with an in-house produced monoclonal antibody were added to plasma. Incubation at room temperature allowed rbST present in the sample to bind to the magnetic beads. After that, magnetic beads were isolated by centrifugation and thoroughly washed (PBS, PBS + 0.2% Tween 20). Finally, rbST was released by alkalinisation and the samples were trypsin digested prior to UHPLC-MS/MS analysis in the MRM mode. Validation was done in accordance with European Commission Decision 2002/657/CE. Matrix-matched calibration with internal standards was used. The decision limit (CCα) reached with this approach was 0.11 µg l -1 .

  5. A process for the chemical preparation of high-field ZnO varistors

    DOEpatents

    Brooks, R.A.; Dosch, R.G.; Tuttle, B.A.

    1986-02-19

    Chemical preparation techniques involving co-precipitation of metals are used to provide microstructural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E/sub B/, in the 10 to 100 kV/cm range, ..cap alpha.. > 30 and densities in the range of 65 to 99% of theoretical, depending on both composition and sintering temperature.

  6. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  7. Process for the chemical preparation of high-field ZnO varistors

    DOEpatents

    Brooks, Robert A.; Dosch, Robert G.; Tuttle, Bruce A.

    1987-01-01

    Chemical preparation techniques involving co-precipitation of metals are used to provide micro-structural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E.sub.B, in the 10-100 kV/cm range, .alpha.>30 and densities in the range of 65-99% of theoretical, depending on both composition and sintering temperature.

  8. Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.

    2017-04-01

    Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.

  9. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    NASA Astrophysics Data System (ADS)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  10. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield

    PubMed Central

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-01-01

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale. PMID:28621723

  11. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield.

    PubMed

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-06-16

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale.

  12. MOLECULAR SIEVES ADSORB IODINE-131 FROM AIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlgren, M.A.; Meinke, W.W.

    1957-09-01

    Consideration has been given to the problem of separating and estimating U, Po, nnd other alpha emitters (in order to provide analytical methods for their routine determination in conformity with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of NH/sub 4/NO/sub 3/ as salting out agent at pH1 with an efficiency of 98 to 99%. The deposition of Po on Ag foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all "other alpha emitters" is obtained and methods for the estimationmore » of these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. U, Po, and the majority of the "other alpha emitters" are precipitated as their tannin complexes at pH8 using Ca(OH)/sub 2/, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, Po is first separated by electrodeposition, and then U by ether extraction in the presence of NH/sub 4/NO/sub 3/. The majority of the "other alpha emitters" still in the aqueous NH/sub 4/NO/sub 3/ solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less

  13. The effect of rain characteristics on scavenging rate of tritium-oxide from the atmosphere

    NASA Astrophysics Data System (ADS)

    Piskunov, V. N.; Golubev, A. V.; Balashov, Yu. S.; Mavrin, S. V.; Golubeva, V. N.; Aleinikov, A. Yu.; Kovalenko, V. P.; Solomatin, I. I.

    2012-12-01

    The results of field experiments, involving HTO scavenging from the atmosphere by precipitation in the vicinity of HT and HTO emission sources, are presented. The experiments were aimed at obtaining direct experimental data on atmospheric HTO scavenging for a variety of rain characteristics (rain intensity and drop spectra).The most reliable are the calculations of the rate of wash-out with precipitation with the use of the method of integration of the constant exchange for a spectrum of drops. The results of such calculations are in good agreement with the experimental data and can serve as a basis for the generalized parameterization dependences. It is shown that the exact calculation can be replaced by a simpler formula using the mean-value theorem.For the known approximations of the spectra of the rain drops, formulas were obtained to give parameterization dependence of the rate of wash-out Λ on the intensity of precipitation p. This approach can be used for rapid assessment, as well as to determine parameters of wash-out of gases with precipitation in the numerical complexes, which are used for the calculation of the transfer and removal of impurities from the atmosphere.

  14. The sensitivity of precipitation simulations to the soot aerosol presence

    NASA Astrophysics Data System (ADS)

    Palamarchuk, Iuliia; Ivanov, Sergiy; Mahura, Alexander; Ruban, Igor

    2016-04-01

    The role of aerosols in nonlinear feedbacks on atmospheric processes is in a focus of many researches. Particularly, the importance of black carbon particles for evolution of physical weather including precipitation formation and release is investigated by numerical modelling as well as observation networks. However, certain discrepancies between results obtained by different methods are remained. The increasing of complexity in numerical weather modelling systems leads to enlarging a volume of output data and promises to reveal new aspects in complexity of interactions and feedbacks. The Harmonie-38h1.2 model with the AROME physical package is used to study changes in precipitation life-cycle under black carbon polluted conditions. A model configuration includes a radar data assimilation procedure on a high resolution domain covering the Scandinavia region. Model results show that precipitation rate and distribution as well as other variables of atmospheric dynamics and physics over the domain are sensitive to aerosol concentrations. The attention should also be paid to numerical aspects, such as a list of observation types involved in assimilation. The use of high resolution radar information allows to include mesoscale features in initial conditions and to decrease the growth rate of a model error with the lead time.

  15. Quantifying how the full local distribution of daily precipitation is changing and its uncertainties

    NASA Astrophysics Data System (ADS)

    Stainforth, David; Chapman, Sandra; Watkins, Nicholas

    2016-04-01

    The study of the consequences of global warming would benefit from quantification of geographical patterns of change at specific thresholds or quantiles, and better understandings of the intrinsic uncertainties in such quantities. For precipitation a range of indices have been developed which focus on high percentiles (e.g. rainfall falling on days above the 99th percentile) and on absolute extremes (e.g. maximum annual one day precipitation) but scientific assessments are best undertaken in the context of changes in the whole climatic distribution. Furthermore, the relevant thresholds for climate-vulnerable policy decisions, adaptation planning and impact assessments, vary according to the specific sector and location of interest. We present a methodology which maintains the flexibility to provide information at different thresholds for different downstream users, both scientists and decision makers. We develop a method[1,2] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes in daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the amount of precipitation on those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves not only determining which quantiles and geographical locations show the greatest and smallest changes, but also those at which uncertainty undermines the ability to make confident statements about any change there may be. We demonstrate this approach using E-OBS gridded data[3] which are timeseries of local daily precipitation across Europe over the last 60+ years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the geographical pattern of change at given thresholds of precipitation. This information is model- independent, thus providing data of direct value in model calibration and assessment. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013 [2] S C Chapman, D A Stainforth, N W Watkins, 2015 Limits to the quantification of local climate change, ERL,10, 094018 (2015), ERL,10, 094018 [3] M R Haylock et al . 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119

  16. Validation of Ground-based Optical Estimates of Auroral Electron Precipitation Energy Deposition

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Grubbs, G. A., II; Conde, M.; Lynch, K. A.; Michell, R.; Zettergren, M. D.; Samara, M.; Ahrns, M. J.

    2017-12-01

    One of the major energy inputs into the high latitude ionosphere and mesosphere is auroral electron precipitation. Not only does the kinetic energy get deposited, the ensuing ionization in the E and F-region ionosphere modulates parallel and horizontal currents that can dissipate in the form of Joule heating. Global models to simulate these interactions typically use electron precipitation models that produce a poor representation of the spatial and temporal complexity of auroral activity as observed from the ground. This is largely due to these precipitation models being based on averages of multiple satellite overpasses separated by periods much longer than typical auroral feature durations. With the development of regional and continental observing networks (e.g. THEMIS ASI), the possibility of ground-based optical observations producing quantitative estimates of energy deposition with temporal and spatial scales comparable to those known to be exhibited in auroral activity become a real possibility. Like empirical precipitation models based on satellite overpasses such optics-based estimates are subject to assumptions and uncertainties, and therefore require validation. Three recent sounding rocket missions offer such an opportunity. The MICA (2012), GREECE (2014) and Isinglass (2017) missions involved detailed ground based observations of auroral arcs simultaneously with extensive on-board instrumentation. These have afforded an opportunity to examine the results of three optical methods of determining auroral electron energy flux, namely 1) ratio of auroral emissions, 2) green line temperature vs. emission altitude, and 3) parametric estimates using white-light images. We present comparisons from all three methods for all three missions and summarize the temporal and spatial scales and coverage over which each is valid.

  17. Preparation of nanostructured materials having improved ductility

    DOEpatents

    Zhao, Yonghao; Zhu, Yuntian T.

    2010-04-20

    A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.

  18. Method of tagging sand with ruthenium-103 and the resultant product

    DOEpatents

    Case, Forrest N.; McFarland, Clyde E.

    1976-01-01

    A procedure for tagging sand with a radioisotope for use in the study of sediment transport involves the precipitation of a metal radioisotope in the form of an iodide directly on the sand, followed by heating the sand to a temperature sufficient to effect a phase transformation of the sand and a decomposition of the metal iodide, leaving the metal firmly attached to the sand.

  19. Satellite and Model Analysis of the Atmospheric Moisture Budget in High Latitudes: High Resolution Precipitation Over Greenland Studied from Dynamic Method

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Chen, Qiu-shi

    2002-01-01

    Observations of precipitation over Greenland are limited. Direct precipitation measurements for the whole ice sheet are impractical, and those in the coastal region have substantial uncertainty but may be correctable with some effort. However, the analyzed wind, geopotential height and moisture fields are available for recent years, and the precipitation is retrievable from these fields by a dynamic method. Based on recent Greenland precipitation from dynamic studies, several deficiencies in the precipitation spatial distributions from these dynamic methods were evaluated by Bromwich et al.

  20. Application of physical scaling towards downscaling climate model precipitation data

    NASA Astrophysics Data System (ADS)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  1. Miscible viscous fingering with chemical reaction involving precipitation.

    NASA Astrophysics Data System (ADS)

    Bae, Si-Kyun; Nagatsu, Yuichiro; Kato, Yoshihito; Tada, Yutaka

    2007-11-01

    When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. The present study has experimentally examined how precipitation produced by chemical reaction affects miscible viscous fingering pattern. A 97 wt % glycerin solution containing iron(III) nitrate (yellow) and a solution containing potassium hexacyano ferrate(II) (colorless) were used as the more- and less-viscous liquids, respectively. In this case, the chemical reaction instantaneously takes place and produces the precipitation being dark blue in color. The experiments were done by varying reactant concentrations, the cell's gap width, and the displacement speed. We compared the patterns involving the precipitation reaction with those in the non-reactive cases. We have found fylfot-like pattern is observed, depending on the experimental condition, which has never been formed in the non-reactive experiments. As the reactant concentrations are increased or the displacement speed is decreased, the effects of the precipitation on the patterns are more pronounced.

  2. Evaluation of three methods for the concentration of poliovirus from oysters.

    PubMed

    Bouchriti, N; Goyal, S M

    1992-10-01

    Three methods for the concentration of poliovirus from oyster homogenates were compared. The adsorption-elution-precipitation method gave the lowest average virus recovery (24.1%), while the beef extract elution-acid precipitation method and the non-fat dry milk elution-acid precipitation methods gave recoveries of 47.2% and 39.6%, respectively. Although the overall recovery rates with these methods were lower than those reported in previous studies, recoveries of 40-47% obtained with the elution-precipitation methods used in the present study are considered to be above average in terms of recovery efficiency.

  3. Evaluation of different methods of protein extraction and identification of differentially expressed proteins upon ethylene-induced early-ripening in banana peels.

    PubMed

    Zhang, Li-Li; Feng, Ren-Jun; Zhang, Yin-Dong

    2012-08-15

    Banana peels (Musa spp.) are a good example of a plant tissue where protein extraction is challenging due to the abundance of interfering metabolites. Sample preparation is a critical step in proteomic research and is critical for good results. We sought to evaluate three methods of protein extraction: trichloroacetic acid (TCA)-acetone precipitation, phenol extraction, and TCA precipitation. We found that a modified phenol extraction protocol was the most optimal method. SDS-PAGE and two-dimensional gel electrophoresis (2-DE) demonstrated good protein separation and distinct spots of high quality protein. Approximately 300 and 550 protein spots were detected on 2-DE gels at pH values of 3-10 and 4-7, respectively. Several spots were excised from the 2-DE gels and identified by mass spectrometry. The protein spots identified were found to be involved in glycolysis, the tricarboxylic acid cycle, and the biosynthesis of ethylene. Several of the identified proteins may play important roles in banana ripening. Copyright © 2012 Society of Chemical Industry.

  4. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering.

    PubMed

    Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei

    2013-07-01

    The objective of the current study is to prepare a biomimetic collagen-apatite scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0-54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia.

    NASA Astrophysics Data System (ADS)

    Sepúlveda, J.; Hoyos Ortiz, C. D.

    2017-12-01

    An adequate quantification of precipitation over land is critical for many societal applications including agriculture, hydroelectricity generation, water supply, and risk management associated with extreme events. The use of rain gauges, a traditional method for precipitation estimation, and an excellent one, to estimate the volume of liquid water during a particular precipitation event, does not allow to fully capture the highly spatial variability of the phenomena which is a requirement for almost all practical applications. On the other hand, the weather radar, an active remote sensing sensor, provides a proxy for rainfall with fine spatial resolution and adequate temporary sampling, however, it does not measure surface precipitation. In order to fully exploit the capabilities of the weather radar, it is necessary to develop quantitative precipitation estimation (QPE) techniques combining radar information with in-situ measurements. Different QPE methodologies are explored and adapted to local observations in a highly complex terrain region in tropical Colombia using a C-Band radar and a relatively dense network of rain gauges and disdrometers. One important result is that the expressions reported in the literature for extratropical locations are not representative of the conditions found in the tropical region studied. In addition to reproducing the state-of-the-art techniques, a new multi-stage methodology based on radar-derived variables and disdrometer data is proposed in order to achieve the best QPE possible. The main motivation for this new methodology is based on the fact that most traditional QPE methods do not directly take into account the different uncertainty sources involved in the process. The main advantage of the multi-stage model compared to traditional models is that it allows assessing and quantifying the uncertainty in the surface rain rate estimation. The sub-hourly rainfall estimations using the multi-stage methodology are realistic compared to observed data in spite of the many sources of uncertainty including the sampling volume, the different physical principles of the sensors, the incomplete understanding of the microphysics of precipitation and, the most important, the rapidly varying droplet size distribution.

  6. Drivers of atmospheric evaporative demand during African droughts

    NASA Astrophysics Data System (ADS)

    Blakeley, S. L.; Harrison, L.; Hobbins, M.; Dewes, C.; Funk, C. C.; Shukla, S.; Husak, G. J.

    2017-12-01

    Seeking to advance the practice of famine early warning across sub-Saharan Africa we illuminate past drivers of high-impact droughts to gain a better understanding of the evaporative processes involved in drought dynamics. Atmospheric evaporative demand (ETo) is often used to estimate plant water balance and drought impacts to vegetation, and previously demonstrated linkages between precipitation, temperature, and ETo need to be better understood. This work is timely as new data streams will enable near-real-time monitoring of ETo and incorporation of ETo forecasts into seasonal outlooks for African growing seasons. For historical droughts during major growing seasons in sub-Saharan Africa, we evaluate ETo and identify main drivers for drought cases-identified based on below-normal precipitation during the wettest three months of the growing season-and contrast these with the ETo drivers that dominate in wetter years (we also consider droughts triggered by above normal ETo). Our focus is on regions of Africa where adequate precipitation is important for productive agriculture and pastoral activities and where evaporative demand might exacerbate moisture limitations. It is expected that important ETo drivers are partly connected with precipitation-related processes but that there are variations between regions and events. The goal here is to provide a generalized understanding of what aspects of evaporative demand historically have posed an additional hazard to plant stress and how precipitation outcomes are responsible for the ETo drivers. In addition, we explore whether there have been discernible changes through time in regard to ETo drivers during below-normal precipitation seasons. Upper and lower terciles of CHIRPS precipitation are used to identify anomalous dry and wet cases. The ETo dataset spans the 1980-near present period and is calculated following ASCE's formulation of Penman-Monteith method driven by daily temperature, humidity, wind speed, and solar radiation from NASA's MERRA-2; this data is the basis for the Evaporative Demand Drought Index (EDDI). ETo drivers are identified with the decomposition method from Hobbins et al. (2016), which considers the anomalies in meteorological variables and the sensitivity of ETo to each of them.

  7. Proceedings from the Conference on Critical Issues in the Development of High Temperature Structural Materials Held in Kona, Hawaii on March 7-14, 1993,

    DTIC Science & Technology

    1993-01-14

    composite has not been established and may restrict the use temperature; and/or lifetime. Precipitation of second phase particles in a master alloy (XD...intermetallic alloys with both ordered and disordered precipitate phases including precipitates based upon carbide or nitride phases which involve an...to identify likely pathways or to eliminate others i.e., define a transformation hierarchy. The crystallographic symmetries of the precipitate phase

  8. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    NASA Astrophysics Data System (ADS)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  9. Mid-Western US heavy summer-precipitation in regional and global climate models: the impact on model skill and consensus through an analogue lens

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Schlosser, C. Adam

    2018-04-01

    Regional climate models (RCMs) can simulate heavy precipitation more accurately than general circulation models (GCMs) through more realistic representation of topography and mesoscale processes. Analogue methods of downscaling, which identify the large-scale atmospheric conditions associated with heavy precipitation, can also produce more accurate and precise heavy precipitation frequency in GCMs than the simulated precipitation. In this study, we examine the performances of the analogue method versus direct simulation, when applied to RCM and GCM simulations, in detecting present-day and future changes in summer (JJA) heavy precipitation over the Midwestern United States. We find analogue methods are comparable to MERRA-2 and its bias-corrected precipitation in characterizing the occurrence and interannual variations of observed heavy precipitation events, all significantly improving upon MERRA precipitation. For the late twentieth-century heavy precipitation frequency, RCM precipitation improves upon the corresponding driving GCM with greater accuracy yet comparable inter-model discrepancies, while both RCM- and GCM-based analogue results outperform their model-simulated precipitation counterparts in terms of accuracy and model consensus. For the projected trends in heavy precipitation frequency through the mid twenty-first century, analogue method also manifests its superiority to direct simulation with reduced intermodel disparities, while the RCM-based analogue and simulated precipitation do not demonstrate a salient improvement (in model consensus) over the GCM-based assessment. However, a number of caveats preclude any overall judgement, and further work—over any region of interest—should include a larger sample of GCMs and RCMs as well as ensemble simulations to comprehensively account for internal variability.

  10. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  11. Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.

  12. Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu

    2017-10-01

    Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.

  13. Effect of condensed tannins addition on the astringency of red wines.

    PubMed

    Soares, Susana; Sousa, André; Mateus, Nuno; de Freitas, Victor

    2012-02-01

    Astringency has been defined as a group of sensations involving dryness, tightening, and shrinking of the oral surface. It has been accepted that astringency is due to the tannin-induced interaction and/or precipitation of the salivary proline-rich proteins (PRPs) in the oral cavity, as a result of the ingestion of food products rich in tannins, for example, red wine. The sensory evaluation of astringency is difficult, and the existence of fast and reliable methods to its study in vitro is scarce. So, in this work, the astringency of red wine supplemented with oligomeric procyanidins (condensed tannins), and the salivary proteins (SP) involved in its development were evaluated by high-performance liquid chromatography analysis of human saliva after its interaction with red wine and by sensorial evaluation. The results show that for low concentration of tannins, the decrease of acidic PRPs and statherin is correlated with astringency intensity, with these families having a high relative complexation and precipitation toward condensed tannins comparatively to the other SP. However, for higher concentrations of tannins, the relative astringency between wines seems to correlate's to the glycosylated PRPs changes. This work shows for the first time that the several families of SP could be involved in different stages of the astringency development.

  14. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  15. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide.

    PubMed

    Yamashita, Taro; Ozaki, Shunsuke; Kushida, Ikuo

    2011-10-31

    96-well plate based anti-precipitant screening using bio-relevant medium FaSSIF (fasted-state simulated small intestinal fluid) is a useful technique for discovering anti-precipitants that maintain supersaturation of poorly soluble drugs. In a previous report, two disadvantages of the solvent evaporation method (solvent casting method) were mentioned: precipitation during the evaporation process and the use of volatile solvents to dissolve compounds. In this report, we propose a solvent shift method using DMSO (dimethyl sulfoxide). Initially, the drug substance was dissolved in DMSO at a high concentration and diluted with FaSSIF that contained anti-precipitants. To evaluate the validity of the method, itraconazole (ITZ) was used as the poorly soluble model drug. The solvent shift method resolved the disadvantages of the evaporation method, and AQOAT (HPMC-AS) was found as the most appropriate anti-precipitant for ITZ in a facile and expeditious manner when compared with the solvent evaporation method. In the large scale JP paddle method, AQOAT-based solid dispersion maintained a higher concentration than Tc-5Ew (HPMC)-based formulation; this result corresponded well with the small scale of the solvent shift method. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    USGS Publications Warehouse

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  17. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2014-12-01

    The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.

  18. Evaluating the Long-Term Stability of Metals Precipitated In-Situ

    EPA Science Inventory

    Because metals (including metals and metalloids) cannot be destroyed, unlike organic contaminants, in-situ approaches for their removal from groundwater necessarily involves fixation/immobilization in the solid aquifer matrix. Consequently, the success of precipitation based in...

  19. Modelling probabilities of heavy precipitation by regional approaches

    NASA Astrophysics Data System (ADS)

    Gaal, L.; Kysely, J.

    2009-09-01

    Extreme precipitation events are associated with large negative consequences for human society, mainly as they may trigger floods and landslides. The recent series of flash floods in central Europe (affecting several isolated areas) on June 24-28, 2009, the worst one over several decades in the Czech Republic as to the number of persons killed and the extent of damage to buildings and infrastructure, is an example. Estimates of growth curves and design values (corresponding e.g. to 50-yr and 100-yr return periods) of precipitation amounts, together with their uncertainty, are important in hydrological modelling and other applications. The interest in high quantiles of precipitation distributions is also related to possible climate change effects, as climate model simulations tend to project increased severity of precipitation extremes in a warmer climate. The present study compares - in terms of Monte Carlo simulation experiments - several methods to modelling probabilities of precipitation extremes that make use of ‘regional approaches’: the estimation of distributions of extremes takes into account data in a ‘region’ (‘pooling group’), in which one may assume that the distributions at individual sites are identical apart from a site-specific scaling factor (the condition is referred to as ‘regional homogeneity’). In other words, all data in a region - often weighted in some way - are taken into account when estimating the probability distribution of extremes at a given site. The advantage is that sampling variations in the estimates of model parameters and high quantiles are to a large extent reduced compared to the single-site analysis. We focus on the ‘region-of-influence’ (ROI) method which is based on the identification of unique pooling groups (forming the database for the estimation) for each site under study. The similarity of sites is evaluated in terms of a set of site attributes related to the distributions of extremes. The issue of the size of the region is linked with a built-in test on regional homogeneity of data. Once a pooling group is delineated, weights based on a dissimilarity measure are assigned to individual sites involved in a pooling group, and all (weighted) data are employed in the estimation of model parameters and high quantiles at a given location. The ROI method is compared with the Hosking-Wallis (HW) regional frequency analysis, which is based on delineating fixed regions (instead of flexible pooling groups) and assigning unit weights to all sites in a region. The comparison of the performance of the individual regional models makes use of data on annual maxima of 1-day precipitation amounts at 209 stations covering the Czech Republic, with altitudes ranging from 150 to 1490 m a.s.l. We conclude that the ROI methodology is superior to the HW analysis, particularly for very high quantiles (100-yr return values). Another advantage of the ROI approach is that subjective decisions - unavoidable when fixed regions in the HW analysis are formed - may efficiently be suppressed, and almost all settings of the ROI method may be justified by results of the simulation experiments. The differences between (any) regional method and single-site analysis are very pronounced and suggest that the at-site estimation is highly unreliable. The ROI method is then applied to estimate high quantiles of precipitation amounts at individual sites. The estimates and their uncertainty are compared with those from a single-site analysis. We focus on the eastern part of the Czech Republic, i.e. an area with complex orography and a particularly pronounced role of Mediterranean cyclones in producing precipitation extremes. The design values are compared with precipitation amounts recorded during the recent heavy precipitation events, including the one associated with the flash flood on June 24, 2009. We also show that the ROI methodology may easily be transferred to the analysis of precipitation extremes in climate model outputs. It efficiently reduces (random) variations in the estimates of parameters of the extreme value distributions in individual gridboxes that result from large spatial variability of heavy precipitation, and represents a straightforward tool for ‘weighting’ data from neighbouring gridboxes within the estimation procedure. The study is supported by the Grant Agency of AS CR under project B300420801.

  20. An eco-friendly, quick and cost-effective method for the quantification of acrylamide in cereal-based baby foods.

    PubMed

    Cengiz, Mehmet Fatih; Gündüz, Cennet Pelin Boyacı

    2014-09-01

    The presence of acrylamide in cereal-based baby foods is a matter of great concern owing to its possible health effects. Derivatization followed by gas chromatography/mass spectrometry (GC/MS) is one of the most common methods to quantify acrylamide. However, it requires the use of toxic chemicals and is time-consuming. The aim of this study was to develop an eco-friendly, rapid and inexpensive method for the determination of acrylamide in cereal-based baby foods. The method involves defatting with n-hexane, extraction into water, precipitation of proteins, bromination, extraction into ethyl acetate and injection into a GC/MS system. The effects of defatting, precipitation, treatment with triethylamine, addition of internal standard and column selection were reviewed. A flow chart for acrylamide analysis was prepared. To evaluate the applicability of the method, 62 different cereal-based baby foods were analyzed. The levels of acrylamide ranged from not detected (below the limit of detection) to 660 µg kg(-1). The method is more eco-friendly and less expensive because it consumes very little solvent relative to other methods using bromine solutions and ethyl acetate. In addition, sample pre-treatment requires no solid phase extraction or concentration steps. The method is recommended for the determination of trace acrylamide in complex cereal-based baby food products. © 2014 Society of Chemical Industry.

  1. How does bias correction of RCM precipitation affect modelled runoff?

    NASA Astrophysics Data System (ADS)

    Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Vaze, J.; Evans, J. P.

    2014-09-01

    Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the difference between the tested methods is small in the modelling experiments here (and as reported in the literature), mainly because of the substantial corrections required and inconsistent errors over time (non-stationarity). The errors remaining in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitation of RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.

  2. The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel

    PubMed Central

    Sun, Lin; Galvin, Deri Rhys; Hill, Paul; Rawson, Martin; Gilbert, Elliot Paul; Bhadeshia, Harshad; Perkins, Karen

    2017-01-01

    Maraging steels gain many of their beneficial properties from heat treatments which induce the precipitation of intermetallic compounds. We consider here a two-stage heat-treatment, first involving austenitisation, followed by quenching to produce martensite and then an ageing treatment at a lower temperature to precipitation harden the martensite of a maraging steel. It is shown that with a suitable choice of the initial austenitisation temperature, the steel can be heat treated to produce enhanced toughness, strength and creep resistance. A combination of small angle neutron scattering, scanning electron microscopy, electron back-scattered diffraction, and atom probe tomography were used to relate the microstructural changes to mechanical properties. It is shown that such a combination of characterisation methods is necessary to quantify this complex alloy, and relate these microstructural changes to mechanical properties. It is concluded that a higher austenitisation temperature leads to a greater volume fraction of smaller Laves phase precipitates formed during ageing, which increase the strength and creep resistance but reduces toughness. PMID:29168800

  3. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  4. Characterization of flood and precipitation events in Southwestern Germany and stochastic simulation of extreme precipitation (Project FLORIS-SV)

    NASA Astrophysics Data System (ADS)

    Florian, Ehmele; Michael, Kunz

    2016-04-01

    Several major flood events occurred in Germany in the past 15-20 years especially in the eastern parts along the rivers Elbe and Danube. Examples include the major floods of 2002 and 2013 with an estimated loss of about 2 billion Euros each. The last major flood events in the State of Baden-Württemberg in southwest Germany occurred in the years 1978 and 1993/1994 along the rivers Rhine and Neckar with an estimated total loss of about 150 million Euros (converted) each. Flood hazard originates from a combination of different meteorological, hydrological and hydraulic processes. Currently there is no defined methodology available for evaluating and quantifying the flood hazard and related risk for larger areas or whole river catchments instead of single gauges. In order to estimate the probable maximum loss for higher return periods (e.g. 200 years, PML200), a stochastic model approach is designed since observational data are limited in time and space. In our approach, precipitation is linearly composed of three elements: background precipitation, orographically-induces precipitation, and a convectively-driven part. We use linear theory of orographic precipitation formation for the stochastic precipitation model (SPM), which is based on fundamental statistics of relevant atmospheric variables. For an adequate number of historic flood events, the corresponding atmospheric conditions and parameters are determined in order to calculate a probability density function (pdf) for each variable. This method involves all theoretically possible scenarios which may not have happened, yet. This work is part of the FLORIS-SV (FLOod RISk Sparkassen Versicherung) project and establishes the first step of a complete modelling chain of the flood risk. On the basis of the generated stochastic precipitation event set, hydrological and hydraulic simulations will be performed to estimate discharge and water level. The resulting stochastic flood event set will be used to quantify the flood risk and to estimate probable maximum loss (e.g. PML200) for a given property (buildings, industry) portfolio.

  5. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Powers, Jordan G.; Manning, Kevin W.; Masson-Delmotte, Valérie; Valt, Mauro; Cagnati, Anselmo; Grigioni, Paolo; Scarchilli, Claudio

    2017-10-01

    The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome Fuji with a shorter data set using the same methods.

  6. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Thomas, Brian G.

    2012-03-01

    The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

  7. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2015-06-01

    Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.

  8. Precipitation patterns during channel flow

    NASA Astrophysics Data System (ADS)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  9. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  10. Interaction between chlorhexidine digluconate and EDTA.

    PubMed

    Rasimick, Brian J; Nekich, Michelle; Hladek, Megan M; Musikant, Barry L; Deutsch, Allan S

    2008-12-01

    The combination of chlorhexidine and EDTA produces a white precipitate. The aim of this study was to determine if the precipitate involves the chemical degradation of chlorhexidine. The precipitate was produced and redissolved in a known amount of dilute trifluoroacetic acid. The amount of chlorhexidine and EDTA present in the dissolved precipitate was determined by reverse-phase high performance liquid chromatography (HPLC) with ultraviolet detection at 288 nm. More than 90% of the precipitate's mass was found to be EDTA or chlorhexidine. The remainder is suspected to be water, gluconate, and sodium. Parachloroaniline, a potentially carcinogenic decomposition product of chlorhexidine, was not detected in the precipitate (the limit of detection was 1%). The molar ratio of chlorhexidine to EDTA in the precipitate was about 1.6 to 1. Based on the results, chlorhexidine forms a salt with EDTA rather than undergoing a chemical reaction.

  11. A MATHEMATICAL MODEL OF ELECTROSTATIC PRECIPITATION. (REVISION 1): VOLUME I. MODELING AND PROGRAMMING

    EPA Science Inventory

    The report briefly describes the fundamental mechanisms and limiting factors involved in the electrostatic precipitation process. It discusses theories and procedures used in the computer model to describe the physical mechanisms, and generally describes the major operations perf...

  12. How does bias correction of regional climate model precipitation affect modelled runoff?

    NASA Astrophysics Data System (ADS)

    Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Wang, B.; Vaze, J.; Evans, J. P.

    2015-02-01

    Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the differences between the methods are small in the modelling experiments here (and as reported in the literature), mainly due to the substantial corrections required and inconsistent errors over time (non-stationarity). The errors in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.

  13. Frequency of extreme weather events and increased risk of motor vehicle collision in Maryland.

    PubMed

    Liu, Ann; Soneja, Sutyajeet I; Jiang, Chengsheng; Huang, Chanjuan; Kerns, Timothy; Beck, Kenneth; Mitchell, Clifford; Sapkota, Amir

    2017-02-15

    Previous studies have shown increased precipitation to be associated with higher frequency of traffic collisions. However, data regarding how extreme weather events, projected to grow in frequency, intensity, and duration in response to a changing climate, might affect the risk of motor vehicle collisions is particularly limited. We investigated the association between frequency of extreme heat and precipitation events and risk of motor vehicle collision in Maryland between 2000 and 2012. Motor vehicle collision data was obtained from the Maryland Automated Accident Reporting System. Each observation in the data set corresponded to a unique collision event. This data was linked to extreme heat and precipitation events that were calculated using location and calendar day specific thresholds. A time-stratified case-crossover analysis was utilized to assess the association between exposure to extreme heat and precipitation events and risk of motor vehicle collision. Additional stratified analyses examined risk by road condition, season, and collisions involving only one vehicle. Overall, there were over 1.28 million motor vehicle collisions recorded in Maryland between 2000 and 2012, of which 461,009 involved injuries or death. There was a 23% increase in risk of collision for every 1-day increase in extreme precipitation event (Odds Ratios (OR) 1.23, 95% Confidence Interval (CI): 1.22, 1.27). This risk was considerably higher for collisions on roads with a defect or obstruction (OR: 1.46, 95% CI: 1.40, 1.52) and those involving a single vehicle (OR: 1.41, 95% CI: 1.39, 1.43). Change in risk associated with extreme heat events was marginal at best. Extreme precipitation events are associated with an increased risk of motor vehicle collisions in Maryland. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Multi-scale fluctuation analysis of precipitation in Beijing by Extreme-point Symmetric Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Duan, Zhipeng; Huang, Jing

    2018-06-01

    With the aggravation of the global climate change, the shortage of water resources in China is becoming more and more serious. Using reasonable methods to study changes in precipitation is very important for planning and management of water resources. Based on the time series of precipitation in Beijing from 1951 to 2015, the multi-scale features of precipitation are analyzed by the Extreme-point Symmetric Mode Decomposition (ESMD) method to forecast the precipitation shift. The results show that the precipitation series have periodic changes of 2.6, 4.3, 14 and 21.7 years, and the variance contribution rate of each modal component shows that the inter-annual variation dominates the precipitation in Beijing. It is predicted that precipitation in Beijing will continue to decrease in the near future.

  15. Studying precipitation recycling over the Tibetan Plateau using evaporation-tagging and back-trajectory analysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.

    2017-12-01

    Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.

  16. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples

    PubMed Central

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292

  17. GPS-based PWV for precipitation forecasting and its application to a typhoon event

    NASA Astrophysics Data System (ADS)

    Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang

    2018-01-01

    The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.

  18. Deproteinizing methods evaluated for determination of uric acid in serum by reversed-phase liquid chromatography with ultraviolet detection.

    PubMed

    Sakuma, R; Nishina, T; Kitamura, M

    1987-08-01

    We evaluated six deproteinizing methods for determination of uric acid in serum by "high-performance" liquid chromatography with ultraviolet detection: those involving zinc hydroxide, sodium tungstate, trichloroacetic acid, perchloric acid, acetonitrile, and centrifugal ultrafiltration (with Amicon MPS-1 devices). We used a Toyosoda ODS-120A reversed-phase column. The mobile phase was sodium phosphate buffer (40 mmol/L, pH 2.2) containing 20 mL of methanol per liter. Absorbance of the eluate was monitored at 284 nm. The precipitation method with perchloric acid gave high recoveries of uric acid and good precision, and results agreed with those by the uricase-catalase method of Kageyama (Clin Chim Acta 1971;31:421-6).

  19. Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation.

    PubMed

    Dietrich, Maren; Heselhaus, Johanna; Wozniak, Justyna; Weinandy, Stefan; Mela, Petra; Tschoeke, Beate; Schmitz-Rode, Thomas; Jockenhoevel, Stefan

    2013-03-01

    This study is focussed on the optimal method of autologous fibrinogen isolation with regard to the yield and the use as a scaffold material. This is particularly relevant for pediatric patients with strictly limited volumes of blood. The following isolation methods were evaluated: cryoprecipitation, ethanol (EtOH) precipitation, ammonium sulfate [(NH(4))(2)SO(4))] precipitation, ammonium sulfate precipitation combined with cryoprecipitation, and polyethylene glycol precipitation combined with cryoprecipitation. Fibrinogen yields were quantified spectrophotometrically and by electrophoretic analyses. To test the influence of the different isolation methods on the microstructure of the fibrin gels, scanning electron microscopy (SEM) was used and the mechanical strength of the cell-free and cell-seeded fibrin gels was tested by burst strength measurements. Cytotoxicity assays were performed to analyze the effect of various fibrinogen isolation methods on proliferation, apoptosis, and necrosis. Tissue development and cell migration were analyzed in all samples using immunohistochemical techniques. The synthesis of collagen as an extracellular matrix component by human umbilical cord artery smooth muscle cells in fibrin gels was measured using hydroxyproline assay. Compared to cryoprecipitation, all other considered methods were superior in quantitative analyses, with maximum fibrinogen yields of ∼80% of total plasma fibrinogen concentration using ethanol precipitation. SEM imaging demonstrated minor differences in the gel microstructure. Ethanol-precipitated fibrin gels exhibited the best mechanical properties. None of the isolation methods had a cytotoxic effect on the cells. Collagen production was similar in all gels except those from ammonium sulfate precipitation. Histological analysis showed good cell compatibility for ethanol-precipitated gels. The results of the present study demonstrated that ethanol precipitation is a simple and effective method for isolation of fibrinogen and a suitable alternative to cryoprecipitation. This technique allows minimization of the necessary blood volume for fibrinogen isolation, particularly important for pediatric applications, and also has no negative influence on microstructure, mechanical properties, cell proliferation, or tissue development.

  20. Geographically weighted regression based methods for merging satellite and gauge precipitation

    NASA Astrophysics Data System (ADS)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  1. Kriging analysis of mean annual precipitation, Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Karlinger, M.R.; Skrivan, James A.

    1981-01-01

    Kriging is a statistical estimation technique for regionalized variables which exhibit an autocorrelation structure. Such structure can be described by a semi-variogram of the observed data. The kriging estimate at any point is a weighted average of the data, where the weights are determined using the semi-variogram and an assumed drift, or lack of drift, in the data. Block, or areal, estimates can also be calculated. The kriging algorithm, based on unbiased and minimum-variance estimates, involves a linear system of equations to calculate the weights. Kriging variances can then be used to give confidence intervals of the resulting estimates. Mean annual precipitation in the Powder River basin, Montana and Wyoming, is an important variable when considering restoration of coal-strip-mining lands of the region. Two kriging analyses involving data at 60 stations were made--one assuming no drift in precipitation, and one a partial quadratic drift simulating orographic effects. Contour maps of estimates of mean annual precipitation were similar for both analyses, as were the corresponding contours of kriging variances. Block estimates of mean annual precipitation were made for two subbasins. Runoff estimates were 1-2 percent of the kriged block estimates. (USGS)

  2. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  3. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples.

    PubMed

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.

  4. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    PubMed

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  5. Statistical simulation of ensembles of precipitation fields for data assimilation applications

    NASA Astrophysics Data System (ADS)

    Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald

    2017-04-01

    The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated precipitation fields in a very detailed manner as well as to quantify uncertainties which are conveyed by measurement inaccuracies. In a further step we use real observations as a basis for the generation of precipitation fields. The resulting ensembles of precipitation fields are used for example for data assimilation applications or as input data for hydrological models.

