Fault-tolerant clock synchronization validation methodology. [in computer systems
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Palumbo, Daniel L.; Johnson, Sally C.
1987-01-01
A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight-crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating the clock synchronization system of the Software Implemented Fault Tolerance computer. The design proof of the algorithm includes a theorem that defines the maximum skew between any two nonfaulty clocks in the system in terms of specific system parameters. Most of these parameters are deterministic. One crucial parameter is the upper bound on the clock read error, which is stochastic. The probability that this upper bound is exceeded is calculated from data obtained by the measurement of system parameters. This probability is then included in a detailed reliability analysis of the system.
NASA Astrophysics Data System (ADS)
Kuschenerus, Mieke; Cullen, Robert
2016-08-01
To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.
A Bayesian Approach to Determination of F, D, and Z Values Used in Steam Sterilization Validation.
Faya, Paul; Stamey, James D; Seaman, John W
2017-01-01
For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the well-known D T , z , and F o values that are used in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these values to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. LAY ABSTRACT: For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the critical process parameters that are evaluated in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these parameters to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. © PDA, Inc. 2017.
Hess, Cornelius; Sydow, Konrad; Kueting, Theresa; Kraemer, Michael; Maas, Alexandra
2018-02-01
The requirement for correct evaluation of forensic toxicological results in daily routine work and scientific studies is reliable analytical data based on validated methods. Validation of a method gives the analyst tools to estimate the efficacy and reliability of the analytical method. Without validation, data might be contested in court and lead to unjustified legal consequences for a defendant. Therefore, new analytical methods to be used in forensic toxicology require careful method development and validation of the final method. Until now, there are no publications on the validation of chromatographic mass spectrometric methods for the detection of endogenous substances although endogenous analytes can be important in Forensic Toxicology (alcohol consumption marker, congener alcohols, gamma hydroxy butyric acid, human insulin and C-peptide, creatinine, postmortal clinical parameters). For these analytes, conventional validation instructions cannot be followed completely. In this paper, important practical considerations in analytical method validation for endogenous substances will be discussed which may be used as guidance for scientists wishing to develop and validate analytical methods for analytes produced naturally in the human body. Especially the validation parameters calibration model, analytical limits, accuracy (bias and precision) and matrix effects and recovery have to be approached differently. Highest attention should be paid to selectivity experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Update of Standard Practices for New Method Validation in Forensic Toxicology.
Wille, Sarah M R; Coucke, Wim; De Baere, Thierry; Peters, Frank T
2017-01-01
International agreement concerning validation guidelines is important to obtain quality forensic bioanalytical research and routine applications as it all starts with the reporting of reliable analytical data. Standards for fundamental validation parameters are provided in guidelines as those from the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), the German speaking Gesellschaft fur Toxikologie und Forensische Chemie (GTFCH) and the Scientific Working Group of Forensic Toxicology (SWGTOX). These validation parameters include selectivity, matrix effects, method limits, calibration, accuracy and stability, as well as other parameters such as carryover, dilution integrity and incurred sample reanalysis. It is, however, not easy for laboratories to implement these guidelines into practice as these international guidelines remain nonbinding protocols, that depend on the applied analytical technique, and that need to be updated according the analyst's method requirements and the application type. In this manuscript, a review of the current guidelines and literature concerning bioanalytical validation parameters in a forensic context is given and discussed. In addition, suggestions for the experimental set-up, the pros and cons of statistical approaches and adequate acceptance criteria for the validation of bioanalytical applications are given. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Herrera-Basurto, R.; Mercader-Trejo, F.; Muñoz-Madrigal, N.; Juárez-García, J. M.; Rodriguez-López, A.; Manzano-Ramírez, A.
2016-07-01
The main goal of method validation is to demonstrate that the method is suitable for its intended purpose. One of the advantages of analytical method validation is translated into a level of confidence about the measurement results reported to satisfy a specific objective. Elemental composition determination by wavelength dispersive spectrometer (WDS) microanalysis has been used over extremely wide areas, mainly in the field of materials science, impurity determinations in geological, biological and food samples. However, little information is reported about the validation of the applied methods. Herein, results of the in-house method validation for elemental composition determination by WDS are shown. SRM 482, a binary alloy Cu-Au of different compositions, was used during the validation protocol following the recommendations for method validation proposed by Eurachem. This paper can be taken as a reference for the evaluation of the validation parameters more frequently requested to get the accreditation under the requirements of the ISO/IEC 17025 standard: selectivity, limit of detection, linear interval, sensitivity, precision, trueness and uncertainty. A model for uncertainty estimation was proposed including systematic and random errors. In addition, parameters evaluated during the validation process were also considered as part of the uncertainty model.
Analytical difficulties facing today's regulatory laboratories: issues in method validation.
MacNeil, James D
2012-08-01
The challenges facing analytical laboratories today are not unlike those faced in the past, although both the degree of complexity and the rate of change have increased. Challenges such as development and maintenance of expertise, maintenance and up-dating of equipment, and the introduction of new test methods have always been familiar themes for analytical laboratories, but international guidelines for laboratories involved in the import and export testing of food require management of such changes in a context which includes quality assurance, accreditation, and method validation considerations. Decisions as to when a change in a method requires re-validation of the method or on the design of a validation scheme for a complex multi-residue method require a well-considered strategy, based on a current knowledge of international guidance documents and regulatory requirements, as well the laboratory's quality system requirements. Validation demonstrates that a method is 'fit for purpose', so the requirement for validation should be assessed in terms of the intended use of a method and, in the case of change or modification of a method, whether that change or modification may affect a previously validated performance characteristic. In general, method validation involves method scope, calibration-related parameters, method precision, and recovery. Any method change which may affect method scope or any performance parameters will require re-validation. Some typical situations involving change in methods are discussed and a decision process proposed for selection of appropriate validation measures. © 2012 John Wiley & Sons, Ltd.
Random sampling and validation of covariance matrices of resonance parameters
NASA Astrophysics Data System (ADS)
Plevnik, Lucijan; Zerovnik, Gašper
2017-09-01
Analytically exact methods for random sampling of arbitrary correlated parameters are presented. Emphasis is given on one hand on the possible inconsistencies in the covariance data, concentrating on the positive semi-definiteness and consistent sampling of correlated inherently positive parameters, and on the other hand on optimization of the implementation of the methods itself. The methods have been applied in the program ENDSAM, written in the Fortran language, which from a file from a nuclear data library of a chosen isotope in ENDF-6 format produces an arbitrary number of new files in ENDF-6 format which contain values of random samples of resonance parameters (in accordance with corresponding covariance matrices) in places of original values. The source code for the program ENDSAM is available from the OECD/NEA Data Bank. The program works in the following steps: reads resonance parameters and their covariance data from nuclear data library, checks whether the covariance data is consistent, and produces random samples of resonance parameters. The code has been validated with both realistic and artificial data to show that the produced samples are statistically consistent. Additionally, the code was used to validate covariance data in existing nuclear data libraries. A list of inconsistencies, observed in covariance data of resonance parameters in ENDF-VII.1, JEFF-3.2 and JENDL-4.0 is presented. For now, the work has been limited to resonance parameters, however the methods presented are general and can in principle be extended to sampling and validation of any nuclear data.
Misu, Shogo; Asai, Tsuyoshi; Ono, Rei; Sawa, Ryuichi; Tsutsumimoto, Kota; Ando, Hiroshi; Doi, Takehiko
2017-09-01
The heel is likely a suitable location to which inertial sensors are attached for the detection of gait events. However, there are few studies to detect gait events and determine temporal gait parameters using sensors attached to the heels. We developed two methods to determine temporal gait parameters: detecting heel-contact using acceleration and detecting toe-off using angular velocity data (acceleration-angular velocity method; A-V method), and detecting both heel-contact and toe-off using angular velocity data (angular velocity-angular velocity method; V-V method). The aim of this study was to examine the concurrent validity of the A-V and V-V methods against the standard method, and to compare their accuracy. Temporal gait parameters were measured in 10 younger and 10 older adults. The intra-class correlation coefficients were excellent in both methods compared with the standard method (0.80 to 1.00). The root mean square errors of stance and swing time in the A-V method were smaller than the V-V method in older adults, although there were no significant discrepancies in the other comparisons. Our study suggests that inertial sensors attached to the heels, using the A-V method in particular, provide a valid measurement of temporal gait parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparative assessment of bioanalytical method validation guidelines for pharmaceutical industry.
Kadian, Naveen; Raju, Kanumuri Siva Rama; Rashid, Mamunur; Malik, Mohd Yaseen; Taneja, Isha; Wahajuddin, Muhammad
2016-07-15
The concepts, importance, and application of bioanalytical method validation have been discussed for a long time and validation of bioanalytical methods is widely accepted as pivotal before they are taken into routine use. United States Food and Drug Administration (USFDA) guidelines issued in 2001 have been referred for every guideline released ever since; may it be European Medical Agency (EMA) Europe, National Health Surveillance Agency (ANVISA) Brazil, Ministry of Health and Labour Welfare (MHLW) Japan or any other guideline in reference to bioanalytical method validation. After 12 years, USFDA released its new draft guideline for comments in 2013, which covers the latest parameters or topics encountered in bioanalytical method validation and approached towards the harmonization of bioanalytical method validation across the globe. Even though the regulatory agencies have general agreement, significant variations exist in acceptance criteria and methodology. The present review highlights the variations, similarities and comparison between bioanalytical method validation guidelines issued by major regulatory authorities worldwide. Additionally, other evaluation parameters such as matrix effect, incurred sample reanalysis including other stability aspects have been discussed to provide an ease of access for designing a bioanalytical method and its validation complying with the majority of drug authority guidelines. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry
2013-05-01
Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.
Hansen, Clint; Venture, Gentiane; Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice
2014-05-07
Over the last decades a variety of research has been conducted with the goal to improve the Body Segment Inertial Parameters (BSIP) estimations but to our knowledge a real validation has never been completely successful, because no ground truth is available. The aim of this paper is to propose a validation method for a BSIP identification method (IM) and to confirm the results by comparing them with recalculated contact forces using inverse dynamics to those obtained by a force plate. Furthermore, the results are compared with the recently proposed estimation method by Dumas et al. (2007). Additionally, the results are cross validated with a high velocity overarm throwing movement. Throughout conditions higher correlations, smaller metrics and smaller RMSE can be found for the proposed BSIP estimation (IM) which shows its advantage compared to recently proposed methods as of Dumas et al. (2007). The purpose of the paper is to validate an already proposed method and to show that this method can be of significant advantage compared to conventional methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Center of pressure based segment inertial parameters validation
Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice; Venture, Gentiane
2017-01-01
By proposing efficient methods for estimating Body Segment Inertial Parameters’ (BSIP) estimation and validating them with a force plate, it is possible to improve the inverse dynamic computations that are necessary in multiple research areas. Until today a variety of studies have been conducted to improve BSIP estimation but to our knowledge a real validation has never been completely successful. In this paper, we propose a validation method using both kinematic and kinetic parameters (contact forces) gathered from optical motion capture system and a force plate respectively. To compare BSIPs, we used the measured contact forces (Force plate) as the ground truth, and reconstructed the displacements of the Center of Pressure (COP) using inverse dynamics from two different estimation techniques. Only minor differences were seen when comparing the estimated segment masses. Their influence on the COP computation however is large and the results show very distinguishable patterns of the COP movements. Improving BSIP techniques is crucial and deviation from the estimations can actually result in large errors. This method could be used as a tool to validate BSIP estimation techniques. An advantage of this approach is that it facilitates the comparison between BSIP estimation methods and more specifically it shows the accuracy of those parameters. PMID:28662090
Mulder, Leontine; van der Molen, Renate; Koelman, Carin; van Leeuwen, Ester; Roos, Anja; Damoiseaux, Jan
2018-05-01
ISO 15189:2012 requires validation of methods used in the medical laboratory, and lists a series of performance parameters for consideration to include. Although these performance parameters are feasible for clinical chemistry analytes, application in the validation of autoimmunity tests is a challenge. Lack of gold standards or reference methods in combination with the scarcity of well-defined diagnostic samples of patients with rare diseases make validation of new assays difficult. The present manuscript describes the initiative of Dutch medical immunology laboratory specialists to combine efforts and perform multi-center validation studies of new assays in the field of autoimmunity. Validation data and reports are made available to interested Dutch laboratory specialists. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods
NASA Astrophysics Data System (ADS)
Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan
2017-03-01
Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.
Selection of regularization parameter in total variation image restoration.
Liao, Haiyong; Li, Fang; Ng, Michael K
2009-11-01
We consider and study total variation (TV) image restoration. In the literature there are several regularization parameter selection methods for Tikhonov regularization problems (e.g., the discrepancy principle and the generalized cross-validation method). However, to our knowledge, these selection methods have not been applied to TV regularization problems. The main aim of this paper is to develop a fast TV image restoration method with an automatic selection of the regularization parameter scheme to restore blurred and noisy images. The method exploits the generalized cross-validation (GCV) technique to determine inexpensively how much regularization to use in each restoration step. By updating the regularization parameter in each iteration, the restored image can be obtained. Our experimental results for testing different kinds of noise show that the visual quality and SNRs of images restored by the proposed method is promising. We also demonstrate that the method is efficient, as it can restore images of size 256 x 256 in approximately 20 s in the MATLAB computing environment.
On the analysis of very small samples of Gaussian repeated measurements: an alternative approach.
Westgate, Philip M; Burchett, Woodrow W
2017-03-15
The analysis of very small samples of Gaussian repeated measurements can be challenging. First, due to a very small number of independent subjects contributing outcomes over time, statistical power can be quite small. Second, nuisance covariance parameters must be appropriately accounted for in the analysis in order to maintain the nominal test size. However, available statistical strategies that ensure valid statistical inference may lack power, whereas more powerful methods may have the potential for inflated test sizes. Therefore, we explore an alternative approach to the analysis of very small samples of Gaussian repeated measurements, with the goal of maintaining valid inference while also improving statistical power relative to other valid methods. This approach uses generalized estimating equations with a bias-corrected empirical covariance matrix that accounts for all small-sample aspects of nuisance correlation parameter estimation in order to maintain valid inference. Furthermore, the approach utilizes correlation selection strategies with the goal of choosing the working structure that will result in the greatest power. In our study, we show that when accurate modeling of the nuisance correlation structure impacts the efficiency of regression parameter estimation, this method can improve power relative to existing methods that yield valid inference. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Validation of Bayesian analysis of compartmental kinetic models in medical imaging.
Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M
2016-10-01
Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Nguyen, N; Milanfar, P; Golub, G
2001-01-01
In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.
Rezende, Vinícius Marcondes; Rivellis, Ariane Julio; Gomes, Melissa Medrano; Dörr, Felipe Augusto; Novaes, Mafalda Megumi Yoshinaga; Nardinelli, Luciana; Costa, Ariel Lais de Lima; Chamone, Dalton de Alencar Fisher; Bendit, Israel
2013-01-01
Objective The goal of this study was to monitor imatinib mesylate therapeutically in the Tumor Biology Laboratory, Department of Hematology and Hemotherapy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP). A simple and sensitive method to quantify imatinib and its metabolite (CGP74588) in human serum was developed and fully validated in order to monitor treatment compliance. Methods The method used to quantify these compounds in serum included protein precipitation extraction followed by instrumental analysis using high performance liquid chromatography coupled with mass spectrometry. The method was validated for several parameters, including selectivity, precision, accuracy, recovery and linearity. Results The parameters evaluated during the validation stage exhibited satisfactory results based on the Food and Drug Administration and the Brazilian Health Surveillance Agency (ANVISA) guidelines for validating bioanalytical methods. These parameters also showed a linear correlation greater than 0.99 for the concentration range between 0.500 µg/mL and 10.0 µg/mL and a total analysis time of 13 minutes per sample. This study includes results (imatinib serum concentrations) for 308 samples from patients being treated with imatinib mesylate. Conclusion The method developed in this study was successfully validated and is being efficiently used to measure imatinib concentrations in samples from chronic myeloid leukemia patients to check treatment compliance. The imatinib serum levels of patients achieving a major molecular response were significantly higher than those of patients who did not achieve this result. These results are thus consistent with published reports concerning other populations. PMID:23741187
Korjus, Kristjan; Hebart, Martin N.; Vicente, Raul
2016-01-01
Supervised machine learning methods typically require splitting data into multiple chunks for training, validating, and finally testing classifiers. For finding the best parameters of a classifier, training and validation are usually carried out with cross-validation. This is followed by application of the classifier with optimized parameters to a separate test set for estimating the classifier’s generalization performance. With limited data, this separation of test data creates a difficult trade-off between having more statistical power in estimating generalization performance versus choosing better parameters and fitting a better model. We propose a novel approach that we term “Cross-validation and cross-testing” improving this trade-off by re-using test data without biasing classifier performance. The novel approach is validated using simulated data and electrophysiological recordings in humans and rodents. The results demonstrate that the approach has a higher probability of discovering significant results than the standard approach of cross-validation and testing, while maintaining the nominal alpha level. In contrast to nested cross-validation, which is maximally efficient in re-using data, the proposed approach additionally maintains the interpretability of individual parameters. Taken together, we suggest an addition to currently used machine learning approaches which may be particularly useful in cases where model weights do not require interpretation, but parameters do. PMID:27564393
Korjus, Kristjan; Hebart, Martin N; Vicente, Raul
2016-01-01
Supervised machine learning methods typically require splitting data into multiple chunks for training, validating, and finally testing classifiers. For finding the best parameters of a classifier, training and validation are usually carried out with cross-validation. This is followed by application of the classifier with optimized parameters to a separate test set for estimating the classifier's generalization performance. With limited data, this separation of test data creates a difficult trade-off between having more statistical power in estimating generalization performance versus choosing better parameters and fitting a better model. We propose a novel approach that we term "Cross-validation and cross-testing" improving this trade-off by re-using test data without biasing classifier performance. The novel approach is validated using simulated data and electrophysiological recordings in humans and rodents. The results demonstrate that the approach has a higher probability of discovering significant results than the standard approach of cross-validation and testing, while maintaining the nominal alpha level. In contrast to nested cross-validation, which is maximally efficient in re-using data, the proposed approach additionally maintains the interpretability of individual parameters. Taken together, we suggest an addition to currently used machine learning approaches which may be particularly useful in cases where model weights do not require interpretation, but parameters do.
Determination of polarimetric parameters of honey by near-infrared transflectance spectroscopy.
García-Alvarez, M; Ceresuela, S; Huidobro, J F; Hermida, M; Rodríguez-Otero, J L
2002-01-30
NIR transflectance spectroscopy was used to determine polarimetric parameters (direct polarization, polarization after inversion, specific rotation in dry matter, and polarization due to nonmonosaccharides) and sucrose in honey. In total, 156 honey samples were collected during 1992 (45 samples), 1995 (56 samples), and 1996 (55 samples). Samples were analyzed by NIR spectroscopy and polarimetric methods. Calibration (118 samples) and validation (38 samples) sets were made up; honeys from the three years were included in both sets. Calibrations were performed by modified partial least-squares regression and scatter correction by standard normal variation and detrend methods. For direct polarization, polarization after inversion, specific rotation in dry matter, and polarization due to nonmonosaccharides, good statistics (bias, SEV, and R(2)) were obtained for the validation set, and no statistically (p = 0.05) significant differences were found between instrumental and polarimetric methods for these parameters. Statistical data for sucrose were not as good as those of the other parameters. Therefore, NIR spectroscopy is not an effective method for quantitative analysis of sucrose in these honey samples. However, NIR spectroscopy may be an acceptable method for semiquantitative evaluation of sucrose for honeys, such as those in our study, containing up to 3% of sucrose. Further work is necessary to validate the uncertainty at higher levels.
