Science.gov

Sample records for method rankinsosuho ni

  1. Magnetic properties of Ni/NiO nanocomposites synthesized by one step solution combustion method

    NASA Astrophysics Data System (ADS)

    Ganeshchandra Prabhu, V.; Shajira, P. S.; Lakshmi, N.; Junaid Bushiri, M.

    2015-12-01

    Ni/NiO nanocomposites were synthesized using solution combustion method and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and carbon, hydrogen, nitrogen (CHN) analyser. The Ni or NiO content in Ni/NiO nanocomposites vary with the quantity of HNO3 used for the synthesis. Magnetic coercivity (Hc) of Ni/NiO nanocomposites is found to be 413 Oe which can be used in magnetic applications. A feeble exchange bias of 7 Oe is seen from the NiO rich Ni/NiO.

  2. A novel method for improving the adhesion strength of the electrodeposited Ni films in MEMS

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Liu, Rui; Jiang, Wei Qiao; Zhu, Jun; Feng, Jian Zhi; Ding, Gui Fu; Zhao, Xiaolin

    2011-01-01

    Adhesion performance of MEMS materials is increasingly important with the widely use of miniaturized devices. This paper proposed a novel method for improving adhesion performance between electrodeposited Ni multi-layers. The new method is to treat the Ni substrate in nickel chloride plating solution by pulse reverse current technique before electrodeposition. The dense oxide film of Ni substrate can be removed effectively by this electrochemical method, meanwhile, the proper roughness of Ni substrate is in favor of epitaxial growth during electrodeposition. Moreover, the Ni film is electrodeposited by the new method with low stress and coarse crystal grain. Consequently, the adhesion performance of Ni films is improved dramatically. The experimental results show that the adhesion performance of Ni film electrodeposited by the new method is about 3 times that of by traditional method.

  3. A New Method to Produce Ni-Cr Ferroalloy Used for Stainless Steel Production

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Chu, Shao-Jun; Zhang, Guo-Hua

    2016-08-01

    A new electrosilicothermic method has been proposed in the present paper to produce Ni-Cr ferroalloy, which can be used for the production of 300 series stainless steel. Based on this new process, the Ni-Si ferroalloy is first produced as the intermediate alloy, and then the desiliconization process of Ni-Si ferroalloy melt with chromium concentrate is carried out to generate Ni-Cr ferroalloy. The silicon content in the Ni-Si ferroalloy produced in the submerged arc furnace should be more than 15 mass% (for the propose of reducing dephosphorization), in order to make sure the phosphorus content in the subsequently produced Ni-Cr ferroalloy is less than 0.03 mass%. A high utilization ratio of Si and a high recovery ratio of Cr can be obtained after the desiliconization reaction between Ni-Si ferroalloy and chromium concentrate in the electric arc furnace (EAF)-shaking ladle (SL) process.

  4. Mechanical alloying as method for introducing carbon in Ni3Al intermetallide

    NASA Astrophysics Data System (ADS)

    Portnoi, V. K.; Leonov, A. V.; Logachev, A. V.; Streletskii, A. N.; Popov, V. A.

    2012-12-01

    The method for the mechanical alloying of Ni-Al-C and Ni3Al-C mixtures was used to obtain nonequilibrium solid Ni(Al,C) solutions in which the carbon content varies from 2.9 to 8.5 at %. The relationship between carbon dissolution and the probability of appearance of deformation-induced stacking faults (SFs) in the formation of mixed (substitutional and interstitial) solid Ni(Al,C) solutions has been found based on an analysis of the diffraction spectra. SFs are assumed to serve as pathways of carbon penetration in nickel-based solid solutions. The effective carbon radius was found to be about 0.0616 nm in the formation of an antiperovskite phase Ni3AlC x . The method of calculating the amount of interstitial carbon was proposed based on the experimental lattice parameters of fcc solid Ni(Al,C) solutions and ordered phases L12 Ni3Al and E21 (Ni3AlC x ). The temperature stability of the nonequilibrium solid Ni(Al,C) solutions was established. It was shown that the decomposition of the solid solutions proceeded according to a spinodal mechanism at a temperature of 400°C with separation into two phases, i.e., an antiperovskite carbide (Ni3AlC x ) and Ni(Al,C). At higher temperatures (600-800°C), carbon precipitates from these phases with the formation of an antiperovskite Ni3AlC0.16, solid Ni(Al) solution, and nanocrystalline graphite.

  5. NiAl powder alloys: II. Compacting of NiAl powders produced by various methods

    NASA Astrophysics Data System (ADS)

    Skachkov, O. A.; Povarova, K. B.; Drozdov, A. A.; Morozov, A. E.

    2012-05-01

    The technological properties of granulated NiAl powders produced by gas spraying of melts and NiAl powders produced by calcium hydride reduction (CHR) of mixtures of nickel and aluminum oxides are compared. The possibilities of production of compact workpieces from these powders using hydrostatic pressing, hot pressing, hot isostatic pressing, and hot extrusion are estimated. To improve compressibility, preliminary milling and/or mechanical activation of the powders are proposed. The strength properties of NiAl rods with a diameter of 20 mm extruded from a temperature of 1100°C and made from the granulated powders are slightly higher than those made from the CHR powders. At temperatures higher than 800°C the properties becomes similar. Transition point t d.b from the ductile to brittle state of samples made from powders sprayed in nitrogen and argon is 100-150°C higher than those made from the CHR powders. The difference in the mechanical properties is caused by the structural and chemical microheterogeneity of granules (microingots), which is inherited in the rods after hot deformation and annealing at 1200-1400°C and is (0.67-0.88) T m NiAl ( T m is the melting point, K).

  6. Fabrication of ultrathin Ni-Zn ferrite films using electron cyclotron resonance sputtering method

    SciTech Connect

    Tanaka, Terumitsu; Kurisu, Hiroki; Matsuura, Mitsuru; Shimosato, Yoshihiro; Okada, Shigenobu; Oshiro, Kazunori; Fujimori, Hirotaka; Yamamoto, Setsuo

    2006-04-15

    Well-crystallized Ni-Zn ferrite (Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4}) highly oriented ultrathin films were obtained at a substrate temperature of 200 deg. C by a reactive sputtering method utilizing electron cyclotron resonance microwave plasma, which is very effective to crystallize oxide or nitride materials without heat treatment. Thin films of Ni-Zn ferrite deposited on a MgO (100) underlayer showed an intense X-ray-diffraction peak of (400) from the Ni-Zn ferrite as compared to similar films deposited directly onto thermally oxidized Si substrates. A 1.5-nm-thick Ni-Zn ferrite film, which corresponds to twice the lattice constant for bulk Ni-Zn ferrite, crystallized on a MgO (100) underlayer.

  7. Embedded atom method study of surface-confined Al on Ni(001)

    NASA Astrophysics Data System (ADS)

    Bilić, A.; King, B. V.; O'Connor, D. J.

    1999-11-01

    We have simulated the structure and energetics of thin films created by the deposition of Al onto Ni(001). The study has been carried out within the semi-empirical embedded atom (EAM) method, utilizing three sets of Ni-Al potentials. It is found that the dissolution of Al into the Ni bulk and the creation of a Ni 3Al multilayer alloy is energetically favorable. However, a simulation of the kinetics shows that the surface penetration of Al takes place extremely slowly. Such kinetics turns out to be the decisive factor in the formation of the experimentally observed top layer c(2×2) phase in the submonolayer coverage regime.

  8. Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity

    SciTech Connect

    Jegatha Christy, A.; Umadevi, M.

    2013-10-15

    Graphical abstract: - Highlights: • NiO nanoparticles were synthesized by solution combustion method. • Prepared NiO nanoparticles are fcc structure. • Synthesized NiO nanoparticles are octahedral shape. • Shows good photocatalytic activity. - Abstract: Nickel oxide nanoparticles (NiO NPs) were synthesized by solution combustion method using glycine and citric acid as fuels. The X-ray diffraction (XRD) result confirms the face centered cubic (fcc) structure of NiO. The octahedral shape of NiO NPs was confirmed by field emission scanning electron microscope (FESEM) and high resolution transmission electron microscopy (HRTEM). It is possible to suggest that the organic fuel (citric acid/glycine) is responsible for the formation of the octahedral shape due to the easier complex formation. Photocatalytic activity of NiO NPs also evaluated and found that the prepared NiO NPs have high photocatalytic degradation. In the present study, the crystalline nature and shape of the NiO nanoparticles plays a vital role in determining the photocatalytic activity.

  9. Method For Making Electronic Circuits Having Nial And Ni3al Substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    2001-01-30

    A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  10. Method for measurement of diffusivity: Calorimetric studies of Fe/Ni multilayer thin films

    SciTech Connect

    Liu, JX; Barmak, K

    2015-07-15

    A calorimetric method for the measurement of diffusivity in thin film multilayers is introduced and applied to the Fe Ni system. Using this method, the diffusivity in [Fe (25 nm)/Ni (25 nm)](20) multilayer thin films is measured as 4 x 10(-3)exp(-1.6 +/- 0.1 eV/ k(B)T) cm(2)/s, respectively. The diffusion mechanism in the multilayers and its relevance to laboratory synthesis of L1(0) ordered FeNi are discussed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method.

    PubMed

    Onat, Berk; Durukanoğlu, Sondan

    2014-01-22

    We have developed a semi-empirical and many-body type model potential using a modified charge density profile for Cu-Ni alloys based on the embedded-atom method (EAM) formalism with an improved optimization technique. The potential is determined by fitting to experimental and first-principles data for Cu, Ni and Cu-Ni binary compounds, such as lattice constants, cohesive energies, bulk modulus, elastic constants, diatomic bond lengths and bond energies. The generated potentials were tested by computing a variety of properties of pure elements and the alloy of Cu, Ni: the melting points, alloy mixing enthalpy, lattice specific heat, equilibrium lattice structures, vacancy formation and interstitial formation energies, and various diffusion barriers on the (100) and (111) surfaces of Cu and Ni.

  12. Study on the determination of trace Ni (II) by the catalytic kinetic spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Cao, Hengxia; Xin, Huizhen; Li, Shuang

    2010-03-01

    A new kinetic spectrophotometric method has been developed for the determination of trace Ni (II) in natural water. The method is based on the catalytic effect of Ni (II) on the oxidation of weak acid brilliant blue dye (RAWL) by KIO4 in acid medium. The concentration of nickel (II) can be determined spectrophotometrically by measuring the decrease of absorbance of RAWL at λ = 626 nm using the fix-time method. The influencing factors are investigated by the orthogonal experimental design. The obtained optimum analytical conditions are: pH = 2.00, c RAWL = 5.00×10-5 mol L-1, c KIO 4 = 2.00×10-5 mol L -1, the reaction time t = 10 min and the temperature T = 25°C. Under the optimum conditions, the developed method allows the measurement of Ni (II) in a range of 0-40.0 ng mL-1. The standard deviation of eleven independent measurements of blank reaction is S = 3.08×10-3 and the limit of detection is 2.20 ng mL-1. The relative standard deviations (RSDs) in six replicate determinations of 5 ng mL-1 and 8 ng mL-1 Ni (II) are 2.87% and 1.11%, respectively. Moreover, the experiments show few cations and anions can interfere with the measurement of Ni (II). The recovery efficiencies of this method are in a range of 97.0%-102.5% in freshwater samples. But there is a decreasing effect, which is about 0.2 times the added Ni (II) in seawater medium. After reasonable calibration this processing method is used for the determination of Ni (II) in seawater samples successfully. The results show this developed method has high accuracy and precision, high sensitivity, large range of linearity and high speed. The method can, therefore, be employed at room temperature.

  13. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    NASA Astrophysics Data System (ADS)

    Bobadilla, L. F.; García, C.; Delgado, J. J.; Sanz, O.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A.

    2012-11-01

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution.

  14. Defect Structure of Beta NiAl Using the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Amador, Carlos; Ferrante, John; Noebe, Ronald D.

    1996-01-01

    The semiempirical BFS method for alloys is generalized by replacing experimental input with first-principles results thus allowing for the study of complex systems. In order to examine trends and behavior of a system in the vicinity of a given point of the phase diagram a search procedure based on a sampling of selected configurations is employed. This new approach is applied to the study of the beta phase of the Ni-Al system, which exists over a range of composition from 45-60 at.% Ni. This methodology results in a straightforward and economical way of reproducing and understanding the basic features of this system. At the stoichiometric composition, NiAl should exist in a perfectly ordered B2 structure. Ni-rich alloys are characterized by antisite point defects (with Ni atoms in the Al sites) with a decrease in lattice parameters. On the Al-rich side of stoichiometry there is a steep decrease in lattice parameter and density with increasing Al content. The presence of vacancies in Ni sites would explain such behavior. Recent X-ray diffraction experiments suggest a richer structure: the evidence, while strongly favoring the presence of vacancies in Ni sites, also suggests the possibility of some vacancies in Al sites in a 3:1 ratio. Moreover, local ordering of vacant sites may be preferred over a random distribution of individual point defects.

  15. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    PubMed

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles. PMID:24245162

  16. An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.

    1998-01-01

    We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

  17. Progress in the Modeling of NiAl-Based Alloys Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita

    1997-01-01

    The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.

  18. Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods

    NASA Astrophysics Data System (ADS)

    Schuster, Cosima; Gatti, Matteo; Rubio, Angel

    2012-09-01

    We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical composition substituting S by Se atoms or applying pressure, can be driven across various electronic and magnetic phase transitions. By combining several theoretical methods, we highlight the different role played by the chalcogen dimers and the volume compression in determining the phase transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field splitting and the broadening of the bandwidths. While the generalized gradient approximation (GGA) of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a large extent by the use of GGA + U, hybrid functionals or the self-consistent COHSEX + GW approximation. We also discuss the advantages and the shortcomings of the different approximations in the various regions of the phase diagram of this prototypical correlated compound.

  19. Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst.

    PubMed

    Bussamara, Roberta; Eberhardt, Dario; Feil, Adriano F; Migowski, Pedro; Wender, Heberton; de Moraes, Diogo P; Machado, Giovanna; Papaléo, Ricardo M; Teixeira, Sérgio R; Dupont, Jairton

    2013-02-14

    A simple one-step method based on the sputtering deposition of Ni nanoparticles (NP) has been developed for the production of magnetic biocatalysts, avoiding the complications and drawbacks of methods based on chemical functionalisation or coating of magnetic NP. This new technique provided high levels of recovery, reusability and catalytic activity for the lipase-Ni biocatalyst.

  20. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Ashokkumar, M.; Muthukumaran, S.

    2014-11-01

    Zn0.96-xCu0.04NixO (0 ⩽ x ⩽ 0.04) nanoparticles were synthesized by co-precipitation method. The X-ray diffraction pattern showed the crystalline nature of prepared nanoparticles with hexagonal wurtzite structure. The average crystal size is decreased from 27 to 22.7 nm when Ni concentration is increased from 0% to 2% due to the suppression of nucleation and subsequent growth of ZnO by Ni-doping. The increased crystal size from 22.7 to 25.8 nm (ΔD ∼ 3.1 nm) by Ni-doping from 2% to 4% is due to the creation of distortion centers and Zn/Ni interstitials. The cell parameters and volume of the lattice showed solubility limit at 2% of Ni doping. The energy dispersive X-ray spectra confirmed the presence of Cu and Ni in Zn-O. The optical absorption spectra showed that the absorption was increased up to Ni = 2% due to the creation of carrier concentration by Ni-doping and decreased beyond 2% due to the presence of more defects and interstitials in the Zn-Ni-Cu-O lattice. The observed red shift of energy gap from 3.65 eV (Ni = 0%) to 3.59 eV (Ni = 2%, ΔEg ≈ 0.06 eV) is explained by sp-d exchange interactions between the band electrons and the localized d-electrons of the Ni2+ ions. The blue shift of energy gap from 3.59 eV (Ni = 2%) to 3.67 eV (Ni = 4%, ΔEg ≈ 0.08 eV) is explained by Burstein-Moss effect. Presence of chemical bonding was confirmed by FTIR spectra.

  1. Uncertainties in 63Ni and 55Fe determinations using liquid scintillation counting methods.

    PubMed

    Herranz, M; Idoeta, R; Abelairas, A; Legarda, F

    2012-09-01

    The implementation of (63)Ni and (55)Fe determination methods in an environmental laboratory implies their validation. In this process, the uncertainties related to these methods should be analysed. In this work, the expression of the uncertainty of the results obtained using separation methods followed by liquid scintillation counting is presented. This analysis includes the consideration of uncertainties coming from the different alternatives which these methods use as well as those which are specific to the individual laboratory and the competency of its operators in applying the standard ORISE (Oak Ridge Institute for Science and Education) methods. PMID:22405638

  2. Uncertainties in 63Ni and 55Fe determinations using liquid scintillation counting methods.

    PubMed

    Herranz, M; Idoeta, R; Abelairas, A; Legarda, F

    2012-09-01

    The implementation of (63)Ni and (55)Fe determination methods in an environmental laboratory implies their validation. In this process, the uncertainties related to these methods should be analysed. In this work, the expression of the uncertainty of the results obtained using separation methods followed by liquid scintillation counting is presented. This analysis includes the consideration of uncertainties coming from the different alternatives which these methods use as well as those which are specific to the individual laboratory and the competency of its operators in applying the standard ORISE (Oak Ridge Institute for Science and Education) methods.

  3. Formation of three-dimensional arrays of magnetic clusters NiO, Co3O4, and NiCo2O4 by the matrix method

    NASA Astrophysics Data System (ADS)

    Kurdyukov, D. A.; Pevtsov, A. B.; Smirnov, A. N.; Yagovkina, M. A.; Grigorev, V. Yu.; Romanov, V. V.; Bagraev, N. T.; Golubev, V. G.

    2016-06-01

    A method has been proposed for the formation of three-dimensional arrays of isolated magnetic clusters NiO, Co3O4, and NiCo2O4 in the sublattice of pores in the matrix of bulk synthetic opals through a single impregnation of the pores with melts of nickel and cobalt nitrate crystal hydrates and their thermal degradation. The method makes it possible to controllably vary the degree of filling of pores in the matrix with oxides within 10-70 vol %. The composition and structure of the synthesized materials, as well as the dependences of their static magnetic susceptibility on the magnetic field strength, have been investigated.

  4. Electrodeposition and characterization of Ni-ZrO2 nanocomposites by direct and pulse current methods.

    PubMed

    Kumar, K Arunsunai; Mohan, P; Kalaignan, G Paruthimal; Muralidharan, V S

    2012-11-01

    Direct Current (DC) and Pulse current (PC) methods were used to get nanocrystalline Ni-ZrO2 composites from tri-ammonium citrate bath. In the electrocomposite formation, the ZrO2 particles were transported to the surface by mechanical action and got entrapped in the nickel matrix. Incorporation of ZrO2 in the nickel matrix was found to increase with current densities when DC was employed. Beyond 2 A/dm2, their incorporation became saturated when PC was used. PC method offered better electrocomposites than DC method producing finer grains and uniform surface. Scanning electron micrographs (SEM) reveals that smaller grains and uniform distribution of Zirconia particles in the nickel matrix. The increased hardness of Ni-ZrO2 electrocomposite coatings is due to incorporation of ZrO2 particles in the nickel matrix and also changes in grain size. Incorporation of ZrO2 particles in Ni-matrix favoured the enhanced microhardness and corrosion resistance of the deposit.

  5. Structural, electrical and magnetic properties of Ni2+ substituted cobalt nanoferrite using sol-gel method

    NASA Astrophysics Data System (ADS)

    Blessington Selvadurai, A. Paul; Gazzali, P. M. Md.; Murugasen, C.; Pazhanivelu, V.; Murugaraj, R.; Chandrasekaran, G.

    2013-02-01

    Ni doped cobalt ferrite of chemical formula Ni(1-x)CoxFe2O4 with x values = 1, 0.5, 0 were prepared by using Poly Vinyl Alcohol (PVA) sol-gel method. The prepared samples were heat treated at 450°C for an hour and grounded to form fine powder. XRD of the powder sample confirms the formation of spinel ferrite phase. SEM and EDAX spectrum reveals the surface and chemical composition of the sample. FTIR spectra of the samples show the stretching vibration of the tetrahedral (ν1) and octahedral (ν2) bands of Fe-O bonds appearing at 600cm-1 and 424cm-1 respectively. Room temperature magnetic and electrical studies were done using VSM and LCZ meter to analyze their property respectively.

  6. NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries

    SciTech Connect

    Cao, F.; Pan, G.X.; Tang, P.S.; Chen, H.F.

    2013-03-15

    Graphical abstract: Self-supported NiO nanowall array is fabricated by a facile hydrothermal synthesis method and exhibits noticeable Li ion battery performance with good cycle life and high capacity. Highlights: ► NiO nanowall array is prepared by a hydrothermal synthesis method. ► NiO nanowall array with high capacity as anode material for Li ion battery. ► Nanowall array structure is favorable for fast ion/electron transfer. - Abstract: Free-standing quasi-single-crystalline NiO nanowall array is successfully fabricated via a simple hydrothermal synthesis method. The as-prepared NiO film exhibits a highly porous nanowall structure composed of many interconnected nanoflakes with thicknesses of ∼20 nm. The NiO nanowalls arrange vertically to the substrate resulting in the formation of extended porous net-like structure with pores of 30–300 nm. As anode material for lithium ion batteries, the quasi-single-crystalline NiO nanowall array exhibits pretty good electrochemical performances with high capacity, weaker polarization, higher coulombic efficiency and better cycling performance as compared to the dense polycrystalline NiO film. The quasi-single-crystalline NiO nanowall array presents an initial coulombic efficiency of 76% and good cycling life with a capacity of 564 mAh g{sup −1} at 0.5 A g{sup −1} after 50 cycles, higher than that of the dense polycrystalline NiO film (358 mAh g{sup −1}). The enhanced performance is due to the unique nanowall array structure providing faster ion/electron transport and better morphological stability.

  7. Elastic constant measurement of Ni-base superalloy with the RUS and mode selective EMAR methods.

    PubMed

    Ichitsubo, Tetsu; Ogi, Hirotsugu; Hirao, Masahiko; Tanaka, Katsushi; Osawa, Makoto; Yokokawa, Tadaharu; Kobayashi, Toshiharu; Harada, Hiroshi

    2002-05-01

    This paper reports the elastic constants of the Ni-base single crystal superalloy (TMS-26) with a rafted (lamellar) structure having tetragonal symmetry. The elastic constants have been measured at room temperature with the resonance ultrasound spectroscopy method and the mode-selective electromagnetic acoustic resonance method. The value of the elastic constant C33 (250.4 GPa) is almost equal to that of c11 (252.5 GPa), which indicates that the rafted structure virtually has the elastic anisotropy of cubic system. PMID:12159934

  8. Ni, Fe Co-doped ZnO nanoparticles synthesized by solution combustion method

    SciTech Connect

    Dhiman, Pooja Chand, Jagdish Verma, S. Sarveena, Singh, M.

    2014-04-24

    This paper outlines the synthesis and characterization of Ni-Fe co-doped ZnO nanoparticles by facile solution combustion method. The structural characterization by XRD confirmed the phase purity of the samples. Surface morphology studied by scanning electron microscope revealed cubic type shape of grains. EDS analysis conformed the elemental composition. Higher value of DC electrical conductivity and less band gap for co-doped ZnO from UV-Vis studies confirmed the change in defect chemistry of ZnO Matrix.

  9. Lifetime measurement of the 41+ state of 58Ni with the recoil distance method

    NASA Astrophysics Data System (ADS)

    Loelius, C.; Iwasaki, H.; Brown, B. A.; Honma, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Braunroth, T.; Campbell, C. M.; Dewald, A.; Gade, A.; Kobayashi, N.; Langer, C.; Lee, I. Y.; Lemasson, A.; Lunderberg, E.; Morse, C.; Recchia, F.; Smalley, D.; Stroberg, S. R.; Wadsworth, R.; Walz, C.; Weisshaar, D.; Westerberg, A.; Whitmore, K.; Wimmer, K.

    2016-08-01

    The quadrupole transition rate for the 41+→21+ transition of 58Ni was determined from an application of the recoil distance method with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA). The present result of the B (E 2 ;41+→21+) was found to be 50-6+11e2fm4 , which is about three times smaller than the literature value, indicating substantially less collectivity than previously believed. Shell model calculations performed with the GXPF1A effective interaction agree with the present data and the validity of the standard effective charges in understanding collectivity in the nickel isotopes is discussed.

  10. Structural, Optical and Magnetic Properties of Ni-Zn Ferrite Nanoparticles Prepared by a Microwave Assisted Combustion Method.

    PubMed

    Vijaya, J Judith; Bououdina, M

    2016-01-01

    Ni-doped ZnFe₂O₄(Ni(x)Zn₁₋xFe₂O₄; x = 0.0 to 0.5) nanoparticles were synthesized by a simple microwave combustion method. The X-ray diffraction confirms the presence of cubic spinel ZnFe₂O₄for all compositions. The lattice parameter decreases with an increase in Ni content resulting in the reduction of lattice strain. High resolution scanning electron microscope images revealed that the as-prepared samples are crystalline with particle size distribution in 40-50 nm range. Optical properties were determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy respectively. The saturation magnetization (Ms) shows the super paramagnetic nature of the sample for x = 0.0-0.2, whereas for x = 0.3-0.5, it shows ferromagnetic nature. The Ms value is 1.638 emu/g for pure ZnFe₂O₄ sample and it increases with increase in Ni content. PMID:27398508

  11. Structural, Optical and Magnetic Properties of Ni-Zn Ferrite Nanoparticles Prepared by a Microwave Assisted Combustion Method.

    PubMed

    Vijaya, J Judith; Bououdina, M

    2016-01-01

    Ni-doped ZnFe₂O₄(Ni(x)Zn₁₋xFe₂O₄; x = 0.0 to 0.5) nanoparticles were synthesized by a simple microwave combustion method. The X-ray diffraction confirms the presence of cubic spinel ZnFe₂O₄for all compositions. The lattice parameter decreases with an increase in Ni content resulting in the reduction of lattice strain. High resolution scanning electron microscope images revealed that the as-prepared samples are crystalline with particle size distribution in 40-50 nm range. Optical properties were determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy respectively. The saturation magnetization (Ms) shows the super paramagnetic nature of the sample for x = 0.0-0.2, whereas for x = 0.3-0.5, it shows ferromagnetic nature. The Ms value is 1.638 emu/g for pure ZnFe₂O₄ sample and it increases with increase in Ni content.

  12. Deposition of Ni-CGO composite anodes by electrostatic assisted ultrasonic spray pyrolysis method

    SciTech Connect

    Chen, J.-C.; Chang, C.-L.; Hsu, C.-S.; Hwang, B.-H. . E-mail: zorro@mail.nsysu.edu.tw

    2007-09-04

    Deposition of composite films of Ni and Gd-doped ceria was carried out using the electrostatic assisted ultrasonic spray pyrolysis method for the first time. The composite films were highly homogeneous, as revealed by element mapping via energy-dispersive spectrometry. Scanning electron microscope examinations revealed that deposition temperature and electric field strength had profound influence on resultant microstructure, while composition of the precursor solution had little effect. A highly porous cauliflower structure ideal for solid oxide fuel cell anode performance was obtained with a deposition temperature of 450 deg. C under an electric field introduced by an applied voltage of 12 kV. Films obtained with a lower deposition temperature of 250 deg. C or a higher applied voltage of 15 kV resulted in denser films with low porosity, while lower applied voltages of 7 or 5 kV resulted in thinner or discontinuous films due to the insufficient electrostatic attraction on the aerosol droplets. As revealed by AC impedance measurement, the area specific resistances of the Ni-CGO anode with porous cauliflower structure were rather low and a value of 0.09 {omega} cm{sup 2} at 550 deg. C was obtained.

  13. Preparation and characterization of Ni-Zn ferrite + polymer nanocomposites using mechanical milling method

    NASA Astrophysics Data System (ADS)

    Raju, P.; Murthy, S. R.

    2013-12-01

    The insulating properties of Ni-Zn ferrites can be improved by the addition of various types of insulating materials such as polymers, ceramics, etc. In this connection, ferrite-polymer composites have been subjected to extensive research, because they have many applications: electromagnetic interference shielding, rechargeable battery, electrodes and sensors, and microwave absorption. Electrical and magnetic properties of such composites will depend on the size, shape and amount of filler addition. In this paper, we report the preparation and characterization of nanocomposites of Ni-Zn ferrite + paraformaldehyde. These nanocomposites were prepared by using mechanical milling method and characterized by X-ray powder diffraction, scanning electron microscopy (SEM) and Fourier transform infrared spectrometer. The particle size estimated from SEM pictures for composites varies from 36 to 60 nm. Magnetic properties were measured on nanocomposites at room temperature. The complex permittivity and permeability were measured over a wide frequency range from 1 MHz to 1.8 GHz at room temperature. From our studies, it is observed that both the values of permittivity and permeability decrease with an increase in polymer content.

  14. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.

    PubMed

    Dong, Geng; Ryde, Ulf

    2016-06-01

    The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14-51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein. PMID:26940957

  15. Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method.

    PubMed

    Yen, Hsing Yuan; Li, Jun Yan

    2015-09-15

    Waste oyster shells cause great environmental concerns and nickel is a harmful heavy metal. Therefore, we applied the Taguchi method to take care of both issues by optimizing the controllable factors for Ni(II) removal by calcined oyster shell powders (OSP), including the pH (P), OSP calcined temperature (T), Ni(II) concentration (C), OSP dose (D), and contact time (t). The results show that their percentage contribution in descending order is P (64.3%) > T (18.9%) > C (8.8%) > D (5.1%) > t (1.7%). The optimum condition is pH of 10 and OSP calcined temperature of 900 °C. Under the optimum condition, the Ni(II) can be removed almost completely; the higher the pH, the more the precipitation; the higher the calcined temperature, the more the adsorption. The latter is due to the large number of porosities created at the calcination temperature of 900 °C. The porosities generate a large amount of cavities which significantly increase the surface area for adsorption. A multiple linear regression equation obtained to correlate Ni(II) removal with the controllable factors is: Ni(II) removal(%) = 10.35 × P + 0.045 × T - 1.29 × C + 19.33 × D + 0.09 × t - 59.83. This equation predicts Ni(II) removal well and can be used for estimating Ni(II) removal during the design stage of Ni(II) removal by calcined OSP. Thus, OSP can be used to remove nickel effectively and the formula for removal prediction is developed for practical applications.

  16. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    SciTech Connect

    Singh, Budhendra; Kaushal, Ajay; Bdikin, Igor; Venkata Saravanan, K.; Ferreira, J.M.F.

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM). A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.

  17. Bonding and microstructural stability in Ni55Ti45 studied by experimental and theoretical methods

    SciTech Connect

    Stott, Amanda C.; Brauer, Jonathann I.; Garg, Anita; Pepper, Stephen V.; Abel, Phillip B.; DellaCorte, Christopher; Noebe, Ronald D.; Glennon, Glenn; Bylaska, Eric J.; Dixon, David A.

    2010-11-25

    Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory.

  18. Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods

    NASA Technical Reports Server (NTRS)

    Stott, Amanda C.; Brauer, Jonathan I.; Garg, Anita; Pepper, Stephen V.; Abel, Phillip B.; DellaCorte, Christopher; Noebe, Ronald D.; Glennon, Glenn; Bylaska, Eric; Dixon, David A.

    2010-01-01

    Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory.

  19. A reddening-free method to estimate the 56Ni mass of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Blondin, S.

    2016-04-01

    The increase in the number of Type Ia supernovae (SNe Ia) has demonstrated that the population shows greater diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We investigated a sample of SNe Ia near-infrared light curves and correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the B light curve maximum) as follows: Lmax(1043 erg s-1) = (0.039 ± 0.004) × t2(J)(days) + (0.013 ± 0.106). 56Ni masses can be derived from the peak luminosity based on Arnett's rule, which states that the luminosity at maximum is equal to the instantaneous energy generated by the nickel decay. We checked this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The Lmax vs. t2 relation is applied to a sample of 40 additional SNe Ia with significant reddening (E(B - V) > 0.1 mag), and a reddening-free bolometric luminosity function of SNe Ia is established. The method is tested with the 56Ni mass measurement from the direct observation of γ-rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN 2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.

  20. Face-related segregation reversal at Pt 50Ni 50 surfaces studied with the embedded atom method

    NASA Astrophysics Data System (ADS)

    Deurinck, P.; Creemers, C.

    1999-11-01

    The segregation to the three low-index surfaces of a Pt50Ni50 single crystal is modelled by Monte Carlo simulations combined with the embedded atom method (EAM). Using the best fit EAM parameters from the literature for the six transition metals of the Ni and Cu groups does not yield satisfactory results. In this work the EAM parameters are recalculated and optimised exclusively for the Pt-Ni alloy system under study. Only then does EAM reliably reproduce the driving forces for segregation. The experimental results [Y. Gauthier et al., Phys. Rev. B 31 (1985) 6216; Y. Gauthier et al., Phys. Rev. B 35 (1987) 7867; S.M. Foiles, in: P.A. Dobson, A. Miller (Eds.), Surface Segregation Phenomena, CRC Press, Boca Raton, FL, 1990, p. 79] reveal a face-related segregation reversal for the Pt50Ni50 single crystal. It appears from the simulations that this is caused by a relatively small difference in surface energy in close competition with the elastic strain release. At the open (110) surface the difference in surface energy dominates causing Ni segregation. At the (100) and (111) surfaces the difference in surface energy is overpowered by the elastic strain leading to Pt segregation. The simulations are in good agreement with the experimental results and reproduce quantitatively the Ni segregation to the (110) surface and the Pt segregation to the (100) and (111) surfaces. Only at the (110) surface significant relaxations are predicted in good agreement with experimental evidence. Atomic vibrations can be included by allowing a large number of very small displacements or with a more classical treatment of vibrational entropy. Both approaches yield the same results and show that the inclusion of atomic vibrations is important only for the (110) surface and tend to attenuate the Ni segregation profile.

  1. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example.

    PubMed

    Wei, Zhi Peng; Arredondo, Miryam; Peng, Hai Yang; Zhang, Zhou; Guo, Dong Lai; Xing, Guo Zhong; Li, Yong Feng; Wong, Lai Mun; Wang, Shi Jie; Valanoor, Nagarajan; Wu, Tom

    2010-08-24

    Although NiO is one of the canonical functional binary oxides, there has been no report so far on the effective fabrication of aligned single crystalline NiO nanowire arrays. Here we report a novel vapor-based metal-etching-oxidation method to synthesize high-quality NiO nanowire arrays with good vertical alignment and morphology control. In this method, Ni foils are used as both the substrates and the nickel source; NiCl(2) powder serves as the additional Ni source and provides Cl(2) to initiate mild etching. No template is deliberately employed; instead a nanograined NiO scale formed on the NiO foil guides the vapor infiltration and assists the self-assembled growth of NiO nanowires via a novel process comprising simultaneous Cl(2) etching and gentle oxidation. Furthermore, using CoO nanowires and Co-doped NiO as examples, we show that this general method can be employed to produce nanowires of other oxides as well as the doped counterparts. PMID:20614899

  2. "Two-step" chronoamperometric method for studying the anaerobic inactivation of an oxygen tolerant NiFe hydrogenase.

    PubMed

    Fourmond, Vincent; Infossi, Pascale; Giudici-Orticoni, Marie-Thérèse; Bertrand, Patrick; Léger, Christophe

    2010-04-01

    Hydrogenases catalyze the oxidation and production of H(2). The fact that they could be used in biotechnological devices if they resisted inhibition by O(2) motivates the current research on their inactivation mechanism. Direct electrochemistry has been thoroughly used in this respect but often in a qualitative manner. We propose a new and precise chronoamperometric method for studying the anaerobic inactivation mechanism of hydrogenase, which we apply to the oxygen-tolerant NiFe enzyme from Aquifex aeolicus . We demonstrate that the voltammetric data cannot be used for measuring the reduction potential of the so-called NiB inactive state, even in the small scan rate limit. We show that the inactivation mechanism proposed for standard (oxygen-sensitive) NiFe hydrogenases does not apply in the case of the enzyme from A. aeolicus . In particular, the activation and inactivation reactions cannot follow the same reaction pathway.

  3. Structural and optical properties of Ni added ZnO thin films deposited by sol-gel method

    SciTech Connect

    Murugan, R.; Vijayaprasath, G.; Anandhan, N. E-mail: gravicrc@gmail.com; Ravi, G. E-mail: gravicrc@gmail.com; Mahalingam, T.

    2014-04-24

    Pure and Ni added zinc oxide thin films were prepared by sol-gel method using spin-coating technique on glass substrates. The influences of nickel on ZnO thin films are characterized by Powder X-ray diffraction study. Pure and Ni added thin films are hexagonal wurtzite structure without any secondary phase in c-axis orientation. The SEM images of thin films show uniform sphere like particles covered completely on glass substrates. All the films exhibit transmittance of 85-95% in the visible range up to 800nm and cut-off wavelength observed at 394 nm corresponding to the fundamental absorption of ZnO. The photoluminescence property for pure and Ni added ZnO thin films has been studied and results are presented in detail.

  4. Room temperature ferromagnetism and luminescent behavior of Ni doped ZnO nanoparticles prepared by coprecipitation method

    NASA Astrophysics Data System (ADS)

    Arora, Deepawali; Ashokan, K.; Mahajan, Aman; Kaur, Parvinder; Singh, Gurinder Pal; Kumar, Sunil; Singh, D. P.

    2016-05-01

    The samples of Zn1-xNixO (x= 0.00 and 0.05) were prepared using coprecipitation method and annealed at different temperatures. The effect of Ni ion substitution on the structural and optical properties has been studied using X-ray Diffraction, UV-Visible, Photoluminescence and Magnetic measurements. XRD measurements demonstrate that all the prepared samples are wurtzite polycrystalline single phase in nature, ruling out the presence of any secondary phase formation. Ultraviolet visible measurements showed a decrease in band gap with the increase in annealing temperature and doping concentration. The PL data shows the red shift in all the samples and luminescence quenching with Ni doping. Compared to undoped ZnO, Ni doped ZnO showed room temperature ferromagnetism

  5. Effect of calcination time on NiAl-Al2O3 using gel combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Afandi, N. F.; Manap, A.; Yusof, S. N. A.; Salim, M. A.; Azim, M. Al.; Othman, S. Z.; Pauzi, N. I. M.; Omar, Nooririnah; Misran, H.

    2015-07-01

    This study was conducted in order to investigate the effect of calcination time on phase and microstructural characteristics of intermetallic matric composite (IMC), NiAl-Al2O3 powder. This powder was synthesized using gel combustion method with octyl alcohol as fuel. Upon completion of the combustion process, the loose powder was calcined at 1050°C for 1, 2 and 4 hours and characterized using XRD, FESEM and TEM. The crystallite size was calculated to be in the range of 29-30 nm. It was found that NiAl-Al2O3 exhibits high crystalline structure after calcination for 4 hours. Furthermore, longer calcination time also cause growth of the particle size. Findings indicate that high crystalline nanostructured NiAl-Al2O3 powder consisting of submicron particles can be successfully produced using gel combustion synthesis with longer calcination time.

  6. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2

    NASA Astrophysics Data System (ADS)

    Kliemt, K.; Krellner, C.

    2016-09-01

    The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.

  7. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  8. A shape-controlled method to functionalize multiwalled carbon nanotubes with Ni3S2.

    PubMed

    Du, Ji Min; Kang, Dae Joon

    2007-11-26

    In this paper, we report the funtionalization of multiwalled carbon nanotubes (MWCNTs) with Ni3S2 using a solvent-thermal approach. The nanocomposites synthesized without ammonia show that the MWCNTs' outer surface was uniformly coated with a Ni3S2 film appearing like centipede-shaped objects when characterized by scanning transmission electron microscopy and transmission electron microscopy images. Meanwhile, the Ni3S2 layer thickness can be changed by simply altering the concentration of reaction precursors and keeping the other reaction conditions constant. Interestingly, clustered Ni3S2 nanoparticles were formed along the outside surfaces of the MWCNTs when ammonia was added to the reaction solution while keeping all other conditions unchanged. Also, the sizes of Ni3S2 nanoparticles can be varied through varying the amount of ammonia in our reaction system. On the basis of our experimental results, we propose a dynamic-controlled Oswald ripening mechanism to elucidate the formation of the MWCNTs composites with centipede-shaped and clustered Ni3S2 morphologies. PMID:17973477

  9. A comparison of methods for the training of NiTi two-way shape memory alloy

    NASA Astrophysics Data System (ADS)

    Luo, H. Y.; Abel, E. W.

    2007-12-01

    The creation of an effective two-way shape memory alloy (TWSMA) requires appropriate heat treatment and optimal training considerations. In particular, the training method used plays a key role. This work investigates different training methods for producing NiTi TWSMA wires with the hot shape of an arc and the cold shape of a straight line. These methods are shape memory cycling, constrained cycling of deformed martensite, pseudoelastic cycling and combined shape memory and pseudoelastic cycling. In order to give a meaningful evaluation of their performance that is relevant to training TWSMA for practical applications, these training methods are assessed in terms of maximum two-way strain, changes in the original hot shape together with the transformation temperatures after the training process, and the effective production of the cold shape. It was found that only the combined shape memory and pseudoelastic cycling provides an effective training method for creating NiTi TWSMA with a non-uniaxial two-way shape change. The undesirable side effects of training are that the NiTi TWSMA wire loses partial memory of the original hot shape and its transformation temperatures shift to lower values. There also exists an optimal number of training cycles, and possibly an optimal training load for obtaining the best cold shape memory and the greatest two-way recoverable strain. These findings give future directions to advance the training technology for TWSMA.

  10. Influence of Sn on the magnetic ordering of Ni-Sn alloy synthesized using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Dhanapal, K.; Narayanan, V.; Stephen, A.

    2016-05-01

    The Ni-Sn alloy was synthesized using borohydride assisted chemical reduction method. The composition of the synthesized alloy was determined using atomic absorption spectroscopy which revealed that the observed composition of Sn is high when compared to the initial composition. The ultrafine particles are clearly observed from field emission scanning electron microscope for all the sample. The X-ray diffraction measurement confirmed that the as-synthesized samples are of amorphous like nature while the samples annealed at 773 K showed crystalline nature. The Fourier transform infrared spectroscopy confirmed metallic bond stretching in the alloy samples. The crystallization and phase transition temperature was observed from differential scanning calorimetry. The shift in the crystallization temperature of Ni with increasing percentage of Sn was observed. The vibrating sample magnetometer was employed to understand the magnetic behavior of the Ni-Sn alloy. As-synthesized alloy samples showed paramagnetic nature while the annealed ones exhibit the soft ferromagnetic, antiferromagnetic and paramagnetic nature. The saturation magnetization value and magnetic ordering in the Ni-Sn alloys depend on the percentage of Sn present in the alloy.

  11. Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment.

    PubMed

    Fang, Zaijin; Zheng, Shupei; Peng, Wencai; Zhang, Hang; Ma, Zhijun; Dong, Guoping; Zhou, Shifeng; Chen, Danping; Qiu, Jianrong

    2015-11-01

    Glass ceramic fibers containing Ni(2+) doped LiGa(5)O(8) nanocrystals were fabricated by a melt-in-tube method and successive heat treatment. Fiber precursors were prepared by drawing at high temperature where fiber core glass was melted while fiber clad glass was softened. After heat treatment, LiGa(5)O(8) nanocrystals were precipitated in the fiber core. Excited by 980 nm laser, efficient broadband near-infrared emission was observed in the glass ceramic fiber compared to that of precursor fiber. The melt-in-tube method can realize controllable crystallization and is suitable for fabrication of novel glass ceramic fibers. The Ni(2+)-doped glass ceramic fiber is promising for broadband optical amplification. PMID:26561096

  12. Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment.

    PubMed

    Fang, Zaijin; Zheng, Shupei; Peng, Wencai; Zhang, Hang; Ma, Zhijun; Dong, Guoping; Zhou, Shifeng; Chen, Danping; Qiu, Jianrong

    2015-11-01

    Glass ceramic fibers containing Ni(2+) doped LiGa(5)O(8) nanocrystals were fabricated by a melt-in-tube method and successive heat treatment. Fiber precursors were prepared by drawing at high temperature where fiber core glass was melted while fiber clad glass was softened. After heat treatment, LiGa(5)O(8) nanocrystals were precipitated in the fiber core. Excited by 980 nm laser, efficient broadband near-infrared emission was observed in the glass ceramic fiber compared to that of precursor fiber. The melt-in-tube method can realize controllable crystallization and is suitable for fabrication of novel glass ceramic fibers. The Ni(2+)-doped glass ceramic fiber is promising for broadband optical amplification.

  13. Embedded-atom-method study of structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys

    SciTech Connect

    Asta, M.; Morgan, D.; Hoyt, J.J.; Sadigh, B.; Althoff, J.D.; de Fontaine, D.; Foiles, S.M.

    1999-06-01

    Structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys have been studied by Monte Carlo and molecular-dynamics simulations based upon three different embedded-atom method (EAM) interatomic potentials, namely those due to Foiles and Daw (FD) [J. Mater. Res. {bold 2}, 5 (1987)], Voter and Chen (VC) [in {ital Characterization of Defects in Materials}, edited by R. W. Siegel {ital et al.} MRS Symposia Proceedings. No. 82 (Materials Research Society, Pittsburgh, 1987), p.175] and Ludwig and Gumbsch (LG) [Model. Simul. Mater. Sci. Eng. {bold 3}, 533 (1995)]. We present detailed comparisons between calculated results and experimental data for structure factors, atomic volumes, enthalpies of mixing, activities, and viscosities. Calculated partial structure factors are found to be in semiquantitative agreement with published neutron scattering measurements for Ni{sub 20}Al{sub 80} alloys, indicating that short-range order in the liquid phase is qualitatively well described. Calculated thermodynamic properties of mixing are found to agree very well with experimental data for Ni compositions greater than 75 atomic {percent}, while for alloys richer in Al the magnitudes of the enthalpies and entropies of mixing are significantly underestimated. The VC and LG potentials give atomic densities and viscosities in good agreement with experiment for Ni-rich compositions, while FD potentials consistently underestimate both properties at all concentrations. The results of this study demonstrate that VC and LG potentials provide a realistic description of the thermodynamic and atomic transport properties for Ni{sub x}Al{sub 1{minus}x} liquid alloys with x{ge}0.75, and point to the limitations of EAM potentials for alloys richer in Al. {copyright} {ital 1999} {ital The American Physical Society}

  14. Iron and Fe-Ni alloy coatings containing ɛ-Fe produced by non-stationary deposition method

    NASA Astrophysics Data System (ADS)

    Smirnova, Natalya; Zhikhareva, Irina; Schmidt, Vadim; Vorobyev, Oleg

    2016-09-01

    A novel material, an electrolytic coating of iron and Fe-Ni alloy containing ɛ-Fe hexagonal close-packed phase (HCP) was obtained using the method of high-frequency alternating current at atmospheric pressure. This transition occurs according to the orientational mechanism by removing weak extreme iron atoms in the crystal lattice of α-Fe due to anodic dissolution and action of the electromagnetic waves loosening the valence bonds.

  15. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method

    PubMed Central

    2013-01-01

    By means of thermal decomposition, we prepared single-phase spherical Ni nanoparticles (23 to 114 nm in diameter) that are face-centered cubic in structure. The magnetic properties of the Ni nanoparticles were experimentally as well as theoretically investigated as a function of particle size. By means of thermogravimetric/differential thermal analysis, the Curie temperature TC of the 23-, 45-, 80-, and 114-nm Ni particles was found to be 335°C, 346°C, 351°C, and 354°C, respectively. Based on the size-and-shape dependence model of cohesive energy, a theoretical model is proposed to explain the size dependence of TC. The measurement of magnetic hysteresis loop reveals that the saturation magnetization MS and remanent magnetization increase and the coercivity decreases monotonously with increasing particle size, indicating a distinct size effect. By adopting a simplified theoretical model, we obtained MS values that are in good agreement with the experimental ones. Furthermore, with increase of surface-to-volume ratio of Ni nanoparticles due to decrease of particle size, there is increase of the percentage of magnetically inactive layer. PMID:24164907

  16. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams

    NASA Astrophysics Data System (ADS)

    Nikolić, Vesna; Kamberović, Željko; Anđić, Zoran; Korać, Marija; Sokić, Miroslav; Maksimović, Vesna

    2014-08-01

    A method of synthesizing Ni-based catalysts supported on α-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.

  17. A method to detect low-level 63Ni activity for estimating fast neutron fluence from the Hiroshima atomic bomb.

    PubMed

    Ito, Y; Shibata, T; Imamura, M; Shibata, S; Nogawa, N; Uwamino, Y; Shizuma, K

    1999-06-01

    The Hiroshima and Nagasaki atomic bombs resulted in the worst reported exposure of radiation to the human body. The data of survivors have provided the basis for the risk estimation for ionizing radiation, and thus are widely used as the basis of radiation safety. In this report we have studied a new method to detect the low-level 63Ni activity in copper samples in order to estimate the fast neutron fluence from the Hiroshima atomic bomb. Only 0.8 x 10(-3) Bq g(-1) of 63Ni is expected to be produced by the atomic bomb in a copper sample with the 63Cu(n, p)63Ni reaction at a distance of 500 m from the hypocenter. Our method has the required level of sensitivity for determination of the fast neutron fluence out to distances of at least 500 m, and perhaps as far as 1,000 m. We have already investigated and collected some bomb-irradiated copper samples for further study.

  18. A Comparison of Chemistry and Inclusion Distribution and Morphology Versus Melting Method of NiTi Alloys

    NASA Astrophysics Data System (ADS)

    Kramer, George M.

    2009-08-01

    NiTi alloys are produced by three melting methods. The first method requires compaction of nickel and titanium raw material into sections that can be joined together for melting in a Vacuum Arc Remelt unit (VAR). This ingot is melted two or more times in a VAR. The second method utilizes a Vacuum Induction Melting (VIM) unit to alloy the nickel and titanium, with the use of a graphite crucible. The resulting ingot is prepared and remelted in a VAR. The third method begins with primary melting in a vacuum Induction Skull Melter (ISM). The ISM produces ingots that are assembled into an electrode for VAR melting. For each of the melting methods, the final product depends on the quality and handling of the raw materials, the control of the process at each unit, and the preparation of the intermediate ingots for further processing. The melting method influences the final chemistry as well as the type and number of inclusions present in the final product. This study compares the chemistry and microcleanliness of product manufactured by each method to determine the appropriate melting technique that produces NiTi with the lowest residual elements, such as carbon, as well as the lowest size, and number of inclusions.

  19. Hydrogen production via CO2 reforming of methane over ZrO2-Doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method

    NASA Astrophysics Data System (ADS)

    Rahmani, Farhad; Haghighi, Mohammad; Vafaeian, Yaser; Estifaee, Pooya

    2014-12-01

    In our continuing effort to find the proper catalyst for CO2 reforming of methane, Ni(8%)/ZSM-5-ZrO2 with various zirconium loadings (0-15%) are synthesized via sonochemical method. All samples are characterized by XRD, FESEM, TEM, EDX, BET, FTIR and TPR-H2 techniques. The XRD results confirm existence of NiO, ZrO2 and ZSM-5 as crystalline phase in catalyst structure. FESEM images reveal small particle size of active metals and low numbers of agglomerations for Ni(8%)/ZrO2(5%)-ZSM-5. BET analysis shows that addition of ZrO2 to Ni/ZSM-5 decreases the surface area but Ni/ZrO2(5%)-ZSM-5 has the highest surface area. TEM analysis demonstrates high dispersion of Ni nano particles over the support. EDX depicts the best active metal dispersion for the catalyst with 5% zirconia loading. The TPR results prove that the metal-support interaction is enhanced by zirconia addition, indicating the better Ni dispersion. Apart from characterization, activity tests are performed and parameters such as effect of temperature, CO and H2 yields and H2/CO ratio are investigated. The results show that Ni(8%)/ZrO2(5%)-ZSM-5 has the best structural properties and the highest activity and stability in comparison with the other catalysts.

  20. Single crystal growth of Ga3Ni2 by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Wencka, Magdalena; Pillaca, Mirtha; Gille, Peter

    2016-09-01

    Intermetallic compounds have proved to be interesting alternatives to heterogeneous catalysts prepared from pure noble metals or their alloys. As to study their intrinsic properties, to determine the crystalline structures of specific surfaces and finally to understand elementary processes of heterogeneous catalysis, single crystals of these intermetallics are needed. Inspired by the recent discovery of Ga-Ni catalysts for carbon dioxide reduction to methanol, we have grown for the first time cm3-size single crystals of trigonal Ga3Ni2. We report in detail on the synthesis and Czochralski growth from high-temperature solution using Ga as native solvent. Inclusion formation of Ga-rich fluid proved to be the most severe problem that was minimized by using an extremely low pulling rate down to 25 μm/h.

  1. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study

    NASA Astrophysics Data System (ADS)

    Dai, Peng; Yan, Tao-tao; Yu, Xin-xin; Bai, Zhi-man; Wu, Ming-zai

    2016-04-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.

  2. Structural and electrical properties of Cu doped NiFe2O4 nanoparticles prepared through modified citrate gel method

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam

    2011-12-01

    Nanoparticles of polycrystalline NiFe2-xCuxO4 (0.0≤x≤0.05) ferrites were prepared through the modified citrate-gel method. The samples were obtained as dried gel after the successful chemical reaction of their respective metal nitrate solutions in the midst of citric acid as catalyst. X-ray diffraction (XRD) and selective area electron diffraction (SAED) confirmed the single phase nature of all the samples with an average particle size of 19.8 (±1). Fourier transformation infrared spectroscopy (FTIR) shows the presence of two broad vibrational bands between 400 and 1000 cm-1 corresponding to the tetrahedral and the octahedral sites. The variation of dielectric properties (ɛ‧, ɛ″, tan δ) and ac conductivity (σac), with frequency reveals that the dispersion is due to the Maxwell-Wagner type of interfacial polarization in general and due to hopping of charges between Fe+2 and Fe+3 as well as between Ni+2 and Ni+3 ions at B-sites. The complex impedance spectroscopy has been used to study the effect of grain and grain boundary on the electrical properties of all the ferrite nanoparticles.

  3. Embedded-atom-method study of structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Asta, Mark; Morgan, Dane; Hoyt, J. J.; Sadigh, Babak; Althoff, J. D.; de Fontaine, D.; Foiles, S. M.

    1999-06-01

    Structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys have been studied by Monte Carlo and molecular-dynamics simulations based upon three different embedded-atom method (EAM) interatomic potentials, namely those due to Foiles and Daw (FD) [J. Mater. Res. 2, 5 (1987)], Voter and Chen (VC) [in Characterization of Defects in Materials, edited by R. W. Siegel et al. MRS Symposia Proceedings. No. 82 (Materials Research Society, Pittsburgh, 1987), p.175] and Ludwig and Gumbsch (LG) [Model. Simul. Mater. Sci. Eng. 3, 533 (1995)]. We present detailed comparisons between calculated results and experimental data for structure factors, atomic volumes, enthalpies of mixing, activities, and viscosities. Calculated partial structure factors are found to be in semiquantitative agreement with published neutron scattering measurements for Ni20Al80 alloys, indicating that short-range order in the liquid phase is qualitatively well described. Calculated thermodynamic properties of mixing are found to agree very well with experimental data for Ni compositions greater than 75 atomic %, while for alloys richer in Al the magnitudes of the enthalpies and entropies of mixing are significantly underestimated. The VC and LG potentials give atomic densities and viscosities in good agreement with experiment for Ni-rich compositions, while FD potentials consistently underestimate both properties at all concentrations. The results of this study demonstrate that VC and LG potentials provide a realistic description of the thermodynamic and atomic transport properties for NixAl1-x liquid alloys with x>=0.75, and point to the limitations of EAM potentials for alloys richer in Al.