  6. The influence of non-ionisable excipients on precipitation parameters measured using the CheqSol method.

    PubMed

    Etherson, Kelly; Halbert, Gavin; Elliott, Moira

    2016-09-01

    The aim of this study was to determine the influence of non-ionisable excipients hydroxypropyl-β-cyclodextrin (HPβCD) and poloxamers 407 and 188 on the supersaturation and precipitation kinetics of ibuprofen, gliclazide, propranolol and atenolol induced through solution pH shifts using the CheqSol method. The drug's kinetic and intrinsic aqueous solubilities were measured in the presence of increasing excipient concentrations using the CheqSol method. Experimental data rate of change of pH with time was also examined to determine excipient-induced parachute effects and influence on precipitation rates. The measured kinetic and intrinsic solubilities provide a determination of the influence of each excipient on supersaturation index, and the area under the CheqSol curve can measure the parachute capability of excipients. The excipients influence on precipitation kinetics can be measured with novel parameters; for example, the precipitation pH or percentage ionised drug at the precipitation point, which provide further information on the excipient-induced changes in precipitation performance. This method can therefore be employed to measure the influence of non-ionisable excipients on the kinetic solubility behaviour of supersaturated solutions of ionisable drugs and to provide data, which discriminates between excipient systems during precipitation. © 2016 Royal Pharmaceutical Society.

  7. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  8. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite

    PubMed Central

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  9. Development of a dual test procedure for DNA typing and methamphetamine detection using a trace amount of stimulant-containing blood.

    PubMed

    Irii, Toshiaki; Maebashi, Kyoko; Fukui, Kenji; Sohma, Ryoko; Matsumoto, Sari; Takasu, Shojiro; Iwadate, Kimiharu

    2016-05-01

    Investigation of drug-related crimes, such as violation of the Stimulant Drug Control Law, requires identifying the used drug (mainly stimulant drugs, methamphetamine hydrochloride) from a drug solution and the DNA type of the drug user from a trace of blood left in the syringe used to inject the drug. In current standard test procedures, DNA typing and methamphetamine detection are performed as independent tests that use two separate portions of a precious sample. The sample can be entirely used up by either analysis. Therefore, we developed a new procedure involving partial lysis of a stimulant-containing blood sample followed by separation of the lysate into a precipitate for DNA typing and a liquid-phase fraction for methamphetamine detection. The method enables these two tests to be run in parallel using a single portion of sample. Samples were prepared by adding methamphetamine hydrochloride water solution to blood. Samples were lysed with Proteinase K in PBS at 56°C for 20min, cooled at -20°C after adding methanol, and then centrifuged at 15,000rpm. Based on the biopolymer-precipitating ability of alcohol, the precipitate was used for DNA typing and the liquid-phase fraction for methamphetamine detection. For DNA typing, the precipitate was dissolved and DNA was extracted, quantified, and subjected to STR analysis using the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit. For methamphetamine detection, the liquid-phase fraction was evaporated with N2 gas after adding 20μL acetic acid and passed through an extraction column; the substances captured in the column were eluted with a solvent, derivatized, and quantitatively detected using gas chromatograph/mass spectrometry. This method was simple and could be completed in approximately 2h. Both DNA typing and methamphetamine detection were possible, which suggests that this method may be valuable for use in criminal investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency.

    PubMed

    Boulet, Jean-Claude; Trarieux, Corinne; Souquet, Jean-Marc; Ducasse, Maris-Agnés; Caillé, Soline; Samson, Alain; Williams, Pascale; Doco, Thierry; Cheynier, Véronique

    2016-01-01

    Astringency elicited by tannins is usually assessed by tasting. Alternative methods involving tannin precipitation have been proposed, but they remain time-consuming. Our goal was to propose a faster method and investigate the links between wine composition and astringency. Red wines covering a wide range of astringency intensities, assessed by sensory analysis, were selected. Prediction models based on multiple linear regression (MLR) were built using UV spectrophotometry (190-400 nm) and chemical analysis (enological analysis, polyphenols, oligosaccharides and polysaccharides). Astringency intensity was strongly correlated (R(2) = 0.825) with tannin precipitation by bovine serum albumin (BSA). Wine absorbances at 230 nm (A230) proved more suitable for astringency prediction (R(2) = 0.705) than A280 (R(2) = 0.56) or tannin concentration estimated by phloroglucinolysis (R(2) = 0.59). Three variable models built with A230, oligosaccharides and polysaccharides presented high R(2) and low errors of cross-validation. These models confirmed that polysaccharides decrease astringency perception and indicated a positive relationship between oligosaccharides and astringency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Comparison of acetonitrile, ethanol and chromatographic column to eliminate high-abundance proteins in human serum].

    PubMed

    Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min

    2012-11-01

    To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.

  12. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on Board the GPM Core Observatory

    NASA Technical Reports Server (NTRS)

    Kubota, Takuji; Iguchi, Toshio; Kojima, Masahiro; Liao, Liang; Masaki, Takeshi; Hanado, Hiroshi; Meneghini, Robert; Oki, Riko

    2016-01-01

    A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.

  13. Graphical evaluation of complexometric titration curves.

    PubMed

    Guinon, J L

    1985-04-01

    A graphical method, based on logarithmic concentration diagrams, for construction, without any calculations, of complexometric titration curves is examined. The titration curves obtained for different kinds of unidentate, bidentate and quadridentate ligands clearly show why only chelating ligands are usually used in titrimetric analysis. The method has also been applied to two practical cases where unidentate ligands are used: (a) the complexometric determination of mercury(II) with halides and (b) the determination of cyanide with silver, which involves both a complexation and a precipitation system; for this purpose construction of the diagrams for the HgCl(2)/HgCl(+)/Hg(2+) and Ag(CN)(2)(-)/AgCN/CN(-) systems is considered in detail.

  14. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; hide

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  15. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    USGS Publications Warehouse

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  16. Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai

    Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less

  17. A precipitation regionalization and regime for Iran based on multivariate analysis

    NASA Astrophysics Data System (ADS)

    Raziei, Tayeb

    2018-02-01

    Monthly precipitation time series of 155 synoptic stations distributed over Iran, covering 1990-2014 time period, were used to identify areas with different precipitation time variability and regimes utilizing S-mode principal component analysis (PCA) and cluster analysis (CA) preceded by T-mode PCA, respectively. Taking into account the maximum loading values of the rotated components, the first approach revealed five sub-regions characterized by different precipitation time variability, while the second method delineated eight sub-regions featured with different precipitation regimes. The sub-regions identified by the two used methods, although partly overlapping, are different considering their areal extent and complement each other as they are useful for different purposes and applications. Northwestern Iran and the Caspian Sea area were found as the two most distinctive Iranian precipitation sub-regions considering both time variability and precipitation regime since they were well captured with relatively identical areas by the two used approaches. However, the areal extents of the other three sub-regions identified by the first approach were not coincident with the coverage of their counterpart sub-regions defined by the second approach. Results suggest that the precipitation sub-region identified by the two methods would not be necessarily the same, as the first method which accounts for the variance of the data grouped stations with similar temporal variability while the second one which considers a fixed climatology defined by the average over the period 1990-2014 clusters stations having a similar march of monthly precipitation.

  18. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study

    PubMed Central

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-01-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564

  19. Classification and global distribution of ocean precipitation types based on satellite passive microwave signatures

    NASA Astrophysics Data System (ADS)

    Gautam, Nitin

    The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.

  20. Analysis of the Nonlinear Trends and Non-Stationary Oscillations of Regional Precipitation in Xinjiang, Northwestern China, Using Ensemble Empirical Mode Decomposition

    PubMed Central

    Guo, Bin; Chen, Zhongsheng; Guo, Jinyun; Liu, Feng; Chen, Chuanfa; Liu, Kangli

    2016-01-01

    Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements. PMID:27007388

  1. Bayesian Non-Stationary Index Gauge Modeling of Gridded Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Verdin, A.; Bracken, C.; Caldwell, J.; Balaji, R.; Funk, C. C.

    2017-12-01

    We propose a Bayesian non-stationary model to generate watershed scale gridded estimates of extreme precipitation return levels. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset is used to obtain gridded seasonal precipitation extremes over the Taylor Park watershed in Colorado for the period 1981-2016. For each year, grid cells within the Taylor Park watershed are aggregated to a representative "index gauge," which is input to the model. Precipitation-frequency curves for the index gauge are estimated for each year, using climate variables with significant teleconnections as proxies. Such proxies enable short-term forecasting of extremes for the upcoming season. Disaggregation ratios of the index gauge to the grid cells within the watershed are computed for each year and preserved to translate the index gauge precipitation-frequency curve to gridded precipitation-frequency maps for select return periods. Gridded precipitation-frequency maps are of the same spatial resolution as CHIRPS (0.05° x 0.05°). We verify that the disaggregation method preserves spatial coherency of extremes in the Taylor Park watershed. Validation of the index gauge extreme precipitation-frequency method consists of ensuring extreme value statistics are preserved on a grid cell basis. To this end, a non-stationary extreme precipitation-frequency analysis is performed on each grid cell individually, and the resulting frequency curves are compared to those produced by the index gauge disaggregation method.

  2. Precipitation forecast using artificial neural networks. An application to the Guadalupe Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Herrera-Oliva, C. S.

    2013-05-01

    In this work we design and implement a method for the determination of precipitation forecast through the application of an elementary neuronal network (perceptron) to the statistical analysis of the precipitation reported in catalogues. The method is limited mainly by the catalogue length (and, in a smaller degree, by its accuracy). The method performance is measured using grading functions that evaluate a tradeoff between positive and negative aspects of performance. The method is applied to the Guadalupe Valley, Baja California, Mexico. Using consecutive intervals of dt=0.1 year, employing the data of several climatological stations situated in and surrounding this important wine industries zone. We evaluated the performance of different models of ANN, whose variables of entrance are the heights of precipitation. The results obtained were satisfactory, except for exceptional values of rain. Key words: precipitation forecast, artificial neural networks, statistical analysis

  3. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  4. Analysis of an ethanol precipitate from ileal digesta: evaluation of a method to determine mucin.

    PubMed

    Miner-Williams, Warren M; Moughan, Paul J; Fuller, Malcolm F

    2013-11-06

    The precipitation of mucin using high concentrations of ethanol has been used by many researchers while others have questioned the validity of the technique. In this study, analysis of an ethanol precipitate, from the soluble fraction of ileal digesta from pigs was undertaken using molecular weight profiling and polyacrylamide gel electrophoresis. The precipitate contained 201 mg·g⁻¹ protein, 87% of which had a molecular weight >20 KDa. Polyacrylamide gel electrophoresis stained with Coomassie blue and periodic acid/Schiff, revealed that most glycoprotein had a molecular weight between 37-100 KDa. The molecular weight of glycoprotein in the precipitate was therefore lower than that of intact mucin. These observations indicated that the glycoprotein in the ethanol precipitate was significantly degraded. The large amount of protein and carbohydrate in the supernatant from ethanol precipitation indicated that the precipitation of glycoprotein was incomplete. As a method for determining the concentration of mucin in digesta, ethanol precipitation is unreliable.

  5. Scaling and clustering effects of extreme precipitation distributions

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhou, Yu; Singh, Vijay P.; Li, Jianfeng

    2012-08-01

    SummaryOne of the impacts of climate change and human activities on the hydrological cycle is the change in the precipitation structure. Closely related to the precipitation structure are two characteristics: the volume (m) of wet periods (WPs) and the time interval between WPs or waiting time (t). Using daily precipitation data for a period of 1960-2005 from 590 rain gauge stations in China, these two characteristics are analyzed, involving scaling and clustering of precipitation episodes. Our findings indicate that m and t follow similar probability distribution curves, implying that precipitation processes are controlled by similar underlying thermo-dynamics. Analysis of conditional probability distributions shows a significant dependence of m and t on their previous values of similar volumes, and the dependence tends to be stronger when m is larger or t is longer. It indicates that a higher probability can be expected when high-intensity precipitation is followed by precipitation episodes with similar precipitation intensity and longer waiting time between WPs is followed by the waiting time of similar duration. This result indicates the clustering of extreme precipitation episodes and severe droughts or floods are apt to occur in groups.

  6. Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chun; Wang, Yuan-Heng; You, Gene Jiing-Yun; Wei, Chih-Chiang

    2017-02-01

    Future climatic conditions likely will not satisfy stationarity assumption. To address this concern, this study applied three methods to analyze non-stationarity in hydrologic conditions. Based on the principle of identifying distribution and trends (IDT) with time-varying moments, we employed the parametric weighted least squares (WLS) estimation in conjunction with the non-parametric discrete wavelet transform (DWT) and ensemble empirical mode decomposition (EEMD). Our aim was to evaluate the applicability of non-parameter approaches, compared with traditional parameter-based methods. In contrast to most previous studies, which analyzed the non-stationarity of first moments, we incorporated second-moment analysis. Through the estimation of long-term risk, we were able to examine the behavior of return periods under two different definitions: the reciprocal of the exceedance probability of occurrence and the expected recurrence time. The proposed framework represents an improvement over stationary frequency analysis for the design of hydraulic systems. A case study was performed using precipitation data from major climate stations in Taiwan to evaluate the non-stationarity of annual maximum daily precipitation. The results demonstrate the applicability of these three methods in the identification of non-stationarity. For most cases, no significant differences were observed with regard to the trends identified using WLS, DWT, and EEMD. According to the results, a linear model should be able to capture time-variance in either the first or second moment while parabolic trends should be used with caution due to their characteristic rapid increases. It is also observed that local variations in precipitation tend to be overemphasized by DWT and EEMD. The two definitions provided for the concept of return period allows for ambiguous interpretation. With the consideration of non-stationarity, the return period is relatively small under the definition of expected recurrence time comparing to the estimation using the reciprocal of the exceedance probability of occurrence. However, the calculation of expected recurrence time is based on the assumption of perfect knowledge of long-term risk, which involves high uncertainty. When the risk is decreasing with time, the expected recurrence time will lead to the divergence of return period and make this definition inapplicable for engineering purposes.

  7. Structural and optical properties of co-precipitated copper doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Pandey, Devendra K.; Modi, Anchit; Pandey, Padmini; Gaur, N. K.

    2018-05-01

    We have synthesized pure and copper doped zinc oxide Zn1-xO:Cux (x = 0, 0.03) powder by wet chemical co-precipitation method followed by sintering of the co-precipitated amorphous phase powder at 450°C for 4 hours. The experiment is performed to recognize the effect of nominal doping of transition metal over the structural, morphological and optical properties. The structural parameters are observed by using Rietveld refinement of X-ray diffraction data which clearly represents that Cu ion is perfectly incorporated at the Zn site with minimal distortions within the lattice. The crystallite size is estimated by Debye-Scherrer and Hall-Williamson formulation. The particle morphology and size is determined with scanning electron microscopic (SEM) technique. The band gap and optical measurements are carried out with UV-visible absorption and photoluminescence (PL) spectroscopic technique, respectively. Enhanced PL spectral response is observed for ZnO:Cu along with non-radiative transitions from conduction band to valence band. The energy levels near the conduction band that are commonly involved in the optoelectronic transitions in the UV-region are traced by using absorption and luminescence spectral graphs.

  8. Drought trends indicated by evapotranspiration deficit over the contiguous United States during 1896-2013

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-04-01

    Evapotranspiration (ET) has received a great attention in drought assessment as it is closely related to atmospheric water demand. The hypothetical potential ET (ETp) has been predominantly used, nonetheless it does not actually exist in the hydrologic cycle. In this work, we used a complementary method for ET estimation to obtain wet-environment ET (ETw) and actual ET (ETa) from routinely observed climatic data. By combining ET deficits (ETw minus ETa) and the structure of the Standardized Precipitation-Evapotranspiration Index (SPEI), we proposed a novel ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We carried out historical drought identification for the contiguous United States using temperature datasets of the PRISM Climate Group. SEDI presented spatial distributions of drought areas similar to the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI) for major drought events. It indicates that SEDI can be used for validating other drought indices. Using the non-parametric Mann-Kendall test, we found a significant decreasing trend of SEDI (increasing drought risk) similar to PDSI and SPI in the western United States. This study suggests a potential of ET-based indices for drought quantification even with no involvement of precipitation data.

  9. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Österreicher, Johannes Albert; Kumar, Manoj

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopymore » images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.« less

  10. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    NASA Astrophysics Data System (ADS)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  11. Calibration of collection procedures for the determination of precipitation chemistry

    Treesearch

    James N. Galloway; Gene E. Likens

    1976-01-01

    Precipitation is currently collected by several methods, including several different designs of collection apparatus. We are investigating these differing methods and designs to determine which gives the most representative sample of precipitation for the analysis of some 25 chemical parameters. The experimental site, located in Ithaca, New York, has 22 collectors of...

  12. Evaluation of the light scattering and the turbidity microtiter plate-based methods for the detection of the excipient-mediated drug precipitation inhibition.

    PubMed

    Petruševska, Marija; Urleb, Uroš; Peternel, Luka

    2013-11-01

    The excipient-mediated precipitation inhibition is classically determined by the quantification of the dissolved compound in the solution. In this study, two alternative approaches were evaluated, one is the light scattering (nephelometer) and other is the turbidity (plate reader) microtiter plate-based methods which are based on the quantification of the compound precipitate. Following the optimization of the nephelometer settings (beam focus, laser gain) and the experimental conditions, the screening of 23 excipients on the precipitation inhibition of poorly soluble fenofibrate and dipyridamole was performed. The light scattering method resulted in excellent correlation (r>0.91) between the calculated precipitation inhibitor parameters (PIPs) and the precipitation inhibition index (PI(classical)) obtained by the classical approach for fenofibrate and dipyridamole. Among the evaluated PIPs AUC100 (nephelometer) resulted in only four false positives and lack of false negatives. In the case of the turbidity-based method a good correlation of the PI(classical) was obtained for the PIP maximal optical density (OD(max), r=0.91), however, only for fenofibrate. In the case of the OD(max) (plate reader) five false positives and two false negatives were identified. In conclusion, the light scattering-based method outperformed the turbidity-based one and could be reliably used for identification of novel precipitation inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. genRE: A Method to Extend Gridded Precipitation Climatology Data Sets in Near Real-Time for Hydrological Forecasting Purposes

    NASA Astrophysics Data System (ADS)

    van Osnabrugge, B.; Weerts, A. H.; Uijlenhoet, R.

    2017-11-01

    To enable operational flood forecasting and drought monitoring, reliable and consistent methods for precipitation interpolation are needed. Such methods need to deal with the deficiencies of sparse operational real-time data compared to quality-controlled offline data sources used in historical analyses. In particular, often only a fraction of the measurement network reports in near real-time. For this purpose, we present an interpolation method, generalized REGNIE (genRE), which makes use of climatological monthly background grids derived from existing gridded precipitation climatology data sets. We show how genRE can be used to mimic and extend climatological precipitation data sets in near real-time using (sparse) real-time measurement networks in the Rhine basin upstream of the Netherlands (approximately 160,000 km2). In the process, we create a 1.2 × 1.2 km transnational gridded hourly precipitation data set for the Rhine basin. Precipitation gauge data are collected, spatially interpolated for the period 1996-2015 with genRE and inverse-distance squared weighting (IDW), and then evaluated on the yearly and daily time scale against the HYRAS and EOBS climatological data sets. Hourly fields are compared qualitatively with RADOLAN radar-based precipitation estimates. Two sources of uncertainty are evaluated: station density and the impact of different background grids (HYRAS versus EOBS). The results show that the genRE method successfully mimics climatological precipitation data sets (HYRAS/EOBS) over daily, monthly, and yearly time frames. We conclude that genRE is a good interpolation method of choice for real-time operational use. genRE has the largest added value over IDW for cases with a low real-time station density and a high-resolution background grid.

  14. Crash-type manual for pedestrians

    DOT National Transportation Integrated Search

    1996-01-01

    Bicyclists or pedestrians are involved in approximately one out of six highway fatalities each year. This research was conducted in order to better understand the precipitating actions, predisposing factors and characteristic populations involved. So...

  15. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    PubMed

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This paper provides the identification and root-cause study of the media precipitates that adversely affected the HTST process and discusses the possible solutions to mitigate the precipitation problem.

  16. Drought forecasting in Luanhe River basin involving climatic indices

    NASA Astrophysics Data System (ADS)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  17. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  18. Determination of Sulfate by Conductometric Titration: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Garcia, Jennifer; Schultz, Linda D.

    2016-01-01

    The classic technique for sulfate analysis in an undergraduate quantitative analysis lab involves precipitation as the barium salt with barium chloride, collection of the precipitate by gravity filtration using ashless filter paper, and removal of the filter paper by charring over a Bunsen burner. The entire process is time-consuming, hazardous,…

  19. Development of validated high-performance thin layer chromatography for quantification of aristolochic acid in different species of the Aristolochiaceae family.

    PubMed

    Agrawal, Poonam; Laddha, Kirti

    2017-04-01

    This study was undertaken to isolate and quantify aristolochic acid in Aristolochia indica stem and Apama siliquosa root. Aristolochic acid is an important biomarker component present in the Aristolochiaceae family. The isolation method involved simple solvent extraction, precipitation and further purification, using recrystallization. The structure of the compound was confirmed using infrared spectroscopy, mass spectrometry and nuclear magnetic resonance. A specific and rapid high-performance thin layer chromatography (HPTLC) method was developed for analysis of aristolochic acid. The method involved separation on the silica gel 60 F 254 plates using the single solvent system of n-hexane: chloroform: methanol. The method showed good linear relationship in the range 0.4-2.0 μg/spot with r 2  = 0.998. The limit of detection and limit of quantification were 62.841 ng/spot and 209.47 ng/spot, respectively. The proposed validated HPTLC method was found to be an easy to use, accurate and convenient method that could be successfully used for standardization and quality assessment of herbal material as well as formulations containing different species of the Aristolochiaceae family. Copyright © 2016. Published by Elsevier B.V.

  20. Homogenization of CZ Si wafers by Tabula Rasa annealing

    NASA Astrophysics Data System (ADS)

    Meduňa, M.; Caha, O.; Kuběna, J.; Kuběna, A.; Buršík, J.

    2009-12-01

    The precipitation of interstitial oxygen in Czochralski grown silicon has been investigated by infrared absorption spectroscopy, chemical etching, transmission electron microscopy and X-ray diffraction after application of homogenization annealing process called Tabula Rasa. The influence of this homogenization step consisting in short time annealing at high temperature has been observed for various temperatures and times. The experimental results involving the interstitial oxygen decay in Si wafers and absorption spectra of SiOx precipitates during precipitation annealing at 1000∘ C were compared with other techniques for various Tabula Rasa temperatures. The differences in oxygen precipitation, precipitate morphology and evolution of point defects in samples with and without Tabula Rasa applied is evident from all used experimental techniques. The results qualitatively correlate with prediction of homogenization annealing process based on classical nucleation theory.

  1. A simple and rapid method to isolate purer M13 phage by isoelectric precipitation.

    PubMed

    Dong, Dexian; Sutaria, Sanjana; Hwangbo, Je Yeol; Chen, P

    2013-09-01

    M13 virus (phage) has been extensively used in phage display technology and nanomaterial templating. Our research aimed to use M13 phage to template sulfur nanoparticles for making lithium ion batteries. Traditional methods for harvesting M13 phage from Escherichia coli employ polyethylene glycol (PEG)-based precipitation, and the yield is usually measured by plaque counting. With this method, PEG residue is present in the M13 phage pellet and is difficult to eliminate. To resolve this issue, a method based on isoelectric precipitation was introduced and tested. The isoelectric method resulted in the production of purer phage with a higher yield, compared to the traditional PEG-based method. There is no significant variation in infectivity of the phage prepared using isoelectric precipitation, and the dynamic light scattering data indirectly prove that the phage structure is not damaged by pH adjustment. To maximize phage production, a dry-weight yield curve of M13 phage for various culture times was produced. The yield curve is proportional to the growth curve of E. coli. On a 200-mL culture scale, 0.2 g L(-1) M13 phage (dry-weight) was produced by the isoelectric precipitation method.

  2. A novel in chemico method to detect skin sensitizers in highly diluted reaction conditions.

    PubMed

    Yamamoto, Yusuke; Tahara, Haruna; Usami, Ryota; Kasahara, Toshihiko; Jimbo, Yoshihiro; Hioki, Takanori; Fujita, Masaharu

    2015-11-01

    The direct peptide reactivity assay (DPRA) is a simple and versatile alternative method for the evaluation of skin sensitization that involves the reaction of test chemicals with two peptides. However, this method requires concentrated solutions of test chemicals, and hydrophobic substances may not dissolve at the concentrations required. Furthermore, hydrophobic test chemicals may precipitate when added to the reaction solution. We previously established a high-sensitivity method, the amino acid derivative reactivity assay (ADRA). This method uses novel cysteine (NAC) and novel lysine derivatives (NAL), which were synthesized by introducing a naphthalene ring to the amine group of cysteine and lysine residues. In this study, we modified the ADRA method by reducing the concentration of the test chemicals 100-fold. We investigated the accuracy of skin sensitization predictions made using the modified method, which was designated the ADRA-dilutional method (ADRA-DM). The predictive accuracy of the ADRA-DM for skin sensitization was 90% for 82 test chemicals which were also evaluated via the ADRA, and the predictive accuracy in the ADRA-DM was higher than that in the ADRA and DPRA. Furthermore, no precipitation of test compounds was observed at the initiation of the ADRA-DM reaction. These results show that the ADRA-DM allowed the use of test chemicals at concentrations two orders of magnitude lower than that possible with the ADRA. In addition, ADRA-DM does not have the restrictions on test compound solubility that were a major problem with the DPRA. Therefore, the ADRA-DM is a versatile and useful method. Copyright © 2015 John Wiley & Sons, Ltd.

  3. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.

    Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less

  4. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    DOE PAGES

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; ...

    2016-09-01

    Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less

  5. Effect of the precipitation interpolation method on the performance of a snowmelt runoff model

    NASA Astrophysics Data System (ADS)

    Jacquin, Alexandra

    2014-05-01

    Uncertainties on the spatial distribution of precipitation seriously affect the reliability of the discharge estimates produced by watershed models. Although there is abundant research evaluating the goodness of fit of precipitation estimates obtained with different gauge interpolation methods, few studies have focused on the influence of the interpolation strategy on the response of watershed models. The relevance of this choice may be even greater in the case of mountain catchments, because of the influence of orography on precipitation. This study evaluates the effect of the precipitation interpolation method on the performance of conceptual type snowmelt runoff models. The HBV Light model version 4.0.0.2, operating at daily time steps, is used as a case study. The model is applied in Aconcagua at Chacabuquito catchment, located in the Andes Mountains of Central Chile. The catchment's area is 2110[Km2] and elevation ranges from 950[m.a.s.l.] to 5930[m.a.s.l.] The local meteorological network is sparse, with all precipitation gauges located below 3000[m.a.s.l.] Precipitation amounts corresponding to different elevation zones are estimated through areal averaging of precipitation fields interpolated from gauge data. Interpolation methods applied include kriging with external drift (KED), optimal interpolation method (OIM), Thiessen polygons (TP), multiquadratic functions fitting (MFF) and inverse distance weighting (IDW). Both KED and OIM are able to account for the existence of a spatial trend in the expectation of precipitation. By contrast, TP, MFF and IDW, traditional methods widely used in engineering hydrology, cannot explicitly incorporate this information. Preliminary analysis confirmed that these methods notably underestimate precipitation in the study catchment, while KED and OIM are able to reduce the bias; this analysis also revealed that OIM provides more reliable estimations than KED in this region. Using input precipitation obtained by each method, HBV parameters are calibrated with respect to Nash-Sutcliffe efficiency. The performance of HBV in the study catchment is not satisfactory. Although volumetric errors are modest, efficiency values are lower than 70%. Discharge estimates resulting from the application of TP, MFF and IDW obtain similar model efficiencies and volumetric errors. These error statistics moderately improve if KED or OIM are used instead. Even though the quality of precipitation estimates of distinct interpolation methods is dissimilar, the results of this study show that these differences do not necessarily produce noticeable changes in HBV's model performance statistics. This situation arises because the calibration of the model parameters allows some degree of compensation of deficient areal precipitation estimates, mainly through the adjustment of model simulated evaporation and glacier melt, as revealed by the analysis of water balances. In general, even if there is a good agreement between model estimated and observed discharge, this information is not sufficient to assert that the internal hydrological processes of the catchment are properly simulated by a watershed model. Other calibration criteria should be incorporated if a more reliable representation of these processes is desired. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279. The HBV Light software used in this study was kindly provided by J. Seibert, Department of Geography, University of Zürich.

  6. Associating extreme precipitation events to parent cyclones in gridded data

    NASA Astrophysics Data System (ADS)

    Rhodes, Ruari; Shaffrey, Len; Gray, Sue

    2015-04-01

    When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.

  7. Reference values assessment in a Mediterranean population for small dense low-density lipoprotein concentration isolated by an optimized precipitation method.

    PubMed

    Fernández-Cidón, Bárbara; Padró-Miquel, Ariadna; Alía-Ramos, Pedro; Castro-Castro, María José; Fanlo-Maresma, Marta; Dot-Bach, Dolors; Valero-Politi, José; Pintó-Sala, Xavier; Candás-Estébanez, Beatriz

    2017-01-01

    High serum concentrations of small dense low-density lipoprotein cholesterol (sd-LDL-c) particles are associated with risk of cardiovascular disease (CVD). Their clinical application has been hindered as a consequence of the laborious current method used for their quantification. Optimize a simple and fast precipitation method to isolate sd-LDL particles and establish a reference interval in a Mediterranean population. Forty-five serum samples were collected, and sd-LDL particles were isolated using a modified heparin-Mg 2+ precipitation method. sd-LDL-c concentration was calculated by subtracting high-density lipoprotein cholesterol (HDL-c) from the total cholesterol measured in the supernatant. This method was compared with the reference method (ultracentrifugation). Reference values were estimated according to the Clinical and Laboratory Standards Institute and The International Federation of Clinical Chemistry and Laboratory Medicine recommendations. sd-LDL-c concentration was measured in serums from 79 subjects with no lipid metabolism abnormalities. The Passing-Bablok regression equation is y = 1.52 (0.72 to 1.73) + 0.07 x (-0.1 to 0.13), demonstrating no significant statistical differences between the modified precipitation method and the ultracentrifugation reference method. Similarly, no differences were detected when considering only sd-LDL-c from dyslipidemic patients, since the modifications added to the precipitation method facilitated the proper sedimentation of triglycerides and other lipoproteins. The reference interval for sd-LDL-c concentration estimated in a Mediterranean population was 0.04-0.47 mmol/L. An optimization of the heparin-Mg 2+ precipitation method for sd-LDL particle isolation was performed, and reference intervals were established in a Spanish Mediterranean population. Measured values were equivalent to those obtained with the reference method, assuring its clinical application when tested in both normolipidemic and dyslipidemic subjects.

  8. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    NASA Astrophysics Data System (ADS)

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  9. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    PubMed

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  10. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling

    PubMed Central

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method. PMID:25893432

  11. The Effectiveness of Using Limited Gauge Measurements for Bias Adjustment of Satellite-Based Precipitation Estimation over Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2018-01-01

    Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.

  12. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.

    PubMed

    Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna

    2015-01-01

    The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.

  13. Relevance of the correlation between precipitation and the 0 °C isothermal altitude for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Zeimetz, Fraenz; Schaefli, Bettina; Artigue, Guillaume; García Hernández, Javier; Schleiss, Anton J.

    2017-08-01

    Extreme floods are commonly estimated with the help of design storms and hydrological models. In this paper, we propose a new method to take into account the relationship between precipitation intensity (P) and air temperature (T) to account for potential snow accumulation and melt processes during the elaboration of design storms. The proposed method is based on a detailed analysis of this P-T relationship in the Swiss Alps. The region, no upper precipitation intensity limit is detectable for increasing temperature. However, a relationship between the highest measured temperature before a precipitation event and the duration of the subsequent event could be identified. An explanation for this relationship is proposed here based on the temperature gradient measured before the precipitation events. The relevance of these results is discussed for an example of Probable Maximum Precipitation-Probable Maximum Flood (PMP-PMF) estimation for the high mountainous Mattmark dam catchment in the Swiss Alps. The proposed method to associate a critical air temperature to a PMP is easily transposable to similar alpine settings where meteorological soundings as well as ground temperature and precipitation measurements are available. In the future, the analyses presented here might be further refined by distinguishing between precipitation event types (frontal versus orographic).

  14. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study.

    PubMed

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-06-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Towards the Development of a Global Precipitation Measurement Mission Concept

    NASA Astrophysics Data System (ADS)

    Shepherd, J. M.

    2001-12-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study-Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-20008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia, government, and the private sector.

  16. Towards the Development of a Global Precipitation Measurement (GPM) Mission Concept

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study - Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-2008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-su n -synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia, government, and the private sector.

  17. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

    DOE PAGES

    Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; ...

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni 4Ti 3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscalemore » precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.« less

  18. Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Y. H.; Cong, D. Y., E-mail: dycong@ustb.edu.cn; He, Z. B.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni{sub 4}Ti{sub 3} precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscalemore » precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ∼520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. It is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.« less

  19. Macroscopic Relationships Among Latent Heating, Precipitation, Organized Convection, and the Environment

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitchell

    2003-01-01

    The two studies summarized below represent the results of a one-year extension to the original award grant. These studies involve cloud-resolving simulation, theory and parameterization of multi-scale convective systems in the Tropics. It is a contribution to the basic scientific objectives of TRMM and the prospective NASA Global Precipitation Mission.

  20. Some observations on precipitation measurement on forested experimental watersheds

    Treesearch

    Raymond E. Leonard; Kenneth G. Reinhart

    1963-01-01

    Measurement of precipitation on forested experimental watersheds presents difficulties other than those associated with access to and from the gages in all kinds of weather. For instance, the tree canopy must be cleared above the gage. The accepted practice of keeping an unobstructed sky view of 45" around the gage involves considerable tree cutting. On a level...

  1. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Caracciolo, C.; Prodi, F.; Battaglia, A.; Porcu', F.

    2006-05-01

    Drop size distribution is a fundamental property of rainfall for two main reasons: the shape of the distribution reflects the physics of rain formation processes, and it is of basic importance in determining most parameters used in radar-meteorology. Therefore, several authors have proposed in the past different parameterizations for the drop size distribution (DSD). The present work focuses attention on the gamma DSD properties, assumed to be the most suitable for describing the observed DSD and its variability. The data set comprises about 3 years of data (2001-2004) for about 1900 min of rain, collected in Ferrara in the Po Valley (Northern Italy) by a Joss and Waldvogel (JW) disdrometer. A new method of moments to determine the three gamma DSD parameters is developed and tested; this method involves the fourth, fifth and sixth moments of the DSD, which are less sensitive to the underestimation of small drops in the JW disdrometer. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using two classical expressions for the hydrometeor terminal velocity. The 1-min observed spectra of some representative events that occurred in Ferrara are also presented, showing that with sufficient averaging, the distribution for the Ferrara rainfall can be approximately described by a gamma distribution. The discrimination of convective and stratiform precipitation is also an issue of intense interest. Over the past years, several works have aimed to discriminate between these two precipitation categories, on the basis of different instruments and techniques. The knowledge of the three gamma DSD parameters computed with the new method of moments is exploited to identify some characteristic parameters that give quantitative and useful information on the precipitation type and intensity. First, a key parameter derived from the knowledge of two gamma DSD parameters ( m and Λ), the peak (or modal) diameter Dp, defined as m/ Λ, is identified. A theoretical relationship between the m and Λ parameters is successively derived, conducing to a new convective/stratiform discrimination algorithm: in an m- Λ plot the line (1.635 Λ- m) = 1 can be considered as the discriminator; the stratiform events fall in the upper part, the convective ones in the lower. A classical tropical oceanic convective/stratiform discrimination algorithm is also tested, showing that it is not suitable to correctly discriminate the mid-latitude precipitations analyzed here.

  2. Recent research in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1987-01-01

    Recent work on snow-pack energy exchange has involved detailed investigations on snow albedo and attempts to integrate energy-balance calculations over drainage basins. Along with a better understanding of the EM properties of snow, research in remote sensing has become more focused toward estimation of snow-pack properties. In snow metamorphism, analyses of the physical processes must now be coupled to better descriptions of the geometry of the snow microstructure. The dilution method now appears to be the best direct technique for measuring the liquid water content of snow; work on EM methods continues. Increasing attention to the chemistry of the snow pack has come with the general focus on acid precipitation in hydrology.

  3. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    NASA Astrophysics Data System (ADS)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have implications for water resources management practices in Singapore.

  4. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  5. Milk Bottom-Up Proteomics: Method Optimization

    PubMed Central

    Vincent, Delphine; Ezernieks, Vilnis; Elkins, Aaron; Nguyen, Nga; Moate, Peter J.; Cocks, Benjamin G.; Rochfort, Simone

    2016-01-01

    Milk is a complex fluid whose proteome displays a diverse set of proteins of high abundance such as caseins and medium to low abundance whey proteins such as ß-lactoglobulin, lactoferrin, immunoglobulins, glycoproteins, peptide hormones, and enzymes. A sample preparation method that enables high reproducibility and throughput is key in reliably identifying proteins present or proteins responding to conditions such as a diet, health or genetics. Using skim milk samples from Jersey and Holstein-Friesian cows, we compared three extraction procedures which have not previously been applied to samples of cows' milk. Method A (urea) involved a simple dilution of the milk in a urea-based buffer, method B (TCA/acetone) involved a trichloroacetic acid (TCA)/acetone precipitation, and method C (methanol/chloroform) involved a tri-phasic partition method in chloroform/methanol solution. Protein assays, SDS-PAGE profiling, and trypsin digestion followed by nanoHPLC-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS/MS) analyses were performed to assess their efficiency. Replicates were used at each analytical step (extraction, digestion, injection) to assess reproducibility. Mass spectrometry (MS) data are available via ProteomeXchange with identifier PXD002529. Overall 186 unique accessions, major and minor proteins, were identified with a combination of methods. Method C (methanol/chloroform) yielded the best resolved SDS-patterns and highest protein recovery rates, method A (urea) yielded the greatest number of accessions, and, of the three procedures, method B (TCA/acetone) was the least compatible of all with a wide range of downstream analytical procedures. Our results also highlighted breed differences between the proteins in milk of Jersey and Holstein-Friesian cows. PMID:26793233

  6. IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation

    PubMed Central

    Pauly, Diana; Chacana, Pablo A.; Calzado, Esteban G.; Brembs, Björn; Schade, Rüdiger

    2011-01-01

    Hens can be immunized by means of i.m. vaccination (Musculus pectoralis, left and right, injection volume 0.5-1.0 ml) or by means of Gene-Gun plasmid-immunization. Dependent on the immunogenicity of the antigen, high antibody-titres (up to 1:100,000 - 1:1,000,000) can be achieved after only one or 3 - 4 boost immunizations. Normally, a hen lays eggs continuously for about 72 weeks, thereafter the laying capacity decreases. This protocol describes the extraction of total IgY from egg yolk by means of a precipitation procedure (PEG. Polson et al. 1980). The method involves two important steps. The first one is the removal of lipids and the second is the precipitation of total IgY from the supernatant of step one. After dialysis against a buffer (normally PBS) the IgY-extract can be stored at -20°C for more than a year. The purity of the extract is around 80 %, the total IgY per egg varies from 40-80 mg, dependent on the age of the laying hen. The total IgY content increases with the age of the hen from around 40 mg/egg up to 80 mg/egg (concerning PEG precipitation). The laying capacity of a hen per year is around 325 eggs. That means a total potential harvest of 20 g total IgY/year based on a mean IgY content of 60 mg total IgY/egg (see Table 1). PMID:21559009

  7. Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar

    2005-01-01

    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.