Saraf, Sanatan; Mathew, Thomas; Roy, Anindya
2015-01-01
For the statistical validation of surrogate endpoints, an alternative formulation is proposed for testing Prentice's fourth criterion, under a bivariate normal model. In such a setup, the criterion involves inference concerning an appropriate regression parameter, and the criterion holds if the regression parameter is zero. Testing such a null hypothesis has been criticized in the literature since it can only be used to reject a poor surrogate, and not to validate a good surrogate. In order to circumvent this, an equivalence hypothesis is formulated for the regression parameter, namely the hypothesis that the parameter is equivalent to zero. Such an equivalence hypothesis is formulated as an alternative hypothesis, so that the surrogate endpoint is statistically validated when the null hypothesis is rejected. Confidence intervals for the regression parameter and tests for the equivalence hypothesis are proposed using bootstrap methods and small sample asymptotics, and their performances are numerically evaluated and recommendations are made. The choice of the equivalence margin is a regulatory issue that needs to be addressed. The proposed equivalence testing formulation is also adopted for other parameters that have been proposed in the literature on surrogate endpoint validation, namely, the relative effect and proportion explained.
Probability of Detection (POD) as a statistical model for the validation of qualitative methods.
Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T
2011-01-01
A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.
Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang
2017-04-26
This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.
Szerkus, Oliwia; Struck-Lewicka, Wiktoria; Kordalewska, Marta; Bartosińska, Ewa; Bujak, Renata; Borsuk, Agnieszka; Bienert, Agnieszka; Bartkowska-Śniatkowska, Alicja; Warzybok, Justyna; Wiczling, Paweł; Nasal, Antoni; Kaliszan, Roman; Markuszewski, Michał Jan; Siluk, Danuta
2017-02-01
The purpose of this work was to develop and validate a rapid and robust LC-MS/MS method for the determination of dexmedetomidine (DEX) in plasma, suitable for analysis of a large number of samples. Systematic approach, Design of Experiments, was applied to optimize ESI source parameters and to evaluate method robustness, therefore, a rapid, stable and cost-effective assay was developed. The method was validated according to US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (5-2500 pg/ml), Results: Experimental design approach was applied for optimization of ESI source parameters and evaluation of method robustness. The method was validated according to the US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (R 2 > 0.98). The accuracies, intra- and interday precisions were less than 15%. The stability data confirmed reliable behavior of DEX under tested conditions. Application of Design of Experiments approach allowed for fast and efficient analytical method development and validation as well as for reduced usage of chemicals necessary for regular method optimization. The proposed technique was applied to determination of DEX pharmacokinetics in pediatric patients undergoing long-term sedation in the intensive care unit.
Simulation verification techniques study
NASA Technical Reports Server (NTRS)
Schoonmaker, P. B.; Wenglinski, T. H.
1975-01-01
Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.
A Method of Q-Matrix Validation for the Linear Logistic Test Model
Baghaei, Purya; Hohensinn, Christine
2017-01-01
The linear logistic test model (LLTM) is a well-recognized psychometric model for examining the components of difficulty in cognitive tests and validating construct theories. The plausibility of the construct model, summarized in a matrix of weights, known as the Q-matrix or weight matrix, is tested by (1) comparing the fit of LLTM with the fit of the Rasch model (RM) using the likelihood ratio (LR) test and (2) by examining the correlation between the Rasch model item parameters and LLTM reconstructed item parameters. The problem with the LR test is that it is almost always significant and, consequently, LLTM is rejected. The drawback of examining the correlation coefficient is that there is no cut-off value or lower bound for the magnitude of the correlation coefficient. In this article we suggest a simulation method to set a minimum benchmark for the correlation between item parameters from the Rasch model and those reconstructed by the LLTM. If the cognitive model is valid then the correlation coefficient between the RM-based item parameters and the LLTM-reconstructed item parameters derived from the theoretical weight matrix should be greater than those derived from the simulated matrices. PMID:28611721
Testing alternative ground water models using cross-validation and other methods
Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.
2007-01-01
Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.
Calculation of Optical Parameters of Liquid Crystals
NASA Astrophysics Data System (ADS)
Kumar, A.
2007-12-01
Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.
NASA Astrophysics Data System (ADS)
Riedel, Sebastian; Janas, Joanna; Gege, Peter; Oppelt, Natascha
2017-10-01
Uncertainties of aerosol parameters are the limiting factor for atmospheric correction over inland and coastal waters. For validating remote sensing products from these optically complex and spatially inhomogeneous waters the spatial resolution of automated sun photometer networks like AERONET is too coarse and additional measurements on the test site are required. We have developed a method which allows the derivation of aerosol parameters from measurements with any spectrometer with suitable spectral range and resolution. This method uses a pair of downwelling irradiance and sky radiance measurements for the extraction of the turbidity coefficient and aerosol Ångström exponent. The data can be acquired fast and reliable at almost any place during a wide range of weather conditions. A comparison to aerosol parameters measured with a Cimel sun photometer provided by AERONET shows a reasonable agreement for the Ångström exponent. The turbidity coefficient did not agree well with AERONET values due to fit ambiguities, indicating that future research should focus on methods to handle parameter correlations within the underlying model.
A practical iterative PID tuning method for mechanical systems using parameter chart
NASA Astrophysics Data System (ADS)
Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.
2017-10-01
In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.
Karabagias, Ioannis K; Karabournioti, Sofia
2018-05-03
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014⁻2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin ( p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone.
Karabournioti, Sofia
2018-01-01
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014–2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin (p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone. PMID:29751543
Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.
Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan
2013-02-01
A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.
Azemard, Sabine; Vassileva, Emilia
2015-06-01
In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cross-validation to select Bayesian hierarchical models in phylogenetics.
Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C
2016-05-26
Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.
Automated extraction and validation of children's gait parameters with the Kinect.
Motiian, Saeid; Pergami, Paola; Guffey, Keegan; Mancinelli, Corrie A; Doretto, Gianfranco
2015-12-02
Gait analysis for therapy regimen prescription and monitoring requires patients to physically access clinics with specialized equipment. The timely availability of such infrastructure at the right frequency is especially important for small children. Besides being very costly, this is a challenge for many children living in rural areas. This is why this work develops a low-cost, portable, and automated approach for in-home gait analysis, based on the Microsoft Kinect. A robust and efficient method for extracting gait parameters is introduced, which copes with the high variability of noisy Kinect skeleton tracking data experienced across the population of young children. This is achieved by temporally segmenting the data with an approach based on coupling a probabilistic matching of stride template models, learned offline, with the estimation of their global and local temporal scaling. A preliminary study conducted on healthy children between 2 and 4 years of age is performed to analyze the accuracy, precision, repeatability, and concurrent validity of the proposed method against the GAITRite when measuring several spatial and temporal children's gait parameters. The method has excellent accuracy and good precision, with segmenting temporal sequences of body joint locations into stride and step cycles. Also, the spatial and temporal gait parameters, estimated automatically, exhibit good concurrent validity with those provided by the GAITRite, as well as very good repeatability. In particular, on a range of nine gait parameters, the relative and absolute agreements were found to be good and excellent, and the overall agreements were found to be good and moderate. This work enables and validates the automated use of the Kinect for children's gait analysis in healthy subjects. In particular, the approach makes a step forward towards developing a low-cost, portable, parent-operated in-home tool for clinicians assisting young children.
Large scale study of multiple-molecule queries
2009-01-01
Background In ligand-based screening, as well as in other chemoinformatics applications, one seeks to effectively search large repositories of molecules in order to retrieve molecules that are similar typically to a single molecule lead. However, in some case, multiple molecules from the same family are available to seed the query and search for other members of the same family. Multiple-molecule query methods have been less studied than single-molecule query methods. Furthermore, the previous studies have relied on proprietary data and sometimes have not used proper cross-validation methods to assess the results. In contrast, here we develop and compare multiple-molecule query methods using several large publicly available data sets and background. We also create a framework based on a strict cross-validation protocol to allow unbiased benchmarking for direct comparison in future studies across several performance metrics. Results Fourteen different multiple-molecule query methods were defined and benchmarked using: (1) 41 publicly available data sets of related molecules with similar biological activity; and (2) publicly available background data sets consisting of up to 175,000 molecules randomly extracted from the ChemDB database and other sources. Eight of the fourteen methods were parameter free, and six of them fit one or two free parameters to the data using a careful cross-validation protocol. All the methods were assessed and compared for their ability to retrieve members of the same family against the background data set by using several performance metrics including the Area Under the Accumulation Curve (AUAC), Area Under the Curve (AUC), F1-measure, and BEDROC metrics. Consistent with the previous literature, the best parameter-free methods are the MAX-SIM and MIN-RANK methods, which score a molecule to a family by the maximum similarity, or minimum ranking, obtained across the family. One new parameterized method introduced in this study and two previously defined methods, the Exponential Tanimoto Discriminant (ETD), the Tanimoto Power Discriminant (TPD), and the Binary Kernel Discriminant (BKD), outperform most other methods but are more complex, requiring one or two parameters to be fit to the data. Conclusion Fourteen methods for multiple-molecule querying of chemical databases, including novel methods, (ETD) and (TPD), are validated using publicly available data sets, standard cross-validation protocols, and established metrics. The best results are obtained with ETD, TPD, BKD, MAX-SIM, and MIN-RANK. These results can be replicated and compared with the results of future studies using data freely downloadable from http://cdb.ics.uci.edu/. PMID:20298525
Validation of a Novel Virtual Reality Simulator for Robotic Surgery
Schreuder, Henk W. R.; Persson, Jan E. U.; Wolswijk, Richard G. H.; Ihse, Ingmar; Schijven, Marlies P.; Verheijen, René H. M.
2014-01-01
Objective. With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. Methods. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Results. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were “time to complete” and “economy of motion” (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Conclusions. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery. PMID:24600328
NASA Astrophysics Data System (ADS)
Khatri, Pradeep; Hayasaka, Tadahiro; Iwabuchi, Hironobu; Takamura, Tamio; Irie, Hitoshi; Nakajima, Takashi Y.; Letu, Husi; Kai, Qin
2017-04-01
Clouds are known to have profound impacts on atmospheric radiation and water budget, climate change, atmosphere-surface interaction, and so on. Cloud optical thickness (COT) and effective radius (Re) are two fundamental cloud parameters required to study clouds from climatological and hydrological point of view. Large spatial-temporal coverages of those cloud parameters from space observation have proved to be very useful for cloud research; however, validation of space-based products is still a challenging task due to lack of reliable data. Ground-based remote sensing instruments, such as sky radiometers distributed around the world through international observation networks of SKYNET (http://atmos2.cr.chiba-u.jp/skynet/) and AERONET (https://aeronet.gsfc.nasa.gov/) have a great potential to produce ground-truth cloud parameters at different parts of the globe to validate satellite products. Focusing to the sky radiometers of SKYNET and AERONET, a few cloud retrieval methods exists, but those methods have some difficulties to address the problem when cloud is optically thin. It is because the observed transmittances at two wavelengths can be originated from more than one set of COD and Re, and the choice of the most plausible set is difficult. At the same time, calibration issue, especially for the wavelength of near infrared (NIR) region, which is important to retrieve Re, is also a difficult task at present. As a result, instruments need to be calibrated at a high mountain or calibration terms need to be transferred from a standard instrument. Taking those points on account, we developed a new retrieval method emphasizing to overcome above-mentioned difficulties. We used observed transmittances of multiple wavelengths to overcome the first problem. We further proposed a method to obtain calibration constant of NIR wavelength channel using observation data. Our cloud retrieval method is found to produce relatively accurate COD and Re when validated them using data of a narrow field of view radiometer of collocated observation in one SKYNET site. Though the method is developed for the sky radiometer of SKYNET, it can be still used for the sky radiometer of AERONET and other instruments observing spectral zenith transmittances. The proposed retrieval method is then applied to retrieve cloud parameters at key sites of SKYNET within Japan, which are then used to validate cloud products obtained from space observations by MODIS sensors onboard TERRA/AQUA satellites and Himawari 8, a Japanese geostationary satellite. Our analyses suggest the underestimation (overestimation) of COD (Re) from space observations.
Minimal residual method provides optimal regularization parameter for diffuse optical tomography
NASA Astrophysics Data System (ADS)
Jagannath, Ravi Prasad K.; Yalavarthy, Phaneendra K.
2012-10-01
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.
Minimal residual method provides optimal regularization parameter for diffuse optical tomography.
Jagannath, Ravi Prasad K; Yalavarthy, Phaneendra K
2012-10-01
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.
Parameter Selection Methods in Inverse Problem Formulation
2010-11-03
clinical data and used for prediction and a model for the reaction of the cardiovascular system to an ergometric workload. Key Words: Parameter selection...model for HIV dynamics which has been successfully validated with clinical data and used for prediction and a model for the reaction of the...recently developed in-host model for HIV dynamics which has been successfully validated with clinical data and used for prediction [4, 8]; b) a global
Establishment and validation for the theoretical model of the vehicle airbag
NASA Astrophysics Data System (ADS)
Zhang, Junyuan; Jin, Yang; Xie, Lizhe; Chen, Chao
2015-05-01
The current design and optimization of the occupant restraint system (ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.
Cross-validation pitfalls when selecting and assessing regression and classification models.
Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon
2014-03-29
We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
NASA Technical Reports Server (NTRS)
Smith, R. C.; Bowers, K. L.
1991-01-01
A fully Sinc-Galerkin method for recovering the spatially varying stiffness and damping parameters in Euler-Bernoulli beam models is presented. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which converges exponentially and is valid on the infinite time interval. Hence the method avoids the time-stepping which is characteristic of many of the forward schemes which are used in parameter recovery algorithms. Tikhonov regularization is used to stabilize the resulting inverse problem, and the L-curve method for determining an appropriate value of the regularization parameter is briefly discussed. Numerical examples are given which demonstrate the applicability of the method for both individual and simultaneous recovery of the material parameters.
Li, Xue; Ahmad, Imad A Haidar; Tam, James; Wang, Yan; Dao, Gina; Blasko, Andrei
2018-02-05
A Total Organic Carbon (TOC) based analytical method to quantitate trace residues of clean-in-place (CIP) detergents CIP100 ® and CIP200 ® on the surfaces of pharmaceutical manufacturing equipment was developed and validated. Five factors affecting the development and validation of the method were identified: diluent composition, diluent volume, extraction method, location for TOC sample preparation, and oxidant flow rate. Key experimental parameters were optimized to minimize contamination and to improve the sensitivity, recovery, and reliability of the method. The optimized concentration of the phosphoric acid in the swabbing solution was 0.05M, and the optimal volume of the sample solution was 30mL. The swab extraction method was 1min sonication. The use of a clean room, as compared to an isolated lab environment, was not required for method validation. The method was demonstrated to be linear with a correlation coefficient (R) of 0.9999. The average recoveries from stainless steel surfaces at multiple spike levels were >90%. The repeatability and intermediate precision results were ≤5% across the 2.2-6.6ppm range (50-150% of the target maximum carry over, MACO, limit). The method was also shown to be sensitive with a detection limit (DL) of 38ppb and a quantitation limit (QL) of 114ppb. The method validation demonstrated that the developed method is suitable for its intended use. The methodology developed in this study is generally applicable to the cleaning verification of any organic detergents used for the cleaning of pharmaceutical manufacturing equipment made of electropolished stainless steel material. Copyright © 2017 Elsevier B.V. All rights reserved.
Robust Smoothing: Smoothing Parameter Selection and Applications to Fluorescence Spectroscopy∂
Lee, Jong Soo; Cox, Dennis D.
2009-01-01
Fluorescence spectroscopy has emerged in recent years as an effective way to detect cervical cancer. Investigation of the data preprocessing stage uncovered a need for a robust smoothing to extract the signal from the noise. Various robust smoothing methods for estimating fluorescence emission spectra are compared and data driven methods for the selection of smoothing parameter are suggested. The methods currently implemented in R for smoothing parameter selection proved to be unsatisfactory, and a computationally efficient procedure that approximates robust leave-one-out cross validation is presented. PMID:20729976
Review of surface steam sterilization for validation purposes.
van Doornmalen, Joost; Kopinga, Klaas
2008-03-01
Sterilization is an essential step in the process of producing sterile medical devices. To guarantee sterility, the process of sterilization must be validated. Because there is no direct way to measure sterility, the techniques applied to validate the sterilization process are based on statistical principles. Steam sterilization is the most frequently applied sterilization method worldwide and can be validated either by indicators (chemical or biological) or physical measurements. The steam sterilization conditions are described in the literature. Starting from these conditions, criteria for the validation of steam sterilization are derived and can be described in terms of physical parameters. Physical validation of steam sterilization appears to be an adequate and efficient validation method that could be considered as an alternative for indicator validation. Moreover, physical validation can be used for effective troubleshooting in steam sterilizing processes.
A new approach to the extraction of single exponential diode model parameters
NASA Astrophysics Data System (ADS)
Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.
2018-06-01
A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.
Study of the method of water-injected meat identifying based on low-field nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Xu, Jianmei; Lin, Qing; Yang, Fang; Zheng, Zheng; Ai, Zhujun
2018-01-01
The aim of this study to apply low-field nuclear magnetic resonance technique was to study regular variation of the transverse relaxation spectral parameters of water-injected meat with the proportion of water injection. Based on this, the method of one-way ANOVA and discriminant analysis was used to analyse the differences between these parameters in the capacity of distinguishing water-injected proportion, and established a model for identifying water-injected meat. The results show that, except for T 21b, T 22e and T 23b, the other parameters of the T 2 relaxation spectrum changed regularly with the change of water-injected proportion. The ability of different parameters to distinguish water-injected proportion was different. Based on S, P 22 and T 23m as the prediction variable, the Fisher model and the Bayes model were established by discriminant analysis method, qualitative and quantitative classification of water-injected meat can be realized. The rate of correct discrimination of distinguished validation and cross validation were 88%, the model was stable.
Kulikov, A U; Zinchenko, A A
2007-02-19
This paper describes the validation of an isocratic HPLC method for the assay of dexpanthenol in aerosol and gel. The method employs the Vydac Proteins C4 column with a mobile phase of aqueous solution of trifluoroacetic acid and UV detection at 206 nm. A linear response (r>0.9999) was observed in the range of 13.0-130 microg mL(-1). The method shows good recoveries and intra and inter-day relative standard deviations were less than 1.0%. Validation parameters as specificity, accuracy and robustness were also determined. The method can be used for dexpanthenol assay of panthenol aerosol and gel with dexpanthenol as the method separates dexpanthenol from aerosol or gel excipients.
Soong, David T.; Over, Thomas M.
2015-01-01
Recalibration of the HSPF parameters to the updated inputs and land covers was completed on two representative watershed models selected from the nine by using a manual method (HSPEXP) and an automatic method (PEST). The objective of the recalibration was to develop a regional parameter set that improves the accuracy in runoff volume prediction for the nine study watersheds. Knowledge about flow and watershed characteristics plays a vital role for validating the calibration in both manual and automatic methods. The best performing parameter set was determined by the automatic calibration method on a two-watershed model. Applying this newly determined parameter set to the nine watersheds for runoff volume simulation resulted in “very good” ratings in five watersheds, an improvement as compared to “very good” ratings achieved for three watersheds by the North Branch parameter set.