  4. Modelling of Cr and Ni ions release during orthodontic treatment: in vitro and in vivo methods.

    PubMed

    Chojnacka, Katarzyna; Mikulewicz, Marcin

    2014-11-01

    The kinetics of metal ions release from orthodontic appliances in in vitro, in in vivo on pigs, and in vivo trials on patients (where hair samples were taken) was discussed. We have evaluated (by means of ICP-OES and ISO 17025) and compared the mass of Cr and Ni ions released. Not all the metal ions released from the appliance were transferred to hair tissue. The transfer factor was expressed as coefficient ω and evaluated as: ωCr(patients) 33.0%, ωCr(pigs) 17.2%, ωNi(patients) 49.8%, ωNi(pigs) 0.553%. The kinetics was described by a power function. Coefficient ω was used to combine the models: the in vitro and in vivo on animals on the one hand and the in vitro and in vivo on human on the other, which enabled the extrapolation of in vitro and translation of the results into in vivo conditions. The dose of metal ions released during orthodontic treatment was estimated. PMID:25461553

  5. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    NASA Astrophysics Data System (ADS)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  6. Surface morphology, optical and electrochemical properties of undoped and Ni-doped CeO2 thin films prepared by polymeric precursor method

    NASA Astrophysics Data System (ADS)

    Khosousi Sani, Zara; Esmaeli Ghodsi, Farhad; Mazloom, Jamal

    2016-04-01

    In this study, undoped and Ni-doped CeO2 thin films were deposited onto glass and ITO substrates by polymeric precursor (Pechini) method. Grazing incidence X-ray diffraction analysis revealed that the ceria thin film has a cerianite structure with the average crystallite size of 14 nm while the doped samples are amorphous. X-ray photoelectron spectroscopy (XPS) confirmed the presence of predominant Ce4+ oxidation state of ceria and Ni2+ in the films. Scanning electron microscopy (SEM) micrographs showed that the surface texture is crack free and the CeO2 grains regularly distributed on the surface. Optical constant (refractive index and extinction coefficient) and thickness of films were calculated using pointwise unconstraint minimization approach. The optical transmittance increases and the absorption edge has a blue shift by Ni incorporation. The highest band gap value (i.e., 3.43 eV) was obtained for 2.5 mol.% Ni doping sample. The refractive index and extinction coefficient of ceria films were decreased by Ni doping. The evaluated thicknesses are in the range of 150-170 nm. The strength of interband transition was appraised as a function of nickel content by using dielectric function. Luminescent emission intensity of the ceria film was enhanced by Ni doping. Cyclic voltammetry (CV) measurement revealed that the total charge density and ion storage capacitance of ceria thin film were increased by Ni doping.

  7. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert's method

    USGS Publications Warehouse

    Brown, G.K.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The equilibrium binding of Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ with unfractionated Suwannee river fulvic acid (SRFA) and an enhanced metal binding subfraction of SRFA was measured using Schubert's ion-exchange method at pH 6.0 and at an ionic strength (??) of 0.1 (NaNO3). The fractionation and subfractionation were directed towards obtaining an isolate with an elevated metal binding capacity or binding strength as estimated by Cu2+ potentiometry (ISE). Fractions were obtained by stepwise eluting an XAD-8 column loaded with SRFA with water eluents of pH 1.0 to pH 12.0. Subfractions were obtained by loading the fraction eluted from XAD-8 at pH 5.0 onto a silica gel column and eluting with solvents of increasing polarity. Schuberts ion exchange method was rigorously tested by measuring simultaneously the conditional stability constants (K) of citric acid complexed with the five metals at pH 3.5 and 6.0. The logK of SRFA with Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ determined simultaneously at pH 6.0 follow the sequence of Cu2+>Cd2+>Ni2+>Zn2+>Ca2+ while all logK values increased for the enhanced metal binding subfraction and followed a different sequence of Cu2+>Cd2+>Ca2+>Ni2+>Zn2+. Both fulvic acid samples and citric acid exhibited a 1:1 metal to ligand stochiometry under the relatively low metal loading conditions used here. Quantitative 13C nuclear magnetic resonance spectroscopy showed increases in aromaticity and ketone content and decreases in aliphatic carbon for the elevated metal binding fraction while the carboxyl carbon, and elemental nitrogen, phosphorus, and sulfur content did not change. The more polar, elevated metal binding fraction did show a significant increase in molecular weight over the unfractionated SRFA. Copyright (C) 1999 Elsevier Science B.V.

  8. Role of Preparation Method on the Microstructure and Mechanical Properties of PPy/Ni Organic-Inorganic Hybrid Bilayer Coatings on Carbon Steel

    NASA Astrophysics Data System (ADS)

    Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Alanis-Valdelamar, A.; Onofre-Bustamante, E.; Escudero, M. L.; García-Alonso, M. C.; Lois-Correa, J. A.

    2015-04-01

    The efficacy of the conducting polymers as coating on a metallic substrate is strongly dependent on the manner how they are applied. Polypyrrole (PPy)/Ni organic-inorganic hybrid coatings were electropolymerized on commercial carbon steel (AISI 1018) by combining potentiostatic and potentiodynamic techniques. In first instance, it was analyzed the electrodeposition of PPy using a constant potential regime and cyclic voltammetry techniques evaluating different synthesis parameters such as deposition time, applied potential, and potential cycles, respectively. Thereafter, it was used a potentiostatic method to obtain PPy/Ni bilayer films. The morphological, mechanical, and adhesion properties of these films depend on the synthesis parameters. The results revealed that polypyrrole films formed by both methods provide a globular-type structure, although coatings produced by cyclic voltammetry are denser and slightly thicker than those produced potentiostatically. Ni (oxide/hydroxide) particles are capable of sealing the pores of globular PPy coatings, thus increasing the hardness of the carbon steel (CS)/PPy/Ni system. As a result of the study, we have seen that PPy/Ni bilayer films are more uniform, compact and enhanced the hardness when the PPy is obtained by cyclic voltammetry than that observed for potentiostatic approach. Specifically, when four potential cycles are used to electropolymerized pyrrole, the more convenience properties in the CS/PPy/Ni arrangement are obtained.

  9. Influence of the ARC patterning method and annealing on the contact adhesion of Ni/Cu-plated solar cells

    NASA Astrophysics Data System (ADS)

    Baik, Jong Wook; Lee, Sang Hee; Lee, Doo Won; Lee, Soo Hong

    2016-05-01

    Ni/Cu two-step plating is a promising metallization technique because low contact resistance and improved contact adhesion can be achieved after the Ni annealing process. Also, narrow fingers, which are required for high-efficiency solar cells, can be formed by plating. However, the reliability of contact adhesion is still considered one obstacle to industrializing solar cells with plated metal contacts. In this experiment, the influence of ARC opening methods on plated contact adhesion was investigated because the roughnesses of the Si surfaces produced by using pico-second laser ablation and photolithography may be different. Also, the annealing process was conducted before and after plating Cu/Ag metal stacks. The sequence of the annealing can be significant for efficient production because plating is a wet process while annealing is a dry process. The contact adhesion was measured by using a peel-off test. The test was conducted on a 1.5-mm-wide by a 60 ~ 70- mm-long bus bar area. A 3.2-N/mm adhesion force was recorded as a highest average value along the bus bar.

  10. Properties of a Ni-FUSI gate formed by the EBV method and one-step RTA

    NASA Astrophysics Data System (ADS)

    Youwei, Zhang; Dawei, Xu; Li, Wan; Zhongjian, Wang; Chao, Xia; Xinhong, Cheng; Yuehui, Yu

    2012-03-01

    Nickel fully silicided (Ni-FUSI) gate material has been fabricated on a HfO2 surface to form a Ni-FUSI gate/HfO2/Si/Al (MIS) structure by using an ultra-high vacuum e-beam evaporation (EBV) method followed by a one step rapid thermal annealing (RTA) treatment. X-ray diffraction (XRD) and Raman spectroscopy were used to reveal the microstructures and electrical properties of the MIS structure. Results show that a one step post RTA treatment is enough to promote the full reaction of nickel silicide, compared with multiple RTA treatments. Furthermore, the HfO2 gate dielectric film is sensitive to heat treatment, and multiple RTA treatments can damage the electrical properties of the HfO2 film rather than improve them. By optimization of the sample fabrication technique, the MIS capacitor produces good high-frequency capacitance-voltage curves with a hysteresis of 30 mV, a work function of about 5.44-5.53 eV and leakage current density of only 1.45 × 10-8 A/cm2 at -1 V gate bias.

  11. Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application

    SciTech Connect

    Saravanan, R.; Santhi, Kalavathy; Sivakumar, N.; Narayanan, V.; Stephen, A.

    2012-05-15

    Zinc oxide nanorods and diluted magnetic semiconducting Ni doped ZnO nanorods were prepared by thermal decomposition method. This method is simple and cost effective. The decomposition temperature of acetate and formation of oxide were determined by TGA before the actual synthesis process. The X-ray diffraction result indicates the single phase hexagonal structure of zinc oxide. The transmission electron microscopy and scanning electron microscopy images show rod like structure of ZnO and Ni doped ZnO samples with the diameter {approx} 35 nm and the length in few micrometers. The surface analysis was performed using X-ray photoelectron spectroscopic studies. The Ni doped ZnO exhibits room temperature ferromagnetism. This diluted magnetic semiconducting Ni doped ZnO nanorods finds its application in spintronics. - Highlights: Black-Right-Pointing-Pointer The method used is very simple and cost effective compared to all other methods for the preparation DMS materials. Black-Right-Pointing-Pointer ZnO and Ni doped ZnO nanorods Black-Right-Pointing-Pointer Ferromagnetism at room temperature.

  12. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    PubMed

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  13. Methane dissociation on Ni(111): A fifteen-dimensional potential energy surface using neural network method

    NASA Astrophysics Data System (ADS)

    Shen, Xiangjian; Chen, Jun; Zhang, Zhaojun; Shao, Kejie; Zhang, Dong H.

    2015-10-01

    In the present work, we develop a highly accurate, fifteen-dimensional potential energy surface (PES) of CH4 interacting on a rigid flat Ni(111) surface with the methodology of neural network (NN) fit to a database consisted of about 194 208 ab initio density functional theory (DFT) energy points. Some careful tests of the accuracy of the fitting PES are given through the descriptions of the fitting quality, vibrational spectrum of CH4 in vacuum, transition state (TS) geometries as well as the activation barriers. Using a 25-60-60-1 NN structure, we obtain one of the best PESs with the least root mean square errors: 10.11 meV for the entrance region and 17.00 meV for the interaction and product regions. Our PES can reproduce the DFT results very well in particular for the important TS structures. Furthermore, we present the sticking probability S0 of ground state CH4 at the experimental surface temperature using some sudden approximations by Jackson's group. An in-depth explanation is given for the underestimated sticking probability.

  14. Optimization of Fe/Ni/Mg Trimetallic Catalyst for Carbon Nanotubes Growth by Using Fluidized Floating Catalyst Method

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Fluidized floating catalyst method has been used for preparing carbon nanotubes with average size ˜11 nm which yielded high yield even at low temperature; 650° C. Optimum concentration of the Fe/Ni/Mg metal alloy catalyst has been found to be at 2.133% for producing carbon nanotubes with high yield. Carbon nanotubes are formed by the evaporation of the camphor oil (precursor), which decomposes `in situ' and aggregates on the metal alloy catalyst particles present in the ceramic boat. From the PXRD analyses, graphite layers detected which provide an indication of the degree of graphitic character. However, by using the Scherrer equation is not suitable for carbon nanotubes as the value is slightly different from the average diameter determine from FESEM micrographs. Since the metallic alloy was obtained by calcining the respective nitrates, it is expected to have residual entrapped nitrogen, which may bond with the depositing CNTs as observed from FTIR spectroscopy.

  15. Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Vijayanand, S.; Deka, S.; Joy, P. A.

    2008-04-01

    The properties of nanocrystalline Ni0.5Zn0.5Fe2O4 synthesized by an auto-combustion method have been investigated by magnetic measurements and Mössbauer spectroscopy. The as-synthesized single phase nanosized ferrite powder is annealed at different temperatures in the range 673 1,273 K to obtain nanoparticles of different sizes. The powders are characterized by powder X-ray diffraction, vibrating sample magnetometer, transmission electron microscopy and Mössbauer spectroscopy. The as-synthesized powder with average particle size of ~9 nm is superparamagnetic. Magnetic transition temperature increases up to 665 K for the nanosized powder as compared to the transition temperature of 548 K for the bulk ferrite. This has been confirmed as due to the abnormal cation distribution, as evidenced from room temperature Mössbauer spectroscopic studies.

  16. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    NASA Astrophysics Data System (ADS)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  17. Adsorption and thermal decomposition of benzene on Ni(110) studied by chemical, spectroscopic, and computational methods

    SciTech Connect

    Huntley, D.R.; Jordan, S.L.; Grimm, F.A.

    1992-02-06

    The chemisorption and reactions of benzene on Ni(110) have been studied by temperature-programmed desorption (TPD) including isotopic labeling, X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), and low-energy electron diffraction (LEED) as a function of coverage and adsorption temperature between 100 and 300 K. At saturation, 70-80% of the benzene is irreversibly chemisorbed, and C-H bond scission commences at 320 K. For high exposures, molecular desorption competes with decomposition. A c(4x2) LEED patterns is observed at saturation coverage of chemisorbed benzene (0.2 monolayer by XPS). HREEL spectroscopy indicates that the benzene ring lies parallel to the surface. Semiempirical molecular orbital calculations have been made and predict the most likely adsorption site for benzene chemisorption to be the atop site at a height of about 1.75 {angstrom} or the short bridge site at 1.90 {angstrom}. Upon annealing above 300 K, the benzene decomposes, evolving H{sub 2} and forming a surface carbide. Additionally, a species forms which ultimately desorbs as benzene at 460 K but also undergoes H-D exchange with benzene-d{sub 6}. An unambiguous identification of this fragment has not been made, but the vibrational spectroscopy and isotopic exchange data are consistent with the assignment of a phenyl or benzyne group. The major effects of coadsorbed sulfur and oxygen are to inhibit dissociation and to weaken the interaction between the benzene and the surface. 41 refs., 12 figs., 3 tabs.

  18. Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method

    PubMed Central

    2013-01-01

    Background Metal tungstates have attracted much attention due to their interesting structural and photoluminescence properties. Depending on the size of the bivalent cation present, the metal tungstates will adopt structures with different phases. In this work, three different phases of metal tungstates MWO4 (M= Ba, Ni and Bi) were synthesized via the sucrose templated method. Results The powders of BaWO4 (tetragonal), NiWO4 (monoclinic) and Bi2WO6 (orthorhombic) formed after calcination temperatures of 750, 650 and 600°C for 4 h respectively are found to be crystalline and exist in their pure phase. Based on Scherrer estimation, their crystallite size are of nanosized. BET results showed NiWO4 has the highest surface area. BaWO4 exhibited less Raman vibrations than the NiWO4 because of the increased lattice symmetry but Bi2WO6 showed almost the same Raman vibrations as BaWO4. From the UV-vis spectra, the band gap transition of the metal tungstates are of the order of BaWO4 > Bi2WO6 > NiWO4. Broad blue-green emission peaks were detected in photoluminescence spectra and the results showed the great dependence on morphology, crystallinity and size of the metal tungstates. Conclusion Three different phases of metal tungstates of BaWO4 (scheelite), NiWO4 (wolframite) and Bi2WO6 (perovskite layer) in their pure phase were successfully prepared by the simple and economical sucrose-templated method. The highest surface area is exhibited by NiWO4 while largest band gap is shown by BaWO4. These materials showed promising optical properties. PMID:23634962

  19. Investigation of porous Ni-based metal-organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods.

    PubMed

    Maniam, Palanikumar; Stock, Norbert

    2011-06-01

    In the search of Ni based metal-organic frameworks (MOFs) containing paddle-wheel type building units, three chemical systems Ni(2+)/H(n)L/base/solvent with H(n)L = H(3)BTC (1,3,5-benzenetricarboxylic acid), H(3)BTB (4,4',4'',-benzene-1,3,5-triyl-tris(benzoic acid)), and H(2)BDC (terephthalic acid) were investigated using high-throughput (HT) methods. In addition to the conventional heating, for the first time HT microwave assisted synthesis of MOFs was carried out. Six new compounds were discovered, and their fields of formation were established. In the first system, H(3)BTC was employed and a comprehensive HT-screening of compositional and process parameters was conducted. The synthesis condition for the Ni paddle-wheel unit was determined and two compounds [Ni(3)(BTC)(2)(Me(2)NH)(3)]·(DMF)(4)(H(2)O)(4) (1a) and [Ni(6)(BTC)(2)(DMF)(6)(HCOO)(6)] (1b) were discovered (Me(2)NH = dimethylamine, DMF = dimethylformamide). In the second system, the use of the extended tritopic linker H(3)BTB and the synthesis conditions for the paddle-wheel units led to the porous MOF, [Ni(3)(BTB)(2)(2-MeIm)(1.5)(H(2)O)(1.5)]·(DMF)(9)(H(2)O)(6.5) (2), (2-MeIm = 2-methylimidazole). This compound shows a selective adsorption of H(2)O and H(2) with a strong hysteresis. In the third system, H(2)BDC was used, and the base (DABCO) was incorporated as a bridging ligand into all structures. Thus, two pillared layered porous MOFs [Ni(2)(BDC)(2)(DABCO)]·(DMF)(4)(H(2)O)(1.5) (3a) and [Ni(2)(BDC)(2)(DABCO)]·(DMF)(4)(H(2)O)(4) (3b) as well as a layered compound [Ni(BDC)(DABCO)]·(DMF)(1.5)(H(2)O)(2) (3c) were isolated. The 3a and 3b polymorphs of the [Ni(2)(BDC)(2)(DABCO)] framework can be selectively synthesized. The combination of microwave assisted heating, low overall concentration, stirring of the reaction mixtures, and an excess of DABCO yields a highly crystalline pure phase of 3b. The fields of formation of all compounds were established, and scale-up was successfully performed for 1b, 2

  20. Effect of calcination temperatures on the electrochemical performances of nickel oxide/reduction graphene oxide (NiO/RGO) composites synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Guan, Hongtao; Dong, Chengjun; Xiao, Xuechun; Wang, Yude

    2016-11-01

    A series of NiO/RGO composites based on NiO nanoparticles anchored on layered RGO surfaces were proposed by the same hydrothermal method combined with different calcination temperatures (250, 300, 400 and 500 °C). The effects of calcination temperatures on the capacitive behaviors have been discussed by investigating the components, morphologies, surface conditions of the NiO/RGO composites. The specific capacitance values of NiO/RGO composites calcined at 250, 300, 400 and 500 °C are 950, 553, 375 and 205 F/g at the current density of 1 A/g and the corresponding capacitance retention are 91.3%, 83.9%, 71.9% and 67.3% after 1000 cycles at the current density of 10 A/g. The results suggest the calcination temperature plays an important role in the electrochemical performances of NiO/RGO composites and the electrochemical performances were deteriorated with the increasing calcination temperatures.

  1. Raman Spectra of Single-Walled Carbon Nanotubes Synthesized by Aerosol CVD-Method Using Ferrocene and CuNi Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lomakin, M. V.; Rybakov, M. S.; Kosobutsky, A. V.; Sevostyanov, O. G.; Shandakov, S. D.

    2015-09-01

    Properties of single-walled carbon nanotubes (SWCNTs) obtained by aerosol method of chemical deposition from the gas phase using ethanol, ferrocene, and CuNi nanoparticles are studied. The structural and vibrational characteristics of synthesis products are determined by Raman spectroscopy. The influence of the catalyst nanoparticles introduced into the reaction mixture on the properties of the synthesized SWCNTs is discussed.

  2. Manufacturing methods of a composite cell case for a Ni-Cd battery

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.

    1979-01-01

    Basic manufacturing method refinements for using graphite epoxy material for a nickel cadmium battery cell case were performed to demonstrate production feasibility. The various facets of production scale-up, i.e., process and tooling development, together with material and process control, were integrated into a comprehensive manufacturing process that assures production reproducibility and product uniformity. Test results substantiate that a battery cell case produced from graphite epoxy pre-impregnated material, utilizing the internal pressure bag fabrication method, is feasible.

  3. Manufacturing methods of a composite cell case for a Ni-Cd battery

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.; Bogner, R. S.; Lowe, E. P.; Orlowski, E.

    1979-01-01

    Graphite epoxy material for a nickel cadmium battery cell case has been evaluated and determined to perform in the simulated environment of the battery. The basic manufacturing method requires refinement to demonstrate production feasibility. The various facets of production scale-up, i.e., process and tooling development together with material and process control, have been integrated into a comprehensive manufacturing process that assures production reproducibility and product uniformity. Test results substantiate that a battery cell case produced from graphite epoxy pre-impregnated material utilizing internal pressure bag fabrication method is feasible.

  4. The effects of fuel type in synthesis of NiFe2O4 nanoparticles by microwave assisted combustion method

    NASA Astrophysics Data System (ADS)

    Karcıoğlu Karakaş, Zeynep; Boncukçuoğlu, Recep; Karakaş, İbrahim H.

    2016-04-01

    In this study, it was investigated the effects of the used fuels on structural, morphological and magnetic properties of nanoparticles in nanoparticle synthesis with microwave assisted combustion method with an important method in quick, simple and low cost at synthesis of the nanoparticles. In this aim, glycine, urea and citric acid were used as fuel, respectively. The synthesised nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller surface area (BET), and vibrating sample magnetometry (VSM) techniques. We observed that fuel type is quite effective on magnetic properties and surface properties of the nanoparticles. X-ray difractograms of the obtained nanoparticles were compared with standard powder diffraction cards of NiFe2O4 (JCPDS Card Number 54-0964). The results demonstrated that difractograms are fully compatible with standard reflection peaks. According to the results of the XRD analysis, the highest crystallinity was observed at nanoparticles synthesized with glycine. The results demonstrated that the nanoparticles prepared with urea has the highest surface area. The micrographs of SEM showed that all of the nanoparticles have nano-crystalline behaviour and particles indication cubic shape. VSM analysis demonstrated that the type of fuel used for synthesis is highly effective a parameter on magnetic properties of nanoparticles.

  5. An electrochemical method for the preparation of 63Ni source for the calibration of thermoluminescence dosimeter (TLD).

    PubMed

    Kumar, Manoj; Udhayakumar, J; Gandhi, Shyamala S; Satpati, A K; Dash, Ashutosh; Venkatesh, Meera

    2009-06-01

    A novel electrochemical approach for preparation of (63)Ni sources for their application as check-light source for the calibration of thermo luminescence dosimeters (TLD) is described here. Required amount of (63)Ni on a copper substrate could be deposited by optimizing the experimental parameters such as current density, time of deposition, pH of the electrolyte and nickel ion concentration in the bath. (63)Ni sources of strength approximately 3.7 MBq could be prepared by electrodeposition at constant current on the copper matrix. Quality assurance tests to ensure nonleachability, uniform distribution of activity and stability of the sources that are necessary before application were performed.

  6. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    SciTech Connect

    Gupta, Vinay Kawaguchi, Toshikazu; Miura, Norio

    2009-01-08

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co{sub 3}O{sub 4}, NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm{sup 2} current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides.

  7. FAST TRACK COMMUNICATION: Re-Cr-Ni high-temperature resistant coatings on Cu substrates prepared by thermionic vacuum arc (TVA) method

    NASA Astrophysics Data System (ADS)

    Surdu Bob, C. C.; Lungu, C. P.; Mustata, I.; Frunza, L.

    2008-07-01

    Re-Cr-Ni composite metallic films were prepared using an original plasma deposition method developed at INFLPR, Bucharest, called thermionic vacuum arc (TVA). The method is based on the evaporation of a metal followed by ignition of a plasma in the vapours. These three-component films/alloy films were deposited using three simultaneous TVA plasma sources in the same vacuum chamber. Surface corrosion at temperatures up to 1000 °C was found not to take place in these Re-Cr-Ni alloy films as shown by thermogravimetric analysis. The current results demonstrate that the TVA method is a promising candidate tool for the synthesis of multiple compound films. Films of uniform and controlled composition can be simultaneously obtained using this method. Moreover, high melting point metals can be involved in these superalloy films, thus leading to applications in extremely hot conditions such as turbine blades and aircraft parts.

  8. [Study on the method for the determination of Fe, Si, Cu, Mg, Mn, Ni, Zn, Ti, Cr, Sr in aluminium alloy by ICP-AES].

    PubMed

    Zhong, Zhi-guang; Bian, Qun-zhou; Zheng, Jian-guo; Chen, Pei-ling; Liu, Chong-hua; Wei, Xian-ying

    2002-02-01

    The method for the determination of Fe, Mn, Cu, Zn, Mg, Ti, Si, Ni, Cr, Sr in aluminum alloy has been developed in this study. The sample was dissolved with sodium hydroxide, the matrix interference and interference among tested elements were studied and then corrected by matrix match and interference coefficient respectively. The method is rapid, simple and accurate, and it is suitable for daily testing of aluminum alloy for import and export.

  9. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    PubMed Central

    2012-01-01

    Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm. PMID:22316055

  10. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications.

    PubMed

    Batoo, Khalid Mujasam; Ansari, Mohammad Shahnawaze

    2012-02-08

    Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume.PACS: 75.50.Gg; 78.20; 77.22.Gm.

  11. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam; Ansari, Mohammad Shahnawaze

    2012-02-01

    Ferrite nanoparticles of basic composition Ni0.7- x Zn x Cu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands ( v 1 and v 2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters ( ɛ', ɛ″, tan δ, and σ ac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm.

  12. Production of Al-Co-Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing

    NASA Astrophysics Data System (ADS)

    Alkan, Murat; Sonmez, M. Seref; Derin, Bora; Yücel, Onuralp; Andreev, Dmitrii E.; Sanin, Vladimir N.; Yukhvid, Vladimir I.

    2015-05-01

    In this study, Al-Co-Ni ternary alloys were synthesized, in order to obtain low-cost starting material for Ni-based superalloy production, by a self-propagating high temperature synthesis (SHS) both under normal gravity conditions (a = 9.81 m/s2) and under high gravity conditions (up to 1000 g-force) by using a centrifugal machine. The mixture of Co3O4-NiO powder were reduced by Al powder for the production of SHS alloys with the estimated compositions of 5-10 mass% Al, 20-65 mass% Co, 25-75 mass% Ni. The effect of green mixture compositions and centrifugal overload on combustion temperature, alloy/slag separations, chemical composition and microstructure of final alloys were investigated. The chemical analysis results showed that production of SHS alloys were achieved by having up to 86.12% of Co and 92.32% of Ni recoveries. The highest metal recovery value was obtained in SHS alloy with the estimated composition of 10%Al-65%Co-25%Ni by the addition of 20% Al2O3 into the green mixture. The metal/slag separation efficiency increased by increasing the centrifugal overload.

  13. Preparation and Thermal Stability of Ultrafine Nickel Powders Containing hcp-Ni Nanocrystallites Using Liquid-Phase Reduction Method

    NASA Astrophysics Data System (ADS)

    Xia, Zhimei; Jin, Shengming; Liu, Kun

    2016-10-01

    Ultrafine nickel powders containing hexagonal close-packed nickel (hcp-Ni) nanocrystallites were prepared using liquid-phase reduction with NiC2O4, NaOH, polyvinylpyrrolidone (PVP), and ethylene glycol (EG). The nickel powders were characterized by XRD and SEM. TG analysis was used to determine the thermal stability of ultrafine nickel powders. The results showed that nickel powders with 45.1 pct of hcp-Ni nanocrystallites were synthesized under the following conditions: a reflux time of 3 hours, an NiC2O4-to-EG molar ratio of 0.01, 5 g/L PVP, and 85 g/L NaOH. SEM results illustrated that spherical particles of size 500 nm were obtained. The results of thermal stability showed that the antioxidant property at high temperature was improved with the increase of hcp-Ni content. The oxidation rate of nickel powders with 43.3 pct hcp-Ni was less than 50 pct even if the temperature was up to 873 K (600 °C).

  14. Preparation and Thermal Stability of Ultrafine Nickel Powders Containing hcp-Ni Nanocrystallites Using Liquid-Phase Reduction Method

    NASA Astrophysics Data System (ADS)

    Xia, Zhimei; Jin, Shengming; Liu, Kun

    2016-08-01

    Ultrafine nickel powders containing hexagonal close-packed nickel (hcp-Ni) nanocrystallites were prepared using liquid-phase reduction with NiC2O4, NaOH, polyvinylpyrrolidone (PVP), and ethylene glycol (EG). The nickel powders were characterized by XRD and SEM. TG analysis was used to determine the thermal stability of ultrafine nickel powders. The results showed that nickel powders with 45.1 pct of hcp-Ni nanocrystallites were synthesized under the following conditions: a reflux time of 3 hours, an NiC2O4-to-EG molar ratio of 0.01, 5 g/L PVP, and 85 g/L NaOH. SEM results illustrated that spherical particles of size 500 nm were obtained. The results of thermal stability showed that the antioxidant property at high temperature was improved with the increase of hcp-Ni content. The oxidation rate of nickel powders with 43.3 pct hcp-Ni was less than 50 pct even if the temperature was up to 873 K (600 °C).

  15. A new mechanical characterization method for thin film microactuators and its application to NiTiCi shape memory alloy

    SciTech Connect

    Seward, K P

    1999-06-01

    In an effort to develop a more full characterization tool of shape memory alloys, a new technique is presented for the mechanical characterization of microactuators and applied to SMA thin films. A test instrument was designed to utilize a spring-loaded transducer in measuring displacements with resolution of 1.5 pm and forces with resolution of 0.2 mN. Employing an out-of-plane loading method for freestanding SMA thin films, strain resolution of 30{mu}{epsilon} and stress resolution of 2.5 MPa were achieved. This new testing method is presented against previous SMA characterization methods for purposes of comparison. Four mm long, 2 {micro}m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. The fabrication process used to micromachine the ligaments is presented step-by-step, alongside methods of fabrication that failed to produce testable ligaments. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. In terms of recoverable stress and recoverable strain, the ligaments achieved maximum recovery of 700 MPa and 3.0% strain. No permanent deformations were seen in any ligament during deflection measurements. Maximum actuation forces and displacements produced by the 4 mm ligaments situated on 1 cm square test chips were 56 mN and 300 {micro}m, respectively. Fatigue analysis of the ligaments showed degradation in recoverable strain from 0.33% to 0.24% with 200,000 cycles, corresponding to deflections of 90 {micro}m and forces of 25 mN. Cycling also produced a wavering shape memory effect late in ligament life, leading to broad inconsistencies of as much as 35% deviation from average. Unexpected phenomena like stress-induced martensitic twinning that leads to less recoverable stress and the shape memory behavior of long life devices are addressed. Finally, a model for design of microactuators using shape

  16. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    SciTech Connect

    Premarani, R.; Saravanakumar, S. Chandramohan, R.; Mahalingam, T.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Ni dopant that is associated with variation in crystallite sizes in the nano regime.

  17. A study on structure and tribological properties of the electroerosion coating Mo-Ni-Cu, formed by the mixed method on copper

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Goncharova, E. N.; Gromov, V. E.; Ivanov, Yu F.

    2016-09-01

    Multi-layered coating from immiscible components based on the system Mo-Ni-Cu was formed by the combined method of electro-explosive sputtering and subsequent irradiation by high-intensity pulse electron beam of submillisecond duration of influence on the surface of electrical copper contact (M00 grade of copper). The structure and phase composition studies of the applied coating as well as its mechanical and tribological properties are carried out.

  18. Synthesis and characterization of Ni2+: Zn2SiO4 nano phospshor by sol-gel method

    NASA Astrophysics Data System (ADS)

    Babu, B. Chandra; Buddhudu, S.

    2012-06-01

    Here, we report on the development and analysis of Ni2+: Zn2SiO4 and also undoped Zn2SiO4 nano sized powder phosphors by using sol-gel technique. The host samples at different sintering temperatures have been prepared and for which XRD profiles have been measured to identify an optimized sintering temperature that found to be at 100°C. At this temperature Ni2+: Zn2SiO4 nano phosphor has been prepared for its structural, thermal and optical properties present here. The results are found to be more interesting and encouraging for their further use with other transition metal ions.

  19. Visualization of endolymphatic hydrops with MR imaging in patients with Ménière's disease and related pathologies: current status of its methods and clinical significance.

    PubMed

    Naganawa, Shinji; Nakashima, Tsutomu

    2014-04-01

    nière's disease is an inner ear disorder characterized by vertigo attacks, fluctuating low-frequency hearing loss, ear fullness, and tinnitus. Endolymphatic hydrops has long been thought to be the pathological basis for Ménière's disease. Some patients have inner ear symptoms that do not match the diagnostic guidelines for Ménière's disease, and these are also thought to be related to endolymphatic hydrops. The diagnosis of endolymphatic hydrops is usually made based on clinical symptoms with some assistance from otological functional tests. Recently, the objective diagnosis of endolymphatic hydrops by MR imaging has become possible and many research results have been reported regarding the imaging methods, evaluation methods, the correlation between imaging results and functional otological tests and the correlation between imaging findings and clinical symptoms. In this article we summarize the development of current imaging methods, evaluation techniques and clinical reports based on a review of the literature. We also attempt to characterize the current significance and future directions of MR imaging of endolymphatic hydrops.

  20. Application of carrier element free coprecipitation (CEFC) method for determination of Co(II), Cu(II) and Ni(II) ions in food and water samples.

    PubMed

    Serencam, Huseyin; Duran, Celal; Ozdes, Duygu; Bektas, Hakan

    2013-01-01

    A simple and highly sensitive separation and preconcentration procedure, which has minimal impact on the environment, has been developed. The procedure is based on the carrier element free coprecipitation (CEFC) of Co(II), Cu(II), and Ni(II) ions by using 2-{4-[2-(1H-indol-3-yl)ethyl]-3-(4-methylbenzyl)-5-oxo-4,5-dihydro- 1H-1,2,4-triazol-l-yl}-N'-(pyridin-2-yl methylidene)acetohydrazide (IMOTPA), as an organic coprecipitant. The levels of analyte ions were determined by flame atomic absorption spectrometry (FAAS). The detection limits for Co(II), Cu(II) and Ni(II) ions were found to be 0.40, 0.16 and 0.17 microg L(-1), respectively, and the relative standard deviations for the analyte ions were lower than 3.0%. Spike tests and certified reference material analyses were performed to validate the method. The method was successfully applied for the determination of Co(II), Cu(II) and Ni(II) ions levels in sea and stream water as liquid samples and red pepper, black pepper, and peppermint as solid samples. PMID:23878931

  1. Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Anbuselvan, D.; Muthukumaran, S.

    2015-04-01

    In the present study Ni-doped ZnO and Ni, Cu-doped ZnO nanoparticles were successfully synthesized by co-precipitation method. Structural studies confirmed the dominant presence of hexagonal wurtzite ZnO phase at lower Cu concentration and CuO phase was observed at higher Cu (Cu = 5%) concentration. The existence of Cu2+ ions were dominant at Cu ⩽ 3% (responsible for lattice shrinkage) and the presence of Cu+ ions were dominant at Cu > 3% (responsible for lattice expansion). The change in UV-visible absorption and energy gap were discussed by secondary phase generation and charge carrier density. The low absorption loss and high transmittance at Cu = 3% doped samples is used as potential candidate for opto-electronic devices. The increase of green band intensity and decrease of UV band at higher Cu concentration confirmed the existence of more defect related states.

  2. Structural and impedance studies of LiNi0.5Mn1.5O4 synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Lobo, Laurel Simon; Rubankumar, A.; Kalainathan, S.

    2016-05-01

    LiNi0.5Mn1.5O4 is synthesized by sol-gel method by using succinic acid as chelating agent. X-ray diffraction pattern confirms the material is spinel cubic structure with Fd3m space group. Impedance spectroscopy analysis of spinel LiNi0.5Mn1.5O4 was performed under a wide frequency and temperature range of 50 Hz to 5 MHz and 303 K to 783 K respectively. The hopping of the electrons, ionic conductivity and activation energy were analyzed from the relaxation frequency of the imaginary impedance (Z"). The activation energy Ea is calculated from the Arrhenius plots and it is found to be 0.3713 eV, which indicates the existence of oxygen vacancy in the material. Nyquist plot indicates the presence of grain effect in the material and suppression in the grain effect is observed with increasing temperature.

  3. Intermixing at Ni n/Cu( 0 0 1 ) interface and its effects on the magnetic properties of Ni

    NASA Astrophysics Data System (ADS)

    Yang, Zongxian; Wu, Ruqian

    2002-01-01

    Effects of interfacial interdiffusion on electronic and magnetic properties of Ni n/Cu(0 0 1) system are studied by using the full-potential linearized-augmented-plane-wave method with the generalized-gradient approximation for the exchange correlation interactions. Three systems, namely NiCu/Cu(0 0 1), Ni 3/NiCu/Cu(0 0 1), and NiCu/Ni 3/Cu(0 0 1) are used to simulate the intermixing in Ni n/Cu(0 0 1). Ni atoms in NiCu/Cu(0 0 1) are magnetically dead, while magnetic moment of Ni atom is significantly reduced in the alloy layer to 0.19 μB/atom in Ni 3/NiCu/Cu(0 0 1) and to 0.57 μB/atom in NiCu/Ni 3/Cu(0 0 1).

  4. Effects of LaNiO3 bottom electrode on structural and dielectric properties of CaCu3Ti4O12 films fabricated by sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Hu, Z. G.; Sun, J. L.; Meng, X. J.; Chu, J. H.

    2008-01-01

    CaCu3Ti4O12 (CCTO) thin films are prepared by a sol-gel method on LaNiO3-coated silicon and Pt /TiO2/SiO2/Si substrate. Compared with the films on Pt, the CCTO on LaNiO3 exhibits a (400) orientation. Dielectric loss of CCTO on LaNiO3 is lower than 0.25 within 100Hz -10kHz, lower than the reported value of CCTO grown on Pt /TiO2/SiO2/Si by pulse laser deposition. Possible reason is that LaNiO3 acts as seed layer for the growth of CCTO. The crystallinity of CCTO is improved and the dielectric properties are enhanced. Complex impedance spectrum of CCTO on LaNiO3 is discussed according to grain boundary barrier layer capacitance model.

  5. Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol-gel method

    NASA Astrophysics Data System (ADS)

    Theyvaraju, D.; Muthukumaran, S.

    2015-11-01

    Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.

  6. Preparation and property of duplex Ni-B-TiO2/Ni nano-composite coatings

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Jen; Wang, Yuxin; Shu, Xin; Tay, Seeleng; Gao, Wei; Shakoor, R. A.; Kahraman, Ramazan

    2015-03-01

    The duplex Nickel-Boron-Titania/Nickel (Ni-B-TiO2/Ni) coatings were deposited on mild steel by using two baths with Ni as the inner layer. TiO2 nanoparticles were incorporated into the Ni-B coatings as the outer layer by using solid particle mixing method. The microstructure, morphology and corrosion resistance of the duplex Ni-B-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the duplex interface was uniform and the adhesion between two layers was very good. The microhardness of duplex Ni-B-TiO2/Ni coating was much higher than the Ni coating due to the outer layer of Ni-B-TiO2 coating. The corrosion resistance of the duplex Ni-B-TiO2/Ni coating was also significantly improved comparing with single Ni-B coating. The Ni-B-10 g/L TiO2/Ni coating was found to have the best corrosion resistance among these duplex coatings. This type of duplex Ni-B-TiO2/Ni coating, with high hardness and good corrosion resistance properties, should be able to find broad applications under adverse environmental conditions.

  7. The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers.

    PubMed

    Kang, Kibum; Kim, Sung-Kyu; Kim, Cheol-Joo; Jo, Moon-Ho

    2008-02-01

    We report a controllably reproducible and spontaneous growth of single-crystalline NiSix nanowires using NiOx/Ni seed layers during SiH4 chemical vapor deposition (CVD). We provide evidence that upon the reactions of SiH4 (vapor)-Ni seed layers (solid), the presence of the NiOx overlayer on Ni seed layers plays the key role to promote the spontaneous one-dimensional growth of NiSix single crystals without employing catalytic nanocrystals. Specifically, the spontaneous nanowire formation on the NiOx overlayer is understood within the frame of the SiH4 vapor-phase reaction with out-diffused Ni from the Ni underlayers, where the Ni diffusion is controlled by the NiOx overlayers for the limited nucleation. We show that single-crystalline NiSix nanowires by this self-organized fashion in our synthesis display a narrow diameter distribution, and their average length is set by the thickness of the Ni seed layers. We argue that our simple CVD method employing the bilayers of transition metal and their oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal-silicide nanowires in large scales.

  8. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.

    PubMed

    Li, Xinbao; Wang, Shurong; Cai, Qinjie; Zhu, Lingjun; Yin, Qianqian; Luo, Zhongyang

    2012-09-01

    Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work has been to investigate the effects of the preparation method of Ni/Al(2)O(3) catalysts on their performance in hydrogen production by bio-oil steam reforming. The Ni/Al(2)O(3) catalysts were prepared by impregnation, co-precipitation, and sol-gel methods. XRD, XPS, H(2)-TPR, SEM, TEM, TG, and N(2) physisorption measurements were performed to characterize the texture and structure of the catalysts obtained after calcination and after their subsequent use. Ethanol and bio-oil model compound were selected for steam reforming to evaluate the catalyst performance. The catalyst prepared by the co-precipitation method was found to display better performance than the other two. Under the optimized reaction conditions, an ethanol conversion of 99% and a H(2) yield of 88% were obtained. PMID:21562805

  9. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.

    PubMed

    Li, Xinbao; Wang, Shurong; Cai, Qinjie; Zhu, Lingjun; Yin, Qianqian; Luo, Zhongyang

    2012-09-01

    Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work has been to investigate the effects of the preparation method of Ni/Al(2)O(3) catalysts on their performance in hydrogen production by bio-oil steam reforming. The Ni/Al(2)O(3) catalysts were prepared by impregnation, co-precipitation, and sol-gel methods. XRD, XPS, H(2)-TPR, SEM, TEM, TG, and N(2) physisorption measurements were performed to characterize the texture and structure of the catalysts obtained after calcination and after their subsequent use. Ethanol and bio-oil model compound were selected for steam reforming to evaluate the catalyst performance. The catalyst prepared by the co-precipitation method was found to display better performance than the other two. Under the optimized reaction conditions, an ethanol conversion of 99% and a H(2) yield of 88% were obtained.

  10. Investigation on the evolution of microstructure and texture of electroplated Ni-Ti composite coating by Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhao, Yuantao; Cai, Fei; Wang, Chengxi; Chai, Ze; Zhu, Kaiyuan; Xu, Zhou; Jiang, Chuanhai

    2015-10-01

    Rietveld refinement was utilized to investigate the evolution of microstructure and texture of the Ni-Ti composite coatings electroplated at different applied current densities. Scanning Electron Microscope and Energy Dispersive Spectroscopy were utilized to investigate the morphology and chemical composition of the coatings. Relative texture coefficients (RTC) and measured pole figures were utilized to investigate the texture evolution of the coatings. The results showed that the surface morphology of the coatings changed from a colonial structure to a polyhedral one. And the incorporated Ti content decreased with increasing applied current density. As the applied current density increased, the crystallite sizes increased and their distribution got less uniform, and the microstrain and dislocation density decreased. The results of simulated pole figures obtained from Rietveld refinement illustrated that the texture of the coatings changed from no obvious texture to a strong [2 0 0] fiber texture with increasing applied current density. The texture evolution obtained from simulated pole figures was confirmed by the result of RTC and the measured pole figures. The evolutions of the microstructure and texture were derived from the change of the applied current density and incorporated Ti content in the Ni-Ti composite coatings.

  11. MgCoAl and NiCoAl LDHs synthesized by the hydrothermal urea hydrolysis method: Structural characterization and thermal decomposition

    SciTech Connect

    Chagas, L.H.; De Carvalho, G.S.G.; Do Carmo, W.R.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.; De Sena, L.A.; Achete, C.A.

    2015-04-15

    Highlights: • We synthesized MgCoAl and NiCoAl LDHs by the urea hydrolysis method. • Aluminum rich and crystalline materials have been formed. • The calcination of the LDHs generated mixed oxides with high surface areas. - Abstract: Layered double hydroxides (LDHs) with Mg/Co/Al and Ni/Co/Al were synthesized for the first time by the urea hydrolysis method. The experimental conditions promoted aluminum rich and crystalline materials. The formation of LDHs was investigated by powder X-ray diffraction (XRD), chemical analysis, solid state nuclear magnetic resonance with magic angle spinning ({sup 27}Al-MAS-NMR), simultaneous thermogravimetric/differential thermal analysis (TGA/DTA), FTIR spectroscopy, scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption experiments. A single phase corresponding to LDH could be obtained in all the investigated compositions. Thermal calcination of these LDHs at 500 °C resulted in the formation of solid solutions in which Al{sup 3+} was dissolved. All the calcined materials have rock-salt like structures and high surface areas.

  12. Useful Method for the Preparation of Low-Coordinate Nickel(I) Complexes via Transformations of the Ni(I) Bis(amido) Complex K{Ni[N(SiMe3)(2,6- (i) Pr2-C6H3)]2}

    PubMed

    Lipschutz, Michael I; Tilley, T Don

    2014-10-13

    A convenient method of preparing two- and three-coordinate Ni(I) complexes of the form L-Ni(I)-X (L = P (t) Bu3, P (i) Pr3, DPPE, NHC; X = -N(SiMe3)(2,6- (i) Pr-C6H3), -O(2,6- (t) Bu2-4-Me-C6H2)) is reported. Protonation of the easily prepared anionic Ni(I) bis(amido) complex K{Ni[N(SiMe3)(2,6- (i) Pr-C6H3)]2} in the presence of an appropriate L-type ligand results in loss of HN(SiMe3)(2,6- (i) Pr-C6H3) and trapping of the resulting neutral Ni(I)-amido fragment to yield neutral, paramagnetic, two- and three-coordinate Ni(I) complexes. Protonation of these neutral amido complexes by the bulky phenol HO(2,6- (t) Bu2-4-Me-C6H2) results in loss of the second amido moiety and trapping by the resulting phenoxide to yield Ni(I)-O(2,6- (t) Bu2-4-Me-C6H2) complexes. The hapticity of the phenoxide ligand is influenced by the π-accepting ability of the L-type ligand. Where L = P (t) Bu3, a poor π-acceptor, the phenoxide acts as a π-acceptor and adopts a η(5)-bonding mode through dearomatization of the phenyl ring. When L = NHC, a competent π-acceptor, the phenoxide acts as a π-donor, adopting a η(1)-bonding mode through the O atom. The modular nature of this synthetic strategy allows variation of both the L- and X-type ligands of the complex in a stepwise fashion and should be extendable to a wide variety of ligand types for new Ni(I) complexes.

  13. Structures and energetics of Ni24-Ni55 clusters

    NASA Astrophysics Data System (ADS)

    Wetzel, Thiele L.; DePristo, Andrew E.

    1996-07-01

    We predict stable geometrical structures and interaction energies of Ni clusters using non self-consistent electron density functional based corrected effective medium (CEM) and MD/MC-CEM methods. A plot of the reaction energies for the atomic ejection process, NiN+1→NiN+Ni, for Ni24-Ni55 displays a number of informative characteristics: (a) peaks and valleys represent internal structural rearrangement in which the number of core atoms increases by at least one and; (b) a plateau at N=50-54 is associated with the closing of the second MacKay icosahedron at Ni55. The lowest energy structures of NiN clusters for N=24-55 are dissimilar generally to those of both rare gas clusters and fragments of the bulk crystal lattice except where a stable icosahedral or bulk core is present. The growth scheme for N<50 is determined by the stability and structure of the changing number of core atoms. By contrast, the growth scheme for 51≤N≤55 is determined by the addition of surface atoms to a very stable and invariant 13-atom icosahedral core. The theoretical predictions are compared to available model growth schemes and experimental data.

  14. Superior electrochemical properties of Li(Ni1/3Co1/3Mn1/3)O2/C synthesized by the precursor solid-phase method

    NASA Astrophysics Data System (ADS)

    Jiang, Qianqian; Xu, Lei; Li, Xingyue; Zhang, Han

    2015-10-01

    Li(Ni1/3Co1/3Mn1/3)O2 as a cathode material for lithium batteries is synthesized by the precursor solid-phase method. Firstly, the precursor Ni1/3Co1/3Mn1/3(OH)2 is prepared. And then, Li(Ni1/3Co1/3Mn1/3)O2 is synthesized. In order to improve the electrochemical performance of the material, the Li(Ni1/3Co1/3Mn1/3)O2 is coated with a carbon layer. Electrochemical performance shows that the as-prepared pristine Li(Ni1/3Co1/3Mn1/3)O2 exhibits a high initial discharge capacity of 189.7 mAh g-1, and the specific capacity increases to 219.6 mAh g-1 modified by carbon coating. Moreover, it exhibits excellent cycling maintaining 95.04 % of its initial discharge capacity after 100 charge-discharge cycles, which is much higher than the pristine Li(Ni1/3Co1/3Mn1/3)O2. Moreover, when cycles at 1 C, the discharge of Li(Ni1/3Co1/3Mn1/3)O2 is only 132.5 mAh g-1, it increases to 211.3 mAh g-1 due to the appropriate carbon layer. All the tests show that Li(Ni1/3Co1/3Mn1/3)O2/C has excellent electrochemical performance, which is attributed to avoid the core material direct contact with the acidic electrolyte and suppression of Mn+ dissolution into electrolyte via carbon layer and greatly improve the electronic and ionic conductivities.

  15. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  16. Restoration of Obliterated Numbers on 40NiCrMo4 Steel by Etching Method: Metallurgical and Statistical Approaches.

    PubMed

    Fortini, Annalisa; Merlin, Mattia; Soffritti, Chiara; Garagnani, Gian L

    2016-01-01

    The restoration of obliterated serial numbers is a problem of common occurrence in the forensic field. Among several restoration techniques, chemical etching is the most frequently used. The present research is aimed at studying the restoration of serial numbers, stamped on 40NiCrMo4 steel plates, by means of chemical etching. Microstructural characterization was firstly carried out to study the plastically deformed regions surrounding the marks. The obliteration was performed by controlled removals of material at increasing depths of erasure, and five etching reagents were considered to analyze their sensitivity and effectiveness. Experimental results revealed that Fry's reagent was the most sensitive, able to restore erased marks up to 60 μm under the depth of the imprint. The reagent comprising 25 mL HNO3 and 75 mL H2O provided good results, recovering the major numbers of characters. A descriptive statistical analysis was conducted to study the operator's influence on the recovered marks' identification.

  17. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni-Cu-Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power Pdiss=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10-25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite.

  18. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Woo; Kim, Hyungsub; Kim, Myeong-Seong; Youn, Hee-Chang; Kang, Kisuk; Cho, Byung-Won; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-05-01

    A citric acid assisted sol-gel method is employed for synthesizing LiNi0.6Co0.2Mn0.2O2 for use as a cathode material in lithium-ion batteries. The effects of heat-treatment temperature and oxygen atmosphere on the structural and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 are investigated, in order to determine optimal conditions for the synthesis of LiNi0.6Co0.2Mn0.2O2 via the citric acid assisted sol-gel method. In particular, the presence of oxygen in the atmosphere effectively leads to a decrease in the degree of cation mixing and the formation of LiOH and Li2CO3 on the surface of LiNi0.6Co0.2Mn0.2O2. Furthermore, heat-treatment in an oxygen atmosphere improves the uniformity of oxidation state of Ni ions between the surface and bulk. LiNi0.6Co0.2Mn0.2O2 synthesized by heat-treatment at 850 °C under an oxygen atmosphere shows a discharge capacity of 174 mA h g-1 and 89% capacity retention after 100 cycles. In addition, it shows high rate capability (i.e., 41% capacity retention at 10 C), which is an improved rate performance over a previous report. The results of this study should provide useful information for the synthesis of Ni-rich layered oxides for lithium ion batteries.

  19. Effect of modification methods on the surface properties and n-butane isomerization performance of La/Ni-promoted SO42-/ZrO2-Al2O3

    NASA Astrophysics Data System (ADS)

    Wang, Pengzhao; Zhang, Jiaoyu; Han, Chaoyi; Yang, Chaohe; Li, Chunyi

    2016-08-01

    The La and/or Ni was introduced into alumina-promoted sulfated zirconia by impregnation and co-precipitation to improve the catalytic property of n-butane isomerization. Catalysts characterization shows that the addition of La/Ni has a remarkable influence on the surface and textual properties depending on the modification method. The impregnation of La/Ni facilitates the transformation of a small amount of tetragonal zirconia into monoclinic phase, while the co-precipitation improves the stability of tetragonal ZrO2. H2-TPR indicates that the addition of La/Ni changes the interaction between SO42- and supports, which affects the acidity on the surface. Specifically, the Lewis acidity is significantly enhanced by either modification method. The co-precipitation reserves almost all of the Brønsted acid sites, while the impregnation causes a remarkable decrease of Brønsted acid sites. Reaction results demonstrate that the co-precipitation exhibits a significant advantage over impregnation that the higher conversion of n-butane and selectivity to isobutane are obtained on the catalyst prepared by co-precipitation. The increase of catalytic activity is ascribed to the accelerated activation rate of n-butane molecules by hydride subtraction on the Lewis acid sites at higher reaction temperature. Furthermore, the addition of La/Ni improves the selectivity to isobutane by inhibiting the bimolecular reaction.

  20. The cytotoxicity of NiO nanoparticle with borate capping.

    PubMed

    Liu, Zunjing; Wang, Yongjing; Pan, Danmei; Chen, Zhi; Pan, Xiaohong; Wang, Yonghao; Lin, Zhang

    2011-11-01

    The impact of surface capping on cytotoxicity of NiO nanoparticle was investigated with Escherichia coil (E.coli) in this work. The NiO nanoparticle and NiO nanoparticle capped by borate (denoted as NiO-borate) were synthesized by hydrothermal method. The average size of both nanoparticles is about 4.0 nm. The plate experiments demonstrated that NiO-borate nanoparticles show lower cytotoxicity than NiO nanopaticles. Further spectrophotometric analysis revealed that the concentration of both extracellular and intercellular Ni2+ in NiO-borate system were lower than that of uncapped one. Intracellular ICP-AES analysis also showed the concentration of Ni element was higher than Ni2+, suggesting the NiO nanoparticles might penetrate into the cellular interior. Comprehensive AFM, SEM and TEM observation illustrated both NiO-borate and NiO nanoparticles lead to the collapse of cellular body, the convex on the cell wall and the damage of cell wall ultimately. In summary, the surface capping with borate on NiO nanopaticles will suppress the release of the Ni2+ ions and impede the contact between the NiO nanoparticle and cell wall, which ultimately decreased the cytotoxicity of NiO nanoparticles.

  1. Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Singh Yadav, Raghvendra; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch; Kuřitka, Ivo; Kožáková, Zuzana

    2015-11-01

    Evolution of the structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol-gel auto-combustion method, and exposed to further annealing at 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C, was evaluated in detail and correlation of these properties explored. The ferrite nanoparticles were characterized by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The X-ray diffraction patterns demonstrated single phase formation of NiFe2O4 spinel ferrite nanoparticles at different annealing temperature 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C. The change in crystallite size with increase of annealing temperature is observed. The FE-SEM analysis also indicated an increase of particle size with increase of higher annealing temperature. The change in Raman modes and infrared absorption bands were noticed with change of particle size. The X-ray photoelectron spectroscopy revealed the presence of Ni2+ and Fe3+ at octahedral and tetrahedral sites in NiFe2O4 nanoparticles. The representative sample NiFe2O4 nanoparticles annealed at 400 °C, have mixed cation distribution (Ni0.23+2 Fe0.52+3)[ Ni0.77+2 Fe1.48+3 ]O4. The highest value of coercivity 62.35 Oe and saturation magnetization 34.10 erg/g were obtained at annealing temperature 600 °C and 1000 °C, respectively.

  2. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Shen, Li; Wang, Jiexi

    2014-04-01

    The degradation of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material is successfully suppressed via a facile in situ oxidizing-coating method. KMnO4 is used as not only a Mn source but also an oxidant. X-ray diffraction (XRD) and scanning electron microscope (SEM) results demonstrate that the structure and morphology of the KMnO4-pretreated sample are the same as the pristine one. X-ray photoelectron spectroscopy (XPS) confirms that the valence state of Mn is +4 and the Ni3+ ions are partly reduced to Ni2+ when the material is doped with Mn4+. Besides, the Mn4+ ions are proved to distribute uniformly on the surface of the materials particles through energy dispersive spectrometer (EDS) and EDS elemental mapping. And it is confirmed that the concentration of Ni in the outer layer is reduced by the Mn-surface-modification. From the electrochemical characterizations, it is confirmed that the presence of tetravalent Mn at the surface can suppress the capacity fading during charge-discharge cycles, even under elevated temperature and overcharge conditions, and can prevent the material from deterioration during storage in air.