  8. Indirect downscaling of global circulation model data based on atmospheric circulation and temperature for projections of future precipitation in hourly resolution

    NASA Astrophysics Data System (ADS)

    Beck, F.; Bárdossy, A.

    2013-07-01

    Many hydraulic applications like the design of urban sewage systems require projections of future precipitation in high temporal resolution. We developed a method to predict the regional distribution of hourly precipitation sums based on daily mean sea level pressure and temperature data from a Global Circulation Model. It is an indirect downscaling method avoiding uncertain precipitation data from the model. It is based on a fuzzy-logic classification of atmospheric circulation patterns (CPs) that is further subdivided by means of the average daily temperature. The observed empirical distributions at 30 rain gauges to each CP-temperature class are assumed as constant and used for projections of the hourly precipitation sums in the future. The method was applied to the CP-temperature sequence derived from the 20th century run and the scenario A1B run of ECHAM5. According to ECHAM5, the summers in southwest Germany will become progressively drier. Nevertheless, the frequency of the highest hourly precipitation sums will increase. According to the predictions, estival water stress and the risk of extreme hourly precipitation will both increase simultaneously during the next decades.

  9. Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.

    2005-06-01

    Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb

  10. Evaluation of multiple precipitation products across Mainland China using the triple collocation method without ground truth

    NASA Astrophysics Data System (ADS)

    Tang, G.; Li, C.; Hong, Y.; Long, D.

    2017-12-01

    Proliferation of satellite and reanalysis precipitation products underscores the need to evaluate their reliability, particularly over ungauged or poorly gauged regions. However, it is really challenging to perform such evaluations over regions lacking ground truth data. Here, using the triple collocation (TC) method that is capable of evaluating relative uncertainties in different products without ground truth, we evaluate five satellite-based precipitation products and comparatively assess uncertainties in three types of independent precipitation products, e.g., satellite-based, ground-observed, and model reanalysis over Mainland China, including a ground-based precipitation dataset (the gauge based daily precipitation analysis, CGDPA), the latest version of the European reanalysis agency reanalysis (ERA-interim) product, and five satellite-based products (i.e., 3B42V7, 3B42RT of TMPA, IMERG, CMORPH-CRT, PERSIANN-CDR) on a regular 0.25° grid at the daily timescale from 2013 to 2015. First, the effectiveness of the TC method is evaluated by comparison with traditional methods based on ground observations in a densely gauged region. Results show that the TC method is reliable because the correlation coefficient (CC) and root mean square error (RMSE) are close to those based on the traditional method with a maximum difference only up to 0.08 and 0.71 (mm/day) for CC and RMSE, respectively. Then, the TC method is applied to Mainland China and the Tibetan Plateau (TP). Results indicate that: (1) the overall performance of IMERG is better than the other satellite products over Mainland China; (2) over grid cells without rain gauges in the TP, IMERG and ERA show better performance than CGDPA, indicating the potential of remote sensing and reanalysis data over these regions and the inherent uncertainty of CGDPA due to interpolation using sparsely gauged data; (3) both TMPA-3B42 and CMORPH-CRT have some unexpected CC values over certain grid cells that contain water bodies, reaffirming the overestimation of precipitation over inland water bodies. Overall, the TC method provides not only reliable cross-validation results of precipitation estimates over Mainland China but also a new perspective as to compressively assess multi-source precipitation products, particularly over poorly gauged regions.

  11. Satellite and Model Analysis of the Atmospheric Moisture Budget in High Latitudes

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Chen, Qui-Shi

    2001-01-01

    In order to understand variations of accumulation over Greenland, it is necessary to investigate precipitation and its variations. Observations of precipitation over Greenland are limited and generally inaccurate, but the analyzed wind, geopotential height, and moisture fields are available for recent years. The objective of this study is to enhance the dynamic method for retrieving high resolution precipitation over Greenland from the analyzed fields. The dynamic method enhanced in this study is referred to as the improved dynamic method.

  12. Separation of strontium from fecal matter

    DOEpatents

    Kester, D.K.

    1995-01-03

    A method is presented of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

  13. Separation of strontium from fecal matter

    DOEpatents

    Kester, Dianne K.

    1995-01-01

    A method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

  14. Phosphates behaviours in conversion of FP chlorides

    NASA Astrophysics Data System (ADS)

    Amamoto, I.; Kofuji, H.; Myochin, M.; Takasaki, Y.; Terai, T.

    2009-06-01

    The spent electrolyte of the pyroprocessing by metal electrorefining method should be considered for recycling after removal of fission products (FP) such as, alkali metals (AL), alkaline earth metals (ALE), and/or rare earth elements (REE), to reduce the volume of high-level radioactive waste. Among the various methods suggested for this purpose is precipitation by converting FP from chlorides to phosphates. Authors have been carrying out the theoretical analysis and experiment showing the behaviours of phosphate precipitates so as to estimate the feasibility of this method. From acquired results, it was found that AL except lithium and ALE are unlikely to form phosphate precipitates. However their conversion behaviours including REE were compatible with the theoretical analysis; in the case of LaPO 4 as one of the REE precipitates, submicron-size particles could be observed while that of Li 3PO 4 was larger; the precipitates were apt to grow larger at higher temperature; etc.

  15. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaeili, Shahrzad; Lloyd, David J.

    2005-11-15

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less

  16. Multisite stochastic simulation of daily precipitation from copula modeling with a gamma marginal distribution

    NASA Astrophysics Data System (ADS)

    Lee, Taesam

    2018-05-01

    Multisite stochastic simulations of daily precipitation have been widely employed in hydrologic analyses for climate change assessment and agricultural model inputs. Recently, a copula model with a gamma marginal distribution has become one of the common approaches for simulating precipitation at multiple sites. Here, we tested the correlation structure of the copula modeling. The results indicate that there is a significant underestimation of the correlation in the simulated data compared to the observed data. Therefore, we proposed an indirect method for estimating the cross-correlations when simulating precipitation at multiple stations. We used the full relationship between the correlation of the observed data and the normally transformed data. Although this indirect method offers certain improvements in preserving the cross-correlations between sites in the original domain, the method was not reliable in application. Therefore, we further improved a simulation-based method (SBM) that was developed to model the multisite precipitation occurrence. The SBM preserved well the cross-correlations of the original domain. The SBM method provides around 0.2 better cross-correlation than the direct method and around 0.1 degree better than the indirect method. The three models were applied to the stations in the Nakdong River basin, and the SBM was the best alternative for reproducing the historical cross-correlation. The direct method significantly underestimates the correlations among the observed data, and the indirect method appeared to be unreliable.

  17. Daily Temperature and Precipitation Data for 223 Former-USSR Stations (NDP-040)

    DOE Data Explorer

    Razuvaev, V. N. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Apasova, E. B. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Martuganov, R. A. [Russian Research Institute of Hydrometeorological Information-World Data Centre

    1990-01-01

    The stations in this dataset are considered by RIHMI to comprise one of the best networks suitable for temperature and precipitation monitoring over the the former-USSR. Factors involved in choosing these 223 stations included length or record, amount of missing data, and achieving reasonably good geographic coverage. There are indeed many more stations with daily data over this part of the world, and hundreds more station records are available through NOAA's Global Historical Climatology Network - Daily (GHCND) database. The 223 stations comprising this database are included in GHCND, but different data processing, updating, and quality assurance methods/checks mean that the agreement between records will vary depending on the station. The relative quality and accuracy of the common station records in the two databases also cannot be easily assessed. As of this writing, most of the common stations contained in the GHCND have more recent records, but not necessarily records starting as early as the records available here. This database contains four variables: daily mean, minimum, and maximum temperature, and daily total precipitation (liquid equivalent). Temperature were taken three times a day from 1881-1935, four times a day from 1936-65, and eight times a day since 1966. Daily mean temperature is defined as the average of all observations for each calendar day. Daily maximum/minimum temperatures are derived from maximum/minimum thermometer measurements. See the measurement description file for further details. Daily precipitation totals are also available (to the nearest tenth of a millimeter) for each station. Throughout the record, daily precipitation is defined as the total amount of precipitation recorded during a 24-h period, snowfall being converted to a liquid total by melting the snow in the gauge. From 1936 on, rain gauges were checked several times each day; the cumulative total of all observations during a calendar day was presumably used as the daily total. Again, see the measurement description file for further details.

  18. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    NASA Astrophysics Data System (ADS)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  19. Preparation of immunoglobulin Y from egg yolk using ammonium sulfate precipitation and ion exchange chromatography.

    PubMed

    Ko, K Y; Ahn, D U

    2007-02-01

    The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.

  20. Spatial distribution of precipitation extremes in Norway

    NASA Astrophysics Data System (ADS)

    Verpe Dyrrdal, Anita; Skaugen, Thomas; Lenkoski, Alex; Thorarinsdottir, Thordis; Stordal, Frode; Førland, Eirik J.

    2015-04-01

    Estimates of extreme precipitation, in terms of return levels, are crucial in planning and design of important infrastructure. Through two separate studies, we have examined the levels and spatial distribution of daily extreme precipitation over catchments in Norway, and hourly extreme precipitation in a point. The analyses were carried out through the development of two new methods for estimating extreme precipitation in Norway. For daily precipitation we fit the Generalized Extreme Value (GEV) distribution to areal time series from a gridded dataset, consisting of daily precipitation during the period 1957-today with a resolution of 1x1 km². This grid-based method is more objective and less manual and time-consuming compared to the existing method at MET Norway. In addition, estimates in ungauged catchments are easier to obtain, and the GEV approach includes a measure of uncertainty, which is a requirement in climate studies today. Further, we go into depth on the debated GEV shape parameter, which plays an important role for longer return periods. We show that it varies according to dominating precipitation types, having positive values in the southeast and negative values in the southwest. We also find indications that the degree of orographic enhancement might affect the shape parameter. For hourly precipitation, we estimate return levels on a 1x1 km² grid, by linking GEV distributions with latent Gaussian fields in a Bayesian hierarchical model (BHM). Generalized linear models on the GEV parameters, estimated from observations, are able to incorporate location-specific geographic and meteorological information and thereby accommodate these effects on extreme precipitation. Gaussian fields capture additional unexplained spatial heterogeneity and overcome the sparse grid on which observations are collected, while a Bayesian model averaging component directly assesses model uncertainty. We find that mean summer precipitation, mean summer temperature, latitude, longitude, mean annual precipitation and elevation are good covariate candidates for hourly precipitation in our model. Summer indices succeed because hourly precipitation extremes often occur during the convective season. The spatial distribution of hourly and daily precipitation differs in Norway. Daily precipitation extremes are larger along the southwestern coast, where large-scale frontal systems dominate during fall season and the mountain ridge generates strong orographic enhancement. The largest hourly precipitation extremes are mostly produced by intense convective showers during summer, and are thus found along the entire southern coast, including the Oslo-region.

  1. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; ...

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

  2. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    PubMed Central

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  3. The role of amino acids in hydroxyapatite mineralization

    PubMed Central

    2016-01-01

    Polar and charged amino acids (AAs) are heavily expressed in non-collagenous proteins (NCPs), and are involved in hydroxyapatite (HA) mineralization in bone. Here, we review what is known on the effect of single AAs on HA precipitation. Negatively charged AAs, such as aspartic acid, glutamic acid (Glu) and phosphoserine are largely expressed in NCPs and play a critical role in controlling HA nucleation and growth. Positively charged ones such as arginine (Arg) or lysine (Lys) are heavily involved in HA nucleation within extracellular matrix proteins such as collagen. Glu, Arg and Lys intake can also increase bone mineral density by stimulating growth hormone production. In vitro studies suggest that the role of AAs in controlling HA precipitation is affected by their mobility. While dissolved AAs are able to inhibit HA precipitation and growth by chelating Ca2+ and PO43− ions or binding to nuclei of calcium phosphate and preventing their further growth, AAs bound to surfaces can promote HA precipitation by attracting Ca2+ and PO43− ions and increasing the local supersaturation. Overall, the effect of AAs on HA precipitation is worth being investigated more, especially under conditions closer to the physiological ones, where the presence of other factors such as collagen, mineralization inhibitors, and cells heavily influences HA precipitation. A deeper understanding of the role of AAs in HA mineralization will increase our fundamental knowledge related to bone formation, and could lead to new therapies to improve bone regeneration in damaged tissues or cure pathological diseases caused by excessive mineralization in tissues such as cartilage, blood vessels and cardiac valves. PMID:27707904

  4. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 2: Retrieval method and applications (report version)

    NASA Technical Reports Server (NTRS)

    Olson, William S.

    1990-01-01

    A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.

  5. 21st Century Changes in Precipitation Extremes Based on Resolved Atmospheric Patterns

    NASA Astrophysics Data System (ADS)

    Gao, X.; Schlosser, C. A.; O'Gorman, P. A.; Monier, E.

    2014-12-01

    Global warming is expected to alter the frequency and/or magnitude of extreme precipitation events. Such changes could have substantial ecological, economic, and sociological consequences. However, climate models in general do not correctly reproduce the frequency distribution of precipitation, especially at the regional scale. In this study, a validated analogue method is employed to diagnose the potential future shifts in the probability of extreme precipitation over the United States under global warming. The method is based on the use of the resolved large-scale meteorological conditions (i.e. flow features, moisture supply) to detect the occurrence of extreme precipitation. The CMIP5 multi-model projections have been compiled for two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). We further analyze the accompanying circulation features and their changes that may be responsible for shifts in extreme precipitation in response to changed climate. The application of such analogue method to detect other types of hazard events, i.e. landslides is also explored. The results from this study may guide hazardous weather watches and help society develop adaptive strategies for preventing catastrophic losses.

  6. CO-PRECIPITATION IN QUANTITATIVE ANALYSIS. COMMUNICATION V. THE INFLUENCE EXERCISED BY COMPLEXION UPON THE PRECIPITATION OF ZIRCONIUM PHOSPHATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babko, A.K.; Shtokalo, M.I.

    The influence exercised by ethylenediamino-tetraacetic acid upon some processes of precipitation was investigated. A sharp mopdification of the form of precipitate as well as a decrease of coprecipitation was ium and titanium by means of the phosphate ;method are given. (TCO-W.D.M.)

  7. Application of hierarchical clustering method to classify of space-time rainfall patterns

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  8. Intelligent Processing of Ferroelectric Thin Films

    DTIC Science & Technology

    1993-09-03

    the acetate precursors. The results from these experiments involving coprecipitation, hydrothermal , spray pyrolysis and freeze drying have shown that...Spray Pyrolysis (SP) D. Hydrothermal Processing (HP) The powder produced by each process was characterized by X-ray diffraction (XRD) and scanning...precursors were used as described above. Instead of ammonia solution, an oxalic acid solution was used as the3 precipitating agent. The precipitants

  9. Development of the Ion Exchange-Gravimetric Method for Sodium in Serum as a Definitive Method

    PubMed Central

    Moody, John R.; Vetter, Thomas W.

    1996-01-01

    An ion exchange-gravimetric method, previously developed as a National Committee for Clinical Laboratory Standards (NCCLS) reference method for the determination of sodium in human serum, has been re-evaluated and improved. Sources of analytical error in this method have been examined more critically and the overall uncertainties decreased. Additionally, greater accuracy and repeatability have been achieved by the application of this definitive method to a sodium chloride reference material. In this method sodium in serum is ion-exchanged, selectively eluted and converted to a weighable precipitate as Na2SO4. Traces of sodium eluting before or after the main fraction, and precipitate contaminants are determined instrumentally. Co-precipitating contaminants contribute less than 0.1 % while the analyte lost to other eluted ion-exchange fractions contributes less than 0.02 % to the total precipitate mass. With improvements, the relative expanded uncertainty (k = 2) of the method, as applied to serum, is 0.3 % to 0.4 % and is less than 0.1 % when applied to a sodium chloride reference material. PMID:27805122

  10. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  11. The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells

    PubMed Central

    Jung, You-Shick; Yoon, Wang-Lai; Seo, Yong-Seog; Rhee, Young-Woo

    2012-01-01

    Ni-Al2O3 catalysts are prepared via the co-precipitation method using various precipitants: urea, Na2CO3, NaOH, K2CO3, KOH and NH4OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts are investigated. The Ni50-urea catalyst displays the largest specific surface area and the highest pore volume. This catalyst also exhibits the highest Ni dispersion and the largest Ni surface area. Ni50-urea catalyst prepared with urea as precipitant and Ni50-K2CO3 catalyst prepared with K2CO3 as precipitant exhibit high pore volumes and good catalytic activities for methane steam reforming. The Ni50-urea catalyst exhibits the best physicochemical properties and shows good catalytic activity and a strong resistance to electrolyte contamination. PMID:22962548

  12. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite.

    PubMed

    Zheng, Xin-Yan; Wang, Xiao-Yu; Shen, Yang-Hao; Lu, Xia; Wang, Tie-Shan

    2017-05-01

    Biosorption of heavy metal elements including radionuclides by microorganisms is a promising and effective method for the remediation of the contaminated places. The responses of live Saccharomyces cerevisiae in the toxic uranium solutions during the biosorption process and the mechanism of uranium biomineralization by cells were investigated in the present study. A novel experimental phenomenon that uranium concentrations have negative correlation with pH values and positive correlation with phosphate concentrations in the supernatant was observed, indicating that hydrogen ions, phosphate ions and uranyl ions were involved in the chernikovite precipitation actively. During the biosorption process, live cells desorb deposited uranium within the equilibrium state of biosorption system was reached and the phosphorus concentration increased gradually in the supernatant. These metabolic detoxification behaviours could significantly alleviate uranium toxicity and protect the survival of the cells better in the environment. The results of microscopic and spectroscopic analysis demonstrated that the precipitate on the cell surface was a type of uranium-phosphate compound in the form of a scale-like substance, and S. cerevisiae could transform the uranium precipitate into crystalline state-tetragonal chernikovite [H 2 (UO 2 ) 2 (PO 4 ) 2 ·8H 2 O]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  14. Method for the decontamination of metallic surfaces

    DOEpatents

    Purohit, Ankur; Kaminski, Michael D.; Nunez, Luis

    2003-01-01

    A method of decontaminating a radioactively contaminated oxide on a surface. The radioactively contaminated oxide is contacted with a diphosphonic acid solution for a time sufficient to dissolve the oxide and subsequently produce a precipitate containing most of the radioactive values. Thereafter, the diphosphonic solution is separated from the precipitate. HEDPA is the preferred diphosphonic acid and oxidizing and reducing agents are used to initiate precipitation. SFS is the preferred reducing agent.

  15. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  16. Assessment of Areal Recharge to the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Bartolino, James R.

    2007-01-01

    A numerical flow model of the Spokane Valley-Rathdrum Prairie aquifer currently (2007) being developed requires the input of values for areally-distributed recharge, a parameter that is often the most uncertain component of water budgets and ground-water flow models because it is virtually impossible to measure over large areas. Data from six active weather stations in and near the study area were used in four recharge-calculation techniques or approaches; the Langbein method, in which recharge is estimated on the basis of empirical data from other basins; a method developed by the U.S. Department of Agriculture (USDA), in which crop consumptive use and effective precipitation are first calculated and then subtracted from actual precipitation to yield an estimate of recharge; an approach developed as part of the Eastern Snake Plain Aquifer Model (ESPAM) Enhancement Project in which recharge is calculated on the basis of precipitation-recharge relations from other basins; and an approach in which reference evapotranspiration is calculated by the Food and Agriculture Organization (FAO) Penman-Monteith equation, crop consumptive use is determined (using a single or dual coefficient approach), and recharge is calculated. Annual recharge calculated by the Langbein method for the six weather stations was 4 percent of annual mean precipitation, yielding the lowest values of the methods discussed in this report, however, the Langbein method can be only applied to annual time periods. Mean monthly recharge calculated by the USDA method ranged from 53 to 73 percent of mean monthly precipitation. Mean annual recharge ranged from 64 to 69 percent of mean annual precipitation. Separate mean monthly recharge calculations were made with the ESPAM method using initial input parameters to represent thin-soil, thick-soil, and lava-rock conditions. The lava-rock parameters yielded the highest recharge values and the thick-soil parameters the lowest. For thin-soil parameters, calculated monthly recharge ranged from 10 to 29 percent of mean monthly precipitation and annual recharge ranged from 16 to 23 percent of mean annual precipitation. For thick-soil parameters, calculated monthly recharge ranged from 1 to 5 percent of mean monthly precipitation and mean annual recharge ranged from 2 to 4 percent of mean annual precipitation. For lava-rock parameters, calculated mean monthly recharge ranged from 37 to 57 percent of mean monthly precipitation and mean annual recharge ranged from 45 to 52 percent of mean annual precipitation. Single-coefficient (crop coefficient) FAO Penman-Monteith mean monthly recharge values were calculated for Spokane Weather Service Office (WSO) Airport, the only station for which the necessary meteorological data were available. Grass-referenced values of mean monthly recharge ranged from 0 to 81 percent of mean monthly precipitation and mean annual recharge was 21 percent of mean annual precipitation; alfalfa-referenced values of mean monthly recharge ranged from 0 to 85 percent of mean monthly precipitation and mean annual recharge was 24 percent of mean annual precipitation. Single-coefficient FAO Penman-Monteith calculations yielded a mean monthly recharge of zero during the eight warmest and driest months of the year (March-October). In order to refine the mean monthly recharge estimates, dual-coefficient (basal crop and soil evaporation coefficients) FAO Penman-Monteith dual-crop evapotranspiration and deep-percolation calculations were applied to daily values from the Spokane WSO Airport for January 1990 through December 2005. The resultant monthly totals display a temporal variability that is absent from the mean monthly values and demonstrate that the daily amount and timing of precipitation dramatically affect calculated recharge. The dual-coefficient FAO Penman-Monteith calculations were made for the remaining five stations using wind-speed values for Spokane WSO Airport and other assumptions regarding

  17. Computation of rainfall erosivity from daily precipitation amounts.

    PubMed

    Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel

    2018-10-01

    Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Examining the Stationarity Assumption for Statistically Downscaled Climate Projections of Precipitation

    NASA Astrophysics Data System (ADS)

    Wootten, A.; Dixon, K. W.; Lanzante, J. R.; Mcpherson, R. A.

    2017-12-01

    Empirical statistical downscaling (ESD) approaches attempt to refine global climate model (GCM) information via statistical relationships between observations and GCM simulations. The aim of such downscaling efforts is to create added-value climate projections by adding finer spatial detail and reducing biases. The results of statistical downscaling exercises are often used in impact assessments under the assumption that past performance provides an indicator of future results. Given prior research describing the danger of this assumption with regards to temperature, this study expands the perfect model experimental design from previous case studies to test the stationarity assumption with respect to precipitation. Assuming stationarity implies the performance of ESD methods are similar between the future projections and historical training. Case study results from four quantile-mapping based ESD methods demonstrate violations of the stationarity assumption for both central tendency and extremes of precipitation. These violations vary geographically and seasonally. For the four ESD methods tested the greatest challenges for downscaling of daily total precipitation projections occur in regions with limited precipitation and for extremes of precipitation along Southeast coastal regions. We conclude with a discussion of future expansion of the perfect model experimental design and the implications for improving ESD methods and providing guidance on the use of ESD techniques for impact assessments and decision-support.

  19. THE DETERMINATION OF THE MAJOR CONSTITUENTS OTHER THAN URANIUM IN BELGIAN CONGO ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, A.B.; Wright, J.S.; Bradfield, E.G.

    1953-12-22

    Methods for determining the major constituents of Belgian Congo ore other than uranium are reviewed. A method is given for the determination of cobalt by precipitation with potassium ethyl xanthate from a nitric acid solution of the ore. After wet oxidation of the precipitate, it is titrated potentiometrically in ammoniacal citrate solution with potassium ferricyanide. A method for the determination of silicon is given in which the silica is dehydrated by fuming with perchloric acid. After filtration and ignition, it is volatized as the fluoride, and the silica is deternfined from weight loss. Nickel is determined from a solution ofmore » the ore in nitric acid by double precipitation with dimethyl glyoxime after addition of citrate ion, hydroxylamine, and ammonia. Molybdenum is determined by precipitation as lead molybdate after preliminary separation with benzoin oxime. Aluminum is determined by precipitation as the benzoate, thioglycolic acid being used to complex the iron. The aluminum is then estimated gravimetrically with oxime. A composite method is presented for the deterndnation of lead, iron, alununum, calciuna, and magnesium. (C.J.G.)« less

  20. A new approach for assimilation of two-dimensional radar precipitation in a high resolution NWP model

    NASA Astrophysics Data System (ADS)

    Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetman, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; GIll, Rasphal; Vedel, Henrik

    2014-05-01

    The DMI nowcasting system has been running in a pre-operational state for the past year. The system consists of hourly simulations with the High Resolution Limited Area weather model combined with surface and three-dimensional variational assimilation at each restart and nudging of satellite cloud products and radar precipitation. Nudging of a two-dimensional radar reflectivity CAPPI product is achieved using a new method where low level horizontal divergence is nudged towards pseudo observations. Pseudo observations are calculated based on an assumed relation between divergence and precipitation rate and the strength of the nudging is proportional to the offset between observed and modelled precipitation leading to increased moisture convergence below cloud base if there is an under-production of precipitation relative to the CAPPI product. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. In this talk results will be discussed based on calculation of the fractions skill score in cases with heavy precipitation over Denmark. Furthermore, results from simulations combining reflectivity nudging and extrapolation of reflectivity will be shown. Results indicate that the new method leads to fast adjustment of the dynamical state of the model to facilitate precipitation release when the model precipitation intensity is too low. Removal of precipitation is also shown to be of importance and strong improvements were found in the position of the precipitation systems. Bias is reduced for low and extreme precipitation rates.

  1. Evaluation of Ten Methods for Initializing a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).

  2. [Feasibility and possibility of Inoue stent graft for thoracic aortic aneurysms].

    PubMed

    Marui, Akira; Kimura, Takeshi; Tazaki, Junichi; Sakata, Ryuzo; Inoue, Kanji

    2011-01-01

    Open surgical repair is a traditional treatment for patients with thoracic aortic aneurysms. Despite recent advances in surgical techniques and anesthetic management, the surgical repair of thoracic aortic aneurysms is still associated with significant mortality and morbidity. Endovascular aneurysm repair of thoracic aortic aneurysms is emerging as an alternative method for repair in selected patients. Although endovascular stent grafting is less invasive than open surgical repair, involvement of branch vessels and precipitous curvature of the aortic arch limits the application of stent grafting. Inoue stent graft system consists of soft nitinol ring-type stent which enables very flexible stent graft, and it can well comply with the precipitous curvature of the aortic arch. The system also provides a stent graft with a side branch to manage the left subclavian artery. This system does not require the surgical revascularization of the left subclavian artery. In this report, we show the feasibility and possibility of Inoue stent graft system to manage the aortic arch aneurysm.

  3. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  4. Global modeling of land water and energy balances. Part III: Interannual variability

    USGS Publications Warehouse

    Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.

    2002-01-01

    The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.

  5. Identifying and Analyzing Uncertainty Structures in the TRMM Microwave Imager Precipitation Product over Tropical Ocean Basins

    NASA Technical Reports Server (NTRS)

    Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.

    2016-01-01

    Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Min; Kollias, Pavlos; Feng, Zhe

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification ismore » equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.« less

  7. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  8. Evaluation of Fuzzy-Logic Framework for Spatial Statistics Preserving Methods for Estimation of Missing Precipitation Data

    NASA Astrophysics Data System (ADS)

    El Sharif, H.; Teegavarapu, R. S.

    2012-12-01

    Spatial interpolation methods used for estimation of missing precipitation data at a site seldom check for their ability to preserve site and regional statistics. Such statistics are primarily defined by spatial correlations and other site-to-site statistics in a region. Preservation of site and regional statistics represents a means of assessing the validity of missing precipitation estimates at a site. This study evaluates the efficacy of a fuzzy-logic methodology for infilling missing historical daily precipitation data in preserving site and regional statistics. Rain gauge sites in the state of Kentucky, USA, are used as a case study for evaluation of this newly proposed method in comparison to traditional data infilling techniques. Several error and performance measures will be used to evaluate the methods and trade-offs in accuracy of estimation and preservation of site and regional statistics.

  9. Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts.

    PubMed

    Czajkowski, Robert; Ozymko, Zofia; Lojkowska, Ewa

    2016-01-01

    This is the first report describing precipitation of bacteriophage particles with zinc chloride as a method of choice to isolate infectious lytic bacteriophages against Pectobacterium spp. and Dickeya spp. from environmental samples. The isolated bacteriophages are ready to use to study various (ecological) aspects of bacteria-bacteriophage interactions. The method comprises the well-known precipitation of phages from aqueous extracts of the test material by addition of ZnCl2, resuscitation of bacteriophage particles in Ringer's buffer to remove the ZnCl2 excess and a soft agar overlay assay with the host bacterium to isolate infectious individual phage plaques. The method requires neither an enrichment step nor other steps (e. g., PEG precipitation, ultrafiltration, or ultracentrifugation) commonly used in other procedures and results in isolation of active viable bacteriophage particles.

  10. Responses of switchgrass to precipitation changes: Nonlinear and asymmetric?

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Climate changes, including chronic changes in precipitation amounts, will influence plant physiology, biomass and productivity, and soil respiration. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. Two preci...

  11. Legionella pneumophila Toxin, Isolation and Purification

    DTIC Science & Technology

    1981-01-01

    which dis- plays an in vivo lethality. The purification procedures involve acid precipitation, gel chromatography, and preparative isotachophoresis. The...Chymotrypsinogen A, Ribonuclease A, and Apoprotinin as markers. Preparation of antiserum One milliqram amounts of protein from Le jonella acid ...RESULTS Toxin isolation Step 1: Acid precipitation of crude toxin. 1.0 N HCl acid was slowly added to rapidly stirred crude toxin until pH 3.5 was

  12. A multi-source precipitation approach to fill gaps over a radar precipitation field

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  13. Sensitivity of snow process simulations to precipitation-phase transition method in forested and open areas

    NASA Astrophysics Data System (ADS)

    Lundberg, A.; Gustafsson, D.

    2009-04-01

    Modeling of forest snow processes is complicated and especially problematic seems to be the separation of precipitation phase in climates where a large part of the precipitation falls at temperatures near zero degrees Celsius. When the precipitation is classified as snow, the tree crowns can carry an order of magnitude more canopy storage as compared to when the precipitation is classified as rain, and snow in the trees also alters the albedo of the forest while rain does not. Many different schemes for the precipitation phase separation are used by various snow models. Some models use just one air temperature threshold (TR/S) below which all precipitation is assumed to be snow and above which all precipitation is classified as rain. A more common approach for forest snow models is to use two temperature thresholds. The snow fraction (SF) is then set to one below the snow threshold (TS) and to zero above the rain threshold (TR) and SF is assumed to decrease linearly between these two thresholds. Also more sophisticated schemes exist, but three seems to be a lack of agreement on how the precipitation phase separations should be performed. The aim with this study is to use a hydrological model including canopy snow processes to illustrate the sensitivity for different formulations of the precipitation phase separation on a) the simulated maximum snow pack storage b) the interception evaporation loss and c) snow melt runoff. In other words, to investigate of the choice of precipitation phase separation has an impact on the simulated wintertime water balance. Simulations are made for sites in different climates and for both open fields and forest sites in different regions of Sweden from north to south. In general, precipitation phase separation methods that classified snowfall at higher temperatures resulted in a larger proportion of the precipitation lost by interception evaporation as a result of the increased interception capacity. However, the maximum snow accumulation was also increased in some cases due to the overall increased snowfall, depending on canopy density and precipitation and temperature regimes. Results show that the choice of precipitation phase separation method can have an significant impact on the simulated wintertime water balance, especially in forested regions.

  14. Determination of Lead in Blood by Atomic Absorption Spectrophotometry1

    PubMed Central

    Selander, Stig; Cramér, Kim

    1968-01-01

    Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425

  15. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Tolika, Konstantia; Kolyva-Machera, Fotini

    2018-04-01

    The increasing trend of the intensity and frequency of temperature and precipitation extremes during the past decades has substantial environmental and socioeconomic impacts. Thus, the objective of the present study is the comparison of several statistical methods of the extreme value theory (EVT) in order to identify which is the most appropriate to analyze the behavior of the extreme precipitation, and high and low temperature events, in the Mediterranean region. The extremes choice was made using both the block maxima and the peaks over threshold (POT) technique and as a consequence both the generalized extreme value (GEV) and generalized Pareto distributions (GPDs) were used to fit them. The results were compared, in order to select the most appropriate distribution for extremes characterization. Moreover, this study evaluates the maximum likelihood estimation, the L-moments and the Bayesian method, based on both graphical and statistical goodness-of-fit tests. It was revealed that the GPD can characterize accurately both precipitation and temperature extreme events. Additionally, GEV distribution with the Bayesian method is proven to be appropriate especially for the greatest values of extremes. Another important objective of this investigation was the estimation of the precipitation and temperature return levels for three return periods (50, 100, and 150 years) classifying the data into groups with similar characteristics. Finally, the return level values were estimated with both GEV and GPD and with the three different estimation methods, revealing that the selected method can affect the return level values for both the parameter of precipitation and temperature.

  16. Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue

    PubMed Central

    Luís, Inês M.; Alexandre, Bruno M.; Oliveira, M. Margarida

    2016-01-01

    Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK. PMID:27727304

  17. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

    1980-06-13

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

  18. METHOD OF PREPARING PROTACTINIUM VALUES

    DOEpatents

    Katzin, L.I.; Larson, R.G.; Thompson, R.C.; Van Winkle, Q.

    1959-05-19

    Separation and purification from initial acid leaches of pitchblende of Pa is described. This supernatant acid solution is treated with alkali metal carbonates to precipitate Pa. Silica is removed from the precipitate by hydroxide treatment. The Pa residue is dissolved in HNO/sub 3/ and Pa is concentrated by cyclic precipitations with MnO/sub 2/. The last solution is hydrolyzed to precipitate Pa. The Pa precipitate contains Ti and Zr which are removed by ion exchange. (T.R.H.)

  19. Monitoring Rainfall by Combining Ground-based Observed Precipitation and PERSIANN Satellite Product (Case Study Area: Lake Urmia Basin)

    NASA Astrophysics Data System (ADS)

    Abrishamchi, A.; Mirshahi, A.

    2015-12-01

    The global coverage, quick access, and appropriate spatial-temporal resolution of satellite precipitation data renders the data appropriate for hydrologic studies, especially in regions with no sufficient rain-gauge network. On the other hand, satellite precipitation products may have major errors. The present study aims at reduction of estimation error of the PERSIANN satellite precipitation product. Bayesian logic employed to develop a statistical relationship between historical ground-based and satellite precipitation data. This relationship can then be used to reduce satellite precipitation product error in near real time, when there is no ground-based precipitation observation. The method was evaluated in the Lake Urmia basin with a monthly time scale; November to May of 2000- 2008 for the purpose of model development and two years of 2009 and 2010 for the validation of the established relationships. Moreover, Kriging interpolation method was employed to estimate the average rainfall in the basin. Furthermore, to downscale the satellite precipitation product from 0.25o to 0.05o, data-location downscaling algorithm was used. In 76 percent of months, the final product, compared with the satellite precipitation, had less error during the validation period. Additionally, its performance was marginally better than adjusted PERSIANN product.

  20. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  1. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    DOEpatents

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  2. A simple and effective method for detecting precipitated proteins in MALDI-TOF MS.

    PubMed

    Oshikane, Hiroyuki; Watabe, Masahiko; Nakaki, Toshio

    2018-04-01

    MALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection. We herein provide a simple approach to enable the MS detection of such precipitated protein species by means of a "direct deposition method" -- loading the precipitant directly onto the sample plate. It is thus expected to improve routine MS analysis of intact proteins. Copyright © 2018. Published by Elsevier Inc.

  3. Investigating the Influence of the Initial Biomass Distribution and Injection Strategies on Biofilm-Mediated Calcite Precipitation in Porous Media

    DOE PAGES

    Hommel, Johannes; Lauchnor, Ellen; Gerlach, Robin; ...

    2015-12-16

    Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. However, quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation.more » Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca 2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca 2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.« less

  4. Investigating the Influence of the Initial Biomass Distribution and Injection Strategies on Biofilm-Mediated Calcite Precipitation in Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hommel, Johannes; Lauchnor, Ellen; Gerlach, Robin

    Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. However, quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation.more » Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca 2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca 2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.« less

  5. Evaluation of TRMM multi-satellite precipitation analysis (TMPA) against terrestrial measurement over a humid sub-tropical basin, India

    NASA Astrophysics Data System (ADS)

    Kumar, Dheeraj; Gautam, Amar Kant; Palmate, Santosh S.; Pandey, Ashish; Suryavanshi, Shakti; Rathore, Neha; Sharma, Nayan

    2017-08-01

    To support the GPM mission which is homologous to its predecessor, the Tropical Rainfall Measuring Mission (TRMM), this study has been undertaken to evaluate the accuracy of Tropical Rainfall Measuring Mission multi-satellite precipitation analysis (TMPA) daily-accumulated precipitation products for 5 years (2008-2012) using the statistical methods and contingency table method. The analysis was performed on daily, monthly, seasonal and yearly basis. The TMPA precipitation estimates were also evaluated for each grid point i.e. 0.25° × 0.25° and for 18 rain gauge stations of the Betwa River basin, India. Results indicated that TMPA precipitation overestimates the daily and monthly precipitation in general, particularly for the middle sub-basin in the non-monsoon season. Furthermore, precision of TMPA precipitation estimates declines with the decrease of altitude at both grid and sub-basin scale. The study also revealed that TMPA precipitation estimates provide better accuracy in the upstream of the basin compared to downstream basin. Nevertheless, the detection capability of daily TMPA precipitation improves with increase in altitude for drizzle rain events. However, the detection capability decreases during non-monsoon and monsoon seasons when capturing moderate and heavy rain events, respectively. The veracity of TMPA precipitation estimates was improved during the rainy season than during the dry season at all scenarios investigated. The analyses suggest that there is a need for better precipitation estimation algorithm and extensive accuracy verification against terrestrial precipitation measurement to capture the different types of rain events more reliably over the sub-humid tropical regions of India.

  6. Syzygies, Pluricanonical Maps, and the Birational Geometry of Varieties of Maximal Albanese Dimension

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, Kibrewossen B.

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products in mountainous regions. The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground-based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses a new ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar-gauge precipitation product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. In addition to biases, sometimes there is also spatial error between the radar and satellite precipitation estimates; one of them has to be geometrically corrected with reference to the other. A set of corresponding raining points between SPE and radar products are selected to apply linear registration using a regularized least square technique to minimize the dislocation error in SPEs with respect to available radar products. A weighted Successive Correction Method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial method for merging the rain gauges and climatological precipitation sources with radar and SPEs. We demonstrated the method using two satellite-based, CPC Morphing (CMORPH) and Hydro-Estimator (HE), two radar-gauge based, Stage-II and ST-IV, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over different geographical locations of the United States. Results show that: (a) the method of ensembles helped reduce biases in SPEs significantly; (b) the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements .The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the operational meteorology and hydrology community.

  7. Precipitation-Frequency and Discharge-Frequency Relations for Basins Less than 32 Square Miles in Kansas

    USGS Publications Warehouse

    Perry, Charles A.