Sanagi, M Marsin; Nasir, Zalilah; Ling, Susie Lu; Hermawan, Dadan; Ibrahim, Wan Aini Wan; Naim, Ahmedy Abu
2010-01-01
Linearity assessment as required in method validation has always been subject to different interpretations and definitions by various guidelines and protocols. However, there are very limited applicable implementation procedures that can be followed by a laboratory chemist in assessing linearity. Thus, this work proposes a simple method for linearity assessment in method validation by a regression analysis that covers experimental design, estimation of the parameters, outlier treatment, and evaluation of the assumptions according to the International Union of Pure and Applied Chemistry guidelines. The suitability of this procedure was demonstrated by its application to an in-house validation for the determination of plasticizers in plastic food packaging by GC.
Calibration and validation of a general infiltration model
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.
1999-08-01
A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry
2013-04-01
An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.
Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context.
Martinez, Josue G; Carroll, Raymond J; Müller, Samuel; Sampson, Joshua N; Chatterjee, Nilanjan
2011-11-01
When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso.
da Rosa, Hemerson S; Koetz, Mariana; Santos, Marí Castro; Jandrey, Elisa Helena Farias; Folmer, Vanderlei; Henriques, Amélia Teresinha; Mendez, Andreas Sebastian Loureiro
2018-04-01
Sida tuberculata (ST) is a Malvaceae species widely distributed in Southern Brazil. In traditional medicine, ST has been employed as hypoglycemic, hypocholesterolemic, anti-inflammatory and antimicrobial. Additionally, this species is chemically characterized by flavonoids, alkaloids and phytoecdysteroids mainly. The present work aimed to optimize the extractive technique and to validate an UHPLC method for the determination of 20-hydroxyecdsone (20HE) in the ST leaves. Box-Behnken Design (BBD) was used in method optimization. The extractive methods tested were: static and dynamic maceration, ultrasound, ultra-turrax and reflux. In the Box-Behnken three parameters were evaluated in three levels (-1, 0, +1), particle size, time and plant:solvent ratio. In validation method, the parameters of selectivity, specificity, linearity, limits of detection and quantification (LOD, LOQ), precision, accuracy and robustness were evaluated. The results indicate static maceration as better technique to obtain 20HE peak area in ST extract. The optimal extraction from surface response methodology was achieved with the parameters granulometry of 710 nm, 9 days of maceration and plant:solvent ratio 1:54 (w/v). The UHPLC-PDA analytical developed method showed full viability of performance, proving to be selective, linear, precise, accurate and robust for 20HE detection in ST leaves. The average content of 20HE was 0.56% per dry extract. Thus, the optimization of extractive method in ST leaves increased the concentration of 20HE in crude extract, and a reliable method was successfully developed according to validation requirements and in agreement with current legislation. Copyright © 2018 Elsevier Inc. All rights reserved.
Barrera-Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn
2009-10-01
Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel function. This assumption is probably valid at frequencies below the resonance frequency. However, at higher frequencies the movement of the membrane is heavily coupled with the damping of the air film between membrane and backplate and with resonances in the back chamber of the microphone. A solution to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses and other parameters. The agreement with experimental data is generally good. The method can be used as an alternative for validating the parameters of the microphones determined by classical calibration techniques.
Białek, Michał; Markiewicz, Łukasz; Sawicki, Przemysław
2015-01-01
The delayed lotteries are much more common in everyday life than are pure lotteries. Usually, we need to wait to find out the outcome of the risky decision (e.g., investing in a stock market, engaging in a relationship). However, most research has studied the time discounting and probability discounting in isolation using the methodologies designed specifically to track changes in one parameter. Most commonly used method is adjusting, but its reported validity and time stability in research on discounting are suboptimal. The goal of this study was to introduce the novel method for analyzing delayed lotteries-conjoint analysis-which hypothetically is more suitable for analyzing individual preferences in this area. A set of two studies compared the conjoint analysis with adjusting. The results suggest that individual parameters of discounting strength estimated with conjoint have higher predictive value (Study 1 and 2), and they are more stable over time (Study 2) compared to adjusting. We discuss these findings, despite the exploratory character of reported studies, by suggesting that future research on delayed lotteries should be cross-validated using both methods.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2013-08-26
We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.
Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Brandt, Eric; Wen, Di; van Ditzhuijzen, Nienke S; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Alian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G; Wilson, David L
2016-04-01
Evidence suggests high-resolution, high-contrast, [Formula: see text] intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and three-dimensional (3-D) registration methods to provide validation of IVOCT pullback volumes using microscopic, color, and fluorescent cryo-image volumes with optional registered cryo-histology. A specialized registration method matched IVOCT pullback images acquired in the catheter reference frame to a true 3-D cryo-image volume. Briefly, an 11-parameter registration model including a polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Multiple assessments suggested that the registration error was better than the [Formula: see text] spacing between IVOCT image frames. Tests on a digital synthetic phantom gave a registration error of only [Formula: see text] (signed distance). Visual assessment of randomly presented nearby frames suggested registration accuracy within 1 IVOCT frame interval ([Formula: see text]). This would eliminate potential misinterpretations confronted by the typical histological approaches to validation, with estimated 1-mm errors. The method can be used to create annotated datasets and automated plaque classification methods and can be extended to other intravascular imaging modalities.
In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.
Prasaja, Budi; Syabani, M Maulana; Sari, Endah; Chilmi, Uci; Cahyaningsih, Prawitasari; Kosasih, Theresia Weliana
2018-06-12
Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela ® tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence. © Georg Thieme Verlag KG Stuttgart · New York.
Correlation and agreement of a digital and conventional method to measure arch parameters.
Nawi, Nes; Mohamed, Alizae Marny; Marizan Nor, Murshida; Ashar, Nor Atika
2018-01-01
The aim of the present study was to determine the overall reliability and validity of arch parameters measured digitally compared to conventional measurement. A sample of 111 plaster study models of Down syndrome (DS) patients were digitized using a blue light three-dimensional (3D) scanner. Digital and manual measurements of defined parameters were performed using Geomagic analysis software (Geomagic Studio 2014 software, 3D Systems, Rock Hill, SC, USA) on digital models and with a digital calliper (Tuten, Germany) on plaster study models. Both measurements were repeated twice to validate the intraexaminer reliability based on intraclass correlation coefficients (ICCs) using the independent t test and Pearson's correlation, respectively. The Bland-Altman method of analysis was used to evaluate the agreement of the measurement between the digital and plaster models. No statistically significant differences (p > 0.05) were found between the manual and digital methods when measuring the arch width, arch length, and space analysis. In addition, all parameters showed a significant correlation coefficient (r ≥ 0.972; p < 0.01) between all digital and manual measurements. Furthermore, a positive agreement between digital and manual measurements of the arch width (90-96%), arch length and space analysis (95-99%) were also distinguished using the Bland-Altman method. These results demonstrate that 3D blue light scanning and measurement software are able to precisely produce 3D digital model and measure arch width, arch length, and space analysis. The 3D digital model is valid to be used in various clinical applications.
Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry
2018-06-19
Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.
Doubly stochastic radial basis function methods
NASA Astrophysics Data System (ADS)
Yang, Fenglian; Yan, Liang; Ling, Leevan
2018-06-01
We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).
Validation of biological activity testing procedure of recombinant human interleukin-7.
Lutsenko, T N; Kovalenko, M V; Galkin, O Yu
2017-01-01
Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation characteristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.
Munkácsy, Gyöngyi; Sztupinszki, Zsófia; Herman, Péter; Bán, Bence; Pénzváltó, Zsófia; Szarvas, Nóra; Győrffy, Balázs
2016-09-27
No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA) for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal-Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC) of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E-06). Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR) or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E-04). There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445
Quantitative fluorescence angiography for neurosurgical interventions.
Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute
2013-06-01
Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.
Diagnostic accuracy of eye movements in assessing pedophilia.
Fromberger, Peter; Jordan, Kirsten; Steinkrauss, Henrike; von Herder, Jakob; Witzel, Joachim; Stolpmann, Georg; Kröner-Herwig, Birgit; Müller, Jürgen Leo
2012-07-01
Given that recurrent sexual interest in prepubescent children is one of the strongest single predictors for pedosexual offense recidivism, valid and reliable diagnosis of pedophilia is of particular importance. Nevertheless, current assessment methods still fail to fulfill psychometric quality criteria. The aim of the study was to evaluate the diagnostic accuracy of eye-movement parameters in regard to pedophilic sexual preferences. Eye movements were measured while 22 pedophiles (according to ICD-10 F65.4 diagnosis), 8 non-pedophilic forensic controls, and 52 healthy controls simultaneously viewed the picture of a child and the picture of an adult. Fixation latency was assessed as a parameter for automatic attentional processes and relative fixation time to account for controlled attentional processes. Receiver operating characteristic (ROC) analyses, which are based on calculated age-preference indices, were carried out to determine the classifier performance. Cross-validation using the leave-one-out method was used to test the validity of classifiers. Pedophiles showed significantly shorter fixation latencies and significantly longer relative fixation times for child stimuli than either of the control groups. Classifier performance analysis revealed an area under the curve (AUC) = 0.902 for fixation latency and an AUC = 0.828 for relative fixation time. The eye-tracking method based on fixation latency discriminated between pedophiles and non-pedophiles with a sensitivity of 86.4% and a specificity of 90.0%. Cross-validation demonstrated good validity of eye-movement parameters. Despite some methodological limitations, measuring eye movements seems to be a promising approach to assess deviant pedophilic interests. Eye movements, which represent automatic attentional processes, demonstrated high diagnostic accuracy. © 2012 International Society for Sexual Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang; Zou, Jianfeng
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less
Modal parameter identification using the log decrement method and band-pass filters
NASA Astrophysics Data System (ADS)
Liao, Yabin; Wells, Valana
2011-10-01
This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.
Tchebichef moment based restoration of Gaussian blurred images.
Kumar, Ahlad; Paramesran, Raveendran; Lim, Chern-Loon; Dass, Sarat C
2016-11-10
With the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation. The estimated blur parameters from the proposed method are used in the split Bregman-based image restoration algorithm. A comparative analysis of the proposed method with three existing methods using all the images from the LIVE database is carried out. The results show that the proposed method in most of the cases performs better than the three existing methods in terms of the visual quality evaluated using the structural similarity index.
An ultraviolet-spectrophotometric method for the determination of glimepiride in solid dosage forms.
Afieroho, Ozadheoghene E; Okorie, Ogbonna; Okonkwo, Tochukwu J N
2011-06-01
Considering the cost of acquiring a liquid chromatographic instrument in underdeveloped economies, the rising incidence of diabetes mellitus, the need to evaluate the quality performance of glimepiride generics, and the need for less toxic processes, this research is an imperative. The method was validated for linearity, recovery accuracy, intra- and inter-day precision, specificity in the presence of excipients, and inter-day stability under laboratory conditions. Student's t test at the 95% confidence limit was used for statistics. Using 96% ethanol as solvent, a less toxic and cost-effective spectrophotometric method for the determination of glimepiride in solid dosage forms was developed and validated. The results of the validated parameters showed a λ(max) of 231 nm, linearity range of 0.5-22 μg/mL, precision with relative SD of <1.0%, recovery accuracy of 100.8%, regression equation of y = 45.741x + 0.0202, R(2) = 0.999, limit of detection of 0.35 μg/mL, and negligible interference from common excipients and colorants. The method was found to be accurate at the 95% confidence limit compared with the standard liquid chromatographic method with comparable reproducibility when used to assay the formulated products Amaryl(®) (sanofi-aventis, Paris, France) and Mepyril(®) (May & Baker Nigeria PLC, Ikeja, Nigeria). The results obtained for the validated parameters were within allowable limits. This method is recommended for routine quality control analysis.
Zero-G experimental validation of a robotics-based inertia identification algorithm
NASA Astrophysics Data System (ADS)
Bruggemann, Jeremy J.; Ferrel, Ivann; Martinez, Gerardo; Xie, Pu; Ma, Ou
2010-04-01
The need to efficiently identify the changing inertial properties of on-orbit spacecraft is becoming more critical as satellite on-orbit services, such as refueling and repairing, become increasingly aggressive and complex. This need stems from the fact that a spacecraft's control system relies on the knowledge of the spacecraft's inertia parameters. However, the inertia parameters may change during flight for reasons such as fuel usage, payload deployment or retrieval, and docking/capturing operations. New Mexico State University's Dynamics, Controls, and Robotics Research Group has proposed a robotics-based method of identifying unknown spacecraft inertia properties1. Previous methods require firing known thrusts then measuring the thrust, and the velocity and acceleration changes. The new method utilizes the concept of momentum conservation, while employing a robotic device powered by renewable energy to excite the state of the satellite. Thus, it requires no fuel usage or force and acceleration measurements. The method has been well studied in theory and demonstrated by simulation. However its experimental validation is challenging because a 6- degree-of-freedom motion in a zero-gravity condition is required. This paper presents an on-going effort to test the inertia identification method onboard the NASA zero-G aircraft. The design and capability of the test unit will be discussed in addition to the flight data. This paper also introduces the design and development of an airbearing based test used to partially validate the method, in addition to the approach used to obtain reference value for the test system's inertia parameters that can be used for comparison with the algorithm results.
Parameter recovery, bias and standard errors in the linear ballistic accumulator model.
Visser, Ingmar; Poessé, Rens
2017-05-01
The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Luna, Aderval S.; da Silva, Arnaldo P.; Ferré, Joan; Boqué, Ricard
This research work describes two studies for the classification and characterization of edible oils and its quality parameters through Fourier transform mid infrared spectroscopy (FT-mid-IR) together with chemometric methods. The discrimination of canola, sunflower, corn and soybean oils was investigated using SVM-DA, SIMCA and PLS-DA. Using FT-mid-IR, DPLS was able to classify 100% of the samples from the validation set, but SIMCA and SVM-DA were not. The quality parameters: refraction index and relative density of edible oils were obtained from reference methods. Prediction models for FT-mid-IR spectra were calculated for these quality parameters using partial least squares (PLS) and support vector machines (SVM). Several preprocessing alternatives (first derivative, multiplicative scatter correction, mean centering, and standard normal variate) were investigated. The best result for the refraction index was achieved with SVM as well as for the relative density except when the preprocessing combination of mean centering and first derivative was used. For both of quality parameters, the best results obtained for the figures of merit expressed by the root mean square error of cross validation (RMSECV) and prediction (RMSEP) were equal to 0.0001.
Study on validation method for femur finite element model under multiple loading conditions
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu
2018-03-01
Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.
NASA Astrophysics Data System (ADS)
Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.
2017-02-01
This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.
Quantitative body DW-MRI biomarkers uncertainty estimation using unscented wild-bootstrap.
Freiman, M; Voss, S D; Mulkern, R V; Perez-Rossello, J M; Warfield, S K
2011-01-01
We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical use. Model-based bootstrap techniques, for example, assume an underlying linear model for residuals rescaling and cannot be utilized directly for body diffusion parameters uncertainty estimation due to the non-linearity of the body diffusion model. To offset this limitation, our method uses the Unscented transform to compute the residuals rescaling parameters from the non-linear body diffusion model, and then applies the wild-bootstrap method to infer the body diffusion parameters uncertainty. Validation through phantom and human subject experiments shows that our method identify the regions with higher uncertainty in body DWI-MRI model parameters correctly with realtive error of -36% in the uncertainty values.
Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo
2017-06-01
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context
Martinez, Josue G.; Carroll, Raymond J.; Müller, Samuel; Sampson, Joshua N.; Chatterjee, Nilanjan
2012-01-01
When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso. PMID:22347720
Mochizuki, Ayumi; Ieki, Katsunori; Kamimori, Hiroshi; Nagao, Akemi; Nakai, Keiko; Nakayama, Akira; Nanba, Eitaro
2018-04-01
The guidance and several guidelines on bioanalytical method validation, which were issued by the US FDA, EMA and Ministry of Health, Labour and Welfare, list the 'full' validation parameters; however, none of these provide any details for 'partial' validation. Japan Bioanalysis Forum approved a total of three annual discussion groups from 2012 to 2014. In the discussion groups, members from pharmaceutical companies and contract research organizations discussed the details of partial validation from a risk assessment viewpoint based on surveys focusing on bioanalysis of small molecules using LC-MS/MS in Japan. This manuscript presents perspectives and recommendations for most conceivable changes that can be made to full and partial validations by members of the discussion groups based on their experiences and discussions at the Japan Bioanalysis Forum Symposium.
NASA Astrophysics Data System (ADS)
Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel
2012-03-01
A novel, selective, sensitive and simple spectrophotometric method was developed and validated for the determination of the antidepressant duloxetine hydrochloride in pharmaceutical preparation. The method was based on the reaction of duloxetine hydrochloride with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media to yield orange colored product. The formation of this complex was also confirmed by UV-visible, FTIR, 1H NMR, Mass spectra techniques and thermal analysis. This method was validated for various parameters according to ICH guidelines. Beer's law is obeyed in a range of 5.0-60 μg/mL at the maximum absorption wavelength of 480 nm. The detection limit is 0.99 μg/mL and the recovery rate is in a range of 98.10-99.57%. The proposed methods was validated and applied to the determination of duloxetine hydrochloride in pharmaceutical preparation. The results were statistically analyzed and compared to those of a reference UV spectrophotometric method.
Białek, Michał; Markiewicz, Łukasz; Sawicki, Przemysław
2015-01-01
The delayed lotteries are much more common in everyday life than are pure lotteries. Usually, we need to wait to find out the outcome of the risky decision (e.g., investing in a stock market, engaging in a relationship). However, most research has studied the time discounting and probability discounting in isolation using the methodologies designed specifically to track changes in one parameter. Most commonly used method is adjusting, but its reported validity and time stability in research on discounting are suboptimal. The goal of this study was to introduce the novel method for analyzing delayed lotteries—conjoint analysis—which hypothetically is more suitable for analyzing individual preferences in this area. A set of two studies compared the conjoint analysis with adjusting. The results suggest that individual parameters of discounting strength estimated with conjoint have higher predictive value (Study 1 and 2), and they are more stable over time (Study 2) compared to adjusting. We discuss these findings, despite the exploratory character of reported studies, by suggesting that future research on delayed lotteries should be cross-validated using both methods. PMID:25674069
Evaluation of random errors in Williams’ series coefficients obtained with digital image correlation
NASA Astrophysics Data System (ADS)
Lychak, Oleh V.; Holyns'kiy, Ivan S.
2016-03-01
The use of the Williams’ series parameters for fracture analysis requires valid information about their error values. The aim of this investigation is the development of the method for estimation of the standard deviation of random errors of the Williams’ series parameters, obtained from the measured components of the stress field. Also, the criteria for choosing the optimal number of terms in the truncated Williams’ series for derivation of their parameters with minimal errors is proposed. The method was used for the evaluation of the Williams’ parameters, obtained from the data, and measured by the digital image correlation technique for testing a three-point bending specimen.