  3. Fabrication of free-standing NiCo{sub 2}O{sub 4} nanoarrays via a facile modified hydrothermal synthesis method and their applications for lithium ion batteries and high-rate alkaline batteries

    SciTech Connect

    Zheng, Qingyun Zhang, Xiangyang; Shen, Youming

    2015-03-15

    Graphical abstract: Hydrothermal-synthesized NiCo{sub 2}O{sub 4} nanoflake arrays exhibit porous structure and high capacity as well as good cycling life for lithium ion batteries and alkaline batteries. - Highlights: • Self-supported NiCo{sub 2}O{sub 4} nanoflake arrays are prepared by a hydrothermal method. • NiCo{sub 2}O{sub 4} nanoflake arrays show high capacity and good cycling life. • Porous nanoflake arrays structure is favorable for fast ion/electron transfer. - Abstract: Self-supported NiCo{sub 2}O{sub 4} nanoflake arrays on nickel foam are prepared by a facile hydrothermal method. The obtained NiCo{sub 2}O{sub 4} nanoflakes with thicknesses of ∼25 nm grow vertically to the nickel foam substrate and form an interconnected porous network with pore diameters of 50–500 nm. As anode material of LIBs, the NiCo{sub 2}O{sub 4} nanoflake arrays show a high initial coulombic efficiency of 76%, as well as good cycling stability with a capacity of 880 mAh g{sup −1} at 0.5 A g{sup −1}, and 523 mAh g{sup −1} at 1.5 A g{sup −1} after 50 cycles. As the cathode of alkaline batteries, a high capacity of 95 mAh g{sup −1} is achieved at 2 A g{sup −1} and 94% retention is maintained after 10,000 cycles. The superior electrochemical performance is mainly due to the unique nanoflake arrays structure with large surface area and shorter diffusion length for mass and charge transport.

  4. Structural and magnetic properties of Ni1-xZnxFe2O4 nano-crystalline ferrites prepared via novel chitosan method

    NASA Astrophysics Data System (ADS)

    Gabal, M. A.; Kosa, S.; Al Mutairi, T. S.

    2014-04-01

    In the present study, nano-crystalline Ni1-xZnxFe2O4 ferrites (x = 0.0-1.0) were prepared via novel chitosan method. The prepared ferrites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM) techniques. XRD revealed the formation of spinel single-phase structure for the samples with Zn-content more than 0.4. The crystallite sizes estimated using Scherer formula are in the range 34-45 nm. TEM images reflect the agglomeration characteristics of the prepared ferrites. FT-IR spectra show two prominent characteristic peaks of ferrites. VSM measurement suggests the validity of the entire method for preparation of ferrites with high magnetization. The saturation magnetization was found to increase up to x = 0.4 then gradually decrease while coercivity decreased with increasing Zn-content. These changes in the magnetic properties by the addition of Zn were discussed depending on the estimated cation distribution of the system and the magneto-crystalline anisotropy of the entire ions, respectively.

  5. a Novel Blackening Method of Preparing Ultra-Black Ni-P Coatings: Effect of Process Parameters on Morphology and Optical Property

    NASA Astrophysics Data System (ADS)

    Jin, Yongzhong; Yang, Kui; Zeng, Xianguang; Fu, Qingshan

    2015-01-01

    Ni-P ultra-black coatings were prepared by a novel blackening method of anodic oxidation in nonoxidizing acid media. The effect of the applied voltage, concentration of H3PO4 and anodization time on the microstructure and optical property of blackened coatings was investigated. The results show that the applied voltage plays the most important role during the formation of the ultra-black coatings. The concentration of H3PO4 is the next-important factor, then anodization time. The optimum process parameter for obtaining ultra-black coatings is at 0.9 V in 3 mol/L for 40 min, in which the reflectance is only 0.14-0.21% in the visible region. The low reflectance is mainly attributable to the unique array structure of conical cavities ranging 1-3 μm in size, in which the innumerable tiny pits distribute on the cavity wall. In contrast, the black coatings etched by chemical etching method by strong oxidizing acid (HNO3) have larger conical cavities (10-20 μm) with smooth cavity wall, and thus lead to higher reflectance of 0.69-2.44%.

  6. Kinetic properties and characteristics of electron-positron annihilation in NiMn and NiTi

    NASA Astrophysics Data System (ADS)

    Kal'Chikhin, V. V.; Kul'Kova, S. E.

    1992-10-01

    On the basis of the electron energy structure calculated by the self-consistent method of linear MT orbitals (the LMTO method), the kinetic properties of NiMn and NiTi are calculated from first principles. Satisfactory agreement with experimental data on the phonon electrical resistance and thermoemf is obtained for NiTi. For NiMn, the agreement of ρph(T) with experiment is only qualitative; the reasons for the quantitative discrepancy are discussed. Quasi-free position states and the contribution of various electron states in NiMn and NiTi are calculated by the LMTO method.

  7. Useful Method for the Preparation of Low-Coordinate Nickel(I) Complexes via Transformations of the Ni(I) Bis(amido) Complex K{Ni[N(SiMe3)(2,6-iPr2-C6H3)]2}

    PubMed Central

    2015-01-01

    A convenient method of preparing two- and three-coordinate Ni(I) complexes of the form L–NiI–X (L = PtBu3, PiPr3, DPPE, NHC; X = −N(SiMe3)(2,6-iPr-C6H3), −O(2,6-tBu2-4-Me-C6H2)) is reported. Protonation of the easily prepared anionic Ni(I) bis(amido) complex K{Ni[N(SiMe3)(2,6-iPr-C6H3)]2} in the presence of an appropriate L-type ligand results in loss of HN(SiMe3)(2,6-iPr-C6H3) and trapping of the resulting neutral Ni(I)-amido fragment to yield neutral, paramagnetic, two- and three-coordinate Ni(I) complexes. Protonation of these neutral amido complexes by the bulky phenol HO(2,6-tBu2-4-Me-C6H2) results in loss of the second amido moiety and trapping by the resulting phenoxide to yield Ni(I)-O(2,6-tBu2-4-Me-C6H2) complexes. The hapticity of the phenoxide ligand is influenced by the π-accepting ability of the L-type ligand. Where L = PtBu3, a poor π-acceptor, the phenoxide acts as a π-acceptor and adopts a η5-bonding mode through dearomatization of the phenyl ring. When L = NHC, a competent π-acceptor, the phenoxide acts as a π-donor, adopting a η1-bonding mode through the O atom. The modular nature of this synthetic strategy allows variation of both the L- and X-type ligands of the complex in a stepwise fashion and should be extendable to a wide variety of ligand types for new Ni(I) complexes. PMID:25328273

  8. Structure, morphology and optical behavior of Ni1-xCoxO thin films prepared by a modified sol-gel method

    NASA Astrophysics Data System (ADS)

    Alshahrie, Ahmed

    2016-08-01

    Nanocrystalline Ni1-xCoxO thin films (0 ≤ x ≤ 0.4) have been prepared on glass substrates using sol-gel/spin-coating technique. The effect of the concentration of cobalt ions on the structure, morphology and optical behavior of the doped NiO thin films are investigated by the X-ray diffractometer, scanning electron microscopy, Raman spectroscopy and spectrophotometer. All films showed a single phase face centered cubic structure, implying the complete solubility of the Co ions into the NiO cubic crystal up to 40 at.%, for the first time. The texture coefficient revealed that the Co ions tend to force the NiO grains to grow along (200) direction. The Raman spectroscopy showed one longitudinal optical phonon mode (LO) at 518 cm-1 and two longitudinal optical phonons mode (2LO) at 1070 cm-1. The decrease of the intensity and the shift of the peak position of the two modes, indicating the scattering contribution of the LO-mode outside the center of Brillouin zone and the creation of oxygen vacancies due to the incorporated Co ions into the NiO cubic crystals. The Ni1-xCoxO thin films have shown high optical transparency around 80%. A decrease of the band gap energy of the NiO films from 3.69 eV to 3.41 eV was observed when the concentration of Co ions increased to 10 at.%, followed by an increase to 3.58 eV as the Co ions concentration increased to 40 at.%. The high optical conductivity and low dissipation factor of the developed Ni1-xCoxO thin films will open a new avenue for future applications in the optoelectronic devices such as reflectance mirror and display light shutter.

  9. Phase and structural states in the NiTi-based alloy surface layer formed by electron-ion-plasma methods using tantalum

    SciTech Connect

    Neiman, Aleksei A. Lotkov, Aleksandr I.; Gudimova, Ekaterina Y.; Meisner, Ludmila L. Semin, Viktor O.

    2015-10-27

    The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.

  10. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    SciTech Connect

    Wang, Wei Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  11. A method to decrease the harmonic distortion in Mn-Zn ferrite/PZT and Ni-Zn ferrite/PZT layered composite rings exhibiting high magnetoelectric effects

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Morin, V.; Fortineau, J.; LoBue, M.; Mazaleyrat, F.

    2015-10-01

    We have investigated the magnetoelectric (ME) effect in layered composite rings subjected to circumferential AC magnetic fields and DC magnetic fields in radial, axial, or circumferential directions. Bilayer samples were obtained combining different grades of commercial Mn-Zn ferrites or Ni-Zn ferrites with commercial lead zirconate titanate (PZT). Mn-Zn ferrites with low magnetostriction saturation ( λs<10-6 ) and low magneto-crystalline anisotropy constants show high ME capabilities when associated with PZT in ring structures. In certain conditions, these ME effects are higher than those obtained with Terfenol-D/PZT composites in the same layered ring structure. Magnetostrictive and mechanical characterizations have given results that explain these high ME performances. Nevertheless, Mn-Zn ferrite/PZT composites exhibit voltages responses with low linearity especially at high signal level. Based on the particular structure of the ME device, a method to decrease the nonlinear harmonic distortion of the ME voltages is proposed. Harmonic distortion analysis of ME voltages measured in different configurations allows us to explain the phenomenon.

  12. The evolution of phase transformation in Ni/Ni3Al laminated composite under high temperature treatments

    NASA Astrophysics Data System (ADS)

    Shmorgun, V.; Gurevich, L.; Bogdanov, A.; Trunov, M.

    2016-02-01

    In this study the impact of isothermal annealing on the phase transformation rate in laminated Ni/Ni2Al3 composite was investigated. The method of nickel-aluminide coatings of the required chemical composition fabrication was proposed.

  13. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  14. A ternary Ni-Al-W EAM potential for Ni-based single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Fan, Qin-Na; Wang, Chong-Yu; Yu, Tao; Du, Jun-Ping

    2015-01-01

    Based on experiments and first-principles calculations, a ternary Ni-Al-W embedded-atom-method (EAM) potential is constructed for the Ni-based single crystal superalloys. The potential predicts that W atoms do not tend to form clusters in γ(Ni), which is consistent with experiments. The impurity diffusion of W in γ(Ni) is investigated using the five-frequency model. The diffusion coefficients and the diffusion activation energy of W are in reasonable agreement with the data in literatures. By W doping, the lattice misfit between the two phases decreases and the elastic constants of γ‧(Ni3Al) increase. As for alloyed elements Co, Re and W, the pinning effect of solute atom on the γ(Ni)/γ‧(Ni3Al) misfit dislocation increases with the increasing of the atomic radius.

  15. Synthesis and characterizations of Ni-NiO nanoparticles on PDDA-modified graphene for oxygen reduction reaction

    PubMed Central

    2014-01-01

    We are presenting our recent research results about the Ni-NiO nanoparticles on poly-(diallyldimethylammonium chloride)-modified graphene sheet (Ni-NiO/PDDA-G) nanocomposites prepared by the hydrothermal method at 90°C for 24 h. The Ni-NiO nanoparticles on PDDA-modified graphene sheets are measured by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) pattern for exploring the structural evidence to apply in the electrochemical catalysts. The size of Ni-NiO nanoparticles is around 5 nm based on TEM observations. The X-ray diffraction (XRD) results show the Ni in the (012), (110), (110), (200), and (220) crystalline orientations, respectively. Moreover, the crystalline peaks of NiO are found in (111) and (220). The thermal gravimetric analysis (TGA) result represents the loading content of the Ni metal which is about 34.82 wt%. The electron spectroscopy for chemical analysis/X-ray photoelectron spectroscopy (ESCA/XPS) reveals the Ni0 to NiII ratio in metal phase. The electrochemical studies with Ni-NiO/PDDA-G in 0.5 M aqueous H2SO4 were studied for oxygen reduction reaction (ORR). PMID:25246863

  16. Preparation and crystalline qualities of SrTiO 3 and CeO 2 buffer layers fabricated on Ni substrates via a sol-gel method for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Chen, S.; Sun, Z.; Shi, K.; Wang, S.; Meng, J.; Liu, Q.; Han, Z.

    2004-10-01

    High purity rolled Ni substrate was annealed at 1000 °C for 60 min to develop a cube texture with a full-width at half-maximum (FWHM) value of 5.26°. Strontium acetate, titanium (IV) butoxide, and inorganic cerium nitrite were used as the starting materials for fabrication of SrTiO 3 and CeO 2 buffer layers via a sol-gel method on the Ni substrate material. The results show that the heat treatment temperature and holding time affect both the surface morphology and the texture of the buffer layers. The SrTiO 3 and CeO 2 buffer layers grown on the Ni substrate show a sharp (2 0 0) orientation distribution. An intermediate layer was found between the SrTiO 3 layer and the Ni substrate. By optimizing the heat treatment parameters, the ω-scan FWHM values can reach 5.31° and 6.60° for the SrTiO 3 and CeO 2 buffer layers, respectively.

  17. Structural and magnetic properties of pristine and Fe-doped NiO nanoparticles synthesized by the co-precipitation method

    SciTech Connect

    Mishra, A.K.; Das, D.

    2012-09-15

    Highlights: ► The prepared samples were characterized by XRD, TEM, HR-TEM techniques. ► Magnetic properties of the samples were compared. ► Surface spins frozen at lower temperatures resulted a spin glass. ► The samples show enhancement of coercivity with decreased temperature. -- Abstract: Ni{sub 1−x}Fe{sub x}O (x = 0 and 0.03) nanoparticles are synthesized by a chemical route. XRD and TEM measurements confirm phase purity and crystallinity of the nanoparticles. Fe substitution in NiO reduces considerably the average particle size of the nanoparticles. The pristine NiO sample with size 14 nm and Fe-substituted sample having size 7 nm show room temperature ferromagnetism. The pristine NiO having 31 nm size and Fe-substituted sample with size 25 nm are found to be antiferromagnetic. The M–H and M–T behavior of the pristine and Fe-doped samples are explained with a core–shell model with an antiferromagnetic core and a ferromagnetic shell. The disordered spins at the shell give rise to a spin-glass like frozen state below 10 K. The obtained room temperature ferromagnetism in the pristine and Fe-doped NiO has been attributed to particle size effect.

  18. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    SciTech Connect

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-11-07

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  19. Ion scattering experiment on Ni(110) surface

    SciTech Connect

    Nicholas, B.; Rambabu, B.; Collins, W.E.

    1986-01-01

    Light emission from excited neutral scattered Ne and sputtered Ni were investigated using the LEIS method. A 5-keV Ne/sup +/ beam was used to bombard a Ni(110) surface. Results of the light emission data is presented and compared with neutral production of Ne. 4 refs., 3 figs.

  20. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    PubMed

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production.

  1. A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase*

    PubMed Central

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L.; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-01-01

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  2. Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Liu, Enzhou; Liang, Xuhua; Hu, Xiaoyun; Fan, Jun

    2015-08-01

    In this paper, the Fe-Ni co-doped and Ag deposited anatase TiO2 (Fe-Ni/Ag/TiO2) nanocomposites were successfully prepared by a simple one-pot solvothermal approach. The investigations indicated that all as-prepared TiO2 samples were single anatase phase, and the impurity level was generated due to the Fe3+ or Ni2+ being located in the intrinsic band gap of TiO2, while the Ag+ ions could be transformed into metallic silver due to the reduction reaction and then loaded onto the surface of TiO2. Compared with pure TiO2, Fe-Ni/Ag/TiO2 composites with the sizes of Ag nanoparticles from 1.0 to 3.0 nm displayed the well optical property including higher visible light absorption activity and lower electron-hole pair recombination rate, and its absorption wavelength edge moved remarkably with a red shift to 700 nm. The photocatalytic water splitting was performed to produce H2 over the samples, and the experimental results indicate that Fe-Ni/Ag/TiO2 composites presented the highest H2 evolution rate, it can reach up to 793.86 μmol h-1 gcat-1 (λ > 400 nm for 6 h, energy efficiency is 0.25%), which was much higher than that of pure TiO2 for 9.57 μmol h-1 gcat-1. In addition, a tentative photocatalytic mechanism is proposed to understand the enhancement mechanism over Fe-Ni codoped and Ag deposited anatase TiO2.

  3. Comparative study of digestion methods EPA 3050B (HNO₃--H₂O₂--HCl) and ISO 11466.3 (aqua regia) for Cu, Ni and Pb contamination assessment in marine sediments.

    PubMed

    Peña-Icart, Mirella; Villanueva Tagle, Margarita E; Alonso-Hernández, Carlos; Rodríguez Hernández, Joelis; Behar, Moni; Pomares Alfonso, Mario S

    2011-07-01

    Knowing the metal extraction capacity of a digestion method is crucial for a better environmental interpretation of metal concentrations determined in sediments. One of the main problems at the present is the lack of harmonization of information obtained by two of the most popular sediment partial digestion methods: ISO 11466.3 (aqua regia) and EPA 3050B (HNO₃--H₂O₂--HCl). In the present work, the amount of Cu, Ni and Pb leached by using both methods was compared with the total content of those elements in marine sediments collected, as an example, from the Cienfuegos Bay, Cuba. Similar amounts of Cu were extracted by both methods; while leaching of Ni and Pb were different. Generally, the EPA method extracted more Ni than the ISO method. In contrast, Pb was extracted in a larger amount by the ISO method. Some explanations are given for the observed results. X-ray Diffraction, X-ray Fluorescence, Particle Induced X-ray Emission Spectrometry and Energy Dispersive X-ray coupled to Scanning Electron Microscopy were employed for this purpose. On the other hand, none of the methods studied extracted simultaneously the fraction of all the metals, probably provided by human activity (Theoretical Anthropogenic Fraction) in both sediments studied. The use of ISO 11466.3 or EPA 3050B is recommended since the analytical performance parameters of both, in combination with Flame Atomic Absorption Spectrometry, are adequate. For a better environmental interpretation of the analytical results, information on the extraction efficiency of the selected method for specific elements and sediments under study should also be provided, together with the determined concentrations.

  4. Formation and evolution of MnNi clusters in neutron irradiated dilute Fe alloys modelled by a first principle-based AKMC method

    NASA Astrophysics Data System (ADS)

    Ngayam-Happy, R.; Becquart, C. S.; Domain, C.; Malerba, L.

    2012-07-01

    An atomistic Monte Carlo model parameterised on electronic structure calculations data has been used to study the formation and evolution under irradiation of solute clusters in Fe-MnNi ternary and Fe-CuMnNi quaternary alloys. Two populations of solute rich clusters have been observed, which can be discriminated by whether or not the solute atoms are associated with self-interstitial clusters. Mn-Ni-rich clusters are observed at a very early stage of the irradiation in both modelled alloys, whereas the quaternary alloys contain also Cu-containing clusters. Mn-Ni-rich clusters nucleate very early via a self-interstitial-driven mechanism, earlier than Cu-rich clusters; the latter, however, which are likely to form via a vacancy-driven mechanism, grow in number much faster than the former, helped by the thermodynamic driving force to Cu precipitation in Fe, thereby becoming dominant in the low dose regime. The kinetics of the number density increase of the two populations is thus significantly different. Finally the main conclusion suggested by this work is that the so-called late blooming phases might as well be neither late, nor phases.

  5. Effect of the method of introduction of Y2O3 into NiAl-based powder alloys on their structure: I. Agitation in a ball mill

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Vershinina, T. N.; Skachkov, O. A.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. V.

    2012-09-01

    The effect of the sintering temperature (1100-1400°C) of NiAl alloy samples with oxide Y2O3 produced by hydrostatic pressing on their structure and phase composition and the distribution of oxide particles in a NiAl-based intermetallic matrix alloyed with ˜0.5 at % Fe is considered. It is found that dispersed oxide particles in the compact material prepared from a mixture of oxide Y2O3 powder and a NiAl alloy (produced by calcium hydride reduction of a mixture of nickel and aluminum oxides) powder in a standard ball mill are nonuniformly distributed in the volume. The morphology of oxides changes during sintering: sintered samples contain rounded particles, which differ strongly from the clearly faceted angular particles of oxide Y2O3 added to a mixture (they represent conglomerates of single crystals). In the sintered samples, large aggregates of oxides are revealed along grain boundaries. Mass transfer is possible at the NiAl/Y2O3 interface in the system: it leads to partial substitution of aluminum and/or iron atoms for yttrium atoms in the Y2O3 lattice and to the formation of submicroscopic particles of (Fe,Al)5Y3O12-type oxides.

  6. Benchtop Delivery of Ni(cod)2 using Paraffin Capsules.

    PubMed

    Dander, Jacob E; Weires, Nicholas A; Garg, Neil K

    2016-08-01

    A facile method that allows for Ni(cod)2 to be used on the benchtop is reported. The procedure involves the preparation of paraffin-Ni(cod)2 capsules, which are stable to air and moisture. It is demonstrated that these readily available capsules can be used to promote a range of Ni(cod)2-catalyzed transformations. These studies are expected to promote the further use of Ni(cod)2 in organic synthesis.

  7. Molten salt method of preparation and cathodic studies on layered-cathode materials Li(Co0.7Ni0.3)O2 and Li(Ni0.7Co0.3)O2 for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Reddy, M. V.; Tung, Bui Dang; Yang, Lu; Quang Minh, Nguyen Dang; Loh, K. P.; Chowdari, B. V. R.

    2013-03-01

    Layered compounds, Li(Co0.7Ni0.3)O2 (I) and Li(Ni0.7Co0.3)O2(II) were prepared by molten salt method in temperature ranging from 650 to 950 °C. The effect of morphology, crystal structure and electrochemical properties of materials were evaluated by X-Ray Diffraction (XRD), Scanning Electron Microscopy and Brunauer-Emmett-Teller surface area, cyclic voltammetry (CV) and galvanostatic cycling. XRD pattern shows a hexagonal type structure with lattice parameters of a˜2.828 Å, c˜14.096 Å for I and a˜2.851 Å, c˜14.121 Å for II prepared in oxygen flow. The surface area of the compounds, I and II are 1.74 and 0.75 m2 g-1 respectively. CV studies show a main anodic peak occur at ˜3.8-3.94 V vs. Li and a cathodic peak occur at ˜3.6-3.7 V vs. Li. Galvanostatic cycling studies are carried out at a current rate of 30 mA g-1 in the voltage range of 2.5-4.3 V, at room temperature. Li(Co0.7Ni0.3)O2 prepared at 750 °C in air show a reversible capacity of 145 mAh g-1 at the 1st discharge cycle and 13% capacity fading between 2 and 56 cycles, whereas Li(Ni0.7Co0.3)O2 reheated in the presence of oxygen deliver a high and stable reversible capacity of 165 mAh g-1 at the end of 60th cycle.

  8. DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces

    NASA Astrophysics Data System (ADS)

    Mohsenzadeh, Abas; Richards, Tobias; Bolton, Kim

    2016-02-01

    Density functional theory (DFT) calculations were used to study the water gas shift (WGS) reaction on Ni(111), Ni(100) and Ni(110) surfaces. The adsorption energy for ten species involved in the reaction together with activation barriers and reaction energies for the nine most important elementary steps were determined using the same model and DFT methods. The results reveal that these energies are sensitive to the surface structure. In spite of this, the WGS reaction occurs mainly via the direct (also referred to as redox) pathway with the CO + O → CO2 reaction as the rate determining step on all three surfaces. The activation barrier obtained for this rate limiting step decreases in the order Ni(110) > Ni(111) > Ni(100). Therefore, if O species are present on the surfaces then the WGS reaction is fastest on the Ni(100) surface. However, the barrier for desorption of H2O (which is the source of the O species) is lower than its dissociation reaction on the Ni(111) and Ni(100) surfaces, but not on the Ni(110) surface. Hence, at low H2O(g) pressures, the direct pathway on the Ni(110) surface will dominate and will be the rate limiting step. The calculations also show that the reason that the WGS reaction does not primarily occur via the formate pathway is that this species is a stable intermediate on all surfaces. The reactions studied here support the Brønsted-Evans-Polanyi (BEP) principles with an R2 value of 0.99.

  9. First principles exploration of NiO and its ions NiO+ and NiO-

    NASA Astrophysics Data System (ADS)

    Sakellaris, Constantine N.; Mavridis, Aristides

    2013-02-01

    We present a high level ab initio study of NiO and its ions, NiO+ and NiO-. Employing variational multireference configuration interaction (MRCI) and single reference coupled-cluster methods combined with basis sets of quintuple quality, 54, 20, and 10 bound states of NiO, NiO+, and NiO- have been studied. For all these states, complete potential energy curves have been constructed at the MRCI level of theory; in addition, for the ground states of the three species core subvalence (3s23p6/Ni) and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The agreement with experiment is in the case of NiO good, but certain discrepancies that need further investigation have arisen in the case of the anion whose ground state remains computationally a tantalizing matter. The cation is experimentally almost entirely unexplored, therefore, the study of many states shall prove valuable to further investigators. The ground state symmetry, bond distances, and binding energies of NiO and NiO+ are (existing experimental values in parenthesis), X3Σ-(X3Σ-), re = 1.606 (1.62712) Å, D0 = 88.5 (89.2 ± 0.7) kcal/mol, and X4Σ-(?), re = 1.60(?) Å, D0 = 55 (62.4 ± 2.4) kcal/mol, respectively. The ground state of NiO- is 4Σ- (but 2Π experimentally) with D0 = 85-87 (89.2 ± 0.7) kcal/mol.

  10. Perpendicularly magnetized spin filtering Cu/Ni multilayers

    SciTech Connect

    Shirahata, Yasuhiro; Wada, Eiji; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-01-20

    Spin filtering at perpendicular magnetized Cu/Ni multilayer/GaAs(001) interfaces is demonstrated at remanence using optical spin orientation method. [Cu(9 nm)/Ni(t{sub Ni} nm)]{sub n} multilayers are found to show a crossover from the in-plane to out-of-plane magnetic anisotropy at the Cu/Ni bilayer repetition n = 4 and the Ni layer thickness t{sub Ni} = 3. For a perpendicularly magnetized Cu/Ni multilayer/n-GaAs(001) interface, circular polarization dependent photocurrent shows a clear hysteretic behavior under optical spin orientation conditions as a function of magnetic field out-of-plane while the bias dependence exhibits a substantial peak at a forward bias, verifying that Cu/Ni multilayers work as an efficient spin filter in the remanent state.

  11. XAFS study of Ni (II) aminovinylketone complexes

    NASA Astrophysics Data System (ADS)

    Yalovega, Galina E.; Vlasenko, Valerii G.; Uraev, Ali I.; Garnovskii, Alexander D.; Soldatov, Alexander V.

    2006-11-01

    The functional properties of the active sites in a metalloproteins depend on coordination geometry of metal, the number and the nature of coordination ligands. The Ni K-edge XAFS spectra of novel nickel complexes as models for the MeN 2O 2(S 2) active site in metalloproteins were measured and analyzed. Theoretical analysis of the Ni K-edge XANES was performed using FDMNES code based on the finite difference method (FDM) to solve the Schrödinger equation beyond muffin-tin approximations and self-consistent full multiple-scattering approach (code FEFF8.2). It was found that the spectrum is almost totally formed by the octahedron of the nearest neighbor atoms around Ni ion in the II (Ni) complex. The III (Ni) complex active center exists in square-planar configuration with shorter distances.

  12. Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream

    NASA Astrophysics Data System (ADS)

    Xia, Shubiao; Zhang, Yingjie; Dong, Peng; Zhang, Yannan

    2014-01-01

    A facile generic strategy of solid-state reaction under air atmosphere is employed to prepare LiNi0.8Co0.15Al0.05O2 layer structure micro-sphere as cathodes for Li-ion batteries. The impurity phase has been eliminated wholly without changing the R-3m space group of LiNi0.8Co0.15Al0.05O2. The electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes depend on the sintering step, temperature, particle size and uniformity. The sample pre-sintered at 540 °C for 12 h and then sintered at 720 °C for 28 h exhibits the best electrochemical performance, which delivers a reversible capacity of 180.4, 165.8, 154.7 and 135.6 mAhg-1 at 0.2 C, 1 C, 2 C and 5 C, respectively. The capacity retention keeps over 87% after 76 cycles at 1 C. This method is simple, cheap and mass-productive, and thus suitable to large scale production of NCA cathodes directly used for lithium ion batteries.

  13. NiAg catalysts prepared by reduction of Ni2+ ions in aqueous hydrazine II. Support effect.

    PubMed

    Bettahar, M M; Wojcieszak, R; Monteverdi, S

    2009-04-15

    A series of bimetallic NiAg (Ni + Ag = 1% wt) catalysts supported on amorphous silica was synthesized via chemical reduction using hydrazine as the reducing agent at 353 K. Catalysts were prepared via impregnation or precipitation technique. It was found that the reduction of the Ni(2+) ions occurred only in the presence of silver, otherwise a stable blue [Ni(N(2)H(4))(3)](2+) complex was formed. Comparisons with similar NiAg catalysts supported on crystallized silica as prepared in our previous work indicated that the Ni(2+) ions weakly interacted with acidic crystallized silica on which they were readily reduced. For both supports, the combination of silver and nickel gave rise to a synergistic effect due to the existence of NiAg groupings. The surface and catalytic properties of the metal particles formed depended on the Ni:Ag ratio, method of preparation, and acidity of the support.

  14. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts.

    PubMed

    Chaliha, Suranjana; Bhattacharyya, Krishna Gopal

    2008-02-11

    Chlorophenols in water are resistant to biological oxidation and they have to be destroyed by chemical oxidation. In the present work, Fe(III), Co(II) and Ni(II) incorporated MCM41 mesoporous solids were used as catalysts for oxidation of 2,4,6-trichlorophenol in water with or without the oxidant, H(2)O(2). The catalysts were prepared by impregnation and were characterized by XRD and FTIR measurements. The parent MCM41, Fe(III), Co(II) and Ni(II) impregnated MCM41 had cation exchange capacity of 20.5, 25.5, 24.2, 26.0 mequiv./100g, respectively. The catalysts were used after calcination at 773-873 K for 5 h. The reactions were carried out in a high pressure stirred reactor at 0.2 MPa (autogenous) and 353 K under various reaction conditions. The conversion achieved with Fe(III), Co(II) and Ni(II) incorporated MCM41 in 5h is respectively 59.4, 50.0 and 65.6% with 2,4,6-TCP:H(2)O(2) molar ratio of 1:1, and 60.2, 60.9 and 68.8% in absence of H(2)O(2). The oxidation has a first order rate coefficient of (1.2-4.8)x10(-3)min(-1). The results show that introduction of Fe(III), Co(II) and Ni(II) into MCM-41 through impregnation produces very effective catalysts for wet oxidation of 2,4,6-trichlorophenol.

  15. NiO(s) (Bunsenite) is not Available to Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AIMS: To determine if the Ni-hyperaccumulator Alyssum corsicum can absorb Ni from the kinetically inert crystalline mineral NiO(s) (bunsenite). METHODS: A. corsicum and A. montanum plants were grown for 30 days in a serpentine Hoagland solution. NiO was provided at 0 or 0.1 g L-1 (1.34 mmol L-1) ...

  16. Impurity effects on the Ni/Ni{sub 3}Al interface cohesion

    SciTech Connect

    Liu, Y.; Chen, K.Y.; Lu, G.; Zhang, J.H.; Hu, Z.Q.

    1997-05-01

    The effects of B, C, N, O, H, P and S impurities on the Ni/Ni{sub 3}Al interface cohesion have been investigated by employing first-principles electronic structure calculations based on the discrete variational method. The binding energy, bond order, difference electron density, orbital occupations and density of states have been calculated to study the impurity-induced changes in the energetics and electronic structure. The impurities promote the Ni/Ni{sub 3}Al interface cohesion and prefer to occupy the interface interstitial sites in the order S < P < H < O < N < B < C. The impurity-nickel covalent-like bonds form mainly due to impurity-p/Ni-d hybridization (except H-s/Ni-p hybridization in the H case). Meanwhile, the Ni-Ni bonding becomes weaker because of charge depletion on Ni atoms and bond misorientation resulting from the more homogeneous electron redistribution. In the order B, C, N and O, the impurity-metal bond varies from being homopolar to being much more heteropolar with increasing ionicity percentage, which results in decreasing p-d hybridization effects.

  17. In Situ XAS of Ni-W Hydrocracking Catalysts

    SciTech Connect

    Yang, N.; Mickelson, G. E.; Greenlay, N.; Bare, Simon R.; Kelly, S. D.

    2007-02-02

    Ni-W based catalysts are very attractive in hydrotreating of heavy oil due to their high hydrogenation activity. In the present research, two catalyst samples, prepared by different methods, that exhibit significant differences in activity were sulfided in situ, and the local structure of the Ni and W were studied using X-ray absorption spectroscopy (XAS). The Ni XANES spectra were analyzed using a linear component fitting, and the EXAFS spectra of the WS2 platelets in the sulfided catalysts were modeled. The Ni and W are fully sulfided in the higher activity sample, and there are both unsulfided Ni ({approx}25%) and W (<10%) in the lower activity sample.

  18. Coupling the Phase Field Method for diffusive transformations with dislocation density-based crystal plasticity: Application to Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Cottura, M.; Appolaire, B.; Finel, A.; Le Bouar, Y.

    2016-09-01

    A phase field model is coupled to strain gradient crystal plasticity based on dislocation densities. The resulting model includes anisotropic plasticity and the size-dependence of plastic activity, required when plasticity is confined in region below few microns in size. These two features are important for handling microstructure evolutions during diffusive phase transformations that involve plastic deformation occurring in confined areas such as Ni-based superalloys undergoing rafting. The model also uses a storage-recovery law for the evolution of the dislocation density of each glide system and a hardening matrix to account for the short-range interactions between dislocations. First, it is shown that the unstable modes during the morphological destabilization of a growing misfitting circular precipitate are selected by the anisotropy of plasticity. Then, the rafting of γ‧ precipitates in a Ni-based superalloy is investigated during [100] creep loadings. Our model includes most of the important physical phenomena accounted for during the microstructure evolution, such as the presence of different crystallographic γ‧ variants, their misfit with the γ matrix, the elastic inhomogeneity and anisotropy, the hardening, anisotropy and viscosity of plasticity. In agreement with experiments, the model predicts that rafting proceeds perpendicularly to the tensile loading axis and it is shown that plasticity slows down significantly the evolution of the rafts.

  19. Ni/YSZ and Ni-CeO 2/YSZ anodes prepared by impregnation for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Qiao, Jinshuo; Sun, Kening; Zhang, Naiqing; Sun, Bing; Kong, Jiangrong; Zhou, Derui

    In this paper, Ni/YSZ and Ni-CeO 2/YSZ anodes for a solid oxide fuel cell (SOFC) were prepared by tape casting and vacuum impregnation. By this method, the Ni content in the anode could be reduced compared to the traditional tape casting method. It was found that adding CeO 2 into the Ni/YSZ anode by a Ni(NO 3) 2 and Ce(NO 3) 3 mixed impregnation could further enhance cell performance. This was investigated in H 2 at 1073 K. XRD patterns indicated that CeO 2 and Ni were separate phases, and the CeO 2 addition could enhance the Ni dispersion on the YSZ framework surface which was observed by SEM images. It was shown that adding CeO 2 into the Ni anodes could decrease the cell polarization resistance. The maximum power density for cells with 25 wt.% Ni, 5 wt.% CeO 2-25 wt.% Ni/YSZ, or 10 wt.% CeO 2-25 wt.% Ni/YSZ anode was 230 mW cm -2, 420 mW cm -2 and 530 mW cm -2, respectively, in H 2 at 1073 K. The OCV for these cells was 1.05-1.09 V, indicating that a dense electrolyte film was obtained by co-firing porous YSZ layer and dense YSZ layer.

  20. Preparation of electrodeposited Mo-Ni coating and its spectral properties.

    PubMed

    Liu, Xiao-Zhen; Xiong, Li-Ping; Liu, Xiao-Zhou; Chen, Jie; Luo, Yi-Fan; Sun, Ying

    2014-04-01

    Mo-Ni coatings were prepared on Ni alloy by electrodeposition method. The properties of microhardness, wear weight loss and friction coefficients, and thermal expansion of the coatings were investigated, respectively. Mo-Ni coatings were characterized with inductively coupled plasma-atomic emission spectroscopy (ICP-AES), energy-dispersive analyses of X-ray (EDAX), scanning electron microcopy (SEM), and X-ray diffraction (XRD) techniques, respectively. Mo-Ni coating shows higher microhardness, lower wear weight loss and friction coefficient compared with those of Ni alloy. The microhardness of Mo-Ni coating is as high as 518 HV, which is 72.67% higher than that of the Ni alloy (300 HV). The wear weight losses of Mo-Ni coating is 1.94 times lower than that of Ni alloy. The friction coefficient of Ni alloy and Mo-Ni coating are 0.640 and 0.559 respectively. The physical thermal expansion curve of Ni alloy has two the peaks in the ranges of 100-120 and 570-640 degrees C respectively; and that of Ni alloy+Mo-Ni coating has one the peaks in the ranges of 570-640 degrees C. The peak of the physical thermal expansion curve of Ni alloy+Mo-Ni coating in the ranges of 570-640 degrees C is much smaller than that of the Ni alloy. Because the part of nickel was replaced by molybdenum in the Ni lattice, molybdenum decreases the lattices transformation of nickel (bcc --> fcc). The reason for the formation of the small peak of the physical thermal expansion curve of Ni alloy+Mo-Ni coating in the ranges of 595-625 degrees C is the changes of MoNi4 and MoNi from the semi-crystalline structure to the crystalline structure respectively. PMID:25007639

  1. Preparation of electrodeposited Mo-Ni coating and its spectral properties.

    PubMed

    Liu, Xiao-Zhen; Xiong, Li-Ping; Liu, Xiao-Zhou; Chen, Jie; Luo, Yi-Fan; Sun, Ying

    2014-04-01

    Mo-Ni coatings were prepared on Ni alloy by electrodeposition method. The properties of microhardness, wear weight loss and friction coefficients, and thermal expansion of the coatings were investigated, respectively. Mo-Ni coatings were characterized with inductively coupled plasma-atomic emission spectroscopy (ICP-AES), energy-dispersive analyses of X-ray (EDAX), scanning electron microcopy (SEM), and X-ray diffraction (XRD) techniques, respectively. Mo-Ni coating shows higher microhardness, lower wear weight loss and friction coefficient compared with those of Ni alloy. The microhardness of Mo-Ni coating is as high as 518 HV, which is 72.67% higher than that of the Ni alloy (300 HV). The wear weight losses of Mo-Ni coating is 1.94 times lower than that of Ni alloy. The friction coefficient of Ni alloy and Mo-Ni coating are 0.640 and 0.559 respectively. The physical thermal expansion curve of Ni alloy has two the peaks in the ranges of 100-120 and 570-640 degrees C respectively; and that of Ni alloy+Mo-Ni coating has one the peaks in the ranges of 570-640 degrees C. The peak of the physical thermal expansion curve of Ni alloy+Mo-Ni coating in the ranges of 570-640 degrees C is much smaller than that of the Ni alloy. Because the part of nickel was replaced by molybdenum in the Ni lattice, molybdenum decreases the lattices transformation of nickel (bcc --> fcc). The reason for the formation of the small peak of the physical thermal expansion curve of Ni alloy+Mo-Ni coating in the ranges of 595-625 degrees C is the changes of MoNi4 and MoNi from the semi-crystalline structure to the crystalline structure respectively.

  2. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  3. Nanostructure investigation of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} synthesized by sol-gel method

    SciTech Connect

    Pransisco, Prengki; Shafie, Afza Guan, Beh Hoe

    2015-07-22

    Magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4}. According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize, shape and distribution particle of magnetic material Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound.

  4. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  5. Effect of the method of introduction of Y2O3 into NiAl-based powder alloys on their structure: II. Mechanical activation

    NASA Astrophysics Data System (ADS)

    Skachkov, O. A.; Povarova, K. B.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. V.

    2012-09-01

    Effect of mechanical activation of NiAl powders produced by calcium hydride reduction in an attritor and a ball mill on the specific surface, the oxygen concentration, the strain hardening, and the coherent domain size (CDS) of the powders is studied. It is found that the powder specific surface milled in the attritor for 10-15 h is larger by a factor of 1.7-1.8 and the oxygen concentration in a powder is lower by a factor of 1.35 as compared to the its milling in the ball mill for 150 h. The powders milled in the attritor for 15 h have the level of microstresses higher by a factor of ˜2.4 and the CDS smaller by a factor of 2 as compared to the powder treated in the ball mill for 150 h. When milling a powder in the attritor, the milling time decreases by a factor of 10 and the degree of powder refinement increases, which improves the technological characteristics of the powders. As a result of the combination (in one operation) of mechanical activation of an NiAl intermetallic matrix powder in the attritor and the introduction of dispersed particles of a refractory oxide Y2O3 powder, the produced composite alloy has a density close to the theoretical one and has no aggregates of dispersed oxide particles at grain boundary junctions. Submicro- and nanosized oxide particles are homogenously distributed in the intermetallic matrix volume, which is characterized by a homogeneous distribution of nickel and aluminum.

  6. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths.

    PubMed

    Susano, M; Proenca, M P; Moraes, S; Sousa, C T; Araújo, J P

    2016-08-19

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments' length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties.

  7. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths.

    PubMed

    Susano, M; Proenca, M P; Moraes, S; Sousa, C T; Araújo, J P

    2016-08-19

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments' length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties. PMID:27378738

  8. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths

    NASA Astrophysics Data System (ADS)

    Susano, M.; Proenca, M. P.; Moraes, S.; Sousa, C. T.; Araújo, J. P.

    2016-08-01

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments’ length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties.

  9. Highly crystalline Ni/NiO hybrid electrodes processed by inkjet printing and laser-induced reductive sintering under ambient conditions

    NASA Astrophysics Data System (ADS)

    Rho, Yoonsoo; Kang, Kyung-Tae; Lee, Daeho

    2016-04-01

    In this study, we perform drop-on-demand (DOD) inkjet printing and laser reductive sintering of precrystallized NiO nanoparticle (NP) ink under ambient conditions to obtain NiO/Ni hybrid electrode patterns on a highly localized area. By formulating an inkjet-printable and laser-reducible NiO NP ink, and by exploring the optimum conditions of inkjet printing parameters, we generate stable droplets, enabling arbitrary shapes of NiO NP dot arrays or line patterns to be deposited. Subsequent short-time low-temperature sintering produces highly crystalline NiO electrodes. Furthermore, laser reductive sintering applied on deposited NiO NP patterns can successfully realize a selective transformation of NiO into Ni electrodes under ambient conditions. Therefore, we can define either NiO or Ni electrodes, or a combination of the two on specific areas with precise amounts of ink. In addition, we identify the characteristics of the synthesized NPs, NP ink, NiO and Ni electrodes using various analytical methods.In this study, we perform drop-on-demand (DOD) inkjet printing and laser reductive sintering of precrystallized NiO nanoparticle (NP) ink under ambient conditions to obtain NiO/Ni hybrid electrode patterns on a highly localized area. By formulating an inkjet-printable and laser-reducible NiO NP ink, and by exploring the optimum conditions of inkjet printing parameters, we generate stable droplets, enabling arbitrary shapes of NiO NP dot arrays or line patterns to be deposited. Subsequent short-time low-temperature sintering produces highly crystalline NiO electrodes. Furthermore, laser reductive sintering applied on deposited NiO NP patterns can successfully realize a selective transformation of NiO into Ni electrodes under ambient conditions. Therefore, we can define either NiO or Ni electrodes, or a combination of the two on specific areas with precise amounts of ink. In addition, we identify the characteristics of the synthesized NPs, NP ink, NiO and Ni electrodes

  10. Reaction behavior of Ni-Re alloys during direct current polarization in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Bryukvin, V. A.; Elemesov, T. B.; Levchuk, O. M.; Bol'shikh, A. O.

    2016-01-01

    The macrokinetic regularities of the reactivity of synthesized Ni-Re (20 and 60 wt %) alloys in a sulfuric acid solution (100 g/L, 25-40°C) during direct current polarization are studied using physicochemical methods. The phase composition of the synthesized alloys is determined by the formation of solid solutions as a function of the initial Ni/Re weight ratio. These are two types of nickel solid solutions (Ni16Re0.2 and Ni14Re0.9) and one rhenium solution (Ni1.1Re). These solid solutions are anodically oxidized in the sequence of their structural rearrangement Ni16Re0.2 → Ni14Re0.9 → Ni1.1Re with a combined transition of the metals into an electrolyte solution. These solid solutions provide the reduction of Ni3+ to Ni2+ due to the depolarization ability of rhenium, being their component.

  11. Facile synthesis of self-supported Ni2P nanosheet@Ni sponge composite for high-rate battery

    NASA Astrophysics Data System (ADS)

    Shi, F.; Xie, D.; Zhong, Y.; Wang, D. H.; Xia, X. H.; Gu, C. D.; Wang, X. L.; Tu, J. P.

    2016-10-01

    To meet the requirements for high-rate battery with desirable performance, a self-supported Ni2P@Ni sponge electrode is synthesized via simple steps, in which the Ni sponge substrate is synthesized by a one-pot hydrothermal method and the Ni2P nanosheets grown on the novel substrate are converted from Ni(OH)2 via a phosphorization reaction. This hybrid composite combines the 3D porous structure of Ni sponge and high capacity of Ni2P nanosheets, which exhibits lightweight, flexible and highly-conductive properties, resulting in an excellent specific capacity of 430.3 mAh g-1 at a current density of 1 A g-1 and remaining as high as 77.0% capacity even at 40 A g-1. More importantly, the Ni2P@Ni sponge//C cell exhibits the maximum energy density of 182.1 W h kg-1 at a power density of 205 W kg-1 along with superior capacity retention of 85.2% after 3000 cycles. It is suggested that the Ni2P nanosheet@ Ni sponge composite is a promising electrode material for high-rate batteries.

  12. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  13. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.

    PubMed

    Taddei, M H T; Macacini, J F; Vicente, R; Marumo, J T; Sakata, S K; Terremoto, L A A

    2013-07-01

    A radiochemical method has been adapted to determine (59)Ni and (63)Ni in samples of radioactive wastes from the water cleanup system of the IEA-R1 nuclear research reactor. The process includes extraction chromatographic resin with dimethylglyoxime (DMG) as a functional group. Activity concentrations of (59)Ni and (63)Ni were measured, respectively, by X-ray spectrometry and liquid scintillation counting, whereas the chemical yield was determined by ICP-OES. The average ratio of measured activity concentrations of (63)Ni and (59)Ni agree well with theory.

  14. Preparation of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for Lithium Batteries Via Solid-State Redox Method using Nitrate and Acetate Based Reactants

    SciTech Connect

    Mat, A.; Sulaiman, K. S.; Sulaiman, M. A.; Hasim, M. F.

    2010-03-11

    LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} is a potential cathode material for 5 V batteries. This material was prepared by the solid-state redox method using nitrate and acetate based reactants. The precursor material was obtained when the mixture reactants was heated at 500 deg. C for 10 hours and calcined at different temperatures in the range between 650 and 950 deg. C for 12 hours. The structures of the synthesized materials were verified with X- ray diffraction (XRD) measurement and Scanning Electron Microscope (SEM). The charge-discharge technique was determined using Solartron 1470. As calcination temperature increases, the well-ordered crystal growth oriented to [1 1 1] direction shows a clear octahedral morphology, which is the characteristic of the typical cubic spinel. The Li/LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} prepared from acetate based reactants calcined at 750 deg. C for 12 h delivered the discharge capacity of 140 mAh/g.

  15. Conversion of CH4/CO2 to syngas over Ni-Co/Al2O3-ZrO2 nanocatalyst synthesized via plasma assisted co-impregnation method: Surface properties and catalytic performance

    NASA Astrophysics Data System (ADS)

    Rahemi, Nader; Haghighi, Mohammad; Akbar Babaluo, Ali; Fallah Jafari, Mahdi; Khorram, Sirous

    2013-09-01

    Ni/Al2O3 catalyst promoted by Co and ZrO2 was prepared by co-impregnation method and treated with glow discharge plasma. The catalytic activity of the synthesized nanocatalysts has been tested toward conversion of CH4/CO2 to syngas. The physicochemical characterizations like XRD, EDX, FESEM, TEM, BET, FTIR, and XPS show that plasma treatment results in smaller particle size, more surface concentration, and uniform morphology. The dispersion of nickel in plasma-treated nanocatalyst was also significantly improved, which was helpful for controlling the ensemble size of active phase atoms on the support surface. Improved physicochemical properties caused 20%-30% enhancement in activity of plasma-treated nanocatalyst that means to achieve the same H2 or CO yield, the plasma-treated nanocatalyst needed about 100 °C lower reaction temperature. The H2/CO ratio got closer to 1 at higher temperatures and finally at 850 °C H2/CO = 1 is attained for plasma-treated nanocatalyst. Plasma-treated nanocatalyst due to smaller Ni particles and strong interaction between active phase and support has lower tendency to keep carbon species on its structure and hence excellent stability can be observed for this catalyst.

  16. Facile one-step forming of NiO and yttrium-stabilized zirconia composite anodes with straight open pores for planar solid oxide fuel cell using phase-inversion tape casting method

    NASA Astrophysics Data System (ADS)

    Huang, Hua; Lin, Jie; Wang, Yunlong; Wang, Shaorong; Xia, Changrong; Chen, Chusheng

    2015-01-01

    The anode of NiO and yttria-stabilized zirconia (YSZ) with straight open pores is prepared by phase-inversion tape casting method. In the as-prepared green tape, its top and middle layers are derived from a slurry of NiO and YSZ, while the bottom layer from a slurry of graphite. The graphite layer is eliminated by calcination at elevated temperatures, leaving the finger-like porous layer exposed to the gas phase. A cell supported on the as-prepared anode substrate exhibits satisfactory electrochemical performances with a maximum power density of 780 mW cm-2 at 800 °C. The cell dose not show a convex-up curvature in I-V plots at high current density as often observed for most anode-supported cells, indicating the absence of concentration polarization which is in turn attributed to the open pore structure of the phase-inversion derived anode. The phase inversion tape casting technique explored in the present study involves almost the same equipments as and similar procedures to the conventional tape casting, and after further optimization it may become a simple and effective technique for mass production of anodes for SOFCs.

  17. Design and characterization of Ni2+ and Co2+ decorated Porous Magnetic Silica spheres synthesized by hydrothermal-assisted modified-Stöber method for His-tagged proteins separation.

    PubMed

    Benelmekki, M; Xuriguera, E; Caparros, C; Rodríguez-Carmona, E; Mendoza, R; Corchero, J L; Lanceros-Mendez, S; Martinez, Ll M

    2012-01-01

    The complete elimination of enzymes from the reaction mixture and the possibility of its recycling for several rounds result in great benefits, allowing the reduction of the enzyme consumption and their usability in continuous processes. In this work, it is evaluated the capture of a H6-tagged green fluorescence protein (GFP-H6) on porous magnetic spheres using the Co(2+) and Ni(2+) affinity adsorption as a possible cost-effective and up-scaled alternative way for the immobilization of His-tagged proteins. For this purpose, Porous Magnetic Silica (PMS) spheres were synthesized by one-step hydrothermal-assisted modified-Stöber method. The obtained spheres have a homogenous size distribution of 400 nm diameter. The γ-Fe(2)O(3) nanoparticles are homogenously distributed in the silica matrix. The obtained PMS spheres have a saturation magnetization of about 10 emu/g. Magnetophoresis measurements show a total separation time of 16 min at 60 T/m. The obtained PMS spheres were successfully and homogenously decorated with Co(2+) and Ni(2+) and then evaluated for the capture of a GFP-H6 protein. The results were compared with the performance of the commercial beads Dynabeads® His-Tag Isolation & Pulldown. PMID:21996010

  18. Structural, magnetic and dielectric properties of Ni(1_x)Zn(x)Fe2O4 (x = 0,0.5 and 1) nanoparticles synthesized by chemical co-precipitation method.

    PubMed

    Rathore, Deepshikha; Kurchania, Rajnish; Pandey, R K

    2013-03-01

    Ni(1-x)Zn(x)Fe2O4 (x = 0, 0.5 and 1) ferrite nanoparticles were synthesized by chemical co-precipitation method. X-ray diffraction technique and Rietveld refinement were used to investigate the structural characteristics and determination of the particle size which was found to decrease from 4.9 to 4.1 nm as a function of increasing Zn from 0 to 1.0. Vibrating sample magnetometer was used to study magnetic properties of nickel zinc ferrite nanoparticles. Field-dependent magnetization measurements (M-H curve) at 300 K revealed that Zn substitutions on inverse spinel nickel ferrites enhance the magnetic properties. Magnetization as a function of temperature showed the superparamagnetic behavior of Ni(1-x)Zn(x)Fe2O4 (x = 0,0.5 and 1) nanoparticles. Dielectric permittivity and a.c. conductivity were measured as a function of frequency from 100 kHz to 1 MHz at certain temperatures. The observed response in a.c. conductivity as a function of log of frequency of these nickel zinc ferrite systems was believed to be due to the presence of Maxwell-Wagner type interfacial polarization and hopping of electron by means of quantum mechanical tunneling. PMID:23755597

  19. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    SciTech Connect

    Obadovic, D. Z.; Kiurski, J.; Marinkovic-Neducin, R. P.

    2007-04-23

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed.

  20. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    NASA Astrophysics Data System (ADS)

    Obadović, D. Ž.; Kiurski, J.; Marinković-Nedučin, R. P.

    2007-04-01

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed.

  1. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni

    SciTech Connect

    Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.

    2014-01-14

    Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) with an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

  2. NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Zhao, Huilin; Zhou, JingKuo; Xue, Ruinan; Gao, Jianping

    2016-10-01

    Many NiCoO2 flowers with an average diameter of about 4 μm were grown on the NiCoO2 flakes coated Ni foam (denoted as NiCoO2/Ni foam) through a simple hydrothermal method and confirmed by scanning and transmission electron microscopies, X-ray diffraction and X-ray photoelectron spectrum measurements. The NiCoO2/Ni foam with high specific area and porosity was directly used as the working electrode without any binders. The measured specific capacitance of NiCoO2 grown on Ni foam is 756 F/g at 0.75 A/g using a three-electrode setup in 1 M KOH. Considering the high capacity of NiCoO2 and the good stability of rGO, the NiCoO2/Ni foam//rGO hybrid supercapacitor combining NiCoO2/Ni foam and rGO shows very good properties, such as high specific capacitance (82 F/g at 2 A/g based on the total mass of active materials), high energy density (25.7 Wh/kg at 1500 W/kg based on the total mass of active materials), good stability (about 90% capacitance retention after 2000-cycle at 100 mV/s), and low charge ion transfer resistance.