    2008-01-01

    Precipitation-frequency and discharge-frequency relations for small drainage basins with areas less than 32 square miles in Kansas were evaluated to reduce the uncertainty of discharge-frequency estimates. Gaged-discharge records were used to develop discharge-frequency equations for the ratio of discharge to drainage area (Q/A) values using data from basins with variable soil permeability, channel slope, and mean annual precipitation. Soil permeability and mean annual precipitation are the dominant basin characteristics in the multiple linear regression analyses. In addition, 28 discharge measurements at ungaged sites by indirect surveying methods and by velocity meters also were used in this analysis to relate precipitation-recurrence interval to discharge-recurrence interval. Precipitation-recurrence interval for each of these discharge measurements were estimated from weather-radar estimates of precipitation and from nearby raingages. Time of concentration for each basin for each of the ungaged sites was computed and used to determine the precipitation-recurrence interval based on precipitation depth and duration. The ratio of discharge/drainage area (Q/A) value for each event was then assigned to that precipitation-recurrence interval. The relation between the ratio of discharge/drainage area (Q/A) and precipitation-recurrence interval for all 28 measured events resulted in a correlation coefficient of 0.79. Using basins less than 5.4 mi2 only, the correlation decreases to 0.74. However, when basins greater than 5.4 and less than 32 mi2 are examined the relation improves to a correlation coefficient of 0.95. There were a sufficient number of discharge and radar-measured precipitation events for both the 5-year (8 events) and the 100-year (11 events) recurrence intervals to examine the effect of basin characteristics on the Q/A values for basins less than 32 mi2. At the 5-year precipitation-/discharge-recurrence interval, channel slope was a significant predictor (r=0.99) of Q/A. Permeability (r=0.68) also had a significant effect on Q/A values for the 5-year recurrence interval. At the 100-year recurrence interval, permeability, channel slope, and mean annual precipitation did not have a significant effect on Q/A; however, time of concentration was a significant factor in determining Q/A for the 100-year events with greater times of concentration resulting in lower Q/A values. Additional high-recurrence interval (5-, 10-, 25-, 50-, and 100-year) precipitation/discharge data are needed to confirm these relations suggested above. Discharge data with attendant basin-wide precipitation data from precipitation-radar estimates provides a unique opportunity to study the effects of basin characteristics on the relation between precipitation recurrence interval and discharge-recurrence interval. Discharge-frequency values from the Q/A equations, the rational method, and the Kansas discharge-frequency equations (KFFE) were compared to 28 measured weather-radar precipitation-/discharge-frequency values. The association between precipitation frequency from weather-radar estimates and the frequency of the resulting discharge was shown in these comparisons. The measured and Q/A equation computed discharges displayed the best equality from low to high discharges of the three methods. Here the slope of the line was nearly 1:1 (y=0.9844x0.9677). Comparisons with the rational method produced a slope greater than 1:1 (y=0.0722x1.235), and the KFFE equations produced a slope less than 1:1 (y=5.9103x0.7475). The Q/A equation standard error of prediction averaged 0.1346 log units for the 5.4-to 32-square-mile group and 0.0944 log units for the less than 5.4-square mile group. The KFFE standard error averaged 0.2107 log units for the less-than-30-square-mile equations. Using the Q/A equations for determining discharge frequency values for ungaged sites thus appears to be a good alternative to the other two methods because of this s

  8. Proof of concept of a "greener" protein purification/enrichment method based on carboxylate-terminated carbosilane dendrimer-protein interactions.

    PubMed

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2016-11-01

    Protein sample preparation is a critical and an unsustainable step since it involves the use of tedious methods that usually require high amount of solvents. The development of new materials offers additional opportunities in protein sample preparation. This work explores, for the first time, the potential application of carboxylate-terminated carbosilane dendrimers to the purification/enrichment of proteins. Studies on dendrimer binding to proteins, based on protein fluorescence intensity and emission wavelengths measurements, demonstrated the interaction between carboxylate-terminated carbosilane dendrimers and proteins at all tested pH levels. Interactions were greatly affected by the protein itself, pH, and dendrimer concentration and generation. Especially interesting was the interaction at acidic pH since it resulted in a significant protein precipitation. Dendrimer-protein interactions were modeled observing stable complexes for all proteins. Carboxylate-terminated carbosilane dendrimers at acidic pH were successfully used in the purification/enrichment of proteins extracted from a complex sample. Graphical Abstract Images showing the growing turbidity of solutions containing a mixture of proteins (lysozyme, myoglobin, and BSA) at different protein:dendrimer ratios (1:0, 1:1, 1:8, and 1:20) at acidic pH and SDS-PAGE profiles of the corresponsing supernatants. Comparison of SDS-PAGE profiles for the pellets obtained during the purification of proteins present in a complex sample using a conventional "no-clean" method based on acetone precipitation and the proposed "greener" method using carboxylate-terminated carbosilane dendrimer at a 1:20 protein:dendrimer ratio.

  9. Liquid chromatographic assay of ceftizoxime in sera of normal and uremic patients.

    PubMed Central

    McCormick, E M; Echols, R M; Rosano, T G

    1984-01-01

    The application of high-pressure liquid chromatography assays for cephalosporin serum concentrations is difficult in uremic patients because of interference from nondialyzable substances. We developed a high-pressure liquid chromatography method for determining the serum concentration of ceftizoxime in normal and uremic patients. The method involves protein precipitation with acetonitrile, followed by removal of the acetonitrile with dichloromethane. Separation was accomplished with a reverse-phase (C-18) column and a mobile phase of 13% acetonitrile and 2.8% acetic acid. UV detection at 310 nm was used to monitor the peaks. This assay produced a linear relationship between peak height ratio and ceftizoxime concentration from 1.5 to 100 micrograms/ml. Samples from 30 patients were assayed by this method and by a bioassay, with a good correlation of results (r = 0.9832). The method was applicable equally to normal and uremic serum samples. PMID:6326665

  10. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.

  11. Stimulation of Indigenous Carbonate Precipitating Bacteria for Ground Improvement

    NASA Astrophysics Data System (ADS)

    Rajasekar, Adharsh; Moy, Charles K. S.; Wilkinson, Stephen

    2017-05-01

    Calcite minerals are precipitated in soil through biomineralisation which can be either organic or inorganic in nature. Biomineralisation can be employed to improve ground conditions in its natural state. Usually, studies of applied biomineralisation are highly interdisciplinary involving expertise from engineers, chemists and microbiologists. In this paper, we study the potential of biomineralisation from indigenous bacteria present in soil. The soil samples were collected from a high permeable zone and the bacteria that inhabit the soil were stimulated at a temperature of 15°C. A cementation solution consisting of 500mM calcium chloride, urea and nutrient broth at a pH of 7.5 was added to the soil samples. Inorganic precipitation was found to be dominant and was more efficient when compared to organic precipitation. Carbonate precipitation data indicated that inorganic precipitation were 1.37 times better at carbonate formation in comparison to organic precipitation. Scanning Electron Microscopy analysis identified cementation bonds formed between soil particles. It was deducted that organic precipitation is dependent on temperature, and may take an extended time at such low temperature. The preliminary data presented in this paper suggests that the implementation of biomineralisation with in-situ microbes is promising but requires further laboratory and field investigation before being considered for engineering application.

  12. Precipitating Condensation Clouds in Substellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  13. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation.

    PubMed

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na

    2017-11-01

    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  15. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  16. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE PAGES

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...

    2017-05-12

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  17. The Chemistry Involved in the Preparation of a Paint Pigment: An Experiment for the Freshman Laboratory

    ERIC Educational Resources Information Center

    Daines, Terri L.; Morse, Karen W.

    1976-01-01

    Describes an experiment that demonstrates the following principles and reactions: amphoterism, oxidation-reduction, equilibrium dependence on pH, solubility, and polymerization. The experiment involves the oxidation of chromium and the precipitation of a chromate salt. (MLH)

  18. ANPP-precipitation relationships in multi-year drought experiments in natural ecosystems

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Predicting the effects of a reduction in precipitations on ecosystem productivity confronts an uncertainty: the relationship between aboveground net primary productivity (ANPP) and precipitation differs if the focus is spatial, driven by the climatic mean annual precipi...

  19. Impacts of precipitation and potential evapotranspiration patterns on downscaling soil moisture in regions with large topographic relief

    NASA Astrophysics Data System (ADS)

    Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.

    2017-02-01

    Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.

  20. Accuracy evaluation of ClimGen weather generator and daily to hourly disaggregation methods in tropical conditions

    NASA Astrophysics Data System (ADS)

    Safeeq, Mohammad; Fares, Ali

    2011-12-01

    Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai`i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at Mākaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2 h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather data generation and disaggregation methods were concentrated in a few Hawaiian watersheds, the results presented can be used to similar mountainous location settings, as well as any specific locations aimed at furthering the site-specific performance evaluation of these tested models.

  1. Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns

    NASA Astrophysics Data System (ADS)

    Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah

    2018-05-01

    Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.

  2. On the Precipitation in an Ag-Containing Mg-Gd-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhu, Yuman; Rong, Wei; Wu, Yujuan; Peng, Liming; Nie, Jian-Feng; Birbilis, Nick

    2018-02-01

    The evolution of precipitates in a high-strength Mg-2.4Gd-0.4Ag-0.1Zr (at. pct) alloy was investigated using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The precipitation of Mg-2.4Gd-0.4Ag-0.1Zr includes β- and γ-type precipitates, the latter involving a hitherto unreported precipitation sequence that is the focus of the present study. The β-type precipitation sequence is described as follows: supersaturated solid solution (S.S.S.S.) → ordered solute clusters → zigzag GP zones → β' → βF' → β 1 → β. Compared with the precipitation sequence of the Mg-Gd system, the proposed β-type precipitation sequence includes ordered solute clusters, zigzag GP zones, and βF' , but excludes β″. The strain field around the coarsened β' phase is supposed to stimulate the formation of the β^'F phase. Furthermore, the βF' phase provides preferential nucleation site for the β 1 phase. The γ-type precipitation sequence is proposed as follows: S.S.S.S. → basal GP zones → γ''' → γ″ → γ. The crystal structures, morphologies, and orientations of the basal GP zone, γ''', γ″, γ phases were comprehensively examined and established herein. The results are described in the context of other, but similar, alloy systems. A holistic description of the precipitate evolution in Ag-containing Mg-Gd alloys is discussed and rationalized.

  3. Liquid chromatographic determination of 9-methyl-3-(1H-tetrazol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one in human plasma with fluorescence detection.

    PubMed

    Cheng, H; Pittman, K A; Dandekar, K A

    1987-12-01

    A simple and sensitive assay for quantitating 9-methyl-3-(1H-tetrazol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (1; BMY 26517) in human plasma was developed using high-performance liquid chromatography with fluorescence detection. The method involves precipitation of protein and reversed-phase chromatography. The method is linear in the range of 4.3-429 ng/mL of 1, and the limit of detection is 0.4 ng/mL. The day-to-day precision values of this method at 25.7 and 386 ng/mL are 2.1 and 2.6%, respectively. The day-to-day accuracy values at these concentrations are 99.7 and 99.8%, respectively. The recovery of 1 is 98.3%.

  4. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Liu, Shaohua; Yan, Denghua; Qin, Tianling; Weng, Baisha; Lu, Yajing; Dong, Guoqiang; Gong, Boya

    2018-01-01

    Precipitation phase has a profound influence on the hydrological processes in the Naqu River basin, eastern Tibetan plateau. However, there are only six meteorological stations with precipitation phase (rainfall/snowfall/sleet) before 1979 within and around the basin. In order to separate snowfall from precipitation, a new separation scheme with S-shaped curve of snowfall proportion as an exponential function of daily mean temperature was developed. The determinations of critical temperatures in the single/two temperature threshold (STT/TTT2) methods were explored accordingly, and the temperature corresponding to the 50 % snowfall proportion (SP50 temperature) is an efficiently critical temperature for the STT, and two critical temperatures in TTT2 can be determined based on the exponential function and SP50 temperature. Then, different separation schemes were evaluated in separating snowfall from precipitation in the Naqu River basin. The results show that the S-shaped curve methods outperform other separation schemes. Although the STT and TTT2 slightly underestimate and overestimate the snowfall when the temperature is higher and colder than SP50 temperature respectively, the monthly and annual separation snowfalls are generally consistent with the observed snowfalls. On the whole, S-shaped curve methods, STT, and TTT2 perform well in separating snowfall from precipitation with the Pearson correlation coefficient of annual separation snowfall above 0.8 and provide possible approaches to separate the snowfall from precipitation for hydrological modelling.

  5. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  6. Spatiotemporal variations of the twentieth century Tibetan Plateau precipitation based on the monthly 2.5° reconstructed data

    NASA Astrophysics Data System (ADS)

    Shen, Samuel S. P.; Clarke, Gregori; Shen, Bo-Wen; Yao, Tandong

    2017-12-01

    This paper studies the spatiotemporal variations of precipitation over the Tibetan Plateau (TP) region with latitude and longitude ranges of (25° N, 45° N) and (65° E, 105° E) of the twentieth century from January 1901-December 2000. A long-term (January 1901-December 2009) TP monthly precipitation dataset with 2.5° latitude-longitude resolution is generated in this paper using spectral optimal gridding (SOG) method. The method uses the Global Precipitation Climatology Center (GPCC) ground station data to anchor the basis of empirical orthogonal functions (EOFs) computed from the Global Precipitation Climatology Project (GPCP) data. Our gridding takes teleconnection into account and uses data from stations both within and outside of the TP region. While the annual total precipitation increased at an approximate rate of 2.6 mm per decade in the period of 1971-2000 exists, no significant increase of TP precipitation from 1901 to 2000 was found. Our rate is less than those of previous publications based only on the TP stations because our data consider the entire TP region, including desert and high-altitude areas. An analysis of extremes and spatiotemporal patterns of our data shows that our reconstructed data can properly quantify the reported disasters of flooding and droughts in India, Bangladesh, and China for the following events: flooding in 1988 and 1998 and drought in 1972. Our time-frequency analysis using the empirical mode decomposition method shows that our nonlinear trend agrees well with the linear trend in the period from 1971 to 2000. The spatiotemporal variation characteristics documented in this paper can help understand atmospheric circulations on TP precipitation and validate the TP precipitation in climate models.

  7. Comparison Of Downscaled CMIP5 Precipitation Datasets For Projecting Changes In Extreme Precipitation In The San Francisco Bay Area.

    NASA Technical Reports Server (NTRS)

    Milesi, Cristina; Costa-Cabral, Mariza; Rath, John; Mills, William; Roy, Sujoy; Thrasher, Bridget; Wang, Weile; Chiang, Felicia; Loewenstein, Max; Podolske, James

    2014-01-01

    Water resource managers planning for the adaptation to future events of extreme precipitation now have access to high resolution downscaled daily projections derived from statistical bias correction and constructed analogs. We also show that along the Pacific Coast the Northern Oscillation Index (NOI) is a reliable predictor of storm likelihood, and therefore a predictor of seasonal precipitation totals and likelihood of extremely intense precipitation. Such time series can be used to project intensity duration curves into the future or input into stormwater models. However, few climate projection studies have explored the impact of the type of downscaling method used on the range and uncertainty of predictions for local flood protection studies. Here we present a study of the future climate flood risk at NASA Ames Research Center, located in South Bay Area, by comparing the range of predictions in extreme precipitation events calculated from three sets of time series downscaled from CMIP5 data: 1) the Bias Correction Constructed Analogs method dataset downscaled to a 1/8 degree grid (12km); 2) the Bias Correction Spatial Disaggregation method downscaled to a 1km grid; 3) a statistical model of extreme daily precipitation events and projected NOI from CMIP5 models. In addition, predicted years of extreme precipitation are used to estimate the risk of overtopping of the retention pond located on the site through simulations of the EPA SWMM hydrologic model. Preliminary results indicate that the intensity of extreme precipitation events is expected to increase and flood the NASA Ames retention pond. The results from these estimations will assist flood protection managers in planning for infrastructure adaptations.

  8. The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Klingaman, Nicholas P.; Demory, Marie-Estelle; Vidale, Pier Luigi; Turner, Andrew G.; Stephan, Claudia C.

    2018-01-01

    We investigate the contribution of the local and remote atmospheric moisture fluxes to East Asia (EA) precipitation and its interannual variability during 1979-2012. We use and expand the Brubaker et al. (J Clim 6:1077-1089,1993) method, which connects the area-mean precipitation to area-mean evaporation and the horizontal moisture flux into the region. Due to its large landmass and hydrological heterogeneity, EA is divided into five sub-regions: Southeast (SE), Tibetan Plateau (TP), Central East (CE), Northwest (NW) and Northeast (NE). For each region, we first separate the contributions to precipitation of local evaporation from those of the horizontal moisture flux by calculating the precipitation recycling ratio: the fraction of precipitation over a region that originates as evaporation from the same region. Then, we separate the horizontal moisture flux across the region's boundaries by direction. We estimate the contributions of the horizontal moisture fluxes from each direction, as well as the local evaporation, to the mean precipitation and its interannual variability. We find that the major contributors to the mean precipitation are not necessarily those that contribute most to the precipitation interannual variability. Over SE, the moisture flux via the southern boundary dominates the mean precipitation and its interannual variability. Over TP, in winter and spring, the moisture flux via the western boundary dominates the mean precipitation; however, variations in local evaporation dominate the precipitation interannual variability. The western moisture flux is the dominant contributor to the mean precipitation over CE, NW and NE. However, the southern or northern moisture flux or the local evaporation dominates the precipitation interannual variability over these regions, depending on the season. Potential mechanisms associated with interannual variability in the moisture flux are identified for each region. The methods and results presented in this study can be readily applied to model simulations, to identify simulation biases in precipitation that relate to the simulated moisture supplies and transport.

  9. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    NASA Astrophysics Data System (ADS)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Graff, Benjamin

    2015-04-01

    This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the last century built on the NOAA 20th century global extended atmospheric reanalysis (20CR, Compo et al., 2011). It aims at delivering appropriate meteorological forcings for continuous distributed hydrological modelling over the last 140 years. The longer term objective is to improve our knowledge of major historical hydrometeorological events having occurred outside of the last 50-year period, over which comprehensive reconstructions and observations are available. It would constitute a perfect framework for assessing the recent observed events but also future events projected by climate change impact studies. The Sandhy (Stepwise ANalogue Downscaling method for Hydrology) statistical downscaling method (Radanovics et al., 2013), initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between 20CR predictors - temperature, geopotential shape, vertical velocity and relative humidity - and local predictands - precipitation and temperature - relevant for catchment-scale hydrology. Multiple predictor domains for geopotential shape are retained from a local optimisation over France using the Safran near-surface reanalysis (Vidal et al., 2010). Sandhy gives an ensemble of 125 equally plausible gridded precipitation and temperature time series over the whole 1871-2012 period. Previous studies showed that Sandhy precipitation outputs are very slightly biased at the annual time scale. Nevertheless, the seasonal precipitation signal for areas with a high interannual variability is not well simulated. Moreover, winter and summer temperatures are respectively over- and underestimated. Reliable seasonal precipitation and temperature signals are however necessary for hydrological modelling, especially for evapotranspiration and snow accumulation/snowmelt processes. Two different post-processing methods are considered to correct monthly precipitation and temperature time series. The first one applies two new analogy steps, using the sea surface temperature (SST) and the large-scale two-meter temperature. The second method is a calendar selection that keeps the closest analogue dates in the year for each target date. A sensitivity study has been performed to assess the final number of analogues dates to retain for each method. A comparison to Safran over 1958-2010 shows that biases on the interannual cycle of precipitation and temperature are strongly reduced with both methods. Using two supplementary analogy levels moreover leads to a large improvement of correlation in seasonal temperature time series. These two methods have also been validated before 1958 thanks to both raw observations and homogenized time series. The two post-processing methods come with some advantages and drawbacks. The calendar selection allows to slightly better correct for seasonal biases in precipitation and is therefore adapted in a forecasting context. The selection with two supplementary analogy levels would allow for possible season shifts and SST trends and is therefore better suited for climate reconstruction and climate change studies. Compo, G. P. et al. (2011). The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 137:1-28. doi: 10.1002/qj.776 Radanovics, S., Vidal, J.-P., Sauquet, E., Ben Daoud, A., and Bontron, G. (2013). Optimising predictor domains for spatially coherent precipitation downscaling. Hydrology and Earth System Sciences, 17:4189-4208. doi:10.5194/hess-17-4189-2013 Vidal, J.-P ., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30:1627-1644. doi:10.1002/joc.2003

  10. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China

    NASA Astrophysics Data System (ADS)

    Fang, G. H.; Yang, J.; Chen, Y. N.; Zammit, C.

    2015-06-01

    Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River basin, northwestern China, and expected to be vulnerable to climate change. It has been demonstrated that regional climate models (RCMs) provide more reliable results for a regional impact study of climate change (e.g., on water resources) than general circulation models (GCMs). However, due to their considerable bias it is still necessary to apply bias correction before they are used for water resources research. In this paper, after a sensitivity analysis on input meteorological variables based on the Sobol' method, we compared five precipitation correction methods and three temperature correction methods in downscaling RCM simulations applied over the Kaidu River basin, one of the headwaters of the Tarim River basin. Precipitation correction methods applied include linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), distribution mapping (DM) and quantile mapping (QM), while temperature correction methods are LS, variance scaling (VARI) and DM. The corrected precipitation and temperature were compared to the observed meteorological data, prior to being used as meteorological inputs of a distributed hydrologic model to study their impacts on streamflow. The results show (1) streamflows are sensitive to precipitation, temperature and solar radiation but not to relative humidity and wind speed; (2) raw RCM simulations are heavily biased from observed meteorological data, and its use for streamflow simulations results in large biases from observed streamflow, and all bias correction methods effectively improved these simulations; (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g., standard deviation, percentile values) while the LOCI method performed best in terms of the time-series-based indices (e.g., Nash-Sutcliffe coefficient, R2); (4) for temperature, all correction methods performed equally well in correcting raw temperature; and (5) for simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with those of corrected precipitation; i.e., the PT and QM methods performed equally best in correcting flow duration curve and peak flow while the LOCI method performed best in terms of the time-series-based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other areas and models.

  11. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  12. Characteristics of people with self-reported stress-precipitated seizures.

    PubMed

    Privitera, Michael; Walters, Michael; Lee, Ikjae; Polak, Emily; Fleck, Adrienne; Schwieterman, Donna; Haut, Sheryl R

    2014-12-01

    Stress is the most common patient-reported seizure precipitant. We aimed to determine mood and epilepsy characteristics of people who report stress-precipitated seizures. Sequential patients at a tertiary epilepsy center were surveyed about stress as a seizure precipitant. We asked whether acute (lasting minutes-hours) or chronic (lasting days-months) stress was a seizure precipitant, whether stress reduction had been tried, and what effect stress reduction had on seizure frequency. We collected information on antiepileptic drugs, history of depression and anxiety disorder, prior or current treatment for depression or anxiety, and scores on the Neurological Disorders Depression Inventory (NDDI-E) and Generalized Anxiety Disorders-7 (GAD-7) instruments, which are administered at every visit in our Epilepsy Center. We also asked whether respondents thought that they could predict their seizures to determine if stress as a seizure precipitant was correlated with seizure self-prediction. Two hundred sixty-six subjects were included: 219 endorsed stress as a seizure precipitant [STRESS (+)] and 47 did not [STRESS (-)]. Among STRESS (+) subjects, 85% endorsed chronic stress as a seizure precipitant, and 68% endorsed acute stress as a seizure precipitant. In STRESS (+) subjects, 57% had used some type of relaxation or stress reduction method (most commonly yoga, exercise and meditation), and, of those who tried, 88% thought that these methods improved seizures. Among STRESS (-) subjects, 25% had tried relaxation or stress reduction, and 71% thought that seizures improved. Although univariate analysis showed multiple associations with stress as a seizure precipitant, in the multivariable logistic regression, only the GAD-7 score was associated with STRESS (+) (OR = 1.18 [1.03-1.35], p = 0.017). Subjects who reported stress as a seizure precipitant were more likely to report an ability to self-predict seizures (p < 0.001). Stress-precipitated seizures are commonly reported by patients, may be associated with either acute stress or chronic stress, and are associated with higher scores on anxiety tests. Patients frequently use stress reduction methods to self-treat and report high success rates. A prospective, randomized trial of stress reduction for seizures is indicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES

    DOEpatents

    Dawson, I.R.

    1959-09-22

    The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.

  14. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    PubMed Central

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2015-01-01

    The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders. PMID:28793510

  15. System for recovery of daughter isotopes from a source material

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Lewis, Leroy C [Idaho Falls, ID; Henscheid, Joseph P [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  16. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method.

    PubMed

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2015-08-19

    The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.

  17. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    PubMed

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  18. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei

    2016-05-01

    The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation extremes and a large region with low precipitation extremes. However, the regions with low precipitation extremes are the most developed and densely populated regions of the country, and floods will cause great loss of human life and property damage due to the high vulnerability. The study methods and procedure demonstrated in this paper will provide useful reference for frequency analysis of precipitation extremes in large regions, and the findings of the paper will be beneficial in flood control and management in the study area.

  19. Parent Involvement, Technology, and Media: Now What?

    ERIC Educational Resources Information Center

    Patrikakou, Eva N.

    2016-01-01

    The rapid technological advances, the expansion of online media use, and the declining cost of mobile technology have introduced a communication factor that has precipitously affected parent involvement and the relationship between parents and children. The present article explores ways through which technology and online media have affected…

  20. Method for the preparation of thallium-containing superconducting materials by precipitation

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1991-01-01

    This invention provides improved methods for the preparation of precursor powders that are used in the preparation of superconducting ceramic materials that contain thallium. A first solution that contains the hydrogen peroxide and metal cations, other than thallium, that will be part of the ceramic is quickly mixed with a second solution that contains precipitating anions and thallium (I) to form a precipitate which is dried to yield precursor powders. The precursor powders are calcined an sintered to produce superconducting materials that contain thallium.

  1. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  2. Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain

    NASA Astrophysics Data System (ADS)

    Lorenzana, Jesús; Merino, Andrés; García-Ortega, Eduardo; Fernández-González, Sergio; Gascón, Estíbaliz; Hermida, Lucía; Sánchez, José Luis; López, Laura; Marcos, José Luis

    2015-04-01

    Numerical weather prediction (NWP) of precipitation is a challenge. Models predict precipitation after solving many physical processes. In particular, mesoscale NWP models have different parameterizations, such as microphysics, cumulus or radiation schemes. These facilitate, according to required spatial and temporal resolutions, precipitation fields with increasing reliability. Nevertheless, large uncertainties are inherent to precipitation forecasting. Consequently, assimilation methods are very important. The Atmospheric Physics Group at the University of León in Spain and the Castile and León Supercomputing Center carry out daily weather prediction based on the Weather Research and Forecasting (WRF) model, covering the entire Iberian Peninsula. Forecasts of severe precipitation affecting the Ebro Valley, in the southern Pyrenees range of northeastern Spain, are crucial in the decision-making process for managing reservoirs or initializing runoff models. These actions can avert floods and ensure uninterrupted economic activity in the area. We investigated a set of cases corresponding to intense or severe precipitation patterns, using a rain gauge network. Simulations were performed with a dual objective, i.e., to analyze forecast improvement using a specific assimilation method, and to study the sensitivity of model outputs to different types of assimilation data. A WRF forecast model initialized by an NCEP SST analysis was used as the control run. The assimilation was based on the Meteorological Assimilation Data Ingest System (MADIS) developed by NOAA. The MADIS data used were METAR, maritime, ACARS, radiosonde, and satellite products. The results show forecast improvement using the suggested assimilation method, and differences in the accuracy of forecast precipitation patterns varied with the assimilation data source.

  3. Experiences of citizen-based reporting of rainfall events using lab-generated videos

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Chacon, Juan

    2016-04-01

    Hydrologic studies rely on the availability of good-quality precipitation estimates. However, in remote areas of the world and particularly in developing countries, ground-based measurement networks are either sparse or nonexistent. This creates difficulties in the estimation of precipitation, which limits the development of hydrologic forecasting and early warning systems for these regions. The EC-FP7 WeSenseIt project aims at exploring the involvement of citizens in the observation of the water cycle with innovative sensor technologies, including mobile telephony. In particular, the project explores the use of a smartphone applications to facilitate the reporting water-related situations. Apart from the challenge of using such information for scientific purposes, the citizen engagement is one of the most important issues to address. To this end effortless methods for reporting need to be developed in order to involve as many people as possible in these experiments. A potential solution to overcome these drawbacks, consisting on lab-controlled rainfall videos have been produced to help mapping the extent and distribution of rainfall fields with minimum effort [1]. In addition, the quality of the collected rainfall information has also been studied [2] by means of different experiments with students. The present research shows the latest results of the application of this method and evaluates the experiences in some cases. [1] Alfonso, L., J. Chacón, and G. Peña-Castellanos (2015), Allowing Citizens to Effortlessly Become Rainfall Sensors, in 36th IAHR World Congress edited, The Hague, the Netherlands [2] Cortes-Arevalo, J., J. Chacón, L. Alfonso, and T. Bogaard (2015), Evaluating data quality collected by using a video rating scale to estimate and report rainfall intensity, in 36th IAHR World Congress edited, The Hague, the Netherlands

  4. Application of deep learning in determining IR precipitation occurrence: a Convolutional Neural Network model

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hong, Y.

    2017-12-01

    Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.

  5. The Incorporation and Initialization of Cloud Water/ice in AN Operational Forecast Model

    NASA Astrophysics Data System (ADS)

    Zhao, Qingyun

    Quantitative precipitation forecasts have been one of the weakest aspects of numerical weather prediction models. Theoretical studies show that the errors in precipitation calculation can arise from three sources: errors in the large-scale forecasts of primary variables, errors in the crude treatment of condensation/evaporation and precipitation processes, and errors in the model initial conditions. A new precipitation parameterization scheme has been developed to investigate the forecast value of improved precipitation physics via the introduction of cloud water and cloud ice into a numerical prediction model. The main feature of this scheme is the explicit calculation of cloud water and cloud ice in both the convective and stratiform precipitation parameterization. This scheme has been applied to the eta model at the National Meteorological Center. Four extensive tests have been performed. The statistical results showed a significant improvement in the model precipitation forecasts. Diagnostic studies suggest that the inclusion of cloud ice is important in transferring water vapor to precipitation and in the enhancement of latent heat release; the latter subsequently affects the vertical motion field significantly. Since three-dimensional cloud data is absent from the analysis/assimilation system for most numerical models, a method has been proposed to incorporate observed precipitation and nephanalysis data into the data assimilation system to obtain the initial cloud field for the eta model. In this scheme, the initial moisture and vertical motion fields are also improved at the same time as cloud initialization. The physical initialization is performed in a dynamical initialization framework that uses the Newtonian dynamical relaxation method to nudge the model's wind and mass fields toward analyses during a 12-hour data assimilation period. Results from a case study showed that a realistic cloud field was produced by this method at the end of the data assimilation period. Precipitation forecasts have been significantly improved as a result of the improved initial cloud, moisture and vertical motion fields.

  6. A MATHEMATICAL MODEL FOR CALCULATING ELECTRICAL CONDITIONS IN WIRE-DUCT ELECTROSTATIC PRECIPITATION DEVICES

    EPA Science Inventory

    The article reports the development of a new method of calculating electrical conditions in wire-duct electrostatic precipitation devices. The method, based on a numerical solution to the governing differential equations under a suitable choice of boundary conditions, accounts fo...

  7. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    NASA Astrophysics Data System (ADS)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  8. Detection of the relationship between peak temperature and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  9. Characterization of mixing of suspension in a mechanically stirred precipitation system

    NASA Astrophysics Data System (ADS)

    Farkas, B.; Blickle, T.; Ulbert, Zs.; Hasznos-Nezdei, M.

    1996-09-01

    In the case of precipitational crystallization, the particle size distribution of the resulting product is greatly influenced by the mixing rate of the system. We have worked out a method of characterizing the mixing of precipitated suspensions by applying a function of mean residence time and particle size distribution. For the experiments a precipitated suspension of β-lactam-type antibiotic has been used in a mechanically stirred tank.

  10. Use of the Box-Cox Transformation in Detecting Changepoints in Daily Precipitation Data Series

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Chen, H.; Wu, Y.; Pu, Q.

    2009-04-01

    This study integrates a Box-Cox power transformation procedure into two statistical tests for detecting changepoints in Gaussian data series, to make the changepoint detection methods applicable to non-Gaussian data series, such as daily precipitation amounts. The detection power aspects of transformed methods in a common trend two-phase regression setting are assessed by Monte Carlo simulations for data of a log-normal or Gamma distribution. The results show that the transformed methods have increased the power of detection, in comparison with the corresponding original (untransformed) methods. The transformed data much better approximate to a Gaussian distribution. As an example of application, the new methods are applied to a series of daily precipitation amounts recorded at a station in Canada, showing satisfactory detection power.

  11. Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan.

    PubMed

    Amano, Hikaru; Sakamoto, Hideaki; Shiga, Norikatsu; Suzuki, Kaori

    2016-06-01

    A screening method for measuring (90)Sr in edible plant samples by focusing on (90)Y in equilibrium with (90)Sr is reported. (90)Y was extracted from samples with acid, co-precipitated with iron hydroxide, and precipitated with oxalic acid. The dissolved oxalate precipitate was loaded on an extraction chromatography resin, and the (90)Y-enriched eluate was analyzed by Cherenkov counting with a TDCR liquid scintillation counter. (90)Sr ((90)Y) concentration was determined in plant samples collected near the damaged Fukushima Daiichi Nuclear Power Plants with this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  13. Soil modulates the effect of precipitation seasonality on bioenergy crop production

    USDA-ARS?s Scientific Manuscript database

    Background/Questions/Methods Future climate change scenarios remain uncertain with respect to precipitation amounts and variability. In the U.S. Great Plains, spring precipitation is expected to decrease in the lower Great Plains but increase 20%–40% in the upper Mississippi Valley, suggesting pot...

  14. Growth and physiological plasticity among differentially adapted genotypes of a widespread C4 grass under altered precipitation

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Variation in precipitation expected with climate change may impact plant fitness and alter ecosystem dynamics by modifying species phenology, productivity, and physiology. Species responses to varied precipitation will depend in part on plastic responses of genotypes ad...

  15. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  16. Joint distribution of temperature and precipitation in the Mediterranean, using the Copula method

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina

    2018-03-01

    This study analyses the temperature and precipitation dependence among stations in the Mediterranean. The first station group is located in the eastern Mediterranean (EM) and includes two stations, Athens and Thessaloniki, while the western (WM) one includes Malaga and Barcelona. The data was organized in two time periods, the hot-dry period and the cold-wet one, composed of 5 months, respectively. The analysis is based on a new statistical technique in climatology: the Copula method. Firstly, the calculation of the Kendall tau correlation index showed that temperatures among stations are dependant during both time periods whereas precipitation presents dependency only between the stations located in EM or WM and only during the cold-wet period. Accordingly, the marginal distributions were calculated for each studied station, as they are further used by the copula method. Finally, several copula families, both Archimedean and Elliptical, were tested in order to choose the most appropriate one to model the relation of the studied data sets. Consequently, this study achieves to model the dependence of the main climate parameters (temperature and precipitation) with the Copula method. The Frank copula was identified as the best family to describe the joint distribution of temperature, for the majority of station groups. For precipitation, the best copula families are BB1 and Survival Gumbel. Using the probability distribution diagrams, the probability of a combination of temperature and precipitation values between stations is estimated.

  17. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    DOEpatents

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  18. CARBONATE METHOD OF SEPARATION OF TETRAVALENT PLUTONIUM FROM FISSION PRODUCT VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    It has been found that plutonium forms an insoluble precipitate with carbonate ion when the carbonate ion is present in stoichiometric proportions, while an excess of the carbonate ion complexes plutonium and renders it soluble. A method for separating tetravalent plutonium from lanthanum-group rare earths has been based on this discovery, since these rare earths form insoluble carbonates in approximately neutral solutions. According to the process the pH is adjusted to between 5 and 7, and approximately stoichiometric amounts of carbonate ion are added to the solution causing the formation of a precipitate of plutonium carbonate and the lanthanum-group rare earth carbonates. The precipitate is then separated from the solution and contacted with a carbonate solution of a concentration between 1 M and 3 M to complex and redissolve the plutonium precipitate, and thus separate it from the insoluble rare earth precipitate.

  19. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation

    NASA Astrophysics Data System (ADS)

    Mansour, Houda; Letifi, Hanen; Bargougui, Radhouane; De Almeida-Didry, Sonia; Negulescu, Beatrice; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah

    2017-12-01

    Hematite (α-Fe2O3) nanoparticles have been successfully synthesized via two methods: (1) polyol and (2) precipitation in water. The influence of synthesis methods on the crystalline structure, morphological, optical, magnetic and electrical properties were investigated using X-ray diffraction, RAMAN spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), superconducting quantum interference device and impedance spectroscopy. The structural properties showed that the obtained hematite α-Fe2O3 nanoparticles with two preparation methods exhibit hexagonal phase with high crystallinity and high-phase stability at room temperature. It was found that the average hematite nanoparticle size is estimated to be 36.86 nm for the sample synthesized by precipitation and 54.14 nm for the sample synthesized by polyol. Moreover, the optical properties showed that the band gap energy value of α-Fe2O3 synthesized by precipitation (2.07 eV) was higher than that of α-Fe2O3 synthesized by polyol (1.97 eV) and they showed a red shift to the visible region. Furthermore, the measurements of magnetic properties indicated a magnetization loop typical of ferromagnetic systems at room temperature. Measurements of electrical properties show higher dielectric permittivity (5.64 × 103) and relaxation phenomenon for α-Fe2O3 issued from the precipitation method than the other sample.

  20. Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method.

    PubMed

    Kim, Yu Ji; Lee, Hye Min; Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Kang, Kyu Young; Park, Ki Hun; Kim, Yong Chul; Choi, In Soo; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2013-07-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant plant leaf protein, hampering deep analysis of the leaf proteome. Here, we describe a novel protamine sulfate precipitation (PSP) method for the depletion of RuBisCO. For this purpose, soybean leaf total proteins were extracted using Tris-Mg/NP-40 extraction buffer. Obtained clear supernatant was subjected to the PSP method, followed by 13% SDS-PAGE analysis of total, PS-supernatant and -precipitation derived protein samples. In a dose-dependent experiment, 0.1% w/v PS was found to be sufficient for precipitating RuBisCO large and small subunits (LSU and SSU). Western blot analysis confirmed no detection of RuBisCO LSU in the PS-supernatant proteins. Application of this method to Arabidopsis, rice, and maize leaf proteins revealed results similar to soybean. Furthermore, 2DE analyses of PS-treated soybean leaf displayed enriched protein profile for the protein sample derived from the PS-supernatant than total proteins. Some enriched 2D spots were subjected to MALDI-TOF-TOF analysis and were successfully assigned for their protein identity. Hence, the PSP method is: (i) simple, fast, economical, and reproducible for RuBisCO precipitation from the plant leaf sample; (ii) applicable to both dicot and monocot plants; and (iii) suitable for downstream proteomics analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.