Parasitic Parameters Extraction for InP DHBT Based on EM Method and Validation up to H-Band
NASA Astrophysics Data System (ADS)
Li, Oupeng; Zhang, Yong; Wang, Lei; Xu, Ruimin; Cheng, Wei; Wang, Yuan; Lu, Haiyan
2017-05-01
This paper presents a small-signal model for InGaAs/InP double heterojunction bipolar transistor (DHBT). Parasitic parameters of access via and electrode finger are extracted by 3-D electromagnetic (EM) simulation. By analyzing the equivalent circuit of seven special structures and using the EM simulation results, the parasitic parameters are extracted systematically. Compared with multi-port s-parameter EM model, the equivalent circuit model has clear physical intension and avoids the complex internal ports setting. The model is validated on a 0.5 × 7 μm2 InP DHBT up to 325 GHz. The model provides a good fitting result between measured and simulated multi-bias s-parameters in full band. At last, an H-band amplifier is designed and fabricated for further verification. The measured amplifier performance is highly agreed with the model prediction, which indicates the model has good accuracy in submillimeterwave band.
The cross-validated AUC for MCP-logistic regression with high-dimensional data.
Jiang, Dingfeng; Huang, Jian; Zhang, Ying
2013-10-01
We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1998-01-01
A method for generating a validated measurement of a process parameter at a point in time by using a plurality of individual sensor inputs from a scan of said sensors at said point in time. The sensor inputs from said scan are stored and a first validation pass is initiated by computing an initial average of all stored sensor inputs. Each sensor input is deviation checked by comparing each input including a preset tolerance against the initial average input. If the first deviation check is unsatisfactory, the sensor which produced the unsatisfactory input is flagged as suspect. It is then determined whether at least two of the inputs have not been flagged as suspect and are therefore considered good inputs. If two or more inputs are good, a second validation pass is initiated by computing a second average of all the good sensor inputs, and deviation checking the good inputs by comparing each good input including a present tolerance against the second average. If the second deviation check is satisfactory, the second average is displayed as the validated measurement and the suspect sensor as flagged as bad. A validation fault occurs if at least two inputs are not considered good, or if the second deviation check is not satisfactory. In the latter situation the inputs from each of all the sensors are compared against the last validated measurement and the value from the sensor input that deviates the least from the last valid measurement is displayed.
Validating the simulation of large-scale parallel applications using statistical characteristics
Zhang, Deli; Wilke, Jeremiah; Hendry, Gilbert; ...
2016-03-01
Simulation is a widely adopted method to analyze and predict the performance of large-scale parallel applications. Validating the hardware model is highly important for complex simulations with a large number of parameters. Common practice involves calculating the percent error between the projected and the real execution time of a benchmark program. However, in a high-dimensional parameter space, this coarse-grained approach often suffers from parameter insensitivity, which may not be known a priori. Moreover, the traditional approach cannot be applied to the validation of software models, such as application skeletons used in online simulations. In this work, we present a methodologymore » and a toolset for validating both hardware and software models by quantitatively comparing fine-grained statistical characteristics obtained from execution traces. Although statistical information has been used in tasks like performance optimization, this is the first attempt to apply it to simulation validation. Lastly, our experimental results show that the proposed evaluation approach offers significant improvement in fidelity when compared to evaluation using total execution time, and the proposed metrics serve as reliable criteria that progress toward automating the simulation tuning process.« less
PV systems photoelectric parameters determining for field conditions and real operation conditions
NASA Astrophysics Data System (ADS)
Shepovalova, Olga V.
2018-05-01
In this work, research experience and reference documentation have been generalized related to PV systems photoelectric parameters (PV array output parameters) determining. The basic method has been presented that makes it possible to determine photoelectric parameters with the state-of-the-art reliability and repeatability. This method provides an effective tool for PV systems comparison and evaluation of PV system parameters that the end-user will have in the course of its real operation for compliance with those stipulated in reference documentation. The method takes in consideration all parameters that may possibly affect photoelectric performance and that are supported by sufficiently valid procedures for their values testing. Test conditions, requirements for equipment subject to tests and test preparations have been established and the test procedure for fully equipped PV system in field tests and in real operation conditions has been described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remigy, J.C.; Nakache, E.; Brechot, P.D.
This article presents a method which allows one to find the Hansen solubility parameters by means of data processing. In the first part, the authors present the thermodynamical principle of Hansen parameters, and then they explain the model used to find parameters from experimental data. They validate the method by studying the solubility parameters of CFC-12 (dichlorodifluoromethane), HFC-134a (1,1,1,2-tetrafluoroethane), neopentylglycol esters, trimethylolpropane esters, dipentaerythritol esters, and pentaerythritol esters. Then, the variation of Hansen parameters are studied as well as the relation between the miscibility temperature (the temperature at which a blend passes from the miscible state to the immiscible state)more » and the interaction distance. The authors establish the critical interaction distance of HFC-134a which determines the solubility limit and they study its variation with temperature.« less
NASA Astrophysics Data System (ADS)
Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael
2015-02-01
We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.
Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS
Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo
2016-01-01
This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health. PMID:27766178
Bohnert, Sara; Vair, Cory; Mikler, John
2010-05-15
A rapid and small volume assay to quantify HI-6 in plasma was developed to further the development and licensing of an intravenous formulation of HI-6. The objective of this method was to develop a sensitive and rapid assay that clearly resolved HI-6 and an internal standard in saline and plasma matrices. A fully validated method using ion-pair HPLC and 2-PAM as the internal standard fulfilled these requirements. Small plasma samples of 35 microL were extracted using acidification, filtration and neutralization. Linearity was shown for over 4 microg/mL to 1mg/mL with accuracy and precision within 6% relative error at the lower limit of detection. This method was utilized in the pharmacokinetic analysis HI-6 dichloride (2Cl) and HI-6 dimethane sulfonate (DMS) in anaesthetized guinea pigs and domestic swine following an intravenous bolus administration. From the resultant pharmacokinetic parameters a target plasma concentration of 100 microM was established and maintained in guinea pigs receiving an intravenous infusion. This validated method allows for the analysis of low volume samples, increased sample numbers and is applicable to the determination of pharmacokinetic profiles and parameters. Copyright (c) 2010. Published by Elsevier B.V.
Gowda, Nagaraj; Kumar, Pradeep; Panghal, Surender; Rajshree, Mashru
2010-02-01
This study presents the development and validation of a reversed-phase liquid chromatographic method for the determination of mangiferin (MGN) in alcoholic extracts of mangifera indica. A Lichrospher 100 C(18)-ODS (250 x 4.6 mm, 5 microm size) (Merck, Whitehouse Station, NJ) prepacked column and a mobile phase of potassium dihydrogen orthophosphate (0.01M) pH 2.7 +/- 0.2-acetonitrile (15:85, v/v) with the flow rate of 1 mL/min was used. MGN detection was achieved at a wavelength monitored at 254 nm with SPD-M 10A vp PDA detector or SPD 10AD vp UV detector in combination with class LC 10A software. The proposed method was validated as prescribed by International Conference on Harmonization (ICH) with respect to linearity, specificity, accuracy, precision, stability, and quantification. The method validation was realized using alcoholic extracts and raw materials of leaves and barks. All the validation parameters were within the acceptable limits, and the developed analytical method can successfully be applied for MGN determination.
Validation tools for image segmentation
NASA Astrophysics Data System (ADS)
Padfield, Dirk; Ross, James
2009-02-01
A large variety of image analysis tasks require the segmentation of various regions in an image. For example, segmentation is required to generate accurate models of brain pathology that are important components of modern diagnosis and therapy. While the manual delineation of such structures gives accurate information, the automatic segmentation of regions such as the brain and tumors from such images greatly enhances the speed and repeatability of quantifying such structures. The ubiquitous need for such algorithms has lead to a wide range of image segmentation algorithms with various assumptions, parameters, and robustness. The evaluation of such algorithms is an important step in determining their effectiveness. Therefore, rather than developing new segmentation algorithms, we here describe validation methods for segmentation algorithms. Using similarity metrics comparing the automatic to manual segmentations, we demonstrate methods for optimizing the parameter settings for individual cases and across a collection of datasets using the Design of Experiment framework. We then employ statistical analysis methods to compare the effectiveness of various algorithms. We investigate several region-growing algorithms from the Insight Toolkit and compare their accuracy to that of a separate statistical segmentation algorithm. The segmentation algorithms are used with their optimized parameters to automatically segment the brain and tumor regions in MRI images of 10 patients. The validation tools indicate that none of the ITK algorithms studied are able to outperform with statistical significance the statistical segmentation algorithm although they perform reasonably well considering their simplicity.
ERIC Educational Resources Information Center
Dimitrov, Dimiter M.
2007-01-01
The validation of cognitive attributes required for correct answers on binary test items or tasks has been addressed in previous research through the integration of cognitive psychology and psychometric models using parametric or nonparametric item response theory, latent class modeling, and Bayesian modeling. All previous models, each with their…
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.
1983-01-01
An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.
Sheet metals characterization using the virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2018-05-01
In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.
Prakash, Jaya; Yalavarthy, Phaneendra K
2013-03-01
Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.
Vařeková, Radka Svobodová; Jiroušková, Zuzana; Vaněk, Jakub; Suchomel, Šimon; Koča, Jaroslav
2007-01-01
The Electronegativity Equalization Method (EEM) is a fast approach for charge calculation. A challenging part of the EEM is the parameterization, which is performed using ab initio charges obtained for a set of molecules. The goal of our work was to perform the EEM parameterization for selected sets of organic, organohalogen and organometal molecules. We have performed the most robust parameterization published so far. The EEM parameterization was based on 12 training sets selected from a database of predicted 3D structures (NCI DIS) and from a database of crystallographic structures (CSD). Each set contained from 2000 to 6000 molecules. We have shown that the number of molecules in the training set is very important for quality of the parameters. We have improved EEM parameters (STO-3G MPA charges) for elements that were already parameterized, specifically: C, O, N, H, S, F and Cl. The new parameters provide more accurate charges than those published previously. We have also developed new parameters for elements that were not parameterized yet, specifically for Br, I, Fe and Zn. We have also performed crossover validation of all obtained parameters using all training sets that included relevant elements and confirmed that calculated parameters provide accurate charges.
Joseph, John; Sharif, Hatim O; Sunil, Thankam; Alamgir, Hasanat
2013-07-01
The adverse health effects of high concentrations of ground-level ozone are well-known, but estimating exposure is difficult due to the sparseness of urban monitoring networks. This sparseness discourages the reservation of a portion of the monitoring stations for validation of interpolation techniques precisely when the risk of overfitting is greatest. In this study, we test a variety of simple spatial interpolation techniques for 8-h ozone with thousands of randomly selected subsets of data from two urban areas with monitoring stations sufficiently numerous to allow for true validation. Results indicate that ordinary kriging with only the range parameter calibrated in an exponential variogram is the generally superior method, and yields reliable confidence intervals. Sparse data sets may contain sufficient information for calibration of the range parameter even if the Moran I p-value is close to unity. R script is made available to apply the methodology to other sparsely monitored constituents. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vanhuyse, Johan; Deckers, Elke; Jonckheere, Stijn; Pluymers, Bert; Desmet, Wim
2016-02-01
The Biot theory is commonly used for the simulation of the vibro-acoustic behaviour of poroelastic materials. However, it relies on a number of material parameters. These can be hard to characterize and require dedicated measurement setups, yielding a time-consuming and costly characterisation. This paper presents a characterisation method which is able to identify all material parameters using only an impedance tube. The method relies on the assumption that the sample is clamped within the tube, that the shear wave is excited and that the acoustic field is no longer one-dimensional. This paper numerically shows the potential of the developed method. It therefore performs a sensitivity analysis of the quantification parameters, i.e. reflection coefficients and relative pressures, and a parameter estimation using global optimisation methods. A 3-step procedure is developed and validated. It is shown that even in the presence of numerically simulated noise this procedure leads to a robust parameter estimation.
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jufeng; Xia, Bing; Shang, Yunlong
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
Yang, Jufeng; Xia, Bing; Shang, Yunlong; ...
2016-12-22
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Boison, Joe O; Asea, Philip A; Matus, Johanna L
2012-08-01
A new and sensitive multi-residue method (MRM) with detection by LC-MS/MS was developed and validated for the screening, determination, and confirmation of residues of 7 nitroimidazoles and 3 of their metabolites in turkey muscle tissues at concentrations ≥ 0.05 ng/g. The compounds were extracted into a solvent with an alkali salt. Sample clean-up and concentration was then done by solid-phase extraction (SPE) and the compounds were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The characteristic parameters including repeatability, selectivity, ruggedness, stability, level of quantification, and level of confirmation for the new method were determined. Method validation was achieved by independent verification of the parameters measured during method characterization. The seven nitroimidazoles included are metronidazole (MTZ), ronidazole (RNZ), dimetridazole (DMZ), tinidazole (TNZ), ornidazole (ONZ), ipronidazole (IPR), and carnidazole (CNZ). It was discovered during the single laboratory validation of the method that five of the seven nitroimidazoles (i.e. metronidazole, dimetridazole, tinidazole, ornidazole and ipronidazole) and the 3 metabolites (1-(2-hydroxyethyl)-2-hydroxymethyl-5-nitroimidazole (MTZ-OH), 2-hydroxymethyl-1-methyl-5-nitroimidazole (HMMNI, the common metabolite of ronidazole and dimetridazole), and 1-methyl-2-(2'-hydroxyisopropyl)-5-nitroimidazole (IPR-OH) included in this study could be detected, confirmed, and quantified accurately whereas RNZ and CNZ could only be detected and confirmed but not accurately quantified. © Her Majesty the Queen in Right of Canada as Represented by the Minister of Agriculture and Agri-food Canada 2012.
NASA Astrophysics Data System (ADS)
Mavroidis, Panayiotis; Lind, Bengt K.; Theodorou, Kyriaki; Laurell, Göran; Fernberg, Jan-Olof; Lefkopoulos, Dimitrios; Kappas, Constantin; Brahme, Anders
2004-08-01
The purpose of this work is to provide some statistical methods for evaluating the predictive strength of radiobiological models and the validity of dose-response parameters for tumour control and normal tissue complications. This is accomplished by associating the expected complication rates, which are calculated using different models, with the clinical follow-up records. These methods are applied to 77 patients who received radiation treatment for head and neck cancer and 85 patients who were treated for arteriovenous malformation (AVM). The three-dimensional dose distribution delivered to esophagus and AVM nidus and the clinical follow-up results were available for each patient. Dose-response parameters derived by a maximum likelihood fitting were used as a reference to evaluate their compatibility with the examined treatment methodologies. The impact of the parameter uncertainties on the dose-response curves is demonstrated. The clinical utilization of the radiobiological parameters is illustrated. The radiobiological models (relative seriality and linear Poisson) and the reference parameters are validated to prove their suitability in reproducing the treatment outcome pattern of the patient material studied (through the probability of finding a worse fit, area under the ROC curve and khgr2 test). The analysis was carried out for the upper 5 cm of the esophagus (proximal esophagus) where all the strictures are formed, and the total volume of AVM. The estimated confidence intervals of the dose-response curves appear to have a significant supporting role on their clinical implementation and use.
Nonclinical dose formulation analysis method validation and sample analysis.
Whitmire, Monica Lee; Bryan, Peter; Henry, Teresa R; Holbrook, John; Lehmann, Paul; Mollitor, Thomas; Ohorodnik, Susan; Reed, David; Wietgrefe, Holly D
2010-12-01
Nonclinical dose formulation analysis methods are used to confirm test article concentration and homogeneity in formulations and determine formulation stability in support of regulated nonclinical studies. There is currently no regulatory guidance for nonclinical dose formulation analysis method validation or sample analysis. Regulatory guidance for the validation of analytical procedures has been developed for drug product/formulation testing; however, verification of the formulation concentrations falls under the framework of GLP regulations (not GMP). The only current related regulatory guidance is the bioanalytical guidance for method validation. The fundamental parameters for bioanalysis and formulation analysis validations that overlap include: recovery, accuracy, precision, specificity, selectivity, carryover, sensitivity, and stability. Divergence in bioanalytical and drug product validations typically center around the acceptance criteria used. As the dose formulation samples are not true "unknowns", the concept of quality control samples that cover the entire range of the standard curve serving as the indication for the confidence in the data generated from the "unknown" study samples may not always be necessary. Also, the standard bioanalytical acceptance criteria may not be directly applicable, especially when the determined concentration does not match the target concentration. This paper attempts to reconcile the different practices being performed in the community and to provide recommendations of best practices and proposed acceptance criteria for nonclinical dose formulation method validation and sample analysis.
Validation and calibration of structural models that combine information from multiple sources.
Dahabreh, Issa J; Wong, John B; Trikalinos, Thomas A
2017-02-01
Mathematical models that attempt to capture structural relationships between their components and combine information from multiple sources are increasingly used in medicine. Areas covered: We provide an overview of methods for model validation and calibration and survey studies comparing alternative approaches. Expert commentary: Model validation entails a confrontation of models with data, background knowledge, and other models, and can inform judgments about model credibility. Calibration involves selecting parameter values to improve the agreement of model outputs with data. When the goal of modeling is quantitative inference on the effects of interventions or forecasting, calibration can be viewed as estimation. This view clarifies issues related to parameter identifiability and facilitates formal model validation and the examination of consistency among different sources of information. In contrast, when the goal of modeling is the generation of qualitative insights about the modeled phenomenon, calibration is a rather informal process for selecting inputs that result in model behavior that roughly reproduces select aspects of the modeled phenomenon and cannot be equated to an estimation procedure. Current empirical research on validation and calibration methods consists primarily of methodological appraisals or case-studies of alternative techniques and cannot address the numerous complex and multifaceted methodological decisions that modelers must make. Further research is needed on different approaches for developing and validating complex models that combine evidence from multiple sources.
Park, Young-Jae; Lee, Jin-Moo; Yoo, Seung-Yeon; Park, Young-Bae
2016-04-01
To examine whether color parameters of tongue inspection (TI) using a digital camera was reliable and valid, and to examine which color parameters serve as predictors of symptom patterns in terms of East Asian medicine (EAM). Two hundred female subjects' tongue substances were photographed by a mega-pixel digital camera. Together with the photographs, the subjects were asked to complete Yin deficiency, Phlegm pattern, and Cold-Heat pattern questionnaires. Using three sets of digital imaging software, each digital image was exposure- and white balance-corrected, and finally L* (luminance), a* (red-green balance), and b* (yellow-blue balance) values of the tongues were calculated. To examine intra- and inter-rater reliabilities and criterion validity of the color analysis method, three raters were asked to calculate color parameters for 20 digital image samples. Finally, four hierarchical regression models were formed. Color parameters showed good or excellent reliability (0.627-0.887 for intra-class correlation coefficients) and significant criterion validity (0.523-0.718 for Spearman's correlation). In the hierarchical regression models, age was a significant predictor of Yin deficiency (β = 0.192), and b* value of the tip of the tongue was a determinant predictor of Yin deficiency, Phlegm, and Heat patterns (β = - 0.212, - 0.172, and - 0.163). Luminance (L*) was predictive of Yin deficiency (β = -0.172) and Cold (β = 0.173) pattern. Our results suggest that color analysis of the tongue using the L*a*b* system is reliable and valid, and that color parameters partially serve as symptom pattern predictors in EAM practice.
Zawada, Elzabieta; Pirianowicz-Chaber, Elzabieta; Somogi, Aleksander; Pawinski, Tomasz
2017-03-01
Three new methods were developed for the quantitative determination of mesalazine in the form of the pure substance or in the form of suppositories and tablets - accordingly: bromatometric, diazotization and visible light spectrophotometry method. Optimizing the time and the temperature of the bromination reaction (50⁰C, 50 min) 4-amino-2,3,5,6-tetrabromophenol was obtained. The results obtained were reproducible, accurate and precise. Developed methods were compared to the pharmacopoeial approach - alkalimetry in an aqueous medium. The validation parameters of all methods were comparable. Developed methods for quantification of mesalazine are a viable alternative to other more expensive approaches.