  3. Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Li, Jiangtian; Zhao, Wei; Huang, Fuqiang; Manivannan, Ayyakkannu; Wu, Nianqiang

    2011-12-01

    Vertically aligned Ni(OH)2 and NiO single-crystalline nanoplatelet arrays were directly grown on the fluorine-doped tin oxide (FTO) substrate by a simple hydrothermal method. The effects of the hydrothermal parameters on the morphology and crystal structure of the nanoarray film were investigated. Controlling the ammonia and persulfate concentrations was the key to controlling the morphology of the nanoarray film. The experimental results showed that the single-crystalline NiO nanoplatelet array was a promising candidate for the supercapacitor electrode. It exhibited a high specific capacitance, prompt charge/discharge rate, and good stability of cycling performance. It is believed that the vertically oriented aligned single-crystalline NiO nanoplatelet array is beneficial to the charge transfer in the electrode and to the ion transport in the solution during redox reaction.Vertically aligned Ni(OH)2 and NiO single-crystalline nanoplatelet arrays were directly grown on the fluorine-doped tin oxide (FTO) substrate by a simple hydrothermal method. The effects of the hydrothermal parameters on the morphology and crystal structure of the nanoarray film were investigated. Controlling the ammonia and persulfate concentrations was the key to controlling the morphology of the nanoarray film. The experimental results showed that the single-crystalline NiO nanoplatelet array was a promising candidate for the supercapacitor electrode. It exhibited a high specific capacitance, prompt charge/discharge rate, and good stability of cycling performance. It is believed that the vertically oriented aligned single-crystalline NiO nanoplatelet array is beneficial to the charge transfer in the electrode and to the ion transport in the solution during redox reaction. Electronic supplementary information (ESI) available: XRD patterns of Ni(OH)2 and NiO powders; SEM and TEM images of Ni(OH)2 and NiO nanoplatelet arrays; and electrochemical performances for NiO nanoarrays and powders. See

  4. Electron-diffraction structure refinement of Ni4Ti3 precipitates in Ni52Ti48.

    PubMed

    Tirry, Wim; Schryvers, Dominique; Jorissen, Kevin; Lamoen, Dirk

    2006-12-01

    The atomic coordinates of the crystal structure of nanoscale Ni4Ti3 precipitates in Ni-rich NiTi is refined by means of a least-squares method based on intensity measures of electron-diffraction patterns. The optimization is performed in combination with density functional theory calculations and has yielded an R\\bar 3 symmetry with slightly different atomic positions when compared with the existing structure. The new unit cell offers a better understanding of the lattice deformation from the B2 matrix. PMID:17108648

  5. Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white

    NASA Astrophysics Data System (ADS)

    Gabal, M. A.

    2009-10-01

    Nanocrystalline Mg-substituted NiCuZn ferrites were successfully synthesized, for the first time, by using metal nitrates and freshly extracted egg white. The thermal decomposition process of the nitrate-egg white precursors was investigated by thermogravimetric (TG) technique. X-ray diffraction (XRD) revealed that, single-phase cubic ferrites with average particle size of 23.9-35.1 nm were directly formed after ignition at 500 °C. No noticeable variation of lattice parameters with increasing magnesium content was observed, while X-ray densities were found to decrease. This can be explained on the basis of ionic radii and atomic masses of the substituted cation. Transmission electron microscope (TEM) shows that, particles are permanently magnetized and get agglomerated. The saturation magnetization ( M s) and coercivity ( H c) as a function of Mg content were investigated using vibrating sample magnetometer (VSM). It has been found that the M s increases firstly up to x=0.2 and then decreases, while H c continuously decreases. Magnetic susceptibility measurements give results which agree well with those obtained by VSM. The obvious decrease in the Curie temperature ( T C) with increasing Mg indicates that the ferrimagnetic grains are widely separated and enclosed by non-magnetic magnesium ions.

  6. Laser ablation of Al-Ni alloys and multilayers

    NASA Astrophysics Data System (ADS)

    Roth, Johannes; Trebin, Hans-Rainer; Kiselev, Alexander; Rapp, Dennis-Michael

    2016-05-01

    Laser ablation of Al-Ni alloys and multilayers has been studied by molecular dynamics simulations. The method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons, and the atoms. As a first step, electronic parameters for the alloys had to be found and the model developed originally for pure metals had to be generalized to multilayers. The modifications were verified by computing melting depths and ablation thresholds for pure Al and Ni. Here known data could be reproduced. The improved model was applied to the alloys Al_3Ni, AlNi and AlNi_3. While melting depths and ablation thresholds for AlNi behave unspectacular, sharp drops at high fluences are observed for Al_3Ni and AlNi_3. In both cases, the reason is a change in ablation mechanism from phase explosion to vaporization. Furthermore, a phase transition occurs in Al_3Ni. Finally, Al layers of various thicknesses on a Ni substrate have been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.

  7. Measurement of {sup 63}Ni and {sup 59}Ni by accelerator mass spectrometry using characteristic projectile x-rays

    SciTech Connect

    McAninch, J.E.; Hainsworth, L.J.; Marchetti, A.A.

    1996-05-01

    The long-lived isotopes of nickel ({sup 59}Ni, {sup 63}Ni) have current and potential use in a number of applications including cosmic radiation studies, biomedical tracing, characterization of low-level radioactive wastes, and neutron dosimetry. Methods are being developed at LLNL for the routine detection of these isotopes by AMS. One intended application is in Hiroshima dosimetry. The reaction {sup 63}Cu(n,p){sup 63}Ni has been identified as one of a small number of reactions which might be used for the direct determination of the fast neutron fluence emitted by the Hiroshima bomb. AMS measurement of {sup 63}Ni(t{sub 1/2} = 100 y) requires the chemical removal of {sup 63}Cu, which is a stable isobar of {sup 63}Ni. Following the electrochemical separation of Ni from gram-sized copper samples, the Cu concentration is further lowered to < 2 x 10{sup -8} (Cu/Ni) using the reaction of Ni with carbon monoxide to form the gas Ni(CO){sub 4}. The Ni(CO){sub 4} is thermally decomposed directly in sample holders for measurement by AMS. After analysis in the AMS spectrometer, the ions are identified using characteristic projectile x-rays, allowing further rejection of remaining {sup 63}Cu. In a demonstration experiment, {sup 63}Ni was measured in Cu wires (2-20 g) which had been exposed to neutrons from a {sup 252}Cf source. We successfully measured {sup 63}Ni at levels necessary for the measurement of Cu samples exposed near the Hiroshima hypocenter. For the demonstration samples, the Cu content was chemically reduced by a factor of 10{sup 12} with quantitative retention of {sup 63}Ni. Detection sensitivity (3{sigma}) was {approximately}20 fg {sup 63}Ni in 1 mg Ni carrier ({sup 63}Ni/Ni {approx} 2 x 10{sup -11}). Significant improvements in sensitivity are expected with planned incremental changes in the methods. Preliminary results indicate that a similar sensitivity is achievable for {sup 59}Ni (t{sub 1/2} = 10{sup 5} y).

  8. One-step grown multi-walled carbon nanotubes with Ni filling and decoration

    NASA Astrophysics Data System (ADS)

    Baro, Mahananda; Pal, Arup R.

    2015-06-01

    A single step approach for the synthesis of multi-walled carbon nanotubes filled with Ni nanowires (Ni-MWCNTs) and decorated with Ni nanoparticles has been illustrated. The MWCNTs are grown by a PECVD-sputtering hybrid process at the low temperature of 450 °C having an average diameter of 55   ±   6 nm and length of 1.35   ±   0.08 µm. Thin Ni films of the thickness 10 nm have been used, which act as a catalyst as well as a source material for the filling of MWCNTs with Ni nanowires, whereas sputtering of Ni is the source of decorated Ni particles. This process facilitates the growth of aligned MWCNTs filled with Ni nanowires and also decorated with Ni nanoparticles on the walls. Magnetic properties of the Ni filled and decorated MWCNTs are measured using a vibrating sample magnetometer. Magnetic hysteresis loops of Ni containing MWCNTs show ferromagnetic behavior. These Ni-MWCNTs shows coercivity of 135 Oe, which is significantly greater than that of the bulk Ni at room temperature. The magnetic property measurement reveals that the coercivity of the as grown MWCNTs is dependent on the size and content of Ni. Thus, a novel method has been demonstrated for the synthesis of ferromagnetic Ni-MWCNT which has potential applications in various fields.

  9. Li-Rich Layered Cathode Material Li[Li0.157Ni0.138Co0.134Mn0.571]O2 Synthesized with Solid-State Coordination Method

    NASA Astrophysics Data System (ADS)

    Liao, Da-qian; Xia, Chao-yang; Xi, Xiao-ming; Zhou, Chun-xian; Xiao, Ke-song; Chen, Xiao-qing; Qin, Shi-biao

    2016-06-01

    Lithium-rich layered material Li[Li0.157Ni0.138Co0.134Mn0.571]O2 was prepared with the solid-state coordination method. Lithium nitrate, nickel acetate, cobalt acetate, and manganese acetate were used as raw materials, and citric acid as solid complexing agent. The lithium-rich layered material was prepared by heat-treating the precursors of the solid-phase complex compound. The prepared materials exhibited typical layer structure, nanosize distribution, and excellent electrochemical performance, and the preparation process has the advantages of low cost and simplicity. The initial discharge capacity of the prepared material reached as high as 270 mAh/g, and the charge-transfer resistance of the electrode was about 165 Ω at 4.0 V.

  10. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-08-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  11. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  12. Atomistic Modeling of Pd Site Preference in NiTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    An analysis of the site subsitution behavior of Pd in NiTi was performed using the BFS method for alloys. Through a combination of Monte Carlo simulations and detailed atom-by-atom energetic analyses of various computational cells, representing compositions of NiTi with up to 10 at% Pd, a detailed understanding of site occupancy of Pd in NiTi was revealed. Pd subsituted at the expense of Ni in a NiTi alloy will prefer the Ni-sites. Pd subsituted at the expense of Ti shows a very weak preference for Ti-sites that diminishes as the amount of Pd in the alloy increases and as the temperature increases.

  13. Novel gold nanocluster electrochemiluminescence immunosensors based on nanoporous NiGd-Ni2O3-Gd2O3 alloys.

    PubMed

    Lv, Xiaohui; Ma, Hongmin; Wu, Dan; Yan, Tao; Ji, Lei; Liu, Yixin; Pang, Xuehui; Du, Bin; Wei, Qin

    2016-01-15

    Herein, three-dimensional nanoporous NiGd alloy (NP-NiGd) was prepared by selectively dealloy Al from NiGdAl alloy in mild alkaline solution, then Ni2O3 and Gd2O3 grew further on the surface of NP-NiGd to obtain the NP-NiGd-Ni2O3-Gd2O3. On this basis, NP-NiGd-Ni2O3-Gd2O3 was further functionalized with gold nanoparticles (NP-NiGd-Ni2O3-Gd2O3@Au) and acted as sensor platform to fabricate a novel electrochemiluminescence (ECL) immunosensor. Bovine serum albumin protected gold nanoclusters (AuNCs@BSA) were prepared and acted as illuminant. AuNCs@BSA modified graphene oxide (GO/AuNCs@BSA) were used as labels of second antibody. In order to characterize the performance of the ECL immunosensor, carcino embryonie antigen (CEA) was used as the model to complete the experiments. Due to the good performances of NP-NiGd-Ni2O3-Gd2O3@Au (high surface area, excellent electron conductivity) and AuNCs@BSA (low toxicity, biocompatibility, easy preparation and good water solubility), the ECL immunosensor exhibited a wide range from 10(-4) to 5ng/mL with a detection limit of 0.03pg/mL (S/N=3). The immunosensor with excellent stability, acceptable repeatability and selectivity provided a promising method to detect CEA in human serum sample sensitively. PMID:26318782

  14. Influence of Ni/Co molar ratio on electromagnetic properties and microwave absorption performances for Ni/Co paraffin composites

    NASA Astrophysics Data System (ADS)

    Yan, S. J.; Dai, S. L.; Ding, H. Y.; Wang, Z. Y.; Liu, D. B.

    2014-05-01

    Ni and Co metallic microparticles with submicron size were synthesized with a simple wet chemical reduction method at a relatively low temperature. Then their morphologies and structures were characterized by SEM and XRD. Ni metallic microparticles have spherical-shape morphology with fcc crystalline structure, however, Co has a distinct leaf-like morphology with the fcc and hcp mixed phases crystalline structures. For the characterization of their electromagnetic properties, paraffin matrix composites containing different molar ratio Ni and Co mixture powder as fillers were prepared. It was found that both the electromagnetic properties and electromagnetic microwave absorption performances of absorber layer were remarkably influenced by Ni/Co molar ratio. The electromagnetic microwave absorption performances were significantly improved by blending Ni and Co metallic microparticles into paraffin matrix with changing Ni/Co molar ratio, and enhanced mechanism were discussed.

  15. Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys

    SciTech Connect

    Kirievsky, K.; Gelbstein, Y. Fuks, D.

    2013-07-15

    The half-Heusler TiNiSn alloys have recently gained an attention as promising candidates for thermoelectric applications. Improvement of these alloys for such applications can be obtained by both electronic and compositional optimizations. The latter can result in a miscibility gap, allowing a phase separation in the nano-scale and consequently a thermal conductivity reduction. Combination of ab initio calculations and statistical thermodynamics was applied for studying the relative stability of a number of superstructures in TiNiSn based alloys. The quasi-binary phase diagram beyond T=0 K for TiNiSn–TiNi{sub 2}Sn solid solutions was calculated using energy parameters extracted from the total energy calculations for ordered structures in the Ni sublattice. We demonstrated that a decomposition of the off-stoichiometric Ni-rich half-Heusler alloy into the stoichiometric TiNiSn phase and into Ni deficient Heusler TiNi{sub 2}Sn phase occurs at elevated temperatures—an effect which recently had been observed experimentally. Furthermore, favorable energetic conditions for antisite defects formation were deduced, based on calculations of the energy of formation, an effect which was explained as a cooperative process of partial disordering on the Ni sublattice. The influence of these two effects on improvement of the thermoelectric performance of TiNiSn based half Heusler compounds is discussed. - Graphical abstract: Phase separation and antisite defects in the thermoelectric TiNiSn alloy, are covered as methods for nanostructuring and thereby enhancement of the thermoelectric potential. - Highlights: • Ab initio calculations/statistical thermodynamics was applied for studying the TiNiSn system. • The phase diagram for TiNiSn–TiNi{sub 2}Sn solid solutions was calculated. • Decomposition of the Ni-rich HH into TiNiSn and Ni deficient TiNi{sub 2}Sn phases was observed. • Favorable energetic conditions for antisite defects formation were deduced.

  16. Phase competition in ternary Ti-Ni-Al system

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2016-07-01

    In this paper the reactive diffusion in Ti-Ni-Al system is discussed at 1173 K. The calculation method based on the binary approach is presented. The key kinetic parameter is Wagner integral diffusion coefficient. The experimental and simulation results of reactive diffusion between pure Ti and β-NiAl are compared at 1173 K after 100 h.

  17. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane.

    PubMed

    Aghamohammadi, Sogand; Haghighi, Mohammad; Karimipour, Samira

    2013-07-01

    Carbon dioxide reforming of methane is an interesting route for synthesis gas production especially over nano-sized catalysts. The present research deals with catalyst development for dry reforming of methane with the aim of reaching the most stable catalyst. Effect of preparation method, one of the most significant variables, on the properties of the catalysts was taken in to account. The Ni/Al2O3-MgO catalysts were prepared via sol-gel and sequential impregnation methods and characterized with XRD, FESEM, EDAX, BET and FTIR techniques. The reforming reactions were carried out using different feed ratios, gas hourly space velocities (GHSV) and reaction temperatures to identify the influence of operational variables. FESEM images indicate uniform particle size distribution for the sample synthesized with sol-gel method. It has been found that the sol-gel method has the potential to improve catalyst desired properties especially metal surface enrichment resulting in catalytic performance enhancement. The highest yield of products was obtained at 850 degrees C for both of the catalysts. During the 10 h stability test, CH4 and CO2 conversions gained higher values in the case of sol-gel made catalyst compared to impregnated one.

  18. Highly crystalline Ni/NiO hybrid electrodes processed by inkjet printing and laser-induced reductive sintering under ambient conditions.

    PubMed

    Rho, Yoonsoo; Kang, Kyung-Tae; Lee, Daeho

    2016-04-28

    In this study, we perform drop-on-demand (DOD) inkjet printing and laser reductive sintering of precrystallized NiO nanoparticle (NP) ink under ambient conditions to obtain NiO/Ni hybrid electrode patterns on a highly localized area. By formulating an inkjet-printable and laser-reducible NiO NP ink, and by exploring the optimum conditions of inkjet printing parameters, we generate stable droplets, enabling arbitrary shapes of NiO NP dot arrays or line patterns to be deposited. Subsequent short-time low-temperature sintering produces highly crystalline NiO electrodes. Furthermore, laser reductive sintering applied on deposited NiO NP patterns can successfully realize a selective transformation of NiO into Ni electrodes under ambient conditions. Therefore, we can define either NiO or Ni electrodes, or a combination of the two on specific areas with precise amounts of ink. In addition, we identify the characteristics of the synthesized NPs, NP ink, NiO and Ni electrodes using various analytical methods. PMID:27073978

  19. Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods

    NASA Astrophysics Data System (ADS)

    Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu

    2016-11-01

    We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.

  20. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  1. Ni-WC/C nanocluster catalysts for urea electrooxidation

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Mingtao; Huang, Zhiyu; Li, Yingming; Qi, Suitao; Yi, Chunhai; Yang, Bolun

    2014-10-01

    A nanocluster Ni-WC/C electrocatalyst is prepared through a sequential impregnation method and is used for the urea electrooxidation in alkaline conditions. The micro-morphology, lattice parameter, composition and surface states of Ni-WC/C particles are determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and X-ray photoelectron spectrometry (XPS) analysis. The electrooxidation activity and stability of the Ni-WC/C catalyst are also investigated by cyclic voltammograms and chronoamperograms. Characterization results indicate that the Ni nanoclusters are uniformly distributed on the WC/C framework, and the Ni-WC/C catalyst shows high electrocatalytic activity and stability for urea electrooxidation. The maximum current density at the Ni-WC/C electrode is almost 700 mA cm-2 mg-1 which is one order of magnitude higher than that at the Ni/C electrode, and the steady current density at the Ni-WC/C electrode is also markedly improved. Furthermore, the ESA values and XPS spectra indicate that the enhanced performance of the Ni-WC/C catalyst could be attributed to the structure effect and electron effect between nickel and tungsten carbide.

  2. Properties of LiCoO{sub 2}-coated NiO MCFC cathode

    SciTech Connect

    Kuk, S.T.; Kim, C.K.; Chun, H.S.; Kwon, H.J.

    1996-12-31

    PVA-assisted sol-gel method is useful in producing metal oxides with large surface area at low temperature. We fabricated LiCoO{sub 2}-coated NiO(LC-NiO) cathode by PVA-assisted sol-gel method and measured its properties, The electrical conductivity of LC-NiO cathode was measured to be more than 5 times as high as that of NiO and unit cell test showed improved performance. From the SEM images and Raman spectra. we confirmed that the structure of LC-NiO was different from that of NiO. For 250 hours of steady operation of unit cells. the mean voltage of the cells were 0.78V for NiO and 0.85V for LiCoO{sub 2}-Coated NiO at a current density of l50mA/cm{sup 2}.

  3. Ni-Co laterite deposits

    USGS Publications Warehouse

    Marsh, Erin E.; Anderson, Eric D.

    2011-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are an important source of nickel (Ni). Currently, there is a decline in magmatic Ni-bearing sulfide lode deposit resources. New efforts to develop an alternative source of Ni, particularly with improved metallurgy processes, make the Ni-Co laterites an important exploration target in anticipation of the future demand for Ni. This deposit model provides a general description of the geology and mineralogy of Ni-Co laterite deposits, and contains discussion of the influences of climate, geomorphology (relief), drainage, tectonism, structure, and protolith on the development of favorable weathering profiles. This model of Ni-Co laterite deposits represents part of the U.S. Geological Survey Mineral Resources Program's effort to update the existing models to be used for an upcoming national mineral resource assessment.

  4. Atomic Displacements Due to Point Defects in Ni Dilute Alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Hitesh; Prakash, S.

    The Embedded atom method has been used to investigate the strain field due to substitutional transition metal impurities in Ni. The calculations are carried out in the discrete lattice model of the metal using Kanzaki lattice static method. The results for atomic displacements due to 3d, 4d and 5d impurities (Cu, Pd, Pt and Au) in Ni are given up to 20 NN's of impurity and are compared with the earlier calculations and with the available experimental data. The maximum displacements of 3.6% of 1NN distance are found for NiAu, while the minimum displacements of 0.78% of 1NN distance are found for NiCu alloy respectively. The relaxation energy for Cu are found less than those for Pd, Au and Pt impurities in the Ni host.

  5. Magnetization of nano-fine particles of Pd/Ni alloys

    NASA Astrophysics Data System (ADS)

    Nunomura, N.; Teranishi, T.; Miyake, M.; Oki, A.; Yamada, S.; Toshima, N.; Hori, H.

    1998-01-01

    In order to investigate the giant magnetic moment problem in nano-fine Pd alloys particles, enough amount of Pd/Ni fine particles with quite narrow diameter distribution have been prepared by chemical method. The magnetization of Pd/Ni alloy ultrafine particles has been systematically investigated by using a SQUID magnetometer. The magnetization remarkably increases above the concentration of 8% of Ni. This result indicates the giant moment in the ultrafine Pd/Ni alloy particles.

  6. Surface segregation in Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Good, Brian; Bozzolo, Guillermo; Ferrante, John

    1993-12-01

    Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith [Phys. Rev. B 45, 493 (1992)] is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.

  7. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.

    PubMed

    Lee, Daeho; Paeng, Dongwoo; Park, Hee K; Grigoropoulos, Costas P

    2014-10-28

    We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼ 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  8. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  9. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  10. Characterization of Electrodeposited Nanoporous Ni and NiCu Films

    NASA Astrophysics Data System (ADS)

    Koboski, Kyla; Hampton, Jennifer

    2013-03-01

    Nanoporous thin films are interesting candidates to catalyze certain reactions because of their large surface areas. This project focuses on the deposition of Ni and NiCu thin films on a Au substrate and further explores the catalysis of the hydrogen evolution reaction (HER). Depositions are created using controlled potential electrolysis. Samples are then dealloyed using linear sweep voltammetry. Before and after the dealloying, all the samples are characterized using multiple techniques. Electrochemical capacitance measurements allow comparisons of sample roughness. HER measurements characterize the reactivity of the sample with respect to the specific catalytic reaction. The Tafel equation is fit to the data to obtain information about the kinetics of the HER of the samples. Other methods for characterizing the samples include scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The use of SEM allows images to be taken of the deposition to determine the change in the structure pre- and post- dealloy of the sample. EDS allows the elemental composition of the deposition to be determined before and after the dealloy stage. This material is based upon work supported by the National Science Foundation under RUI Grant DMR-1104725, MRI Grant CHE-1126462, MRI Grant CHE-0959282, and ARI grant PHY-0963317.

  11. Ni biogeochemical cycle through geological time: insights from Ni isotope variations in modern and ancient marine metallifereous deposits

    NASA Astrophysics Data System (ADS)

    Gueguen, B.; Rouxel, O.; Ponzevera, E.; Sorensen, J. V.; Toner, B.; Bekker, A.

    2011-12-01

    Studies of isotopic composition of transition metals such as Fe, Cu, Zn, and Mo as biogeochemical tracers became popular recently. Since Ni is ubiquitous in marine metallifereous deposits and its concentration in water column is coupled to that of nutrients, it has a potential as a biogeochemical tracer. Isotopic analyses were performed on a Neptune MC-ICP-MS using a double-spike correction method for instrumental mass bias. Deep-sea ferromanganese crusts have been used to establish a record of seawater over the last 60 Myr. Our results show that Fe-Mn crusts from both Atlantic and Pacific oceans are systematically enriched in heavy isotopes relative to Bulk Silicate Earth with δ60/58Ni values ranging from 0.30 to 1.80% (2se = 0.04%). In contrast, Iron Formations (IF) with ages ranging from 3.8 to 0.7 Gyr display a wider range of values with a striking negative Ni isotope excursion down to -2.46% (2se = 0.03%) in Neoproterozoic IF. Although correlation between Ni isotope compositions, Ni concentrations and BIFs ages seems to be lacking, several Ni isotope excursions to either positive or negative Ni isotope values are notable prior to 2.4 Gyr. Methanogens were likely abundant in Precambrian water column until they retreated to pore waters and local environments once the oceans were oxygenated after the Great Oxidation Event (GOE). They preferentially uptake light Ni isotopes leaving isotopically heavier Ni in oceans. Our Ni isotope record of Precambrian IF does not show a unidirectional change across the GOE implying that Ni isotope composition of the Archean oceans was not dominated by this metabolism. Preliminary Ni adsorption experiments on Fe-Mn oxy-hydroxides show a maximum fractionation factor between the mineral phase and aqueous solution of -1.00% (2se = 0.03%). Hence, isotopic variations in Fe-Mn crusts and IF cannot be simply explained by adsorption processes, but require changes in composition of either Ni sources (local or global) to seawater (e

  12. An Approach to Preparing Ni-P with Different Phases for Use as Supercapacitor Electrode Materials.

    PubMed

    Wang, Dan; Kong, Ling-Bin; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long

    2015-12-01

    Herein, we describe a simple two-step approach to prepare nickel phosphide with different phases, such as Ni2 P and Ni5 P4 , to explain the influence of material microstructure and electrical conductivity on electrochemical performance. In this approach, we first prepared a Ni-P precursor through a ball milling process, then controlled the synthesis of either Ni2 P or Ni5 P4 by the annealing method. The as-prepared Ni2 P and Ni5 P4 are investigated as supercapacitor electrode materials for potential energy storage applications. The Ni2 P exhibits a high specific capacitance of 843.25 F g(-1) , whereas the specific capacitance of Ni5 P4 is 801.5 F g(-1) . Ni2 P possesses better cycle stability and rate capability than Ni5 P4 . In addition, the Fe2 O3 //Ni2 P supercapacitor displays a high energy density of 35.5 Wh kg(-1) at a power density of 400 W kg(-1) and long cycle stability with a specific capacitance retention rate of 96 % after 1000 cycles, whereas the Fe2 O3 //Ni5 P4 supercapacitor exhibits a high energy density of 29.8 Wh kg(-1) at a power density of 400 W kg(-1) and a specific capacitance retention rate of 86 % after 1000 cycles. PMID:26477441

  13. Synthesis and electrochemical characterization of Ni-B/ZIF-8 as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Gao, Yilong; Wu, Jianxiang; Zhang, Wei; Tan, Yueyue; Tang, Bohejin

    2016-09-01

    Ni-B/Zeolitic Imidazolate Frameworks-8 (Ni-B/ZIF-8) is synthesized via a series of solvothermal, incipient wetness impregnation and chemical reduction methods. The ZIF-8 serves as the host for the growth of Ni-B forming a Ni-B/ZIF-8 composite. Characterization by X-ray diffraction and Transmission electron microscope reveals the dispersion of Ni-B in ZIF-8. As electrode materials for supercapacitors, ZIF-8, Ni-B and Ni-B/ZIF-8 electrodes exhibit specific capacitances of 147, 563 and 866 F g-1, respectively at a scan rate of 5 mV s-1 and good stability over 500 cycles. In particular, Ni-B/ZIF-8 is a promising material for supercapacitors.

  14. Facile Preparation of Ag/NiO Composite Nanosheets and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shi, Cui-E.; Pan, Lu; Wang, Cheng-Run; He, Yi; Wu, Yong-Feng; Xue, Sai-Sai

    2016-01-01

    Sheet-like precursors of NiO and Ag/NiO with different Ag contents were synthesized by a facile and easily controlled hydrothermal method. The NiO and Ag/NiO composite nanosheets were prepared by calcination of the corresponding precursors at 400°C for 3 h. The as-synthesized samples were characterized by thermogravimetric analysis, x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The antibacterial activity of NiO and Ag/NiO composites to several gram-positive and gram-negative bacteria was examined. Results showed that NiO nanosheets hardly exhibited antibacterial activity; however, Ag/NiO composites displayed higher activity even with low Ag content.

  15. Synthesis and electrochemical characterization of Ni-B/ZIF-8 as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Gao, Yilong; Wu, Jianxiang; Zhang, Wei; Tan, Yueyue; Tang, Bohejin

    2016-07-01

    Ni-B/Zeolitic Imidazolate Frameworks-8 (Ni-B/ZIF-8) is synthesized via a series of solvothermal, incipient wetness impregnation and chemical reduction methods. The ZIF-8 serves as the host for the growth of Ni-B forming a Ni-B/ZIF-8 composite. Characterization by X-ray diffraction and Transmission electron microscope reveals the dispersion of Ni-B in ZIF-8. As electrode materials for supercapacitors, ZIF-8, Ni-B and Ni-B/ZIF-8 electrodes exhibit specific capacitances of 147, 563 and 866 F g-1, respectively at a scan rate of 5 mV s-1 and good stability over 500 cycles. In particular, Ni-B/ZIF-8 is a promising material for supercapacitors.

  16. Very early warning of next El Niño.

    PubMed

    Ludescher, Josef; Gozolchiani, Avi; Bogachev, Mikhail I; Bunde, Armin; Havlin, Shlomo; Schellnhuber, Hans Joachim

    2014-02-11

    The most important driver of climate variability is the El Niño Southern Oscillation, which can trigger disasters in various parts of the globe. Despite its importance, conventional forecasting is still limited to 6 mo ahead. Recently, we developed an approach based on network analysis, which allows projection of an El Niño event about 1 y ahead. Here we show that our method correctly predicted the absence of El Niño events in 2012 and 2013 and now announce that our approach indicated (in September 2013 already) the return of El Niño in late 2014 with a 3-in-4 likelihood. We also discuss the relevance of the next El Niño to the question of global warming and the present hiatus in the global mean surface temperature.

  17. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  18. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the `core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  19. Microwave absorption properties of Ni/(C, silicides) nanocapsules.

    PubMed

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the 'core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  20. Investigating Superoxide Transfer through a μ-1,2-O2 Bridge between Nonheme Ni(III)-Peroxo and Mn(II) Species by DFT Methods to Bridge Theoretical and Experimental Views.

    PubMed

    Cho, Kyung-Bin; Cho, Jaeheung; Shaik, Sason; Nam, Wonwoo

    2014-07-17

    Previously, a fast unprecedented O2(•-) transfer reaction has been observed experimentally when adding a Mn(II) complex into a solution containing a Ni(III)-peroxo complex. Due to the fast reaction rate, no intermediates were observed. We have investigated this reaction with density functional theory (DFT) and show that DFT is unusually problematic in reproducing the correct spin state for the investigated Ni(III)-peroxo complex, something which calls for examination of all previous Ni-dioxygen studies. Surprisingly, the BP86 functional is shown to yield energies more in agreement with known experiments than B3LYP. The calculations reveal for the first time an intermediate structure in a complete O2(•-) transfer reaction, shown here to be a short-lived bridging Ni-(μ-1,2-O2)-Mn structure. PMID:26277812

  1. Synthesis and electrochemical properties of NiO nanospindles

    SciTech Connect

    Zhou, Hai; Lv, Baoliang; Xu, Yao; Wu, Dong

    2014-02-01

    Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometer in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.

  2. The ? electronic band system of nickel acetylide, NiCCH

    NASA Astrophysics Data System (ADS)

    Johnson, Eric L.; Morse, Michael D.

    2015-08-01

    Optical spectra of the supersonically cooled NiCCH radical have been recorded in the 530-650 nm region using the resonant two-photon ionisation method, and five of the observed bands have been rotationally resolved. The rotationally resolved studies demonstrate that the ground state of NiCCH is of ? symmetry, corresponding to a 3d9 configuration on the nickel atom, with the hole located in a 3dδ orbital. Most of the observed bands are assigned to the ? electronic transition, which shows a progression in the Ni-C stretching mode, ν3. In addition, single excitations of the modes ν2 (C≡C stretch), ν4 (C≡C-H bend), and ν5 (Ni-C≡C bend) are observed, allowing these vibrational intervals to be determined for the ? state. Hot bands also allow the determination of ν5 in the ground ? state. Quantum chemical computations have also been performed, confirming that the ground state is of 2Δ symmetry. The results are placed in context via comparison to other monovalent, monoligated Ni complexes, particularly NiCu, NiH, and NiCN.

  3. Tailoring the potential window of negative electrodes: A diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes

    NASA Astrophysics Data System (ADS)

    Levi, Mikhael D.; Dargel, Vadim; Shilina, Yuliya; Borgel, Valentina; Aurbach, Doron; Halalay, Ion C.

    2015-03-01

    We present herein a diagnostic method which provides insights into the interactions between parasitic reactions at battery electrodes and their consequences for battery performance degradation. We also provide a cautionary tale about misinterpreting or misrepresenting the significance of test data, as is sometimes found in the peer-reviewed literature or in developers' claims. Reversible cycling of the LiNi0.5Mn1.5O4 positive electrode in a full cell with an electrolyte solution containing no additives may appear achievable through tailoring of the operating potential window of the cell. Self-discharging of the negative stems from parasitic oxidation products formed on the positive. We show that either excess negative electrode capacity over the positive or initial pre-lithiation of the negative suppresses their detrimental effect on capacity retention. Simultaneous monitoring the potentials of the two electrodes vs. Li/Li+ during galvanostatic cycling of a full cell shows, however, that self-discharging of the negative still takes place. The latter process was tracked by the drift of the average potential of the cell towards higher values and leads to two characteristic patterns in the failure of full cells during their long-term cycling, depending on whether a cut-off voltage or a capacity limit is used as the control criterion during cycling.

  4. Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcite-like precursors

    NASA Astrophysics Data System (ADS)

    González, Albert R.; Asencios, Yvan J. O.; Assaf, Elisabete M.; Assaf, José M.

    2013-09-01

    Nanocapsular hydrotalcites (layered double hydroxides - LDHs) were synthesized by the sol-gel method and used as precursors of nano-structured mixed oxides containing various nickel loads (4, 15 and 19 wt%). The best conditions for the preparation of LDHs were analyzed and the structures of the resulting mixed oxides were studied. The optimal nickel load and calcining conditions were optimized. Finally, the resulting catalysts were tested in the dry reforming of methane for 8 h at 800 °C under atmospheric pressure. These materials showed high activity and stability, and the coke deposits were minimal on the catalyst prepared under optimal conditions (19 wt% nickel load and thermal treatment at 650 °C). The best catalyst formed amorphous carbon, which seems not to be prejudicial to the reaction.

  5. Magnetic and dielectric characterization of Co0.9Ni0.1Fe2O4 prepared by hydroxide co-precipitation method

    NASA Astrophysics Data System (ADS)

    Mane, S. M.; Tirmali, P. M.; Kolekar, C. B.; Kulkarni, S. B.

    2016-04-01

    Co1-x NixFe2O4 (where x=0.1) were prepared by using the hydroxide co-precipitation method. An obtained precipitate was sintered at 1100°C by microwave sintering technique. The structural analysis confirms the single-phase cubic spinel structure with Fd-3m space group. The magnetic characterization was carried out at temperature 300K.Saturation magnetisation and coercivity is 77.22 and 908 Oe. Irreversibility is observed between the ZFC and FC curves at 100 Oe. The variation in the dielectric constant and loss tangent are studied at room temperature with increasing frequency. Continues decrease in the the dielectric constant with increasing frequency shows inverse dependence on frequency. Morphological and elemental studies were done by using the scanning electron microscope with EDAX.

  6. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom.

    PubMed

    Zhang, H J; Chen, Z Q; Wang, S J

    2012-01-21

    NiO/Al(2)O(3) catalysts with different NiO loadings were prepared by impregnation method. The monolayer dispersion capacity of NiO is determined to be about 9 wt.% through XRD quantitative phase analysis. Positron lifetime spectra measured for NiO/Al(2)O(3) catalysts comprise two long and two short lifetime components, where the long lifetimes τ(3) and τ(4) correspond to ortho-positronium (o-Ps) annihilation in microvoids and large pores, respectively. With increasing loading of NiO from 0 to 9 wt.%, τ(4) drops drastically from 88 to 38 ns. However, when the NiO loading is higher than 9 wt.%, τ(4) shows a slower decrease. Variation of λ(4) (1/τ(4)) as a function of the NiO content can be well fitted by two straight lines with different slopes. The relative intensity of τ(4) also shows a fast decrease followed by a slow decrease for the NiO content lower and higher than 9 wt.%, respectively. The coincidence Doppler broadening measurements reveal a continuous increase of S parameter with increasing NiO loading up to 9 wt.% and then a decrease afterwards. This is due to the variation in intensity of the narrow component contributed by the annihilation of para-positronium (p-Ps). Our results show that the annihilation behavior of positronium is very sensitive to the dispersion state of NiO on the surface of γ-Al(2)O(3). When the NiO loading is lower than monolayer dispersion capacity, spin conversion of positronium induced by NiO is the dominant effect, which causes decrease of the longest lifetime and its intensity but increase of the narrow component intensity. After the NiO loading is higher than monolayer dispersion capacity, the spin conversion effect becomes weaker and inhibition of positronium formation by NiO is strengthened, which results in decrease of both the long lifetime intensity and the narrow component intensity. The reaction rate constant is determined to be (1.50 ± 0.04) × 10(10) g mol(-1) s(-1) and (3.43 ± 0.20) × 10(9) g mol(-1) s(-1

  7. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect

    Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat; İyigör, Ahmet; Candan, Abdullah

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  8. Novel preparation of highly dispersed Ni2P embedded in carbon framework and its improved catalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Wang, Kang; Wang, Xitao

    2016-11-01

    Highly dispersed Ni2P embedded in carbon framework with different phosphidation temperature was prepared through carbonizing Ni-alginate gel and followed by phosphidation with PPh3 in liquid phase. The significant effects of phosphidation temperature on Ni2P particle size and catalytic properties for isobutane dehydrogenation to isobutene were investigated. The results showed that Ni2P catalyst derived from the Ni-alginate gel (Ni2P-ADC), consisting of Ni2P particles embedded in carbon walls, possessed smaller particle size and more active site compared with Ni2P catalyst supported on active carbon (Ni2P/AC) prepared by impregnation method. The Ni2P-ADC catalyst phosphorized at 578 K for 3 h exhibited the highest catalytic performance, with the corresponding selectivity of isobutene approaching 89% and conversion approaching 15% after reaction for 4.5 h at 833 K, whereas Ni2P/AC catalyst prepared by impregnation method displays a much lower catalytic activity. The improved catalytic performance of the Ni2P-ADC can be ascribed to the smaller and highly dispersed Ni2P particles incorporated into carbon framework resulting from Ni-alginate gel.

  9. Formation of Intermetallic Ni-Al Coatings by Mechanical Alloying with Different Intensities

    NASA Astrophysics Data System (ADS)

    Zadorozhnyy, V. Yu.; Kaloshkin, S. D.; Churyukanova, M. N.; Borisova, Yu. V.

    2013-04-01

    Intermetallic Ni-Al coatings on the Ni substrate were prepared by the mechanical alloying (MA) method in mechanical activators of vibratory and planetary type. It was found that coatings that were fabricated in a high-energy (planetary) activator in comparison with those fabricated in a low-energy (vibratory) activator are more homogeneous, have higher density, and experience better adhesion to the substrate. It was shown that different intermetallic phases (NiAl, NiAl3, and Ni2Al3) can form directly during the MA treatment in the planetary activator.

  10. Electrochemical sensing behaviour of Ni doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Ni doped Fe3O4 nanoparticles were synthesized by simple hydrothermal method. The prepared nanomaterials were characterized by X-ray diffraction analysis, DRS-UV-Visible spectroscopy and field emission scanning electron microscopy. The XRD confirms the phase purity of the synthesized Ni doped Fe3O4 nanoparticles. The optical property of Ni doped Fe3O4 nanoparticles were studied by DRS UV-Visible analysis. The electrochemical sensing property of pure and Ni doped Fe3O4 nanoparticles were examined using uric acid as an analyte. The obtained results indicated that the Ni doped Fe3O4 nanoparticles exhibited higher electrocatalytic activity towards uric acid.

  11. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    SciTech Connect

    Kumar, Shalendra; Vats, Prashant; Gautam, S.; Gupta, V.P.; Verma, K.D.; Chae, K.H.; Hashim, Mohd; Choi, H.K.

    2014-11-15

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.

  12. Corrosion of NiTi Wires with Cracked Oxide Layer

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.

  13. Sound velocity and elastic properties of Fe-Ni and Fe-Ni-C liquids at high pressure

    NASA Astrophysics Data System (ADS)

    Kuwabara, Soma; Terasaki, Hidenori; Nishida, Keisuke; Shimoyama, Yuta; Takubo, Yusaku; Higo, Yuji; Shibazaki, Yuki; Urakawa, Satoru; Uesugi, Kentaro; Takeuchi, Akihisa; Kondo, Tadashi

    2016-03-01

    The sound velocity ( V P) of liquid Fe-10 wt% Ni and Fe-10 wt% Ni-4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe-Ni is insensitive to temperature, whereas that of liquid Fe-Ni-C tends to decrease with increasing temperature. The V P values of both liquid Fe-Ni and Fe-Ni-C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe-Ni and Fe-Ni-C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus ( K S0) and its pressure derivative ( K S ' ) were obtained to be K S0 = 103 GPa and K S ' = 5.7 for liquid Fe-Ni and K S0 = 110 GPa and K S ' = 7.6 for liquid Fe-Ni-C. The calculated density of liquid Fe-Ni-C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density ( ρ) and sound velocity ( V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.

  14. Computer Simulations of Martensitic Transformations in FeNi and NiAl alloys

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Kadau, Kai; Entel, Peter

    1998-03-01

    We have studied the martensitic transformation in FeNi and NiAl alloys by molecular dynamics simulations. The simulations have been done with the help of embedded-atom method potentials which made it possible for us to run simulations with up to 250000 atoms. Our results show the formation of a microstructure during the structural phase transition which possesses a characteristic length-scale leading to significant finite-size effects. Moreover we present phonon spectra and free energy curves obtained from the molecular dynamics simulations of smaller systems.

  15. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.

    PubMed

    Lupi, Carla; Pilone, Daniela

    2002-01-01

    Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH. PMID:12423047

  16. Growth and characterization of epitaxial NiMnSb/ZnTe/NiMnSb magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Gerhard, F.; Naydenova, T.; Baussenwein, M.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2016-02-01

    The half-metal ferromagnet NiMnSb, with its high spin polarization, low magnetic damping and tunable magnetic anisotropy, is a promising material for applications in spin torque devices. We develop the epitaxial growth of NiMnSb/ZnTe/NiMnSb heterostructures, aiming towards the realization of an all-NiMnSb based magnetic tunneling junction (MTJ). Layers are grown in situ by Molecular Beam Epitaxy (MBE) and Atomic Layer Epitaxy (ALE) methods. By tuning Mn content, the magnetic anisotropy of each of the two NiMnSb layers is adjusted in order to achieve mutually orthogonal uniaxial anisotropies. SQUID measurements of the magnetization along orthogonal crystal directions [110] and [ 1 1 bar 0] confirm that the two layers have mutually orthogonal anisotropy. High Resolution X-Ray Diffraction measurements and simulations confirm the nominal layer stack and demonstrate the high crystalline quality of the individual layers. Such layer stacks provide a potential basis for TMR-based spin-torque devices such as spin-torque oscillators.

  17. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    DOE PAGES

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopymore » and indicates that the Fe atoms occupy Ni sites.« less

  18. Efficient plasma-enhanced method for layered LiNi1/3Co1/3Mn1/3O2 cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Qianqian; Chen, Ning; Liu, Dongdong; Wang, Shuangyin; Zhang, Han

    2016-05-01

    In order to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 as a lithium insertion positive electrode material, atom-scale modification was realized to obtain the layered oxysulfide LiNi1/3Co1/3Mn1/3O2-xSx using a novel plasma-enhanced doping strategy. The structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2-xSx are investigated systematically, which confirms that the S doping can make the structure stable and benefit the electrochemical performance. The phys-chemical characterizations indicate that oxygen atoms in the initial LiNi1/3Co1/3Mn1/3O2 have been partially replaced by S atoms. It should be pointed out that the atom-scale modification does not significantly alter the intrinsic structure of the cathode. Compared to the pristine material, the LiNi1/3Co1/3Mn1/3O2-xSx shows a superior performance with a higher capacity (200.4 mA h g-1) and a significantly improved cycling stability (maintaining 94.46% of its initial discharge capacity after 100 cycles). Moreover, it has an excellent rate performance especially at elevated performance, which is probably due to the faster Li+ transportation after S doping into the layered structure. All the results show that the atom-scale modification with sulfur atoms on LiNi1/3Co1/3Mn1/3O2, which significantly improved the electrochemical performance, offers a novel anionic doping strategy to realize the atom-scale modification of electrode materials to improve their electrochemical performance.In order to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 as a lithium insertion positive electrode material, atom-scale modification was realized to obtain the layered oxysulfide LiNi1/3Co1/3Mn1/3O2-xSx using a novel plasma-enhanced doping strategy. The structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2-xSx are investigated systematically, which confirms that the S doping can make the structure stable and benefit the electrochemical performance. The phys

  19. Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method.

    PubMed

    Chen, Bao-Hui; Chao, Zi-Sheng; He, Hao; Huang, Chen; Liu, Ya-Juan; Yi, Wen-Jun; Wei, Xue-Ling; An, Jun-Fang

    2016-02-14

    Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite.

  20. Efficient plasma-enhanced method for layered LiNi1/3Co1/3Mn1/3O2 cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries.

    PubMed

    Jiang, Qianqian; Chen, Ning; Liu, Dongdong; Wang, Shuangyin; Zhang, Han

    2016-06-01

    In order to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 as a lithium insertion positive electrode material, atom-scale modification was realized to obtain the layered oxysulfide LiNi1/3Co1/3Mn1/3O2-xSx using a novel plasma-enhanced doping strategy. The structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2-xSx are investigated systematically, which confirms that the S doping can make the structure stable and benefit the electrochemical performance. The phys-chemical characterizations indicate that oxygen atoms in the initial LiNi1/3Co1/3Mn1/3O2 have been partially replaced by S atoms. It should be pointed out that the atom-scale modification does not significantly alter the intrinsic structure of the cathode. Compared to the pristine material, the LiNi1/3Co1/3Mn1/3O2-xSx shows a superior performance with a higher capacity (200.4 mA h g(-1)) and a significantly improved cycling stability (maintaining 94.46% of its initial discharge capacity after 100 cycles). Moreover, it has an excellent rate performance especially at elevated performance, which is probably due to the faster Li(+) transportation after S doping into the layered structure. All the results show that the atom-scale modification with sulfur atoms on LiNi1/3Co1/3Mn1/3O2, which significantly improved the electrochemical performance, offers a novel anionic doping strategy to realize the atom-scale modification of electrode materials to improve their electrochemical performance.

  1. On the formation of Al{sub 3}Ni{sub 2} intermetallic compound by aluminothermic reduction of nickel oxide

    SciTech Connect

    Parsa, M.R.; Soltanieh, M.

    2011-07-15

    Simultaneous reduction of NiO and formation of Al{sub 3}Ni{sub 2} intermetallic compound at 880, 940 and 1000 deg. C were investigated by means of the thermal reduction method. The optimal Ni contents for the starting samples were determined at different times and temperatures through the compositional analysis. The microstructure of the metallic quenched samples was observed by scanning electron microscope. Moreover, the X-ray diffraction analysis and energy disperse spectrometry were applied to characterize the formation of the phases. The results showed that the metallic samples consisted of Al{sub 3}Ni{sub 2}, Al{sub 3}Ni and Al phases and that there was no trace of Ni, NiO and Al{sub 2}O{sub 3}. It was found that after 10 min at the applied temperatures, the reaction completed. For the longer time, the dispersed Al{sub 3}Ni{sub 2} nuclei were grown and its continuous network formed. By increasing the temperature, the thickness of the Al{sub 3}Ni precipitation around Al{sub 3}Ni{sub 2} phase is enhanced in the samples with the same Ni content. A model was proposed for these reactions. - Research Highlights: {yields} Simultaneous reduction of NiO, and Al{sub 3}Ni{sub 2} intermetallics formation at temperatures lower than Ni melting point. {yields} Presently a mechanism for such a process. {yields} Parametric study of microstructure and formed phases.

  2. Thermal Properties of Amorphous Al-Ni-Si Alloy

    SciTech Connect

    Goegebakan, Musa; Okumus, Mustafa

    2007-04-23

    Thermal properties of the amorphous phases in rapidly solidified Al70Ni13Si17 alloy has been investigated by a combination of differential scanning calorimetry DSC. During continuous heating, three exothermic crystallization peaks were observed. Activation energies for the three crystallization peaks were calculated by the Kissinger and Ozawa methods give good agreement. This study describes the thermal properties of rapidly solidified Al70Ni13Si17 amorphous alloy.

  3. Mesoscale assembly of NiO nanosheets into spheres

    SciTech Connect

    Zhang Meng; Yan Guojin; Hou Yonggai; Wang Chunhua

    2009-05-15

    NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 deg. C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products' morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from {approx}70 to {approx}200 m{sup 2} g{sup -1}. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g{sup -1}. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity. - Graphical abstract: The mesoscale assembly of NiO nanosheets into spheres have been achieved by a solvothermal method. N{sub 2} adsorption/desorption isotherms show the S{sub BET} of NiO is tunable. NiO spheres show large discharge capacity and slow capacity-fading rate.

  4. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure. PMID:22755104

  5. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    PubMed Central

    2013-01-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907

  6. Graphene supported nano particles of Pt-Ni for CO oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Lv, Wei; Yang, Quanhong; Liu, Yuan

    2012-08-01

    In this study, a series of graphene supported Pt, Ni and Pt-Ni nano particles were successfully synthesized by a simple impregnation method. The resultant composites were characterized using SEM, XRD, HRTEM, XPS and TPR techniques and their catalytic performance for the oxidation of carbon monoxide was tested. It was shown that in the prepared metal/graphene composite, metal particles were highly dispersed on the graphene sheets (GS) with an average particle size of 1-3 nm. The results of catalytic performance tests indicate that the activity decreases in the order of Pt-Ni/GS, Pt/GS and Ni/GS. In the sample of Pt-Ni/GS, Pt-Ni alloy was formed, which contributed to the high activity of Pt-Ni/GS for CO oxidation.

  7. Aqueous phase reforming of glycerol over Ni-based catalysts for hydrogen production.

    PubMed

    Cho, Su Hyun; Moon, Dong Ju

    2011-08-01

    Aqueous phase reforming of glycerol over Ni-based catalysts for hydrogen production was carried out at 225 degrees C, 23 bar and LHSV = 4 h(-1). The Ni-based catalyst was prepared by an incipient wetness impregnation method. The catalysts before and after the reaction were characterized by N2 physisorption, CO chemisorption, XRD, TPR, SEM and TEM techniques. It was found that Ni(20 wt%)-Co(3 wt%)/gamma-Al2O3 catalyst showed higher glycerol conversion and hydrogen selectivity than Ni(20 wt%)/gamma-Al2O3 catalyst. There are no major changes in Ni particles after the reaction over Ni-Co/gamma-Al2O3 catalyst. The results suggest that the Ni-Co/gamma-Al2O3 catalyst can be applied to the hydrogen production system using APR of glycerol. PMID:22103184

  8. Impact of Ni doping on critical parameters of PdTe superconductor

    NASA Astrophysics Data System (ADS)

    Goyal, Reena; Jha, Rajveer; Tiwari, Brajesh; Dixit, Ambesh; Awana, V. P. S.

    2016-07-01

    We report the effect of Ni doping on superconductivity of PdTe. The superconducting parameters like critical temperature (T c ), upper critical field (H c2) and normalized specific-heat jump (ΔC/γT c ) are reported for Ni doped Pd1-x Ni x Te. Samples of series Pd1-x NixTe with nominal compositions x = 0, 0.01, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 and 1.0 are synthesized via the vacuum shield solid state reaction route. All the studied samples of Pd1-x Ni x Te series are crystallized in a hexagonal crystal structure as refined by the Rietveld method to space group P63/mmc. Both the electrical resistivity and magnetic measurements revealed that T c decreases with increasing Ni concentration in Pd1-x Ni x Te. Magnetotransport measurements suggest that flux is better pinned for 20% Ni doped PdTe as compared to other compositions of Pd1-x Ni x Te. The effect and contribution of Ni 3d electron to electronic structure and density of states near the Fermi level in Pd1-x Ni x Te are also studied using first-principle calculations within the spin polarized local density approximation. The overlap of bands at the Fermi level for NiTe is larger as compared to PdTe. Also the density of states just below the Fermi level (in conduction band) drops much lower for PdTe than as for NiTe. In summary, Ni doping in Pd1-x Ni x Te superconductor suppresses superconductivity moderately and also Ni is of non-magnetic character in these compounds.

  9. Nucleation and Growth of Tetrataenite (FeNi) in Meteorites

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Williams, D. B.; Zhang, J.

    1992-07-01

    The mineral tetrataenite (ordered FeNi) has been observed in chondrites, stony irons, and iron meteorites (1). FeNi is an equilibrium phase in the Fe-Ni phase diagram (Figure 1) and orders to tetrataenite at ~320 degrees C (2). The phase forms at temperatures at or below the eutectoid temperature (~400 degrees C) where taenite (gamma) transforms to kamacite (alpha) plus FeNi (gamma"). An understanding of the formation of tetrataenite can lead to a new method for determining cooling rates at low temperatures (<400 degrees C) for all types of meteorites. In a recent study of plessite in iron meteorites (3), two transformation sequences for the formation of tetrataenite were observed. In either sequence, during the cooling process, the taenite (gamma) phase initially undergoes a diffusionless transformation to a martensite (alpha, bcc) phase without a composition change. The martensite then decomposes either above or below the eutectoid temperature (~400 degrees C) during cooling or upon subsequent reheating. During martensite decomposition above the eutectoid, the taenite (gamma) phase nucleates by the reaction alpha(sub)2 ---> alpha + gamma and grows under volume diffusion control. The Ni composition of the taenite increases continuously following the equilibrium gamma/alpha + gamma boundary while the Ni composition of the kamacite matrix decreases following the alpha/alpha + gamma phase boundary (2), see Figure 1. Below the eutectoid temperature, the precipitate composition follows the equilibrium gamma"/alpha + gamma" boundary and reaches ~52 wt% Ni, the composition of FeNi, gamma". The kamacite (alpha) matrix composition approaches ~4 to 5 wt% Ni. The ordering transformation starts at ~320 degrees C forming the tetrataenite phase. During martensite decomposition below the eutectoid temperature, FeNi should form directly by the reaction alpha2 --> alpha + gamma" (FeNi). If this transformation sequence occurs, then the composition of kamacite and tetrataenite

  10. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    PubMed Central

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  11. Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O system.

    PubMed

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg(-1) NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg(-1) NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system.

  12. Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O system.

    PubMed

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg(-1) NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg(-1) NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  13. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    SciTech Connect

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  14. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation

    NASA Astrophysics Data System (ADS)

    Zhou, Guilin; Liu, Huiran; Cui, Kaikai; Jia, Aiping; Hu, Gengshen; Jiao, Zhaojie; Liu, Yunqi; Zhang, Xianming

    2016-10-01

    CeO2, which was used as support to prepare mesoporous Ni/CeO2 catalyst, was prepared by the hard-template method. The prepared NiO/CeO2 precursor and Ni/CeO2 catalyst were studied by H2-TPR, in-situ XPS, and in-situ FT-IR. The catalytic properties of the prepared Ni/CeO2 catalyst were also investigated by CO2 catalytic hydrogenation methanation. H2-TPR and in-situ XPS results showed that metal Ni species and surface oxygen vacancies could be formed by H2 reduction. In-situ FT-IR and in-situ XPS results indicated that CO2 molecules could be reduced by active metal Ni species and surface oxygen vacancies to generate active CO species and promote CO2 methanation. The Ni/CeO2 catalyst presented the high CO2 methanation activity, and CO2 conversion and CH4 selectivity reached 91.1% and 100% at 340 °C and atmospheric pressure.

  15. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations.