    PubMed

    Morley, A; Sha, G; Hirosawa, S; Cerezo, A; Smith, G D W

    2009-04-01

    Aberrations in the ion trajectories near the specimen surface are an important factor in the spatial resolution of the atom probe technique. Near the boundary between two phases with dissimilar evaporation fields, ion trajectory overlaps may occur, leading to a biased measurement of composition in the vicinity of this interface. In the case of very small second-phase precipitates, the region affected by trajectory overlaps may extend to the centre of the precipitate prohibiting a direct measurement of composition. A method of quantifying the aberrant matrix contribution and thus estimating the underlying composition is presented. This method is applied to the Fe-Cu-alloy system, where the precipitation of low-nanometre size Cu-rich precipitates is of considerable technical importance in a number of materials applications. It is shown definitively that there is a non-zero underlying level of Fe within precipitates formed upon thermal ageing, which is augmented and masked by trajectory overlaps. The concentration of Fe in the precipitate phase is shown to be a function of ageing temperature. An estimate of the underlying Fe level is made, which is at lower levels than commonly reported by atom probe investigations.

  2. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    NASA Astrophysics Data System (ADS)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  3. Spatiotemporal Variability of Mountain Block Recharge in Three Semiarid Watersheds along the U.S.-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E. R.; Mascaro, G.; Dominguez, F.; Rivera-fernandez, E. R.

    2015-12-01

    Groundwater recharge in semiarid mountains of the western U.S. remains a critical component of the regional water balance and has significant repercussions on water resources management, in particular during periods of drought. The bimodal distribution of annual precipitation in the southwest United States and northwest Mexico present a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on the predictions of Mountain Block Recharge (MBR) using precipitation forcing from a reanalysis product, regional climate model-based precipitation products and available ground observations. MBR estimates in the Santa Cruz, San Pedro and Sonora River basins (>40,000 km2) are compared along a north to south gradient crossing the U.S.-Mexico border. As a result of the influence of the North American monsoon, the impact of seasonality in each of these systems is evaluated. Simulated precipitation fields under historical (1991-2000) conditions and climate change (2031-2040 and 2070-2080) scenarios are compared at resolutions of 10-km and 35-km as generated from the Weather Research and Forecast (WRF) model using boundary conditions from two general circulation models (MPI-ECHAM and HadCM3). Mountain subbasins to apply a seasonal MBR method were delineated using a threshold in terrain slope that matched official boundaries of known aquifers in these transboundary watersheds. We evaluated the MBR outcomes from the various precipitation products to quantify biases involved in the historical estimates and to inform groundwater management on the uncertainties inherent in future projections. We also inspect the variability of MBR across pluvial and drought periods lasting several years. Seasonal comparisons across a north to south spatial gradient yield a valuable assessment on the impacts of climate change on MBR for important basins in the U.S.-Mexico border region.

  4. Investigation of Nd xY 0.25-xZr 0.75O 1.88 inert matrix fuel materials made by a co-precipitation synthetic route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, John R.; Grosvenor, Andrew P.

    Yttria-stabilized zirconia (YSZ) is a material that we are considering in our inert matrix fuel nuclear reactors, but a complete characterization of these materials is required for them to be licensed for use. A series of NdxY0.25–xZr0.75O1.88 materials have been synthesized using a co-precipitation method, and the thermal stability of these materials has been studied by annealing them at 1400 and 1500 °C. (Nd was used as surrogate for Am.) The long-range and local structures of the materials were characterized via powder X-ray diffraction, scanning electron microscopy, wavelength dispersive spectroscopy, and X-ray absorption spectroscopy at the Zr K- and Ymore » K-edges. These results were compared with the previous characterization of Nd-YSZ materials synthesized using a ceramic method. Moreover, the results indicated that the ordering in the local metal–oxygen polyhedral remains relatively unaffected by the synthetic method, but there was increased long-range disorder in the materials prepared by the co-precipitation method. Further, it was found that the materials produced by the co-precipitation method were unexpectedly unstable when annealed at high temperature. This study highlights the importance of determining the effect of synthetic method on material properties and demonstrates how the co-precipitation route could be used to produce inert matrix fuels.« less

  5. Application of an Ensemble Smoother to Precipitation Assimilation

    NASA Technical Reports Server (NTRS)

    Zhang, Sara; Zupanski, Dusanka; Hou, Arthur; Zupanski, Milija

    2008-01-01

    Assimilation of precipitation in a global modeling system poses a special challenge in that the observation operators for precipitation processes are highly nonlinear. In the variational approach, substantial development work and model simplifications are required to include precipitation-related physical processes in the tangent linear model and its adjoint. An ensemble based data assimilation algorithm "Maximum Likelihood Ensemble Smoother (MLES)" has been developed to explore the ensemble representation of the precipitation observation operator with nonlinear convection and large-scale moist physics. An ensemble assimilation system based on the NASA GEOS-5 GCM has been constructed to assimilate satellite precipitation data within the MLES framework. The configuration of the smoother takes the time dimension into account for the relationship between state variables and observable rainfall. The full nonlinear forward model ensembles are used to represent components involving the observation operator and its transpose. Several assimilation experiments using satellite precipitation observations have been carried out to investigate the effectiveness of the ensemble representation of the nonlinear observation operator and the data impact of assimilating rain retrievals from the TMI and SSM/I sensors. Preliminary results show that this ensemble assimilation approach is capable of extracting information from nonlinear observations to improve the analysis and forecast if ensemble size is adequate, and a suitable localization scheme is applied. In addition to a dynamically consistent precipitation analysis, the assimilation system produces a statistical estimate of the analysis uncertainty.

  6. Relationship between Precipitation Components and Teleconnection Patterns in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    María Ruiz, Ana; Maqueda, Gregorio

    2016-04-01

    The study of precipitation components is of increasing interest due to the differences that involve each of the correspondent consequences. On one hand, the stratiform component, weak and light, causes regular and long-lasting precipitation. On the other hand, the convective one, stronger and intense, is associated with more local precipitation, produced in short periods of time. In this work, the separated components of precipitation, obtained through the distribution of cumulated rain as its intensity has been analyzed for five sectors with different climate characteristic in Spain. The sectors may initially be of Atlantic or Mediterranean influence, besides having others geographical and orographic dependence. The aim of this study is to determine the influence of different teleconnection patterns over the stratiform and convective precipitation for each sector. The dataset have been a 17 years time series (1998-2014) of hourly rain data from the AEMET network (Spanish Meteorological Agency) consistent of 63 rain gauge stations that cover all the study area. Results show, in autumn-winter season, a clear influence of NAO in the stratiform precipitation for every sector except the closest to the Mediterranean sea. High correlation between EA, SCAND and EA/WR patterns with the stratiform component also it is observed. In the case of convective precipitation only the WeMO index keeps some influence in the near Mediterranean sector.

  7. Applying complex networks to evaluate precipitation patterns over South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja

    2016-04-01

    The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)

  8. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.

  9. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-03-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along <110>Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  10. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-05-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along <110>Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  11. Quantification of Dihydroxyacetone Phosphate (DHAP) in Human Red Blood Cells by HPLC-TripleTOF 5600™ Mass Spectrometer.

    PubMed

    Deng, Shuang; Scott, David; Myers, Douglas; Garg, Uttam

    2016-01-01

    Triosephosphate isomerase (TPI) is a glycolytic enzyme which catalyzes the interconversion between glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). TPI deficiency results in accumulation of DHAP in human red blood cells and other tissues. The disease is characterized by congenital hemolytic anemia, and progressive neuromuscular dysfunction. The laboratory diagnosis is generally made by measurement of TPI activity in RBCs. Measurement of DHAP can be useful in further confirmation and follow-up of the disease. We developed HPLC/TOF-MS method for quantitation of DHAP in RBCs. The method involves simple protein precipitation, reverse phase C8 column chromatography, ion pairing with tributylamine, and long run time of 50 min to separate the two isomers (G3P and DHAP).

  12. A perturbation approach for assessing trends in precipitation extremes across Iran

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; AghaKouchak, Amir; Willems, Patrick

    2014-11-01

    Extreme precipitation events have attracted a great deal of attention among the scientific community because of their devastating consequences on human livelihood and socio-economic development. To assess changes in precipitation extremes in a given region, it is essential to analyze decadal oscillations in precipitation extremes. This study examines temporal oscillations in precipitation data in several sub-regions of Iran using a novel quantile perturbation method during 1980-2010. Precipitation data from NASA's Modern-Era Retrospective Analysis for Research and Applications-Land (MERRA-Land) are used in this study. The results indicate significant anomalies in precipitation extremes in the northwest and southeast regions of Iran. Analysis of extreme precipitation perturbations reveals that perturbations for the monthly aggregation level are generally lower than the annual perturbations. Furthermore, high-oscillation and low-oscillation periods are found in extreme precipitation quantiles across different seasons. In all selected regions, a significant anomaly (i.e., extreme wet/dry conditions) in precipitation extremes is observed during spring.

  13. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC.

    PubMed

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria; Nielsen, Line Hagner; Sandau, Martin; Andersen, Klaus; Müllertz, Anette; Rades, Thomas

    2017-12-04

    Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.

  14. Precipitation Estimate Using NEXRAD Ground-Based Radar Images: Validation, Calibration and Spatial Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuesong

    2012-12-17

    Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rainmore » gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.« less

  15. Optimization of the method for α-l-fucosidase, β-d-galactosidase and β-d-glucuronidase determination in serum from hemolyzed blood.

    PubMed

    Chojnowska, Sylwia; Ptaszyńska-Sarosiek, Iwona; Kępka, Alina; Szajda, Sławomir Dariusz; Waszkiewicz, Napoleon; Zwierz, Krzysztof

    2018-06-06

    Adaptation of the colorimetric method for the determination of β-d-galactosidase, β-d-glucuronidase and α-l-fucosidase activities in serums from hemolyzed blood, the material currently being discarded. The materials included serums from hemolyzed and non-hemolyzed blood, obtained from 26 healthy volunteers. The adaptation of the method involved precipitation of the proteins with trichloroacetic acid after incubating serums with substrates, but before determining the products of enzymatic reactions. In serums from hemolyzed and non-hemolyzed blood of the same persons, we found high correlations among the results obtained using hemolyzed blood (with adapted) and non-hemolyzed blood (with non-adapted) methods. We are able to determine the β-d-galactosidase, β-d-glucuronidase and α-l-fucosidase activities in serums from hemolyzed blood (with adapted) and non-hemolyzed blood (with non-adapted) methods, with the same accuracy and precision. Copyright © 2018 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  16. Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Yue, Tianxiang; Li, Han; Zhang, Lili; Yin, Xiaozhe; Liu, Yi

    2018-04-01

    Changes in precipitation have a large effect on human society and are of primary importance for many scientific fields such as hydrology, agriculture and eco-environmental sciences. The present study intended to investigate the spatio-temporal characteristics of precipitation in Beijing-Tianjin-Hebei (BTH) region by using 316 meteorological stations during the period 1965-2014. Geographical Weighted Regression (GWR) method and High Accuracy Surface Modeling (HASM) method were applied to produce the precipitation patterns at different time scales. Mann-Kendall (MK) statistical test was applied to analyze the precipitation temporal variations. Results indicated that annual precipitation over the past 50 years appeared to be a non-periodic oscillation phenomenon; the number of wet years was approximately the same as that of dry years; significant positive trends were observed in spring during 1978-2014 and summer during 1996-2014; on the whole, precipitation in May, June, September, and December showed increasing trends at the 95% confidence level; and significant positive trends were also identified in July during 2000-2013 and August during 1997-2010, while slight decreasing trends were observed in February and November. Summer (June, July, and August) was the wettest season, accounting for 68.73% of annual totals in BTH. In general, northeastern BTH received the highest range of precipitation while northwestern area had the lowest. It was found that precipitation variation in this region had been closely linked to latitude, Digital Elevation Model (DEM), distance to the sea, and urbanization rate. In addition, land use played an important role in the decadal precipitation changes in BTH.

  17. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East Based On Potential Vorticity and Moisture Transport

    NASA Astrophysics Data System (ADS)

    de Vries, A. J.; Ouwersloot, H. G.; Feldstein, S. B.; Riemer, M.; El Kenawy, A. M.; McCabe, M. F.; Lelieveld, J.

    2018-01-01

    Extreme precipitation events in the otherwise arid Middle East can cause flooding with dramatic socioeconomic impacts. Most of these events are associated with tropical-extratropical interactions, whereby a stratospheric potential vorticity (PV) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based on the combination of these two larger-scale meteorological features. The general motivation for this approach is that precipitation is often poorly simulated in relatively coarse weather and climate models, whereas the synoptic-scale circulation is much better represented. The algorithm is applied to ERA-Interim reanalysis data (1979-2015) and detects 90% (83%) of the 99th (97.5th) percentile of extreme precipitation days in the region of interest. Our results show that stratospheric PV intrusions and IVT structures are intimately connected to extreme precipitation intensity and seasonality. The farther south a stratospheric PV intrusion reaches, the larger the IVT magnitude, and the longer the duration of their combined occurrence, the more extreme the precipitation. Our algorithm detects a large fraction of the climatological rainfall amounts (40-70%), heavy precipitation days (50-80%), and the top 10 extreme precipitation days (60-90%) at many sites in southern Israel and the northern and western parts of Saudi Arabia. This identification method provides a new tool for future work to disentangle teleconnections, assess medium-range predictability, and improve understanding of climatic changes of extreme precipitation in the Middle East and elsewhere.

  18. Reclaiming metallic material from an article comprising a non-metallic friable substrate

    DOEpatents

    Bohland, John Raphael; Anisimov, Igor Ivanovich; Dapkus, Todd James; Sasala, Richard Anthony; Smigielski, Ken Alan; Kamm, Kristin Danielle

    2000-01-01

    A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

  19. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  20. Method for removing trace pollutants from aqueous solutions

    DOEpatents

    Silver, Gary L.

    1986-01-01

    A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises, adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 10.sup.-1 ppm, the oxidizing agent being one which oxidizes the contaminant to form an oxidized product which is insoluble in the liquid and precipitates therefrom, and the conditions of the addition being selected to ensure that the precipitation of the oxidized product is homogeneous, and separating the homogeneously precipitated product from the liquid.

  1. Isolation and Characterization of a Toxic Moiety of Low Molecular Weight from Clostridium botulinum Type A

    PubMed Central

    Gerwing, Julia; Dolman, Claude E.; Bains, Hardial S.

    1965-01-01

    Gerwing, Julia (The University of British Columbia, Vancouver, B.C., Canada), Claude E. Dolman, and Hardial S. Bains. Isolation and characterization of a toxic moiety of low molecular weight from Clostridium botulinum type A. J. Bacteriol. 89:1383–1386. 1965.—A toxic moiety of low molecular weight has been isolated from a type A strain of Clostridium botulinum, by a method involving ammonium sulfate precipitation and elution through diethylaminoethyl cellulose at pH 5.6. By means of electrophoresis and ultracentrifugation, the toxic substance was shown to be homogeneous; a molecular weight of 12,200 was calculated. Images PMID:14293025

  2. Purification of proteins from baculovirus-infected insect cells.

    PubMed

    O'Shaughnessy, Luke; Doyle, Sean

    2011-01-01

    Expression of recombinant proteins in the baculovirus/insect cell expression system is employed because it enables post-translational protein modification and high yields of recombinant protein. The system is capable of facilitating the functional expression of many proteins - either secreted or intracellularly located within infected insect cells. Strategies for the isolation and extraction of soluble proteins are presented in this chapter and involve selective cell lysis, precipitation and chromatography. Protein insolubility, following recombinant expression in insect cells, can occur. However, using the methods described herein, it is possible to extract and purify insoluble protein using affinity, ion-exchange and gel filtration chromatography. Indeed, protein insolubility often aids protein purification.

  3. Nanocrystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium

    NASA Astrophysics Data System (ADS)

    Mechay, Abderrahmen; Feki, Hafed E. L.; Schoenstein, Fréderic; Jouini, Noureddine

    2012-07-01

    This Letter describes a new approach for the synthesis of hydroxyapatite nanoparticles, which involves precipitation and hydrolysis reactions conducted in polyol medium. In fact, ammonium-hydrogen phosphate and calcium nitrate were dissolved in polyol, and then heated at the boiling point of the polyol (ethane1, 2diol or propane1, 2diol). Besides, the phase and composition of the polycrystalline were studied by TGA/DTA, FT-IR, TEM and XRD techniques. The nanoparticles thus obtained present interesting morphological characters varying from needle to very thin platelet. Moreover, the hydroxyapatite prepared in ployol shows higher cristallinity in comparison with that obtained by other 'chimie douce' methods.

  4. Rainfall frequency analysis for ungauged sites using satellite precipitation products

    NASA Astrophysics Data System (ADS)

    Gado, Tamer A.; Hsu, Kuolin; Sorooshian, Soroosh

    2017-11-01

    The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method.

  5. Development and validation of a reversed-phase fluorescence HPLC method for determination of bucillamine in human plasma using pre-column derivatization with monobromobimane.

    PubMed

    Lee, Kang Choon; Chun, Young Goo; Kim, Insoo; Shin, Beom Soo; Park, Eun-Seok; Yoo, Sun Dong; Youn, Yu Seok

    2009-07-15

    A simple, specific and sensitive derivatization with monobromobimane (mBrB) and the corresponding HPLC-fluorescence quantitation method for the analysis of bucillamine in human plasma was developed and validated. The analytical procedure involves a simple protein precipitation, pre-column fluorescence derivatization, and separation by reversed-phase high performance liquid chromatography (RP-HPLC). The calibration curve showed good linearity over a wide concentration range (50 ng/mL to 10 microg/mL) in human plasma (r(2)=0.9998). The lower limit of quantitation (LLOQ) was 50 ng/mL. The average precision and accuracy at LLOQ were within 6.3% and 107.6%, respectively. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (300 mg) of bucillamine to 20 healthy Korean volunteers.

  6. High-performance liquid chromatographic determination of the beta2-selective adrenergic agonist fenoterol in human plasma after fluorescence derivatization.

    PubMed

    Kramer, S; Blaschke, G

    2001-02-10

    A sensitive high-performance liquid chromatographic method has been developed for the determination of the beta2-selective adrenergic agonist fenoterol in human plasma. To improve the sensitivity of the method, fenoterol was derivatized with N-(chloroformyl)-carbazole prior to HPLC analysis yielding highly fluorescent derivatives. The assay involves protein precipitation with acetonitrile, liquid-liquid-extraction of fenoterol from plasma with isobutanol under alkaline conditions followed by derivatization with N-(chloroformyl)-carbazole. Reversed-phase liquid chromatographic determination of the fenoterol derivative was performed using a column-switching system consisting of a LiChrospher 100 RP 18 and a LiChrospher RP-Select B column with acetonitrile, methanol and water as mobile phase. The limit of quantitation in human plasma was 376 pg fenoterol/ml. The method was successfully applied for the assay of fenoterol in patient plasma.

  7. Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis

    PubMed Central

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000–2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed. PMID:24955424

  8. Variation of runoff and precipitation in the Hekou-Longmen region of the Yellow River based on elasticity analysis.

    PubMed

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000-2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.

  9. Tracers Show Ecohydrologic Influences on Runoff Generation Components at the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, J.; Peng, A.; Gu, W.; Wang, W.; Gao, F.

    2017-12-01

    In order to learn more about the critical zone ecohydrological dynamics at the Qinghai-Tibet Plateau, a research on the identification of runoff components using tracers was carried out in the Niyang River upstream, a tributary of the Yalung Zangbo River. In this study, four basins with the areas of 182, 216, 243, 213 km2 which are embed in a larger basin were sampled at altitudes between 3667 to 6140 m. The types of land use in the basins mainly include forest land, grassland and glacier. River water and precipitation were sampled monthly, while spring water, glacial ice, soil, and plants were sampled seasonally. Soil and plant samples were taken along the valleys with spatial interval of about 5 km. Soil and plant waters were extracted via cryogenic vacuum distillation method, and then analyzed for isotopes and ions. Preliminary results show that the δD and δ18O of the precipitation water spread approximately along the LMWL of the Namucuo Lake near Lasa city, which varied according to altitude. Stem water δD and δ18O from different elevations and tree species also varied regularly, albeit with no apparent relationship to recent precipitation. It appears that trees utilized fissure water and soil water formed by precipitation. Future efforts will involve (1) an expanded sampling strategy across basins, and (2) a series of experiments on the Hydrohill catchment in the Chuzhou Experimental Facility, whereby an improved understanding of K+, Na+, Ca2+ and Mg2+ export dynamics could aid in much better description and modeling of Niyang River runoff composition and generation. This research is funded by the NSFC project 91647111 and 91647203, which are included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.

  10. Contribution of eukaryotic microbial communities to the formation of Fe-rich accretions in an extreme acidic environment

    NASA Astrophysics Data System (ADS)

    Rodrigues, L.; Valente, T.; Correia, A.; Alves, A.; Foing, B.; Davies, G. R.

    2012-04-01

    In the acid mine drainage of Valdarcas, northern Portugal, Fe-rich tubular and spherical macroaccretions are directly associated with the presence of eukaryotic microorganisms. This raises the question whether they are biogenically-derived or the result of an abiotic process mediated by microeukaryotic phototrophs. The drainage water at Valdarcas is characterized by very low pH values (pH<3.5), high metal solubility and presence of iron colloids. Mineralogical analysis (XRD and SEM) of the precipitates indicates a mixture of goethite, schwertmannite and jarosite. Euglenophyta and Chlorophyta acidophilic algal were previously identified in this site. The spatial distribution of Euglena mutabilis indicated that it has a preference to grow up on schwertmannite-rich precipitates. Field observations demonstrate the existence of oxygenated microenvironments created by algal activity suggesting that algae influence iron minerals precipitation, especially schwertmannite. The mineral-microorganism interactions are relevant to understanding this unique and extreme environment. Further investigations regarding the mineralogical and chemical characterization of these deposits, and the identification of microorganisms involved in the process could be helpful to enhance our knowledge of past Fe formations throughout Earth's primordial environment. It is expectable that this information will contribute to establish a framework for recognition of biosignatures on other planets and extraterrestrial bodies. In this study, results on the chemical and mineralogical composition of the structures are presented. The biological context is characterised based on observations made by optical microscopy complemented with molecular data on the microbial communities obtained by culture independent methods. The results are discussed within the context of two models: the studied Fe-rich stromatolites are microeukaryotic-mediated as described by previous workers from similar environments or are the consequence of inorganic precipitation of reduced iron species (Fe(III)) due to the oxygen generated by the photosynthesis?

  11. Extraction of Ni (II) from Spent Hydrodesulfurization HDS Catalyst Through Leaching and Electroless Precipitation of Ni(OH)2

    NASA Astrophysics Data System (ADS)

    Pradhan, Sangita R.; Dash, Barsha; Sanjay, Kali; Subbaiah, T.

    2013-04-01

    The extraction of nickel (II) from a spent hydro-desulfurization catalyst containing 11.6 pct Ni was carried out through sulfuric acid leaching. Variations of parameters such as the concentration of acid, temperature, and time, were studied and optimized. Nickel hydroxide was precipitated from the leach liquor via neutralization with 1 M sodium hydroxide up to pH 12 in three different methods: normal neutralization precipitation, and then neutralization precipitation followed by aging at 353 K (80 °C) for 4 hours and neutralization of the leach liquor with 10 pct (v/v) of 0.1 N sodium lauryl sulfate. X-ray diffraction (XRD) and transmission electron microscopy (TEM) microanalysis shows a difference in crystallinity with the method of precipitation. The nickel hydroxide contains Cu(II), Co(II), Zn(II), and Mn(II) as trace impurities. The discharge capacities of the precipitated nickel hydroxides were 120 mAhg-1, 140.72 mAhg-1, and 145.2 mAhg-1 for aged sample, sample without surfactant, and with surfactant respectively.

  12. Precipitation Interpolation by Multivariate Bayesian Maximum Entropy Based on Meteorological Data in Yun- Gui-Guang region, Mainland China

    NASA Astrophysics Data System (ADS)

    Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi

    2016-11-01

    Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.

  13. Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

    NASA Astrophysics Data System (ADS)

    Manzanas, R.; Lucero, A.; Weisheimer, A.; Gutiérrez, J. M.

    2018-02-01

    Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.

  14. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  15. The Gaussian copula model for the joint deficit index for droughts

    NASA Astrophysics Data System (ADS)

    Van de Vyver, H.; Van den Bergh, J.

    2018-06-01

    The characterization of droughts and their impacts is very dependent on the time scale that is involved. In order to obtain an overall drought assessment, the cumulative effects of water deficits over different times need to be examined together. For example, the recently developed joint deficit index (JDI) is based on multivariate probabilities of precipitation over various time scales from 1- to 12-months, and was constructed from empirical copulas. In this paper, we examine the Gaussian copula model for the JDI. We model the covariance across the temporal scales with a two-parameter function that is commonly used in the specific context of spatial statistics or geostatistics. The validity of the covariance models is demonstrated with long-term precipitation series. Bootstrap experiments indicate that the Gaussian copula model has advantages over the empirical copula method in the context of drought severity assessment: (i) it is able to quantify droughts outside the range of the empirical copula, (ii) provides adequate drought quantification, and (iii) provides a better understanding of the uncertainty in the estimation.

  16. February precipitation in the wintering grounds of the lesser whitethroat, Sylvia curruca: is it a cue for migration onset?

    PubMed

    Aloni, Irith; Markman, Shai; Ziv, Yaron

    2017-02-01

    Numerous studies report shifts in bird migration phenology, presumably owing to global warming. However, most studies focus on migration patterns in the Northern Hemisphere. In this study, we investigated associations between weather conditions in African wintering grounds of the lesser whitethroat, Sylvia curruca, and spring arrival time in Eilat, Israel. Using multivariate regression models, we analysed a 30-year dataset in order to examine correlations between median springtime arrival and 46 climate variables of the wintering quarters. The model obtained exhibited a highly statistical fit, involving mean precipitation in February and March with negative effects and number of wet days during November-February. February precipitation levels were also the major factor associated with the interquartile range of arrival time. Interestingly and contrary to published results, annual or seasonal precipitation showed no correlation with spring arrival time, nor did temperature. Moreover, winter in this region falls into dry season with negligible rainfall quantities. Hence, it is unlikely that precipitation effect on habitat productivity is a driving force of migration, as suggested by other studies. Instead, we propose that precipitation in February acts as a cue for the birds, indicating the approach of spring and migration time.

  17. Alternate method of source preparation for alpha spectrometry: No electrodeposition, no hydrofluoric acid

    DOE PAGES

    Kurosaki, Hiromu; Mueller, Rebecca J.; Lambert, Susan B.; ...

    2016-07-15

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. Lastly, it provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily.

  18. Automated Statistical Forecast Method to 36-48H ahead of Storm Wind and Dangerous Precipitation at the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Perekhodtseva, E. V.

    2009-09-01

    Development of successful method of forecast of storm winds, including squalls and tornadoes and heavy rainfalls, that often result in human and material losses, could allow one to take proper measures against destruction of buildings and to protect people. Well-in-advance successful forecast (from 12 hours to 48 hour) makes possible to reduce the losses. Prediction of the phenomena involved is a very difficult problem for synoptic till recently. The existing graphic and calculation methods still depend on subjective decision of an operator. Nowadays in Russia there is no hydrodynamic model for forecast of the maximal precipitation and wind velocity V> 25m/c, hence the main tools of objective forecast are statistical methods using the dependence of the phenomena involved on a number of atmospheric parameters (predictors). Statistical decisive rule of the alternative and probability forecast of these events was obtained in accordance with the concept of "perfect prognosis" using the data of objective analysis. For this purpose the different teaching samples of present and absent of this storm wind and rainfalls were automatically arranged that include the values of forty physically substantiated potential predictors. Then the empirical statistical method was used that involved diagonalization of the mean correlation matrix R of the predictors and extraction of diagonal blocks of strongly correlated predictors. Thus for these phenomena the most informative predictors were selected without loosing information. The statistical decisive rules for diagnosis and prognosis of the phenomena involved U(X) were calculated for choosing informative vector-predictor. We used the criterion of distance of Mahalanobis and criterion of minimum of entropy by Vapnik-Chervonenkis for the selection predictors. Successful development of hydrodynamic models for short-term forecast and improvement of 36-48h forecasts of pressure, temperature and others parameters allowed us to use the prognostic fields of those models for calculations of the discriminant functions in the nodes of the grid 150x150km and the values of probabilities P of dangerous wind and thus to get fully automated forecasts. In order to change to the alternative forecast the author proposes the empirical threshold values specified for this phenomenon and advance period 36 hours. In the accordance to the Pirsey-Obukhov criterion (T), the success of these automated statistical methods of forecast of squalls and tornadoes to 36 -48 hours ahead and heavy rainfalls in the warm season for the territory of Italy, Spain and Balkan countries is T = 1-a-b=0,54: 0,78 after author experiments. A lot of examples of very successful forecasts of summer storm wind and heavy rainfalls over the Italy and Spain territory are submitted at this report. The same decisive rules were applied to the forecast of these phenomena during cold period in this year too. This winter heavy snowfalls in Spain and in Italy and storm wind at this territory were observed very often. And our forecasts are successful.

  19. A New Method Using Single-Particle Mass Spectrometry Data to Distinguish Mineral Dust and Biological Aerosols

    NASA Astrophysics Data System (ADS)

    Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.

    2016-12-01

    The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.

  20. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  1. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80.

    PubMed

    Cheng, Yongfeng; Wei, Haiming; Sun, Rui; Tian, Zhigang; Zheng, Xiaodong

    2016-02-01

    Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A method for deterministic statistical downscaling of daily precipitation at a monsoonal site in Eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Yonghe; Feng, Jinming; Liu, Xiu; Zhao, Yadi

    2017-12-01

    Statistical downscaling (SD) is a method that acquires the local information required for hydrological impact assessment from large-scale atmospheric variables. Very few statistical and deterministic downscaling models for daily precipitation have been conducted for local sites influenced by the East Asian monsoon. In this study, SD models were constructed by selecting the best predictors and using generalized linear models (GLMs) for Feixian, a site in the Yishu River Basin and Shandong Province. By calculating and mapping Spearman rank correlation coefficients between the gridded standardized values of five large-scale variables and daily observed precipitation, different cyclonic circulation patterns were found for monsoonal precipitation in summer (June-September) and winter (November-December and January-March); the values of the gridded boxes with the highest absolute correlations for observed precipitation were selected as predictors. Data for predictors and predictands covered the period 1979-2015, and different calibration and validation periods were divided when fitting and validating the models. Meanwhile, the bootstrap method was also used to fit the GLM. All the above thorough validations indicated that the models were robust and not sensitive to different samples or different periods. Pearson's correlations between downscaled and observed precipitation (logarithmically transformed) on a daily scale reached 0.54-0.57 in summer and 0.56-0.61 in winter, and the Nash-Sutcliffe efficiency between downscaled and observed precipitation reached 0.1 in summer and 0.41 in winter. The downscaled precipitation partially reflected exact variations in winter and main trends in summer for total interannual precipitation. For the number of wet days, both winter and summer models were able to reflect interannual variations. Other comparisons were also made in this study. These results demonstrated that when downscaling, it is appropriate to combine a correlation-based predictor selection across a spatial domain with GLM modeling.

  3. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines.

    PubMed

    Aleixandre-Tudo, Jose Luis; Buica, Astrid; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel

    2017-05-24

    Phenolic compounds are of crucial importance for red wine color and mouthfeel attributes. A large number of enzymatic and chemical reactions involving phenolic compounds take place during winemaking and aging. Despite the large number of published analytical methods for phenolic analyses, the values obtained may vary considerably. In addition, the existing scientific knowledge needs to be updated, but also critically evaluated and simplified for newcomers and wine industry partners. The most used and widely cited spectrophotometric methods for grape and wine phenolic analysis were identified through a bibliometric search using the Science Citation Index-Expanded (SCIE) database accessed through the Web of Science (WOS) platform from Thompson Reuters. The selection of spectrophotometry was based on its ease of use as a routine analytical technique. On the basis of the number of citations, as well as the advantages and disadvantages reported, the modified Somers assay appears as a multistep, simple, and robust procedure that provides a good estimation of the state of the anthocyanins equilibria. Precipitation methods for total tannin levels have also been identified as preferred protocols for these types of compounds. Good reported correlations between methods (methylcellulose precipitable vs bovine serum albumin) and between these and perceived red wine astringency, in combination with the adaptation to high-throughput format, make them suitable for routine analysis. The bovine serum albumin tannin assay also allows for the estimation of the anthocyanins content with the measurement of small and large polymeric pigments. Finally, the measurement of wine color using the CIELab space approach is also suggested as the protocol of choice as it provides good insight into the wine's color properties.

  4. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  5. Students' Understanding of Acid, Base and Salt Reactions in Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim-Chwee Daniel; Goh, Ngoh-Khang; Chia, Lian-Sai; Treagust, David F.

    2003-01-01

    Uses a two-tier, multiple-choice diagnostic instrument to determine (n=915) grade 10 students' understanding of the acid, base, and salt reactions involved in basic qualitative analysis. Reports that many students did not understand the formation of precipitates and the complex salts, acid/salt-base reactions, and thermal decomposition involved in…

  6. 3800 Years of Quantitative Precipitation Reconstruction from the Northwest Yucatan Peninsula

    PubMed Central

    Carrillo-Bastos, Alicia; Islebe, Gerald A.; Torrescano-Valle, Nuria

    2013-01-01

    Precipitation over the last 3800 years has been reconstructed using modern pollen calibration and precipitation data. A transfer function was then performed via the linear method of partial least squares. By calculating precipitation anomalies, it is estimated that precipitation deficits were greater than surpluses, reaching 21% and <9%, respectively. The period from 50 BC to 800 AD was the driest of the record. The drought related to the abandonment of the Maya Preclassic period featured a 21% reduction in precipitation, while the drought of the Maya collapse (800 to 860 AD) featured a reduction of 18%. The Medieval Climatic Anomaly was a period of positive phases (3.8–7.6%). The Little Ice Age was a period of climatic variability, with reductions in precipitation but without deficits. PMID:24391940

  7. Estimation of groundwater recharge parameters by time series analysis

    USGS Publications Warehouse

    Naff, Richard L.; Gutjahr, Allan L.

    1983-01-01

    A model is proposed that relates water level fluctuations in a Dupuit aquifer to effective precipitaton at the top of the unsaturated zone. Effective precipitation, defined herein as that portion of precipitation which becomes recharge, is related to precipitation measured in a nearby gage by a two-parameter function. A second-order stationary assumption is used to connect the spectra of effective precipitation and water level fluctuations. Measured precipitation is assumed to be Gaussian, in order to develop a transfer function that relates the spectra of measured and effective precipitation. A nonlinear least squares technique is proposed for estimating parameters of the effective-precipitation function. Although sensitivity analyses indicate difficulties that may be encountered in the estimation procedure, the methods developed did yield convergent estimates for two case studies.

  8. METHOD OF FORMING PLUTONIUM-BEARING CARRIER PRECIPITATES AND WASHING SAME

    DOEpatents

    Faris, B.F.

    1959-02-24

    An improvement of the lanthanum fluoride carrier precipitation process for the recovery of plutonium is presented. In this process the plutonium is first segregated in the LaF/su precipitate and this precipitate is later dissolved and the plutonium reprecipitated as the peroxide. It has been found that the loss of plutonium by its remaining in the supernatant liquid associated with the peroxide precipitate is greatly reduced if, before dissolution, the LaF/ sub 3/ precipitate is subjected to a novel washing step which constitutes the improvement of this patent. The step consists in intimately contactifng the LaF/ sub 3/ precipitate with a 4 to 10 percent solution of sodium hydrogen sulfate at a temperature between 10 and 95 deg C for 1/2 to 3 hours.

  9. An evaluation of procedures to estimate monthly precipitation probabilities

    NASA Astrophysics Data System (ADS)

    Legates, David R.

    1991-01-01

    Many frequency distributions have been used to evaluate monthly precipitation probabilities. Eight of these distributions (including Pearson type III, extreme value, and transform normal probability density functions) are comparatively examined to determine their ability to represent accurately variations in monthly precipitation totals for global hydroclimatological analyses. Results indicate that a modified version of the Box-Cox transform-normal distribution more adequately describes the 'true' precipitation distribution than does any of the other methods. This assessment was made using a cross-validation procedure for a global network of 253 stations for which at least 100 years of monthly precipitation totals were available.

  10. Short-range quantitative precipitation forecasting using Deep Learning approaches

    NASA Astrophysics Data System (ADS)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  11. A satellite simulator for TRMM PR applied to climate model simulations

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  12. ELECTROLYTIC PREPARATION OF UF$sub 4$

    DOEpatents

    Allen, A.L.; Anderson, R.W.; Powell, E.W.

    1958-11-01

    A method is presented for converting hexavalent aranium to uranium tetrafluoride. The method consists of electrolyzing a solution of uranyl fluoride in hydrofluoric acld at about 90 icient laborato C. The uranyl ions are reduced at the cathode and a hydrated uranium tetrafluoride precipitates. The precipitate is separated and subsequently dehydrated to UF/sub 4/.

  13. Choice of 17O Abundance Correction Affects Δ47 and Thus Calibrations for Paleothermometry

    NASA Astrophysics Data System (ADS)

    Kelson, J.; Schauer, A. J.; Huntington, K. W.; Saenger, C.; Lechler, A. R.

    2016-12-01

    The clumped isotope composition of CO2 derived from carbonate (Δ47) varies with temperature, making it a valuable geothermometer with broad applications. However, its accuracy is limited by inter-laboratory discrepancies of carbonate reference materials and disagreement among Δ47-temperature calibrations. Here we use a suite of CO2-H2O equilibrations at known temperatures with a wide range in 13C and 18O compositions to show how the correction for the abundance of 17O impacts Δ47 and potentially explains these discrepancies. When a traditional value of 0.5164 is used for the fractionation between 17O and 18O (λ), corrected Δ47 in 23 °C CO2-H2O equilibrations exhibits a dependence on 13C composition that is equivalent to 20 ºC (Δ47 range of 0.06 ‰). In contrast, these discrepancies are effectively removed when λ=0.528, as in global meteoric waters. Furthermore, carbonate standards with identical formation temperatures have significantly different Δ47 when corrected using λ=0.5164, but agree within error when λ=0.528. The choice of λ affects the accuracy of all sample Δ47 values, unless the sample CO2, mass spectrometer reference gas, and equilibrated gases share the same 13C composition. The sensitivity of Δ47 to the choice of λ, and the apparent dependence on 13C when 0.5164 is used, are relevant to the abiogenic experiments used in Δ47-temperature calibrations given that precipitation methods involving CO2 bubbling produce carbonates depleted in 13C by tens of permil relative to methods that mix salts. We evaluate the influence of 17O correction on Δ47-temperature calibrations using a suite of 58 abiogenic carbonates precipitated at 4-85 ºC using CO2 bubbling and the mixing of salts. Aliquots of precipitated carbonates were digested at 25 and 90ºC, but all other preparatory and analytical variables were held constant. When corrected using λ=0.5164, various precipitation methods yield sub-parallel Δ47-temperature relationships with slopes of 0.034-0.044 (x 106/T2), but offset intercepts. Conversely, Δ47-temperature relationships overlap within error when λ=0.528. This suggests that the method used to correct for 17O abundance likely contributes to observed calibration discrepancies and that adopting λ=0.528 may reduce the uncertainty in Δ47 temperature reconstructions.