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
Fractal propagation method enables realistic optical microscopy simulations in biological tissues
Glaser, Adam K.; Chen, Ye; Liu, Jonathan T.C.
2017-01-01
Current simulation methods for light transport in biological media have limited efficiency and realism when applied to three-dimensional microscopic light transport in biological tissues with refractive heterogeneities. We describe here a technique which combines a beam propagation method valid for modeling light transport in media with weak variations in refractive index, with a fractal model of refractive index turbulence. In contrast to standard simulation methods, this fractal propagation method (FPM) is able to accurately and efficiently simulate the diffraction effects of focused beams, as well as the microscopic heterogeneities present in tissue that result in scattering, refractive beam steering, and the aberration of beam foci. We validate the technique and the relationship between the FPM model parameters and conventional optical parameters used to describe tissues, and also demonstrate the method’s flexibility and robustness by examining the steering and distortion of Gaussian and Bessel beams in tissue with comparison to experimental data. We show that the FPM has utility for the accurate investigation and optimization of optical microscopy methods such as light-sheet, confocal, and nonlinear microscopy. PMID:28983499
2D/ 3D Quantitative Ultrasound of the Breast
NASA Astrophysics Data System (ADS)
Nasief, Haidy Gerges
Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to improved screening with this modality.
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Zhang, Zuchen; Song, Jingming; Wu, Chunxiao; Song, Ningfang
2015-03-01
A splicing parameter optimization method to increase the tensile strength of splicing joint between photonic crystal fiber (PCF) and conventional fiber is demonstrated. Based on the splicing recipes provided by splicer or fiber manufacturers, the optimal values of some major splicing parameters are obtained in sequence, and a conspicuous improvement in the mechanical strength of splicing joints between PCFs and conventional fibers is validated through experiments.
Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype.
Singh, Ramandeep; Suri, Ashish; Anand, Sneh; Baby, Britty
2016-12-01
With advancements in imaging techniques, neurosurgical procedures are becoming highly precise and minimally invasive, thus demanding development of new ergonomically aesthetic instruments. Conventionally, neurosurgical instruments are manufactured using subtractive manufacturing methods. Such a process is complex, time-consuming, and impractical for prototype development and validation of new designs. Therefore, an alternative design process has been used utilizing blue light scanning, computer-aided designing, and additive manufacturing direct metal laser sintering (DMLS) for microsurgical instrument prototype development. Deviations of DMLS-fabricated instrument were studied by superimposing scan data of fabricated instrument with the computer-aided designing model. Content and concurrent validity of the fabricated prototypes was done by a group of 15 neurosurgeons by performing sciatic nerve anastomosis in small laboratory animals. Comparative scoring was obtained for the control and study instrument. T test was applied to the individual parameters and P values for force (P < .0001) and surface roughness (P < .01) were found to be statistically significant. These 2 parameters were further analyzed using objective measures. Results depicts that additive manufacturing by DMLS provides an effective method for prototype development. However, direct application of these additive-manufactured instruments in the operating room requires further validation. © The Author(s) 2016.
Evidence flow graph methods for validation and verification of expert systems
NASA Technical Reports Server (NTRS)
Becker, Lee A.; Green, Peter G.; Bhatnagar, Jayant
1989-01-01
The results of an investigation into the use of evidence flow graph techniques for performing validation and verification of expert systems are given. A translator to convert horn-clause rule bases into evidence flow graphs, a simulation program, and methods of analysis were developed. These tools were then applied to a simple rule base which contained errors. It was found that the method was capable of identifying a variety of problems, for example that the order of presentation of input data or small changes in critical parameters could affect the output from a set of rules.
Horn, W; Miksch, S; Egghart, G; Popow, C; Paky, F
1997-09-01
Real-time systems for monitoring and therapy planning, which receive their data from on-line monitoring equipment and computer-based patient records, require reliable data. Data validation has to utilize and combine a set of fast methods to detect, eliminate, and repair faulty data, which may lead to life-threatening conclusions. The strength of data validation results from the combination of numerical and knowledge-based methods applied to both continuously-assessed high-frequency data and discontinuously-assessed data. Dealing with high-frequency data, examining single measurements is not sufficient. It is essential to take into account the behavior of parameters over time. We present time-point-, time-interval-, and trend-based methods for validation and repair. These are complemented by time-independent methods for determining an overall reliability of measurements. The data validation benefits from the temporal data-abstraction process, which provides automatically derived qualitative values and patterns. The temporal abstraction is oriented on a context-sensitive and expectation-guided principle. Additional knowledge derived from domain experts forms an essential part for all of these methods. The methods are applied in the field of artificial ventilation of newborn infants. Examples from the real-time monitoring and therapy-planning system VIE-VENT illustrate the usefulness and effectiveness of the methods.
Uncertainty Analysis in 3D Equilibrium Reconstruction
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
2018-02-21
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Uncertainty Analysis in 3D Equilibrium Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Bajerski, Lisiane; Rossi, Rochele Cassanta; Dias, Carolina Lupi; Bergold, Ana Maria; Fröehlich, Pedro Eduardo
2010-06-01
A dissolution test for tablets containing 40 mg of olmesartan medoxomil (OLM) was developed and validated using both LC-UV and UV methods. After evaluation of the sink condition, dissolution medium, and stability of the drug, the method was validated using USP apparatus 2, 50 rpm rotation speed, and 900 ml of deaerated H(2)O + 0.5% sodium lauryl sulfate (w/v) at pH 6.8 (adjusted with 18% phosphoric acid) as the dissolution medium. The model-independent method using difference factor (f(1)) and similarity factor (f(2)), model-dependent method, and dissolution efficiency were employed to compare dissolution profiles. The kinetic parameters of drug release were also investigated. The obtained results provided adequate dissolution profiles. The developed dissolution test was validated according to international guidelines. Since there is no monograph for this drug in tablets, the dissolution method presented here can be used as a quality control test for OLM in this dosage form, especially in a batch to batch evaluation.
A Hardware Model Validation Tool for Use in Complex Space Systems
NASA Technical Reports Server (NTRS)
Davies, Misty Dawn; Gundy-Burlet, Karen L.; Limes, Gregory L.
2010-01-01
One of the many technological hurdles that must be overcome in future missions is the challenge of validating as-built systems against the models used for design. We propose a technique composed of intelligent parameter exploration in concert with automated failure analysis as a scalable method for the validation of complex space systems. The technique is impervious to discontinuities and linear dependencies in the data, and can handle dimensionalities consisting of hundreds of variables over tens of thousands of experiments.
Kagkli, Dafni-Maria; Weber, Thomas P.; Van den Bulcke, Marc; Folloni, Silvia; Tozzoli, Rosangela; Morabito, Stefano; Ermolli, Monica; Gribaldo, Laura; Van den Eede, Guy
2011-01-01
European Commission regulation 2073/2005 on the microbiological criteria for food requires that Escherichia coli is monitored as an indicator of hygienic conditions. Since verocytotoxigenic E. coli (VTEC) strains often cause food-borne infections by the consumption of raw food, the Biological Hazards (BIOHAZ) panel of the European Food Safety Authority (EFSA) recommended their monitoring in food as well. In particular, VTEC strains belonging to serogroups such as O26, O103, O111, O145, and O157 are known causative agents of several human outbreaks. Eight real-time PCR methods for the detection of E. coli toxin genes and their variants (stx1, stx2), the intimin gene (eae), and five serogroup-specific genes have been proposed by the European Reference Laboratory for VTEC (EURL-VTEC) as a technical specification to the European Normalization Committee (CEN TC275/WG6). Here we applied a “modular approach” to the in-house validation of these PCR methods. The modular approach subdivides an analytical process into separate parts called “modules,” which are independently validated based on method performance criteria for a limited set of critical parameters. For the VTEC real-time PCR module, the following parameters are being assessed: specificity, dynamic range, PCR efficiency, and limit of detection (LOD). This study describes the modular approach for the validation of PCR methods to be used in food microbiology, using single-target plasmids as positive controls and showing their applicability with food matrices. PMID:21856838
Validation of a novel virtual reality simulator for robotic surgery.
Schreuder, Henk W R; Persson, Jan E U; Wolswijk, Richard G H; Ihse, Ingmar; Schijven, Marlies P; Verheijen, René H M
2014-01-01
With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were "time to complete" and "economy of motion" (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery.
Jenkins, Kathy J; Koch Kupiec, Jennifer; Owens, Pamela L; Romano, Patrick S; Geppert, Jeffrey J; Gauvreau, Kimberlee
2016-05-20
The National Quality Forum previously approved a quality indicator for mortality after congenital heart surgery developed by the Agency for Healthcare Research and Quality (AHRQ). Several parameters of the validated Risk Adjustment for Congenital Heart Surgery (RACHS-1) method were included, but others differed. As part of the National Quality Forum endorsement maintenance process, developers were asked to harmonize the 2 methodologies. Parameters that were identical between the 2 methods were retained. AHRQ's Healthcare Cost and Utilization Project State Inpatient Databases (SID) 2008 were used to select optimal parameters where differences existed, with a goal to maximize model performance and face validity. Inclusion criteria were not changed and included all discharges for patients <18 years with International Classification of Diseases, Ninth Revision, Clinical Modification procedure codes for congenital heart surgery or nonspecific heart surgery combined with congenital heart disease diagnosis codes. The final model includes procedure risk group, age (0-28 days, 29-90 days, 91-364 days, 1-17 years), low birth weight (500-2499 g), other congenital anomalies (Clinical Classifications Software 217, except for 758.xx), multiple procedures, and transfer-in status. Among 17 945 eligible cases in the SID 2008, the c statistic for model performance was 0.82. In the SID 2013 validation data set, the c statistic was 0.82. Risk-adjusted mortality rates by center ranged from 0.9% to 4.1% (5th-95th percentile). Congenital heart surgery programs can now obtain national benchmarking reports by applying AHRQ Quality Indicator software to hospital administrative data, based on the harmonized RACHS-1 method, with high discrimination and face validity. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Barkat, K; Ahmad, M; Minhas, M U; Malik, M Z; Sohail, M
2014-07-01
The objective of study was to develop an accurate and reproducible HPLC method for determination of piracetam in human plasma and to evaluate pharmacokinetic parameters of 800 mg piracetam. A simple, rapid, accurate, precise and sensitive high pressure liquid chromatography method has been developed and subsequently validated for determination of piracetam. This study represents the results of a randomized, single-dose and single-period in 18 healthy male volunteers to assess pharmacokinetic parameters of 800 mg piracetam tablets. Various pharmacokinetic parameters were determined from plasma for piracetam and found to be in good agreement with previous reported values. The data was analyzed by using Kinetica® version 4.4 according to non-compartment model of pharmacokinetic analysis and after comparison with previous studies, no significant differences were found in present study of tested product. The major pharmacokinetic parameters for piracetam were as follows: t1/2 was (4.40 ± 0.179) h; Tmax value was (2.33 ± 0.105) h; Cmax was (14.53 ± 0.282) µg/mL; the AUC(0-∞) was (59.19 ± 4.402) µg · h/mL. AUMC(0-∞) was (367.23 ± 38.96) µg. (h)(2)/mL; Ke was (0.16 ± 0.006) h; MRT was (5.80 ± 0.227) h; Vd was (96.36 ± 8.917 L). A rapid, accurate and precise high pressure liquid chromatography method was developed and validated before the study. It is concluded that this method is very useful for the analysis of pharmacokinetic parameters, in human plasma and assured the safety and efficacy of piracetam, can be effectively used in medical practice. © Georg Thieme Verlag KG Stuttgart · New York.
Michels, David A; Parker, Monica; Salas-Solano, Oscar
2012-03-01
This paper describes the framework of quality by design applied to the development, optimization and validation of a sensitive capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) assay for monitoring impurities that potentially impact drug efficacy or patient safety produced in the manufacture of therapeutic MAb products. Drug substance or drug product samples are derivatized with fluorogenic 3-(2-furoyl)quinoline-2-carboxaldehyde and nucleophilic cyanide before separation by CE-SDS coupled to LIF detection. Three design-of-experiments enabled critical labeling parameters to meet method requirements for detecting minor impurities while building precision and robustness into the assay during development. The screening design predicted optimal conditions to control labeling artifacts while two full factorial designs demonstrated method robustness through control of temperature and cyanide parameters within the normal operating range. Subsequent validation according to the guidelines of the International Committee of Harmonization showed the CE-SDS/LIF assay was specific, accurate, and precise (RSD ≤ 0.8%) for relative peak distribution and linear (R > 0.997) between the range of 0.5-1.5 mg/mL with LOD and LOQ of 10 ng/mL and 35 ng/mL, respectively. Validation confirmed the system suitability criteria used as a level of control to ensure reliable method performance. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Haddad, Monoem; Stylianides, Georgios; Djaoui, Leo; Dellal, Alexandre; Chamari, Karim
2017-01-01
Purpose: The aim of this review is to (1) retrieve all data validating the Session-rating of perceived exertion (RPE)-method using various criteria, (2) highlight the rationale of this method and its ecological usefulness, and (3) describe factors that can alter RPE and users of this method should take into consideration. Method: Search engines such as SPORTDiscus, PubMed, and Google Scholar databases in the English language between 2001 and 2016 were consulted for the validity and usefulness of the session-RPE method. Studies were considered for further analysis when they used the session-RPE method proposed by Foster et al. in 2001. Participants were athletes of any gender, age, or level of competition. Studies using languages other than English were excluded in the analysis of the validity and reliability of the session-RPE method. Other studies were examined to explain the rationale of the session-RPE method and the origin of RPE. Results: A total of 950 studies cited the Foster et al. study that proposed the session RPE-method. 36 studies have examined the validity and reliability of this proposed method using the modified CR-10. Conclusion: These studies confirmed the validity and good reliability and internal consistency of session-RPE method in several sports and physical activities with men and women of different age categories (children, adolescents, and adults) among various expertise levels. This method could be used as “standing alone” method for training load (TL) monitoring purposes though some recommend to combine it with other physiological parameters as heart rate. PMID:29163016
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.
ERIC Educational Resources Information Center
Newman, Isadore; And Others
A Monte Carlo study was conducted to estimate the efficiency of and the relationship between five equations and the use of cross validation as methods for estimating shrinkage in multiple correlations. Two of the methods were intended to estimate shrinkage to population values and the other methods were intended to estimate shrinkage from sample…
Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.
Cuny, Jérôme; Furet, Eric; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; d'Espinose de Lacaillerie, Jean-Baptiste
2009-12-21
The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.
Dosso, Stan E; Nielsen, Peter L
2002-01-01
This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
Garcia Hejl, Carine; Ramirez, Jose Manuel; Vest, Philippe; Chianea, Denis; Renard, Christophe
2014-09-01
Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.
NASA Astrophysics Data System (ADS)
Gnyba, M.; Wróbel, M. S.; Karpienko, K.; Milewska, D.; Jedrzejewska-Szczerska, M.
2015-07-01
In this article the simultaneous investigation of blood parameters by complementary optical methods, Raman spectroscopy and spectral-domain low-coherence interferometry, is presented. Thus, the mutual relationship between chemical and physical properties may be investigated, because low-coherence interferometry measures optical properties of the investigated object, while Raman spectroscopy gives information about its molecular composition. A series of in-vitro measurements were carried out to assess sufficient accuracy for monitoring of blood parameters. A vast number of blood samples with various hematological parameters, collected from different donors, were measured in order to achieve a statistical significance of results and validation of the methods. Preliminary results indicate the benefits in combination of presented complementary methods and form the basis for development of a multimodal system for rapid and accurate optical determination of selected parameters in whole human blood. Future development of optical systems and multivariate calibration models are planned to extend the number of detected blood parameters and provide a robust quantitative multi-component analysis.
Full-envelope aerodynamic modeling of the Harrier aircraft
NASA Technical Reports Server (NTRS)
Mcnally, B. David
1986-01-01
A project to identify a full-envelope model of the YAV-8B Harrier using flight-test and parameter identification techniques is described. As part of the research in advanced control and display concepts for V/STOL aircraft, a full-envelope aerodynamic model of the Harrier is identified, using mathematical model structures and parameter identification methods. A global-polynomial model structure is also used as a basis for the identification of the YAV-8B aerodynamic model. State estimation methods are used to ensure flight data consistency prior to parameter identification.Equation-error methods are used to identify model parameters. A fixed-base simulator is used extensively to develop flight test procedures and to validate parameter identification software. Using simple flight maneuvers, a simulated data set was created covering the YAV-8B flight envelope from about 0.3 to 0.7 Mach and about -5 to 15 deg angle of attack. A singular value decomposition implementation of the equation-error approach produced good parameter estimates based on this simulated data set.
Empirical scaling laws for coronal heating
NASA Technical Reports Server (NTRS)
Golub, L.
1983-01-01
The origins and uses of scaling laws in studies of stellar outer atmospheres are reviewed with particular emphasis on the properties of coronal loops. Some evidence is presented for a fundamental structuring of the solar corona and the thermodynamics of scaling laws are discussed. It is found that magnetic field-related scaling laws can be obtained by relating coronal pressure, temperature, and magnetic field strength. Available data validate this method. Some parameters of the theory, however, must be treated as adjustable, and it is considered necessary to examine data from other stars in order to determine the validity of the parameters. Using detailed observational data, the applicability of single loop models is examined.
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Belcastro, Christine
2008-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system.
Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-02-01
This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.
Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.
2001-01-01
The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.
Seidenberg, Ruth; Schuh, Sabine K.; Exadaktylos, Aristomenis K.; Schechter, Clyde B.; Leichtle, Alexander B.; Hautz, Wolf E.
2018-01-01
Objective Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. Methods This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Results Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Conclusions Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected. PMID:29474463
Coupled CFD and Particle Vortex Transport Method: Wing Performance and Wake Validations
2008-06-26
the PVTM analysis. The results obtained using the coupled RANS/PVTM analysis compare well with experimental data , in particular the pressure...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments...is validated against wind tunnel test data . Comparisons with measured pressure distribution, loadings, and vortex parameters, and the corresponding
Post-processing of seismic parameter data based on valid seismic event determination
McEvilly, Thomas V.
1985-01-01
An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.
Deep learning for neuroimaging: a validation study.
Plis, Sergey M; Hjelm, Devon R; Salakhutdinov, Ruslan; Allen, Elena A; Bockholt, Henry J; Long, Jeffrey D; Johnson, Hans J; Paulsen, Jane S; Turner, Jessica A; Calhoun, Vince D
2014-01-01
Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.
NASA Astrophysics Data System (ADS)
Danaeifar, Mohammad; Granpayeh, Nosrat
2018-03-01
An analytical method is presented to analyze and synthesize bianisotropic metasurfaces. The equivalent parameters of metasurfaces in terms of meta-atom properties and other specifications of metasurfaces are derived. These parameters are related to electric, magnetic, and electromagnetic/magnetoelectric dipole moments of the bianisotropic media, and they can simplify the analysis of complicated and multilayer structures. A metasurface of split ring resonators is studied as an example demonstrating the proposed method. The optical properties of the meta-atom are explored, and the calculated polarizabilities are applied to find the reflection coefficient and the equivalent parameters of the metasurface. Finally, a structure consisting of two metasurfaces of the split ring resonators is provided, and the proposed analytical method is applied to derive the reflection coefficient. The validity of this analytical approach is verified by full-wave simulations which demonstrate good accuracy of the equivalent parameter method. This method can be used in the analysis and synthesis of bianisotropic metasurfaces with different materials and in different frequency ranges by considering electric, magnetic, and electromagnetic/magnetoelectric dipole moments.