    PubMed

    Sneed, Brian T; Young, Allison P; Jalalpoor, Daniel; Golden, Matthew C; Mao, Shunjia; Jiang, Ying; Wang, Yong; Tsung, Chia-Kuang

    2014-07-22

    Shape-controlled metal nanoparticles (NPs) interfacing Pt and nonprecious metals (M) are highly active energy conversion electrocatalysts; however, there are still few routes to shaped M-Pt core-shell NPs and fewer studies on the geometric effects of shape and strain on catalysis by such structures. Here, well-defined cubic multilayered Pd-Ni-Pt sandwich NPs are synthesized as a model platform to study the effects of the nonprecious metal below the shaped Pt surface. The combination of shaped Pd substrates and mild reduction conditions directs the Ni and Pt overgrowth in an oriented, layer-by-layer fashion. Exposing a majority of Pt(100) facets, the catalytic performance in formic acid and methanol electro-oxidations (FOR and MOR) is assessed for two different Ni layer thicknesses and two different particle sizes of the ternary sandwich NPs. The strain imparted to the Pt shell layer by the introduction of the Ni sandwich layer (Ni-Pt lattice mismatch of ∼11%) results in higher specific initial activities compared to core-shell Pd-Pt bimetallic NPs in alkaline MOR. The trends in activity are the same for FOR and MOR electrocatalysis in acidic electrolyte. However, restructuring in acidic conditions suggests a more complex catalytic behavior from changes in composition. Notably, we also show that cubic quaternary Au-Pd-Ni-Pt multishelled NPs, and Pd-Ni-Pt nanooctahedra can be generated by the method, the latter of which hold promise as potentially highly active oxygen reduction catalysts.

  16. Increased Occurrence of Central-Pacific El Niño in ERSST Version 4

    NASA Astrophysics Data System (ADS)

    Diamond, M. S.; Bennartz, R.

    2015-12-01

    Interest in El Niño diversity has increased in the past decade, with much attention given to the hypothesis that El Niño comes in two distinct types: an Eastern-Pacific (EP) El Niño centered off the coast of Peru and a Central-Pacific (CP) El Niño centered near the International Date Line. It is widely believed that the CP type of El Niño has been increasing in frequency in recent decades. However, many findings regarding El Niño diversity are uncertain given the divergence of results from different classification schemes. We test the idea that the CP type of El Niño is a recent and increasingly frequent phenomenon by using the newly released Version 4 of NOAA's Extended Reconstructed Sea Surface Temperatures (ERSST v4) dataset with one popular central-location classification method and a new method based on observed spatial patterns of sea surface temperature anomalies. The new method selects an EP and a CP El Niño "end-member" from events that are universally classified one way or the other by preexisting methods and uses pattern correlation with these end-members to sort all El Niño years into EP-dominated, CP-dominated, or mixed influence (M) classes. The advantage of this end-member correlation approach is its simplicity, relying only on observed data without the need for statistical regression, while taking into account a larger portion of the equatorial Pacific than the traditional Niño 3, Niño 4, and related indices. The downside of this approach is the somewhat arbitrary nature of end-member selection, although this is mitigated through the use of transparent selection criteria. The updated ERSST dataset identifies significantly more CP El Niños than two older versions and an independent dataset when using the central-location method. The new pattern correlation method identifies more CP El Niños than EP El Niños for all datasets. The increase in CP El Niño identification in ERSST v4 is linked mostly to differences in the central Pacific in

  17. Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers

    NASA Astrophysics Data System (ADS)

    Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee

    2016-08-01

    An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.

  18. Single-crystal growth of NiMnGa magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jingmin; Jiang, Chengbao

    2008-02-01

    The crystal growth of NiMnGa magnetic shape memory alloys was investigated by the optical zone melting method. Slightly macroscopic convex and planar solid-liquid interfaces were achieved by controlling the molten zone morphologies. Single crystals were successfully prepared in three typical series of NiMnGa magnetic shape memory alloys, including stoichiometric Ni 50Mn 25Ga 25, Ni-rich NiMnGa and Mn-rich NiMnGa alloys. Studies on the solute partition during crystal growth revealed the enrichment of Mn and deficiency of both Ni and Ga in front of the solid-liquid interface for both stoichiometric and Mn-rich NiMnGa alloys, while a slight enrichment of Ni for Ni-rich NiMnGa alloys. An initial transient stage was determined to be about 20 mm, and a uniform composition distribution existed along the axis of the crystals in the stable growth parts, which matches well with the proposed mathematic model.

  19. Corrosion Behavior of Ti-55Ni-1.2Co High Stiffness Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Norwich, Dennis W.; Ehrlinspiel, Michael

    2014-07-01

    The corrosion behavior of high stiffness nominal Ti-55Ni-1.2Co (wt.%) shape memory alloys (SMAs) was systematically investigated in the present study including straight wires, wire-formed stents, and laser-cut stents. It was found that the corrosion behavior of Ti-55Ni-1.2Co alloys is comparable with those of binary NiTiNol counterparts, which is attributed to the small alloying amount of cobalt. Additionally, the corrosion resistance of high stiffness Ti-55Ni-1.2Co SMAs is independent of the stent-forming method. To explore the galvanic corrosion susceptibility between Ti-55Ni-1.2Co and binary NiTiNol alloys, a NiTiNol sleeve was laser welded to the Ti-55Ni-1.2Co stent. Interestingly, there is no galvanic corrosion observed in this NiTiCo-NiTiNol component, even after immersion of the component in phosphate-buffered saline solution at 37 °C for three months. This study will shed some light on the industrial applications of high stiffness Ti-55Ni-1.2Co shape memory alloys.

  20. The orientational relationship between monoclinic β-Ga2O3 and cubic NiO

    NASA Astrophysics Data System (ADS)

    Nakagomi, Shinji; Kubo, Shohei; Kokubun, Yoshihiro

    2016-07-01

    The orientational relationship between β-Ga2O3 and NiO was studied by X-ray diffraction measurements and cross-sectional high resolution transmission electron microscopy. A β-Ga2O3 thin film was formed on a (100) NiO layer on a (100) MgO substrate by gallium evaporation in an oxygen plasma. It was found that the resulting β-Ga2O3 had a four-fold domain structure satisfying both (100) β-Ga2O3 ‖ (100) NiO and (010) β-Ga2O3 ‖ {011} NiO. A γ-Ga2O3 layer was observed at the interface between the β-Ga2O3 and the NiO. An NiO film was also formed on a (100) β-Ga2O3 single-crystal substrate by the sol-gel method. An epitaxial (100) NiO film was formed on a (100) β-Ga2O3 substrate, and satisfied (011) NiO ‖ (010) β-Ga2O3. The crystal orientations of β-Ga2O3 on (100) NiO and NiO on (100) β-Ga2O3 can be explained using atomic arrangement models of the (100) plane of NiO and the (100) plane of β-Ga2O3.

  1. Optical switching properties of Pd-Ni thin-film top-capped switchable mirrors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Li; Bao, Shan-Hu; Xin, Yun-Chuan; Cao, Xun; Jin, Ping

    2015-09-01

    Switchable mirrors based on magnesium-nickel alloy thin films capped with catalytic Pd-Ni alloy thin films were prepared by a DC magnetron sputtering method. Their composition, structure and surface morphology were studied by XPS, XRD and AFM. Herein, the optical switching properties and durability of the switchable mirrors were investigated by varying the Ni content in the Pd-Ni alloys. Comparing pure Pd catalyst with Pd-Ni top-capped switchable mirrors, the latter show better hydrogenation and dehydrogenation kinetics, and the speed of hydrogen desorption is obviously improved with increasing Ni content in the Pd-Ni alloy. The Pd-Ni capped switchable mirrors also have better optical switching durability. The catalytic Pd layer with the addition of Ni does not influence the transmittance (hydride state) and reflectance (metallic state) of the switchable mirrors. In addition, replacing Pd with Pd-Ni alloy decreases the cost of the switchable mirrors: employing nickel in the alloy Pd89.2Ni10.8 can save about 11% use of Pd. Therefore, the Pd-Ni alloy can provide a cheaper catalytic thin film, and it is expected to have applications in energy-saving windows, hydrogen sensors and hydrogen storage materials.

  2. Fine-sized LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders prepared by combined process of gas-phase reaction and solid-state reaction methods

    NASA Astrophysics Data System (ADS)

    Ju, Seo Hee; Kang, Yun Chan

    The Ni-rich precursor powders with spherical shape and filled morphologies were prepared by spray pyrolysis from the spray solution with citric acid, ethylene glycol and a drying control chemical additive. The precursor powders with controlled morphologies formed the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size by solid-state reaction with lithium hydroxide. However, the cathode powders prepared from the spray solution without additives had irregular morphologies and were large in size. The precursor powders with hollow and porous morphologies formed cathode powders with irregular and aggregated morphologies. The composition ratios of the nickel, cobalt and manganese components were maintained in the as-prepared, precursor and cathode powders. The initial discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size tested at a temperature of 55 °C under a constant current density of 0.5 C was 215 mAh g -1. The discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders decreased to 81% of the initial value after 30 cycles.

  3. Synthesis of Lix[Ni0.225Co0.125Mn0.65]O2 as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide co-precipitation method

    NASA Astrophysics Data System (ADS)

    Jeon, Hyo-Jin; Monim, Syed Abdul; Kang, Chung-Soo; Son, Jong-Tae

    2013-09-01

    Lix[Ni0.225Co0.125Mn0.65]O2 cathode material for a lithium-ion battery was synthesized from metal hydroxide Ni0.225Co0.125Mn0.65(OH)2. The co-precipitated metal hydroxide was greatly influenced by synthesis conditions of pH, concentration of chelating agent, stirring speed, and co-precipitation temperature. The conditions were optimized by observing the spherical and uniform particles, as examined by scanning electron microscopy. The optimized pH, ammonia concentration stirring speed and co-precipitation temperature were determined to be 11-12, 0.36 M, 1000 rpm and 50 °C, respectively. The final products, Lix[Ni0.225Co0.125Mn0.65]O2 had a well-ordered hexagonal super lattice layered structure as established by Rietveld refinement of X-ray diffraction pattern. As a result, the Lix[Ni0.225Co0.125Mn0.65]O2 compound may be considered as a excellent candidate for cathode material of Lithium secondary battery in terms of cycle life, both safety and energy density, lower cost and low environmental impact.

  4. Diffusion of Ni, Ga, and As in the surface layer of GaAs and characteristics of the Ni/GaAs contact

    SciTech Connect

    Uskov, V.A.; Fedotov, A.B.; Erofeeva, E.A.; Rodionov, A.I.; Dzhumakulov, D.T.

    1987-07-01

    The authors investigate the low-temperature codiffusion of Ni, Ga, and As in the surface layer of gallium arsenide and study its effect on the current-voltage characteristics of a Ni/GaAs rectifier contact. The concentration distribution of atoms in the function layer of a Ni-GaAs system was investigated by the methods of layerwise radiometric and neutron-activation analyses. It was found that interdiffusion of components takes place in the Ni-GaAs system in an elastic stress field, generated by the differences in the lattice parameters and thermal-expansion coefficients of Ni, GaAs, and the intermetallic compound which form. The form and parameters of the current-voltage characteristics of a Ni/GaAs contact are determined by the phase composition and the structure of the junction layer.

  5. Atomistic Simulations of Ti Additions to NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Garg, Anita; Ferrante, John; Amador, Carlos

    1997-01-01

    The development of more efficient engines and power plants for future supersonic transports depends on the advancement of new high-temperature materials with temperature capabilities exceeding those of Ni-based superalloys. Having theoretical modelling techniques to aid in the design of these alloys would greatly facilitate this development. The present paper discusses a successful attempt to correlate theoretical predictions of alloy properties with experimental confirmation for ternary NiAl-Ti alloys. The B.F.S. (Bozzolo-Ferrante-Smith) method for alloys is used to predict the solubility limit and site preference energies for Ti additions of 1 to 25 at.% to NiAl. The results show the solubility limit to be around 5% Ti, above which the formation of Heusler precipitates is favored. These results were confirmed by transmission electron microscopy performed on a series of NiAl-Ti alloys.

  6. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  7. Conductive microemulsions for template CoNi electrodeposition.

    PubMed

    Serrà, Albert; Gómez, Elvira; Calderó, Gabriela; Esquena, Jordi; Solans, Conxita; Vallés, Elisa

    2013-09-21

    Microemulsions have been revealed as feasible templates to grow magnetic nanostructures using an electrodeposition method. Reducing agents are not required and the applied potential has been used as driving force of the nanostructure growth. A systematic study of conductive microemulsion systems to allow the CoNi electrodeposition process has been performed. Different surfactants and organic components have been tested to form microemulsions with a CoNi electrolytic bath as an aqueous component in order to define the microemulsions showing enough conductivity to perform an electrodeposition process from the aqueous component. By using microemulsions of the aqueous electrolyte solution-Triton X-100-diisopropyl adipate system, CoNi electrodeposition has been achieved, the structure of the deposits being dependent on the composition and structure of the microemulsion, which can act as a soft-template to obtain different discontinuous deposits. The magnetic properties of the CoNi deposits vary with their structure.

  8. Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates

    PubMed Central

    2013-01-01

    Highly hexagonally ordered hard anodic aluminum oxide membranes, which have been modified by a thin cover layer of SiO2 deposited by atomic layer deposition method, were used as templates for the synthesis of electrodeposited magnetic Co-Ni nanowire arrays having diameters of around 180 to 200 nm and made of tens of segments with alternating compositions of Co54Ni46 and Co85Ni15. Each Co-Ni single segment has a mean length of around 290 nm for the Co54Ni46 alloy, whereas the length of the Co85Ni15 segments was around 430 nm. The composition and crystalline structure of each Co-Ni nanowire segment were determined by transmission electron microscopy and selected area electron diffraction techniques. The employed single-bath electrochemical nanowire growth method allows for tuning both the composition and crystalline structure of each individual Co-Ni segment. The room temperature magnetic behavior of the multisegmented Co-Ni nanowire arrays is also studied and correlated with their structural and morphological properties. PMID:23735184

  9. Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes

    SciTech Connect

    Han, Dandan; Xu, Pengcheng; Jing, Xiaoyan; Wang, Jun; Song, Dalei; Liu, Jingyuan; Zhang, Milin

    2013-07-15

    A facile lamellar template method (see image) has been developed for the preparation of uniform hollow core–shell structure NiO (HCS–NiO) with a nanoarchitectured wall structure. The prepared NiO was found to be highly crystalline in uniform microstructures with high specific surface area and pore volume. The results indicated that ethanol interacted with trisodium citrate played an important role for the formation of hollow core–shell spheres. On the basis of the analysis of the composition and the morphology, a possible formation mechanism was investigated. NiO microspheres with hollow core–shell showed excellent capacitive properties. The exceptional cyclic, structural and electrochemical stability with ∼95% coulombic efficiency, and very low ESR value from impedance measurements promised good utility value of hollow core–shell NiO material in fabricating a wide range of high-performance electrochemical supercapacitors. - The hollow core–shell NiO was prepared with a facile lamellar template method. The prepared NiO show higher capacitance, lower ion diffusion resistance and better electroactive surface utilization for Faradaic reactions. - Highlights: • Formation of hollow core–shell NiO via a novel and facile precipitation route. • Exhibited uniform feature sizes and high surface area of hollow core–shell NiO. • Synthesized NiO has high specific capacitance ( 448 F g{sup 1}) and very low ESR value. • Increased 20% of long life cycles capability after 500 charge–discharge cycles.

  10. Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering

    NASA Astrophysics Data System (ADS)

    Simões, S.; Ramos, A. S.; Viana, F.; Emadinia, O.; Vieira, M. T.; Vieira, M. F.

    2016-08-01

    Ni/Al multilayers are known to transform into NiAl in a highly exothermic and self-sustaining reaction. The fact that this reaction has a high heat release rate and can be triggered by an external impulse, are reasons why it has already attracted much research attention. There is a huge potential in the use of Ni/Al multilayers as a controllable and localized heat source for joining temperature-sensitive materials such as microelectronic components. The heat released and the phases resulting from the reaction of Ni and Al multilayers depend on the production methods, their composition, as well as the bilayer thickness and annealing conditions. The present research aims to explore the influence of these variables on the reaction of different multilayers, namely those produced by accumulative roll bonding (ARB) and sputtering. Structural evolution of Ni/Al multilayers with temperature was studied by differential scanning calorimetry, x-ray diffraction and scanning electron microscopy. Phase evolution, heat release rate and NiAl final grain size are controlled by the ignition method used to trigger the reaction of Ni and Al. The potential use of these multilayers in the diffusion bonding of TiAl was analyzed. The ARB multilayers allow the production of joints with higher strength than the joints produced with commercial multilayers (NanoFoil®) produced by sputtering. However, the formation of brittle intermetallic phases (Ni3Al, Ni2Al3 and NiAl3) compromises the mechanical properties of the joint.

  11. Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering

    NASA Astrophysics Data System (ADS)

    Simões, S.; Ramos, A. S.; Viana, F.; Emadinia, O.; Vieira, M. T.; Vieira, M. F.

    2016-10-01

    Ni/Al multilayers are known to transform into NiAl in a highly exothermic and self-sustaining reaction. The fact that this reaction has a high heat release rate and can be triggered by an external impulse, are reasons why it has already attracted much research attention. There is a huge potential in the use of Ni/Al multilayers as a controllable and localized heat source for joining temperature-sensitive materials such as microelectronic components. The heat released and the phases resulting from the reaction of Ni and Al multilayers depend on the production methods, their composition, as well as the bilayer thickness and annealing conditions. The present research aims to explore the influence of these variables on the reaction of different multilayers, namely those produced by accumulative roll bonding (ARB) and sputtering. Structural evolution of Ni/Al multilayers with temperature was studied by differential scanning calorimetry, x-ray diffraction and scanning electron microscopy. Phase evolution, heat release rate and NiAl final grain size are controlled by the ignition method used to trigger the reaction of Ni and Al. The potential use of these multilayers in the diffusion bonding of TiAl was analyzed. The ARB multilayers allow the production of joints with higher strength than the joints produced with commercial multilayers (NanoFoil®) produced by sputtering. However, the formation of brittle intermetallic phases (Ni3Al, Ni2Al3 and NiAl3) compromises the mechanical properties of the joint.

  12. Thermodynamic properties of complex oxides in the La-Ni-O system

    SciTech Connect

    Bannikov, D.O. . E-mail: Dmitry.Bannikov@usu.ru; Cherepanov, V.A.

    2006-08-15

    Complex oxides La{sub 2}NiO{sub 4+} {sub {delta}} , La{sub 3}Ni{sub 2}O{sub 7-} {sub {delta}} , La{sub 4}Ni{sub 3}O{sub 10-} {sub {delta}} and LaNiO{sub 3-} {sub {delta}} , the members of Ruddlesden-Popper series La {sub n} {sub +1}Ni {sub n} O{sub 3} {sub n} {sub +1}, were prepared using citrate precursors. The stability range of LaNiO{sub 3-} {sub {delta}} in air as well as the oxygen nonstoichiometry of La{sub 3}Ni{sub 2}O{sub 7-} {sub {delta}} and La{sub 4}Ni{sub 3}O{sub 10-} {sub {delta}} as a function of temperature and oxygen partial pressure was determined by means of thermogravimetric technique. Decomposition temperatures of La{sub 3}Ni{sub 2}O{sub 7-} {sub {delta}} , La{sub 4}Ni{sub 3}O{sub 10-} {sub {delta}} and LaNiO{sub 3-} {sub {delta}} in air were determined by conductivity measurement method. The boundary of stability for La{sub 4}Ni{sub 3}O{sub 10-} {sub {delta}} was determined by EMF measurements of galvanic cell with oxygen conducting solid electrolyte. The isothermal (1400 K) projection of La-Ni-O system phase diagram to the plane 'log(PO{sub 2})-relative mole fraction of metal components' was suggested. - Graphical abstract: The crystal structure of La{sub 4}Ni{sub 3}O{sub 10}.

  13. Theoretical investigation of Mössbauer hyperfine interactions in ordered FeNi and disordered Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Guenzburger, Diana; Terra, Joice

    Electronic structure spin-polarized calculations were performed for 79-atoms embedded clusters representing the ordered intermetallic compound FeNi, the fcc Fe-rich disordered alloy Fe85Ni15 in an antiferromagnetic (AFM) configuration, and the ferromagnetic (FM) disordered alloy Fe50Ni50. The spin-polarized discrete variational method (DVM) in Density Functional theory was employed. Spin magnetic moments, as well as the 57Fe Mössbauer hyperfine parameters isomer shift and magnetic hyperfine fields, were obtained from the calculations. For FM Fe50Ni50, the effect of pressure on the hyperfine field and on the isomer shift was investigated, for three different local atomic configurations surrounding the 57Fe probe atom. In the case of the isomer shift, the calculated values were compared to reported experimental data.

  14. Theoretical investigation of Mössbauer hyperfine interactions in ordered FeNi and disordered Fe Ni alloys

    NASA Astrophysics Data System (ADS)

    Guenzburger, Diana; Terra, Joice

    2006-02-01

    Electronic structure spin-polarized calculations were performed for 79-atoms embedded clusters representing the ordered intermetallic compound FeNi, the fcc Fe-rich disordered alloy Fe85Ni15 in an antiferromagnetic (AFM) configuration, and the ferromagnetic (FM) disordered alloy Fe50Ni50. The spin-polarized discrete variational method (DVM) in Density Functional theory was employed. Spin magnetic moments, as well as the 57Fe Mössbauer hyperfine parameters isomer shift and magnetic hyperfine fields, were obtained from the calculations. For FM Fe50Ni50, the effect of pressure on the hyperfine field and on the isomer shift was investigated, for three different local atomic configurations surrounding the 57Fe probe atom. In the case of the isomer shift, the calculated values were compared to reported experimental data.

  15. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect

    Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.

  16. Flexible resistive switching memory with a Ni/CuO x /Ni structure using an electrochemical deposition process

    NASA Astrophysics Data System (ADS)

    Park, Kyuhyun; Lee, Jang-Sik

    2016-03-01

    Flexible resistive switching memory (ReRAM) devices were fabricated with a Ni/CuO x /Ni structure. Fabrication involved simple and low-cost electrochemical deposition of electrodes and resistive switching layers on a polyethylene terephthalate substrate. The devices exhibited reproducible and reliable ReRAM characteristics. Bipolar resistive switching was observed in flexible Ni/CuO x /Ni-based ReRAM devices with low operation voltages. The reliability of the devices was confirmed by data retention, endurance, and cyclic bending measurements. The processes for fabrication of flexible ReRAM devices were based on simple-solution, bottom-up growth and they can be performed at low temperatures. Therefore, the methods presented in this work could be a viable solution for fabricating flexible non-volatile memory devices in the future.

  17. Effective interactions and atomic ordering in Ni-rich Ni-Re alloys

    NASA Astrophysics Data System (ADS)

    He, Shuang; Peng, Ping; Gorbatov, Oleg I.; Ruban, Andrei V.

    2016-07-01

    Interatomic interactions and ordering in fcc Ni-rich Ni-Re alloys are studied by means of first-principles methods combined with statistical mechanics simulations based on the Ising Hamiltonian. First-principles calculations are employed to obtain effective chemical and strain-induced interactions, as well as ordering energies and enthalpies of formation of random and ordered Ni-Re alloys. Based on the nonmagnetic enthalpies of formation, we speculate that the type of ordering can be different in alloys with Re content less than 10 at.%. We demonstrate that effective chemical interactions in this system are quite sensitive to the alloy composition, atomic volume, and magnetic state. In statistical thermodynamic simulations, we have used renormalized interactions, which correctly reproduce ordering energies obtained in the direct total energy calculations. Monte Carlo simulations for Ni0.91Re0.09 alloy show that there exists a strong ordering tendency of the (1 1/2 0 ) type leading to precipitation of the D1 a ordered structure at about 940 K. Our results for the atomic short-range order indicate, however, that the presently applied theory overestimates the strength of the ordering tendency compared to that observed in the experiment.

  18. Influence of Ni on the lattice stability of Fe-Ni alloys at multimegabar pressures

    NASA Astrophysics Data System (ADS)

    Vekilova, O. Yu.; Simak, S. I.; Ponomareva, A. V.; Abrikosov, I. A.

    2012-12-01

    The lattice stability trends of the primary candidate for Earth's core material, the Fe-Ni alloy, were examined from first principles. We employed the exact muffin-tin orbital method (EMTO) combined with the coherent potential approximation (CPA) for the treatment of alloying effects. It was revealed that high pressure reverses the trend in the relative stabilities of the body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) phases observed at ambient conditions. In the low pressure region the increase of Ni concentration in the Fe-Ni alloy enhances the bcc phase destabilization relative to the more close-packed fcc and hcp phases. However, at 300 GPa (Earth's core pressure), the effect of Ni addition is opposite. The reverse of the trend is associated with the suppression of the ferromagnetism of Fe when going from ambient pressures to pressure conditions corresponding to those of Earth's core. The first-principles results are explained in the framework of the canonical band model.

  19. Synthesis and electrochemical properties of layered Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 2- zF z cathode materials prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Liao, Li; Wang, Xianyou; Luo, Xufang; Wang, Ximing; Gamboa, Sergio; Sebastian, P. J.

    The cathode-active materials, layered Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 2- zF z (0 ≤ z ≤ 0.1), were synthesized from a sol-gel precursor at 900 °C in air. The influence of Al-F co-substitution on the structural and electrochemical properties of the as-prepared samples was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical experiments. The results showed that Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 2- zF z has a typical hexagonal structure with a single phase, the particle sizes of the samples tended to increase with increasing fluorine content. It has been found that Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 1.95F 0.05 showed an improved cathodic behavior and discharge capacity retention compared to the undoped samples in the voltage range of 3.0-4.3 V. The electrodes prepared from Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 1.95F 0.05 delivered an initial discharge capacity of 158 mAh -1 g and an initial coulombic efficiency is 91.3%, and the capacity retention at the 20th cycle was 94.9%. Though the F-doped samples had lower initial capacities, they showed better cycle performances compared with F-free samples. Therefore, this is a promising material for a lithium-ion battery.

  20. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    SciTech Connect

    Singh, Ashutosh K. E-mail: aksingh@bose.res.in; Mandal, Kalyan

    2015-03-14

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

  1. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe2O3-NiO core/shell hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh K.; Mandal, Kalyan

    2015-03-01

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe2O3-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe2O3-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe2O3) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe2O3-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g-1 at a current density of 2.5 A g-1, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

  2. Synthesis and characterization of Ni-Au bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Nik Roselina, N. R.; Azizan, A.; Hyie, Koay Mei; Murad, Mardziah Che; Abdullah, Abdul Hakim

    2015-04-01

    Bimetallic structure of nanoparticles is of great interest due to their extraordinary properties, especially in combining the specialty of the core and its shell. This work reports the effect of pH on the synthesis of Ni-Au (nickel-gold) bimetallic nanoparticles. The synthesis involves a two-step process where Ni nanoparticles were first synthesized using polyol method with hydrazine as the reducing agent. This was followed by the process of reducing AuCl4- to Au in the solution containing pre-prepared Ni to form Ni-Au bimetallic nanoparticles using sodium citrate as the reducing agent. The results obtained from Transmission Electron Microscopy (TEM) show that the process can possibly produce either core-shell structure, or mixture of Ni and Au nanoparticles. Magnetic property of core-shell structure investigated using Vibrating Sample Magnetometer (VSM) demonstrated typical characteristic of ferromagnetic with an increased magnetization as compared to Ni nanoparticles. The saturation magnetization (Ms) and coercivity (Hc) were obtained as 19.1 emu/g and 222.3 Oe, respectively.

  3. Structure and optical absorption properties of NiTiO3 nanocrystallites

    NASA Astrophysics Data System (ADS)

    Li, Ming-Wei; Yuan, Jin-Pei; Gao, Xiao-Mei; Liang, Er-Qian; Wang, Cheng-Yang

    2016-08-01

    Nickel titanate (NiTiO3) nanocrystallites are synthesized via a solid-state reaction from a precursor prepared by a homogeneous precipitation method. Ilmenite-structural NiTiO3 consists of alternating layers of NiO6 and TiO6 octahedra. It not only strongly absorbs ultraviolet light (wavelength <360 nm) but also selectively absorbs visible light mainly in a wavelength range of 420-540 nm and above 700 nm. The synthetic NiTiO3 is a direct-gap semiconducting material with a band gap of 3.00 eV and has obvious absorbance peaks at 448, 502, and 743 nm, corresponding to the photon energies of 2.77, 2.47, and 1.67 eV, respectively. Nevertheless, NiTiO3 does not exhibit obvious photocatalytic activity in the degradation of methylene blue in water. It is proposed that the visible light absorbance peaks of NiTiO3 mainly originate from the Ni: d → d charge-transfer transitions within its valence band. NiTiO3 has wide energy gaps from the hybridized Ni 3 d and O 2 p orbitals to the Ti 3 d orbitals, which block both Ni2+ → Ti4+ and O2- → Ti4+ charge-transfer transitions between valence band and conduction band, and thus baffle its photocatalytic performance.

  4. Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters.

    PubMed

    Li, Guojian; Wang, Qiang; Sui, Xudong; Wang, Kai; Wu, Chun; He, Jicheng

    2015-09-01

    The formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters has been studied by molecular dynamics simulation using an embedded atom method. Structural evolution of the clusters, coalesced under varying temperature, Ni content and substrate conditions, was explored by interatomic energy, snapshots, pair distribution functions and bond order parameters. The results show that the formation of bcc and fcc is strongly related to Ni content, substrate and coalescence temperature. Free clusters coalesced at 1200 K form bcc at lower Ni contents with fcc forming at higher Ni concentrations and no observable coexistence of bcc and fcc. Differences in coalescence at 1000 K result from the coexistence of bcc and fcc within the Ni range of 50-70%. Free clusters supported on disordered Ni substrates were shown to transform from spherical morphology to islands of supported clusters with preferred epitaxial orientation. The Ni content required to form bcc and fcc coexistence on supported clusters at 1000 K decreased to 30-50% Ni. Free clusters possessing bcc and fcc generally stacked along the bcc (110) and fcc (111) facets, whereas supported clusters stacked along the (111) bcc and (100) fcc planes. Structural transformation was induced by clusters containing greater numbers of atoms. Spread over the substrate enhanced interatomic energy, order substrates affect the epitaxial growth direction and increase the melting points of the supported clusters. This study can be used to predict the nature of fcc and bcc formation in Fe-Ni films.

  5. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  6. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices.

    PubMed

    Piraux, Luc; Renard, Krystel; Guillemet, Raphael; Matéfi-Tempfli, Stefan; Matéfi-Tempfli, Maria; Antohe, Vlad Andrei; Fusil, Stéphane; Bouzehouane, Karim; Cros, Vincent

    2007-09-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena. The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin-polarized current were clearly demonstrated in our electrodeposited NiFe/Cu/ NiFe trilayer nanowires. This novel approach promises to be of strong interest for subsequent fabrication of phase-locked arrays of spin transfer nano-oscillators with increased output power for microwave applications. PMID:17715984

  7. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  8. Structure and photocatalytic activity of Ni-doped ZnO nanorods

    SciTech Connect

    Zhao, Jing; Wang, Li; Yan, Xiaoqin; Yang, Ya; Lei, Yang; Zhou, Jing; Huang, Yunhua; Gu, Yousong; Zhang, Yue

    2011-08-15

    Graphical abstract: Degradation rates of rhodamine B by Zn{sub 1-x}Ni{sub x}O photocatalyst. Highlights: {yields} The Ni-doped ZnO nanorods show a new band at {approx}130 cm{sup -1} in Raman spectra at room temperature. We conclude this mode is caused by an ordered arrangement of Ni dopants in the ZnO lattice. {yields} When the Ni-doping concentration raises, the band gap first increases and then decreases. {yields} The ZnO nanorods with different Ni-doping concentraton all exhibited higher photocatalytic activity than un-doped ZnO. The order of photocatalytic activities is Zn{sub 0.95}Ni{sub 0.05}O > Zn{sub 0.9}Ni{sub 0.1}O > Zn{sub 0.98}Ni{sub 0.02}O > ZnO. -- Abstract: The one-dimensional (1D) Zn{sub 1-x}Ni{sub x}O (x = 0, 0.02, 0.05, 0.10) nanorods have been synthesized by a simple hydrothermal method. New bands show at {approx}130 cm{sup -1} in the Raman spectra of Ni-doped ZnO nanorods and their relative intensity depends on the doping concentration of nickel. The optical band gap of the ZnO nanorods have been tuned by Ni-doping, which is revealed by absorption spectra. The photocatalytic activity of Zn{sub 1-x}Ni{sub x}O was studied by comparing the degradation rate of rhodamine B (RB) under UV-light irradiation. It was found that Zn{sub 0.95}Ni{sub 0.05}O exhibited the highest photocatalytic degradation efficiency among the samples.

  9. Etude des interdiffusions en phase solide dans le contact Ni/AlAs

    NASA Astrophysics Data System (ADS)

    Députier, S.; Guivarc'h, A.; Caulet, J.; Poudoulec, A.; Guenais, B.; Minier, M.; Guérin, R.

    1995-04-01

    Solid-state interdiffusions between a thin film of nickel deposited under vacuum conditions and a thick layer of epitaxial AlAs on GaAs (001) and (111) substrates were investigated in the temperature range 200-600 ^{circ}C. Complementary analytical methods (RBS, X-ray diffraction, TEM) allow us to point out, according to annealing temperatures, successives steps of the interaction. These steps correspond either to ternary phases which were evidenced by the experimental determination of the Ni-Al-As phase diagram and labelled as A, B and D phases by comparison with the isostructural ternary phases in the Ni-Ga-As diagram or to mixture of ternaries and binaries, more or less strongly textured on the substrate. In fact, the nature of the observed phases is strongly depending on the AlAs substrate orientation, the kinetic of the reaction occurring being slower on AlAs(111) than on AlAs(001). On AlAs(001), a ternary B-phase + NiAl mixture is firstly observed, followed by a second mixture constituted of the ternary A-phase + NiAl and NiAs binaries, and finally, at the end of the interaction, the two binaries NiAl + NiAs appear. On AlAs(111), only two steps of interaction have been found; first of all, the ternary D-phase is obtained, before leading, at the end of the interaction, to the ternary B-phase + NiAl + NiAs mixture. In that case, the 600 ^{circ}C annealing is not sufficient to reach the mixture of the binaries NiAl + NiAs which, according to the ternary phase diagram, is the final stage of the Ni/AlAs interaction. The comparative study of the Ni/AlAs and Ni/GaAs interdiffusions shows that the binary NiAl is the “key” compound around which the Ni/AlAs interaction progresses when NiAs is the one of the Ni/GaAs interaction. The binary NiAl which is thermally stable and strongly textured on AlAs appears as an interesting candidate to prepare epitaxial NiAl/AlAs/GaAs heterostructures. Les interdiffusions en phase solide entre une couche mince de nickel d

  10. Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD.

    PubMed

    Broering, Ellen P; Dillon, Stephanie; Gale, Eric M; Steiner, Ramsey A; Telser, Joshua; Brunold, Thomas C; Harrop, Todd C

    2015-04-20

    Superoxide dismutase (SOD) catalyzes the disproportionation of superoxide (O2(• -)) into H2O2 and O2(g) by toggling through different oxidation states of a first-row transition metal ion at its active site. Ni-containing SODs (NiSODs) are a distinct class of this family of metalloenzymes due to the unusual coordination sphere that is comprised of mixed N/S-ligands from peptide-N and cysteine-S donor atoms. A central goal of our research is to understand the factors that govern reactive oxygen species (ROS) stability of the Ni-S(Cys) bond in NiSOD utilizing a synthetic model approach. In light of the reactivity of metal-coordinated thiolates to ROS, several hypotheses have been proffered and include the coordination of His1-Nδ to the Ni(II) and Ni(III) forms of NiSOD, as well as hydrogen bonding or full protonation of a coordinated S(Cys). In this work, we present NiSOD analogues of the general formula [Ni(N2S)(SR')](-), providing a variable location (SR' = aryl thiolate) in the N2S2 basal plane coordination sphere where we have introduced o-amino and/or electron-withdrawing groups to intercept an oxidized Ni species. The synthesis, structure, and properties of the NiSOD model complexes (Et4N)[Ni(nmp)(SPh-o-NH2)] (2), (Et4N)[Ni(nmp)(SPh-o-NH2-p-CF3)] (3), (Et4N)[Ni(nmp)(SPh-p-NH2)] (4), and (Et4N)[Ni(nmp)(SPh-p-CF3)] (5) (nmp(2-) = dianion of N-(2-mercaptoethyl)picolinamide) are reported. NiSOD model complexes with amino groups positioned ortho to the aryl-S in SR' (2 and 3) afford oxidized species (2(ox) and 3(ox)) that are best described as a resonance hybrid between Ni(III)-SR and Ni(II)-(•)SR based on ultraviolet-visible (UV-vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies, as well as density functional theory (DFT) calculations. The results presented here, demonstrating the high percentage of S(3p) character in the highest occupied molecular orbital (HOMO) of the four-coordinate reduced form of NiSOD (Ni

  11. Solvothermal derived crystalline NiOx nanoparticles for high performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Xingtian; Liu, Jie; Ma, Jiaqi; Zhang, Chongxin; Chen, Peng; Que, Meidan; Yang, Yawei; Que, Wenxiu; Niu, Chunming; Shao, Jinyou

    2016-10-01

    A solvothermal method is employed to synthesize NiOx nanoparticles with good dispersibility. The synthesized NiOx nanoparticles are very homogenous with an average size of about 3-5 nm, and the X-ray diffraction suggests a good crystallinity for the nanoparticles. NiOx films are spin coated from a colloid precursor which is prepared by dispersing the NiOx nanoparticles into ethanol using a certain amount of acetic as the stabilizer. To obtain an efficient hole extraction layer, an annealing process at 300 °C degree is necessary to remove the residual acetic in the NiOx film. Finally, hysteresis-less NiOx-based perovskite solar cells with good reproducibility are achieved, and a highest power conversion efficiency (PCE) of 16.68% and a constant steady state PCE of 16.49% are also demonstrated.

  12. Effect of boron and hydrogen on the electronic structure of Ni{sub 3}Al

    SciTech Connect

    Kioussi, N.; Watanabe, H.; Hemker, R.G.; Gourdin, W.: Gonis, A.; Johnson, P.E.

    1993-11-19

    Using first-principles electronic structure calculations based on the Linear-Muffin-Tin Orbital (LMTO) method, we have investigated the effects of interstitial born and hydrogen on the electronic structure of the Ll{sub 2} ordered intermetallic Ni{sub 3}Al. When it occupies an octahedral interstitial site entirely coordinated by six Ni atoms, we find that boron enhances the charge distribution found in the strongly-bound ``pure`` Ni{sub 3}Al crystal: Charge is depleted at Ni and Al region. Substitution Al atoms for two of the Ni atoms coordinating the boron, however, reduces the interstitial charge density between atomic planes. In contrast to boron, hydrogen appears to deplete the interstitial charge, even when fully coordinated by Ni atoms. We suggest that these results are broadly consistent with the notion of boron as a cohesion enhancer and hydrogen as an embrittler.

  13. Coherent nuclear resonant scattering by {sup 61}Ni using the nuclear lighthouse effect

    SciTech Connect

    Roth, T.; Leupold, O.; Wille, H.-C.; Rueffer, R.; Quast, K.W.; Burkel, E.; Roehlsberger, R.

    2005-04-01

    We have observed coherent nuclear resonant scattering of synchrotron radiation from the 67.41-keV level of {sup 61}Ni. The time evolution of the forward scattering signal was recorded by employing the nuclear lighthouse effect. This method is used to investigate Moessbauer isotopes in a coherent scattering process with synchrotron radiation at high transition energies. The decay of the excited ensemble of nuclei in Ni metal shows quantum beats that allowed the determination of the magnetic hyperfine field at the {sup 61}Ni nucleus. Moreover, we determined the lifetime of the 67.41-keV level of {sup 61}Ni to be 7.4(1) ns.

  14. High-rate oxygen evolution reaction on Al-doped LiNiO2.

    PubMed

    Gupta, Asha; Chemelewski, William D; Buddie Mullins, C; Goodenough, John B

    2015-10-21

    LiNi0.8 Al0.2 O2 with a higher Ni(3+) /Li(+) ordering, synthesized by the solution-combustion method, gives oxygen-evolution-reaction (OER) activity in alkaline solution that is comparable to that of IrO2 . This confirms that the octahedral-site Ni(IV) /Ni(III) couple in an oxide is an active redox center for the OER with -redox energy pinned at the top of the O-2p bands.

  15. Atomistic Modeling of RuAl and (RuNi) Al Alloys

    NASA Technical Reports Server (NTRS)

    Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.

  16. Effects of Ni(2+) on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system.

    PubMed

    Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia

    2014-07-01

    Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2.

  17. 3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design.

    PubMed

    Mi, Liwei; Sun, Hui; Ding, Qi; Chen, Weihua; Liu, Chuntai; Hou, Hongwei; Zheng, Zhi; Shen, Changyu

    2012-10-28

    Tubular nickel selenide (NiSe) crystals with hierarchical structures were successfully fabricated using a one-step solvothermal method in moderate conditions, in which ethylenediamine and ethylene glycol were used as the mixed solvent. The growth of hierarchical NiSe microtubes from NiSe microflakes was achieved without surfactants or other chemical additives by changing the reaction time. When the as-synthesized NiSe microtubes were employed as cathode materials for lithium-ion batteries, the initial discharge capacity of hierarchical NiSe microtubes reached 410.7 mAh g(-1).

  18. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing.

    PubMed

    Yang, Peng; Tong, Xili; Wang, Guizhen; Gao, Zhe; Guo, Xiangyun; Qin, Yong

    2015-03-01

    NiO nanoparticles are deposited onto SiC particles by atomic layer deposition (ALD). The structure of the NiO/SiC hybrid material is investigated by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The size of the NiO nanoparticles is flexible and can be adjusted by altering the cycle number of the NiO ALD. Electrochemical measurements illustrate that NiO/SiC prepared with 600 cycles for NiO ALD exhibits the highest glucose sensing ability in alkaline electrolytes with a low detection limit of 0.32 μM (S/N = 3), high sensitivity of 2.037 mA mM(-1) cm(-2), a linear detection range from approximately 4 μM to 7.5 mM, and good stability. Its sensitivity is about 6 times of that for commercial NiO nanoparticles and NiO/SiC nanocomposites prepared by a traditional incipient wetness impregnation method. It is revealed that the superior electrochemical ability of ALD NiO/SiC is ascribed to the strong interaction between NiO and the SiC substrate and the high dispersity of NiO nanoparticles on the SiC surface. These results suggest that ALD is an effective way to deposit NiO on SiC for nonenzymatic glucose sensing.

  19. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing.

    PubMed

    Yang, Peng; Tong, Xili; Wang, Guizhen; Gao, Zhe; Guo, Xiangyun; Qin, Yong

    2015-03-01

    NiO nanoparticles are deposited onto SiC particles by atomic layer deposition (ALD). The structure of the NiO/SiC hybrid material is investigated by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The size of the NiO nanoparticles is flexible and can be adjusted by altering the cycle number of the NiO ALD. Electrochemical measurements illustrate that NiO/SiC prepared with 600 cycles for NiO ALD exhibits the highest glucose sensing ability in alkaline electrolytes with a low detection limit of 0.32 μM (S/N = 3), high sensitivity of 2.037 mA mM(-1) cm(-2), a linear detection range from approximately 4 μM to 7.5 mM, and good stability. Its sensitivity is about 6 times of that for commercial NiO nanoparticles and NiO/SiC nanocomposites prepared by a traditional incipient wetness impregnation method. It is revealed that the superior electrochemical ability of ALD NiO/SiC is ascribed to the strong interaction between NiO and the SiC substrate and the high dispersity of NiO nanoparticles on the SiC surface. These results suggest that ALD is an effective way to deposit NiO on SiC for nonenzymatic glucose sensing. PMID:25664816

  20. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.

    PubMed

    Cheng, Daojian; Yuan, Shuai; Ferrando, Riccardo

    2013-09-01

    Equilibrium structures, chemical ordering and thermal properties of Pt-Ni nanoalloys are investigated by using basin hopping-based global optimization, Monte Carlo (MC) and molecular dynamics (MD) methods, based on the second-moment approximation of the tight-binding potentials (TB-SMA). The TB-SMA potential parameters for Pt-Ni nanoalloys are fitted to reproduce the results of density functional theory calculations for small clusters. The chemical ordering in cuboctahedral (CO) Pt-Ni nanoalloys with 561 and 923 atoms is obtained from the so called semi-grand-canonical ensemble MC simulation at 100 K. Two ordered phases of L12 (PtNi3) and L10 (PtNi) are found for the CO561 and CO923 Pt-Ni nanoalloys, which is in good agreement with the experimental phase diagram of the Pt-Ni bulk alloy. In addition, the order-disorder transition and thermal properties of these nanoalloys are studied by using MC and MD methods, respectively. It is shown that the typical perfect L10 PtNi structure is relatively stable, showing high order-disorder transition temperature and melting point among these CO561 and CO923 Pt-Ni nanoalloys.

  1. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3.

    PubMed

    Du, Ke; Xie, Hongbin; Hu, Guorong; Peng, Zhongdong; Cao, Yanbing; Yu, Fan

    2016-07-13

    The electrochemical performance of Ni-rich cathode material at high temperature (>50 °C) and upper voltage operation (>4.3 V) is a challenge for next-generation lithium-ion batteries (LIBs) because of the rapid capacity degradation over cycling. Here we report improved performance of LiNi0.8Co0.15Al0.05O2 materials via a LiAlO2 coating, which was prepared from a Ni0.80Co0.15Al0.05(OH)2 precursor by spray-drying coating with nano-Al2O3. Investigations by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy revealed that an Al2O3 layer is uniformly distributed on the precursor and a LiAlO2 layer on the as-prepared cathode material. Such a coating shell acts as a scavenger to protect the cathode material from attack by HF and serious side reactions, which remarkably enhances the cycle performance at 55 °C and upper operating voltage (4.4 and 4.5 V). In particular, the sample with a 2% Al2O3 coating shows capacity retentions of 90.40%, 85.14%, 87.85%, and 81.1% after 150 cycles at a rate of 1.0C at room temperature, 55 °C, 4.4 V, and 4.5 V, respectively, which are significantly higher than those of the pristine one. This is mainly due to the significant improvement of the structural stability led by the effective coating technique, which could be extended to other cathode materials to obtain LIBs with enhanced safety and excellent cycling stability.

  2. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    PubMed

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study. PMID:26037150

  3. Monte Carlo simulation of specific heat of liquid Ni Mo alloys

    NASA Astrophysics Data System (ADS)

    Yao, W. J.; Wang, N.

    2008-11-01

    The Monte Carlo method with embedded-atom method (EAM) potential is applied to simulate the specific heat Cp of a liquid Ni-Mo binary alloy system. The simulated Cp value of liquid Ni at the melting temperature is 22.79 J mol-1 K-1, indicating that the simulation method and EAM parameters in simulation are acceptable. The simulated temperature coefficient of the specific heat for liquid Ni is -2.10 × 10-2 J mol-1 K-2. Based on the relationship between system energy and temperature, the various specific heats of liquid Ni-Mo alloys under different undercooling and compositions were determined. The dependence of the specific heat of liquid Ni-Mo alloys on the composition and undercooling is discussed.

  4. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  5. Modified Ni-Cu catalysts for ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-01

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  6. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    PubMed Central

    Gravina, Marco Abdo; Canavarro, Cristiane; Elias, Carlos Nelson; Chaves, Maria das Graças Afonso Miranda; Brunharo, Ione Helena Vieira Portella; Quintão, Cátia Cardoso Abdo

    2014-01-01

    Objective This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni) Titanium (Ti) conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek), to the wires with addition of copper (CuNiTi 27ºC and 35ºC, Ormco) after traction test. Methods The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV) with EDS system of microanalysis (energy dispersive spectroscopy). Results The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu). As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27ºC and 35ºC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi.4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27ºC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35ºC wires presented inadequate wire-surface roughness in the fracture region. Conclusion CuNiTi 35ºC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region. PMID:24713562

  7. Characterization of DMS Zn1-xAxO (A: Fe, Ni, Co and Mn, x: 0.01, 0.02, …, 0.1) grown by ECD method

    NASA Astrophysics Data System (ADS)

    Güney, Harun; Coşkun, Cevdet; Meral, Kadem; Tatar, Demet

    2016-06-01

    Zn1-xAxO (A: Fe, Ni, Co and Mn, x: 0.01, 0.02,…, 0.1) films, grown by electrochemical deposition (ECD) on indium tin oxide (ITO) substrate, was characterized by structural, optical, electrical and magnetic techniques. Energy-Dispersive-X-Ray-Fluorescence (EDXRF) spectroscopy showed 5% dopants A. X-ray diffraction (XRD) measurements clearly showed formation of all Zn0,95A0,05O thin films with a strong c-axis (002) preferential orientation. It was calculated a hexagonal wurtzite structure with XRD results. Absorption measurements of the samples were taken about and an important variation in these measurements were not detected as depend on percentage changes of dopant A. Photoluminescence (PL) measurements showed that PL intensities increase in n-type materials, decrease in p-type materials depending upon increasing doping rate of the grown films. Atomic force microscopy (AFM) pictures of films shows that the most homogeny film is Zn0,95Co0,05O and the most roughness film Zn0,95Mn0,05O. Hall measurements showed that samples doped 5% Fe and Co within ZnO are n-type and other samples doped 5% Ni and Mn within ZnO are p-type. Magnetoresistance (MR) measurements show that all films have feature diluted magnetic semiconductor (DMS) at room temperature.

  8. Physical and electrochemical area determination of electrodeposited Ni, Co, and NiCo thin films

    NASA Astrophysics Data System (ADS)

    Gira, Matthew J.; Tkacz, Kevin P.; Hampton, Jennifer R.

    2016-01-01

    The surface area of electrodeposited thin films of Ni, Co, and NiCo was evaluated using electrochemical double-layer capacitance, electrochemical area measurements using the [Ru(NH_3)_6]^{3+}/[Ru(NH_3)_6]^{2+} redox couple, and topographic atomic force microscopy (AFM) imaging. These three methods were compared to each other for each composition separately and for the entire set of samples regardless of composition. Double-layer capacitance measurements were found to be positively correlated to the roughness factors determined by AFM topography. Electrochemical area measurements were found to be less correlated with measured roughness factors as well as applicable only to two of the three compositions studied. The results indicate that in situ double-layer capacitance measurements are a practical, versatile technique for estimating the accessible surface area of a metal sample.

  9. Preparation and electrochemical characterization of NiO nanostructure-carbon nanowall composites grown on carbon cloth

    NASA Astrophysics Data System (ADS)

    Chang, Hsuan-Chen; Chang, Hsin-Yueh; Su, Wei-Jhih; Lee, Kuei-Yi; Shih, Wen-Ching

    2012-09-01

    This study provided a simple method to form NiO nanostructures onto the carbon nanowalls (CNWs) surface to enhance the performance of electric double layer capacitor (EDLC) characteristics. The CNWs were synthesized on carbon cloth by rf magnetron sputtering without any catalyst. Ni film was then deposited on the synthesized CNWs by e-beam evaporator. Subsequently, the vacuum annealing process and oxygen plasma treatment were used to form the NiO nanostructures. The crystallize structures of NiO nanostructures and CNWs were examined by Raman scattering spectroscopy. To realize the electrochemical properties of NiO/CNWs/carbon cloth composite, cyclic voltammetry (CV) and galvanostatic charge-discharge tests were investigated. Due to the relatively larger surface area of CNWs and the quickly reversible redox reaction and pseudo-capacitive properties of NiO nanostructures, the measured results demonstrated that the NiO/CNWs/carbon cloth is a suitable electrode material for EDLC applications.

  10. Molecular dynamics simulation of graphene growth at initial stage on Ni(100) facet for low flux C energy by CVD

    NASA Astrophysics Data System (ADS)

    Syuhada, Ibnu; Rosikhin, Ahmad; Fikri, Aulia; Noor, Fatimah A.; Winata, Toto

    2016-02-01

    In this study, atomic simulation for graphene growth on Ni (100) at initial stage via chemical vapor deposition method has been developed. The C-C atoms interaction was performed by Terasoff potential mean while Ni-Ni interaction was specified by EAM (Embedded Atom Modified). On the other hand, we used very simple interatomic potential to describe Ni-C interaction during deposition process. From this simulation, it shows that the formation of graphene is not occurs through a combined deposition mechanism on Ni substrate but via C segregation. It means, Ni-C amorphous is source for graphene growth when cooling down of Ni substrate. This result is appropriate with experiments, tight binding and quantum mechanics simulation.

  11. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products.

    PubMed

    Xiao, Ting; Tang, Yiwen; Jia, Zhiyong; Li, Dawei; Hu, Xiaoyan; Li, Bihui; Luo, Lijuan

    2009-11-25

    This paper describes a facile solvothermal method to synthesize self-assembled three-dimensional (3D) Ni2+-Fe3+ layered double hydroxides (LDHs). Flower-like Ni2+-Fe3+ LDHs constructed of thin nanopetals were obtained using ethylene glycol (EG) as a chelating reagent and urea as a hydrolysis agent. The reaction mechanism and self-assembly process are discussed. After calcinating the as-prepared LDHs at 450 degrees C in nitrogen gas, porous NiO/NiFe2O4 nanosheets were obtained. This work resulted in the development of a simple, cheap, and effective route for the fabrication of large area Ni2+-Fe3+ LDHs as well as porous NiO/NiFe2O4 nanosheets. PMID:19858561

  12. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Zhang, Rui

    2015-01-28

    In this work, amorphous TiO2 and SiO2-coated Ni composite microspheres were successfully prepared by a two-step method. The phase purity, morphology, and structure of composite microspheres are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Due to the presence of the insulator SiO2 shell, the core-shell Ni-SiO2 composite microspheres exhibit better antioxidation capability than that of pure Ni microspheres. The core-shell Ni-SiO2 composite microspheres show the best microwave absorption properties than those of pure Ni microspheres and Ni-TiO2 composites. For Ni-SiO2 composite microspheres, an optimal reflection loss (RL) as low as -40.0 dB (99.99% absorption) was observed at 12.6 GHz with an absorber thickness of only 1.5 mm. The effective absorption (below -10 dB, 90% microwave absorption) bandwidth can be adjusted between 3.1 GHz and 14.4 GHz by tuning the absorber thickness in the range of 1.5-4.5 mm. The excellent microwave absorption abilities of Ni-SiO2 composite microspheres are attributed to a higher attenuation constant, Debye relaxation, interface polarization of the core-shell structure and synergistic effects between high dielectric loss and high magnetic loss.

  13. NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wang, Senlin; Huang, Zongchuan; Lu, Fengxia; He, Taobin

    2016-04-01

    In this paper, hierarchical NiCo2S4@Co(OH)2 nanotube arrays supported on Ni foam have been synthesised though a facile and commendable method. The smart combination of NiCo2S4 nanotubes and Co(OH)2 nanosheets exhibits brilliant synergistic effect for supercapacitors with significantly enhanced performances. The NiCo2S4@Co(OH)2 electrode shows a relatively high area capacitance of 9.6 F cm-2 at 2 mA cm-2 (almost 2 times as high as that of bare NiCo2S4 electrode), even at 32 mA cm-2, the area capacitance is maintained at 6.4 F cm-2. Moreover, an asymmetric supercapacitor is successfully assembled by using NiCo2S4@Co(OH)2 nanotubes as the positive electrode and active carbon (AC) as the negative electrode. The NiCo2S4@Co(OH)2//AC device achieves a relatively high energy density of 35.89 Wh kg-1 at a power density of 0.4 kW kg-1 with excellent cycling performance(70.01% capacitance retention over 5000 cycles). Such unique NiCo2S4@Co(OH)2 nanotube arrays not only demonstrate promising applications in energy storage but also remind researchers of the unlimited potential of heterostructured materials.

  14. The effect of heating rate on the surface chemistry of NiTi.

    PubMed

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate.

  15. Electrochemical and corrosion behaviors of sputtered TiNi shape memory films

    NASA Astrophysics Data System (ADS)

    Li, K.; Huang, X.; Zhao, Z. S.; Li, Y.; Fu, Y. Q.