  14. Localization of rainfall and determination its intensity in the lower layers of the troposphere from the measurements of local RF transmitter characteristics

    NASA Astrophysics Data System (ADS)

    Podhorský, Dušan; Fabo, Peter

    2016-12-01

    The article deals with a method of acquiring the temporal and spatial distribution of local precipitation from measurement of performance characteristics of local sources of high frequency electromagnetic radiation in the 1-3GHz frequency range in the lower layers of the troposphere up to 100 m. The method was experimentally proven by monitoring the GSM G2 base stations of cell phone providers in the frequency range of 920-960MHz using methods of frequential and spatial diversity reception. Modification of the SART method for localization of precipitation was also proposed. The achieved results allow us to obtain the timeframe of the intensity of local precipitation in the observed area with a temporal resolution of 10 sec. A spatial accuracy of 100m in localization of precipitation is expected, after a network of receivers is built. The acquired data can be used as one of the inputs for meteorological forecasting models, in agriculture, hydrology as a supplementary method to ombrograph stations and measurements for the weather radar network, in transportation as part of a warning system and in many other areas.

  15. ENSO and hydrologic extremes in the western United States

    USGS Publications Warehouse

    Cayan, D.R.; Redmond, K.T.; Riddle, L.G.

    1999-01-01

    Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of ENSO. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the ENSO phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Nino), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Nina), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to ENSO extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves ENSO-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months, and hydrologic lags (mostly through snowmelt) dealy the stream flow response by several more months. The combined 6-12 month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of ENSO. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the ENSO phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Nino), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Nina), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to ENSO extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves ENSO-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months, and hydrologic lags (mostly through snowmelt) delay the stream flow response by several more months. The combined 6-12-month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.

  16. Spatio-temporal variability of dry and wet periods in mainland Portugal and its relationships with teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Espírito Santo, Fátima; de Lima, Isabel P.; Silva, Álvaro; Pires, Vanda; de Lima, João L. M. P.

    2014-05-01

    Large-scale atmospheric circulation patterns and their persistence are known to drive inter-annual variability of precipitation in Europe, although depending on geographical location; this includes precipitation extremes and their trends. The vast range of time and space scales involved leads sometimes to precipitation deficits and surpluses which might affect in a different way the society, the environment and the economy at the local and regional scales, depending on specific conditions. In addition, changes in the climate are expected to affect the occurrence of extreme weather and climate events that might influence significantly the distribution, availability and sustainability of regional water resources. The location of mainland Portugal on the Northeast Atlantic region, in South-western Europe, together with other geographical features, makes this territory vulnerable to extreme dry/wet hydro-meteorological events, driven by the strong variability in precipitation. In our study we discuss, for this territory, the relation between the spatio-temporal variability in those events, including their persistence at different scales, and the variability in several modes of low frequency variability; special attention is dedicated to the North Atlantic Oscillation (NAO) and Scandinavian pattern (SCAND). Some of these dry/wet episodes affect different aspects of the hydrologic cycle and are likely to lead to drought and soil wetness/saturation conditions that can enhance flood events. Such episodes were categorized here using the Standardized Precipitation Index (SPI), which was calculated at short (3 and 6-month) and long (12 and 24-month) time scales from monthly precipitation data recorded in the 1941-2012 period (72 years) at 50 precipitation stations scattered across the study area. Moreover, because SPI is a normalized index, it is also suitable to provide spatial representations of these conditions, allowing the comparison between areas within the same region. Thus, indices were interpolated for the whole territory using deterministic and geostatistical methods, and the zonal statistics results were mapped; the spatial interpolation, analysis and mapping were implemented in ArcGIS. Results confirm that the precipitation in this region is strongly influenced by the NAO and SCAND, in particular in the wettest months. Moreover, the annual SPI shows a significant increase in the extent of dry extremes and a non-significant decrease in the extent of wet extremes. For shorter time scales, the behaviour depends on the season. We discuss the observed SPI trends and the uncertainties for the precipitation regime in the southern and western parts of the Iberian Peninsula, which includes mainland Portugal. Results underline potential applications of SPI for water resources management, which is discussed in the context of the regional hydrological conditions and increasing demand for water for different uses.

  17. Evaluation of global climate model on performances of precipitation simulation and prediction in the Huaihe River basin

    NASA Astrophysics Data System (ADS)

    Wu, Yenan; Zhong, Ping-an; Xu, Bin; Zhu, Feilin; Fu, Jisi

    2017-06-01

    Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960-2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001-2010) and the predicting period (2011-2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.

  18. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    PubMed

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  19. Assessment of Hydrologic Response to Variable Precipitation Forcing: Russian River Case Study

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Hsu, C.; Johnson, L. E.

    2014-12-01

    NOAA Hydrometeorology Testbed (HMT) activities in California have involved deployment of advanced sensor networks to better track atmospheric river (AR) dynamics and inland penetration of high water vapor air masses. Numerical weather prediction models and decision support tools have been developed to provide forecasters a better basis for forecasting heavy precipitation and consequent flooding. The HMT also involves a joint project with California Department of Water Resources (CA-DWR) and the Scripps Institute for Oceanography (SIO) as part of CA-DWR's Enhanced Flood Response and Emergency Preparedness (EFREP) program. The HMT activities have included development and calibration of a distributed hydrologic model, the NWS Office of Hydrologic Development's (OHD) Research Distributed Hydrologic Model (RDHM), to prototype the distributed approach for flood and other water resources applications. HMT has applied RDHM to the Russian-Napa watersheds for research assessment of gap-filling weather radars for precipitation and hydrologic forecasting and for establishing a prototype to inform both the NWS Monterey Forecast Office and the California Nevada River Forecast Center (CNRFC) of RDHM capabilities. In this presentation, a variety of precipitation forcings generated with and without gap filling radar and rain gauge data are used as input to RDHM to assess the hydrologic response for selected case study events. Both the precipitation forcing and hydrologic model are run at different spatial and temporal resolution in order to examine the sensitivity of runoff to the precipitation inputs. Based on the timing of the events and the variations of spatial and temporal resolution, the parameters which dominate the hydrologic response are identified. The assessment is implemented at two USGS stations (Ukiah near Russian River and Austin Creek near Cazadero) that are minimally influenced by managed flows and objective evaluation can thus be derived. The results are assessed using statistical metrics, including daily Nash scores, Pearson Correlation, and sub daily timing errors.

  20. Sampling and physico-chemical analysis of precipitation: a review.

    PubMed

    Krupa, Sagar V

    2002-01-01

    Wet deposition is one of two processes governing the transfer of beneficial and toxic chemicals from the atmosphere on to surfaces. Since the early 1970s, numerous investigators have sampled and analyzed precipitation for their chemical constituents, in the context of "acidic rain" and related atmospheric processes. Since then, significant advances have been made in our understanding of how to sample rain, cloud and fog water to preserve their physico-chemical integrity prior to analyses. Since the 1970s large-scale precipitation sampling networks have been in operation to broadly address regional and multi-regional issues. However, in examining the results from such efforts at a site-specific level, concerns have been raised about the accuracy and precision of the information gathered. There is mounting evidence to demonstrate the instability of precipitation samples (e.g. with N species) that have been subjected to prolonged ambient or field conditions. At the present time precipitation sampling procedures allow unrefrigerated or refrigerated collection of wet deposition from individual events, sequential fractions within events, in situ continuous chemical analyses in the field and even sampling of single or individual rain, cloud and fog droplets. Similarly analytical procedures of precipitation composition have advanced from time-consuming methods to rapid and simultaneous analyses of major anions and cations, from bulk samples to single droplets. For example, analytical techniques have evolved from colorimetry to ion chromatography to capillary electrophoresis. Overall, these advances allow a better understanding of heterogeneous reactions and atmospheric pollutant scavenging processes by precipitation. In addition, from an environmental perspective, these advances allow better quantification of semi-labile (e.g. NH4+, frequently its deposition values are underestimated) or labile species [e.g. S (IV)] in precipitation and measurements of toxic chemicals such as Hg and PCBs (polychlorinated biphenyls). Similarly, methods now exist for source-receptor studies, using for example, the characterization of reduced elemental states and/or the use of stable isotopes in precipitation as tracers. Future studies on the relationship between atmospheric deposition and environmental impacts must exploit these advances. This review provides a comprehensive and comparative treatment of the state of the art sampling methods of precipitation and its physico-chemical analysis.

  1. Mechanisms of scale formation and carbon dioxide partial pressure influence. Part I. Elaboration of an experimental method and a scaling model.

    PubMed

    Gal, Jean-Yves; Fovet, Yannick; Gache, Nathalie

    2002-02-01

    Scale formation in industrial or domestic installations is still an important economic problem. The existence of a metastable domain for calcium carbonate supersaturated solutions and its breakdown are observed under conditions rarely well defined. In most cases it is the pH rise caused by the carbon dioxide loss that involves calcium carbonate precipitation. Before studying this problem, we suggest in this first part, a new model for the evolution of the calcocarbonic system that takes into account the hydrated forms of CaCO3: CaCO3 amorphous, CaCO3 x 6H2O (ikaite) and CaCO3 x H2O (monohydrate). According to this model, the precipitation of any one of these hydrated forms could be responsible for the breakdown of the metastable state. After this first step, the solids evolve into dehydrated forms. At first, the metastable domain spread of the calcium carbonate supersaturated solutions was studied by the elaboration of computer programs in which the formation of CaCO3(0)(aq) ion pairs was taken into account. These ion pairs are supposed to evolve through dehydration to form the various calcium carbonate solid form precursors. This thermodynamic study was then compared to the experimental methods of the critical pH. Here the pH rise was caused by adding sodium hydroxide under different conditions for sodium hydroxide addition speed, agitation mode and ageing of solutions. For the highest speed of sodium hydroxide addition, the CaCO3 ionic product reached the value of the amorphous calcium carbonate solubility product, and the reaction of the amorphous calcium carbonate precipitation was of the homogenous type. Decreasing the reagent's addition speed caused an extension of the titration time. Then, the breakdown of the metastable state was obtained with the CaCO3 x H2O heterogeneous precipitation. This clearly illustrates the probable ageing of the precursors of the solid states that are considered in this model.

  2. Structural study of (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O from a conventional X-ray diffraction diagram obtained on a powder synthesized by a fast vortex process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brackx, E., E-mail: Emmanuelle.brackx@cea.fr; Laval, J.P.; Dugne, O.

    2015-01-15

    In the context of research on U/minor actinides for nuclear fuel reprocessing in the transmutation process, developments are first studied with surrogates containing uranium and lanthanides to facilitate testing. The tests consist of precipitating and calcining a hydrazinium uranium/cerium oxalate. The structure of this oxalate had not been previously determined, but was necessary to validate the physicochemical mechanisms involved. The present study, firstly demonstrates the structural similarity of the U/Ce oxalate phase (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O, synthesized using a vortex precipitator for continuous synthesis of actinide oxalates, with previously known oxalates, crystallizing in P6{submore » 3}/mmc symmetry, obtained by more classical methods. This fast precipitation process induces massive nucleation of fine powders. Their structural and microstructural determination confirms that the raw and dried phases belong to the same structural family as (NH{sub 4}){sub 2}U{sub 2}(C{sub 2}O{sub 4}){sub 5}·0.7H{sub 2}O whose structure was described by Chapelet-Arab in P6{sub 3}/mmc symmetry, using single crystal data. However, they present an extended disorder inside the tunnels of the structure, even after drying at 100 °C, between water and hydrazinium ions. This disorder is directly related to the fast vortex method. This structure determination can be used as a basis for further semi-quantitative analysis on the U/minor actinides products formed under various experimental conditions. - Highlights: • Uranium cerium oxalate precipitate characterization by X-ray powder diffraction. • Morphology characterization by SEM analysis. • Structure determination by unit cell Rietveld refinement.« less

  3. Modeling the Spatial and Temporal Variation of Monthly and Seasonal Precipitation on the Nevada Test Site and Vicinity, 1960-2006

    USGS Publications Warehouse

    Blainey, Joan B.; Webb, Robert H.; Magirl, Christopher S.

    2007-01-01

    The Nevada Test Site (NTS), located in the climatic transition zone between the Mojave and Great Basin Deserts, has a network of precipitation gages that is unusually dense for this region. This network measures monthly and seasonal variation in a landscape with diverse topography. Precipitation data from 125 climate stations on or near the NTS were used to spatially interpolate precipitation for each month during the period of 1960 through 2006 at high spatial resolution (30 m). The data were collected at climate stations using manual and/or automated techniques. The spatial interpolation method, applied to monthly accumulations of precipitation, is based on a distance-weighted multivariate regression between the amount of precipitation and the station location and elevation. This report summarizes the temporal and spatial characteristics of the available precipitation records for the period 1960 to 2006, examines the temporal and spatial variability of precipitation during the period of record, and discusses some extremes in seasonal precipitation on the NTS.

  4. Synthesis of nano grade hollow silica sphere via a soft template method.

    PubMed

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  5. Review of chemical separation techniques applicable to alpha spectrometric measurements

    NASA Astrophysics Data System (ADS)

    de Regge, P.; Boden, R.

    1984-06-01

    Prior to alpha-spectrometric measurements several chemical manipulations are usually required to obtain alpha-radiating sources with the desired radiochemical and chemical purity. These include sampling, dissolution or leaching of the elements of interest, conditioning of the solution, chemical separation and preparation of the alpha-emitting source. The choice of a particular method is dependent on different criteria but always involves aspects of the selectivity or the quantitative nature of the separations. The availability of suitable tracers or spikes and modern high resolution instruments resulted in the wide-spread application of isotopic dilution techniques to the problems associated with quantitative chemical separations. This enhanced the development of highly elective methods and reagents which led to important simplifications in the separation schemes. The chemical separation methods commonly used in connection with alpha-spectrometric measurements involve precipitation with selected scavenger elements, solvent extraction, ion exchange and electrodeposition techniques or any combination of them. Depending on the purpose of the final measurement and the type of sample available the chemical separation methods have to be adapted to the particular needs of environment monitoring, nuclear chemistry and metrology, safeguards and safety, waste management and requirements in the nuclear fuel cycle. Against the background of separation methods available in the literature the present paper highlights the current developments and trends in the chemical techniques applicable to alpha spectrometry.

  6. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    NASA Astrophysics Data System (ADS)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high-temporal resolution global dataset for use in a wide variety of weather and climate research applications.

  7. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency formore » all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.« less

  8. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals.

    PubMed

    Zhang, Y; Huang, S L; Wang, S; Zhao, W

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  9. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOEpatents

    Maskalick, Nicholas J.

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  10. METHOD FOR REMOVING CONTAMINATION FROM PRECIPITATES

    DOEpatents

    Stahl, G.W.

    1959-01-01

    An improvement in the bismuth phosphate carrier precipitation process is presented for the recovery and purification of plutonium. When plutonium, in the tetravalent state, is carried on a bismuth phosphate precipitate, amounts of centain of the fission products are carried along with the plutonium. The improvement consists in washing such fission product contaminated preeipitates with an aqueous solution of ammonium hydrogen fluoride. since this solution has been found to be uniquely effective in washing fission production contamination from the bismuth phosphate precipitate.

  11. A Bayesian kriging approach for blending satellite and ground precipitation observations

    USGS Publications Warehouse

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution of the “true” observed precipitation value at each grid cell.

  12. Identification of the atmospheric river drivers key on local flood generating mechanism and its sensitivity under the climate change

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; Mauger, Guillaume; Salathé, Eric; Mitchell, Todd P.

    2017-04-01

    Flooding is one of the natural hazard that causes the significant economic, ecosystem and human losses every year. Large percentage of floodings in the western of the US caused by heavy precipitation events are associated to atmospheric rivers (ARs). With the warmer climate is expected an increase of saturated water pressure which could increase the intensity and frequency of the ARs. In this work we attend to address two questions: 1) what are the large-scale drivers that promotes differences in ARs promoting heavy precipitation at different locations and 2) how climate change will influence on ARs and extreme precipitation. The methods applied in our analysis consist on a dynamical downscaling using the Weather Research and Forecasting (WRF) model. The target region is the western coastline U.S. on a domain with 12-km grid spacing. Regional climate simulations (RCM) encompass a historical period (1970-2010) and future projections (2020-2060) using NNRP and ECHAM as initial and boundary conditions. Clustering methods are applied to the RCM to identify regions with similar precipitation variability. At each region, the extreme events of precipitation according to 99 percentile are identified and associated to integrated vapor transport (ITV). Results show how heaviest precipitation in each region is associated to different AR patterns. When an AR impacts coastline, the direction and intensity of the IVT determine the areas affected by heavy precipitation. Coastal mountains play a key role intensifying the precipitation in the coastline and avoiding the inland penetration of the IVT. The shape of the atmospheric rivers is related to differences in 500 hPa geopotential between the mean and the extreme precipitation. Areas with heaviest precipitation are located in the interface of Z500 differences.

  13. Interpolating precipitation and its relation to runoff and non-point source pollution.

    PubMed

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  14. AJIPHASE®: A Highly Efficient Synthetic Method for One-Pot Peptide Elongation in the Solution Phase by an Fmoc Strategy.

    PubMed

    Takahashi, Daisuke; Inomata, Tatsuji; Fukui, Tatsuya

    2017-06-26

    We previously reported an efficient peptide synthesis method, AJIPHASE®, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    PubMed Central

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930

  16. Changes in the type of precipitation and associated cloud types in Eastern Romania (1961-2008)

    NASA Astrophysics Data System (ADS)

    Manea, Ancuta; Birsan, Marius-Victor; Tudorache, George; Cărbunaru, Felicia

    2016-03-01

    Recent climate change is characterized (among other things) by changes in the frequency of some meteorological phenomena. This paper deals with the long-term changes in various precipitation types, and the connection between their variability and cloud type frequencies, at 11 meteorological stations from Eastern Romania over 1961-2008. These stations were selected with respect to data record completeness for all considered variables (weather phenomena and cloud type). The meteorological variables involved in the present study are: monthly number of days with rain, snowfall, snow showers, rain and snow (sleet), sleet showers and monthly frequency of the Cumulonimbus, Nimbostratus and Stratus clouds. Our results show that all stations present statistically significant decreasing trends in the number of days with rain in the warm period of the year. Changes in the frequency of days for each precipitation type show statistically significant decreasing trends for non-convective (stratiform) precipitation - rain, drizzle, sleet and snowfall -, while the frequencies of rain shower and snow shower (convective precipitation) are increasing. Cloud types show decreasing trends for Nimbostratus and Stratus, and increasing trends for Cumulonimbus.

  17. Future projections of extreme precipitation using Advanced Weather Generator (AWE-GEN) over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Syafrina, A. H.; Zalina, M. D.; Juneng, L.

    2014-09-01

    A stochastic downscaling methodology known as the Advanced Weather Generator, AWE-GEN, has been tested at four stations in Peninsular Malaysia using observations available from 1975 to 2005. The methodology involves a stochastic downscaling procedure based on a Bayesian approach. Climate statistics from a multi-model ensemble of General Circulation Model (GCM) outputs were calculated and factors of change were derived to produce the probability distribution functions (PDF). New parameters were obtained to project future climate time series. A multi-model ensemble was used in this study. The projections of extreme precipitation were based on the RCP 6.0 scenario (2081-2100). The model was able to simulate both hourly and 24-h extreme precipitation, as well as wet spell durations quite well for almost all regions. However, the performance of GCM models varies significantly in all regions showing high variability of monthly precipitation for both observed and future periods. The extreme precipitation for both hourly and 24-h seems to increase in future, while extreme of wet spells remain unchanged, up to the return periods of 10-40 years.

  18. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and near-real-time simulations in regions of interest. This work focuses on value added to the AGRMET precipitation product by the inclusion of high-quality climatological information on a monthly time scale. The AGRMET method uses microwave-based satellite precipitation estimates from various polar-orbiting platforms (NOAA POES and DMSP), infrared-based estimates from geostationary platforms (GOES, METEOSAT, etc.), related cloud analysis products, and surface gauge observations in a complex and hierarchical blending process. Results from processing of the legacy AGRMET precipitation products over the U.S. using LIS-based methods for downscaling, both with and without climatological factors, are evaluated against high-resolution monthly analyses using the PRISM knowledge- based method (Daly et al. 2002). It is demonstrated that the incorporation of climatological information in a downscaling procedure can significantly enhance the accuracy, and potential utility, of AFWA precipitation products for military and civilian customer applications.

  19. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frédéric

    2012-07-01

    YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 °C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO3). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment.

  20. A new Grid Product of Tropical Cyclone Precipitation (TCP) for North America from 1930 to 2013

    NASA Astrophysics Data System (ADS)

    Zhu, L.

    2015-12-01

    We first developed a new method that collects daily TCP by using historical storm tracks and precipitation observation based on daily rain gauges in both U.S. and Mexico and calibrated it with satellite precipitation observation. We used a parametrized wind field to correct the possible under-estimations of precipitation in rain gauges. Grid interpolation parameters were optimized by testing different historical rain gauge densities and comparing our grid estimation of TCP and the observation from TRMM Multi-satellite Precipitation Analysis (3B42) by for the data available period from 1998 to 2013. The calibrated method was then used for the whole 94 years of TCP estimation. The preliminary result shows that the frequency of TCP events does not have significant change but the TCP intensity has significant increasing trends, especially in certain locations in North Carolina and Yucatan Peninsula in Mexico. This new long term TCP climatology can potentially assist model calibration and disaster prevention/mitigation.

  1. Electron Impact Ionization: A New Parameterization for 100 eV to 1 MeV Electrons

    NASA Technical Reports Server (NTRS)

    Fang, Xiaohua; Randall, Cora E.; Lummerzheim, Dirk; Solomon, Stanley C.; Mills, Michael J.; Marsh, Daniel; Jackman, Charles H.; Wang, Wenbin; Lu, Gang

    2008-01-01

    Low, medium and high energy electrons can penetrate to the thermosphere (90-400 km; 55-240 miles) and mesosphere (50-90 km; 30-55 miles). These precipitating electrons ionize that region of the atmosphere, creating positively charged atoms and molecules and knocking off other negatively charged electrons. The precipitating electrons also create nitrogen-containing compounds along with other constituents. Since the electron precipitation amounts change within minutes, it is necessary to have a rapid method of computing the ionization and production of nitrogen-containing compounds for inclusion in computationally-demanding global models. A new methodology has been developed, which has parameterized a more detailed model computation of the ionizing impact of precipitating electrons over the very large range of 100 eV up to 1,000,000 eV. This new parameterization method is more accurate than a previous parameterization scheme, when compared with the more detailed model computation. Global models at the National Center for Atmospheric Research will use this new parameterization method in the near future.

  2. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3(-), Cl-, and Na+ ions on rat bile duct brush cells.

    PubMed

    Ogata, Takuro

    2005-12-01

    Brush cells are widely distributed in the digestive and respiratory apparatus, but their function is still unknown. Because brush cells (BC) are found in organs secreting NaHCO3, it was hypothesized that these cells may secrete NaHCO3. To test this possibility, rat common bile duct epithelia were examined by ultrastructural cytochemical methods for localizing HCO3(-), Cl-, and Na+ ions. All three ion precipitates were few in or on BCs of rats without stimulation. Lead carbonate precipitates, which localized HCO3(-) ions by the lead nitrate-osmium method, increased markedly on the surface of the microvilli (MV) of BCs after secretin or meal stimulation, but similar precipitates were few on the luminal surface of principal cells (PCs). Silver chloride precipitates, which indicate the presence of Cl- ions by the silver-osmium method, increased in the apical cytoplasm and in MV of BCs after secretin or meal stimulation, but they were few in PCs. Sodium pyroantimonate precipitates, which localize Na+ ions by the potassium pyroantimonate-osmium method, increased on the surface of the MV, along the basolateral membrane, and in the apical cytoplasm of BCs after secretin or meal stimulation, but they were few in PCs. These results strongly suggest that BCs may be a significant source of NaHCO3 secretion.

  3. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  4. Multi-wavelength dual polarisation lidar for monitoring precipitation process in the cloud seeding technique

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana

    2016-05-01

    In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.

  5. A comparative verification of high resolution precipitation forecasts using model output statistics

    NASA Astrophysics Data System (ADS)

    van der Plas, Emiel; Schmeits, Maurice; Hooijman, Nicolien; Kok, Kees

    2017-04-01

    Verification of localized events such as precipitation has become even more challenging with the advent of high-resolution meso-scale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this study a verification strategy based on model output statistics is applied that aims to address both double penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis and lead time. The ELR equations are derived for predictands based on areal calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the non-hydrostatic model Harmonie (2.5 km resolution), Hirlam (11 km resolution) and the ECMWF model (16 km resolution), overall yielding similar Brier skill scores for the 3 post-processed models, but larger differences for individual lead times. Besides, the Fractions Skill Score is computed using the 3 deterministic forecasts, showing somewhat better skill for the Harmonie model. In other words, despite the realism of Harmonie precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the 2 lower resolution models, at least in the Netherlands.

  6. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  7. Trends in snowfall versus rainfall in the Western United States--Revisited

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Knowles, N.; Cayan, D. R.

    2015-12-01

    Knowles et al. (J. Climate, 2006) documented long-term (1949-2004) trends in precipitation form, with a smaller fraction of precipitation falling, in recent decades, on days with reported snow compared to days when no snow was reported (and when precipitation was presumably rain). This precipitation-amount-corrected trend was found at three-quarters of 261 cooperative weather stations across the region. The trends correlated with corresponding trends towards warmer winter air temperatures at the weather stations involved. An update of those analyses through the more recent period indicates that the overall swing towards less precipitation fraction occurring on snowy days has continued through the intervening years, with 21st Century rain/snow fractions remaining significantly higher than historical norms at most stations. The same data have also been used to develop site-specific statistical relations between precipitation form (snowy-day precipitation vs purely rainy day) and air temperatures by logistical regressions at over 200 stations across the West, to determine whether the general temperature trends mentioned above have, in fact, been large enough to explain the trending precipitation forms. That is, were the warming trends detected across the West large enough to actually raise temperatures above the local snow-rain thresholds at most stations? The regression relations show that the temperature at which half of the wet days have been snowy historically varies, from station to station, across a range from -2ºC to +4ºC. Thus at some stations winter storm temperatures would have to rise above about -2ºC to markedly impact precipitation forms, while at other stations, temperature had to rise above +4ºC. Nonetheless, observed temperature trends since 1950 have been sufficient to explain the observed regional precipitation-form trends. The fitted precipitation form-temperature relations also provide a basis for estimating precipitation forms in hydrological models and in climate-change projections across the region, allowing—for example—more geographically informed projections of precipitation-form changes under future climates. On the whole, though, the expected relations between warming trends and precipitation-form trends found by Knowles et al. (2006) continue to hold.

  8. A Rapid Protoyping Approach for the Evaluation of Potential GPM-Era Precipitation Products for Water Resources Management Applications

    NASA Astrophysics Data System (ADS)

    Anantharaj, V. G.; Houser, P. R.; Turk, F. J.; Peterson, C. A.; Hossain, F.; Moorhead, R. J.; Toll, D. L.; Mostovoy, G.

    2009-04-01

    In order to facilitate the operational transition of satellite data, research products and advances in numerical modeling, the NASA Applied Sciences Program (ASP) had adopted a systems engineering approach to help identify and advanced and basic research capabilities that may be further developed for operational applications. This novel approach was envisioned to accelerate the harvesting of NASA's investment in research for societal benefits. International programs such as the Global Earth Observing System of Systems (GEOSS) could benefit from such systematic and integrated approaches to identify and extend the results of earth and environmental sciences for the benefits of global society. This new approach by the ASP was based on three phases of implementation, namely: (a) "Solutions Networks" for systematically examining data products, capabilities, and results from NASA Earth science research in order to find identify and prioritize candidate research activities that have the potential for societal benefits; (b) "Rapid Prototyping Capability (RPC)" experiments to further develop and tailor basic research and further evaluate and quantify their potential impacts for applications and decision support; and (c) "Integrated System Solutions (ISS)" to fully execute the transition the research to operational implementation and benchmark the performance resulting from integrating NASA Earth observations and science results. The RPC science experiments can be rapidly prototyped in order to evaluate the suitability of data, algorithms and models. They are designed to characterize uncertainties involved in the data, models, and decision making process while maintaining scientific rigor through the entire process. This approach helps identify scientific and logistical risks earlier in the process so that they can be appropriately addressed in a timely manner to minimize risk. GPM is promoted as "a science mission with broad societal applications," that will address societal benefits related to human health (soil moisture, climate and disease outbreak), homeland security (removal of chemical/biological/nuclear agents), flooding potential and warning, water availability, water quality, and agriculture and food security. In 2006, the NASA ASP sponsored two RPC experiments to evaluate potential GPM-era high resolution satellite precipitation products for water management applications. One of the current uncertainties involved in the GPM missions is the nature of the exact configuration of the constellations of satellites and hence the potential for the dynamic error characteristics over time of the precipitation estimates. For the RPC evaluations, we needed a satellite precipitation product that would be analogous to the GPM-era products. Our solution was to develop a suite of high resolution precipitation products, based on the NRL-Blend algorithm. We created a set of 10 different satellite precipitation estimates (hereafter referred to as the "GPM-proxy data"), using the currently available IR and microwave sensors. However, in each product we systematically left out sets of observations and/or sensors, such as AM orbits. The geographical focus of our study was the operational domain of the Arkansas Basin River Forecast Center (ABRFC) of the U.S. National Weather Service. We have evaluated the GPM-proxy data against the operational product (radar and gauge based) used by ABRFC. Further, we also performed a set of soil water content (SWC) sensitivity experiments using the Noah and Mosaic Land Surface Models (LSM) to quantify the impacts on water management applications involving land surface hydrology. Both the LSMs were forced with the same set of GPM-proxy data. Though the overall spatial patterns for both the models were similar, there were subtle differences in the respective model sensitivities to the different precipitation forcings. These experimental results illustrate the need for comprehensive pre-evaluations of applications, in order quantify and minimize the risks involved in applications with the introduction of new precipitation products, before making extensive investments in operational transitions. Besides the SWC sensitivity experiments, we have also evaluated precipitation merging and downscaling techniques using various other precipitation products, including IR-based estimates, NRL-Blend and CMORPH. During the presentation, we will outline systems engineering approach used by ASP, summarize the results of the GPM RPC experiments, and discuss the lessons learned in prototyping applications for GPM-era high resolution precipitation products.

  9. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  10. Phosphatase mediated bioprecipitation of lead as pyromorphite by Achromobacter xylosoxidans.

    PubMed

    Sharma, Jaya; Shamim, Kashif; Dubey, Santosh Kumar

    2018-07-01

    Achromobacter xylosoxidans strain SJ11, tolerating up to 4.0 mM lead nitrate, in a defined minimal medium was isolated from the waste of a battery manufacturing industry, Goa, India. Interestingly, it formed white precipitate on exposure to lead nitrate which was also evident from scanning electron micrograph (SEM). Energy dispersive X-ray spectroscopic analysis revealed the presence of lead (48.5% by weight) along with phosphorus and chlorine in the precipitate. Transmission electron microscopy (TEM) of bacterial cells clearly refuted the possibility of intracellular lead uptake confirming extracellular precipitation as a predominant mechanism of lead resistance in this bacterium. The extracellular precipitate was further identified as pyromorphite [Pb 5 (PO 4 ) 3 Cl] by X-ray diffraction analysis. This was also corroborated by fourier transformed infrared spectroscopy (FTIR) indicating a significant involvement of phosphate groups. Atomic absorption spectroscopic analysis clearly demonstrated that 465.8 mg g -1 lead was precipitated by the bacterial cells. There was remarkable increase of 160% in phosphatase activity suggesting it's important role in lead precipitation. This was further substantiated by significant up-regulation of phosphatase, CheZ using LC-MS/MS. Therefore phosphatase mediated extracellular precipitation of lead as pyromorphite by A. xylosoxidans strain SJ11 clearly demonstrated it's potential in bioremediation of lead contaminated environmental sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  12. Cu assisted stabilization and nucleation of L1 2 precipitates in Al 0.3 CuFeCrNi 2 fcc-based high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwalani, B.; Choudhuri, D.; Soni, V.

    2017-05-01

    A detailed investigation of precipitation of the ordered L12 (γ’) phase in a Al0.3CrCuFeNi2 high entropy alloy (HEA), more generally referred to as a complex concentrated alloy (CCA), reveals the role of copper (Cu) on stabilization and precipitation of the ordered L12 ( γ’) phase. Detailed characterization via coupling of scanning and transmission electron microscopy, and atom probe tomography revealed novel insights into Cu clustering within the face-centered cubic matrix of this HEA, leading to heterogeneous nucleation sites for the γ’ precipitates. The subsequent partitioning of Cu into the γ’ precipitates indicates their stabilization is due to Cu addition. Themore » γ’ order-disorder transition temperature was determined to be ~930 _C in this alloy, based on synchrotron diffraction experiments, involving in situ annealing. The growth and high temperature stability of the γ’ precipitates was also confirmed via systematic scanning electron microscopy investigations of samples annealed at temperatures in the range of 700-900 oC. The role of Cu revealed by this study can be employed in the design of precipitation strengthened HEAs, as well as in a more general sense applied to other types of superalloys, with the objective of potentially enhancing their mechanical properties at room and elevated temperatures« less

  13. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  14. A novel method to analyze betaine in chicken liver: effect of dietary betaine and choline supplementation on the hepatic betaine concentration in broiler chicks.

    PubMed

    Saarinen, M T; Kettunen, H; Pulliainen, K; Peuranen, S; Tiihonen, K; Remus, J

    2001-02-01

    Betaine was measured from liver tissue by a high-performance liquid chromatographic (HPLC) method developed for this study. The method involves homogenization of liver in acetate buffer at pH 6 and precipitation of protein with trichloroacetic acid, which was removed by diethyl ether extraction. Betaine was separated using a cation exchange column in Ca(2+) form and detected with a refractive index detector. This method also allows the determination of S-adenosylmethionine (S-AM) from the same liver extract but with different HPLC conditions. Broiler chicks were fed with experimental diets supplemented with four different doses of betaine or choline ranging from 0 to 5 mol equiv. After a 3 week feeding period, the livers were analyzed for betaine and S-AM. Dietary betaine was twice as efficient in increasing the hepatic betaine concentration as dietary choline. The hepatic S-AM concentrations were similar in all dietary treatments.

  15. Optimal ranking regime analysis of U.S. climate variablility. Part II: Precipitation and streamflow

    USDA-ARS?s Scientific Manuscript database

    In a preceding companion paper the Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) regimes in U.S. climate division temperature data during 1896-2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. In add...

  16. Superconductor precursor mixtures made by precipitation method

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1989-01-01

    Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.

  17. Method of producing .sup.67 Cu

    DOEpatents

    O'Brien, Jr., Harold A.; Barnes, John W.; Taylor, Wayne A.; Thomas, Kenneth E.; Bentley, Glenn E.

    1984-01-01

    A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  18. Method for producing /sup 67/Cu

    DOEpatents

    O'Brien, H.A. Jr.; Barnes, J.W.; Taylor, W.A.; Thomas, K.E.; Bentley, G.E.

    A method of producing carrier-free /sup 67/Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including /sup 67/Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  19. Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.

  20. Rapid determination of tannins in tanning baths by adaptation of BSA method.

    PubMed

    Molinari, R; Buonomenna, M G; Cassano, A; Drioli, E

    2001-01-01

    A rapid and reproducible method for the determination of tannins in vegetable tanning baths is proposed as a modification of the BSA method for grain tannins existing in literature. The protein BSA was used instead of leather powder employed in the Filter Method, which is adopted in Italy and various others countries of Central Europe. In this rapid method the tannin contents is determined by means a spectrophotometric reading and not by means a gravimetric analysis of the Filter Method. The BSA method, which belongs to mixed methods (which use both precipitation and complexation of tannins), consists of selective precipitation of tannin from a solution containing also non tannins by BSA, the dissolution of precipitate and the quantification of free tannin amount by its complexation with Fe(III) in hydrochloric solutions. The absorbance values, read at 522 nm, have been expressed in terms of tannic acid concentration by using a calibration curve made with standard solutions of tannic acid; these have been correlated with the results obtained by using the Filter Method.

  1. Micro and colloidal stickie pacification with precipitated calcium carbonate

    Treesearch

    John H. Klungness; Roland L. Gleisner; Marguerite S. Sykes

    2002-01-01

    Colloidal stickies that build up in mill process water during pulping are problematic and difficult to remove. We examined precipitated calcium carbonate (PCC) as a means to ameliorate process water stickies. The effectiveness of PCC added directly into a slurry of deinked pulp was compared with in situ precipitation of PCC by the fiber loading method. We found that...

  2. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    PubMed

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Green synthesis of silica nanoparticles using sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Mohd, Nur Kamilah; Wee, Nik Nur Atiqah Nik; Azmi, Alyza A.

    2017-09-01

    Silica nanoparticles have been great attention as it being evaluated for used in abundant fields and applications. Due to this significance, this research was conducted to synthesis silica nanoparticles using local agricultural waste, sugarcane bagasse. We executed extraction and precipitation process as it involved low cost, less toxic and low energy process compared to other methods. The Infrared (IR) spectra showed the vibration peak of Si-O-Si, which clearly be the evidence for the silica characteristics in the sample. In this research, amorphous silica nanoparticles with spherical morphology with an average size of 30 nm, and specific surface area of 111 m2/g-1 have been successfully synthesized. The XRD patterns showed the amorphous nature of silica nanoparticles. As a comparison, the produced silica nanoparticles from sugarcane bagasse are compared with the respective nanoparticles synthesized using Stöber method.

  4. An "Ensemble Approach" to Modernizing Extreme Precipitation Estimation for Dam Safety Decision-Making

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Mahoney, K. M.; Webb, R. S.; McCormick, B.

    2017-12-01

    To ensure structural and operational safety of dams and other water management infrastructure, water resources managers and engineers require information about the potential for heavy precipitation. The methods and data used to estimate extreme rainfall amounts for managing risk are based on 40-year-old science and in need of improvement. The need to evaluate new approaches based on the best science available has led the states of Colorado and New Mexico to engage a body of scientists and engineers in an innovative "ensemble approach" to updating extreme precipitation estimates. NOAA is at the forefront of one of three technical approaches that make up the "ensemble study"; the three approaches are conducted concurrently and in collaboration with each other. One approach is the conventional deterministic, "storm-based" method, another is a risk-based regional precipitation frequency estimation tool, and the third is an experimental approach utilizing NOAA's state-of-the-art High Resolution Rapid Refresh (HRRR) physically-based dynamical weather prediction model. The goal of the overall project is to use the individual strengths of these different methods to define an updated and broadly acceptable state of the practice for evaluation and design of dam spillways. This talk will highlight the NOAA research and NOAA's role in the overarching goal to better understand and characterizing extreme precipitation estimation uncertainty. The research led by NOAA explores a novel high-resolution dataset and post-processing techniques using a super-ensemble of hourly forecasts from the HRRR model. We also investigate how this rich dataset may be combined with statistical methods to optimally cast the data in probabilistic frameworks. NOAA expertise in the physical processes that drive extreme precipitation is also employed to develop careful testing and improved understanding of the limitations of older estimation methods and assumptions. The process of decision making in the midst of uncertainty is a major part of this study. We will speak to how the ensemble approach may be used in concert with one another to manage risk and enhance resiliency in the midst of uncertainty. Finally, the presentation will also address the implications of including climate change in future extreme precipitation estimation studies.