Extension of D-H parameter method to hybrid manipulators used in robot-assisted surgery.
Singh, Amanpreet; Singla, Ashish; Soni, Sanjeev
2015-10-01
The main focus of this work is to extend the applicability of D-H parameter method to develop a kinematic model of a hybrid manipulator. A hybrid manipulator is a combination of open- and closed-loop chains and contains planar and spatial links. It has been found in the literature that D-H parameter method leads to ambiguities, when dealing with closed-loop chains. In this work, it has been observed that the D-H parameter method, when applied to a hybrid manipulator, results in an orientational inconsistency, because of which the method cannot be used to develop the kinematic model. In this article, the concept of dummy frames is proposed to resolve the orientational inconsistency and to develop the kinematic model of a hybrid manipulator. Moreover, the prototype of 7-degree-of-freedom hybrid manipulator, known as a surgeon-side manipulator to assist the surgeon during a medical surgery, is also developed to validate the kinematic model derived in this work. © IMechE 2015.
Development and Validation of New Discriminative Dissolution Method for Carvedilol Tablets
Raju, V.; Murthy, K. V. R.
2011-01-01
The objective of the present study was to develop and validate a discriminative dissolution method for evaluation of carvedilol tablets. Different conditions such as type of dissolution medium, volume of dissolution medium and rotation speed of paddle were evaluated. The best in vitro dissolution profile was obtained using Apparatus II (paddle), 50 rpm, 900 ml of pH 6.8 phosphate buffer as dissolution medium. The drug release was evaluated by high-performance liquid chromatographic method. The dissolution method was validated according to current ICH and FDA guidelines using parameters such as the specificity, accuracy, precision and stability were evaluated and obtained results were within the acceptable range. The comparison of the obtained dissolution profiles of three different products were investigated using ANOVA-based, model-dependent and model-independent methods, results showed that there is significant difference between the products. The dissolution test developed and validated was adequate for its higher discriminative capacity in differentiating the release characteristics of the products tested and could be applied for development and quality control of carvedilol tablets. PMID:22923865
Terrill Vosbein, Heidi A; Boatz, Jerry A; Kenney, John W
2005-12-22
The moment analysis method (MA) has been tested for the case of 2S --> 2P ([core]ns1 --> [core]np1) transitions of alkali metal atoms (M) doped into cryogenic rare gas (Rg) matrices using theoretically validated simulations. Theoretical/computational M/Rg system models are constructed with precisely defined parameters that closely mimic known M/Rg systems. Monte Carlo (MC) techniques are then employed to generate simulated absorption and magnetic circular dichroism (MCD) spectra of the 2S --> 2P M/Rg transition to which the MA method can be applied with the goal of seeing how effective the MA method is in re-extracting the M/Rg system parameters from these known simulated systems. The MA method is summarized in general, and an assessment is made of the use of the MA method in the rigid shift approximation typically used to evaluate M/Rg systems. The MC-MCD simulation technique is summarized, and validating evidence is presented. The simulation results and the assumptions used in applying MA to M/Rg systems are evaluated. The simulation results on Na/Ar demonstrate that the MA method does successfully re-extract the 2P spin-orbit coupling constant and Landé g-factor values initially used to build the simulations. However, assigning physical significance to the cubic and noncubic Jahn-Teller (JT) vibrational mode parameters in cryogenic M/Rg systems is not supported.
The validation of a generalized Hooke's law for coronary arteries.
Wang, Chong; Zhang, Wei; Kassab, Ghassan S
2008-01-01
The exponential form of constitutive model is widely used in biomechanical studies of blood vessels. There are two main issues, however, with this model: 1) the curve fits of experimental data are not always satisfactory, and 2) the material parameters may be oversensitive. A new type of strain measure in a generalized Hooke's law for blood vessels was recently proposed by our group to address these issues. The new model has one nonlinear parameter and six linear parameters. In this study, the stress-strain equation is validated by fitting the model to experimental data of porcine coronary arteries. Material constants of left anterior descending artery and right coronary artery for the Hooke's law were computed with a separable nonlinear least-squares method with an excellent goodness of fit. A parameter sensitivity analysis shows that the stability of material constants is improved compared with the exponential model and a biphasic model. A boundary value problem was solved to demonstrate that the model prediction can match the measured arterial deformation under experimental loading conditions. The validated constitutive relation will serve as a basis for the solution of various boundary value problems of cardiovascular biomechanics.
Yanai, Toshimasa; Matsuo, Akifumi; Maeda, Akira; Nakamoto, Hiroki; Mizutani, Mirai; Kanehisa, Hiroaki; Fukunaga, Tetsuo
2017-08-01
We developed a force measurement system in a soil-filled mound for measuring ground reaction forces (GRFs) acting on baseball pitchers and examined the reliability and validity of kinetic and kinematic parameters determined from the GRFs. Three soil-filled trays of dimensions that satisfied the official baseball rules were fixed onto 3 force platforms. Eight collegiate pitchers wearing baseball shoes with metal cleats were asked to throw 5 fastballs with maximum effort from the mound toward a catcher. The reliability of each parameter was determined for each subject as the coefficient of variation across the 5 pitches. The validity of the measurements was tested by comparing the outcomes either with the true values or the corresponding values computed from a motion capture system. The coefficients of variation in the repeated measurements of the peak forces ranged from 0.00 to 0.17, and were smaller for the pivot foot than the stride foot. The mean absolute errors in the impulses determined over the entire duration of pitching motion were 5.3 N˙s, 1.9 N˙s, and 8.2 N˙s for the X-, Y-, and Z-directions, respectively. These results suggest that the present method is reliable and valid for determining selected kinetic and kinematic parameters for analyzing pitching performance.
Barros, Wilson; Gochberg, Daniel F.; Gore, John C.
2009-01-01
The description of the nuclear magnetic resonance magnetization dynamics in the presence of long-range dipolar interactions, which is based upon approximate solutions of Bloch–Torrey equations including the effect of a distant dipolar field, has been revisited. New experiments show that approximate analytic solutions have a broader regime of validity as well as dependencies on pulse-sequence parameters that seem to have been overlooked. In order to explain these experimental results, we developed a new method consisting of calculating the magnetization via an iterative formalism where both diffusion and distant dipolar field contributions are treated as integral operators incorporated into the Bloch–Torrey equations. The solution can be organized as a perturbative series, whereby access to higher order terms allows one to set better boundaries on validity regimes for analytic first-order approximations. Finally, the method legitimizes the use of simple analytic first-order approximations under less demanding experimental conditions, it predicts new pulse-sequence parameter dependencies for the range of validity, and clarifies weak points in previous calculations. PMID:19425789
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2014-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.
Validation of powder X-ray diffraction following EN ISO/IEC 17025.
Eckardt, Regina; Krupicka, Erik; Hofmeister, Wolfgang
2012-05-01
Powder X-ray diffraction (PXRD) is used widely in forensic science laboratories with the main focus of qualitative phase identification. Little is found in literature referring to the topic of validation of PXRD in the field of forensic sciences. According to EN ISO/IEC 17025, the method has to be tested for several parameters. Trueness, specificity, and selectivity of PXRD were tested using certified reference materials or a combination thereof. All three tested parameters showed the secure performance of the method. Sample preparation errors were simulated to evaluate the robustness of the method. These errors were either easily detected by the operator or nonsignificant for phase identification. In case of the detection limit, a statistical evaluation of the signal-to-noise ratio showed that a peak criterion of three sigma is inadequate and recommendations for a more realistic peak criterion are given. Finally, the results of an international proficiency test showed the secure performance of PXRD. © 2012 American Academy of Forensic Sciences.
Shu, Ting; Zhang, Bob; Yan Tang, Yuan
2017-04-01
Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evidence flow graph methods for validation and verification of expert systems
NASA Technical Reports Server (NTRS)
Becker, Lee A.; Green, Peter G.; Bhatnagar, Jayant
1988-01-01
This final report describes the results of an investigation into the use of evidence flow graph techniques for performing validation and verification of expert systems. This was approached by developing a translator to convert horn-clause rule bases into evidence flow graphs, a simulation program, and methods of analysis. These tools were then applied to a simple rule base which contained errors. It was found that the method was capable of identifying a variety of problems, for example that the order of presentation of input data or small changes in critical parameters could effect the output from a set of rules.
Validity and reliability of the session-RPE method for quantifying training load in karate athletes.
Tabben, M; Tourny, C; Haddad, M; Chaabane, H; Chamari, K; Coquart, J B
2015-04-24
To test the construct validity and reliability of the session rating of perceived exertion (sRPE) method by examining the relationship between RPE and physiological parameters (heart rate: HR and blood lactate concentration: [La --] ) and the correlations between sRPE and two HR--based methods for quantifying internal training load (Banister's method and Edwards's method) during karate training camp. Eighteen elite karate athletes: ten men (age: 24.2 ± 2.3 y, body mass: 71.2 ± 9.0 kg, body fat: 8.2 ± 1.3% and height: 178 ± 7 cm) and eight women (age: 22.6 ± 1.2 y, body mass: 59.8 ± 8.4 kg, body fat: 20.2 ± 4.4%, height: 169 ± 4 cm) were included in the study. During training camp, subjects participated in eight karate--training sessions including three training modes (4 tactical--technical, 2 technical--development, and 2 randori training), during which RPE, HR, and [La -- ] were recorded. Significant correlations were found between RPE and physiological parameters (percentage of maximal HR: r = 0.75, 95% CI = 0.64--0.86; [La --] : r = 0.62, 95% CI = 0.49--0.75; P < 0.001). Moreover, individual sRPE was significantly correlated with two HR--based methods for quantifying internal training load ( r = 0.65--0.95; P < 0.001). The sRPE method showed the high reliability of the same intensity across training sessions (Cronbach's α = 0.81, 95% CI = 0.61--0.92). This study demonstrates that the sRPE method is valid for quantifying internal training load and intensity in karate.
NASA Astrophysics Data System (ADS)
Asfahani, J.; Tlas, M.
2015-10-01
An easy and practical method for interpreting residual gravity anomalies due to simple geometrically shaped models such as cylinders and spheres has been proposed in this paper. This proposed method is based on both the deconvolution technique and the simplex algorithm for linear optimization to most effectively estimate the model parameters, e.g., the depth from the surface to the center of a buried structure (sphere or horizontal cylinder) or the depth from the surface to the top of a buried object (vertical cylinder), and the amplitude coefficient from the residual gravity anomaly profile. The method was tested on synthetic data sets corrupted by different white Gaussian random noise levels to demonstrate the capability and reliability of the method. The results acquired show that the estimated parameter values derived by this proposed method are close to the assumed true parameter values. The validity of this method is also demonstrated using real field residual gravity anomalies from Cuba and Sweden. Comparable and acceptable agreement is shown between the results derived by this method and those derived from real field data.
Zhonggang, Liang; Hong, Yan
2006-10-01
A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.
Xiong, Jianyin; Yao, Yuan; Zhang, Yinping
2011-04-15
The initial emittable concentration (C(m,0)), the diffusion coefficient (D(m)), and the material/air partition coefficient (K) are the three characteristic parameters influencing emissions of formaldehyde and volatile organic compounds (VOCs) from building materials or furniture. It is necessary to determine these parameters to understand emission characteristics and how to control them. In this paper we develop a new method, the C-history method for a closed chamber, to measure these three parameters. Compared to the available methods of determining the three parameters described in the literature, our approach has the following salient features: (1) the three parameters can be simultaneously obtained; (2) it is time-saving, generally taking less than 3 days for the cases studied (the available methods tend to need 7-28 days); (3) the maximum relative standard deviations of the measured C(m,0), D(m) and K are 8.5%, 7.7%, and 9.8%, respectively, which are acceptable for engineering applications. The new method was validated by using the characteristic parameters determined in the closed chamber experiment to predict the observed emissions in a ventilated full scale chamber experiment, proving that the approach is reliable and convincing. Our new C-history method should prove useful for rapidly determining the parameters required to predict formaldehyde and VOC emissions from building materials as well as for furniture labeling.
Delineating parameter unidentifiabilities in complex models
NASA Astrophysics Data System (ADS)
Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis
2017-03-01
Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.
Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.
2016-01-01
In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.
Tomasi, Ivan; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe
2017-01-01
Beer wort β-glucans are high-molecular-weight non-starch polysaccharides of that are great interest to the brewing industries. Because glucans can increase the viscosity of the solutions and form gels, hazes, and precipitates, they are often related to poor lautering performance and beer filtration problems. In this work, a simple and suitable method was developed to determine and characterize β-glucans in beer wort using size exclusion chromatography coupled with a triple-detector array, which is composed of a light scatterer, a viscometer, and a refractive-index detector. The method performances are comparable to the commercial reference method as result from the statistical validation and enable one to obtain interesting parameters of β-glucan in beer wort, such as the molecular weight averages, fraction description, hydrodynamic radius, intrinsic viscosity, polydispersity and Mark-Houwink parameters. This characterization can be useful in brewing science to understand filtration problems, which are not always explained through conventional analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jun, LIU; Huang, Wei; Hongjie, Fan
2016-02-01
A novel method for finding the initial structure parameters of an optical system via the genetic algorithm (GA) is proposed in this research. Usually, optical designers start their designs from the commonly used structures from a patent database; however, it is time consuming to modify the patented structures to meet the specification. A high-performance design result largely depends on the choice of the starting point. Accordingly, it would be highly desirable to be able to calculate the initial structure parameters automatically. In this paper, a method that combines a genetic algorithm and aberration analysis is used to determine an appropriate initial structure of an optical system. We use a three-mirror system as an example to demonstrate the validity and reliability of this method. On-axis and off-axis telecentric three-mirror systems are obtained based on this method.
Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2010-01-01
We are working on the development of a method for optimizing wide-field x-ray telescope mirror prescriptions, including polynomial coefficients, mirror shell relative displacements, and (assuming 4 focal plane detectors) detector placement and tilt that does not require a search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough that second order expansions are valid, we show that the performance at the detector surface can be expressed as a quadratic function of the parameters with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The best values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero. We describe the present status of this development effort.
Shen, Qijun; Shan, Yanna; Hu, Zhengyu; Chen, Wenhui; Yang, Bing; Han, Jing; Huang, Yanfang; Xu, Wen; Feng, Zhan
2018-04-30
To objectively quantify intracranial hematoma (ICH) enlargement by analysing the image texture of head CT scans and to provide objective and quantitative imaging parameters for predicting early hematoma enlargement. We retrospectively studied 108 ICH patients with baseline non-contrast computed tomography (NCCT) and 24-h follow-up CT available. Image data were assessed by a chief radiologist and a resident radiologist. Consistency analysis between observers was tested. The patients were divided into training set (75%) and validation set (25%) by stratified sampling. Patients in the training set were dichotomized according to 24-h hematoma expansion ≥ 33%. Using the Laplacian of Gaussian bandpass filter, we chose different anatomical spatial domains ranging from fine texture to coarse texture to obtain a series of derived parameters (mean grayscale intensity, variance, uniformity) in order to quantify and evaluate all data. The parameters were externally validated on validation set. Significant differences were found between the two groups of patients within variance at V 1.0 and in uniformity at U 1.0 , U 1.8 and U 2.5 . The intraclass correlation coefficients for the texture parameters were between 0.67 and 0.99. The area under the ROC curve between the two groups of ICH cases was between 0.77 and 0.92. The accuracy of validation set by CTTA was 0.59-0.85. NCCT texture analysis can objectively quantify the heterogeneity of ICH and independently predict early hematoma enlargement. • Heterogeneity is helpful in predicting ICH enlargement. • CTTA could play an important role in predicting early ICH enlargement. • After filtering, fine texture had the best diagnostic performance. • The histogram-based uniformity parameters can independently predict ICH enlargement. • CTTA is more objective, more comprehensive, more independently operable, than previous methods.
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1990-01-01
The automation of low-altitude rotorcraft flight depends on the ability to detect, locate, and navigate around obstacles lying in the rotorcraft's intended flightpath. Computer vision techniques provide a passive method of obstacle detection and range estimation, for obstacle avoidance. Several algorithms based on computer vision methods have been developed for this purpose using laboratory data; however, further development and validation of candidate algorithms require data collected from rotorcraft flight. A data base containing low-altitude imagery augmented with the rotorcraft and sensor parameters required for passive range estimation is not readily available. Here, the emphasis is on the methodology used to develop such a data base from flight-test data consisting of imagery, rotorcraft and sensor parameters, and ground-truth range measurements. As part of the data preparation, a technique for obtaining the sensor calibration parameters is described. The data base will enable the further development of algorithms for computer vision-based obstacle detection and passive range estimation, as well as provide a benchmark for verification of range estimates against ground-truth measurements.
NASA Astrophysics Data System (ADS)
Boemer, Dominik; Ponthot, Jean-Philippe
2017-01-01
Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.
Automatic control system generation for robot design validation
NASA Technical Reports Server (NTRS)
Bacon, James A. (Inventor); English, James D. (Inventor)
2012-01-01
The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell
In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.
Validity of the Kinect for Gait Assessment: A Focused Review
Springer, Shmuel; Yogev Seligmann, Galit
2016-01-01
Gait analysis may enhance clinical practice. However, its use is limited due to the need for expensive equipment which is not always available in clinical settings. Recent evidence suggests that Microsoft Kinect may provide a low cost gait analysis method. The purpose of this report is to critically evaluate the literature describing the concurrent validity of using the Kinect as a gait analysis instrument. An online search of PubMed, CINAHL, and ProQuest databases was performed. Included were studies in which walking was assessed with the Kinect and another gold standard device, and consisted of at least one numerical finding of spatiotemporal or kinematic measures. Our search identified 366 papers, from which 12 relevant studies were retrieved. The results demonstrate that the Kinect is valid only for some spatiotemporal gait parameters. Although the kinematic parameters measured by the Kinect followed the trend of the joint trajectories, they showed poor validity and large errors. In conclusion, the Kinect may have the potential to be used as a tool for measuring spatiotemporal aspects of gait, yet standardized methods should be established, and future examinations with both healthy subjects and clinical participants are required in order to integrate the Kinect as a clinical gait analysis tool. PMID:26861323
A validation procedure for a LADAR system radiometric simulation model
NASA Astrophysics Data System (ADS)
Leishman, Brad; Budge, Scott; Pack, Robert
2007-04-01
The USU LadarSIM software package is a ladar system engineering tool that has recently been enhanced to include the modeling of the radiometry of Ladar beam footprints. This paper will discuss our validation of the radiometric model and present a practical approach to future validation work. In order to validate complicated and interrelated factors affecting radiometry, a systematic approach had to be developed. Data for known parameters were first gathered then unknown parameters of the system were determined from simulation test scenarios. This was done in a way to isolate as many unknown variables as possible, then build on the previously obtained results. First, the appropriate voltage threshold levels of the discrimination electronics were set by analyzing the number of false alarms seen in actual data sets. With this threshold set, the system noise was then adjusted to achieve the appropriate number of dropouts. Once a suitable noise level was found, the range errors of the simulated and actual data sets were compared and studied. Predicted errors in range measurements were analyzed using two methods: first by examining the range error of a surface with known reflectivity and second by examining the range errors for specific detectors with known responsivities. This provided insight into the discrimination method and receiver electronics used in the actual system.
Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.
Koutny, Tomas
2016-09-01
We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Rama Raju, Kanumuri Siva; Taneja, Isha; Singh, Sheelendra Pratap; Tripathi, Amit; Mishra, Durga Prasad; Hussain, K Mahaboob; Gayen, Jiaur Rahman; Singh, Shio Kumar; Wahajuddin, Muhammad
2015-01-01
Tamoxifen and centchroman are two non-steroidal, selective estrogen receptors modulators, intended for long term therapy in the woman. Because of their wide spread use, there is a possibility of co-prescription of these agents. We studied the probable pharmacokinetic interaction between these agents in breast cancer model rats. A simple, sensitive and rapid LC-ESI-MS/MS method was developed and validated for the simultaneous determination of tamoxifen, centchroman and their active metabolites. The method was linear over a range of 0.2-200 ng/ml. All validation parameters met the acceptance criteria according to regulatory guidelines. LC-MS/MS method for determination of tamoxifen, centchroman and their metabolites was developed and validated. Results show the potential of drug-drug interaction upon co-administration these two marketed drugs.
Determination of vitamin C in foods: current state of method validation.
Spínola, Vítor; Llorent-Martínez, Eulogio J; Castilho, Paula C
2014-11-21
Vitamin C is one of the most important vitamins, so reliable information about its content in foodstuffs is a concern to both consumers and quality control agencies. However, the heterogeneity of food matrixes and the potential degradation of this vitamin during its analysis create enormous challenges. This review addresses the development and validation of high-performance liquid chromatography methods for vitamin C analysis in food commodities, during the period 2000-2014. The main characteristics of vitamin C are mentioned, along with the strategies adopted by most authors during sample preparation (freezing and acidification) to avoid vitamin oxidation. After that, the advantages and handicaps of different analytical methods are discussed. Finally, the main aspects concerning method validation for vitamin C analysis are critically discussed. Parameters such as selectivity, linearity, limit of quantification, and accuracy were studied by most authors. Recovery experiments during accuracy evaluation were in general satisfactory, with usual values between 81 and 109%. However, few methods considered vitamin C stability during the analytical process, and the study of the precision was not always clear or complete. Potential future improvements regarding proper method validation are indicated to conclude this review. Copyright © 2014. Published by Elsevier B.V.
Abramyan, Tigran M.; Hyde-Volpe, David L.; Stuart, Steven J.; Latour, Robert A.
2017-01-01
The use of standard molecular dynamics simulation methods to predict the interactions of a protein with a material surface have the inherent limitations of lacking the ability to determine the most likely conformations and orientations of the adsorbed protein on the surface and to determine the level of convergence attained by the simulation. In addition, standard mixing rules are typically applied to combine the nonbonded force field parameters of the solution and solid phases the system to represent interfacial behavior without validation. As a means to circumvent these problems, the authors demonstrate the application of an efficient advanced sampling method (TIGER2A) for the simulation of the adsorption of hen egg-white lysozyme on a crystalline (110) high-density polyethylene surface plane. Simulations are conducted to generate a Boltzmann-weighted ensemble of sampled states using force field parameters that were validated to represent interfacial behavior for this system. The resulting ensembles of sampled states were then analyzed using an in-house-developed cluster analysis method to predict the most probable orientations and conformations of the protein on the surface based on the amount of sampling performed, from which free energy differences between the adsorbed states were able to be calculated. In addition, by conducting two independent sets of TIGER2A simulations combined with cluster analyses, the authors demonstrate a method to estimate the degree of convergence achieved for a given amount of sampling. The results from these simulations demonstrate that these methods enable the most probable orientations and conformations of an adsorbed protein to be predicted and that the use of our validated interfacial force field parameter set provides closer agreement to available experimental results compared to using standard CHARMM force field parameterization to represent molecular behavior at the interface. PMID:28514864
Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients
NASA Astrophysics Data System (ADS)
Yu, Mingbiao; Cai, Tijing
2018-05-01
The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.
NASA Astrophysics Data System (ADS)
Zhang, Benfeng; Han, Tao; Li, Xinyi; Huang, Yulin; Omori, Tatsuya; Hashimoto, Ken-ya
2018-07-01
This paper investigates how lateral propagation of Rayleigh and shear horizontal (SH) surface acoustic waves (SAWs) changes with rotation angle θ and SiO2 and electrode thicknesses, h SiO2 and h Cu, respectively. The extended thin plate model is used for purpose. First, the extraction method is presented for determining parameters appearing in the extended thin plate model. Then, the model parameters are expressed in polynomials in terms of h SiO2, h Cu, and θ. Finally, a piston mode structure without phase shifters is designed using the extracted parameters. The possible piston mode structures can be searched automatically by use of the polynomial expression. The resonance characteristics are analyzed by both the extended thin plate model and three-dimensional (3D) finite element method (FEM). Agreement between the results of both methods confirms validity and effectiveness of the parameter extraction process and the design technique.
NASA Astrophysics Data System (ADS)
Tirandaz, Hamed
2018-03-01
Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.
Double density dynamics: realizing a joint distribution of a physical system and a parameter system
NASA Astrophysics Data System (ADS)
Fukuda, Ikuo; Moritsugu, Kei
2015-11-01
To perform a variety of types of molecular dynamics simulations, we created a deterministic method termed ‘double density dynamics’ (DDD), which realizes an arbitrary distribution for both physical variables and their associated parameters simultaneously. Specifically, we constructed an ordinary differential equation that has an invariant density relating to a joint distribution of the physical system and the parameter system. A generalized density function leads to a physical system that develops under nonequilibrium environment-describing superstatistics. The joint distribution density of the physical system and the parameter system appears as the Radon-Nikodym derivative of a distribution that is created by a scaled long-time average, generated from the flow of the differential equation under an ergodic assumption. The general mathematical framework is fully discussed to address the theoretical possibility of our method, and a numerical example representing a 1D harmonic oscillator is provided to validate the method being applied to the temperature parameters.
Lee, Ji Sun; Cho, Soo Hee; Lim, Chae Mi; Chang, Moon Ik; Joo, Hyun Jin; Park, Hyun Jin
2017-01-01
A confirmatory and quantitative method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of mebendazole and its hydrolyzed and reduced metabolites in pork, chicken, and horse muscles was developed and validated in this study. Anthelmintic compounds were extracted with ethyl acetate after sample mixture was made alkaline followed by liquid chromatographic separation using a reversed phase C18 column. Gradient elution was performed with a mobile phase consisting of water containing 10 mM ammonium formate and methanol. This confirmatory method was validated according to EU requirements. Evaluated validation parameters included specificity, accuracy, precision (repeatability and within-laboratory reproducibility), analytical limits (decision limit and detection limit), and applicability. Most parameters were proved to be conforming to the EU requirements. The decision limit (CCα) and detection capability (CCβ) for all analytes ranged from 15.84 to 17.96 μgkg-1. The limit of detection (LOD) and the limit of quantification (LOQ) for all analytes were 0.07 μgkg-1 and 0.2 μgkg-1, respectively. The developed method was successfully applied to monitoring samples collected from the markets in major cities and proven great potential to be used as a regulatory tool to determine mebendazole residues in animal based foods. PMID:28085912
Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra
2009-03-01
There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
A method to investigate the diffusion properties of nuclear calcium.
Queisser, Gillian; Wittum, Gabriel
2011-10-01
Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.
Identification of modal parameters including unmeasured forces and transient effects
NASA Astrophysics Data System (ADS)
Cauberghe, B.; Guillaume, P.; Verboven, P.; Parloo, E.
2003-08-01
In this paper, a frequency-domain method to estimate modal parameters from short data records with known input (measured) forces and unknown input forces is presented. The method can be used for an experimental modal analysis, an operational modal analysis (output-only data) and the combination of both. A traditional experimental and operational modal analysis in the frequency domain starts respectively, from frequency response functions and spectral density functions. To estimate these functions accurately sufficient data have to be available. The technique developed in this paper estimates the modal parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning windows on these short data records the transient effects are estimated simultaneously with the modal parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments. The presented method to process short data sequences leads to unbiased estimates with a small variance in comparison to the more traditional approaches.
Parameters estimation for reactive transport: A way to test the validity of a reactive model
NASA Astrophysics Data System (ADS)
Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme
The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.
Zhou, Weichen; Ma, Yanyun; Zhang, Jun; Hu, Jingyi; Zhang, Menghan; Wang, Yi; Li, Yi; Wu, Lijun; Pan, Yida; Zhang, Yitong; Zhang, Xiaonan; Zhang, Xinxin; Zhang, Zhanqing; Zhang, Jiming; Li, Hai; Lu, Lungen; Jin, Li; Wang, Jiucun; Yuan, Zhenghong; Liu, Jie
2017-11-01
Liver biopsy is the gold standard to assess pathological features (eg inflammation grades) for hepatitis B virus-infected patients although it is invasive and traumatic; meanwhile, several gene profiles of chronic hepatitis B (CHB) have been separately described in relatively small hepatitis B virus (HBV)-infected samples. We aimed to analyse correlations among inflammation grades, gene expressions and clinical parameters (serum alanine amino transaminase, aspartate amino transaminase and HBV-DNA) in large-scale CHB samples and to predict inflammation grades by using clinical parameters and/or gene expressions. We analysed gene expressions with three clinical parameters in 122 CHB samples by an improved regression model. Principal component analysis and machine-learning methods including Random Forest, K-nearest neighbour and support vector machine were used for analysis and further diagnosis models. Six normal samples were conducted to validate the predictive model. Significant genes related to clinical parameters were found enriching in the immune system, interferon-stimulated, regulation of cytokine production, anti-apoptosis, and etc. A panel of these genes with clinical parameters can effectively predict binary classifications of inflammation grade (area under the ROC curve [AUC]: 0.88, 95% confidence interval [CI]: 0.77-0.93), validated by normal samples. A panel with only clinical parameters was also valuable (AUC: 0.78, 95% CI: 0.65-0.86), indicating that liquid biopsy method for detecting the pathology of CHB is possible. This is the first study to systematically elucidate the relationships among gene expressions, clinical parameters and pathological inflammation grades in CHB, and to build models predicting inflammation grades by gene expressions and/or clinical parameters as well. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LaBudde, Robert A; Harnly, James M
2012-01-01
A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.
Silva, Simone Alves da; Sampaio, Geni Rodrigues; Torres, Elizabeth Aparecida Ferraz da Silva
2017-04-15
Among the different food categories, the oils and fats are important sources of exposure to polycyclic aromatic hydrocarbons (PAHs), a group of organic chemical contaminants. The use of a validated method is essential to obtain reliable analytical results since the legislation establishes maximum limits in different foods. The objective of this study was to optimize and validate a method for the quantification of four PAHs [benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene] in vegetable oils. The samples were submitted to liquid-liquid extraction, followed by solid-phase extraction, and analyzed by ultra-high performance liquid chromatography. Under the optimized conditions, the validation parameters were evaluated according to the INMETRO Guidelines: linearity (r2 >0.99), selectivity (no matrix interference), limits of detection (0.08-0.30μgkg -1 ) and quantification (0.25-1.00μgkg -1 ), recovery (80.13-100.04%), repeatability and intermediate precision (<10% RSD). The method was found to be adequate for routine analysis of PAHs in the vegetable oils evaluated. Copyright © 2016. Published by Elsevier Ltd.
Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A
2016-07-01
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Courchesne, Samuel
Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a simulation model incorporating the estimated parameters is used to compare the behavior of states measured. Finally, a good correspondence between the results is demonstrated despite a limited number of flight data. Keywords: drone, identification, estimation, nonlinear, flight test, system, aerodynamic coefficient.
NASA Astrophysics Data System (ADS)
Golub, V. P.; Pavlyuk, Ya. V.; Fernati, P. V.
2017-07-01
The problem of determining the parameters of fractional-exponential heredity kernels of nonlinear viscoelastic materials is solved. The methods for determining the parameters that are used in the cubic theory of viscoelasticity and the nonlinear theories based on the conditions of similarity of primary creep curves and isochronous creep diagrams are analyzed. The parameters of fractional-exponential heredity kernels are determined and experimentally validated for the oriented polypropylene, FM3001 and FM10001 nylon fibers, microplastics, TC 8/3-250 glass-reinforced plastic, SWAM glass-reinforced plastic, and contact molding glass-reinforced plastic.
A unitary convolution approximation for the impact-parameter dependent electronic energy loss
NASA Astrophysics Data System (ADS)
Schiwietz, G.; Grande, P. L.
1999-06-01
In this work, we propose a simple method to calculate the impact-parameter dependence of the electronic energy loss of bare ions for all impact parameters. This perturbative convolution approximation (PCA) is based on first-order perturbation theory, and thus, it is only valid for fast particles with low projectile charges. Using Bloch's stopping-power result and a simple scaling, we get rid of the restriction to low charge states and derive the unitary convolution approximation (UCA). Results of the UCA are then compared with full quantum-mechanical coupled-channel calculations for the impact-parameter dependent electronic energy loss.
System and method for modeling and analyzing complex scenarios
Shevitz, Daniel Wolf
2013-04-09
An embodiment of the present invention includes a method for analyzing and solving possibility tree. A possibility tree having a plurality of programmable nodes is constructed and solved with a solver module executed by a processor element. The solver module executes the programming of said nodes, and tracks the state of at least a variable through a branch. When a variable of said branch is out of tolerance with a parameter, the solver disables remaining nodes of the branch and marks the branch as an invalid solution. The valid solutions are then aggregated and displayed as valid tree solutions.
Llorente Ballesteros, M T; Navarro Serrano, I; López Colón, J L
2015-01-01
The aim of this report is to propose a scheme for validation of an analytical technique according to ISO 17025. According to ISO 17025, the fundamental parameters tested were: selectivity, calibration model, precision, accuracy, uncertainty of measurement, and analytical interference. A protocol has been developed that has been applied successfully to quantify zinc in serum by atomic absorption spectrometry. It is demonstrated that our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.
Accurate Grid-based Clustering Algorithm with Diagonal Grid Searching and Merging
NASA Astrophysics Data System (ADS)
Liu, Feng; Ye, Chengcheng; Zhu, Erzhou
2017-09-01
Due to the advent of big data, data mining technology has attracted more and more attentions. As an important data analysis method, grid clustering algorithm is fast but with relatively lower accuracy. This paper presents an improved clustering algorithm combined with grid and density parameters. The algorithm first divides the data space into the valid meshes and invalid meshes through grid parameters. Secondly, from the starting point located at the first point of the diagonal of the grids, the algorithm takes the direction of “horizontal right, vertical down” to merge the valid meshes. Furthermore, by the boundary grid processing, the invalid grids are searched and merged when the adjacent left, above, and diagonal-direction grids are all the valid ones. By doing this, the accuracy of clustering is improved. The experimental results have shown that the proposed algorithm is accuracy and relatively faster when compared with some popularly used algorithms.
Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging
NASA Astrophysics Data System (ADS)
Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David
2017-06-01
A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.
Adaptive model reduction for continuous systems via recursive rational interpolation
NASA Technical Reports Server (NTRS)
Lilly, John H.
1994-01-01
A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.
NASA Astrophysics Data System (ADS)
Yu, Chenghai; Ma, Ning; Wang, Kai; Du, Juan; Van den Braembussche, R. A.; Lin, Feng
2014-04-01
A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper. The first step of this method is the derivation of similarity criteria for tip clearance flow, on the basis of an inviscid model of tip clearance flow. The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor. According to the aerodynamic and geometric parameters of the target compressor rotor, a large-scale low-speed rotor blade is designed with an inverse blade design program. In order to validate the similitude method, the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points. It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model. These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper.
Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B
2017-08-01
Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.
NASA Astrophysics Data System (ADS)
Zhaunerchyk, V.; Frasinski, L. J.; Eland, J. H. D.; Feifel, R.
2014-05-01
Multidimensional covariance analysis and its validity for correlation of processes leading to multiple products are investigated from a theoretical point of view. The need to correct for false correlations induced by experimental parameters which fluctuate from shot to shot, such as the intensity of self-amplified spontaneous emission x-ray free-electron laser pulses, is emphasized. Threefold covariance analysis based on simple extension of the two-variable formulation is shown to be valid for variables exhibiting Poisson statistics. In this case, false correlations arising from fluctuations in an unstable experimental parameter that scale linearly with signals can be eliminated by threefold partial covariance analysis, as defined here. Fourfold covariance based on the same simple extension is found to be invalid in general. Where fluctuations in an unstable parameter induce nonlinear signal variations, a technique of contingent covariance analysis is proposed here to suppress false correlations. In this paper we also show a method to eliminate false correlations associated with fluctuations of several unstable experimental parameters.
NASA Astrophysics Data System (ADS)
Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.
Quantitative model validation of manipulative robot systems
NASA Astrophysics Data System (ADS)
Kartowisastro, Iman Herwidiana
This thesis is concerned with applying the distortion quantitative validation technique to a robot manipulative system with revolute joints. Using the distortion technique to validate a model quantitatively, the model parameter uncertainties are taken into account in assessing the faithfulness of the model and this approach is relatively more objective than the commonly visual comparison method. The industrial robot is represented by the TQ MA2000 robot arm. Details of the mathematical derivation of the distortion technique are given which explains the required distortion of the constant parameters within the model and the assessment of model adequacy. Due to the complexity of a robot model, only the first three degrees of freedom are considered where all links are assumed rigid. The modelling involves the Newton-Euler approach to obtain the dynamics model, and the Denavit-Hartenberg convention is used throughout the work. The conventional feedback control system is used in developing the model. The system behavior to parameter changes is investigated as some parameters are redundant. This work is important so that the most important parameters to be distorted can be selected and this leads to a new term called the fundamental parameters. The transfer function approach has been chosen to validate an industrial robot quantitatively against the measured data due to its practicality. Initially, the assessment of the model fidelity criterion indicated that the model was not capable of explaining the transient record in term of the model parameter uncertainties. Further investigations led to significant improvements of the model and better understanding of the model properties. After several improvements in the model, the fidelity criterion obtained was almost satisfied. Although the fidelity criterion is slightly less than unity, it has been shown that the distortion technique can be applied in a robot manipulative system. Using the validated model, the importance of friction terms in the model was highlighted with the aid of the partition control technique. It was also shown that the conventional feedback control scheme was insufficient for a robot manipulative system due to high nonlinearity which was inherent in the robot manipulator.
Automatic Determination of the Conic Coronal Mass Ejection Model Parameters
NASA Technical Reports Server (NTRS)
Pulkkinen, A.; Oates, T.; Taktakishvili, A.
2009-01-01
Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis
NASA Astrophysics Data System (ADS)
Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu
2017-09-01
An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.
Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonicwaves
NASA Astrophysics Data System (ADS)
Ogam, Erick; Fellah, Z. E. A.; Sebaa, Naima; Groby, J.-P.