    2016-03-01

    Electrochemical and corrosion behaviors of TiNi-based shape memory thin films were explored using electrochemical impedance spectroscopy (EIS) and polarization methods in phosphate buffered saline solutions at 37 °C. Compared with those of electro-polished and passivated bulk NiTi shape memory alloys, the break-down potentials of the sputter-deposited amorphous TiNi films were much higher. After crystallization, the break-down potentials of the TiNi films were comparable with that of the bulk NiTi shape memory alloy. Additionally, variation of composition of the TiNi films showed little influence on their corrosion behavior. The EIS data were fitted using a parallel resistance-capacitance circuit associated with passive oxide layer on the tested samples. The thickness of the oxide layer for the TiNi thin films was found much thinner than that of bulk NiTi shape memory alloy. During electrochemical testing, the oxide thickness of the bulk alloy reached its maximum at a voltage of 0.6-0.8 V, whereas those of TiNi films were increased continuously up to a voltage of 1.2 V.

  16. Simple route for the synthesis of supercapacitive Co-Ni mixed hydroxide thin films

    SciTech Connect

    Dubal, D.P.; Jagadale, A.D.; Patil, S.V.; Lokhande, C.D.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Novel method for deposition of Co-Ni mixed hydroxide. Black-Right-Pointing-Pointer Nanoparticle network of Co-Ni hydroxide. Black-Right-Pointing-Pointer High specific capacitance of 672 F g{sup -1}. Black-Right-Pointing-Pointer High discharge/charge rates. -- Abstract: Facile synthesis of Co-Ni mixed hydroxides films with interconnected nanoparticles networks through two step route is successfully established. These films have been characterized by X-ray diffraction (XRD), Fourier transform infrared technique (FTIR), scanning electron microscopy (SEM) and wettability test. Co-Ni film formation is confirmed from XRD and FTIR study. SEM shows that the surface of Co-Ni films is composed of interconnected nanoparticles. Contact angle measurement revealed the hydrophilic nature of films which is feasible for the supercapacitor. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance of the Co-Ni mixed hydroxide electrode achieved 672 F g{sup -1}. Impedance analysis shows that Co-Ni mixed hydroxide electrode provides less resistance for the intercalation and de-intercalation of ions. The Co-Ni mixed electrode exhibited good charge/discharge rate at different current densities. The results demonstrated that Co-Ni mixed hydroxide composite is very promising for the next generation high performance electrochemical supercapacitors.

  17. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    SciTech Connect

    Dalavi, Shankar B.; Panda, Rabi N.; Raja, M. Manivel

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  18. One-pot preparation of Ni-graphene hybrids with enhanced catalytic performance

    NASA Astrophysics Data System (ADS)

    Chen, Guiqiang; Wang, Fengli; Liu, Fei; Zhang, Xiao

    2014-10-01

    A facile one-pot method was developed to synthesize magnetic nickel nanoparticles (Ni NPs) decorated on reduced graphene oxide (rGO) with NaHB4 as a reductant under microwave irradiation. The morphologies and structures of the Ni-rGO hybrids were investigated by electron microscopy, thermal gravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and magnetic measurements. The results showed that Ni-rGO hybrids composed of the well-dispersed Ni NPs with an average diameter of 12 nm were successfully prepared. To demonstrate one potential application, the catalytic ability of Ni-rGO was evaluated and it was found that Ni-rGO showed much enhanced catalytic ability, good recyclability and stability toward the catalytic reduction of p-nitrophenol to p-aminophenol. The excellent catalytic activity of Ni-rGO hybrids was due possibly to the synergistic effect of Ni NPs and rGO, including the uniform distribution of Ni NPs onto rGO, enhanced electrons separation and transport, as well as the fast adsorption of p-nitrophenol by rGO.

  19. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    SciTech Connect

    Sharifi, Mahdi; Haghighi, Mohammad; Abdollahifar, Mozaffar

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  20. Thermal modeling of NiH2 batteries

    NASA Technical Reports Server (NTRS)

    Ponthus, Agnes-Marie; Alexandre, Alain

    1994-01-01

    The following are discussed: NiH2 battery mission and environment; NiH2 cell heat dissipation; Nodal software; model development general philosophy; NiH2 battery model development; and NiH2 experimental developments.

  1. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  2. Study of the Ni NiAl2O4 YSZ cermet for its possible application as an anode in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Reyes-Rojas, A.; Esparza-Ponce, H. E.; Reyes-Gasga, J.

    2006-05-01

    Nanocrystalline Ni-NiAl2O4-YSZ cermet with a possible application as anode in solid oxide fuel cells (SOFCs) has been developed. The powders were prepared by using an alternative solid-state method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 °C and oxide reduction ({\\mathrm {NiO\\mbox {--}Al_{2}O_{3}\\mbox {--}YSZ}} \\to {\\mathrm {Ni\\mbox {--}NiAl_{2}O_{4}\\mbox {--}YSZ}} ) at 800 °C for 8 h in a tubular reactor furnace using 10% H2/N2. Eight samples with 45% Ni and 55% Al2O3-YSZ in concentrations of Al2O3 oxides from 10 to 80 wt% of were mixed to obtain the cermets. The obtained material was compressed using unidirectional axial pressing and calcinations from room temperature to 800 °C. Good results were registered using a heating rate of 1 °C min-1 and a special ramp to avoid anode cracking. Thermal expansion, electrical conductivity, and structural characterization by thermo-mechanical analyser (TMA) techniques/methods, the four-point probe method for conductivity, scanning electron microscopy (SEM), x-ray energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and the Rietveld method were carried out. Cermets in the range 5.5 to 11% Al2O3 present a crystal size around 200 nm. An inversion degree (I) in the NiAl2O4 spinel structure of the cermets Ni-NiAl2O4-YSZ was found after the sintering and reduction processes. Good electrical conductivity and thermal expansion coefficient were obtained for the cermet with 12 wt% of spinel structure formation.

  3. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.

    PubMed

    Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe

    2016-09-01

    Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices. PMID:27526717

  4. Syntheses and structure of hydrothermally prepared CsNiX{sub 3} (X=Cl, Br, I)

    SciTech Connect

    Raw, Adam D.; Ibers, James A.; Poeppelmeier, Kenneth R.

    2012-08-15

    During reinvestigation of the hydrothermal synthesis reported earlier of the compound cesium nickel phosphide, 'CsNiP', we arrived at a new route to the synthesis of the cesium nickel halide compounds CsNiX{sub 3} (X=Cl, Br, I). The method has also been shown to extend to cobalt and iron compounds. Single crystals of these compounds were synthesized in phosphoric acid in sealed autoclaves. Their structures were determined by single-crystal X-ray diffraction methods. The compounds crystallize in the hexagonal space group P6{sub 3}/mmc in the BaNiO{sub 3} structure type. The synthetic method and the resultant crystallographic details for CsNiCl{sub 3} are essentially identical with those reported earlier for the synthesis and structure of 'CsNiP'. - Graphical abstract: The CsNiX{sub 3} (X=Cl, Br, I) structure. Cesium is blue, nickel is in dark green polyhedra, halide is brown. Highlights: Black-Right-Pointing-Pointer A hydrothermal approach to single crystal growth of cesium transition-metal halides. Black-Right-Pointing-Pointer Reexamination of 'CsNiP' to determine its composition as CsNiCl{sub 3}. Black-Right-Pointing-Pointer X-ray single-crystal structures of CsNiBr{sub 3} and CsNiI{sub 3}.

  5. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys.

    PubMed

    Lifeng, Zhao; Yan, Hong; Dayun, Yang; Xiaoying, Lü; Tingfei, Xi; Deyuan, Zhang; Ying, Hong; Jinfeng, Yuan

    2011-04-01

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field. PMID:21441653

  6. Magnetic properties of nanoparticles in {Pd}/{Ni} alloys

    NASA Astrophysics Data System (ADS)

    Nunomura, N.; Hori, H.; Teranishi, T.; Miyake, M.; Yamada, S.

    1998-12-01

    In order to investigate the alloying effect in {Ni}/{Pd} nanoparticles, a special chemical reaction method has been developed to generate a sufficient number of well-conformed Pd ultra-fine particles. Ni concentration dependence on magnetization reveals the existence of a giant magnetic moment effect, where the critical concentration of 6.3 at% is higher than the bulk state one. The higher harmonics intensity of ESR is remarkably enlarged in the alloying particles. The enhanced spectra with ΔS = 2 and the broad spectra arise from the nonlinear effect of the isolated nanoparticles with a long spin-lattice relaxation time.

  7. Coating Pt-Ni Octahedra with Ultrathin Pt Shells to Enhance the Durability without Compromising the Activity toward Oxygen Reduction.

    PubMed

    Park, Jinho; Liu, Jingyue; Peng, Hsin-Chieh; Figueroa-Cosme, Legna; Miao, Shu; Choi, Sang-Il; Bao, Shixiong; Yang, Xuan; Xia, Younan

    2016-08-23

    We describe a new strategy to enhance the catalytic durability of Pt-Ni octahedral nanocrystals in the oxygen reduction reaction (ORR) by conformally depositing an ultrathin Pt shell on the surface. The Pt-Ni octahedra were synthesized according to a protocol reported previously and then employed directly as seeds for the conformal deposition of ultrathin Pt shells by introducing a Pt precursor dropwise at 200 °C. The amount of Pt precursor was adjusted relative to the number of Pt-Ni octahedra involved to obtain Pt-Ni@Pt1.5L octahedra of 12 nm in edge length for the systematic evaluation of their chemical stability and catalytic durability compared to Pt-Ni octahedra. Specifically, we compared the elemental compositions of the octahedra before and after treatment with acetic and sulfuric acids. We also examined their electrocatalytic stability toward the ORR through an accelerated durability test by using a rotating disk electrode method. Even after treatment with sulfuric acid for 24 h, the Pt-Ni@Pt1.5L octahedra maintained their original Ni content, whereas 11 % of the Ni was lost from the Pt-Ni octahedra. After 10 000 cycles of ORR, the mass activity of the Pt-Ni octahedra decreased by 75 %, whereas the Pt-Ni@Pt1.5L octahedra only showed a 25 % reduction. PMID:27460459

  8. The Effects of El Niño on Precipitation in Southern California Climate Divisions: Year 2016 Precipitation Forecast.

    NASA Astrophysics Data System (ADS)

    Perez Cruz, L.; Idris, N.; El-Askary, H. M.

    2015-12-01

    Recently, it has been reported by the National Oceanic and Atmospheric Administration (NOAA) that there is very high chance not only for El Niño to continue through Northern Hemisphere winter 2015-16, but also a remarkable chance for El Niño to last into early spring 2016. This research aims at: 1) investigating the impact of El Niño on precipitation in the Southern California Climate Divisions: Climate Division 6 South Coast Drainage, and Division 7 South Coast Desert Basin. 2) Analyzing the precipitation of Southern California region using the Empirical Mode Decomposition Method (EMD). 3) Looking at the SOI components and compare it with the precipitation components of Southern California Climate Divisions. 4) Comparing precipitation data with Niño indices: Niño 1+2, Niño 3, Nino 3.4, and Niño 4. As results, we found a significant cross correlation of 0.7 between SOI component 10 and precipitation component 10 in Climate Division 6. Furthermore, among all the Niño indices, Niño 3 region displayed the best correlation. When we compared precipitation division 7 component 9 with Niño 3 component 10, a 0.95 cross correlation value was obtained. The lowest cross correlation value of (0.33) was obtained from Climate Division 6, precipitation component 7 with Niño 4 component 7.

  9. Structure Properties of Ternary Hydrides Ni3AlHx

    NASA Astrophysics Data System (ADS)

    Pan, Yi-wei; Zhang, Wen-qing; Chen, Nan-xian

    1996-09-01

    The structure properties of the ternary hydrides Ni3AlHx are studied by use of the interatomic pair potentials obtained from the first principles electronic structure calculation and Chen-Mobius 3-dimensional lattice inversion method. The heat of formation and volume expansion of the hydrogenized systems are investigated.

  10. Surface Composition of NiPd Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Khalil, Joe; Bozzolo, Guillermo; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Surface segregation in Ni-Pd alloys has been studied using the BFS method for alloys. Not only does the method predict an oscillatory segregation profile but it also indicates that the number of Pd-enriched surface planes can vary as a function of orientation. The segregation profiles were computed as a function of temperature, crystal face, and composition. Pd enrichment of the first layer is observed in (111) and (100) surfaces, and enrichment of the top two layers occurs for (110) surfaces. In all cases, the segregation profile shows oscillations that are actually related to weak ordering tendencies in the bulk. An atom-by-atom analysis was performed to identify the competing mechanisms leading to the observed surface behaviors. Large-scale atomistic simulations were also performed to investigate the temperature dependence of the segregation profiles as well as for analysis of the bulk structures. Finally, the observed surface behaviors are discussed in relation to the bulk phase structure of Ni-Pd alloys, which exhibit a tendency to weakly order.

  11. Discriminating different El Niño and La Niña phases from evolving climate networks

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Radebach, Alexander; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    The variability of the El Niño Southern Oscillation (ENSO) can roughly be categorized into El Niño (anomalously warm), La Niña (anomalously cold) and normal periods. Additionally, at least the El Niño exhibits into two different types (Eastern Pacific (EP) and central Pacific (CP)), which may be distinguished from each other by different signatures in the Pacific sea surface temperature field. However, up to now no generally applicable criterion to distinguish these different phases has been introduced. We present here a method based on complex network analysis to distinguish these EP and CP events by utilizing a simple scalar-valued measure (the so-called climate network transitivity) related to the third power of the cross-correlation matrix between grid points in a daily global surface air temperature field. From a one-year running window analysis we obtain the time-evolution of this measure and show that during EP events it displays a strong peak, whereas its value during CP events is close to the baseline formed by normal periods. This behavior is easily understood from the different impacts on the global climate system displayed by the two different El Niño flavors as well as the high synchronization of Pacific sea-surface temperatures during El Niño events. We compare our results with recent works on El Niño classifications and find that for the years 1970-2000 (the main time interval covered by most past studies) our method distinguishes correctly all existing events. By performing a network-based dimensionality reduction of the correlation matrix, we show that our findings also display high consistency with works that applied EOF analysis as a tool to discriminate between both El Niño flavors. Ultimately, we apply our framework to La Niña events and show that a similar discrimination into two types is not only possible but again in good accordance with the few existing previous works regarding this problem. Our framework provides a powerful

  12. Electroless plating of Ni thin films using foam of electrolyte

    NASA Astrophysics Data System (ADS)

    Furuhashi, Takahiro; Yamada, Yoshiyasu; Ichihara, Shoji; Takai, Akihiro; Usui, Hiroaki

    2016-02-01

    Electroless plating of Ni thin films was achieved in foam of electroplating solution in place of electroplating liquid. Commercial hypophosphite-based solution for Ni electroless plating was added with a surfactant of sulfuric acid monododecyl ester sodium salt (SDS) and bubbled with nitrogen gas to produce airy foam. Ni thin films were deposited by immersing iron substrates in the foam. Although stationary foam was inconvenient for electrodeposition by itself, film growth was enhanced by generating a flow of foam using substrate rotation and by adding SDS to a concentration of 0.1 to 0.3 wt %. No defects attributed to pinholes were observed on the film surface. This method was effective in reducing the net amount of plating solution necessary for film deposition.

  13. Metastable γ-FeNi nanostructures with tunable Curie temperature

    NASA Astrophysics Data System (ADS)

    Miller, K. J.; Sofman, M.; McNerny, K.; McHenry, M. E.

    2010-05-01

    We report on new metastable γ-FeNi nanoparticles produced by mechanical alloying of melt-spun ribbon using a high energy ball mill followed by a solution annealing treatment in the γ-phase region and water quenching in of the face-centered cubic γ-phase. In the Fe-Ni phase diagram there is a strong compositional dependence of the Curie temperature, Tc, on composition in the γ-phase. This work studies the stabilization of γ-phase nanostructures and the compositional tuning of Tc in Fe-Ni alloys which can have important ramifications on the self-regulated heating of magnetic nanoparticles in temperature ranges of interest for applications in polymer curing and cancer thermotherapies. To date we have achieved Curie temperatures as low as 120 °C by this method.

  14. Oxygen potentials in Ni + NiO and Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4] systems

    SciTech Connect

    Kale, G.M.; Fray, D.J. . Dept. of Mining and Mineral Engineering)

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4] equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu[sub 2]O [vert bar][vert bar] (Y[sub 2]O[sub 3])ZrO[sub 2] [vert bar][vert bar] Ni + NiO, Pt (-) and (+) Pt, Ni + NiO [vert bar][vert bar] (Y[sub 2]O[sub 3])ZrO[sub 2] [vert bar][vert bar] Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4], Pt (-) in the temperature range of 800 to 1,300 K and 1,100 to 1,460 K, respectively. The electromotive force (emf) of both he cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. for the coexistence of the two-phase mixture of Ni + NiO, [Delta][mu][sub O[sub 2

  15. Recycling Ni from Contaminated and Mineralized Soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rare plant species accumulate potentially valuable concentrations of some metals. Alyssum murale readily accumulates over 2% Ni in aboveground dry matter when grown on Ni-mineralized serpentine soils in Oregon, allowing production of “hay” biomass with at least 400 kg Ni ha-1 with low levels of fer...

  16. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    NASA Technical Reports Server (NTRS)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  17. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using Co-precipitation method

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Rayan, D. A.; Turky, A. O.; Hessien, M. M.

    2015-01-01

    Nanocrystalline Ni0.5Zn0.5-xCoxFe2-zYzO4 powders (x=0-0.3 and z from 0 to 0.3) have been synthesized via a facile co-precipitation technique. X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) are utilized in order to study the effect of variation of cobalt and yttrium substitutions and its impact on crystalline size, lattice parameter, X-ray density, microstructure and magnetic properties of the formed powders. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase for the formed precursors precipitated at pH 10 annealed at 1000 oC for 2 h. The lattice parameter and the unit cell were decreased linearly with increasing Co content whereas they were increased with increasing the Y incorporation. Additionally, the porosity was increased with increasing Co concentration while it was decreased with increasing the Y insertion. The mean ionic radii and hopping and bond lengths was decreased with the value of Co2+ and they were increased with the value of Y3+ ion as well as both of Y3+ and Co2+ ions. The microstructures of the produced powders were found to be cubic like structure. The addition of Y3+ ion suppressed the grain size whereas addition of Co2+ ion enhanced the grain growth availably. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Co and Y concentrations incorporation up to x=0.3. Meanwhile, the formed powders exhibited superparamagnetic characteristics. A high saturation magnetization (77.0 emu/g) was achieved for Ni0.5Zn0.2Co0.3Fe2O4 sample annealed at 1000 oC for 2 h.

  18. Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals.

    PubMed

    Pietrelli, L; Bellomo, B; Fontana, D; Montereali, M

    2005-01-01

    Since NiMH and NiCd batteries are still used in the electronic devices market, a treatment and recycling plant has many advantages both from the environmental and the economic points of view. Unfortunately, there is no relationship between shape, size and chemical composition of spent batteries, consequently the characterization and the leaching method of the starting material becomes an important step of the overall treatment process in choosing the best conditions for the selective separation of the metals by hydrometallurgy. Leaching at 20 degrees C with H(2)SO(4) 2M for about 2h seems to be a good solution in terms of cost and efficiency for both battery types. The hydroxide compounds can be readily leached while Ni present as metallic form requires more aggressive conditions due to kinetic constraints. In this paper, the characterization of NiMH and NiCd spent batteries and the results of leaching tests in different conditions are reported. PMID:15737722

  19. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Hamidi, Seyedeh Mehri; Mosaeii, Babak; Afsharnia, Mina; Aftabi, Ali; Najafi, Mojgan

    2016-11-01

    We report the magneto-optical properties of aligned cobalt, Nickel and nickel/ Cobalt multilayer nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in polydimethylsiloxane matrix to reach to the composite. The used external magnetic field arranges the nanowires and our aligned nanowires were investigated by magneto-optical surface plasmon resonance techniques in two easy and hard axis configurations. Our results show the sufficient sensitivity in magneto-optical surface plasmon resonance of Nickel and cobalt arrays nanowires and because the different modulation mechanism in Ni and Co nanodisks, in Ni/Co multilayer we see the magnetization modulation of the excitation angle in accordance with magnetic field modulation of the SPP wave vector in each nanodisk. Finally, we show that the Ni/Co multilayer aligned nanowires can be used as efficient magnetic field sensor.

  20. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    SciTech Connect

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.

  1. The coordination chemistry of "[BP3]NiX" platforms: targeting low-valent nickel sources as promising candidates to L3Ni=E and L3Ni(triple bond)E linkages.

    PubMed

    MacBeth, Cora E; Thomas, J Christopher; Betley, Theodore A; Peters, Jonas C

    2004-07-26

    A series of divalent, monovalent, and zerovalent nickel complexes supported by the electron-releasing, monoanionic tris(phosphino)borate ligands [PhBP3] and [PhBPiPr3] ([PhBP3] = [PhB(CH2PPh2)3]-, [PhBPiPr3] = [PhB(CH2PiPr2)3]-) have been synthesized to explore fundamental aspects of their coordination chemistry. The pseudotetrahedral, divalent halide complexes [PhBP3]NiCl (1), [PhBP3]NiI (2), and [PhBPiPr3]NiCl (3) were prepared by the metalation of [PhBP3]Tl or [PhBPiPr3]Tl with (Ph3P)2NiCl2, NiI2, and (DME)NiCl2 (DME = 1,2-dimethoxyethane), respectively. Complex 1 is a versatile precursor to a series of complexes accessible via substitution reactions including [PhBP3]Ni(N3) (4), [PhBP3]Ni(OSiPh3) (5), [PhBP3]Ni(O-p-tBu-Ph) (6), and [PhBP3]Ni(S-p-tBu-Ph) (7). Complexes 2-5 and 7 have been characterized by X-ray diffraction (XRD) and are pseudotetrahedral monomers in the solid state. Complex 1 reacts readily with oxygen to form the four-electron-oxidation product, [[PhB(CH2POPh2)2(CH2PPh2)]NiCl] (8A or 8B), which features a solid-state structure that is dependent on its method of crystallization. Chemical reduction of 1 using Na/Hg or other potential 1-electron reductants generates a product that arises from partial ligand degradation, [PhBP3]Ni(eta2-CH2PPh2) (9). The more sterically hindered chloride 3 reacts with Li(dbabh) (Hdbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) to provide the three-coordinate complex [kappa2-PhBPiPr3]Ni(dbabh) (11), also characterized by XRD. Chemical reduction of complex 1 in the presence of L-type donors produces the tetrahedral Ni(I) complexes [PhBP3]Ni(PPh3) (12) and [PhBP3]Ni(CNtBu) (13). Reduction of 3 following the addition of PMe3 or tert-butyl isocyanide affords the Ni(I) complexes [PhBPiPr3]Ni(PMe3) (14) and [PhBPiPr3]Ni(CNtBu) (15), respectively. The reactivity of these [PhBP3]NiIL and [PhBPiPr3]NiIL complexes with respect to oxidative group transfer reactions from organic azides and diazoalkanes is discussed

  2. Ultrafast synthesis of yolk-shell and cubic NiO Nanopowders and application in lithium ion batteries.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-02-26

    A continuous one-pot method was employed to synthesize yolk-shell and single-crystalline cubic NiO powders in a few seconds. Submicrometer-sized NiO yolk-shell particles were prepared by spray pyrolysis at 900 °C. Single-crystalline cubic NiO nanopowders were prepared by one-pot flame spray pyrolysis from NiO vapors. Particle surface areas of the yolk-shell and single-crystalline cubic NiO powders as obtained using the Brunauer-Emmett-Teller method were 8 and 5 m(2) g(-1), respectively. The mean crystallite sizes of the yolk-shell-structured and cubic NiO powders were 50 and 80 nm, respectively. The yolk-shell and single-crystalline cubic NiO powders delivered discharge capacities of 951 and 416 mA h g(-1), respectively, after 150 cycles, and the corresponding capacity retentions measured after the first cycle were 106 and 66%, respectively. The yolk-shell-structured NiO powders showed rate performance better than that of the single-crystalline cubic NiO nanopowders. Even at a high current density of 1 A g(-1), the discharge capacity of the yolk-shell-structured NiO powders was as high as 824 mA h g(-1) after 50 cycles, in which the current densities were increased stepwise. PMID:24490667

  3. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.

    PubMed

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L

    2012-02-21

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  4. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.

    PubMed

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L

    2012-02-21

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times. PMID:22283487

  5. Kinetics of Ni Sorption in Soils: Roles of Soil Organic Matter and Ni Precipitation

    SciTech Connect

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L.

    2012-12-10

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  6. Field-Induced Slow Magnetic Relaxation in the Ni(I) Complexes [NiCl(PPh3)2]·C4H8O and [Ni(N(SiMe3)2)(PPh3)2].

    PubMed

    Lin, Weiquan; Bodenstein, Tilmann; Mereacre, Valeriu; Fink, Karin; Eichhöfer, Andreas

    2016-03-01

    Direct current (dc) and alternating current (ac) magnetic measurements have been performed on the three Ni(I) complexes: [NiCl(PPh3)3], [NiCl(PPh3)2]·C4H8O, and [Ni(N(SiMe3)2)(PPh3)2]. Fits of the dc magnetic data suggest an almost similar behavior of the three compounds, which display only moderate deviations from the spin-only values. The ac magnetic investigations reveal that the two complexes with trigonal planar coordination--[NiCl(PPh3)2]·C4H8O and [Ni(N(SiMe3)2)(PPh3)2]--display slow magnetic relaxation at low temperatures under applied dc fields, whereas tetrahedral [NiCl(PPh3)3] does not. Ground and excited states as well as magnetic data were calculated by ab initio wave function based multi-configurational methods, including dynamic correlation as well as spin-orbit coupling. The two trigonal planar complexes comprise well-isolated S = (1)/2 ground states, whereas two S = (1)/2 states with a splitting of less than 100 cm(-1) were found in the tetrahedral compound.

  7. Conversion of CH{sub 4}/CO{sub 2} to syngas over Ni-Co/Al{sub 2}O{sub 3}-ZrO{sub 2} nanocatalyst synthesized via plasma assisted co-impregnation method: Surface properties and catalytic performance

    SciTech Connect

    Rahemi, Nader; Haghighi, Mohammad; Akbar Babaluo, Ali; Fallah Jafari, Mahdi; Khorram, Sirous

    2013-09-07

    Ni/Al{sub 2}O{sub 3} catalyst promoted by Co and ZrO{sub 2} was prepared by co-impregnation method and treated with glow discharge plasma. The catalytic activity of the synthesized nanocatalysts has been tested toward conversion of CH{sub 4}/CO{sub 2} to syngas. The physicochemical characterizations like XRD, EDX, FESEM, TEM, BET, FTIR, and XPS show that plasma treatment results in smaller particle size, more surface concentration, and uniform morphology. The dispersion of nickel in plasma-treated nanocatalyst was also significantly improved, which was helpful for controlling the ensemble size of active phase atoms on the support surface. Improved physicochemical properties caused 20%–30% enhancement in activity of plasma-treated nanocatalyst that means to achieve the same H{sub 2} or CO yield, the plasma-treated nanocatalyst needed about 100 °C lower reaction temperature. The H{sub 2}/CO ratio got closer to 1 at higher temperatures and finally at 850 °C H{sub 2}/CO = 1 is attained for plasma-treated nanocatalyst. Plasma-treated nanocatalyst due to smaller Ni particles and strong interaction between active phase and support has lower tendency to keep carbon species on its structure and hence excellent stability can be observed for this catalyst.

  8. Discriminating different El Niño and La Niña phases by evolving climate networks

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Radebach, Alexander; Donner, Reik V.; Donges, Jonathan F.; Kurths, Jürgen

    2015-04-01

    The El Niño Southern Oscillation (ENSO) can be observed, for example, in terms of surface air temperature anomalies in the Central and East Pacific Ocean and has a large impact on the global climate system. Its variability can roughly be categorized into El Niño (anomalously warm), La Niña (anomalously cold) and normal periods. In addition, the El Niño exhibits into two different types (Eastern-Pacific (EP) and central-Pacific (CP) type) which may be distinguished from each other by different signatures in the first empirical orthogonal function (EOF) computed over the respective years of its appearance. A similar proposition has been made recently regarding the existence of two different types of La Niña phases [1]. However, no generally applicable criterion to distinguish these different phases has been introduced so far. Here, we construct time-evolving climate networks from anomalized daily global surface air temperature fields and investigate the dynamics of their structural properties. For the El Niño phases, global network measures have been shown to naturally discriminate between the presence of EP and CP type [2]. Local network measures found during either of the two periods show high similarity with the results from classical EOF analysis with respect to their spatial patterns which strongly depend on the El Niño type. If the same concept is applied to La Niña periods, we find that an analogous categorization of events into two types is possible. Here, the spatial patterns of local network measures prove to be equivalent to those found for El Niño events. Our findings imply that each of the four different types of ENSO events displays unique signatures in the SAT field's correlation structure, which can be discriminated objectively with the tools of complex network theory at hand. Our findings demonstrate that evolving climate networks provide a powerful formalism to systematically detect and categorize different types of ENSO periods while at

  9. In situ X-ray Rietveld analysis of Ni YSZ solid oxide fuel cell anodes during NiO reduction in H2

    NASA Astrophysics Data System (ADS)

    Reyes Rojas, A.; Esparza-Ponce, H. E.; Fuentes, L.; López-Ortiz, A.; Keer, A.; Reyes-Gasga, J.

    2005-07-01

    A synthesis and characterization of solid oxide fuel cell (SOFC) anodes of nickel with 8%mol yttrium stabilized zirconia (Ni-YSZ) is presented. Attention was focused on the kinetics and phase composition associated with the transformation of NiO-YSZ to Ni-YSZ. The anodes were prepared with an alternative synthesis method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400°C and oxide reduction (NiO-YSZ → Ni-YSZ) at 800°C for 8 h in a tubular reactor furnace using 10% H2/N2. The obtained material was compressed by unidirectional axial pressing into 1 cm-diameter discs with 15-66 wt% Ni and calcinated from room temperature to 800°C. A heating rate of 1°C min-1 showed the best results to avoid any anode cracking. Their structural and chemical characterization during the isothermal reduction were carried out by in situ time-resolved X-ray diffraction, refined with the Rietveld method (which allowed knowing the kinetic process of the reduction), scanning electron microscopy and X-ray energy dispersive spectroscopy. The results showed the formation of tetragonal YSZ 8%mol in the presence of nickel, a decrement in the unit cell volume of Ni and an increment of Ni in the Ni-YSZ anodes during the temperature reduction. The analysis indicated that the Johnson-Mehl-Avrami equation is unable to provide a good fit to the kinetics of the phase transformation. Instead, an alternative equation is presented.

  10. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    SciTech Connect

    Oka, Hiroshi Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  11. Effect of hydrogenation on magnetic and electronic behaviour of Pr-Ni

    SciTech Connect

    Rana, Pooja Singh, Sanjay K. Verma, U. P.

    2014-04-24

    Magnetic and electronic properties of PrNi and PrNi-H have been investigated by using first principles approach. The ground state of both the compounds is base-centered orthorhombic CrB structure. Calculations are performed using full potential linearized augmented plane wave plus local orbitals (FP-L/APW) method including spin-polarization within the frame work of density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA). The hydrogen stored in PrNi, i.e., PrNi-H has been studied to analyze the effective changes in magnetic moments and electronic structures in comparison to PrNi. A comparative study of the density of states in both the compounds has also been presented.

  12. Understanding and engineering of NiGe/Ge junction formed by phosphorous ion implantation after germanidation

    NASA Astrophysics Data System (ADS)

    Oka, Hiroshi; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2014-08-01

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorous ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  13. Adsorptive performance for methylene blue of magnetic Ni@activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Panfeng; Xu, Jingcai; Zhang, Beibei; Li, Jing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Gong, Jie; Ge, Hongliang; Wang, Xinqing

    2015-11-01

    Owing to the unique microporous structure and high specific surface area, activated carbon (AC) can act as a good candidate for functional materials. In this paper, Ni@AC magnetic nanocomposites with excellent magnetic response are synthesized by the hydrothermal method. All Ni@AC nanocomposites present ferromagnetism and Ni nanoparticles exist in the pores of AC. The saturation magnetization (Ms) increases with the increasing content of Ni, while the specific surface area and pore volume decrease. The S-50 sample possesses the parameters of the specific surface area of 1156.8 m2 ṡ g-1 and Ms of 3.5 emu/g. Furthermore, the methylene blue (MB) removal analysis indicates that 99% MB can be adsorbed in 50 min. The as-prepared Ni@AC nanocomposites present good adsorptive capacity of MB and can be separated easily from water by magnetic separation technique.

  14. Electrochemical sensing behaviour of Ni doped Fe{sub 3}O{sub 4} nanoparticles

    SciTech Connect

    Suresh, R.; Giribabu, K.; Manigandan, R.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Ni doped Fe{sub 3}O{sub 4} nanoparticles were synthesized by simple hydrothermal method. The prepared nanomaterials were characterized by X-ray diffraction analysis, DRS-UV-Visible spectroscopy and field emission scanning electron microscopy. The XRD confirms the phase purity of the synthesized Ni doped Fe{sub 3}O{sub 4} nanoparticles. The optical property of Ni doped Fe{sub 3}O{sub 4} nanoparticles were studied by DRS UV-Visible analysis. The electrochemical sensing property of pure and Ni doped Fe{sub 3}O{sub 4} nanoparticles were examined using uric acid as an analyte. The obtained results indicated that the Ni doped Fe{sub 3}O{sub 4} nanoparticles exhibited higher electrocatalytic activity towards uric acid.

  15. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit. PMID:27433687

  16. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit.

  17. The corrosion behavior of electroless Ni-P coating in Cl-/H2S environment

    NASA Astrophysics Data System (ADS)

    Xiu-qing, Xu; Jian, Miao; Zhen-quan, Bai; Yao-rong, Feng; Qiu-rong, Ma; Wen-zhen, Zhao

    2012-09-01

    At present, the Cl-/H2S corrosion of refinery heat exchanger at low temperature has a great impact on safety production. Aimed at this problem, an amorphous state Ni-P coating was prepared by electroless plating method in this paper. The electrochemical behavior and corrosion resistance of Ni-P coating in Cl-/H2S environment were investigated by means of electrochemical equipment and autoclave, respectively. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) analysis suggest that the Ni-P coating is amorphous state and little microporous appears on its surface. The electrochemical measurement and autoclave test results show that the corrosion resistance of Ni-P coating is superior to that of 316L stainless due to its amorphous state structure and low porosity. The corrosion rate of Ni-P coating in this Cl-/H2S environment is only 0.0011 mm/a.

  18. Interface alloying due to Kr-irradiation on Ni/Si system

    NASA Astrophysics Data System (ADS)

    Datta, D.; Bhattacharyya, S. R.

    2007-03-01

    This study deals with an investigation of silicide formation at the interface of Ni thin film and Si substrate induced by 300 keV 84Kr2+ ions at a number of doses under ambient condition. The implanted samples were subsequently annealed using a rapid thermal annealing system (RTA) in vacuum environment. The modification of the interface and surface properties has been analyzed using various methods like scanning electron microscope with energy dispersive X-ray analysis (SEM/EDAX), X-ray diffraction (XRD), etc. The energy dispersive X-ray spectra (EDS) show a decrease of Ni content in the samples with increasing dose, which indicates the sputter erosion due to ion irradiation. The SEM micrographs show no considerable surface modification under ion bombardment but the XRD spectra clearly reveal the formation of different phases of Ni2Si and NiSi at lower doses which transforms to NiSi as dose increases.

  19. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    PubMed

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  20. Direct growth of single-layer graphene on Ni surface manipulated by Si barrier

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Li, Jinhua; Chen, Da; Zheng, Li; Zheng, Xiaohu; Guo, Qinglei; Wei, Xing; Ding, Guqiao; Zhang, Miao; Di, Zengfeng; Liu, Su

    2014-05-01

    Pure Ni film is the first metal catalyst that can generate graphene with small domains and variable thickness across the film. The lack of control over layer number is attributed to the high carbon solubility of Ni. We designed a combinatorial Ni/Si system, which enables the direct growth of monolayer graphene via chemical vapor deposition method. In this system, Si was introduced as the carbon diffusion barriers to prevent carbon diffusing into Ni film. The designed system fully overcomes the fundamental limitations of Ni and provides a facile and effective strategy to yield homogenous monolayer graphene over large area. The field effect transistors were fabricated and characterized to determine the electrical properties of the synthesized graphene film. Furthermore, this technique can utilize standard equipments available in semiconductor technology.

  1. Gadolinium substitution effect on the thermomagnetic properties of Ni ferrite ferrofluids

    NASA Astrophysics Data System (ADS)

    Jacobo, Silvia E.; Arana, Mercedes; Bercoff, Paula G.

    2016-10-01

    This work is focused on the structural and magnetic characterization of Gd-doped Ni ferrite nanoparticles and the preparation of a ferrofluid for applications in heat-transfer devices. For this purpose, spinel ferrites NiFe2O4, and NiFe1.88Gd0.12O4 were prepared by the self-combustion method. The substituted sample was obtained with a small amount of Gd inclusion and the excess appeared as GdFeO3. The smallest nanoparticles of both samples were properly coated and dispersed in kerosene. Thermal conductivities of the produced ferrofluids were measured at 25 °C under an applied magnetic field. There is a significant enhancement in the thermal conductivity of the ferrofluid prepared with NiGd ferrite with respect to the one with Ni ferrite, in presence of a magnetic field. This effect is directly related to the well-known magnetocaloric effect of Gd.

  2. Structural and magnetic properties of FeNi thin films fabricated on amorphous substrates

    SciTech Connect

    Tashiro, T. Y.; Mizuguchi, M. Kojima, T.; Takanashi, K.; Koganezawa, T.; Kotsugi, M.; Ohtsuki, T.

    2015-05-07

    FeNi films were fabricated by sputtering and rapid thermal annealing on thermally amorphous substrates to realize the formation of an L1{sub 0}-FeNi phase by a simple method. Structural and magnetic properties of FeNi films were investigated by varying the annealing temperature. L1{sub 0}-FeNi superlattice peaks were not observed in X-ray diffraction patterns, indicating no formation of L1{sub 0}-ordered phase, however, the surface structure systematically changed with the annealing temperature. Magnetization curves also revealed a drastic change depending on the annealing temperature, which indicates the close relation between the morphology and magnetic properties of FeNi films fabricated on amorphous substrates.

  3. Electroless fabrication and supercapacitor performance of CNT@NiO-nanosheet composite nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, W.; Li, B. Q.; Ding, S. J.

    2016-02-01

    Composite nanostructures consisting of porous NiO nanosheets on carbon nanotubes (CNTs) are fabricated using a facile and low-cost electroless plating method. The CNTs, modified by a polymer, are adopted as the template upon which porous Ni nanosheets are grown using electroless plating. This is followed by removal of the polymer layer and oxidation of the Ni by controlled thermal annealing. The effect of reductant concentration on the morphology of the NiO nanosheets is studied. The electrochemical characteristics of the nanostructures are measured using chronopotentiometry. Experimental measurements show that the NiO nanosheet covered CNT composite nanostructures exhibit a relatively high specific capacitance of 1177 F g-1 at a discharge current density of 2 A g-1, while retaining 89.2% of its initial capacitance at a current density of 2 A g-1 after 1000 cycles.

  4. Epochal changes in the association between malaria epidemics and El Niño in Sri Lanka

    PubMed Central

    Zubair, Lareef; Galappaththy, Gawrie N; Yang, Hyemin; Chandimala, Janaki; Yahiya, Zeenas; Amerasinghe, Priyanie; Ward, Neil; Connor, Stephen J

    2008-01-01

    Background El Niño events were suggested as a potential predictor for malaria epidemics in Sri Lanka based on the coincidence of nine out of 16 epidemics with El Niño events from 1870 to 1945. Here the potential for the use of El Niño predictions to anticipate epidemics was examined using enhanced climatic and epidemiological data from 1870 to 2000. Methods The epidemics start years were identified by the National Malaria Control Programme and verified against epidemiological records for consistency. Monthly average rainfall climatologies were estimated for epidemic and non-epidemic years; as well El Niño, Neutral and La Niña climatic phases. The relationship between El Niño indices and epidemics was examined to identify 'epochs' of consistent association. The statistical significance of the association between El Niño and epidemics for different epochs was characterized. The changes in the rainfall-El Niño relationships over the decade were examined using running windowed correlations. The anomalies in rainfall climatology during El Niño events for different epochs were compared. Results The relationship between El Niño and epidemics from 1870 to 1927 was confirmed. The anomalies in monthly average rainfall during El Niño events resembled the anomalies in monthly average rainfall during epidemics during this period. However, the relationship between El Niño and epidemics broke down from 1928 to 1980. Of the three epidemics in these six decades, only one coincided with an El Niño. Not only did this relationship breakdown but epidemics were more likely to occur in periods with a La Niña tendency. After 1980, three of four epidemics coincided with El Niño. Conclusion The breakdown of the association between El Niño and epidemics after 1928 is likely due to an epochal change in the El Niño-rainfall relationship in Sri Lanka around the 1930's. It is unlikely that this breakdown is due to the insecticide spraying programme that began in 1945 since the

  5. California Niño/Niña

    PubMed Central

    Yuan, Chaoxia; Yamagata, Toshio

    2014-01-01

    The present study shows the existence of intrinsic coastal air-sea coupled phenomenon in the coastal ocean off Baja California and California in boreal summer for the first time. It contributes significantly to the interannual sea surface temperature (SST) anomalies there. An initial decrease/increase in the equatorward alongshore surface winds weakens/strengthens the coastal upwelling and raises/lowers the coastal SSTs through oceanic mixed-layer processes. The resultant coastal warming/cooling, in turn, heats/cools the overlying atmosphere anomalously, decreases/increases the atmospheric pressure in the lower troposphere, generates an anomalous cross-shore pressure gradient, and thus reinforces or maintains the alongshore surface wind anomalies. The regional air-sea coupled phenomenon seems to be analogous to the well-known El Niño/Southern Oscillation (ENSO) in the tropical Pacific but with much smaller time and space scales, and may be referred to as California Niño/Niña in its intrinsic sense. PMID:24763062

  6. Structural and electrical properties of Ni-YSZ cermet materials

    NASA Astrophysics Data System (ADS)

    Haberko, K.; Jasinski, M.; Pasierb, P.; Radecka, M.; Rekas, M.

    Ceramic-metal composites (cermets) containing yttria-stabilized zirconia, YSZ, and Ni particles are commonly used as anode materials in solid oxide fuel cells. The long-term performance of fuel cells is strictly related to both the structural and electrical properties of anode materials. In order to achieve high mixed electrical conductivity and high activity of electrochemical reactions and hydrocarbon fuel reforming, it is necessary to select an appropriate chemical composition and a suitable method of preparation. Materials containing 8 mol% yttria-stabilized zirconia and Ni were prepared by means of two methods: co-precipitation and impregnation. The structure of the materials was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosity studies. The thermal expansion coefficient (TEC) was determined using the dilathometric method. Electrochemical impedance spectroscopy (EIS) and the Wagner polarization method were used to determine electrical conductivity and the electron transference numbers, respectively.

  7. The Ni and Co substitutions in iron chalcogenide single crystals

    NASA Astrophysics Data System (ADS)

    Bezusyy, V. L.; Gawryluk, D. J.; Malinowski, A.; Berkowski, M.; Cieplak, Marta Z.

    2015-03-01

    We study the ab-plane resistivity and Hall effect in Fe1-yMyTe0.65Se0.35 single crystals with M =Co or Ni, and y up to 0.2. The crystals are grown by Bridgman's method. The low-temperature Hall coefficient RH changes sign to negative for crystals with y exceeding 0.135 (Co) and 0.06 (Ni), consistent with the electron doping induced by these impurities. However, the RH remains positive for all samples at high T, suggesting that remnant hole pockets survive the doping, but the holes become localized at low T in heavily doped crystals. Superconducting transition temperature (Tc) approaches zero for y = 0.14 (Co), and 0.03 (Ni), while the resistivity at the Tc onset is only weakly affected by Co doping, but it increases strongly for the Ni. These results suggest that in case of Co impurity the Tc suppression may be attributed to electron doping. On the other hand, the Ni substitution, in addition to electron doping, induces strong localization effects at small impurity contents. Using two-band conduction model we argue that the localization of electron carriers is responsible for strong superconductivity suppression by Ni impurity. Supported by EC through the FunDMS Advanced Grant of the ERC (FP7 Ideas), by the Polish NCS Grant 2011/01/B/ST3/00462, and by the French-Polish Program PICS 2012. Performed in the laboratories co-financed by NanoFun Project POIG.02.02.00-00-025/09.

  8. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  9. Hollow octahedral and cuboctahedral nanocrystals of ternary Pt-Ni-Au alloys

    NASA Astrophysics Data System (ADS)

    Shviro, Meital; Polani, Shlomi; Zitoun, David

    2015-08-01

    Hollow particles of Pt-Ni-Au alloys have been prepared through a two-step reaction with the synthesis of NiPt octahedral and cuboctahedral templates followed by a galvanic replacement reaction by Au(iii). Metal etching presents an efficient method to yield hollow particles and investigate the Au diffusion in the metallic Pt-Ni framework through macroscopic (X-ray diffraction and SQUID magnetic measurement) and microscopic (HRTEM and STEM) measurements. The hollow particles retain the shape of the original nanocrystals. The nucleation of Au is found to be induced preferentially on the tip of the polyhedral nanocrystals while the etching of Ni starts from the facets leaving hollow octahedral particles consisting of 2 nm thick edges. In the presence of oleylamine, the Au tip grows and yields a heterogeneous dimer hollow-NiPt/Au. Without oleylamine, the Au nucleation is followed by Au diffusion in the Ni/Pt framework to yield a hollow single crystal Pt-Ni-Au alloy. The Pt-Ni-Au alloyed particles display a superparamagnetic behavior at room temperature.

  10. RELATIVISTIC R-MATRIX CLOSE-COUPLING CALCULATIONS FOR PHOTOIONIZATION OF Si-LIKE Ni XV

    SciTech Connect

    Singh, Jagjit; Jha, A. K. S.; Mohan, Man

    2010-02-01

    We present relativistic close-coupling photoionization calculations of Ni XV using the Breit-Pauli R-matrix method to obtain photoionization cross section of Ni XV from the ground state 3s {sup 2}3p {sup 2}({sup 3} P {sub 0}) and the lowest four 3s {sup 2}3p {sup 2} ({sup 3} P {sub 1,2}, {sup 1} D {sub 2}, {sup 1} S {sub 0}) excited states. A multiconfiguration eigenfunction expansion of the core Ni XVI is employed with configurations 3s {sup 2}3p, 3s3p {sup 2}, 3s {sup 2}3d, 3p {sup 3}, 3s3p3d, 3p {sup 2}3d, 3s3d {sup 2}, 3p3d {sup 2}. We have included the lowest 40 target level states of Ni XVI in the photoionization calculations of Ni XV. Cross sections are determined by the Rydberg series of autoionizing resonances converging to several ionic states of Ni XVI. In our calculations, we have taken into account all the important physical effects such as exchange, channel coupling, and short-range correlation. Further, relativistic effects are incorporated by including mass correction, Darwin term, and spin-orbit interaction terms. The present calculations using the lowest 40 target levels of Ni XVI are presented for the first time and can be useful for modeling the ionization balance of Ni XV in laboratory and astrophysical plasmas.

  11. Ultra-separation of nickel from copper metal for the measurement of 63Ni by AMS

    NASA Astrophysics Data System (ADS)

    Marchetti, A. A.; Hainsworth, L. J.; McAninch, J. E.; Leivers, M. R.; Jones, P. R.; Proctor, I. D.; Straume, T.

    1997-03-01

    Measurements of 63Ni (t{1}/{2} = 100 yr) produced by the reaction 63Cu(n,p)63Ni could be used in the assessment of fast-neutron fluence from the Hiroshima atomic bomb. Such measurements would add new information to help resolve the current discrepancy between measured thermal neutron activation values and those calculated with the DS86 dosimetry system. It has been estimated that the 63Ni production at 5 m from the hypocenter was (1.4 ± 0.1) × 107 atoms/g Cu. Because of its sensitivity, accelerator mass spectrometry (AMS) is ideal for measurements at this low level. However, 63Ni has to be separated from large amounts of stable atomic isobar 63Cu (69% of pure Cu). In this study, a procedure is presented for the electrochemical separation of ultra-low amounts of Ni from Cu. The method was developed using samples of electrical Cu wire that were irradiated with fission neutrons from a 252Cf source. The wire samples were electrochemically dissolved in a solution containing 1 mg of Ni carrier. The Cu was selectively deposited on a cathode at controlled potential. Measurements of total Ni after electroseparation indicate ˜ 100% carrier recovery. To prevent Cu contamination, AMS targets were prepared by nickel carbonyl generation. The AMS results show a successful quantitative separation of ˜ 107 atoms of 63Ni from 2-20 g samples of Cu.

  12. 3D flexible NiTi-braided elastomer composites for smart structure applications

    NASA Astrophysics Data System (ADS)

    Heller, L.; Vokoun, D.; Šittner, P.; Finckh, H.

    2012-04-01

    While outstanding functional properties of thin NiTi wires are nowadays well recognized and beneficially utilized in medical NiTi devices, development of 2D/3D wire structures made out of these NiTi wires remains challenging and mostly unexplored. The research is driven by the idea of creating novel 2D/3D smart structures which inherit the functional properties of NiTi wires and actively utilize geometrical deformations within the structure to create new/improved functional properties. Generally, textile technology provides attractive processing methods for manufacturing 2D/3D smart structures made out of NiTi wires. Such structures may be beneficially combined with soft elastomers to create smart deformable composites. Following this route, we carried out experimental work focused on development of 3D flexible NiTi-braided elastomer composites involving their design, laboratory manufacture and thermomechanical testing. We describe the manufacturing technology and structural properties of these composites; and perform thermomechanical tests on the composites, focusing particularly on quasistatic tensile properties, energy absorption, damping and actuation under tensile loading. Functional thermomechanical properties of the composites are discussed with regard to the mechanical properties of the components and architecture of the composites. It is found that the composites indeed inherit all important features of the thermomechanical behavior of NiTi wires but, due to their internal architecture, outperform single NiTi wires in some features such as the magnitude of recoverable strain, superelastic damping capacity and thermally induced actuation strain.

  13. The effect of silicon on the oxidation behavior of NiAlHf coating system

    NASA Astrophysics Data System (ADS)

    Dai, Pengchao; Wu, Qiong; Ma, Yue; Li, Shusuo; Gong, Shengkai

    2013-04-01

    Two types of NiAlHf coatings doped with different content of Si (1 at.% and 2 at.%) were deposited on a Ni3Al based single crystal superalloy IC32 by electron beam physical vapor deposition (EB-PVD) method, respectively. For comparison, NiAlHf coating with 0 at.% Si was also prepared. The oxidation tests were carried out at 1423 K in air. At the initial stage of oxidation, large amount of flake-like θ-Al2O3 was found on NiAlHf coating surface. However, no θ-Al2O3 was observed in 2 at.% Si doped NiAlHf coating except α-Al2O3. It revealed that the Si additions could contribute to the transformation from θ-Al2O3 to α-Al2O3. When oxidation time prolonged to 100 h, it was found that the degradation of NiAlHf coating was very severe with no residual β-phase, which was due to the serious inter-diffusion between the coating and substrate. In contrast, the inter-diffusion in Si-doped coating was reduced with some residual β-phase and R-Ni(Mo, Re) precipitates. The presence of Si could retard the inter-diffusion of elements between coating and substrate, indicating a barrier diffusion effect. As a result, the oxidation resistance of NiAlHf coating was improved significantly.

  14. Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads for magnetic affinity separation of histidine-tagged proteins.

    PubMed

    Vereshchagina, T A; Fedorchak, M A; Sharonova, O M; Fomenko, E V; Shishkina, N N; Zhizhaev, A M; Kudryavtsev, A N; Frank, L A; Anshits, A G

    2016-01-28

    Magnetic Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads (Ni-ferrosphere beads - NFB) of a core-shell structure were synthesized starting from coal fly ash ferrospheres having diameters in the range of 0.063-0.050 mm. The strategy of NFB fabrication is an oriented chemical modification of the outer surface preserving the magnetic core of parent beads with the formation of micro-mesoporous coverings. Two routes of ferrosphere modification were realized, such as (i) hydrothermal treatment in an alkaline medium resulting in a NaP zeolite layer and (ii) synthesis of micro-mesoporous silica on the glass surface using conventional methods. Immobilization of Ni(2+) ions in the siliceous porous shell of the magnetic beads was carried out via (i) the ion exchange of Na(+) for Ni(2+) in the zeolite layer or (ii) deposition of NiO clusters in the zeolite and silica pores. The final NFB were tested for affinity in magnetic separation of the histidine-tagged green fluorescent protein (GFP) directly from a cell lysate. Results pointed to the high affinity of the magnetic beads towards the protein in the presence of 10 mM EDTA. The sorption capacity of the ferrosphere-based Ni-beads with respect to GFP was in the range 1.5-5.7 mg cm(-3). PMID:26688000

  15. Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors.

    PubMed

    Li, Rui; Wang, Senlin; Wang, Jianpeng; Huang, Zongchuan

    2015-07-01

    In this study, we demonstrate a facile method to fabricate novel Ni3S2 nano-triangular pyramid (NTP) arrays on Ni foam through a hydrothermal process and build unique Ni3S2@CoS core-shell NTP arrays by electro-deposition. The obtained Ni3S2@CoS material displays twice the specific capacitance of the pure Ni3S2 material in both a three-electrode system (4.89 F cm(-2) at 4 mA cm(-2)) and asymmetric supercapacitor device (0.69 F cm(-2) at 1.43 mA cm(-2)). In addition, the asymmetric supercapacitor demonstrates the outstanding energy density of 28.24 W h kg(-1) at a power density of 134.46 W kg(-1), with a stable cycle life (98.83% retained after 2000 cycles). The unique structure of the Ni3S2@CoS core-shell NTP arrays, which provides an ultra-thin CoS shell to enlarge efficient areas, introduces good conductivity, and short transportation lengths for both ions and electrons, contributes most to its excellent performance. Moreover, the bare Ni3S2 NTP arrays can be used as a new template to build other potential electrode materials.

  16. Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads for magnetic affinity separation of histidine-tagged proteins.

    PubMed

    Vereshchagina, T A; Fedorchak, M A; Sharonova, O M; Fomenko, E V; Shishkina, N N; Zhizhaev, A M; Kudryavtsev, A N; Frank, L A; Anshits, A G

    2016-01-28

    Magnetic Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads (Ni-ferrosphere beads - NFB) of a core-shell structure were synthesized starting from coal fly ash ferrospheres having diameters in the range of 0.063-0.050 mm. The strategy of NFB fabrication is an oriented chemical modification of the outer surface preserving the magnetic core of parent beads with the formation of micro-mesoporous coverings. Two routes of ferrosphere modification were realized, such as (i) hydrothermal treatment in an alkaline medium resulting in a NaP zeolite layer and (ii) synthesis of micro-mesoporous silica on the glass surface using conventional methods. Immobilization of Ni(2+) ions in the siliceous porous shell of the magnetic beads was carried out via (i) the ion exchange of Na(+) for Ni(2+) in the zeolite layer or (ii) deposition of NiO clusters in the zeolite and silica pores. The final NFB were tested for affinity in magnetic separation of the histidine-tagged green fluorescent protein (GFP) directly from a cell lysate. Results pointed to the high affinity of the magnetic beads towards the protein in the presence of 10 mM EDTA. The sorption capacity of the ferrosphere-based Ni-beads with respect to GFP was in the range 1.5-5.7 mg cm(-3).

  17. PVD synthesis and high-throughput property characterization of NiFeCr alloy libraries

    SciTech Connect

    Rar, A.; Frafjord, J. J.; Fowlkes, Jason D.; Specht, E. D.; Rack, P. D.; Santella, M. L.; Bei, H.; George, E. P.; Pharr, G. M.