  5. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhong, Keyuan; Zheng, Fenli; Xu, Ximeng; Qin, Chao

    2018-06-01

    Different precipitation phases (rain, snow or sleet) differ greatly in their hydrological and erosional processes. Therefore, accurate discrimination of the precipitation phase is highly important when researching hydrologic processes and climate change at high latitudes and mountainous regions. The objective of this study was to identify suitable temperature thresholds for discriminating the precipitation phase in the Songhua River Basin (SRB) based on 20-year daily precipitation collected from 60 meteorological stations located in and around the basin. Two methods, the air temperature method (AT method) and the wet bulb temperature method (WBT method), were used to discriminate the precipitation phase. Thirteen temperature thresholds were used to discriminate snowfall in the SRB. These thresholds included air temperatures from 0 to 5.5 °C at intervals of 0.5 °C and the wet bulb temperature (WBT). Three evaluation indices, the error percentage of discriminated snowfall days (Ep), the relative error of discriminated snowfall (Re) and the determination coefficient (R2), were applied to assess the discrimination accuracy. The results showed that 2.5 °C was the optimum threshold temperature for discriminating snowfall at the scale of the entire basin. Due to differences in the landscape conditions at the different stations, the optimum threshold varied by station. The optimal threshold ranged 1.5-4.0 °C, and 19 stations, 17 stations and 18 stations had optimal thresholds of 2.5 °C, 3.0 °C, and 3.5 °C respectively, occupying 90% of all stations. Compared with using a single suitable temperature threshold to discriminate snowfall throughout the basin, it was more accurate to use the optimum threshold at each station to estimate snowfall in the basin. In addition, snowfall was underestimated when the temperature threshold was the WBT and when the temperature threshold was below 2.5 °C, whereas snowfall was overestimated when the temperature threshold exceeded 4.0 °C at most stations. The results of this study provide information for climate change research and hydrological process simulations in the SRB, as well as provide reference information for discriminating precipitation phase in other regions.

  6. Benchmarking a geostatistical procedure for the homogenisation of annual precipitation series

    NASA Astrophysics Data System (ADS)

    Caineta, Júlio; Ribeiro, Sara; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    The European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), has brought to attention the importance of establishing reliable homogenisation methods for climate data. In order to achieve that, a benchmark data set, containing monthly and daily temperature and precipitation data, was created to be used as a comparison basis for the effectiveness of those methods. Several contributions were submitted and evaluated by a number of performance metrics, validating the results against realistic inhomogeneous data. HOME also led to the development of new homogenisation software packages, which included feedback and lessons learned during the project. Preliminary studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. The purpose of the current study is to test and compare this geostatistical approach with the methods previously presented in the HOME project, using surrogate precipitation series from the HOME benchmark data set. The benchmark data set contains monthly precipitation surrogate series, from which annual precipitation data series were derived. These annual precipitation series were subject to exploratory analysis and to a thorough variography study. The geostatistical approach was then applied to the data set, based on different scenarios for the spatial continuity. Implementing this procedure also promoted the development of a computer program that aims to assist on the homogenisation of climate data, while minimising user interaction. Finally, in order to compare the effectiveness of this methodology with the homogenisation methods submitted during the HOME project, the obtained results were evaluated using the same performance metrics. This comparison opens new perspectives for the development of an innovative procedure based on the geostatistical stochastic approach. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").

  7. Natural chlorate in the environment: Application of a new IC-ESI/MS/MS method with a Cl18O3- internal standard

    USGS Publications Warehouse

    Rao, Balaji; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.; Andraski, Brian J.; Eckardt, Frank D.; Jackson, W. Andrew

    2010-01-01

    A new ion chromatography electrospray tandem mass spectrometry (IC-ESI/MS/MS) method has been developed for quantification and confirmation of chlorate (ClO3−) in environmental samples. The method involves the electro-chemical generation of isotopically labeled chlorate internal standard (Cl18O3−) using 18O water (H218O). The standard was added to all samples prior to analysis thereby minimizing the matrix effects that are associated with common ions without the need for expensive sample pretreatments. The method detection limit (MDL) for ClO3− was 2 ng L−1 for a 1 mL volume sample injection. The proposed method was successfully applied to analyze ClO3− in difficult environmental samples including soil and plant leachates. The IC-ESI/MS/MS method described here was also compared to established EPA method 317.0 for ClO3− analysis. Samples collected from a variety of environments previously shown to contain natural perchlorate (ClO4−) occurrence were analyzed using the proposed method and ClO3− was found to co-occur with ClO4− at concentrations ranging from <2 ng L−1 in precipitation from Texas and Puerto Rico to >500 mg kg−1 in caliche salt deposits from the Atacama Desert in Chile. Relatively low concentrations of ClO3− in some natural groundwater samples (<0.1 μg L−1) analyzed in this work may indicate lower stability when compared to ClO4− in the subsurface. The high concentrations of ClO3− in caliches and soils (3−6 orders of magnitude greater) as compared to precipitation samples indicate that ClO3−, like ClO4−, may be atmospherically produced and deposited, then concentrated in dry soils, and is possibly a minor component in the biogeochemical cycle of chlorine.

  8. Natural chlorate in the environment: application of a new IC-ESI/MS/MS method with a Cl¹⁸O₃-internal standard.

    PubMed

    Balaji Rao, Balaji Rao; Hatzinger, Paul B; Böhlke, John Karl; Sturchio, Neil C; Andraski, Brian J; Eckardt, Frank D; Jackson, W Andrew

    2010-11-15

    A new ion chromatography electrospray tandem mass spectrometry (IC-ESI/MS/MS) method has been developed for quantification and confirmation of chlorate (ClO₃⁻) in environmental samples. The method involves the electrochemical generation of isotopically labeled chlorate internal standard (Cl¹⁸O₃⁻) using ¹⁸O water (H₂¹⁸O) he standard was added to all samples prior to analysis thereby minimizing the matrix effects that are associated with common ions without the need for expensive sample pretreatments. The method detection limit (MDL) for ClO₃⁻ was 2 ng L⁻¹ for a 1 mL volume sample injection. The proposed method was successfully applied to analyze ClO₃⁻ in difficult environmental samples including soil and plant leachates. The IC-ESI/MS/MS method described here was also compared to established EPA method 317.0 for ClO₃⁻ analysis. Samples collected from a variety of environments previously shown to contain natural perchlorate (ClO₄⁻) occurrence were analyzed using the proposed method and ClO₃⁻ was found to co-occur with ClO₄⁻ at concentrations ranging from < 2 ng L⁻¹ in precipitation from Texas and Puerto Rico to >500 mg kg⁻¹ in caliche salt deposits from the Atacama Desert in Chile. Relatively low concentrations of ClO₃⁻ in some natural groundwater samples (0.1 µg L⁻¹) analyzed in this work may indicate lower stability when compared to ClO₄⁻ in the subsurface. The high concentrations ClO₃⁻ in caliches and soils (3-6 orders of magnitude greater) as compared to precipitation samples indicate that ClO₃⁻, like ClO₄⁻, may be atmospherically produced and deposited, then concentrated in dry soils, and is possibly a minor component in the biogeochemical cycle of chlorine.

  9. Acute and Chronic Risk Preceding Suicidal Crises Among Middle-Aged Men Without Known Mental Health and/or Substance Abuse Problems: An Exploratory Mixed-Methods Analysis.

    PubMed

    Schiff, Lara B; Holland, Kristin M; Stone, Deborah M; Logan, J; Marshall, Khiya J; Martell, Brandi; Bartholow, Brad

    2015-01-01

    Suicides among men aged 35-64 years increased by 27% between 1999 and 2013, yet little research exists to examine the nature of the suicide risk within this population. Many men do not seek help if they have mental health problems and suicides may occur in reaction to stressful circumstances. We examined the precipitating circumstances of 600 suicides without known mental health or substance abuse (MH/SA) problems and with a recent crisis. Whether these suicides occurred within the context of an acute crisis only or in the context of chronic circumstances was observed. Using data from the National Violent Death Reporting System and employing mixed-methods analysis, we examined the circumstances and context of a census of middle-aged male suicides (n = 600) in seven states between 2005 and 2010. Precipitating circumstances among this group involved intimate partner problems (IPP; 58.3%), criminal/legal problems (50.7%), job/financial problems (22.5%), and health problems (13.5%). Men with IPP and criminal/legal issues were more likely than men with health and/or job/financial issues to experience suicide in the context of an acute crisis only. Suicides occurring in reaction to an acute crisis only or in the context of acute and chronic circumstances lend themselves to opportunities for intervention. Further implications are discussed.

  10. Basic Requirements for Collecting, Documenting, and Reporting Precipitation and Stormwater-Flow Measurements

    USGS Publications Warehouse

    Church, Peter E.; Granato, Gregory E.; Owens, David W.

    1999-01-01

    Accurate and representative precipitation and stormwater-flow data are crucial for use of highway- or urban-runoff study results, either individually or in a regional or national synthesis of stormwater-runoff data. Equally important is information on the level of accuracy and representativeness of this precipitation and stormwaterflow data. Accurate and representative measurements of precipitation and stormwater flow, however, are difficult to obtain because of the rapidly changing spatial and temporal distribution of precipitation and flows during a storm. Many hydrologic and hydraulic factors must be considered in performing the following: selecting sites for measuring precipitation and stormwater flow that will provide data that adequately meet the objectives and goals of the study, determining frequencies and durations of data collection to fully characterize the storm and the rapidly changing stormwater flows, and selecting methods that will yield accurate data over the full range of both rainfall intensities and stormwater flows. To ensure that the accuracy and representativeness of precipitation and stormwater-flow data can be evaluated, decisions as to (1) where in the drainage system precipitation and stormwater flows are measured, (2) how frequently precipitation and stormwater flows are measured, (3) what methods are used to measure precipitation and stormwater flows, and (4) on what basis are these decisions made, must all be documented and communicated in an accessible format, such as a project description report, a data report or an appendix to a technical report, and (or) archived in a State or national records center. A quality assurance/quality control program must be established to ensure that this information is documented and reported, and that decisions made in the design phase of a study are continually reviewed, internally and externally, throughout the study. Without the supporting data needed to evaluate the accuracy and representativeness of the precipitation and stormwater-flow measurements, the data collected and interpretations made may have little meaning.

  11. An In Situ Method for Sizing Insoluble Residues in Precipitation and Other Aqueous Samples

    PubMed Central

    Axson, Jessica L.; Creamean, Jessie M.; Bondy, Amy L.; Capracotta, Sonja S.; Warner, Katy Y.; Ault, Andrew P.

    2015-01-01

    Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 μL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0–3.0(±0.3)×108 particles cm−3, while surface area ranged from 1.8(±0.7)–3.2(±1.0)×107 μm2 cm−3. Number size distributions peaked between 133–150 nm, with both single and multi-modal character, while surface area distributions peaked between 173–270 nm. Comparison with electron microscopy of particles up to 10 μm show that, by number, > 97% residues are <1 μm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes. PMID:25705069

  12. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  13. Methods and systems for utilizing carbide lime or slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devenney, Martin; Fernandez, Miguel; Chen, Irvin

    Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammoniamore » during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.« less

  14. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  15. Objective classification of atmospheric circulation over southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Linderson, Maj-Lena

    2001-02-01

    A method for calculating circulation indices and weather types following the Lamb classification is applied to southern Scandinavia. The main objective is to test the ability of the method to describe the atmospheric circulation over the area, and to evaluate the extent to which the pressure patterns determine local precipitation and temperature in Scania, southernmost Sweden. The weather type classification method works well and produces distinct groups. However, the variability within the group is large with regard to the location of the low pressure centres, which may have implications for the precipitation over the area. The anticyclonic weather type dominates, together with the cyclonic and westerly types. This deviates partly from the general picture for Sweden and may be explained by the southerly location of the study area. The cyclonic type is most frequent in spring, although cloudiness and amount of rain are lowest during this season. This could be explained by the occurrence of weaker cyclones or low air humidity during this time of year. Local temperature and precipitation were modelled by stepwise regression for each season, designating weather types as independent variables. Only the winter season-modelled temperature and precipitation show a high and robust correspondence to the observed temperature and precipitation, even though <60% of the precipitation variance is explained. In the other seasons, the connection between atmospheric circulation and the local temperature and precipitation is low. Other meteorological parameters may need to be taken into account. The time and space resolution of the mean sea level pressure (MSLP) grid may affect the results, as many important features might not be covered by the classification. Local physiography may also influence the local climate in a way that cannot be described by the atmospheric circulation pattern alone, stressing the importance of using more than one observation series.

  16. Improved Hourly and Sub-Hourly Gauge Data for Assessing Precipitation Extremes in the U.S.

    NASA Astrophysics Data System (ADS)

    Lawrimore, J. H.; Wuertz, D.; Palecki, M. A.; Kim, D.; Stevens, S. E.; Leeper, R.; Korzeniewski, B.

    2017-12-01

    The NOAA/National Weather Service (NWS) Fischer-Porter (F&P) weighing bucket precipitation gauge network consists of approximately 2000 stations that comprise a subset of the NWS Cooperative Observers Program network. This network has operated since the mid-20th century, providing one of the longest records of hourly and 15-minute precipitation observations in the U.S. The lengthy record of this dataset combined with its relatively high spatial density, provides an important source of data for many hydrological applications including understanding trends and variability in the frequency and intensity of extreme precipitation events. In recent years NOAA's National Centers for Environmental Information initiated an upgrade of its end-to-end processing and quality control system for these data. This involved a change from a largely manual review and edit process to a fully automated system that removes the subjectivity that was previously a necessary part of dataset quality control and processing. An overview of improvements to this dataset is provided along with the results of an analysis of observed variability and trends in U.S. precipitation extremes since the mid-20th century. Multi-decadal trends in many parts of the nation are consistent with model projections of an increase in the frequency and intensity of heavy precipitation in a warming world.

  17. Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System (GLDAS) Land Surface States

    NASA Technical Reports Server (NTRS)

    Gottschalck, Jon; Meng, Jesse; Rodel, Matt; Houser, paul

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. NASA's Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type). Precipitation is arguably the most important input to LSMs. Many precipitation datasets have been produced using satellite and rain gauge observations and weather forecast models. In this study, seven different global precipitation datasets were evaluated over the United States, where dense rain gauge networks contribute to reliable precipitation maps. We then used the seven datasets as inputs to GLDAS simulations, so that we could diagnose their impacts on output stocks and fluxes of water. In terms of totals, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) had the closest agreement with the US rain gauge dataset for all seasons except winter. The CMAP precipitation was also the most closely correlated in time with the rain gauge data during spring, fall, and winter, while the satellitebased estimates performed best in summer. The GLDAS simulations revealed that modeled soil moisture is highly sensitive to precipitation, with differences in spring and summer as large as 45% depending on the choice of precipitation input.

  18. The relationship between low-level convergence and precipitation in CMIP5 current and future climates

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Jakob, Christian; Reeder, Michael

    2017-04-01

    Precipitation is often organized along coherent lines of low-level convergence, which at longer time and space scales form well-known convergence zones over the tropical oceans. Here, an automated, objective method is used to identify instantaneous low-level convergence lines in the current climate of CMIP5 models and compared with reanalysis data results. Identified convergence lines are combined with precipitation to assess the extent to which precipitation around the globe is associated with convergence in the lower troposphere. Differences between the current climate of the models and observations are diagnosed in terms of the frequency and intensity of both precipitation associated with convergence lines and that which is not. Future changes in frequency and intensity of convergence lines, and associated precipitation, are also investigated for their contribution to the simulated future changes in total precipitation.

  19. Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Takikawa, Hiroki; Hirabayashi, Yukiko; Hanasaki, Naota; Nishimori, Motoki

    2017-08-01

    The use of different bias-correction methods and global retrospective meteorological forcing data sets as the reference climatology in the bias correction of general circulation model (GCM) daily data is a known source of uncertainty in projected climate extremes and their impacts. Despite their importance, limited attention has been given to these uncertainty sources. We compare 27 projected temperature and precipitation indices over 22 regions of the world (including the global land area) in the near (2021-2060) and distant future (2061-2100), calculated using four Representative Concentration Pathways (RCPs), five GCMs, two bias-correction methods, and three reference forcing data sets. To widen the variety of forcing data sets, we developed a new forcing data set, S14FD, and incorporated it into this study. The results show that S14FD is more accurate than other forcing data sets in representing the observed temperature and precipitation extremes in recent decades (1961-2000 and 1979-2008). The use of different bias-correction methods and forcing data sets contributes more to the total uncertainty in the projected precipitation index values in both the near and distant future than the use of different GCMs and RCPs. However, GCM appears to be the most dominant uncertainty source for projected temperature index values in the near future, and RCP is the most dominant source in the distant future. Our findings encourage climate risk assessments, especially those related to precipitation extremes, to employ multiple bias-correction methods and forcing data sets in addition to using different GCMs and RCPs.

  20. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yuxing; Fan, Jiwen; Xiao, Heng

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less

  1. Transition Metal Nanomaterials by Bacterial Precipitation: Synthesis and Characterization of Cadmium Sulfide Quantum Dots

    NASA Astrophysics Data System (ADS)

    Marusak, Katherine Elizabeth

    We present a new method to fabricate semiconducting, transition metal nanoparticles (NPs) with tunable bandgap energies using engineered Escherichia coli. These bacteria overexpress the Treponema denticola cysteine desulfhydrase gene to facilitate precipitation of cadmium sulfide (CdS) NPs. Multiple characterization techniques reveal that the bacterially precipitated NPs are agglomerates of mostly quantum dots, with diameters that can range from 3 to 15 nm, embedded in a carbon-rich matrix. Notably, the measured photoelectrochemical current generated by these NPs is comparable to values reported in the literature and higher than that of synthesized chemical bath deposited CdS NPs. We showed that we can manipulate the bandgap energy of the NPs by controlling their size through varying the precursor concentrations. Our calculated bandgap energies ranged between 2.67 eV (i.e., quantum confined CdS) to 2.36 eV ( i.e., bulk CdS). By adding the CdCl2 precursor at a specific stage of the bacterial growth cycle, we were able to induce extracellular CdS NP precipitation. Additionally, we adapted extracellular precipitation strategies to form CdS NPs on surfaces as bacterial/PC membrane composites and characterized them by spectroscopic and imaging methods, including energy dispersive spectroscopy, and scanning and transmission electron microscopy. This method allowed us to control the localization of NP precipitation throughout the layered bacterial/membrane composite, by varying the timing of the cadmium precursor addition. Additionally, we demonstrated the photodegradation of methyl orange using the CdS functionalized porous membranes, thus confirming the photocatalytic properties of our composites for eventual translation to device development. We finally also explored the precipitation of other metallic NPs using our bacterial system, using enzyme extracted from our bacterial system, and using commercially available, his-tagged enzyme. We hope to extend this research to tethering enzymes on surfaces to direct NP precipitation. Taken all together, our results show the great promise bacteria have for the fabrication of tunable, transition metal NPs with useful electronic properties.

  2. Statistical evaluation of the performance of gridded monthly precipitation products from reanalysis data, satellite estimates, and merged analyses over China

    NASA Astrophysics Data System (ADS)

    Deng, Xueliang; Nie, Suping; Deng, Weitao; Cao, Weihua

    2018-04-01

    In this study, we compared the following four different gridded monthly precipitation products: the National Centers for Environmental Prediction version 2 (NCEP-2) reanalysis data, the satellite-based Climate Prediction Center Morphing technique (CMORPH) data, the merged satellite-gauge Global Precipitation Climatology Project (GPCP) data, and the merged satellite-gauge-model data from the Beijing Climate Center Merged Estimation of Precipitation (BMEP). We evaluated the performances of these products using monthly precipitation observations spanning the period of January 2003 to December 2013 from a dense, national, rain gauge network in China. Our assessment involved several statistical techniques, including spatial pattern, temporal variation, bias, root-mean-square error (RMSE), and correlation coefficient (CC) analysis. The results show that NCEP-2, GPCP, and BMEP generally overestimate monthly precipitation at the national scale and CMORPH underestimates it. However, all of the datasets successfully characterized the northwest to southeast increase in the monthly precipitation over China. Because they include precipitation gauge information from the Global Telecommunication System (GTS) network, GPCP and BMEP have much smaller biases, lower RMSEs, and higher CCs than NCEP-2 and CMORPH. When the seasonal and regional variations are considered, NCEP-2 has a larger error over southern China during the summer. CMORPH poorly reproduces the magnitude of the precipitation over southeastern China and the temporal correlation over western and northwestern China during all seasons. BMEP has a lower RMSE and higher CC than GPCP over eastern and southern China, where the station network is dense. In contrast, BMEP has a lower CC than GPCP over western and northwestern China, where the gauge network is relatively sparse.

  3. Downscaling RCP8.5 daily temperatures and precipitation in Ontario using localized ensemble optimal interpolation (EnOI) and bias correction

    NASA Astrophysics Data System (ADS)

    Deng, Ziwang; Liu, Jinliang; Qiu, Xin; Zhou, Xiaolan; Zhu, Huaiping

    2017-10-01

    A novel method for daily temperature and precipitation downscaling is proposed in this study which combines the Ensemble Optimal Interpolation (EnOI) and bias correction techniques. For downscaling temperature, the day to day seasonal cycle of high resolution temperature of the NCEP climate forecast system reanalysis (CFSR) is used as background state. An enlarged ensemble of daily temperature anomaly relative to this seasonal cycle and information from global climate models (GCMs) are used to construct a gain matrix for each calendar day. Consequently, the relationship between large and local-scale processes represented by the gain matrix will change accordingly. The gain matrix contains information of realistic spatial correlation of temperature between different CFSR grid points, between CFSR grid points and GCM grid points, and between different GCM grid points. Therefore, this downscaling method keeps spatial consistency and reflects the interaction between local geographic and atmospheric conditions. Maximum and minimum temperatures are downscaled using the same method. For precipitation, because of the non-Gaussianity issue, a logarithmic transformation is used to daily total precipitation prior to conducting downscaling. Cross validation and independent data validation are used to evaluate this algorithm. Finally, data from a 29-member ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) GCMs are downscaled to CFSR grid points in Ontario for the period from 1981 to 2100. The results show that this method is capable of generating high resolution details without changing large scale characteristics. It results in much lower absolute errors in local scale details at most grid points than simple spatial downscaling methods. Biases in the downscaled data inherited from GCMs are corrected with a linear method for temperatures and distribution mapping for precipitation. The downscaled ensemble projects significant warming with amplitudes of 3.9 and 6.5 °C for 2050s and 2080s relative to 1990s in Ontario, respectively; Cooling degree days and hot days will significantly increase over southern Ontario and heating degree days and cold days will significantly decrease in northern Ontario. Annual total precipitation will increase over Ontario and heavy precipitation events will increase as well. These results are consistent with conclusions in many other studies in the literature.

  4. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments

    PubMed Central

    Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph

    2014-01-01

    Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies. PMID:28788587

  5. Effect of synthesizing method on the properties of LiFePO4/C composite for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yoon, Man-Soon; Islam, Mobinul; Park, Young Min; Ur, Soon-Chul

    2013-03-01

    Olivine-type LiFePO4/C cathode materials are fabricated with FePO4 powders that are pre-synthesized by two different processes from iron chloride solution. Process I is a modified precipitation method which is implemented by the pH control of a solution using NH4OH to form FePO4 precipitates at room temperature. Process II is a conventional precipitation method, of which H3PO4 (85%) solution is gradually added to a FeCl3 solution during the process to maintain a designated mole ratio. The solution is subsequently aged at 90°C in a water bath until FePO4 precipitates appear. In order to synthesize LiFePO4/C composites, each batch of FePO4 powders is then mixed with pre-milled lithium carbonate and glucose (8 wt. %) as a carbon source in a ball-mill. The structural characteristics of both LiFePO4/C composites fabricated using iron phospates from two different routes have been examined employing XRD and SEM. The modified precipitation process is considered to be a relatively simple and effective process for the preparation of LiFePO4/C composites owing to their excellent electrochemical properties and rate capabilities.

  6. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    NASA Astrophysics Data System (ADS)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  7. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments.

    PubMed

    Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph

    2014-03-28

    Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e ., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.

  8. QPF verification using different radar-based analyses: a case study

    NASA Astrophysics Data System (ADS)

    Moré, J.; Sairouni, A.; Rigo, T.; Bravo, M.; Mercader, J.

    2009-09-01

    Verification of QPF in NWP models has been always challenging not only for knowing what scores are better to quantify a particular skill of a model but also for choosing the more appropriate methodology when comparing forecasts with observations. On the one hand, an objective verification technique can provide conclusions that are not in agreement with those ones obtained by the "eyeball" method. Consequently, QPF can provide valuable information to forecasters in spite of having poor scores. On the other hand, there are difficulties in knowing the "truth" so different results can be achieved depending on the procedures used to obtain the precipitation analysis. The aim of this study is to show the importance of combining different precipitation analyses and verification methodologies to obtain a better knowledge of the skills of a forecasting system. In particular, a short range precipitation forecasting system based on MM5 at 12 km coupled with LAPS is studied in a local convective precipitation event that took place in NE Iberian Peninsula on October 3rd 2008. For this purpose, a variety of verification methods (dichotomous, recalibration and object oriented methods) are used to verify this case study. At the same time, different precipitation analyses are used in the verification process obtained by interpolating radar data using different techniques.

  9. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOEpatents

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  11. Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.

    PubMed

    Yatirajam, V; Ahuja, U; Kakkar, L R

    1975-03-01

    A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.

  12. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  13. A modified method for determining tannin-protein precipitation capacity using accelerated solvent extraction (ASE) and microplate gel filtration.

    PubMed

    McArt, Scott H; Spalinger, Donald E; Kennish, John M; Collins, William B

    2006-06-01

    The protein precipitation assay used by Robbins et al., (1987) Ecology 68:98-107 has been shown to predict successfully the reduction in protein availability to some ruminants due to tannins. The procedure, however, is expensive and laborious, which limits its utility, especially for quantitative ecological or nutritional applications where large numbers of assays may be required. We have modified the method to decrease its cost and increase laboratory efficiency by: (1) automating the extraction by using Accelerated Solvent Extraction (ASE); and (2) by scaling and automating the precipitation reaction, chromatography, and spectrometry with microplate gel filtration and an automated UV-VIS microplate spectrometer. ASE extraction is shown to be as effective at extracting tannins as the hot methanol technique. Additionally, the microplate assay is sensitive and precise. We show that the results from the new technique correspond in a nearly 1:1 relationship to the results of the previous technique. Hence, this method could reliably replace the older method with no loss in relevance to herbivore protein digestion. Moreover, the ASE extraction technique should be applicable to other tannin-protein precipitation assays and possibly other phenolic assays.

  14. Lead sorption-desorption from organic residues.

    PubMed

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  15. Precipitation intensity probability distribution modelling for hydrological and construction design purposes

    NASA Astrophysics Data System (ADS)

    Koshinchanov, Georgy; Dimitrov, Dobri

    2008-11-01

    The characteristics of rainfall intensity are important for many purposes, including design of sewage and drainage systems, tuning flood warning procedures, etc. Those estimates are usually statistical estimates of the intensity of precipitation realized for certain period of time (e.g. 5, 10 min., etc) with different return period (e.g. 20, 100 years, etc). The traditional approach in evaluating the mentioned precipitation intensities is to process the pluviometer's records and fit probability distribution to samples of intensities valid for certain locations ore regions. Those estimates further become part of the state regulations to be used for various economic activities. Two problems occur using the mentioned approach: 1. Due to various factors the climate conditions are changed and the precipitation intensity estimates need regular update; 2. As far as the extremes of the probability distribution are of particular importance for the practice, the methodology of the distribution fitting needs specific attention to those parts of the distribution. The aim of this paper is to make review of the existing methodologies for processing the intensive rainfalls and to refresh some of the statistical estimates for the studied areas. The methodologies used in Bulgaria for analyzing the intensive rainfalls and produce relevant statistical estimates: The method of the maximum intensity, used in the National Institute of Meteorology and Hydrology to process and decode the pluviometer's records, followed by distribution fitting for each precipitation duration period; As the above, but with separate modeling of probability distribution for the middle and high probability quantiles. Method is similar to the first one, but with a threshold of 0,36 mm/min of intensity; Another method proposed by the Russian hydrologist G. A. Aleksiev for regionalization of estimates over some territory, improved and adapted by S. Gerasimov for Bulgaria; Next method is considering only the intensive rainfalls (if any) during the day with the maximal annual daily precipitation total for a given year; Conclusions are drown on the relevance and adequacy of the applied methods.

  16. Stable hydrogen isotope analysis as a method to identify illegally trapped songbirds.

    PubMed

    Kelly, Andrew; Thompson, Richard; Newton, Jason

    2008-06-01

    We measured stable hydrogen isotope ratios in the primary feathers of two subspecies of goldfinches, confiscated by the Police and the Royal Society for the Prevention of Cruelty to Animals (RSPCA) on suspicion that they had been illegally taken from the wild. We found significant differences in the delta2H values of the two subspecies indicating that they were sourced from different geographical regions. Our results correlated with isotopic precipitation maps and with the known distribution of the two subspecies of goldfinch. We believe that this technique could be used by law enforcement agencies to determine the origin of birds in cases where the species or subspecies involved are geographically distinct.

  17. Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations

    NASA Astrophysics Data System (ADS)

    Pettersen, Claire; Bennartz, Ralf; Merrelli, Aronne J.; Shupe, Matthew D.; Turner, David D.; Walden, Von P.

    2018-04-01

    A novel method for classifying Arctic precipitation using ground based remote sensors is presented. Using differences in the spectral variation of microwave absorption and scattering properties of cloud liquid water and ice, this method can distinguish between different types of snowfall events depending on the presence or absence of condensed liquid water in the clouds that generate the precipitation. The classification reveals two distinct, primary regimes of precipitation over the Greenland Ice Sheet (GIS): one originating from fully glaciated ice clouds and the other from mixed-phase clouds. Five years of co-located, multi-instrument data from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) are used to examine cloud and meteorological properties and patterns associated with each precipitation regime. The occurrence and accumulation of the precipitation regimes are identified and quantified. Cloud and precipitation observations from additional ICECAPS instruments illustrate distinct characteristics for each regime. Additionally, reanalysis products and back-trajectory analysis show different synoptic-scale forcings associated with each regime. Precipitation over the central GIS exhibits unique microphysical characteristics due to the high surface elevations as well as connections to specific large-scale flow patterns. Snowfall originating from the ice clouds is coupled to deep, frontal cloud systems advecting up and over the southeast Greenland coast to the central GIS. These events appear to be associated with individual storm systems generated by low pressure over Baffin Bay and Greenland lee cyclogenesis. Snowfall originating from mixed-phase clouds is shallower and has characteristics typical of supercooled cloud liquid water layers, and slowly propagates from the south and southwest of Greenland along a quiescent flow above the GIS.

  18. Precipitation Nowcast using Deep Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  19. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  20. USSR and Eastern Europe Scientific Abstracts Geophysics, Astronomy and Space No. 404

    DTIC Science & Technology

    1977-09-01

    atmospheric circulation. A reliable linear correlation was established between the monthly fallout activity of 10^Ru + -^Rh and monthly precipitation and...therefore the washing out of this radionuclide from tropospheric air by precipitation is more important for its fallout. [153] ANALYTICAL...development of some methods for predicting definite weather phenomena (such as precipitation ), taking into account the evolution of the

  1. Gamma prime precipitation modeling and strength responses in powder metallurgy superalloys

    NASA Astrophysics Data System (ADS)

    Mao, Jian

    Precipitation-hardened nickel-based superalloys have been widely used as high temperature structural materials in gas turbine engine applications for more than 50 years. Powder metallurgy (P/M) technology was introduced as an innovative manufacturing process to overcome severe segregation and poor workability of alloys with high alloying contents. The excellent mechanical properties of P/M superalloys also depend upon the characteristic microstructures, including grain size and size distribution of gamma' precipitates. Heat treatment is the most critical processing step that has ultimate influences on the microstructure, and hence, on the mechanical properties of the materials. The main objective of this research was to study the gamma ' precipitation kinetics in various cooling circumstances and also study the strength response to the cooling history in two model alloys, Rne88DT and U720LI. The research is summarized below: (1) An experimental method was developed to allow accurate simulation and control of any desired cooling profile. Two novel cooling methods were introduced: continuous cooling and interrupt cooling. Isothermal aging was also carried out. (2) The growth and coarsening kinetics of the cooling gamma' precipitates were experimentally studied under different cooling and aging conditions, and the empirical equations were established. It was found that the cooling gamma' precipitate versus the cooling rate follows a power law. The gamma' precipitate size versus aging time obeys the LSW cube law for coarsening. (3) The strengthening of the material responses to the cooling rate and the decreasing temperature during cooling was investigated in both alloys. The tensile strength increases with the cooling rate. In addition, the non-monotonic response of strength versus interrupt temperature is of great interest. (4) An energy-driven model integrated with the classic growth and coarsen theories was successfully embedded in a computer program developed to simulate the cooling gamma ' precipitation based on the first principle of thermodynamics. The combination of the thermodynamic and the kinetic approaches provided a more practical method to determine the critical nucleation energy. (5) The simulation results proved the gamma' burst theory and the existence of the multi-stage burst of gamma' precipitates, which shows good agreement with the experimental data in a variety of aspects.

  2. A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge.

    PubMed

    Kumar, Ranjeet; Rao, D D; Dubla, Rupali; Yadav, J R

    2017-07-01

    The conventional radio-analytical technique used for estimation of Pu-isotopes in urine samples involves anion exchange/TEVA column separation followed by alpha spectrometry. This sequence of analysis consumes nearly 3-4 days for completion. Many a times excreta analysis results are required urgently, particularly under repeat and incidental/emergency situations. Therefore, there is need to reduce the analysis time for the estimation of Pu-isotopes in bioassay samples. This paper gives the details of standardization of a rapid method for estimation of Pu-isotopes in urine samples using multi-purpose centrifuge, TEVA resin followed by alpha spectrometry. The rapid method involves oxidation of urine samples, co-precipitation of plutonium along with calcium phosphate followed by sample preparation using high volume centrifuge and separation of Pu using TEVA resin. Pu-fraction was electrodeposited and activity estimated using 236 Pu tracer recovery by alpha spectrometry. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 47-88% with a mean and standard deviation of 64.4% and 11.3% respectively. With this newly standardized technique, the whole analytical procedure is completed within 9h (one working day hour). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The variability of temperature and precipitation over Korean Peninsula induced by off-equatorial western Pacific precipitation during boreal summer

    NASA Astrophysics Data System (ADS)

    Jeong, Yerim; Ham, Yoo-Geun

    2016-04-01

    The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.

  4. Long-term variability and changes of the precipitation regime in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2014-05-01

    This paper presents an examination of precipitation amounts in Pakistan. For this purpose, the annual precipitation and the annual number of precipitation days have been calculated, and a study aimed at investigating precipitation intensity and decadal changes was conducted. Precipitation trends have been calculated using a simple linear regression method and Kendall's tau-based test. To assess stability and differences, a 10-year span was determined for each precipitation region for the period of 1951-2010. This study focused on the three CLINO (Climatological Normal) periods, namely 1961-1990, 1971-2000, and 1981-2010 (the latest global standard normal period). Results confirm the gradual increase of annual precipitation in southwestern coastal areas of Pakistan and Cholistan desert. With regard to annual number of precipitation days, in the central part of the country negative trends were evident for wet days (with precipitation ≧ 0.1 mm), while the number of rainy days (with precipitation ≧ 1 mm) displayed a prominent positive trend. The series of the precipitation intensity gives evidence of a minor decrease in the Baluchistan Plateau, sub-Himalayas, and Potwar Plateau during the study period. Examination of secular trends evidenced that the Murree hills, the upper Indus plain, and the northwestern Baluchistan plateau have had shifts in their precipitation regime towards drier conditions, while the central plain, the northwestern mountains, and the southern part of the country are shifting in their precipitation regime towards wetter conditions. Description among the means of precipitation amounts suggests that "normal" precipitation data for various national projects should be calculated for the last 30 years.

  5. Understanding uncertainty in precipitation changes in a balanced perturbed-physics ensemble under multiple climate forcings

    NASA Astrophysics Data System (ADS)

    Millar, R.; Ingram, W.; Allen, M. R.; Lowe, J.

    2013-12-01

    Temperature and precipitation patterns are the climate variables with the greatest impacts on both natural and human systems. Due to the small spatial scales and the many interactions involved in the global hydrological cycle, in general circulation models (GCMs) representations of precipitation changes are subject to considerable uncertainty. Quantifying and understanding the causes of uncertainty (and identifying robust features of predictions) in both global and local precipitation change is an essential challenge of climate science. We have used the huge distributed computing capacity of the climateprediction.net citizen science project to examine parametric uncertainty in an ensemble of 20,000 perturbed-physics versions of the HadCM3 general circulation model. The ensemble has been selected to have a control climate in top-of-atmosphere energy balance [Yamazaki et al. 2013, J.G.R.]. We force this ensemble with several idealised climate-forcing scenarios including carbon dioxide step and transient profiles, solar radiation management geoengineering experiments with stratospheric aerosols, and short-lived climate forcing agents. We will present the results from several of these forcing scenarios under GCM parametric uncertainty. We examine the global mean precipitation energy budget to understand the robustness of a simple non-linear global precipitation model [Good et al. 2012, Clim. Dyn.] as a better explanation of precipitation changes in transient climate projections under GCM parametric uncertainty than a simple linear tropospheric energy balance model. We will also present work investigating robust conclusions about precipitation changes in a balanced ensemble of idealised solar radiation management scenarios [Kravitz et al. 2011, Atmos. Sci. Let.].

  6. Compound effects of temperature and precipitation in making droughts more frequent in Marathwada, India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Zachariah, M.; Achutarao, K. M.; Otto, F. E. L.

    2017-12-01

    The Marathwada region in Maharashtra, India is known to suffer significantly from agrarian crisis including farmer suicides resulting from persistent droughts. Drought monitoring in India is commonly based on univariate indicators that consider the deficiency in precipitation alone. However, droughts may involve complex interplay of multiple physical variables, necessitating an integrated, multivariate approach to analyse their behaviour. In this study, we compare the behaviour of drought characteristics in Marathwada in the recent years as compared to the first half of the twentieth century, using a joint precipitation and temperature-based Multivariate Standardized Drought Index (MSDI). Drought events in the recent times are found to exhibit exceptional simultaneous anomalies of high temperature and precipitation deficits in this region, though studies on precipitation alone show that these events are within the range of historically observed variability. Additionally, we also develop multivariate copula-based Severity-Duration-Frequency (SDF) relationships for droughts in this region and compare their natures pre- and post- 1950. Based on multivariate return periods considering both temperature and precipitation anomalies, as well as the severity and duration of droughts, it is found that droughts have become more frequent in the post-1950 period. Based on precipitation alone, such an observation cannot be made. This emphasizes the sensitivity of droughts to temperature and underlines the importance of considering compound effects of temperature and precipitation in order to avoid an underestimation of drought risk. This observation-based analysis is the first step towards investigating the causal mechanisms of droughts, their evolutions and impacts in this region, particularly those influenced by anthropogenic climate change.