    2004-12-16

    Three methods of alloy library synthesis, thick-layer deposition followed by interdiffusion, composition-spread codeposition and electron-beam melting of thick deposited layers, have been applied to Ni-Fe-Cr ternary and Ni-Cr binary alloys. Structural XRD mapping and mechanical characterization by means of nanoindentation have been used to characterize the properties of the libraries. The library synthesis methods are compared from the point of view of the structural and mechanical information they can provide.

  18. Structure of NH/sub 3/ on Ni(111)

    SciTech Connect

    Madey, T E; Houston, J E; Seabury, C W; Rhodin, T N

    1980-01-01

    In a recent study of the adsorption of NH/sub 3/ on NI(111) at T approx. 190 K using angle resolved UPS, it was concluded that NH/sub 3/ is molecularly adsorbed, and is bonded to the surface via the N atom with the H atoms oriented away from the surface. To study the bonding configuration using a direct and independent technique, we have examined NH/sub 3/ on Ni(111) using the electron stimulated desorption ion angular distribution (ESDIAD) method, coupled with temperature programmed desorption (TPD) and low energy electron diffraction (LEED). For NH/sub 3/ coverages achievable at T > 150K, (THETA approx. < 0.75 monolayers) the ESDIAD patterns are dominated by a halo of ion emission with little ion yield normal to the surface; the halo pattern is consistent with molecular NH/sub 3/ bonded to Ni via the N atom. Whereas angle-resolved UPS data indicate a specific azimutal registry of NH/sub 3/ with Ni(111) a well-defined azimuthal orientation is not evident from the ESDIAD results. Possible reasons for the differences between these results are examined, including final state effects in ESDIAD, and difference in sensitivity of the two methods to more than one possible configuration of the adsorbed NH/sub 3/.

  19. Magical NiTi expander

    PubMed Central

    Katti, Chandrika Girish; Katti, Girish; Kallur, Ravi; Ghali, Srinivas Rao

    2013-01-01

    A 24-year-old male patient was referred to our department for expansion of the constricted maxillary arch as a presurgical procedure for the correction of congenital facial disfigurement. On examination, the patient had a convex profile, increased interlabial gap, tongue thrust, limited mouth opening, posterior crossbite, asymmetric ‘V’-shaped maxillary arch with severe constriction, crowding of anterior teeth in the maxillary arch and a massive open bite. Radiographic investigations included orthopantomograph and occlusal radiographs. The patient photographs and models were analysed. On careful evaluation, the treatment for maxillary arch expansion was planned with a nickel titanium (NiTi) slow maxillary expander along with fixed mechanotherapy for alignment of teeth. An unexpectedly successful outcome was appreciated from the treatment. An emphasis should be laid on selecting and treating the case of constricted arches with a surgical or non-surgical approach, as expansion can be achieved orthodontically by using NiTi expanders. PMID:23867876

  20. Monoligated monovalent Ni: the 3d(Ni)9 manifold of states of NiCu and comparison to the 3d9 States of AlNi, NiH, NiCl, and NiF.

    PubMed

    Rothschopf, Gretchen K; Morse, Michael D

    2005-12-22

    A dispersed fluorescence investigation of the low-lying electronic states of NiCu has allowed the observation of four out of the five states that derive from the 3d(Ni)9 3d(Cu)10 sigma2 manifold. Vibrational levels of the ground X2delta(5/2) state corresponding to v = 0-11 are observed and are fit to provide omega(e) = 275.93 +/- 1.06 cm(-1) and omega(e)x(e) = 1.44 +/- 0.11 cm(-1). The v = 0 levels of the higher lying states deriving from the 3d(Ni)9 3d(Cu)10 sigma2 manifold are located at 912, 1466, and 1734 cm(-1), and these states are assigned to omega values of 3/2, 1/2, and 3/2, respectively. The last of these assignments is based on selection rules and is unequivocal; the first two are based on a comparison to ab initio and ligand field calculations and could conceivably be in error. It is also possible that the v = 0 level of the state found at 912 cm(-1) is not observed, so that T0 for the lowest excited state actually lies near 658 cm(-1). These results are modeled using a matrix Hamiltonian based on the existence of a ground manifold of states deriving from the 3d9 configuration on nickel. This matrix Hamiltonian is also applied to the spectroscopically well-known molecules AlNi, NiH, NiCl, and NiF. The term energies of the 2sigma+, 2pi, and 2delta states of these molecules, which all derive from a 3d9 configuration on the nickel atom, display a clear and understandable trend as a function of the electronegativity of the ligands.

  1. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system.

    PubMed

    Zhou, Xiaobin; Jing, Guohua; Lv, Bihong; Zhou, Zuoming; Zhu, Runliang

    2016-10-01

    Highly active Fe/Ni bimetallic nanocomposites were prepared by using the liquid-phase reduction method, and they were proven to be effective for Cr(VI) removal coupled with US irradiation. The US-assisted Fe/Ni bimetallic system could maintain a good performance for Cr(VI) removal at a wide pH range of 3-9. Based on the characterization of the Fe/Ni nanoparticles before and after reaction, the high efficiency of the mixed system could attribute to the synergistic effects of the catalysis of Ni(0) and US cavitation. Ni(0) could facilitate the Cr(VI) reduction through electron transfer and catalytic hydrogenation. Meanwhile, US could fluidize the Fe/Ni nanoparticles to increase the actual reactive surface area and clean off the co-precipitated Fe(III)-Cr(III) hydroxides to maintain the active sites on the surface of the Fe/Ni nanoparticles. Thus, compared with shaking, the US-assisted Fe/Ni system was more efficient on Cr(VI) removal, which achieved 94.7% removal efficiency of Cr(VI) within 10 min. The pseudo-first-order rate constant (kobs) in US-assisted Fe/Ni system (0.5075 min(-1)) was over 5 times higher than that under shaking (0.0972 min(-1)). Moreover, the Fe/Ni nanoparticles still have a good performance under US irradiation after 26 days aging as well as regeneration. PMID:27393969

  2. Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking

    PubMed Central

    Polanski, Jaroslaw; Bartczak, Piotr; Ambrozkiewicz, Weronika; Sitko, Rafal; Siudyga, Tomasz; Mianowski, Andrzej; Szade, Jacek; Balin, Katarzyna; Lelątko, Józef

    2015-01-01

    In this paper we report a new nanometallic, self-activating catalyst, namely, Ni-supported Pd nanoparticles (PdNPs/Ni) for low temperature ammonia cracking, which was prepared using a novel approach involving the transfer of nanoparticles from the intermediate carrier, i.e. nano-spherical SiO2, to the target carrier technical grade Ni (t-Ni) or high purity Ni (p-Ni) grains. The method that was developed allows a uniform nanoparticle size distribution (4,4±0.8 nm) to be obtained. Unexpectedly, the t-Ni-supported Pd NPs, which seemed to have a surface Ca impurity, appeared to be more active than the Ca-free (p-Ni) system. A comparison of the novel PdNPs/Ni catalyst with these reported in the literature clearly indicates the much better hydrogen productivity of the new system, which seems to be a highly efficient, flexible and durable catalyst for gas-phase heterogeneous ammonia cracking in which the TOF reaches a value of 2615 mmolH2/gPd min (10,570 molNH3/molPd(NP) h) at 600°C under a flow of 12 dm3/h (t-Ni). PMID:26308929

  3. Hierarchical Electrospun and Cooperatively Assembled Nanoporous Ni/NiO/MnOx/Carbon Nanofiber Composites for Lithium Ion Battery Anodes.

    PubMed

    Bhaway, Sarang M; Chen, Yu-Ming; Guo, Yuanhao; Tangvijitsakul, Pattarasai; Soucek, Mark D; Cakmak, Miko; Zhu, Yu; Vogt, Bryan D

    2016-08-01

    A facile method to fabricate hierarchically structured fiber composites is described based on the electrospinning of a dope containing nickel and manganese nitrate salts, citric acid, phenolic resin, and an amphiphilic block copolymer. Carbonization of these fiber mats at 800 °C generates metallic Ni-encapsulated NiO/MnOx/carbon composite fibers with average BET surface area (150 m(2)/g) almost 3 times higher than those reported for nonporous metal oxide nanofibers. The average diameter (∼900 nm) of these fiber composites is nearly invariant of chemical composition and can be easily tuned by the dope concentration and electrospinning conditions. The metallic Ni nanoparticle encapsulation of NiO/MnOx/C fibers leads to enhanced electrical conductivity of the fibers, while the block copolymers template an internal nanoporous morphology and the carbon in these composite fibers helps to accommodate volumetric changes during charging. These attributes can lead to lithium ion battery anodes with decent rate performance and long-term cycle stability, but performance strongly depends on the composition of the composite fibers. The composite fibers produced from a dope where the metal nitrate is 66% Ni generates the anode that exhibits the highest reversible specific capacity at high rate for any composition, even when including the mass of the nonactive carbon and Ni(0) in the calculation of the capacity. On the basis of the active oxides alone, near-theoretical capacity and excellent cycling stability are achieved for this composition. These cooperatively assembled hierarchical composites provide a platform for fundamentally assessing compositional dependencies for electrochemical performance. Moreover, this electrospinning strategy is readily scalable for the fabrication of a wide variety of nanoporous transition metal oxide fibers.

  4. Hierarchical Electrospun and Cooperatively Assembled Nanoporous Ni/NiO/MnOx/Carbon Nanofiber Composites for Lithium Ion Battery Anodes.

    PubMed

    Bhaway, Sarang M; Chen, Yu-Ming; Guo, Yuanhao; Tangvijitsakul, Pattarasai; Soucek, Mark D; Cakmak, Miko; Zhu, Yu; Vogt, Bryan D

    2016-08-01

    A facile method to fabricate hierarchically structured fiber composites is described based on the electrospinning of a dope containing nickel and manganese nitrate salts, citric acid, phenolic resin, and an amphiphilic block copolymer. Carbonization of these fiber mats at 800 °C generates metallic Ni-encapsulated NiO/MnOx/carbon composite fibers with average BET surface area (150 m(2)/g) almost 3 times higher than those reported for nonporous metal oxide nanofibers. The average diameter (∼900 nm) of these fiber composites is nearly invariant of chemical composition and can be easily tuned by the dope concentration and electrospinning conditions. The metallic Ni nanoparticle encapsulation of NiO/MnOx/C fibers leads to enhanced electrical conductivity of the fibers, while the block copolymers template an internal nanoporous morphology and the carbon in these composite fibers helps to accommodate volumetric changes during charging. These attributes can lead to lithium ion battery anodes with decent rate performance and long-term cycle stability, but performance strongly depends on the composition of the composite fibers. The composite fibers produced from a dope where the metal nitrate is 66% Ni generates the anode that exhibits the highest reversible specific capacity at high rate for any composition, even when including the mass of the nonactive carbon and Ni(0) in the calculation of the capacity. On the basis of the active oxides alone, near-theoretical capacity and excellent cycling stability are achieved for this composition. These cooperatively assembled hierarchical composites provide a platform for fundamentally assessing compositional dependencies for electrochemical performance. Moreover, this electrospinning strategy is readily scalable for the fabrication of a wide variety of nanoporous transition metal oxide fibers. PMID:27399605

  5. Measured Activities of Al and Ni in gamma-(Ni) and gamma'-(Ni)3Al in the Ni-Al-Pt System

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2007-01-01

    Adding Pt to Ni-Al coatings is critical to achieving the required oxidation protection of Ni-based superalloys, but the nature of the Pt effect remains unresolved. This research provides a fundamental part of the answer by measuring the influence of Pt on the activities of Al and Ni in gamma-(Ni), gamma prime-(Ni)3Al and liquid in the Ni-Al-Pt system. Measurements have been made at 25 compositions in the Ni-rich corner over the temperature range, T = 1400-1750 K, by the vapor pressure technique with a multiple effusion-cell mass spectrometer (multi-cell KEMS). These measurements clearly show adding Pt (for X(sub Pt) less than 0.25) decreases a(Al) while increasing a(Ni). This solution behavior supports the idea that Pt increases Al transport to an alloy / Al2O3 interface and also limits the interaction between the coating and substrate alloys in the gamma-(Ni) + gamma prime-(Ni)3Al region. This presentation will review the progress of this study.

  6. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th.

    2001-11-01

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  7. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    PubMed

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-01

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel. PMID:21505665

  8. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna

  9. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant.

    PubMed

    Roccotiello, Enrica; Serrano, Helena Cristina; Mariotti, Mauro Giorgio; Branquinho, Cristina

    2016-06-01

    High nickel (Ni) levels exert toxic effects on plant growth and plant water content, thus affecting photosynthesis. In a pot experiment, we investigated the effect of the Ni concentration on the physiological characteristics of the Ni hyperaccumulator Alyssoides utriculata when grown on a vermiculite substrate in the presence of different external Ni concentrations (0-500 mg Ni L(-1)). The results showed that the Ni concentration was higher in leaves than in roots, as evidenced by a translocation factor = 3 and a bioconcentration factor = 10. At the highest concentration tested (500 mg Ni L(-1)), A. utriculata accumulated 1100 mg Ni per kilogram in its leaves, without an effects on its biomass. Plant water content increased significantly with Ni accumulation. Ni treatment did not, or only slightly, affected chlorophyll fluorescence parameters. The photosynthetic efficiency (FV/FM) of A. utriculata was stable between Ni treatments (always ≥ 0.8) and the photosynthetic performance of the plant under Ni stress remained high (performance index = 1.5). These findings support that A. utriculata has several mechanisms to avoid severe damage to its photosynthetic apparatus, confirming the tolerance of this species to Ni under hyperaccumulation. PMID:26983814

  10. Interfacial reaction in the synergistic extraction rate of Ni(II) with dithizone and 1,10-phenanthroline.

    PubMed

    Watarai, H; Sasaki, K; Takahashi, K; Murakami, J

    1995-11-01

    The kinetic synergistic effect of 1,10-phenanthroline (phen) on the extraction rate of Ni(II) with dithizone (HDz) into chloroform was studied by means of a high-speed stirring method combined with photodiode-array spectrophotometry. The initial extraction rate of the adduct complex NiDz(2)phen depended upon the concentrations of both HDz and phen, suggesting the formation of NiDzphen(+) as the rate-controlling step. When [HDz] < [phen], the initial extraction of NiDz(2)phen competed with the formation of an intermediate complex, which was adsorbed at the interface and assigned most probably to NiDzphen(+)(2). The intermediate complex was gradually converted to NiDz(2)phen at a later stage of the extraction. The rate constants for the formation and consumption of the intermediate were determined, and the kinetic mechanism in the synergistic extraction was discussed.

  11. Three-dimensional nickel foam/graphene/NiCo2O4 as high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Hoa; Shim, Jae-Jin

    2015-01-01

    A facile and efficient two-step method for the decoration of graphene sheets and nickel cobalt oxide (NiCo2O4) nanoparticles on conducting nickel foam was developed. First, graphene and a bimetallic (Ni, Co) hydroxide precursor were deposited on a Ni foam support by electrodeposition followed by a thermal transformation of the bimetallic hydroxide to NiCo2O4. The graphene layer with a thickness of a few nanometers was decorated with NiCo2O4 nanoparticles, ranging in size from 3 to 5 nm. The nickel foam electrode supported graphene and NiCo2O4 exhibited rapid electron and ion transport, large electroactive surface area, and excellent structural stability. The specific capacitance of the obtained electrode was as high as 1950 F g-1 at a high current density of 7.5 A g-1, suggesting its promising applications as an efficient electrode for electrochemical capacitors.

  12. Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys

    NASA Astrophysics Data System (ADS)

    Samal, Sumanta; Biswas, Krishanu; Phanikumar, Gandham

    2016-10-01

    The present investigation reports phase and microstructure evolution during solidification of novel Ni-rich Ni-Ti-based alloys, Ni60Ti40, Ni50Cu10Ti40, Ni48Cu10Co2Ti40, and Ni48Cu10Co2Ti38Ta2 during suction casting. The design philosophy of the multicomponent alloys involves judicious selection of alloying elements such as Cu, Co, and Ta in the near Ni60Ti40 eutectic alloy by replacing both Ni and Ti so that phase mixture in the microstructure remains the same from the binary to quinary alloy. The basic objective is to study the effect of addition of Cu, Co, and Ta on the phase evolution and transformation in the Ni-rich Ni-Ti-based alloys. The detailed electron microscopic studies on these suction cast alloys reveal the presence of ultrafine eutectic lamellae between NiTi and Ni3Ti phases along with dendritic NiTi and Ti2Ni phases. It has also been observed that in the binary (Ni60Ti40) alloy, the ordered NiTi (B2) phase transforms to trigonal (R) phase followed by NiTi martensitic phase (M-phase), i.e., B2 → R-phase → M-phase during solid-state cooling. However, the addition of alloying elements such as Cu, Co to the binary (Ni60Ti40) alloy suppresses the martensitic transformation of the ordered NiTi (B2) dendrite. Thus, in the ternary and quaternary alloys, the ordered NiTi (B2) phase is transformed to only trigonal (R) phase, i.e., B2 → R-phase. The secondary precipitate of Ti2Ni has been observed in all of the studied alloys. Interestingly, Ni48Cu10Co2Ti38Ta2 quinary alloy shows the disordered nature of NiTi dendrites. The experimentally observed solidification path is in good agreement with Gulliver-Scheil simulated path for binary alloy, whereas simulated solidification path deviates from the experimental results in case of ternary, quaternary, and quinary alloys.

  13. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    NASA Astrophysics Data System (ADS)

    Chen, Qiwen; Andrawes, Bassem; Sehitoglu, Huseyin

    2014-05-01

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications.

  14. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  15. Diffusional transport and predicting oxidative failure during cyclic oxidation of beta-NiAl alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Vinarcik, E. J.; Barrett, C. A.; Doychak, J.

    1992-01-01

    Nickel aluminides (NiAl) containing 40-50 at. percent Al and up to 0.1 at. percent Zr have been studied following cyclic oxidation at 1200, 1300, 1350 and 1400 C. The selective oxidation of aluminum resulted in the formation of protective Al2O3 scales on each alloy composition at each temperature. However, repeated cycling eventually resulted in the gradual formation of less protective NiAl2O4. The appearance of the NiAl2O4, signaling the end of the protective scale-forming capability of the alloy, was related to the presence of gamma-prime-(Ni3Al) which formed as a result of the loss of aluminum from the sample. A simple methodology is presented to predict the protective life of beta-NiAl alloys. This method predicts the oxidative lifetime due to aluminum depletion when the aluminum concentration decreases to a critical concentration. The time interval preceding NiAl2O4 formation (i.e., the lifetime based on protective Al2O3 formation) and predicted lifetimes are compared and discussed. Use of the method to predict the maximum use temperature for NiAl-Zr alloys is also discussed.

  16. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    SciTech Connect

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P.A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F.P.

    2012-06-15

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of {approx}100 m{sup 2}/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 Degree-Sign C. The thermal conductivity ({kappa}) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased ({approx}60%) compared to that of NiO single crystal. This strong reduction in {kappa} with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: Black-Right-Pointing-Pointer Fast synthesis of surfactant-free NiO nanoparticles with controllable size. Black-Right-Pointing-Pointer High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. Black-Right-Pointing-Pointer Strong reduction of the thermal conductivity with decreasing particle size. Black-Right-Pointing-Pointer NiO as nanoinclusions in high performance materials for energy conversion.

  17. Interdiffusion in Ni/CrMo Composition-Modulated Films

    SciTech Connect

    Jankowski, A F; Saw, C K

    2003-02-18

    The measurement of diffusivity at low temperature in the Ni-CrMo alloy system, relative to the melt point, is accomplished through the use of a composition-modulated structure. The composition-modulated structure consists of numerous pairs of alternating Ni and Cr-Mo layers that are each just a few nanometers thick. A direct assessment of alloy stability is made possible through measurement of the atomic diffusion between these layers that occurs during anneal treatments. X ray diffraction under the Bragg condition in the {theta}/2{theta} mode is the method used to quantify the changes that occur in the short-range order, i.e. the artificial composition fluctuation. The relative intensities of satellite reflections about the Bragg peaks are monitored as a function of the time at temperature. The decay rate of the artificial composition fluctuation of Ni with Cr-Mo is analyzed using the microscopic theory of diffusion to quantify a macroscopic diffusion coefficient D as 1.52 x 10{sup -19} cm{sup 2} {center_dot} sec{sup -1} for Ni{sub 2}(Cr,Mo) at 760 K.

  18. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni- Ti files - An In-Vitro SEM study

    PubMed Central

    Reddy, J M V Raghavendra; Latha, Prasanna; Gowda, Basavana; Manvikar, Varadendra; Vijayalaxmi, D Benal; Ponangi, Kalyana Chakravarthi

    2014-01-01

    Background: Predictable successful endodontic therapy depends on correct diagnosis, effective cleaning, shaping and disinfection of the root canals and adequate obturation. Irrigation serves as a flush to remove debris, tissue solvent and lubricant from the canal irregularities; however these irregularities can restrict the complete debridement of root canal by mechanical instrumentation.Various types of hand and rotary instruments are used for the preparation of the root canal system to obtain debris free canals. The purpose of this study was to evaluate the amount of smear layer and debris removal on canal walls following the using of manual Nickel-Titanium (NiTi) files compared with rotary ProTaperNiTi files using a Scanning Electron Microscope in two individual groups. Materials & Methods: A comparative study consisting of 50 subjects randomized into two groups – 25 subjects in Group A (manual) and 25 subjects in Group B (rotary) was undertaken to investigate and compare the effects of smear layer and debris between manual and rotary NiTi instruments. Chi square test was used to find the significance of smear layer and debris removal in the coronal, middle and apical between Group A and Group B. Results: Both systems of Rotary ProTaperNiTi and manual NiTi files used in the present study, did not create completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary ProTaperNiTi instruments. Rotary instruments were less time consuming when compared to manual instruments. Instrument separation was not found to be significant with both the groups. Conclusions: Both systems of Rotary ProTaperNiTi and manual NiTi files used did not produce completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary protaper instruments. How to cite the article: Reddy JM, Latha P, Gowda B, Manvikar V, Vijayalaxmi DB, Ponangi KC. Smear layer and debris removal using manual

  19. Disorder and surface effects on work function of Ni-Pt metal gates

    NASA Astrophysics Data System (ADS)

    Xu, Guigui; Wu, Qingyun; Chen, Zhigao; Huang, Zhigao; Wu, Rongqin; Feng, Yuan Ping

    2008-09-01

    Work functions of NiPt alloys with different compositions are investigated using first-principles methods based on density-functional theory. Results of our calculations reveal that surface alloy composition has a significant effect on the work function of the NiPt alloy. However, for a given surface composition, the work function is insensitive to the distributions of Ni/Pt atoms in the alloy and it is only slightly affected by alloy disorder. Our work suggests surface atomic modification as a promising way of tuning the work function of alloy metal gate.

  20. oxide and FeNi alloy: product dependence on the reduction ability

    NASA Astrophysics Data System (ADS)

    Cao, Jungang; Qin, Yuyang; Li, Minglun; Zhao, Shuyuan; Li, Jianjun

    2014-12-01

    Based on the sol-gel combustion method, stoichiometric Fe3+, Mn2+, Ni2+ ions and citric acid were chosen as the initial reactants for the preparation of magnetic particles. Due to the different reduction ability of metal ions, completely different magnetic products (MnFe2O4 oxide and FeNi alloy) were obtained by heating the flakes at 600 °C under nitrogen atmosphere. MnFe2O4 particles exhibit superparamagnetic behavior at room temperature, and martensitic phase transformation is observed magnetically at 125 K for FeNi alloy particles.

  1. Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde.

    PubMed

    Yang, Fuchao; Guo, Zhiguang

    2016-04-01

    Ongoing interest in oxide semiconductor as components of gas sensing devices is motivated by environmental monitoring and intelligent control. NiO with different precursor solution were synthesized by aqueous chemical deposition and pyrolysis process. Here the method is quite facile, green and free of surfactant. Their morphology, crystal structure and chemical composition have been systemically characterized by various techniques. Interestingly, the microstructures of NiO can be engineered by different nickel salt (nitrate or chloride). These NiO based gas sensors showed substantially enhanced responses to benzaldehyde target analyte and exhibited fast response-recover feature. The observed gas sensing behavior is explained in terms of oxygen ionosorption mechanism.

  2. Structural and magnetic properties of Ni/Mn codoped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayaprasath, G.; Murugan, R.; Asaithambi, S.; Sakthivel, P.; Mahalingam, T.; Ravi, G.

    2016-05-01

    We report systematic studies of the magnetic properties of Ni and Mn co-doped ZnO nanoparticles prepared by co-precipitation method. Structural characterization reveals that Ni and Mn ions substituted into ZnO lattices without any secondary phases formation. Photoluminescence and Raman spectra shows that the Ni/Mn were doped into the ZnO lattice resulting slight shift in near-band-edge emission. Moreover, the novel Raman peak at 586 cm-1 indicates two kinds of cations via doping that could affect the local polarizability. Magnetic measurements of the nanoparticles exhibits ferromagnetic behavior at room-temperature.

  3. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    SciTech Connect

    Bates, MK; Jia, QY; Ramaswamy, N; Allen, RJ; Mukerjee, S

    2015-03-12

    We report a Ni-Cr/C electrocatalyst with unpreeedented massactivity for the hydrogen evolution reaction (HER). in alkaline electrolyte. The HER Oietics of numerous binary and ternary Ni-alloys and composite Ni/metal-euride/C samples were evaluated in aquebus 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni-Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to munerous binary dor ternary Ni-alloys, inCluding Ni Mg materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a, sink for the H-ads, intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiO content and that the Cr2O3 appears to stabilize the composite NiO component-under HER conditions (where NiOx would typically be reduced to metallic Ni-0). Furthermore, in contrast to Pt, the Ni(O-x)/Cr2O3 catalyst appears resistant to poisoning by the anion.exchange ionomer (AEI), a serloua consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a: detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI.

  4. Ni clay neoformation on montmorillonite surface.

    PubMed

    Dähn, R; Scheidegger, A; Manceau, A; Schlegel, M; Baeyens, B; Bradbury, M H

    2001-03-01

    Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers.

  5. Exploring dissipative processes at high angular momentum in 58Ni+60Ni reactions

    NASA Astrophysics Data System (ADS)

    Williams, E.; Hinde, D. J.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S. D.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Simpson, E. C.; Wakhle, A.

    2016-05-01

    Current coupled channels (CC) models treat fusion as a coherent quantum-mechanical process, in which coupling between the collective states of the colliding nuclei influences the probability of fusion in near-barrier reactions. While CC models have been used to successfully describe many experimental fusion barrier distribution (BD) measurements, the CC approach has failed in the notable case of 16O+208Pb. The reason for this is poorly understood; however, it has been postulated that dissipative processes may play a role. Traditional BD experiments can only probe the physics of fusion for collisions at the top of the Coulomb barrier (L = 0ħ). In this work, we will present results using a novel method of probing dissipative processes inside the Coulomb barrier. The method exploits the predicted sharp onset of fission at L ~ 60ħ for reactions forming compound nuclei with A < 160. Using the ANU's 14UD tandem accelerator and CUBE spectrometer, reaction outcomes have been measured for the 58Ni+60Ni reaction at a range of energies, in order to explore dissipative processes at high angular momentum. In this reaction, deep inelastic processes have been found to set in before the onset fission at high angular momentum following fusion. The results will be discussed in relation to the need for a dynamical model of fusion.

  6. Effect of air annealing on structural and magnetic properties of Ni/NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Ullah, Asmat; Mushtaq, M.; Kamran, M.; Hussain, S. S.; Mumtaz, M.

    2016-11-01

    We reported systematic study on structural and magnetic properties of nickel/nickel oxide (Ni/NiO) nanoparticles annealed under air atmosphere at different temperatures in the range 400-800 °C. The XRD spectra revealed two phases such as Ni and NiO. The average crystallite size increases with increasing annealing temperature. A phase diagram was developed between two phases versus annealing temperature using XRD analysis. At lower annealing temperatures, Ni phase is dominant which does not easily undergo oxidation to form NiO. The NiO phase increases with increasing annealing temperature. FTIR spectroscopy revealed an increase in the NiO phase content at higher annealing temperature, which is in agreement with the XRD analysis. SEM images showed that nanoparticles are well separated at lower annealing temperatures but get agglomerated at higher annealing temperatures. The ferromagnetic (FM) Ni phase content and saturation magnetization (Ms) showed nearly the same trend with increasing annealing temperature. The nanoparticles annealed at 500 °C and 800 °C revealed highest and lowest Ms values, respectively, which is in accordance with the XRD phase diagram. Coercivity showed an overall decreasing trend with increasing annealing temperature due to decreased concentration of FM Ni phase and increasing average crystallite size. All these measurements indicate that the structural and magnetic properties of Ni/NiO nanoparticles are strongly influenced by the annealing temperature.

  7. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  8. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  9. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface. PMID:24928669

  10. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    PubMed Central

    Hussein, Mohd Zobir; Mohamad Jaafar, Adila; Hj. Yahaya, Asmah; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  11. Formation and yield of multi-walled carbon nanotubes synthesized via chemical vapour deposition routes using different metal-based catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH.

    PubMed

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  12. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin

    2015-08-01

    A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g-1 at a high current density of 6 A g-1, a good rate capability even at high current density (760 F g-1 at 20 A g-1) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.

  13. Effects of annealing and pulse plating on soft magnetic properties of electroplated Fe-Ni films

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Azuma, K.; Eguchi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Fukunaga, H.

    2016-05-01

    We have already reported that Fe-Ni films prepared in citric-acid-based plating baths show good soft magnetic properties. In this paper, we investigated the effect of the grain size of the Fe-Ni crystalline phase in the films on magnetic properties, and employed an annealing and a pulse plating method in order to vary the grain size. The coercivity of the annealed Fe-Ni films at 600 °C shows large value, and good correlation between the grain growth and the coercivity was observed. The pulse plating enables us to reduce the grain size of the as-plated Fe-Ni films compared with the DC plating method, and we realized smooth surface and low coercivity of the Fe-Ni films using the pulse plating method. From these results, we confirmed the importance of the reduction in the grain size, and concluded that a pulse plating is an effective method to improve the good soft magnetic properties for our previously-reported Fe-Ni films.

  14. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect

    Zhao, Jinbo; Wu, Lili; Zou, Ke

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  15. Synthesis and formation mechanism of Ag-Ni alloy nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Yan, Shi; Sun, Dongbai; Tan, Yuanyuan; Xing, Xueqing; Yu, Hongying; Wu, Zhonghua

    2016-11-01

    Ag-Ni nanoparticles were prepared with a chemical reduction method in the presence of polyvinylpyrrolidone (PVP) used as a stabilizing agent. During the synthesis of Ag-Ni nanoparticles, silver nitrate was used as the Ag+ source while nickel sulfate hexahydrate was used as Ni2+ source. Mixed solutions of Ag+ source and Ni2+ source were used as the precursors and sodium borohydride was used as the reducing agent. Five ratios of Ag+/Ni2+ (9:1, 3:1, 1:1, 1:3, and 1:9) suspensions were prepared in the corresponding precursors. Ag-Ni alloy nanoparticles were obtained with this method at room temperature. Scanning electronic microscope (SEM), energy dispersive spectrum (EDS), high resolution transmission electron microscope (HRTEM) were used to characterize the morphology, composition and crystal structure of the nanoparticles. The crystal structure was also investigated with X-ray diffraction (XRD). In all five Ag/Ni ratios, two kinds of particle structures were observed that are single crystal structure and five-fold twinned structure respectively. Free energy of nanoparticles with different crystal structures were calculated at each Ag/Ni ratio. Calculated results revealed that, with identical volume, free energy of single crystal particle is lower than multi-twinned particle and the difference becomes smaller with the increase of particle size; increase of Ni content will lead the increase of free energy for both structures. Formation of different crystal structures are decided by the structure of the original nuclei at the very early stage of the reduction process.

  16. Electrolytical production of Ni + Mo + Si composite coatings with enhanced content of Si

    NASA Astrophysics Data System (ADS)

    Kubisztal, J.; Budniok, A.

    2006-10-01

    Ni + Mo + Si composite coatings were prepared by co-deposition of nickel with molybdenum and silicon powders from a nickel solution in which Mo and Si particles were suspended by stirring. The layers have been deposited on a carbon steel substrate (St3S) under galvanostatic conditions. The content of Si in deposited layers was about 2-5 wt.% depending on deposition current density and the value of electric charge. For comparison Ni + Mo composite coatings were obtained under analogous current conditions. Composite coatings of enhanced Si content (15 wt.%) were deposited from an electrolyte in which 40 g/dm 3 of Si covered with electroless plated nickel was dispersed. Deposition current density was equal 0.1 A/cm 2 and the value of electric charge Q = 500 C/cm 2. The thickness of the coatings was about 100-300 μm depending on their kind, electric charge and the deposition current density. Surface and cross-section morphology were investigated by scanning electron microscope (SEM). All deposited coatings are characterized by great, developed surface area. No internal stresses causing their cracking were observed. Chemical composition of the layers was determined by X-ray fluorescence spectroscopy (XRF) method and quantitative X-ray analysis (QXRD). It was stated, that the content of molybdenum and silicon in Ni + Mo + Si coatings depends on deposition current density and the amount of the powder in bath. The results of structural investigation of the obtained layers by the X-ray diffraction (XRD) method show, that they consist in crystalline Mo or Mo and Si phases built into Ni matrix. Moreover, Ni + Mo + Si composite coatings were modified by thermal treatment. It has been found that the thermal treatment of Ni + Mo + Si composite coatings caused that the new phases (NiSi, Mo 2Ni 3Si and Ni 6Mo 6C 1.06) were obtained.

  17. Production of hydrogen by autothermal reforming of propane over Ni/delta-Al2O3.

    PubMed

    Lee, Hae Ri; Lee, Kwi Yeon; Park, Nam Cook; Shin, Jae Soon; Moon, Dong Ju; Lee, Byung Gwon; Kim, Young Chul

    2006-11-01

    The performance of Ni/delta-Al2O3 catalyst in propane autothermal reforming (ATR) for hydrogen production was investigated in the present study. The catalysts were characterized using XRD, TEM, and SEM. The activity of the Ni/delta-Al2O3 catalyst manufactured by the water-alcohol method was better than those of the catalysts manufactured by the impregnation and chemical reduction methods. The Ni/delta-Al2O3 catalysts were modified by the addition of promoters such as Mg, La, Ce, and Co, in order to improve their stability and yield. Hydrogen production was the largest for the Ni-Co-CeO2/Al2O3, catalyst.

  18. Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity.

    PubMed

    Wilson, James R; Gameiro, Marcio; Mischaikow, Konstantin; Kalies, William; Voorhees, Peter W; Barnett, Scott A

    2009-02-01

    A method is described for quantitatively analyzing the level of interconnectivity of solid-oxide fuel cell electrode phases. The method was applied to the three-dimensional microstructure of a Ni-Y2O3-stabilized ZrO2 (Ni-YSZ) anode active layer measured by focused ion beam scanning electron microscopy. Each individual contiguous network of Ni, YSZ, and porosity was identified and labeled according to whether it was contiguous with the rest of the electrode. It was determined that the YSZ phase was 100% connected, whereas at least 86% of the Ni and 96% of the pores were connected. Triple-phase boundary (TPB) segments were identified and evaluated with respect to the contiguity of each of the three phases at their locations. It was found that 11.6% of the TPB length was on one or more isolated phases and hence was not electrochemically active.

  19. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere

    SciTech Connect

    Wu, Hongjing; Wu, Guanglei; Wu, Qiaofeng; Wang, Liuding

    2014-11-15

    We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H{sub 2} or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that the defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H{sub 2} and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H{sub 2}, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H{sub 2} and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated.

  20. Hydrodechlorination of chlorobenzene over NiB/SiO 2 and NiP/SiO 2 amorphous catalysts after being partially crystallized: A consideration of electronic and geometrical factors

    NASA Astrophysics Data System (ADS)

    Chen, Jixiang; Ci, Donghui; Wang, Rijie; Zhang, Jiyan

    2008-12-01

    The effect of electronic and geometrical factors on the performance of the crystallized Ni-B and Ni-P amorphous alloys in the gas-phase hydrodechlorination (HDC) was investigated by means of N 2 adsorption, inductively coupled plasma spectroscopy (ICP), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersion X-ray spectroscopy (EDS), hydrogen chemisorption, hydrogen temperature-programmed desorption (H 2-TPD), and the activity evaluation. Through the thermal treatment at 673 K in H 2 flow, SiO 2-supported Ni-B amorphous alloy was partially crystallized to metallic Ni, while SiO 2-supported Ni-P amorphous alloy was partially crystallized to metallic Ni and Ni 3P. The crystallized catalysts have smaller metallic crystallites than SiO 2-supported Ni, a reference catalyst prepared by the impregnation method. B and P make different effects on the electron density of nickel in the crystallized samples. It is suggested that the electronic property of Ni strongly affects the catalyst activity, and the electron deficiency of nickel is favorable to promoting the hydrodechlorination of chlorobenzene. Turnover frequency (TOF) of the hydrodechlorination is related to the electronic and geometrical properties of the catalysts.

  1. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site.

    PubMed

    Chambers, Geoffrey M; Huynh, Mioy T; Li, Yulong; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B; Reijerse, Edward; Lubitz, Wolfgang

    2016-01-19

    A new class of synthetic models for the active site of [NiFe]-hydrogenases are described. The Ni(I/II)(SCys)2 and Fe(II)(CN)2CO sites are represented with (RC5H4)Ni(I/II) and Fe(II)(diphos)(CO) modules, where diphos = 1,2-C2H4(PPh2)2(dppe) or cis-1,2-C2H2(PPh2)2(dppv). The two bridging thiolate ligands are represented by CH2(CH2S)2(2-) (pdt(2-)), Me2C(CH2S)2(2-) (Me2pdt(2-)), and (C6H5S)2(2-). The reaction of Fe(pdt)(CO)2(dppe) and [(C5H5)3Ni2]BF4 affords [(C5H5)Ni(pdt)Fe(dppe)(CO)]BF4 ([1a]BF4). Monocarbonyl [1a]BF4 features an S = 0 Ni(II)Fe(II) center with five-coordinated iron, as proposed for the Ni-SIa state of the enzyme. One-electron reduction of [1a](+) affords the S = 1/2 derivative [1a](0), which, according to density functional theory (DFT) calculations and electron paramagnetic resonance and Mössbauer spectroscopies, is best described as a Ni(I)Fe(II) compound. The Ni(I)Fe(II) assignment matches that for the Ni-L state in [NiFe]-hydrogenase, unlike recently reported Ni(II)Fe(I)-based models. Compound [1a](0) reacts with strong acids to liberate 0.5 equiv of H2 and regenerate [1a](+), indicating that H2 evolution is catalyzed by [1a](0). DFT calculations were used to investigate the pathway for H2 evolution and revealed that the mechanism can proceed through two isomers of [1a](0) that differ in the stereochemistry of the Fe(dppe)CO center. Calculations suggest that protonation of [1a](0) (both isomers) affords Ni(III)-H-Fe(II) intermediates, which represent mimics of the Ni-C state of the enzyme.

  2. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  3. Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems

    NASA Astrophysics Data System (ADS)

    Evteev, A. V.; Levchenko, E. V.; Belova, I. V.; Murch, G. E.

    2012-12-01

    The molecular dynamics method is used to provide fundamental insights into surface segregation, bulk diffusion and alloying reaction phenomena in equiatomic Ni-Al systems. This knowledge can serve as a guide for the search and development of economic routes for controlling microstructure and properties of the intermetallic compound NiAl. This paper gives an overview of recent molecular dynamics simulations in the area along with other theoretical calculations and experimental measurements.

  4. Sans Examination of the Mg3CoNi2 Alloy for Hydrogen Storage Material

    NASA Astrophysics Data System (ADS)

    Insani, Andon; Suwarno, Hadi; Mulyana, Yohanes Anda

    2010-06-01

    The nanocrystalline Mg3CoNi2 alloys have been synthesized from Mg, Co and Ni pure metal powder by using a SPEX 8000 High Energy Milling through wet method with its vial and ball made of stainless steel. A weight ratio of ball to sample was set at 8:1 and the milling times were set at 20 and 30 h. SANS measurements were performed in an instrument SMARTer at BATAN using a distances between 1.5, 4 and 13 m and a wavelength, λ, of 0.39 nm. The SANS investigation results showed that the intensity profiles decrease with q and a power law exponent of about 4. It is suggested that surface Porod scattering dominates. The relative intensity decreases with increased hydrogen concentration, indicating a decline in surface area. Hydrogenation leads to significant changes in the scattering curves mainly due to the 1 Mg2Ni attice expansion and changes of the Mg2Ni-H/Mg2Ni phase boundaries and that of the Mg2Ni or Mg2NiH4 grain boundaries. The samples absorb about 3.3 and 1.9 wt% hydrogen with increasing milling time of 20 and 30 h, respectively.

  5. Structural properties and optical characterization of flower-like Mg doped NiO

    SciTech Connect

    Allaedini, Ghazaleh Tasirin, Siti Masrinda; Aminayi, Payam

    2015-07-15

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX) confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.

  6. Structural chemistry of some phases in the YC-Ni-B system

    SciTech Connect

    Chakoumakos, B.C.

    1994-12-31

    NiB, monoclinic Ni{sub 4}B{sub 3}, Ni{sub 2}B and Ni{sub 3}B were prepared by arc-melting and their room-temperature crystal structures were refined by Rietveld analysis of neutron powder diffraction data. The NiB refinement is altogether new data. Although the B atoms in NiB form characteristic zigzag chains, the primary coordination of each atom by atoms of the other kind is similar and distinctively sevenfold, with one short (2.117 {angstrom}), two intermediate (2.152 {angstrom}), and four long (2.163 {angstrom}) bonds. Other samples with stoichiometries (YC)nNi{sub 2}B{sub 2}, n = 3, 4, did not yield single-phase material, but both x-ray and neutron powder diffraction suggest that the n = 4 structure is present in both of these samples. Phase-pure samples of these homologues may require non-stoichiometry and a more controlled thermal history than is attainable by arc melting. To screen samples for superconductivity, ac susceptibility measurements were made using the mutual inductance method with ac signal of 200 Hz.

  7. Competitive adsorption desulfurization performance over K - Doped NiY zeolite.

    PubMed

    Li, Haizheng; Han, Xiaona; Huang, Haokai; Wang, Yuxian; Zhao, Liang; Cao, Liyuan; Shen, Baojian; Gao, Jinsen; Xu, Chunming

    2016-12-01

    NiY and KNiY were successfully prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 sorption (BET), scanning electron microscope (SEM), infrared spectrum (IR) and X-ray Photoelectron Spectroscopy (XPS). The competitive adsorption mechanisms of adsorbents were studied by in situ FTIR to explain different desulfurization performance which was evaluated in a miniature fixed-bed flow by gasoline model compounds with 1-hexene or toluene. NiY and KNiY adsorbents showed better desulfurization performance than HY zeolite due to the high selectivity of loaded active metals. Especially, KNiY adsorbent showed its advantages in desulfurization performance with 5vol% olefins or 5vol% aromatics involvement. It could be assigned that introduced K cation enhanced dispersion and content of active Ni species on the surface which made Ni species reduce easily. On the other hand, adsorption mechanisms showed that the protonation reactions of thiophene and 1-hexene occurred on the Brönsted acid sites of NiY, which resulted in pore blockage and the coverage of adsorption active centers. By doping K cation on NiY, the amount of the Brönsted acid sites of NiY was decreased and protonation reactions were weaken. Therefore, the negative effects of Brönsted acid sites were reduced.

  8. Fabrication of Large-Area CoNi Mold for Nanoimprint Lithography

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ki; Cho, Si-Hyeong; Rizwan, Muhammad; Yoo, Bong-Young; Park, Jin-Goo

    2012-02-01

    A cobalt-nickel (CoNi) alloy stamp of 140 mm diameter and 300 µm thickness was fabricated for nanoimprint lithography (NIL) from a Si mother mold with nanofeatures by using a stress-free electroforming method. CoNi alloys were electrodeposited in a chloride bath, and the effect of the flow velocity of a plating solution on CoNi film stress was investigated. The compositions of CoNi alloy films were investigated by changing the flow rate and bath concentration of CoCl2. The stress of the CoNi deposit was reduced to almost zero in an electrolyte containing 0.008 M CoCl2 in the flow rate range of 1-2 m/s. The multiple duplication of a stress-free CoNi alloy stamp was carried out without the use of a costly Si mother mold. Duplicated patterns on the CoNi alloy stamp were compared with those of the Si mother mold by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM).

  9. Competitive adsorption desulfurization performance over K - Doped NiY zeolite.

    PubMed

    Li, Haizheng; Han, Xiaona; Huang, Haokai; Wang, Yuxian; Zhao, Liang; Cao, Liyuan; Shen, Baojian; Gao, Jinsen; Xu, Chunming

    2016-12-01

    NiY and KNiY were successfully prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 sorption (BET), scanning electron microscope (SEM), infrared spectrum (IR) and X-ray Photoelectron Spectroscopy (XPS). The competitive adsorption mechanisms of adsorbents were studied by in situ FTIR to explain different desulfurization performance which was evaluated in a miniature fixed-bed flow by gasoline model compounds with 1-hexene or toluene. NiY and KNiY adsorbents showed better desulfurization performance than HY zeolite due to the high selectivity of loaded active metals. Especially, KNiY adsorbent showed its advantages in desulfurization performance with 5vol% olefins or 5vol% aromatics involvement. It could be assigned that introduced K cation enhanced dispersion and content of active Ni species on the surface which made Ni species reduce easily. On the other hand, adsorption mechanisms showed that the protonation reactions of thiophene and 1-hexene occurred on the Brönsted acid sites of NiY, which resulted in pore blockage and the coverage of adsorption active centers. By doping K cation on NiY, the amount of the Brönsted acid sites of NiY was decreased and protonation reactions were weaken. Therefore, the negative effects of Brönsted acid sites were reduced. PMID:27552418

  10. Impurity effects on bonding charge in Ni{sub 3}Al

    SciTech Connect

    Sun, Sheng N.; Kioussis, N.; Lim, Say-Peng; Gonis, A.; Gourdin, W.

    1996-05-14

    We have studied the effect of B and H on the charge density in Ni{sub 3}Al employing first-principles electronic structure calculations based on the FLMTO method. The changes in the electronic structure induced by B result from hybridization of d states of the nearest neighbor Ni atoms with adjacent B-{ital PP} states. Thus, boron prefers to occupy Ni-rich octahedral interstices [X(7)]. Boron greatly enhances the intraplanar metallic bonding between the Ni atoms, enhances the interplanar bonding between the NiAl layers in [001] direction, and reduces the bonding-charge directionality near the Ni(3) atoms. It is concluded that B acts to increase crystal cohesion. Hydrogen enhances the bonding-charge directionality near Ni(3) atoms and has virtually no interstitial charge enhancement, suggesting that H does not promote local cohesion. When both B and H are present, the dominant changes in the electronic structure induced by B and H seems to have little effect.

  11. Growth and magnetic properties of Ni-doped Bi2Se3 topological insulator crystals

    NASA Astrophysics Data System (ADS)

    Yang, H.; Liu, L. G.; Zhang, M.; Yang, X. S.

    2016-09-01

    Transition metal doped topological insulators NixBi2-xSe3 were grown by the modified Bridgeman method. Their phase structures, electrical and magnetic transport properties were studied. The lattice constant c decreased with the increasing Ni concentration. All samples are highly c-axis oriented and exhibit weak metallic resistivity. The resistivity increased with both the increasing applied magnetic field and Ni concentration. The resistivity data could be fitted by different formulas below and above 30 K, respectively. The magnetic changed as the Ni dopant concentrations increased, which implied the nickel entering the matrix structure. For the sample with small amount of Ni (x=0.03), a behavior in the curves of temperature dependent of magnetism closely resembled a paramagnet. Bulk ferromagnetism was observed in highly doped samples (x≥0.05) from M(T) data. The samples with (x≥0.05) showed clear hysteresis loops, which suggested the existence of ferromagnetism ordering. All Ni-doped samples are observed with similar weak diamagnetic signals. It was considered that there were three possible origins of ferromagnetism: Ni-Se compound, the interaction of the doped Ni atoms and magnetic contamination.

  12. Electronic and magnetic properties of X-doped (X=Ni, Pd, Pt) WS2 monolayer

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Xia, Congxin; Dai, Xianqi; Wang, Tianxing; Chen, Peng; Tian, Liang

    2016-09-01

    We investigate the electronic and magnetic properties of X-doped (X=Ni, Pd, Pt) WS2 monolayer using the first-principles methods based on density functional theory. The results show that WS2 monolayer doped by Ni, Pd and Pt is ferromagnetic. The impurity states near the Fermi level depend highly on the atomic size and electronegativity. For different X-doped WS2, the formation energy is lower under S-rich conditions, which indicates that it is energy favorable and relatively easier to incorporate X atom into WS2 under S-rich experimental conditions. Moreover, Ni-doped system owns the lowest formation energy compared with other atoms under S-rich experimental condition. Our studies predict X-doped (X=Ni, Pd, Pt) WS2 monolayers to be candidates for thin dilute magnetic semiconductors. Ni-doped WS2 has relatively wide half-metallic gap. So Ni-doped WS2 is the most ideal for spin injection among Ni, Pd, and Pt, which is important for application in semiconductor spintronics.

  13. Synthesis, characterization and low temperature electrical conductivity of Polyaniline/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Prasanna, G. D.; Prasad, V. B.; Jayanna, H. S.

    2015-02-01

    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity cRT decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

  14. Evaluation of Field Portable X-Ray Fluorescence Performance for the Analysis of Ni in Soil.

    PubMed

    Du, Guo-dong; Lei, Mei; Zhou, Guang-dong; Chen, Tong-bin; Qiu, Rong-liang

    2015-03-01

    As a rapid, in-situ analysis method, Field portable X-ray fluorescence spectrometry (FP-XRF) can be widely applied in soil heavy metals analysis field. Whereas, some factors may affect FP-XRF performance and restrict the application. Studies have proved that FP-XRF has poorer performance when the concentration of target element is low, and soil moisture and particle size will affect FP-XRF performance. But few studies have been conducted in depth. This study took an example of Ni, demonstrated the relationship between Ni concentration and FP-XRF performance on accuracy and precision, and gave a critical value. Effects of soil moisture and particle size on accuracy and precision also had been compared. Results show that, FP-XRF performance is related to Ni concentration and the critical value is 400 mg x kg(-1). Relative standard deviation (RSD) and relative uncertainty decrease while the Ni concentration is below 400 mg x kg(-1), hence FP-XRF performance improves with increasing Ni concentration in this range; RSD and relative uncertainty change little while the Ni concentration is above 400 mg x kg(-1), hence FP-XRF performance does not have correlation with Ni concentration any more. For in-situ analysis, the relative uncertainty contributed by soil moisture is 3.77%, and the relative certainty contributed by particle size is 0.56%. Effect of soil moisture is evidently more serious than particle size both on accuracy and precision.

  15. Square wave voltammetry in the determination of Ni2+ and Al3+ in biological sample.

    PubMed

    Paulino, Alexandre T; Vargas, Alexandro M M; Santos, Lídia B; Nozaki, Jorge; Muniz, Edvani C; Tambourgi, Elias B

    2008-01-01

    In this contribution, the amounts of Ni (nickel) and Al (aluminum) in tilapias (Oreochromis niloticus) were determined using square wave voltammetry (SWV) with glassy carbon working microelectrode with a mercury thin film, platinum counter electrode, and Ag/AgCl reference electrode. Ni was studied through the formation of the dimethylglyoxime-Ni (Ni-DMG) complex, while Al was studied through the formation of the Alizarin R-Al complex. The detection limit found for Ni-DMG and Alizarin R-Al complexes were 1.70 x 10(-7) and 1.0 x 10(-8) mol L(-1), respectively. The voltammetric anodic curves for the Alizarin R-Al complex were recorded over the potential range from -0.8 to -0.05 V while the voltammetric cathodic curve for the Ni-DMG complex was recorded over the potential range from -0.7 to -1.2 V. These methods detected low concentrations of Ni and Al in biological samples efficiently.

  16. Structural transformation between bcc and fcc in Fe-Ni nanoparticle during heating process

    NASA Astrophysics Data System (ADS)

    Li, Guojian; Sui, Xudong; Qin, Xuesi; Ma, Yonghui; Wang, Kai; Wang, Qiang

    2016-10-01

    Phase transformation between bcc and fcc in Fe-Ni nanoparticle has been studied by using molecular dynamics simulation with an embedded atom method. The transformation has been explored by designing the nanoparticles with different initial structures, sizes and elemental distributions at various Ni concentrations. The results show that the structural transformation is strongly related to the Ni content and elemental distribution. Initial fcc structure transforms to bcc for a lower Ni content and bcc transforms to fcc for a higher Ni content. The transformation is accompanied with a sharp reduction in energy even for the nanoparticle with a large size. Furthermore, lattice distortion first occurs before the transformation. The transformation from fcc to bcc is occurred by elongating fcc (100) to bcc (110) and that from bcc to fcc by compressing bcc (110) to fcc (100). The reason is that the nanoparticle has a low energy state for bcc structure with a lower Ni content and also for fcc structure with a higher Ni content. The coexistence of bcc and fcc phases appears with the change of elemental distribution.

  17. Thermoelectric transport properties of Ca3Co4- x Ni x O9+ δ oxide materials

    NASA Astrophysics Data System (ADS)

    Park, K.; Cha, J. S.; Nam, S. W.; Choi, S.-M.; Seo, W.-S.; Lee, S.; Lim, Y. S.

    2016-01-01

    Nano-sized Ca3Co4- x Ni x O9+ δ (0 ≤ x ≤ 0.3) thermoelectric powders are synthesized by using the solution combustion method, with aspartic acid as a combustion fuel. The synthesized Ca3Co4- x Ni x O9+ δ nano-sized powders exhibit a spherical-like shape and a smooth surface. Higher Ni content results in a smaller grain size and a higher porosity, resulting in a decrease in the electrical conductivity. However, the Seebeck coefficient of Ni-added Ca3Co4O9 is much higher than that of Ca3Co4O9. The highest power factor (1.4 × 10-4 Wm-1K-2), which is more than nine times larger than that of Ca3Co4O9, is attained for Ca3Co0.38Ni0.2O9+ δ at 800 °C. The addition of a small amount of Ni is highly effective in improving the thermoelectric properties of Ca3Co4O9. We believe that Ca3Co4- x Ni x O9+ δ is a potential p-type thermoelectric material for renewable energy conversion.

  18. Electron microscopy investigation of the microstructure of unsupported Ni-Mo-W sulfide

    SciTech Connect

    Zhang, B.S.; Yi, Y.J.; Zhang, W.; Liang, C.H.; Su, D.S.

    2011-07-15

    An exploration was made on structure and active sites of the unsupported Ni-Mo-W sulfide hydrodesulphurization catalyst prepared by a thiosalt decomposition method. More insights into the nanocomposite structure were provided by introducing the concept of average curvature of Mo(W)S{sub 2} and establishing a new structure model. The defects of cross and mixed stacks, steps along c-axis, expansion of (002) interplanar spacing and mixing structure of Mo(W)/Ni sulfides were investigated using advanced electron microscopy. All these defects in Mo(W) sulfides are closely correlated with increasing active sites of unsupported Ni-Mo-W sulfide catalyst. - Graphical Abstract: From the top schematic of unsupported Ni-Mo-W sulfide, the MoS{sub 2}, WS{sub 2}, or Mo{sub x}W{sub 1-x}S{sub 2} are surrounded by the dispersed Ni sulfide, which make the formation of nanocomposite phases possible. For the bottom colorized high-resolution transmission electron microscopy image with 3D rotation, the variation in sample thickness leads to a varying representation of the contrast of the Ni-Mo-W sulfide sheet, ... Research Highlights: {yields} Rich microstructural features of unsupported Ni-Mo-W sulfide catalyst were revealed. {yields} Curvature of HDS catalyst was firstly proposed, also illustrative for other catalysts. {yields} Insights into the nano-composite were gained from its new structure model.

  19. Effects of interactions between NiM (M = Mn, Fe, Co and Cu) bimetals with MgO (1 0 0) on the adsorption of CO2

    NASA Astrophysics Data System (ADS)

    Wang, Baojun; Yan, Ruixia; Liu, Hongyan

    2012-09-01

    A density-functional theory method has been conducted to investigate the interactions of NiM (M = Mn, Fe, Co and Cu) with MgO (1 0 0) as well as the effects of interactions on the adsorption of CO2. The binding energies of NiM on MgO and the adsorption energies of CO2 on NiM/MgO have been calculated, and the results show that the defective NiM/MgO catalysts exhibit stronger metal-support interaction (MSI) than the perfect NiM/MgO catalysts do, leading to weaker adsorption ability to CO2, except NiMn/MgO system. However, for the catalysts with the same MgO surface and different bimetals, the stronger the MSI is, the stronger adsorption ability of the substrate to CO2 is, except NiCu/MgO system.

  20. Spherical Al-substituted a-nickel hydroxide with high tapping density applied in Ni-MH battery

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Hua; Feng, Qing-Ping; Wang, Man; Huang, Gui-Wen

    2016-10-01

    Spherical Al-substituted a-Ni(OH)2 with high tapping density are prepared with controlled crystallization method, where the synthesis parameters are previously calculated out according to theoretical analysis. The formation mechanism of Ni(OH)2 particles is analyzed based on theoretical calculation, the optimal conditions for the formation of spherical Al-substituted a-Ni(OH)2 with high tapping density are figured out and a formula indicates the restrictions among main synthesis parameters is derived, which is reference meaningful for the synthesis of commercialized electrode powders. Synthesized by using the calculated parameters, the obtained a-Ni(OH)2 shows uniform spherical morphology, high crystal phase purity and reasonable high tapping density of 1.37 g cm-3, which demonstrates the feasibility of the derived formula. Since the electrical conductivity of the pure Ni(OH)2 is quite low, 5 wt% of CoOOH are coated on the a-Ni(OH)2 surface to improve their electrochemical performances. The synthesized CoOOH coated a-Ni(OH)2 shows relative high specific capacity of 327 mAh g-1 at 0.1 C and acceptable high-rate dischargeability. The simultaneously achieving of high tapping density and high specific capacity in a-Ni(OH)2 makes it own the great potential to be applied in new generation of Ni-MH batteries.

  1. Fabrication of Low Adsorption Energy Ni-Mo Cluster Cocatalyst in Metal-Organic Frameworks for Visible Photocatalytic Hydrogen Evolution.

    PubMed

    Zhen, Wenlong; Gao, Haibo; Tian, Bin; Ma, Jiantai; Lu, Gongxuan

    2016-05-01

    An effective cocatalyst is crucial for enhancing the visible photocatalytic performance of the hydrogen generation reaction. By using density-functional theory (DFT) and frontier molecular orbital (FMO) theory calculation analysis, the hydrogen adsorption free energy (ΔGH) of Ni-Mo alloy (458 kJ·mol(-1)) is found to be lower than that of Ni itself (537 kJ·mol(-1)). Inspired by these results, the novel, highly efficient cocatalyst NiMo@MIL-101 for photocatalysis of the hydrogen evolution reaction (HER) was fabricated using the double solvents method (DSM). In contrast with Ni@MIL-101 and Mo@MIL-101, NiMo@MIL-101 exhibited an excellent photocatalytic performance (740.2 μmol·h(-1) for HER), stability, and high apparent quantum efficiency (75.7%) under 520 nm illumination at pH 7. The NiMo@MIL-101 catalyst also showed a higher transient photocurrent, lower overpotential (-0.51 V), and longer fluorescence lifetime (1.57 ns). The results uncover the dependence of the photocatalytic activity of HER on the ΔGH of Ni-Mo (MoNi4) alloy nanoclusters, i.e., lower ΔGH corresponding to higher HER activity for the first time. The NiMo@MIL-101 catalyst could be a promising candidate to replace precious-metal catalysts of the HER.

  2. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  3. A new nano-structured Ni(II) Schiff base complex: synthesis, characterization, optical band gaps, and biological activity

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Hassan, A. M.; Nassar, A. M.; Ibrahim, N. M.; Mourtada, A.

    2014-05-01

    New Ni(II) Schiff base complexes [{Ni(L)(H2O)Cl} where HL = 2-((pyridin-3-ylmethylene)amino)phenol] have been synthesized using the reflux and sonochemical methods. The nickel oxide NiO nanopowder was obtained from the metal complexes after calcination at 650 °C for 2 h. The Schiff base complexes and NiO powders were characterized in detail. The HL and its metal complexes were depicted high activity towards microorganism and breast carcinoma cells. The inhibitory activity against breast carcinoma (MCF-7) were detected with IC50 = 5.5, 12.5 and 9.6 for HL, complex (1) and complex (2), respectively. The optical band gap energy was 3.6, 3.0 and 2.37 eV for Ni complexes (1), (2) and NiO, respectively. The microstructure of the formed NiO powders appeared as cubic-like structure. Furthermore, magnetic properties of NiO sample were identified and paramagnetic property was found at a room temperature. The saturation magnetization and coercive force for the NiO sample were 0.47 emu/g and 42.68 Oe, respectively.

  4. Fabrication of Low Adsorption Energy Ni-Mo Cluster Cocatalyst in Metal-Organic Frameworks for Visible Photocatalytic Hydrogen Evolution.

    PubMed

    Zhen, Wenlong; Gao, Haibo; Tian, Bin; Ma, Jiantai; Lu, Gongxuan

    2016-05-01

    An effective cocatalyst is crucial for enhancing the visible photocatalytic performance of the hydrogen generation reaction. By using density-functional theory (DFT) and frontier molecular orbital (FMO) theory calculation analysis, the hydrogen adsorption free energy (ΔGH) of Ni-Mo alloy (458 kJ·mol(-1)) is found to be lower than that of Ni itself (537 kJ·mol(-1)). Inspired by these results, the novel, highly efficient cocatalyst NiMo@MIL-101 for photocatalysis of the hydrogen evolution reaction (HER) was fabricated using the double solvents method (DSM). In contrast with Ni@MIL-101 and Mo@MIL-101, NiMo@MIL-101 exhibited an excellent photocatalytic performance (740.2 μmol·h(-1) for HER), stability, and high apparent quantum efficiency (75.7%) under 520 nm illumination at pH 7. The NiMo@MIL-101 catalyst also showed a higher transient photocurrent, lower overpotential (-0.51 V), and longer fluorescence lifetime (1.57 ns). The results uncover the dependence of the photocatalytic activity of HER on the ΔGH of Ni-Mo (MoNi4) alloy nanoclusters, i.e., lower ΔGH corresponding to higher HER activity for the first time. The NiMo@MIL-101 catalyst could be a promising candidate to replace precious-metal catalysts of the HER. PMID:27070204

  5. Who is El Niño?

    NASA Astrophysics Data System (ADS)

    Philander, S. George

    It is a curious story, about a phenomenon we first welcomed as a blessing but now view with dismay, if not horror [Philander, 1998]. We named it El Niño for the child Jesus, provided it with relatives—La Niña and ENSO—and are devoting innumerable studies to the description and idealization of this family. These scriptures provide such a broad spectrum of historical, cultural, and scientific perspectives that there is now confusion about the identity of El Niño. Trenberth [1997] summarizes the situation as follows.The atmospheric component tied to El Niño is termed the “Southern Oscillation.” Scientists often call the phenomenon where the atmosphere and ocean collaborate ENSO, short for El Niño-Southern Oscillation. El Niño then corresponds to the warm phase of ENSO. The opposite “La Niña” (“the girl” in Spanish) phase consists of a basinwide cooling of the tropical Pacific and thus the cold phase of ENSO. However, for the public, the term for the whole phenomenon is “El Niño.”

  6. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  7. Formation of dioxins on NiO and NiCl2 at different oxygen concentrations.

    PubMed

    Yang, Jie; Yan, Mi; Li, Xiaodong; Lu, Shengyong; Chen, Tong; Yan, Jianhua; Olie, Kees; Buekens, Alfons

    2015-08-01

    Model fly ash (MFA) containing activated carbon (AC) as source of carbon, NaCl as source of chlorine and either NiO or NiCl2 as de novo catalyst, was heated for 1h at 350 °C in a carrier gas flow composed of N2 containing 0, 6, 10, and 21 vol.% O2, to study the formation of PCDD/Fs (dioxins) and its dependence on oxygen. The formation of PCDD/Fs with NiCl2 was stronger by about two orders of magnitude than with NiO and the difference augmented with rising oxygen concentration. The thermodynamics of the NiO-NiCl2 system were represented, X-ray absorption near edge structural (XANES) spectroscopy allowed to probe the state of oxidation of the nickel catalyst in the MFA and individual metal species were distinguished using the LCF (Linear combination fitting) technique: thus three supplemental nickel compounds (Ni2O3, Ni(OH)2, and Ni) were found in the fly ash. Principal Component Analysis (PCA) indicates that both Ni2O3 and NiCl2 probably played an important role in the formation of PCDD/Fs. PMID:25951618

  8. Preparation and characterization of Ni-P/Ni3.1B composite alloy coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yurong; He, Jiawei; Wang, Wenchang; Shi, Jianhua; Mitsuzaki, Naotoshi; Chen, Zhidong

    2014-02-01

    The preparation of Ni-P/Ni3.1B composite alloy coating on the surface of copper was achieved by co-deposition of Ni3.1B nanoparticles with Ni-P coating during electroless plating. Ni-P-B alloy coating was obtained by heat-treating the as-plated Ni-P/Ni3.1B composite coating. The effect of the concentration of sodium alginate, borax, thiourea, Ni3.1B, temperature, and pH value on the deposition rate and B content were investigated and determined to be: 30 g L-1, 10 g L-1, 2 mg L-1, 20 mg L-1, 70 °C and 9.0 , respectively. Sodium alginate and thiourea were played as surfactant for coating Ni3.1B nanoparticles and stabilizer for the plating bath, respectively. Ni-P/Ni3.1B composite coating had good performance such as corrosion resistance and solderability.

  9. Skeletal Ni Catalysts Prepared from Amorphous Ni-Zr Alloys: Enhanced Catalytic Performance for Hydrogen Generation from Ammonia Borane.

    PubMed

    Nozaki, Ai; Tanihara, Yasutomo; Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kohsuke; Nagase, Takeshi; Yasuda, Hiroyuki Y; Yamashita, Hiromi

    2016-02-01

    Skeletal Ni catalysts were prepared from Ni-Zr alloys, which possess different chemical composition and atomic arrangements, by a combination of thermal treatment and treatment with aqueous HF. Hydrogen generation from ammonia borane over the skeletal Ni catalysts proceeded efficiently, whereas the amorphous Ni-Zr alloy was inactive. Skeletal Ni prepared from amorphous Ni30 Zr70 alloy had a higher catalytic activity than that prepared from amorphous Ni40 Zr60 and Ni50 Zr50 alloys. The atomic arrangement of the Ni-Zr alloy also strongly affected the surface structure and catalytic activities. Thermal treatment of the amorphous Ni-Zr alloys at a temperature slightly lower than the crystallization temperature led to an increase of the number of surface-exposed Ni atoms and an enhancement of the catalytic activities for hydrogen generation from ammonia borane. The skeletal Ni catalysts also showed excellent durability and recyclability.

  10. Direct observation of infinite NiO2 planes in LaNiO2 films

    NASA Astrophysics Data System (ADS)

    Ikeda, Ai; Krockenberger, Yoshiharu; Irie, Hiroshi; Naito, Michio; Yamamoto, Hideki

    2016-06-01

    Epitaxial thin films of LaNiO2, which is an oxygen-deficient perovskite with “infinite layers” of Ni1+O2, were prepared by a low-temperature reduction of LaNiO3 single-crystal films on NdGaO3 substrates. We report the high-angle annular dark-field and bright-field scanning transmission electron microscopy observations of infinite NiO2 planes of c-axis-oriented LaNiO2 epitaxial thin films with a layer stacking sequence of NiO2/La/NiO2. Resistivity measurements on the films show T 2 dependence between 400 and 150 K and a negative Hall coefficient.

  11. Predictability of the Ningaloo Niño/Niña.

    PubMed

    Doi, Takeshi; Behera, Swadhin K; Yamagata, Toshio

    2013-01-01

    The seasonal prediction of the coastal oceanic warm event off West Australia, recently named the Ningaloo Niño, is explored by use of a state-of-the-art ocean-atmosphere coupled general circulation model. The Ningaloo Niño/Niña, which generally matures in austral summer, is found to be predictable two seasons ahead. In particular, the unprecedented extreme warm event in February 2011 was successfully predicted 9 months in advance. The successful prediction of the Ningaloo Niño is mainly due to the high prediction skill of La Niña in the Pacific. However, the model deficiency to underestimate its early evolution and peak amplitude needs to be improved. Since the Ningaloo Niño/Niña has potential impacts on regional societies and industries through extreme events, the present success of its prediction may encourage development of its early warning system. PMID:24100593

  12. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    SciTech Connect

    Douglas, Jason E. Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-10-28

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi{sub 1+x}Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  13. Capture of Hydrogen Using ZrNi

    NASA Technical Reports Server (NTRS)

    Patton, Lisa; Wales, Joshua; Lynch, David; Parrish, Clyde

    2005-01-01

    Water, as ice, is thought to reside in craters at the lunar poles along with CH4 and H2 . A proposed robotic mission for 2012 will utilize metal/metal hydrides for H2 recovery. Specifications are 99% capture of H2 initially at 5 bar and 100C (or greater), and degassing completely at 300C. Of 47-systems examined using the van't Hoff equation, 4 systems, Mg/MgH2, Mg2Ni/Mg2NiH4, ZrNi/ZrNiH2.8, and Pd/PdH0.77, were considered likely candidates for further examination. It is essential, when selecting a system, to also examine questions regarding activation, kinetics, cyclic stability, and gas impurity effects. After considering those issues, ZrN1 was selected as the most promising candidate, as it is easily activated and rapidly forms ZrNiH 2.8 . In addition, it resists oxide poisoning by CO2, and H2O, while some oxidation by O2 is recommended for improved activation . The presence of hydrogen in the as received Zr-Ni alloy from Alfa Aesar posed additional technical problems. X-ray diffraction of the Zr-Ni powder (-325 mesh), with a Zr:Ni wt% ratio of 70:30, was found to consist of ZrH2, ZrNiH2.8, and ZrNi. ZrH2 in the alloy presented the risk that after degassing that both Zr and ZrNi would be present, and thus lead to erroneous results regarding the reactivity of ZrNi with H2 . Fortunately, ZrH2 is a highly stable hydride that does not degas H2 to any significant extent at temperatures below 300C. Based on equilibrium calculations for the decomposition of ZrH2, only 1 millionth of the hydride decomposed at 300C under a N2 atmosphere flowing at 25 ccm for 64 hours, the longest time for pretreatment employed in the investigation. It was possible, from the X-ray results and knowledge of the Zr:Ni ratio, to compute the composition of a pretreated specimen as being 76 wt% ZrNi and the balance ZrH2.

  14. Oscillatory surface relaxations in Ni, Al, and their ordered alloys

    SciTech Connect

    Chen, S.P.; Voter, A.F.; Srolovitz, D.J.

    1986-09-15

    Results from simulations of Ni, Al, Ni/sub 3/Al, and NiAl show long-range, oscillatory surface relaxations that decay exponentially into the bulk. Pure fcc Ni and Al have oscillation periods that are close to the nearest-neighbor distance, independent of crystal face. This is shown to be due to surface smoothing and steric effects. In Ni/sub 3/Al and NiAl, the surface planes are rippled, with the Ni-Ni and Al-Al interlayer spacings oscillating 180/sup 0/ out of phase. Very good agreement between our results and experimentally measured atomic relaxations is obtained.

  15. Characterization of carbon nanofibers grown over Ni and Ni-cu catalysts.

    PubMed

    Echegoyen, Y; Suelves, I; Lázaro, M J; Moliner, R; Palacios, J M; Müller, J O; Su, D; Schlögl, R

    2009-07-01

    Carbon nanofibers were obtained by thermo-catalytic decomposition of methane at 700 degrees C over Ni and Ni-Cu catalysts prepared by different methods (co-precipitation, impregnation and fusion) and using either Al or Mg as textural promoter. Characterization of the carbon thus obtained was performed by N2 adsorption isotherms (BET surface area), temperature programmed desorption (TPD), temperature programmed oxidation (TPO), X-ray diffraction, Raman spectrometry, and electron microscopy SEM and TEM. The carbon obtained possesses high crystallinity and poor surface chemistry. The crystallinity is enhanced when using Mg as textural promoter and in the presence of copper. SEM and TEM examinations show that the fibers have fishbone structure and they grow generally from one nickel particle (tip growing) although there are some bidirectional growing. Copper-doping lead to the formation of thicker filaments and promotes the formation of bamboo-like structures. Catalyst particles higher than 100 nm do not promote the formation of nanofibers and the carbon deposits as uniform coatings.

  16. Area Determination of Electrodeposited Ni, Co, and NiCo Thin Films

    NASA Astrophysics Data System (ADS)

    Gira, Matthew; Tkacz, Kevin; Hampton, Jennifer

    The surface area of electrodeposited thin films of Ni, Co, and NiCo was evaluated using electrochemical double-layer capacitance, electrochemical area measurements using the [Ru(NH3)6]3+/[Ru(NH3)6]2+ redox couple, and topographic atomic force microscopy (AFM) imaging. The methods were compared to each other for each composition separately and for all the samples regardless of composition. Double-layer capacitance measurements were found to be positively correlated to the roughness factors determined by AFM topography. Electrochemical area measurements were less correlated with measured roughness factors and applicable only to two of the three compositions studied. The results indicate that in situ double-layer capacitance measurements are a practical, versatile technique for estimating the accessible surface area of a metal sample. This work supported by the NSF under Grants RUI-DMR-1104725, REU-PHY/DMR-1004811, MRI-CHE-1126462, MRI-CHE-0959282, and ARI-PHY-0963317 and by the Hope College Nyenhuis Faculty Development Fund.

  17. The design of underwater superoleophobic Ni/NiO microstructures with tunable oil adhesion.

    PubMed

    Zhang, Enshuang; Cheng, Zhongjun; Lv, Tong; Li, Li; Liu, Yuyan

    2015-12-01

    Controlling oil adhesion in water is a fundamental issue in many practical applications for surfaces. Currently, almost all studies on underwater oil adhesion control are concentrated on regulating surface chemistry on polymer surfaces, and structure-dependent underwater oil adhesion is still rare, especially on inorganic materials. Herein, we report a series of underwater superoleophobic Ni/NiO surfaces with controlled oil adhesions by combining electro-deposition and heating techniques. The adhesive forces between an oil droplet and the surfaces can be adjusted from an extremely low (less than 1 μN) to a very high value (about 60 μN), and the tunable effect can be attributed to different wetting states that result from different microstructures on the surfaces. Moreover, the oil-adhesion controllability for different types of oils was also analyzed and the applications of the surface including oil droplet transportation and self-cleaning were discussed. The results reported herein provide a new feasible method for fabrication of underwater superoleophobic surfaces with controlled adhesion, and improve the understanding of the relationship between surface microstructures, adhesion, and the fabrication principle of tunable oil adhesive surfaces.

  18. Ni-Co alloy plaque for cathode of Ni-Cd battery

    NASA Astrophysics Data System (ADS)

    Lander, J. J.

    1986-03-01

    The present invention relates generally to Ni-Cd batteries, and, in particular, relates to the plaque material attached to the cathode. Because of the wide use of nickel-cadmium batteries, the corrosion rates of nickel and nickel-cobalt alloys are of interest to nickel-cadmium battery electrochemical theory and its technology. The plaque material of the cathode consists of a Ni-Co alloy in solid solution wherein the cobalt is by weight percent one to ten percent of the alloy. Conventional methods of applying the plaque material to the nickel core may be used. It is therefore an object of the present invention to provide an improved cathode for a nickel-cadmium battery wherein the nickel corrosion is substantially lessened in the plaque material. One process of making the plaque uses a nickel powder slurry that is applied to a nickel-plated steel core. This is then sintered at a high temperature which results in a very porous structure and an welding of the nickel grains to the core. This plaque is then soaked in appropriate salts to make either a positive or a negative plate; nickel salts make a positive plate and a cadmium salts a negative plate, for example. After impregnation, the plaque is placed in an electrolyte and an electric current is passed therethrough to convert the salts to their final form. In the nickel-cadmium cell, nickel hydroxide is the active material in the positive plate.

  19. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed.

  20. Charge ordering in Ni1 +/Ni2 + nickelates: La4Ni3O8 and La3Ni2O6

    NASA Astrophysics Data System (ADS)

    Botana, Antia S.; Pardo, Victor; Pickett, Warren E.; Norman, Michael R.

    2016-08-01

    Ab initio calculations allow us to establish a close connection between the Ruddlesden-Popper layered nickelates and cuprates not only in terms of filling of d levels (close to d9) but also because they show Ni1 +(S =1 /2 ) /Ni2 +(S =0 ) stripe ordering. The insulating charge-ordered ground state is obtained from a combination of structural distortions and magnetic order. The Ni2 + ions are in a low-spin configuration (S =0 ) yielding an antiferromagnetic arrangement of Ni1 + S =1 /2 ions like the long-sought spin-1/2 antiferromagnetic insulator analog of the cuprate parent materials. The analogy extends further with the main contribution to the bands near the Fermi energy coming from hybridized Ni dx2-y2 and O p states.

  1. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  2. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications.

    PubMed

    Rai, Prabhakar; Yoon, Ji-Wook; Jeong, Hyun-Mook; Hwang, Su-Jin; Kwak, Chang-Hoon; Lee, Jong-Heun

    2014-07-21

    Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H₂S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH₃, CO and H₂). The maximum response was 108.92 for 5 ppm of H₂S gas at 300 °C, which was approximately 19 times higher than that for the interfering gases. The response of Au@NiO yolk-shell NPs to H₂S was approximately 4 times higher than that of bare NiO hollow nanospheres. Improved performance of Au@NiO yolk-shell NPs was attributed to hollow spaces that allowed the accessibility of Au NPs to gas molecules. It was suggested that adsorption of H₂S on Au NPs resulted in the formation of sulfide layer, which possibly lowered its work function, and therefore tuned the electron transfer from Au to NiO rather NiO to Au, which leaded to increase in resistance and therefore response.

  3. Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting.

    PubMed

    Nong, Hong Nhan; Oh, Hyung-Suk; Reier, Tobias; Willinger, Elena; Willinger, Marc-Georg; Petkov, Valeri; Teschner, Detre; Strasser, Peter

    2015-03-01

    Active and highly stable oxide-supported IrNiO(x) core-shell catalysts for electrochemical water splitting are presented. IrNi(x)@IrO(x) nanoparticles supported on high-surface-area mesoporous antimony-doped tin oxide (IrNiO(x)/Meso-ATO) were synthesized from bimetallic IrNi(x) precursor alloys (PA-IrNi(x) /Meso-ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphasis was placed on Ni/NiO surface segregation under thermal treatment of the PA-IrNi(x)/Meso-ATO as well as on the surface chemical state of the particle/oxide support interface. Combining a wide array of characterization methods, we uncovered the detrimental effect of segregated NiO phases on the water splitting activity of core-shell particles. The core-shell IrNiO(x)/Meso-ATO catalyst displayed high water-splitting activity and unprecedented stability in acidic electrolyte providing substantial progress in the development of PEM electrolyzer anode catalysts with drastically reduced Ir loading and significantly enhanced durability. PMID:25611732

  4. Impacts of non-canonical El Niño patterns on Atlantic hurricane activity

    NASA Astrophysics Data System (ADS)

    Larson, S.; Lee, S.; Wang, C.; Chung, E.; Enfield, D. B.

    2012-12-01

    The impact of non-canonical El Niño patterns, typically characterized by warmer than normal sea surface tempera- tures (SSTs) in the central tropical Pacific, on Atlantic tropical cyclone (TC) is explored by using composites of key Atlantic TC indices and tropospheric vertical wind shear over the Atlantic main development region (MDR). The highlight of our major findings is that, while the canonical El Niño pattern has a strong suppressing influence on Atlantic TC activity, non-canonical El Niño patterns con- sidered in this study, namely central Pacific warming, El Niño Modoki, positive phase Trans-Niño, and positive phase Pacific meridional mode, all have insubstantial impact on Atlantic TC activity. This result becomes more conclu- sive when the impact of MDR SST is removed from the Atlantic TC indices and MDR wind shear by using the method of linear regression. Further analysis suggests that the tropical Pacific SST anomalies associated with the non- canonical El Niño patterns are not strong enough to cause a substantial warming of the tropical troposphere in the Atlantic region, which is the key factor that increases the wind shear and atmospheric static stability over the MDR. During the recent decades, the non-canonical El Niños have been more frequent while the canonical El Niño has been less frequent. If such a trend continues in the future, it is expected that the suppressing effect of El Niño on Atlantic TC activity will diminish and thus the MDR SST will play a more important role in controlling Atlantic TC activity in the coming decades.

  5. Impacts of non-canonical El Niño patterns on Atlantic hurricane activity

    NASA Astrophysics Data System (ADS)

    Larson, Sarah; Lee, Sang-Ki; Wang, Chunzai; Chung, Eui-Seok; Enfield, David

    2012-07-01

    The impact of non-canonical El Niño patterns, typically characterized by warmer than normal sea surface temperatures (SSTs) in the central tropical Pacific, on Atlantic tropical cyclone (TC) is explored by using composites of key Atlantic TC indices and tropospheric vertical wind shear over the Atlantic main development region (MDR). The highlight of our major findings is that, while the canonical El Niño pattern has a strong suppressing influence on Atlantic TC activity, non-canonical El Niño patterns considered in this study, namely central Pacific warming, El Niño Modoki, positive phase Trans-Niño, and positive phase Pacific meridional mode, all have insubstantial impact on Atlantic TC activity. This result becomes more conclusive when the impact of MDR SST is removed from the Atlantic TC indices and MDR wind shear by using the method of linear regression. Further analysis suggests that the tropical Pacific SST anomalies associated with the non-canonical El Niño patterns are not strong enough to cause a substantial warming of the tropical troposphere in the Atlantic region, which is the key factor that increases the wind shear and atmospheric static stability over the MDR. During the recent decades, the non-canonical El Niños have been more frequent while the canonical El Niño has been less frequent. If such a trend continues in the future, it is expected that the suppressing effect of El Niño on Atlantic TC activity will diminish and thus the MDR SST will play a more important role in controlling Atlantic TC activity in the coming decades.

  6. Interdiffusion and surface-sandwich ordering in initial Ni-core-Pd-shell nanoparticle.

    PubMed

    Evteev, Alexander V; Levchenko, Elena V; Belova, Irina V; Murch, Graeme E

    2009-05-01

    Using molecular dynamics simulation ( approximately 1 mus) in combination with the embedded atom method we have investigated interdiffusion and structural transformations at 1000 K in an initial core-shell nanoparticle (diameter approximately 4.5 nm). This starting particle has the f.c.c. structure in which a core of Ni atoms ( approximately 34%) is surrounded by a shell of Pd atoms ( approximately 66%). It is found that in such nanoparticles reactive diffusion accompanying nucleation and growth of a Pd(2)Ni ordering surface-sandwich structure takes place. In this structure, the Ni atoms mostly accumulate in a layer just below the surface and, at the same time, are located in the centres of interpenetrating icosahedra to generate a subsurface shell as a Kagomé net. Meanwhile, the Pd atoms occupy the vertices of the icosahedra and cover this Ni layer from the inside and outside as well as being located in the core of the nanoparticle forming (according to the alloy composition) a Pd-rich solid solution with the remaining Ni atoms. The total atomic fraction involved in building up the surface-sandwich shell of the nanoparticle in the form of the Ni Kagomé net layer covered on both side by Pd atoms is estimated at approximately 70%. These findings open up a range of opportunities for the experimental synthesis and study of new kinds of Pd-Ni nanostructures exhibiting Pd(2)Ni surface-sandwich ordering along with properties that may differ significantly from the corresponding bulk Pd-Ni alloys. Some of these opportunities are discussed.

  7. Thermodynamic Effect of Platinum Addition to beta-NiAl: An Initial Investigation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    An initial investigation was conducted to determine the effect of platinum addition on the activities of aluminum and nickel in beta-NiAl(Pt) over the temperature range 1354 to 1692 K. These measurements were made with a multiple effusion-cell configured mass spectrometer (multi-cell KEMS). The results of this study show that Pt additions act to decreased alpha(Al) and increased the alpha(Ni) in beta-NiAl(Pt) for constant X(sub Ni)/X(sub Al) approx. = 1.13, while at constant X(sub Al) the affect of Pt on Al is greatly reduced. The measured partial enthalpies of mixing indicate Al-atoms have a strong self interaction while Ni- and Pt-atoms in have similar interactions with Al-atoms. Conversely the binding of Ni-atoms in beta-NiAl decreases with Pt addition independent of Al concentration. These initial results prove the technique can be applied to the Ni-Al-Pt system but more activity measurements are required to fully understand the thermodynamics of this system and how Pt additions improved the scaling behavior of nickel-based superalloys. In addition, with the choice of a suitable oxide material for the effusion-cell, the "closed" isothermal nature of the effusion-cell allows the direct investigation of an alloy-oxide equilibrium which resembles the "local-equilibrium" description of the metal-scale interface observed during high temperature oxidation. It is proposed that with an Al(l) + Al2O3(s) experimental reference state together with the route measurement of the relative partial-pressures of Al(g) and Al2O(g) allows the activities of O and Al2O3 to be determined along with the activities of Ni and Al. These measurements provide a direct method of investigating the thermodynamics of the metal-scale interface of a TGO-scale.

  8. Effect of Ni precursor solution concentration on the magnetic properties and exchange bias of Ni-NiO nanoparticulate systems

    NASA Astrophysics Data System (ADS)

    Roy, Aparna; De Toro, J. A.; Amaral, V. S.; Marques, D. P.; Ferreira, J. M. F.

    2014-09-01

    We report on a comparative study of the exchange bias effect and magnetic properties of Ni-NiO nanoparticulate systems synthesized by the chemical reduction of NiCl2 solution of two different molar concentrations—1 M (high) and 0.05 M (low)—followed by annealing of the dried precipitate in the temperature range 400-600 °C in air. Interestingly, the samples derived from the low molarity solution have higher Ni content and larger crystallite size than those prepared from their high molarity counterparts. These molarity dependent features subsequently modulate the magnitude of the exchange bias field in the samples, which is found to be absent or small in the 0.05 M series, but of moderate value in the 1 M samples. The different physical attributes of the particles derived from different concentrations of Ni-precursor solution are explained by invoking different nucleation kinetics and supersaturation degrees surrounding the viable growing nucleus. Furthermore, an observed increase of exchange bias with increasing annealing temperature, in contrast to the reported agglomeration of particles on annealing and subsequent reduction in bias magnitude, has been explained in correlation to the Ni-NiO interface density.

  9. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    DOEpatents

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  10. Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni

    SciTech Connect

    Slatineanu, Tamara; Iordan, Alexandra Raluca; Palamaru, Mircea Nicolae; Caltun, Ovidiu Florin; Gafton, Vasilica; Leontie, Liviu

    2011-09-15

    Highlights: {yields} Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} are synthesized by sol-gel auto-combustion method using tartaric acid. {yields} XRD patterns reveal spinel structure and the crystallite size is max. 40 nm. {yields} SEM images for Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} confirm the nano-scale crystallite size. {yields} The highest value of samples porosity belongs to Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}. {yields} The maximum value of the magnetization is 63 emu/g for Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}. -- Abstract: Nanocrystalline powders of nickel substituted zinc ferrite with general formula Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.4, 0.6, 0.8, 1) have been synthesized via sol-gel auto-combustion method using tartaric acid as combustion-complexing agent. Samples were sintered at 773 K and 973 K in static air atmosphere. The absence of the organic phase and the spinel formation were monitored by using Fourier transform infrared spectroscopy. The structure and crystallite size were analyzed from X-ray diffraction data revealing spinel mono-phase formation in the range of nanometric crystallite size confirmed also through scanning electron microscopy. Mean size of crystallites lay in the range 20-40 nm. The influence of nickel content on the microstructure was investigated considering the crystallite size, distance between adjacent crystal planes, lattice parameter and porosity. The variation of magnetic properties of the samples was studied by using vibrating samples magnetometer and discussed considering the proposed cation distribution, relative bond angles and canting angles. The highest maximum value of the magnetization (63 emu/g) was found for Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}.

  11. Growth and characterization of graphene on CuNi substrates

    NASA Astrophysics Data System (ADS)

    Tyagi, Parul

    Graphene is a single layer of sp2 bonded carbon atoms that crystallizes in the honeycomb structure. Because of its true two-dimensional structure, it has very unique electrical properties, including a very high carrier mobility that is symmetric for holes and electrons. To realize these unique properties, it is important to develop a method for growing graphene films with uniform thickness and low defect density. One of the most popular methods of growth is by chemical vapor deposition on Cu substrates, because it is self-limited. However many applications require the growth of graphene films that are more than one atomic layer thick. In this research project, the growth of graphene on CuNi substrates has been studied. The presence of Ni in the alloy results in an increase in the catalytic activity of the surface. This results in lower deposition pressures than for pure Cu and also increases the carbon solubility, which allows the growth of films that are more than one atomic layer thick. Two types of substrates were used for the growth of the graphene films: CuNi foils with an alloy composition of 90:10 and 70:30 Cu-Ni by weight and a CuNi(111) single crystal with a composition of 90:10 by weight. For the 70:30 substrates, it was very difficult to control the graphene thickness. On the other hand, the controlled growth of graphene films that were more than one layer thick was achieved on the 90:10 substrates. The growth morphology and the crystal structure of graphene grown on the CuNi(111) surface was determined by performing these studies in an ultra-high vacuum chamber to achieve very high purity conditions. The low energy electron diffraction analysis of the graphene films showed that the graphene films always nucleated in more than one rotational orientation with respect to the substrate. The growth was achieved at temperatures as low as 500 °C, which is much lower in temperature than for Cu substrates. Scanning electron microscopy analysis of the graphene

  12. Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst

    NASA Astrophysics Data System (ADS)

    Qiu, Song-bai; Gong, Lu; Liu, Lu; Hong, Cheng-gui; Yuan, Li-xia; Li, Quan-xin

    2011-04-01

    We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni20/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 °C, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni20/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.

  13. XAFS studies on highly dispersed Ni 2P/SiO 2 catalysts for hydrodesulfurization of 4,6-dimethyldibenzothiophene

    NASA Astrophysics Data System (ADS)

    Cho, Kye-Sung; Lee, Yong-Kul

    2010-09-01

    The Ni 2P catalysts were prepared by a new synthetic method with the use of less oxidic phosphorus precursor in order to achieve high dispersion on silica support, and their structural properties and catalytic activity in HDS of 4,6-DMDBT were studied. Comparison was made with a conventionally prepared sample which was obtained by temperature programmed reduction method. Various characterizations were conducted by BET, CO uptake, TPR, XRD and X-ray absorption spectroscopy. The amounts of CO chemisorption uptake were 64 and 20 μmol g -1 for Ni 2P/SiO 2-LT and Ni 2P/SiO 2-HT, respectively, indicating that the low temperature reduction technique led to better dispersion of Ni 2P particles on SiO 2 support. The catalytic activity in the HDS of 4,6-DMDBT followed the order, Ni 2P/SiO 2-HT(54%)<Ni 2P/SiO 2-LT(67%). The order correlated well with the amount of CO uptake. These results thus suggest that the HDS activity of the Ni 2P catalysts highly depend on the dispersion of the Ni 2P phase.

  14. Template-directed preparation of two-layer porous NiO film via hydrothermal synthesis for lithium ion batteries

    SciTech Connect

    Chen, Z.; Xiao, A.; Chen, Y.; Zuo, C.; Zhou, S.; Li, L.

    2012-08-15

    Graphical abstract: A two-layer porous NiO film is prepared via hydrothermal synthesis method based on monolayer polystyrene sphere template and shows noticeable Li battery performance with good cycle life and high capacity. Highlights: ► Two-layer porous NiO film is prepared via monolayer polystyrene spheres template. ► NiO film with high capacity as anode material for lithium ion batteries. ► Two-layer porous structure is favorable for fast lithium ion and electron transfer. -- Abstract: A two-layer porous NiO film is prepared by hydrothermal synthesis method through self-assembled monolayer polystyrene spheres template. The substructure of the NiO film is composed of ordered close-packed hollow-sphere array and the superstructure is made up of randomly NiO nanoflakes. The electrochemical properties are measured by galvanostatic charge/discharge tests and cyclic voltammetric analysis (CV). As anode material for lithium ion batteries, the two-layer porous NiO film exhibits high initial coulombic efficiency of 75%, high reversible capacity and rather good cycling performance. The discharge capacity of the two-layer porous NiO film is 501 mAh g{sup −1} at 0.5 C after 50 cycles. The two-layer porous architecture is responsible for the enhancement of electrochemical properties.

  15. Preparation and characterization of Ni-based perovskite catalyst for steam CO2 reforming of methane.

    PubMed

    Yang, Eun-Hyeok; Kim, Sang Woo; Ahn, Byong Song; Moon, Dong Ju

    2013-06-01

    Steam CO2 reforming of methane was investigated over Ni-based perovskite catalyst to produce desired H2/CO ratio by adjusting the feed ratio of CH4, CO2 and H2O for floating GTL process application. La modified perovskites were prepared by the Pechini method and calcined in air and the Ni-based catalysts were prepared by dispersing Ni on the La modified perovskite by an incipient wetness impregnation. The catalysts before and after the reaction were characterized by N2 physisoprtion, CO chemisoprtion, XRD, TPR and SEM techniques. To control desired H2/CO ratio, simulation for SCR was carried out by Aspen plus, and product distribution for SCR was investigated in a fixed bed reactor system using feed ratio estimated by simulation. The Ni-based perovskite catalysts were found to give CH4 and CO2 conversions of up to 82% and 60% respectively to yield a H2/CO product ratio close to 2.

  16. Magnetic properties of NiFe2O4/carbon nanofibers from Venezuelan petcoke

    NASA Astrophysics Data System (ADS)

    Briceño, Sarah; Silva, Pedro; Molina, Wilmer; Brämer-Escamilla, Werner; Alcalá, Olgi; Cañizales, Edgard

    2015-05-01

    NiFe2O4/carbon nanofibers (NiFe2O4/CNFs) have been successfully synthesized by hydrotermal method using Venezuelan petroleum coke (petcoke) as carbon source and NiFe2O4 as catalyst. The morphology, structural and magnetic properties of nanocomposite products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM) and electron paramagnetic resonance (EPR). XRD analysis revealed a cubic spinel structure and ferrite phase with high crystallinity. HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. At room temperature, NiFe2O4/CNFs show superparamagnetic behavior with a maximum magnetization of 15.35 emu/g. Our findings indicate that Venezuelan petroleum coke is suitable industrial carbon source for the growth of magnetic CNFs.

  17. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    SciTech Connect

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rios, Orlando; Hodges, Jason P; Ludtka, Gerard Michael; Porter, Wallace D; Sefat, A. S.; Rusanu, Aurelian; Evans III, Boyd Mccutchen

    2012-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system have been explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering (LSMS) method to explore the magnetic states responsible for the magnet-caloric effect in this material. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy were investigated using differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). Neutron scattering experiments were performed to observe the structural and magnetic phase transformations at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Ni-Mn-Ga-Cu-Fe. Data from the observations are discussed in comparison with the computational studies.

  18. Conductivity switching characteristics and reset currents in NiO films

    NASA Astrophysics Data System (ADS)

    Seo, S.; Lee, M. J.; Seo, D. H.; Choi, S. K.; Suh, D.-S.; Joung, Y. S.; Yoo, I. K.; Byun, I. S.; Hwang, I. R.; Kim, S. H.; Park, B. H.

    2005-02-01

    Conductivity switching phenomena controlled by external voltages have been investigated for various NiO films deposited by dc reactive sputtering methods. Pt /NiO/Pt capacitor structures with top electrodes of different diameters have showed increasing off-state current with the diameter of a top electrode and nearly the same on-state current independent of the diameter. Local conductivity switching behaviors have been observed in a series structure consisting of two Pt /NiO/Pt capacitors with different resistance values. By reasoning out conductivity switching mechanisms from the switching characteristics and introducing multilayers consisting of NiO layers with different resistance values, we have reduced the reset current by two orders of magnitude.

  19. Influence of hydrothermal modification on the properties of Ni/Al 2O 3 catalyst

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Gong, Y. L.; Li, J. C.; Wang, Z. W.

    2004-12-01

    An advanced hydrothermal modification method was developed to synthesis Ni/Al 2O 3 catalyst with perfect activity. SEM, XRD, DTA-TG and XPS were used to characterize the textural properties of the materials obtained after each synthesis step. The experimental results indicated that the modification of the impregnation samples at elevated temperatures enhanced the absorption of Ni(NO 3) 2· xH 2O on the surface of supporters which were composed mainly of Al(OH) 3 and AlOOH, leading to the formation of the porous sintering products (NiAl 2O 4/Al 2O 3) with bigger specific surface areas and higher Ni contents. The conversion of CH 4 increased a lot by using the hydrothermal-modified catalyst instead of using the catalyst prepared via the traditional impregnation-sintering route.

  20. Effect of promoters on the morphology of Ni-based catalyst

    NASA Astrophysics Data System (ADS)

    Yahya, Erny Azwin; Zabidi, Noor Asmawati Mohd

    2015-07-01

    In this paper, effect of promoters on the morphology of Ni-based catalyst supported on Al2O3 was studied. Ni/Al2O3 catalysts doped with Co, Cu, Mn and Nb were synthesized via impregnation method. The catalysts were characterized by FESEM and TEM. Results of FESEM and TEM analyses show that the morphological properties of the catalysts were affected by the type of promoter used. Hexagonal shape particles in 9%Ni-1%Mn/Al2O3 and 9%Ni-1%Nb/Al2O3 were observed. Unpromoted catalysts has spherical shape particles and has the smallest average particle size of 5.42 nm compared to other promoted catalysts.

  1. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Needham, S. A.; Wang, G. X.; Liu, H. K.

    Nickel oxide (NiO) nanotubes have been produced for the first time via a template processing method. The synthesis involved a two step chemical reaction in which nickel hydroxide (Ni(OH) 2) nanotubes were firstly formed within the walls of an anodic aluminium oxide (AAO) template. The template was then dissolved away using concentrated NaOH, and the freed nanotubes were converted to NiO by heat treatment in air at 350 °C. Individual nanotubes measured 60 μm in length with a 200 nm outer diameter and a wall thickness of 20-30 nm. The NiO nanotube powder was used in Li-ion cells for assessment of the lithium storage ability. Preliminary testing indicates that the cells demonstrate controlled and sustainable lithium diffusion after the formation of an SEI. Reversible capacities in the 300 mAh g -1 range were typical.

  2. Improving the bioactivity of NiTi shape memory alloy by heat and alkali treatment

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Zhen-duo, Cui; Xian-jin, Yang; Jie, Shi

    2008-11-01

    TiO 2 films were formed on an NiTi alloy surface by heat treatment in air at 600 °C. Heat treated NiTi shape memory alloys were subsequently alkali treated with 1 M, 3 M and 5 M NaOH solutions respectively, to improve their bioactivity. Then treated NiTi samples were soaked in 1.5SBF to evaluate their in vitro performance. The results showed that the 3 M NaOH treatment is the most appropriate method. A large amount of apatite formed within 1 day's soaking in 1.5SBF, after 7 day's soaking TiO 2/HA composite layer formed on the NiTi surface. SEM, XRD, FT-IR and TEM results showed that the morphology and microstructure are similar to the human bone apatite.

  3. The effects of Ni(2+) on electrical signaling of Nitellopsis obtusa cells.

    PubMed

    Kisnieriene, Vilma; Lapeikaite, Indre; Sevriukova, Olga; Ruksenas, Osvaldas

    2016-05-01

    The effect of nickel (Ni) on the generation of plant bioelectrical signals was evaluated in Nitellopsis obtusa, a Characean model organism. Conventional glass-microelectrode technique and K(+)-anaesthesia method in current-clamp and voltage-clamp modes were used for the measurement and analysis of electrical parameters. Ni(2+) treatment rapidly influenced the action potential (AP) parameters namely, excitation threshold, AP peak and duration, membrane potential at various voltages and dynamics of ion currents. We conclude that altered electrical signaling pathway in the test organism constituted the early target for Ni toxicity imposition. The observed Ni interference could be ascribed to disturbed [Ca(2+)]cyt content, impaired Cl(-) and K(+) channels activity resulting in decreased excitability and repolarization rate in generated AP. PMID:26875181

  4. Role Of Annealing Atmosphere On The Dielectric Properties Of La2NiMnO6

    NASA Astrophysics Data System (ADS)

    Sayed, Farheen N.; Achary, S. N.; Jayakumar, O. D.; Deshpande, S. K.; Shinde, A. B.; Krishna, P. S. R.; Tyagi, A. K.

    2010-12-01

    La2NiMnO6 (LNMO) was prepared by gel combustion method from nitrates using glycine as fuel followed by high temperature annealing. The prepared sample was annealed in O2, air and N2 and characterized by powder X-ray and neutron diffraction and dielectric measurements. Cation ordered monoclinic (P21/n) and rhombohedral (R-3) phases are observed in the as prepared sample and fraction of monoclinic phase increases on annealing in oxygen atmosphere. On annealing in inert atmosphere decomposition of the sample to manganese rich perovskite, La2NiO4 and NiO is observed. Temperature and frequency dependent permittivity (˜103) is observed in the sample annealed in air. The relative permittivity decreases significantly on annealing the sample in oxygen or N2.atmospher. The formation and annihilation of defects is attributed to the observed large permittivity of La2NiMnO6.

  5. Influence of microstructure on the corrosion resistance of Fe-44Ni thin films

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Liu, Tian-cheng; Li, Xiao-gang

    2016-06-01

    An Fe-44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400°C. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500°C and 600°C do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.

  6. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    NASA Astrophysics Data System (ADS)

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-01

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information.

  7. Structural, optical and waveguiding properties improvement of SiO{sub 2}/TiO{sub 2} Bragg reflectors processed by the sol–gel method under the effect of Ni-doped TiO{sub 2} and annealing duration

    SciTech Connect

    Sedrati, H.; Bensaha, R.; Bensouyad, H.; Miska, P.; Robert, S.

    2014-09-15

    Highlights: • The formation of anatase phase only, whatever are Ni content and annealing duration. • Transmission and PL spectra redshifted with Ni content and annealing duration. • PL lowering with Ni content is due to the recombination rate of electron–hole reduction. • Annealing duration increases the recombination rate and then the PL intensity rises. • Increasing Ni content improves waveguiding properties and then two TE modes appear. - Abstract: We investigated the nickel doped TiO{sub 2} layer and annealing duration effects on SiO{sub 2}/TiO{sub 2} Bragg reflectors. The films crystallize in pure anatase phase whatever is the Ni content and the annealing duration. In UV–vis-NIR analyses, variations of width, position and transmission coefficient of the stop-band were observed. The PL spectra red-shifted when the Ni content and annealing duration increased. As the annealing duration increases, an additional sharp emission peak appears around 867 nm, indicating a reduced number of defects. As Ni content increased, the M-lines spectroscopy shows two transverse electric polarization guided modes TE{sub 0} and TE{sub 1}, which indicates a decreased refractive index and an increased film thickness.

  8. Beta decay of nuclides 56Fe, 62Ni, 64Ni and 68Ni in the crust of magnetars

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing; Kang, Xiao-Ping; Hao, Liang-Huan; Feng, Hao; Liu, Dong-Mei; Li, Chang-Wei; Zeng, Xiang-Ming

    2016-11-01

    By introducing the Dirac δ-function and Pauli exclusion principle in the presence of superstrong magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron fraction (CREF) of nuclides 56Fe, 62Ni, 64Ni and 68Ni in magnetars, which are powered by magnetic field energy. We find that the magnetic fields have a great influence on the beta decay rates, and the beta decay rates can decrease by more than six orders of magnitude in the presence of SMFs. The CREF also decreases by more than seven orders of magnitude in the presence of SMFs.

  9. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis

    NASA Astrophysics Data System (ADS)

    Meher, Sumanta Kumar; Justin, P.; Ranga Rao, G.

    2011-02-01

    Three nano-porous NiO samples with high specific surface area were prepared by a simple hydrothermal method under homogeneous precipitation conditions using CTAB as a template and urea as the hydrolysis controlling agent. This study was done to determine the effect of different anions (acetate, nitrate and chloride) present in the precursor salts on the morphology and pseudocapacitance behavior of NiO. The samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Brunauer-Emmet-Teller (BET) isotherm and field emission scanning electron microscopy (FESEM). The final NiO samples showed different hierarchical surface morphologies and their effect on the electrochemical pseudocapacitance behavior was carefully studied by cyclic voltammetry, galvanostatic charge-discharge cycles (chronopotentiometry) and impedance spectroscopic techniques. The specific capacitance of NiO sample synthesized by NO3- ion intercalation showed higher surface area, intermediate porosity and a novel pine-cone morphology with nano-wire surface attachments. This sample exhibits the highest pseudocapacitance of 279 F g-1 at a scan rate of 5 mV s-1, calculated from the cyclic voltammetry measurements. The sample synthesized by Cl- intercalation shows a nano-flower morphology with lower surface area, porosity and pseudocapacitance behaviour. The NiO sample prepared in the presence of CH3COO- ions showed a honeycomb type surface morphology with an intermediate pseudocapacitance value but higher reversibility. The galvanostatic charge-discharge and impedance spectroscopic measurements on these NiO electrodes were consistent with CV results. The Coulombic efficiency of all the three NiO samples was found to be high (~85 to ~99%) after 100 galvanostatic charge-discharge cycles. This study shows that the surface morphology and porosity of NiO are strongly influenced by the anions in the precursor salts, and in turn affect significantly

  10. Microstructure of Ni-Al powder and Ni-Al composite coatings prepared by twin-wire arc spraying

    NASA Astrophysics Data System (ADS)

    Wang, Ji-xiao; Wang, Gui-xian; Liu, Jing-shun; Zhang, Lun-yong; Wang, Wei; Li, Ze; Wang, Qi-xiang; Sun, Jian-fei

    2016-07-01

    Ni-Al powder and Ni-Al composite coatings were fabricated by twin-wire arc spraying (TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni-Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni3Al, Al2O3, and NiO. The Ni-Al phase and a small amount of Al2O3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni-Al composite coatings were characterized by SEM, EDS, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and NiAl in addition to a small amount of Al2O3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, NiAl, and Ni3Al in addition to a small amount of Al and Al2O3, and NiAl and Ni3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl3 precipitates and a Ni-Al-O amorphous phase formed in the matrix of the Ni solid solution in the original state.

  11. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter. PMID:27580894

  12. Bulk ordering and surface segregation in Ni50Pt50

    NASA Astrophysics Data System (ADS)

    Pourovskii, L. V.; Ruban, A. V.; Abrikosov, I. A.; Vekilov, Y. Kh.; Johansson, B.

    2001-07-01

    Interatomic interactions obtained from the effective screened generalized-perturbation method have been applied in Monte Carlo simulations to derive the bulk and surface-alloy configurations for Ni50Pt50. The calculated order-disorder transition temperature and short-range order parameters in the bulk compare well with experimental data. The surface-alloy compositions for the (111) and (110) facets above the ordering transition temperature are also found to be in a good agreement with experiments. It is demonstrated that the segregation profile at the (110) surface of NiPt is mainly caused by the unusually strong segregation of Pt into the second layer and the interlayer ordering due to large chemical nearest-neighbor interactions.

  13. Energetics of Single Substitutional Impurities in NiTi

    NASA Technical Reports Server (NTRS)

    Good, Brian S.; Noebe, Ronald

    2003-01-01

    Shape-memory alloys are of considerable current interest, with applications ranging from stents to Mars rover components. In this work, we present results on the energetics of single substitutional impurities in B2 NiTi. Specifically, energies of Pd, Pt, Zr and Hf impurities at both Ni and Ti sites are computed. All energies are computed using the CASTEP ab initio code, and, for comparison, using the quantum approximate energy method of Bozzolo, Ferrante and Smith. Atomistic relaxation in the vicinity of the impurities is investigated via quantum approximate Monte Carlo simulation, and in cases where the relaxation is found to be important, the resulting relaxations are applied to the ab initio calculations. We compare our results with available experimental work.

  14. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter.

  15. Magnetostatic interaction in electrodeposited Ni/Au multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    He, Li-Zhong; Qin, Li-Rong; Zhao, Jian-Wei; Yin, Ying-Ying; Yang, Yu; Li, Guo-Qing

    2016-08-01

    Ordered Ni/Au multilayer nanowire arrays are successfully fabricated inside the nanochannels of anodic aluminum oxide template by pulse electrodeposition method. The thickness of the alternating layers is controlled to examine the magnetostatic interaction in Ni/Au multilayer nanowires. The magnetic easy axis parallel to the nanowires indicates that here the magnetostatic coupling along the wire axis dominates over the interactions perpendicular to the nanowires. However, the magnetostatic interaction between adjacent nanowires with larger magnetic layers is enhanced, leading to the existence of an optimum coercivity value. Project supported by the National Natural Science Foundation of China (Grant No. 11204246) and the Natural Science Foundation of CQCSTC (Grant No. cstc2014jcyjA50027).

  16. Magnetostatic interaction in electrodeposited Ni/Au multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    He, Li-Zhong; Qin, Li-Rong; Zhao, Jian-Wei; Yin, Ying-Ying; Yang, Yu; Li, Guo-Qing

    2016-08-01

    Ordered Ni/Au multilayer nanowire arrays are successfully fabricated inside the nanochannels of anodic aluminum oxide template by pulse electrodeposition method. The thickness of the alternating layers is controlled to examine the magnetostatic interaction in Ni/Au multilayer nanowires. The magnetic easy axis parallel to the nanowires indicates that here the magnetostatic coupling along the wire axis dominates over the interactions perpendicular to the nanowires. However, the magnetostatic interaction between adjacent nanowires with larger magnetic layers is enhanced, leading to the existence of an optimum coercivity value. Project supported by the National Natural Science Foundation of China (Grant No. 11204246) and the Natural Science Foundation of CQCSTC (Grant No. cstc2014jcyjA50027).

  17. NiTi bonded space regainer/maintainer.

    PubMed

    Negi, K S

    2010-01-01

    Early orthodontic interventions are often initiated in the developing dentition to promote favorable developmental changes. Interceptive orthodontic can eliminate or reduce the severity of a developing malocclusion, the complexity of orthodontic treatment, overall treatment time and cost. Premature loss of deciduous tooth or teeth can often destroy the integrity of normal occlusion. There are many space regaining and maintaining devices mentioned in literature. In this article, I present a simple space regaining method by a piece of nickel titanium (NiTi) wire bonded between the teeth in active loop form, and the unique shape memory property of NiTi wire will upright or move the teeth and the lost space can be regained easily.

  18. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    SciTech Connect

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-15

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information. - Graphical abstract: Ni-Re phase diagram according to the present study. Highlights: Black-Right-Pointing-Pointer Re-investigation of the Ni-Re phase diagram. Black-Right-Pointing-Pointer Extended phase field of the hcp phase. Black-Right-Pointing-Pointer Different freezing ranges and peritectic reaction temperature. Black-Right-Pointing-Pointer Thermodynamic modeling of the studied system by using the CALPHAD method.

  19. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  20. Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules

    NASA Astrophysics Data System (ADS)

    Dan-Feng, Zhang; Zhi-Feng, Hao; Bi, Zeng; Yan-Nan, Qian; Ying-Xin, Huang; Zhen-Da, Yang

    2016-04-01

    With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core, carbon-coated nickel (Ni(C)) nanoparticles are expected to be the promising microwave absorbers. Microwave electromagnetic parameters and reflection loss in a frequency range of 2 GHz-18 GHz for paraffin-Ni(C) composites are investigated. The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) composites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%, 70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An excellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches -26.73 dB at 12.7 GHz, and below -10 dB, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites. Project supported by the Science and Technology Program of Guangdong Province, China (Grant Nos. 2014B010106005, 2013B051000077, and 2015A050502047) and the Science and Technology Program of Guangzhou City, China (Grant No