  7. Microgravity

    NASA Image and Video Library

    1995-09-12

    DCAM, developed by MSFC, grows crystals by the dialysis and liquid-liquid diffusion methods. In both methods, protein crystal growth is induced by changing conditions in the protein. In dialysis, a semipermeable membrane retains the protein solution in one compartment, while allowing molecules of precipitant to pass freely through the membrane from an adjacent compartment. As the precipitant concentration increases within the protein compartment, crystallization begins. In liquid-liquid diffusion, a protein solution and a precipitant solution are layered in a container and allowed to diffuse into each other. This leads to conditions which may induce crystallization of the protein. Liquid-liquid diffusion is difficult on Earth because density and temperature differences cause the solutions to mix rapidly.

  8. A new and fast method for preparing high quality lambda DNA suitable for sequencing.

    PubMed Central

    Manfioletti, G; Schneider, C

    1988-01-01

    A method is described for the rapid purification of high quality lambda DNA. The method can be used from either liquid or plate lysates and on a small scale or a large scale. It relies on the preadsobtion of all polyanions present in the lysate to an "insoluble" anion-exchange matrix (DEAE or TEAE). Phage particles are then disrupted by combined treatment with EDTA/proteinase K and the resulting DNA is precipitated by the addition of the cationic detergent cetyl (or hexadecyl)-trimethyl ammonium bromide-CTAB ("soluble" anion-exchange matrix). The precipitated CTAB-DNA complex is then exchanged to Na-DNA and ethanol precipitated. The resultant purified DNA is suitable for enzymatic reactions and provides a high quality template for dideoxy-sequence analysis. Images PMID:2966928

  9. Determination of papaverine and cocaine by use of a precipitation system coupled on-line to an atomic absorption spectrometer.

    PubMed

    Eisman, M; Gallego, M; Varcárcel, M

    1994-02-01

    A continuous-precipitation flame-atomization atomic absorption spectrometric method for the determination of papaverine and cocaine hydrochlorides is proposed. The method is based on the precipitation of reineckates by injection of Reinecke's salt into a carrier containing the alkaloids and their subsequent retention on a stainless steel filter. In this way, papaverine and cocaine hydrochlorides can be determine over the ranges 5-85 and 50-850 micrograms ml-1 with a relative standard deviation of 1.3 and 3.2%, respectively, and a sampling frequency of 150 h-1. The proposed method is more sensitive and selective for papaverine than it is for cocaine and can be applied to the determination of papaverine HCl in pharmaceutical preparations.

  10. High-throughput protein concentration and buffer exchange: comparison of ultrafiltration and ammonium sulfate precipitation.

    PubMed

    Moore, Priscilla A; Kery, Vladimir

    2009-01-01

    High-throughput protein purification is a complex, multi-step process. There are several technical challenges in the course of this process that are not experienced when purifying a single protein. Among the most challenging are the high-throughput protein concentration and buffer exchange, which are not only labor-intensive but can also result in significant losses of purified proteins. We describe two methods of high-throughput protein concentration and buffer exchange: one using ammonium sulfate precipitation and one using micro-concentrating devices based on membrane ultrafiltration. We evaluated the efficiency of both methods on a set of 18 randomly selected purified proteins from Shewanella oneidensis. While both methods provide similar yield and efficiency, the ammonium sulfate precipitation is much less labor intensive and time consuming than the ultrafiltration.

  11. On the usage of divergence nudging in the DMI nowcasting system

    NASA Astrophysics Data System (ADS)

    Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetmann Nielsen, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; Vedel, Henrik

    2014-05-01

    DMI has recently proposed a new method for nudging radar reflectivity CAPPI products into their operational nowcasting system. The system is based on rapid update cycles (with hourly frequency) with the High Resolution Limited Area Model combined with surface and upper air analysis at each initial time. During the first 1.5 hours of a simulation the model dynamical state is nudged in accordance with the CAPPI product after which a free forecast is produced with a forecast length of 12 hours. The nudging method is based on the assumption that precipitation is forced by low level moisture convergence and an enhanced moisture source will lead to convective triggering of the model cloud scheme. If the model under-predicts precipitation before cut-off horizontal low level divergence is nudged towards an estimated value. These pseudo observations are calculated from the CAPPI product by assuming a specific vertical profile of the change in divergence field. The strength of the nudging is proportional to the difference between observed and modelled precipitation. When over-predicting, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. Results have been analysed in terms of the fractions skill score and the ability of the nudging method to position the precipitation cells correctly is discussed. The ability of the model to retain memory of the precipitation systems in the free forecast has also been investigated and examples of combining the nudging method with extrapolated reflectivity fields are also shown.

  12. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  13. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  14. Calibration Plans for the Global Precipitation Measurement (GPM)

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Flaming, G. M.; Adams, W. J.; Everett, D. F.; Mendelsohn, C. R.; Smith, E. A.; Turk, J.

    2002-01-01

    The Global Precipitation Measurement (GPM) is an international effort led by the National Aeronautics and Space Administration (NASA) of the U.S.A. and the National Space Development Agency of Japan (NASDA) for the purpose of improving research into the global water and energy cycle. GPM will improve climate, weather, and hydrological forecasts through more frequent and more accurate measurement of precipitation world-wide. Comprised of U.S. domestic and international partners, GPM will incorporate and assimilate data streams from many spacecraft with varied orbital characteristics and instrument capabilities. Two of the satellites will be provided directly by GPM, the core satellite and a constellation member. The core satellite, at the heart of GPM, is scheduled for launch in November 2007. The core will carry a conical scanning microwave radiometer, the GPM Microwave Imager (GMI), and a two-frequency cross-track-scanning radar, the Dual-frequency Precipitation Radar (DPR). The passive microwave channels and the two radar frequencies of the core are carefully chosen for investigating the varying character of precipitation over ocean and land, and from the tropics to the high-latitudes. The DPR will enable microphysical characterization and three-dimensional profiling of precipitation. The GPM-provided constellation spacecraft will carry a GMI radiometer identical to that on the core spacecraft. This paper presents calibration plans for the GPM, including on-board instrument calibration, external calibration methods, and the role of ground validation. Particular emphasis is on plans for inter-satellite calibration of the GPM constellation. With its Unique instrument capabilities, the core spacecraft will serve as a calibration transfer standard to the GPM constellation. In particular the Dual-frequency Precipitation Radar aboard the core will check the accuracy of retrievals from the GMI radiometer and will enable improvement of the radiometer retrievals. Observational intersections of the core with the constellation spacecraft are essential in applying this technique to the member satellites. Information from core spacecraft retrievals during intersection events will be transferred to the constellation radiometer instruments in the form of improved calibration and, with experience, improved radiometric algorithms. In preparation for the transfer standard technique, comparisons using the Tropical Rainfall Measuring Mission (TRMM) with sun-synchronous radiometers have been conducted. Ongoing research involves study of critical variables in the inter-comparison, such as correlation with spatial-temporal separation of intersection events, frequency of intersection events, variable azimuth look angles, and variable resolution cells for the various sensors.

  15. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert

    PubMed Central

    Montiel-González, Cristina; Tapia-Torres, Yunuen; Souza, Valeria

    2017-01-01

    Background Soil microbial communities (SMC) play a central role in the structure and function of desert ecosystems. However, the high variability of annual precipitation could results in the alteration of SMC and related biological processes depending on soil water potential. The nature of the physiological adjustments made by SMC in order to obtain energy and nutrients remains unclear under different soil resource availabilities in desert ecosystems. In order to examine this dynamic, the present study examined the effects of variation in annual precipitation on physiological adjustments by the SMC across two vegetation-soil systems of different soil organic matter input in an oligotrophic desert ecosystem. Methods We collected soil samples in the Cuatro Ciénegas Basin (Mexico) under two vegetation covers: rosetophylous scrub (RS) and grassland (G), that differ in terms of quantity and quality of organic matter. Collections were conducted during the years 2011, 2012, 2013 and 2014, over which a noticeable variation in the annual precipitation occurred. The ecoenzymatic activity involved in the decomposition of organic matter, and the concentration of dissolved, available and microbial biomass nutrients, were determined and compared between sites and years. Results In 2011, we observed differences in bacterial taxonomic composition between the two vegetation covers. The lowest values of dissolved, available and microbial nutrients in both cover types were found in 2012. The G soil showed higher values of dissolved and available nutrients in the wet years. Significant positive correlations were detected between precipitation and the ratios Cmic:Nmic and Cmic:Pmic in the RS soil and Cmic:Pmic and Nmic:Pmic in the G soil. The slopes of the regression with Cmic and Nmic were higher in the G soil and lower in the RS soil. Moreover, the SMC under each vegetation cover were co-limited by different nutrients and responded to the sum of water stress and nutrient limitation. Discussion Soil community within both sites (RS and G) may be vulnerable to drought. However, the community of the site with lower resources (RS) is well adapted to acquire P resources by ecoenzyme upregulation during years with adequate precipitation, suggesting that this community is resilient after drought occurs. Under the Global Climate Change scenarios for desert ecosystems that predict reduced annual precipitation and an increased intensity and frequency of torrential rains and drought events, the soil microbial communities of both sites could be vulnerable to drought through C and P co-limitation and reallocation of resources to physiological acclimatization strategies in order to survive. PMID:29134149

  16. Structured Discretion, Racial Bias, and the Death Penalty: The First Decade after "Furman" in Texas.

    ERIC Educational Resources Information Center

    Ekland-Olson, Sheldon

    1988-01-01

    Analyzes data collected in Texas from the first decade of cases sentenced to death after the Furman v. Georgia decision in order to determine any tendency toward being race-linked or victim-based. Found that cases involving White victims more often precipitate the death penalty than those involving Black or Hispanic victims. (KO)

  17. Impact of the North Atlantic Oscillation on winter precipitation totals in Slovakia

    NASA Astrophysics Data System (ADS)

    Leskova, Livia; Stastny, Pavel

    2013-04-01

    The North Atlantic Oscillation (NAO) is the most important circulation mode in the Northern Hemisphere, which impacts climate in Europe in various ways. The strongest impacts of oscillation on air temperature and precipitation regime are detected in Scandinavia and Mediterranean region, but impacts have opposite effect. Therefore, assessment of the relation between NAO and precipitation totals seems to be interesting in Slovakia, because of the country location in the centre between above mentioned regions. Our former research detected only the relation between NAO and a winter precipitation totals in Slovakia. More detailed aspects of this relation is analysed in this paper. A correlation method was used at two resolution levels, which detected opposite spatial impact of NAO on above mentioned seasonal precipitation. The first generalised level was based on the precipitation regions, which were distinguished on the base of characteristic precipitation regime of individual regions. The second level was more detailed and the correlation method was applied on data of every individual rain gauge station from the set of 202 rain gauge stations with complete data for period 1901 - 2010 in Slovakia. In the northern part of the country (Orava and Kysuce regions), there was found the positive correlation. Increase in the winter precipitation totals was recorded in the same regions and general precipitation trend in this area was similar to the trend in used Hurrell oscillation index. It means, following the increasing trend in oscillation course, we can also expect the increase in precipitation totals in these regions in the near future. In a southward direction, this correlation changed to the negative values and the most negative correlation coefficients were reached in the lowland regions (Podunajská and Východoslovenská nížina) and in the region of Juhoslovenská kotlina. This last mentioned region is located in multiple precipitation shadow of Carpathians, whereas the precipitation shadow is lower in other regions. Therefore, we suppose, the impact of NAO is strongly influenced by barrier effect of Carpathian Mountains. It can also be expected the important impact of Mediterranean oscillation in the last mentioned regions. ACKNOWLEDGEMENT The article was prepared with the support of grant VEGA 1/1155/12.

  18. Suitable simple and fast methods for selective isolation of phospholipids as a tool for their analysis.

    PubMed

    Pimentel, Lígia; Fontes, Ana Luiza; Salsinha, Sofia; Machado, Manuela; Correia, Inês; Gomes, Ana Maria; Pintado, Manuela; Rodríguez-Alcalá, Luís Miguel

    2018-03-08

    Lipids are gaining relevance over the last 20 years, as our knowledge about their role has changed from merely energy/structural molecules to compounds also involved in several biological processes. This led to the creation in 2003 of a new emerging research field: lipidomics. In particular the phospholipids have pharmacological/food applications, participate in cell signalling/homeostatic pathways while their analysis faces some challenges. Their fractionation/purification is, in fact, especially difficult, as they are amphiphilic compounds. Moreover, it usually involves SPE or TLC procedures requiring specific materials hampering their suitableness for routine analysis. Finally, they can interfere with the ionization of other molecules during mass spectrometry analysis. Thus, simple high-throughput reliable methods to selectively isolate these compounds based on the difference between chemical characteristics of lipids would represent valuable tools for their study besides that of other compounds. The current review work aims to describe the state-of-the-art related to the extraction of phospholipids using liquid-liquid methods for their targeted isolation. The technological and biological importance of these compounds and ion suppression phenomena are also reviewed. Methods by precipitation with acetone or isolation using methanol seem to be suitable for selective isolation of phospholipids in both biological and food samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On the formation and stability of nanometer scale precipitates in ferritic alloys during processing and high temperature service

    NASA Astrophysics Data System (ADS)

    Alinger, Matthew J.

    Iron powders containing ≈14wt%Cr and smaller amounts of W and Ti were mechanically alloyed (MA) by ball milling with Y2O3 and subsequently either hot consolidated by hot extrusion or isostatic pressing, or powder annealed, producing very high densities of nm-scale coherent transition phase precipitates, or Y-Ti-O nano-clusters (NCs), along with fine-scale grains. These so-called nanostructured ferritic alloys (NFAs) manifest very high strength (static and creep) and corrosion-oxidation resistance up to temperatures in excess of 800°C. We used a carefully designed matrix of model MA powders and consolidated alloys to systematically assess the NC evolutions during each processing step, and to explore the combined effects of alloy composition and a number of processing variables, including the milling energy, consolidation method and the time and temperature of annealing of the as-milled powders. The stability of the NCs was also characterized during high-temperate post-consolidation annealing of a commercial NFA, MA957. The micro-nanostructural evolutions, and their effects on the alloy strength, were characterized by a combination of techniques, including XRD, TEM, atom-probe tomography (APT) and positron annihilation spectroscopy (PAS). However, small angle neutron scattering (SANS) was the primary tool used to characterize the nm-scale precipitates. The effect of the micro-nanostructure on the alloy strength was assessed by microhardness measurements. The studies revealed the critical sequence-of-events in forming the NCs, involves dissolution of Y, Ti and O during ball milling. The supersaturated solutes then precipitate during hot consolidation or powder annealing. The precipitate volume fraction increases with both the milling energy and Ti additions at lower consolidation and annealing temperatures (850°C), and at higher processing temperatures (1150°C) both are needed to produce NCs. The non-equilibrium kinetics of NC formation are nucleation controlled and independent of time with an effective activation energy of ≈60 kJ/mole. High temperature precipitate coarsening and transformations to oxide phases show a high effective activation energy (≈880 kJ/mole) and have a time dependence characteristic of a dislocation pipe diffusion mechanism. The NCs act as weak to moderately strong (alpha = 0.1 to 0.5) obstacles that can be sheared by dislocations, where the obstacle strength increases with alpha ≈0.37log(r/2b).

  20. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poellot, Michael

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellitemore » program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.« less

  1. Impact of Resolution on the Representation of Precipitation Variability Associated With the ITCZ

    NASA Astrophysics Data System (ADS)

    De Benedetti, Marc; Moore, G. W. K.

    2017-12-01

    The Intertropical Convergence Zone (ITCZ) is responsible for most of the weather and climate in equatorial regions along with many tropical-midlatitude interactions. It is therefore important to understand how models represent its structure and variability. Most ITCZ-associated precipitation is convective, making it unclear how horizontal resolution impacts its representation. To assess this, we introduce a novel technique that involves calculation of the precipitation field's decorrelation length scale (DCLS) using model data sets that share a common lineage with horizontal resolutions from 16 to 160 km. All resolutions captured the ITCZ's mean structure; however, imprints of topography, such as Hawaii and sea surface temperature, including the variability associated with upwelling cold water off the coast of South America, are more clearly represented at higher resolutions. The DCLS analysis indicates that there are changes in the spatial variability of the ITCZ's precipitation that are not reflected in its mean structure, thus confirming its utility as a diagnostic.

  2. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.

    PubMed

    Kumari, Deepika; Qian, Xin-Yi; Pan, Xiangliang; Achal, Varenyam; Li, Qianwei; Gadd, Geoffrey Michael

    2016-01-01

    Rapid urbanization and industrialization resulting from growing populations contribute to environmental pollution by toxic metals and radionuclides which pose a threat to the environment and to human health. To combat this threat, it is important to develop remediation technologies based on natural processes that are sustainable. In recent years, a biomineralization process involving ureolytic microorganisms that leads to calcium carbonate precipitation has been found to be effective in immobilizing toxic metal pollutants. The advantage of using ureolytic organisms for bioremediating metal pollution in soil is their ability to immobilize toxic metals efficiently by precipitation or coprecipitation, independent of metal valence state and toxicity and the redox potential. This review summarizes current understanding of the ability of ureolytic microorganisms for carbonate biomineralization and applications of this process for toxic metal bioremediation. Microbial metal carbonate precipitation may also be relevant to detoxification of contaminated process streams and effluents as well as the production of novel carbonate biominerals and biorecovery of metals and radionuclides that form insoluble carbonates. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Diurnal cycle of precipitation at Dakar in the model LMDZ

    NASA Astrophysics Data System (ADS)

    Sane, Y.; Bonazzola, M.; Hourdin, F.; Diongue-Niang, A.

    2009-04-01

    Most diurnal cycles of precipitation are not well represented in general circulation models (GCMs). It is a concern for climate modeling because of the key role of clouds in the radiative and water budgets. The diurnal phasing of deep convection is a challenge, the pact of deep convection being generally simulated too early in the day (Guichard et al., 2004). Thus a "thermal plume model" - a mass flux scheme combined with a classical diffusive approach - originally developed to represent turbulent transport in the dry convective boundary layer, is extented to the representation of cloud processes. The modified parametrization was validated in a 1D configuration against results of large eddy simulations (Rio, 2008). It is here validated in a 3D configuration against in situ precipitation measurements of the AMMA campaign. A data analysis of the diurnal cycle of precipitation as measured by the pluviometers net in the Dakar area is performed. The improvement of the diurnal cyle of convection in the GCM is demonstrated, and the involved processes are analysed.

  4. A model for the biological precipitation of Precambrian iron-formation

    NASA Technical Reports Server (NTRS)

    Laberge, G. L.

    1986-01-01

    A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.

  5. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    PubMed Central

    Lechner, Carolin C.; Becker, Christian F. W.

    2015-01-01

    Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed. PMID:26295401

  6. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.

    2018-05-01

    Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed hydrology. However, a thorough validation and a comparison with other methods are recommended before using the JBC method, since it may perform worse than the IBC method for some cases due to bias nonstationarity of climate model outputs.

  7. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    PubMed

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Sea surface salinity and temperature-based predictive modeling of southwestern US winter precipitation: improvements, errors, and potential mechanisms

    NASA Astrophysics Data System (ADS)

    Liu, T.; Schmitt, R. W.; Li, L.

    2017-12-01

    Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.

  9. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  10. AI-based (ANN and SVM) statistical downscaling methods for precipitation estimation under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Mehrvand, Masoud; Baghanam, Aida Hosseini; Razzaghzadeh, Zahra; Nourani, Vahid

    2017-04-01

    Since statistical downscaling methods are the most largely used models to study hydrologic impact studies under climate change scenarios, nonlinear regression models known as Artificial Intelligence (AI)-based models such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been used to spatially downscale the precipitation outputs of Global Climate Models (GCMs). The study has been carried out using GCM and station data over GCM grid points located around the Peace-Tampa Bay watershed weather stations. Before downscaling with AI-based model, correlation coefficient values have been computed between a few selected large-scale predictor variables and local scale predictands to select the most effective predictors. The selected predictors are then assessed considering grid location for the site in question. In order to increase AI-based downscaling model accuracy pre-processing has been developed on precipitation time series. In this way, the precipitation data derived from various GCM data analyzed thoroughly to find the highest value of correlation coefficient between GCM-based historical data and station precipitation data. Both GCM and station precipitation time series have been assessed by comparing mean and variances over specific intervals. Results indicated that there is similar trend between GCM and station precipitation data; however station data has non-stationary time series while GCM data does not. Finally AI-based downscaling model have been applied to several GCMs with selected predictors by targeting local precipitation time series as predictand. The consequences of recent step have been used to produce multiple ensembles of downscaled AI-based models.

  11. Two case studies on NARCCAP precipitation extremes

    NASA Astrophysics Data System (ADS)

    Weller, Grant B.; Cooley, Daniel; Sain, Stephan R.; Bukovsky, Melissa S.; Mearns, Linda O.

    2013-09-01

    We introduce novel methodology to examine the ability of six regional climate models (RCMs) in the North American Regional Climate Change Assessment Program (NARCCAP) ensemble to simulate past extreme precipitation events seen in the observational record over two different regions and seasons. Our primary objective is to examine the strength of daily correspondence of extreme precipitation events between observations and the output of both the RCMs and the driving reanalysis product. To explore this correspondence, we employ methods from multivariate extreme value theory. These methods require that we account for marginal behavior, and we first model and compare climatological quantities which describe tail behavior of daily precipitation for both the observations and model output before turning attention to quantifying the correspondence of the extreme events. Daily precipitation in a West Coast region of North America is analyzed in two seasons, and it is found that the simulated extreme events from the reanalysis-driven NARCCAP models exhibit strong daily correspondence to extreme events in the observational record. Precipitation over a central region of the United States is examined, and we find some daily correspondence between winter extremes simulated by reanalysis-driven NARCCAP models and those seen in observations, but no such correspondence is found for summer extremes. Furthermore, we find greater discrepancies among the NARCCAP models in the tail characteristics of the distribution of daily summer precipitation over this region than seen in precipitation over the West Coast region. We find that the models which employ spectral nudging exhibit stronger tail dependence to observations in the central region.

  12. Predicting and downscaling ENSO impacts on intraseasonal precipitation statistics in California: The 1997/98 event

    USGS Publications Warehouse

    Gershunov, A.; Barnett, T.P.; Cayan, D.R.; Tubbs, T.; Goddard, L.

    2000-01-01

    Three long-range forecasting methods have been evaluated for prediction and downscaling of seasonal and intraseasonal precipitation statistics in California. Full-statistical, hybrid-dynamical - statistical and full-dynamical approaches have been used to forecast El Nin??o - Southern Oscillation (ENSO) - related total precipitation, daily precipitation frequency, and average intensity anomalies during the January - March season. For El Nin??o winters, the hybrid approach emerges as the best performer, while La Nin??a forecasting skill is poor. The full-statistical forecasting method features reasonable forecasting skill for both La Nin??a and El Nin??o winters. The performance of the full-dynamical approach could not be evaluated as rigorously as that of the other two forecasting schemes. Although the full-dynamical forecasting approach is expected to outperform simpler forecasting schemes in the long run, evidence is presented to conclude that, at present, the full-dynamical forecasting approach is the least viable of the three, at least in California. The authors suggest that operational forecasting of any intraseasonal temperature, precipitation, or streamflow statistic derivable from the available records is possible now for ENSO-extreme years.

  13. Confounding factors in determining causal soil moisture-precipitation feedback

    NASA Astrophysics Data System (ADS)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  14. Geographic variation in body size and its relationship with environmental gradients in the Oriental Garden Lizard, Calotes versicolor.

    PubMed

    Wei, Xiaomei; Yan, Linmiao; Zhao, Chengjian; Zhang, Yueyun; Xu, Yongli; Cai, Bo; Jiang, Ni; Huang, Yong

    2018-05-01

    Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor , we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor ( F 23,124  = 11.32, p  < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.

  15. PRMS-IV, the precipitation-runoff modeling system, version 4

    USGS Publications Warehouse

    Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.

    2015-01-01

    Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.

  16. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  17. Plutonium Extraction by the Formation of Insoluble Salts; EXTRACTION DU PLUTONIUM PAR FORMATION DE SELS INSOLUBLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganivet, M.

    1960-06-29

    The aim of this work is to convert Pu IV nitrate in solution into an insoluble salt. Three methods have been studied: 1) the conventional oxalic acid method was improved; 2) precipitation with 8-hydroxyquinoline was tried; 3) the hydrogen peroxide method was adapted to the eluates of the ionic resins from Marcoule. The yield from the oxalic process has been increased (loss of Pu in the mother-liquor brought from 200 mg/l to 20 mg/l). The study of Pu IV precipitation by 8-hydroxyquinoline has shown that the yield is excellent (Pu concentration in the mother-liquor less than 5 mg/h), but decontaminationmore » from impurities is nil. Finally, experiments on the precipitation by hydrogen peroxide of Pu IV solutions at the concentrations normally obtained from the anionic resins at Marcoule have given us good yields (Pu concentration in the mother-liquor less than 7 mg/l), and the purification is better than that obtained by oxalic acid (1000 ppm total impurities after a precipitation). (author)« less

  18. Rainfall assimilation in RAMS by means of the Kuo parameterisation inversion: method and preliminary results

    NASA Astrophysics Data System (ADS)

    Orlandi, A.; Ortolani, A.; Meneguzzo, F.; Levizzani, V.; Torricella, F.; Turk, F. J.

    2004-03-01

    In order to improve high-resolution forecasts, a specific method for assimilating rainfall rates into the Regional Atmospheric Modelling System model has been developed. It is based on the inversion of the Kuo convective parameterisation scheme. A nudging technique is applied to 'gently' increase with time the weight of the estimated precipitation in the assimilation process. A rough but manageable technique is explained to estimate the partition of convective precipitation from stratiform one, without requiring any ancillary measurement. The method is general purpose, but it is tuned for geostationary satellite rainfall estimation assimilation. Preliminary results are presented and discussed, both through totally simulated experiments and through experiments assimilating real satellite-based precipitation observations. For every case study, Rainfall data are computed with a rapid update satellite precipitation estimation algorithm based on IR and MW satellite observations. This research was carried out in the framework of the EURAINSAT project (an EC research project co-funded by the Energy, Environment and Sustainable Development Programme within the topic 'Development of generic Earth observation technologies', Contract number EVG1-2000-00030).

  19. Estimating contamination potential at waste-disposal sites using a natural tracer

    NASA Astrophysics Data System (ADS)

    Stone, William J.

    1992-05-01

    Chloride is a conservative, natural tracer found in precipitation, soil water, and groundwater. The chloride mass-balance approach, long used to estimate groundwater recharge, also provides a downward flux of moisture and solute at sites where there is a potential for groundwater contamination. The flux is obtained by dividing the product of the mean annual precipitation and total annual chloride input (via precipitation and dust) by the mean soil-water chloride content. Chlorideversusdepth profiles can also be used to determine optimum depth of waste burial to minimize deterioration of waste containers. The method has been applied to three sites in arid alluvial-basin settings in New Mexico, U.S.A.: a proposed landfill, a battery recycling plant, and a hazardous-waste disposal facility. It is concluded that the method is reliable, economical, and practical. Furthermore, it can be applied at any stage in the development of a site. The chloride method should apply in any recharge area where the base of the root zone is separated from the water table by at least 3 m or so and chloride in soil water comes only from precipitation and dust.

  20. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric

    This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less

  1. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    DOE PAGES

    Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric; ...

    2016-03-16

    This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less

  2. Toughening Mechanisms in Ultrahigh-Strength Steels

    DTIC Science & Technology

    1993-12-01

    coherent M2C carbide pre- cipitate with a transformation strain with three unequal eigenstrains in an elastically anisotropic AF1410 steel. The...a coherent ellipsoidal M2C carbide precipitate which has different elastic con- stants from the matrix. The eigenstrain method was used to... eigenstrain method. Here, "inhomogeneous*’ means that the elastic constants inside the precipitate are different from those of the ma- trix, and

  3. Nonaqueous purification of mixed nitrate heat transfer media

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  4. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography

    DOE PAGES

    Meher, Subhashish; Rojhirunsakool, Tanaporn; Nandwana, Peeyush; ...

    2015-04-28

    In this study, the analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L1 2-ordered g precipitates to form Ni 3(Al,Cr) precipitates in a Ni-14Al-7Cr(at.%) alloy. Interestingly,more » the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within g precipitates to form (Ni,Al) 3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.« less

  5. Three-dimensional characterization of BaHfO3 precipitates in GdBa2Cu3O7-y flim using STEM tomography.

    PubMed

    Nishiyama, T; Kaneko, K; Yamada, K; Teranishi, R; Kato, T; Hirayama, T; Tobita, H; Izumi, T; Shiohara, Y

    2014-11-01

    IntroductionSince the discovery of REBa2Cu3O7-y (RE: Rare Earth element, REBCO) superconductors, they have been expected as the best candidates for the power cable application due to its high critical temperature (Tc) and critical current density (Jc). Among those REBCO superconductors, GdBa2Cu3O7-y (GdBCO) have been receiving great interest because they have higher Tc and Jc than YBa2Cu3O7-y [1].GdBCO with various types of precipitates as artificial pinning centers (APCs) have been proposed to minimize the anisotropy of Jc characteristics under the magnetic field. Among those precipitates, BaHfO3 (BHO) was found most effective precipitates as APCs in GdBCO film prepared by pulsed laser deposition (PLD) method [2]. It is therefore necessary to investigate not only the morphologies but also the dispersion of BHO precipitates within the GdBCO, to understand the role of BHO for the superconducting characteristics. In this study, morphologies and dispersions of BHO precipitates were characterized three-dimensional by scanning transmission electron tomography ExperimentalBHO dispersed GdBCO films were fabricated on Hastelloy C-276TM substrates with buffer layers of CeO2/LaMnO3/MgO/ Gd2ZrO7 by PLD method.To observe microstructure of GdBCO film with BHO precipitates, cross-section TEM specimens were prepared by FIB method using Quanta 3D-200 (FEI, USA) with acceleration voltage from 2 to 30 kV. Three-dimensional information such as morphology and dispersion, of BHO precipitates were characterized by electron tomography using STEM-HAADF. Result and discussionFigure 1 shows three-dimensional reconstructed volume of BHO precipitates in GdBCO, which revealed that fine BHO precipitates have rod- and plate-like morphologies with homogeneous dispersion in GdBCO. In addition, growth directions of these precipitates were found with wide angular distributions from growth direction of GdBCO. Anisotropy of Jc in the magnetic fields was probably enhanced by various growth directions and homogeneous dispersion of nanosized BHO within GdBCO.jmicro;63/suppl_1/i26/DFU080F1F1DFU080F1Fig. 1.Three-dimensional reconstructed volume of BHO. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    NASA Astrophysics Data System (ADS)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source code for both models is included. A moment-based model for dislocation loop formation from {311} defects in ion-implanted silicon was also developed and validated against experimental data. Ab initio density functional theory calculations of stacking faults and edge dislocations were performed to extract energies and elastic properties. This allowed the effect of applied stress on the evolution of {311} defects and dislocation loops to be investigated.

  7. Creating Dynamically Downscaled Seasonal Climate Forecast and Climate Change Projection Information for the North American Monsoon Region Suitable for Decision Making Purposes

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Dominguez, F.; Chang, H.

    2010-12-01

    Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically downscaled climate projection data will be integrated into future water resource projections in the state of Arizona, through a cooperative effort involving numerous water resource stakeholders.

  8. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    NASA Astrophysics Data System (ADS)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  9. Method of low tantalum amounts determination in niobium and its compounds by ICP-OES technique.

    PubMed

    Smolik, Marek; Turkowska, Magdalena

    2013-10-15

    A method of determination of low amounts of tantalum in niobium and niobium compounds without its prior separation by means of inductively coupled plasma optical emission spectrometry (ICP-OES) has been worked out. The method involves dissolution of the analyzed samples of niobium as well as its various compounds (oxides, fluorides, chlorides, niobates(V)) in fluoride environments, precipitation of sparingly soluble niobic(tantalic) acid (Nb2O5(Ta2O5) · xH2O), converting them into soluble complex compounds by means of oxalic acid with addition of hydrogen peroxide and finally analyzing directly obtained solutions by ICP-OES. This method permits determination of Ta in niobium at the level of 10(-3)% with relatively good precision (≤ 8% RSD) and accuracy (recovery factor: 0.9-1.1). Relative differences in the results obtained by two independent methods (ICP-OES and ICP-MS) do not exceed 14%, and other elements present in niobium compounds (Ti, W, Zr, Hf, V, Mo, Fe, Cr) at the level of 10(-2)% do not affect determination. © 2013 Elsevier B.V. All rights reserved.

  10. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  11. Models for some aspects of atmospheric vortices

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1977-01-01

    A frictionless adiabatic model is used to study the growth of random vortices in an atmosphere with buoyant instability and vertical wind shear, taking account of the effects of axial drag, heat transfer and precipitation-induced downdrafts. It is found that downdrafts of tornadic magnitude may occur in negatively buoyant columns. The radial-inflow velocity required to maintain a given maximum tangential velocity in a tornado is determined by using a turbulent vortex model. A tornado model which involves a rotating parent cloud as well as buoyancy and precipitation effects is also discussed.

  12. Increase in Ductility of High Carbon Steel Due to Accelerated Precipitation of Cementite

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad; UlHaq, Ehsan; Ibrahim, Ather; Abdul Karim, Muhammad Ramzan; Ali, A.; Fayyaz, M.; Khera, F. K.

    2017-09-01

    Eutectoid steel AISI 1080 is studied after annealing at 850°C and thermal cycling treatment (TCT) that involves heating at a rate of 10 K/min to 775°C, holding for 10 min, and cooling at a rate of 95 K/min. An increase is established in the content of cementite precipitating over austenite grain boundaries, and relative elongation with retention of yield and ultimate strengths with an increase in number of TCT cycles. After five cycles relative elongation reaches 29% with ultimate strength of 670 MPa.

  13. Diabatic forcing and intialization with assimilation of cloud water and rainwater in a forecast model

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.; Callan, Geary

    1995-01-01

    In this study, diabatic forcing, and liquid water assimilation techniques are tested in a semi-implicit hydrostatic regional forecast model containing explicit representations of grid-scale cloud water and rainwater. Diabatic forcing, in conjunction with diabatic contributions in the initialization, is found to help the forecast retain the diabatic signal found in the liquid water or heating rate data, consequently reducing the spinup time associated with grid-scale precipitation processes. Both observational Special Sensor Microwave/Imager (SSM/I) and model-generated data are used. A physical retrieval method incorporating SSM/I radiance data is utilized to estimate the 3D distribution of precipitating storms. In the retrieval method the relationship between precipitation distributions and upwelling microwave radiances is parameterized, based upon cloud ensemble-radiative model simulations. Regression formulae relating vertically integrated liquid and ice-phase precipitation amounts to latent heating rates are also derived from the cloud ensemble simulations. Thus, retrieved SSM/I precipitation structures can be used in conjunction with the regression-formulas to infer the 3D distribution of latent heating rates. These heating rates are used directly in the forecast model to help initiate Tropical Storm Emily (21 September 1987). The 14-h forecast of Emily's development yields atmospheric precipitation water contents that compare favorably with coincident SSM/I estimates.

  14. High-resolution near real-time drought monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, Saran; Mishra, Vimal

    2017-10-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

  15. Quantitative Evaluation of Aged AISI 316L Stainless Steel Sensitization to Intergranular Corrosion: Comparison Between Microstructural Electrochemical and Analytical Methods

    NASA Astrophysics Data System (ADS)

    Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.

    2007-06-01

    The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is used with its optimized operating conditions. This quantitative method is simple to perform; it is fast, reliable, economical, and presents the best ability to detect the lowest DOS to IGC. For these reasons, this method can be considered as a serious candidate for IGC checking of stainless steel components of industrial plants.

  16. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    NASA Astrophysics Data System (ADS)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  17. Growth and development of spring towers at Shiqiang, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2017-01-01

    Throughout the world, high artesian pressures in hydrothermal areas have led to the growth of tall spring towers that have their vents at their summits. The factors that control their development and formative precipitates are poorly understood because these springs, irrespective of location, are mostly inactive. Spring towers found at Shiqiang (Yunnan Province, China), which are up to 4 m high and 3 m in diameter, are formed largely of calcite and aragonite crystal bushes, euhedral calcite crystals and coated grains with alternating Fe-poor and Fe-rich zones, calcite rafts, and cements formed of various combinations of calcite, aragonite, strontianite, Mg-Si reticulate, needle fiber calcite, calcified and non-calcified microbes, diatoms, and insects. Collectively, the limestones that form the towers can be divided into (1) Group A that are friable, porous and form the cores of the towers and have δ18OSMOW values of + 15.7 to + 19.7‰ (average 17.8‰) and δ13CPDB values of + 5.1 to + 6.9‰ (average 5.9‰), and (2) Group B that are hard and well lithified and found largely around the vents and the tower sides, and have δ18OSMOW values of + 13.0 to + 22.0‰ (average 17.6‰) and δ13CPDB values of + 1.4 to + 3.6‰ (average 2.6‰). The precipitates and the isotopic values indicate that these were thermogene springs. Growth of the Shiqiang spring towers involved (1) Phase IA when precipitation of calcite and aragonite bushes formed the core of the tower and Phase IB when calcite, commonly Fe-rich, was precipitated locally, (2) Phase II that involved the precipitation of white cements, formed of calcite, aragonite, strontianite, and Mg-Si reticulate coatings in cavities amid the Phase I precipitates, and (3) Phase III, which formed probably after spring activity ceased, when needle-fiber calcite was precipitated and the mounds were invaded by microbes (some now calcified), diatoms, and insects. At various times during this complex history, pore waters mediated dissolution of the calcite and aragonite and sometimes partial alteration of the aragonite. The diverse array of precipitates, depositional fabrics and diagenetic changes clearly indicate that the composition of the spring water changed frequently. Growth of the spring towers at Shiqiang continued until there was insufficient artesian pressure to lift the water above the top of the tower vent.

  18. A Simple Experiment Demonstrating the Allosteric Regulation of Yeast Pyruvate Kinase.

    ERIC Educational Resources Information Center

    Taber, Richard L.; Campbell, Angela; Spencer, Scott

    1998-01-01

    Explains the procedures used to determine the regulatory properties of yeast pyruvate kinase. Involves a partial purification using PEG precipitation that can be done in one laboratory period with simple equipment. (DDR)

  19. Reaction pathways towards the formation of dolomite-analogues at ambient conditions

    NASA Astrophysics Data System (ADS)

    Pimentel, Carlos; Pina, Carlos M.

    2016-04-01

    In this paper we present results of a study of the crystallisation behaviour of the dolomite-analogues norsethite and PbMg(CO3)2 at room temperature and atmospheric pressure. Whereas precipitation of norsethite was previously obtained by mixing solutions (Hood et al., 1974; Pimentel and Pina, 2014a,b), we report, for the first time, the synthesis of PbMg(CO3)2 by using the same method. The formation of both phases was promoted by ageing slurries for periods of time ranging from a few days (norsethite) up to 6 months (PbMg(CO3)2). The crystallisation of both norsethite and PbMg(CO3)2 occurs by sequences of dissolution-precipitation reactions involving several amorphous and crystalline precursor phases, which were identified and characterised by X-ray diffraction and scanning electron microscopy. Depending on the initial composition and Ba:Mg and Pb:Mg ratios in the slurries, different precursors and reaction kinetics were observed. This demonstrates the existence of different reaction pathways towards the formation of the investigated dolomite-analogues. Our experimental results provide new insights into the possible mechanisms of formation of dolomite and other double carbonates in nature.

  20. Role of partial miscibility on pressure buildup due to constant rate injection of CO2 into closed and open brine aquifers

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.

    2011-12-01

    This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.

Top