2011-03-01
The inverse problem of the recovery of the poroelastic parameters of open-cell soft plastic foam panels is solved by employing transmitted ultrasonic waves (USW) and the Biot-Johnson-Koplik-Champoux-Allard (BJKCA) model. It is shown by constructing the objective functional given by the total square of the difference between predictions from the BJKCA interaction model and experimental data obtained with transmitted USW that the inverse problem is ill-posed, since the functional exhibits several local minima and maxima. In order to solve this problem, which is beyond the capability of most off-the-shelf iterative nonlinear least squares optimization algorithms (such as the Levenberg Marquadt or Nelder-Mead simplex methods), simple strategies are developed. The recovered acoustic parameters are compared with those obtained using simpler interaction models and a method employing asymptotic phase velocity of the transmitted USW. The retrieved elastic moduli are validated by solving an inverse vibration spectroscopy problem with data obtained from beam-like specimens cut from the panels using an equivalent solid elastodynamic model as estimator. The phase velocities are reconstructed using computed, measured resonance frequencies and a time-frequency decomposition of transient waves induced in the beam specimen. These confirm that the elastic parameters recovered using vibration are valid over the frequency range ofstudy.
Performance Analysis and Experimental Validation of the Direct Strain Imaging Method
Athanasios Iliopoulos; John G. Michopoulos; John C. Hermanson
2013-01-01
Direct Strain Imaging accomplishes full field measurement of the strain tensor on the surface of a deforming body, by utilizing arbitrarily oriented engineering strain measurements originating from digital imaging. In this paper an evaluation of the methodâs performance with respect to its operating parameter space is presented along with a preliminary...
The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2)
NASA Technical Reports Server (NTRS)
2005-01-01
Eight international laboratories specializing in the determination of marine pigment concentrations using high performance liquid chromatography (HPLC) were intercompared using in situ samples and a variety of laboratory standards. The field samples were collected primarily from eutrophic waters, although mesotrophic waters were also sampled to create a dynamic range in chlorophyll concentration spanning approximately two orders of magnitude (0.3 25.8 mg m-3). The intercomparisons were used to establish the following: a) the uncertainties in quantitating individual pigments and higher-order variables (sums, ratios, and indices); b) an evaluation of spectrophotometric versus HPLC uncertainties in the determination of total chlorophyll a; and c) the reduction in uncertainties as a result of applying quality assurance (QA) procedures associated with extraction, separation, injection, degradation, detection, calibration, and reporting (particularly limits of detection and quantitation). In addition, the remote sensing requirements for the in situ determination of total chlorophyll a were investigated to determine whether or not the average uncertainty for this measurement is being satisfied. The culmination of the activity was a validation of the round-robin methodology plus the development of the requirements for validating an individual HPLC method. The validation process includes the measurements required to initially demonstrate a pigment is validated, and the measurements that must be made during sample analysis to confirm a method remains validated. The so-called performance-based metrics developed here describe a set of thresholds for a variety of easily-measured parameters with a corresponding set of performance categories. The aggregate set of performance parameters and categories establish a) the overall performance capability of the method, and b) whether or not the capability is consistent with the required accuracy objectives.
Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M
2013-01-01
In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
SEE rate estimation based on diffusion approximation of charge collection
NASA Astrophysics Data System (ADS)
Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A.
2018-03-01
The integral rectangular parallelepiped (IRPP) method remains the main approach to single event rate (SER) prediction for aerospace systems, despite the growing number of issues impairing method's validity when applied to scaled technology nodes. One of such issues is uncertainty in parameters extraction in the IRPP method, which can lead to a spread of several orders of magnitude in the subsequently calculated SER. The paper presents an alternative approach to SER estimation based on diffusion approximation of the charge collection by an IC element and geometrical interpretation of SEE cross-section. In contrast to the IRPP method, the proposed model includes only two parameters which are uniquely determined from the experimental data for normal incidence irradiation at an ion accelerator. This approach eliminates the necessity of arbitrary decisions during parameter extraction and, thus, greatly simplifies calculation procedure and increases the robustness of the forecast.
NASA Astrophysics Data System (ADS)
Yang, Qi; Deng, Bin; Wang, Hongqiang; Qin, Yuliang
2017-07-01
Rotation is one of the typical micro-motions of radar targets. In many cases, rotation of the targets is always accompanied with vibrating interference, and it will significantly affect the parameter estimation and imaging, especially in the terahertz band. In this paper, we propose a parameter estimation method and an image reconstruction method based on the inverse Radon transform, the time-frequency analysis, and its inverse. The method can separate and estimate the rotating Doppler and the vibrating Doppler simultaneously and can obtain high-quality reconstructed images after vibration compensation. In addition, a 322-GHz radar system and a 25-GHz commercial radar are introduced and experiments on rotating corner reflectors are carried out in this paper. The results of the simulation and experiments verify the validity of the methods, which lay a foundation for the practical processing of the terahertz radar.
PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.
Xia, Jing; Wang, Michelle Yongmei
Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.
Gharehbaghi, Arash; Linden, Maria
2017-10-12
This paper presents a novel method for learning the cyclic contents of stochastic time series: the deep time-growing neural network (DTGNN). The DTGNN combines supervised and unsupervised methods in different levels of learning for an enhanced performance. It is employed by a multiscale learning structure to classify cyclic time series (CTS), in which the dynamic contents of the time series are preserved in an efficient manner. This paper suggests a systematic procedure for finding the design parameter of the classification method for a one-versus-multiple class application. A novel validation method is also suggested for evaluating the structural risk, both in a quantitative and a qualitative manner. The effect of the DTGNN on the performance of the classifier is statistically validated through the repeated random subsampling using different sets of CTS, from different medical applications. The validation involves four medical databases, comprised of 108 recordings of the electroencephalogram signal, 90 recordings of the electromyogram signal, 130 recordings of the heart sound signal, and 50 recordings of the respiratory sound signal. Results of the statistical validations show that the DTGNN significantly improves the performance of the classification and also exhibits an optimal structural risk.
NASA Technical Reports Server (NTRS)
Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan
2014-01-01
The validation of in-orbit instrument performance requires stability in both instrument and calibration source. This paper describes a method of validation using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. Unlike internal calibrations, the Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, in-orbit observations have become standardized and compiled for the Flight Models-1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance parameters which can be gleaned are detector gain, pointing accuracy and static detector point response function validation. Lunar observations are used to examine the stability of all three detectors on each of these instruments from 2006 to present. This validation method has yielded results showing trends per CERES data channel of 1.2% per decade or less.
Coran, Silvia A; Mulas, Stefano; Mulinacci, Nadia
2012-01-13
A new HPTLC method was envisaged to determine rosmarinic acid (RA) in different matrices with the aim of testing the influence of optimizing the main HPTLC operative parameters in view of a more stringent validation process. HPTLC LiChrospher silica gel 60 F254s, 20 cm × 10 cm, plates with toluene:ethyl formate:formic acid (6:4:1, v/v) as the mobile phase were used. Densitometric determinations were performed in reflectance mode at 330 nm. The method was validated giving rise to a dependable and high throughput procedure well suited to routine applications. RA was quantified in the range of 132-660 ng with RSD of repeatability and intermediate precision not exceeding 2.0% and accuracy within the acceptance limits. The method was tested on several commercial preparations containing RA in different amounts. Copyright © 2011 Elsevier B.V. All rights reserved.
Heinänen, M; Barbas, C
2001-03-01
A method is described for ambroxol, trans-4-(2-amino-3,5-dibromobenzylamino) cyclohexanol hydrochloride, and benzoic acid separation by HPLC with UV detection at 247 nm in a syrup as pharmaceutical presentation. Optimal conditions were: Column Symmetry Shield RPC8, 5 microm 250 x 4.6 mm, and methanol/(H(3)PO(4) 8.5 mM/triethylamine pH=2.8) 40:60 v/v. Validation was performed using standards and the pharmaceutical preparation which contains the compounds described above. Results from both standards and samples show suitable validation parameters. The pharmaceutical grade substances were tested by factors that could influence the chemical stability. These reaction mixtures were analysed to evaluate the capability of the method to separate degradation products. Degradation products did not interfere with the determination of the substances tested by the assay.
Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.
2014-12-01
Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various datasets available, the methods employed to utilize them in the cloud property retrieval validation process, and the results and how they aid future development of the retrieval algorithms. Future needs are also discussed.
Asquith, William H.
2014-01-01
The implementation characteristics of two method of L-moments (MLM) algorithms for parameter estimation of the 4-parameter Asymmetric Exponential Power (AEP4) distribution are studied using the R environment for statistical computing. The objective is to validate the algorithms for general application of the AEP4 using R. An algorithm was introduced in the original study of the L-moments for the AEP4. A second or alternative algorithm is shown to have a larger L-moment-parameter domain than the original. The alternative algorithm is shown to provide reliable parameter production and recovery of L-moments from fitted parameters. A proposal is made for AEP4 implementation in conjunction with the 4-parameter Kappa distribution to create a mixed-distribution framework encompassing the joint L-skew and L-kurtosis domains. The example application provides a demonstration of pertinent algorithms with L-moment statistics and two 4-parameter distributions (AEP4 and the Generalized Lambda) for MLM fitting to a modestly asymmetric and heavy-tailed dataset using R.
Lesion insertion in the projection domain: Methods and initial results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Baiyu; Leng, Shuai; Yu, Lifeng
2015-12-15
Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated bothmore » axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions.« less
Lesion insertion in the projection domain: Methods and initial results
Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia
2015-01-01
Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions. PMID:26632058
Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel
2017-01-01
Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607
DES Y1 Results: Validating Cosmological Parameter Estimation Using Simulated Dark Energy Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCrann, N.; et al.
We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in themore » $$\\Omega_m-\\sigma_8$$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $$S_8=\\sigma_8(\\Omega_m/0.3)^{0.5}$$ and $$\\Omega_m$$ are smaller than the DES Y1 $$1-\\sigma$$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $$\\Omega_m$$ and $$S_8$$ are sub-dominant to the DES Y1 uncertainty. As cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.« less
Ray, Chad A; Patel, Vimal; Shih, Judy; Macaraeg, Chris; Wu, Yuling; Thway, Theingi; Ma, Mark; Lee, Jean W; Desilva, Binodh
2009-02-20
Developing a process that generates robust immunoassays that can be used to support studies with tight timelines is a common challenge for bioanalytical laboratories. Design of experiments (DOEs) is a tool that has been used by many industries for the purpose of optimizing processes. The approach is capable of identifying critical factors and their interactions with a minimal number of experiments. The challenge for implementing this tool in the bioanalytical laboratory is to develop a user-friendly approach that scientists can understand and apply. We have successfully addressed these challenges by eliminating the screening design, introducing automation, and applying a simple mathematical approach for the output parameter. A modified central composite design (CCD) was applied to three ligand binding assays. The intra-plate factors selected were coating, detection antibody concentration, and streptavidin-HRP concentrations. The inter-plate factors included incubation times for each step. The objective was to maximize the logS/B (S/B) of the low standard to the blank. The maximum desirable conditions were determined using JMP 7.0. To verify the validity of the predictions, the logS/B prediction was compared against the observed logS/B during pre-study validation experiments. The three assays were optimized using the multi-factorial DOE. The total error for all three methods was less than 20% which indicated method robustness. DOE identified interactions in one of the methods. The model predictions for logS/B were within 25% of the observed pre-study validation values for all methods tested. The comparison between the CCD and hybrid screening design yielded comparable parameter estimates. The user-friendly design enables effective application of multi-factorial DOE to optimize ligand binding assays for therapeutic proteins. The approach allows for identification of interactions between factors, consistency in optimal parameter determination, and reduced method development time.
Estimation of Temporal Gait Parameters Using a Human Body Electrostatic Sensing-Based Method.
Li, Mengxuan; Li, Pengfei; Tian, Shanshan; Tang, Kai; Chen, Xi
2018-05-28
Accurate estimation of gait parameters is essential for obtaining quantitative information on motor deficits in Parkinson's disease and other neurodegenerative diseases, which helps determine disease progression and therapeutic interventions. Due to the demand for high accuracy, unobtrusive measurement methods such as optical motion capture systems, foot pressure plates, and other systems have been commonly used in clinical environments. However, the high cost of existing lab-based methods greatly hinders their wider usage, especially in developing countries. In this study, we present a low-cost, noncontact, and an accurate temporal gait parameters estimation method by sensing and analyzing the electrostatic field generated from human foot stepping. The proposed method achieved an average 97% accuracy on gait phase detection and was further validated by comparison to the foot pressure system in 10 healthy subjects. Two results were compared using the Pearson coefficient r and obtained an excellent consistency ( r = 0.99, p < 0.05). The repeatability of the purposed method was calculated between days by intraclass correlation coefficients (ICC), and showed good test-retest reliability (ICC = 0.87, p < 0.01). The proposed method could be an affordable and accurate tool to measure temporal gait parameters in hospital laboratories and in patients' home environments.
Paoloni, Angela; Alunni, Sabrina; Pelliccia, Alessandro; Pecorelli, Ivan
2016-01-01
A simple and straightforward method for simultaneous determination of residues of 13 pesticides in honey samples (acrinathrin, bifenthrin, bromopropylate, cyhalothrin-lambda, cypermethrin, chlorfenvinphos, chlorpyrifos, coumaphos, deltamethrin, fluvalinate-tau, malathion, permethrin and tetradifon) from different pesticide classes has been developed and validated. The analytical method provides dissolution of honey in water and an extraction of pesticide residues by n-Hexane followed by clean-up on a Florisil SPE column. The extract was evaporated and taken up by a solution of an injection internal standard (I-IS), ethion, and finally analyzed by capillary gas chromatography with electron capture detection (GC-µECD). Identification for qualitative purpose was conducted by gas chromatography with triple quadrupole mass spectrometer (GC-MS/MS). A matrix-matched calibration curve was performed for quantitative purposes by plotting the area ratio (analyte/I-IS) against concentration using a GC-µECD instrument. According to document No. SANCO/12571/2013, the method was validated by testing the following parameters: linearity, matrix effect, specificity, precision, trueness (bias) and measurement uncertainty. The analytical process was validated analyzing blank honey samples spiked at levels equal to and greater than 0.010 mg/kg (limit of quantification). All parameters were satisfactorily compared with the values established by document No. SANCO/12571/2013. The analytical performance was verified by participating in eight multi-residue proficiency tests organized by BIPEA, obtaining satisfactory z-scores in all 70 determinations. Measurement uncertainty was estimated according to the top-down approaches described in Appendix C of the SANCO document using the within-laboratory reproducibility relative standard deviation combined with laboratory bias using the proficiency test data.
NASA Astrophysics Data System (ADS)
Kiani, M.; Abdolali, A.; Safari, M.
2018-03-01
In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
Deng, Bo; Shi, Yaoyao; Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-31
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing.
Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-01
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048
Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand
2016-03-15
A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.
Davidson, Shaun M; Docherty, Paul D; Murray, Rua
2017-03-01
Parameter identification is an important and widely used process across the field of biomedical engineering. However, it is susceptible to a number of potential difficulties, such as parameter trade-off, causing premature convergence at non-optimal parameter values. The proposed Dimensional Reduction Method (DRM) addresses this issue by iteratively reducing the dimension of hyperplanes where trade off occurs, and running subsequent identification processes within these hyperplanes. The DRM was validated using clinical data to optimize 4 parameters of the widely used Bergman Minimal Model of glucose and insulin kinetics, as well as in-silico data to optimize 5 parameters of the Pulmonary Recruitment (PR) Model. Results were compared with the popular Levenberg-Marquardt (LMQ) Algorithm using a Monte-Carlo methodology, with both methods afforded equivalent computational resources. The DRM converged to a lower or equal residual value in all tests run using the Bergman Minimal Model and actual patient data. For the PR model, the DRM attained significantly lower overall median parameter error values and lower residuals in the vast majority of tests. This shows the DRM has potential to provide better resolution of optimum parameter values for the variety of biomedical models in which significant levels of parameter trade-off occur. Copyright © 2017 Elsevier Inc. All rights reserved.
Llorente-Mirandes, Toni; Calderón, Josep; Centrich, Francesc; Rubio, Roser; López-Sánchez, José Fermín
2014-03-15
The present study arose from the need to determine inorganic arsenic (iAs) at low levels in cereal-based food. Validated methods with a low limit of detection (LOD) are required to analyse these kinds of food. An analytical method for the determination of iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA) in cereal-based food and infant cereals is reported. The method was optimised and validated to achieve low LODs. Ion chromatography-inductively coupled plasma mass spectrometry (IC-ICPMS) was used for arsenic speciation. The main quality parameters were established. To expand the applicability of the method, different cereal products were analysed: bread, biscuits, breakfast cereals, wheat flour, corn snacks, pasta and infant cereals. The total and inorganic arsenic content of 29 cereal-based food samples ranged between 3.7-35.6 and 3.1-26.0 μg As kg(-1), respectively. The present method could be considered a valuable tool for assessing inorganic arsenic contents in cereal-based foods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tiryaki, Osman
2016-10-02
This study was undertaken to validate the "quick, easy, cheap, effective, rugged and safe" (QuEChERS) method using Golden Delicious and Starking Delicious apple matrices spiked at 0.1 maximum residue limit (MRL), 1.0 MRL and 10 MRL levels of the four pesticides (chlorpyrifos, dimethoate, indoxacarb and imidacloprid). For the extraction and cleanup, original QuEChERS method was followed, then the samples were subjected to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for chromatographic analyses. According to t test, matrix effect was not significant for chlorpyrifos in both sample matrices, but it was significant for dimethoate, indoxacarb and imidacloprid in both sample matrices. Thus, matrix-matched calibration (MC) was used to compensate matrix effect and quantifications were carried out by using MC. The overall recovery of the method was 90.15% with a relative standard deviation of 13.27% (n = 330). Estimated method detection limit of analytes blew the MRLs. Some other parameters of the method validation, such as recovery, precision, accuracy and linearity were found to be within the required ranges.
Ethiraj, Revathi; Thiruvengadam, Ethiraj; Sampath, Venkattapuram Saravanan; Vahid, Abdul; Raj, Jithin
2014-01-01
A simple, selective, and stability indicating spectroscopic method has been selected and validated for the assay of ceftriaxone sodium in the powder for injection dosage forms. Proposed method is based on the measurement of absorbance of ceftriaxone sodium in aqueous medium at 241 nm. The method obeys Beer's law in the range of 5–50 μg/mL with correlation coefficient of 0.9983. Apparent molar absorptivity and Sandell's sensitivity were found to be 2.046 × 103 L mol−1 cm−1 and 0.02732 μg/cm2/0.001 absorbance units. This study indicated that ceftriaxone sodium was degraded in acid medium and also underwent oxidative degradation. Percent relative standard deviation associated with all the validation parameters was less than 2, showing compliance with acceptance criteria of Q2 (R1), International Conference on Harmonization (2005) guidelines. Then the proposed method was successfully applied to the determination of ceftriaxone sodium in sterile preparation and results were comparable with reported methods. PMID:27355020
Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen
2017-12-01
A method is proposed and verified for selecting the optimum segmentation of a TEM reconstruction among the results of several segmentation algorithms. The selection criterion is the accuracy of the segmentation. To do this selection, a parameter for the comparison of the accuracies of the different segmentations has been defined. It consists of the mutual information value between the acquired TEM images of the sample and the Radon projections of the segmented volumes. In this work, it has been proved that this new mutual information parameter and the Jaccard coefficient between the segmented volume and the ideal one are correlated. In addition, the results of the new parameter are compared to the results obtained from another validated method to select the optimum segmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Validation of quantitative method for azoxystrobin residues in green beans and peas.
Abdelraheem, Ehab M H; Hassan, Sayed M; Arief, Mohamed M H; Mohammad, Somaia G
2015-09-01
This study presents a method validation for extraction and quantitative analysis of azoxystrobin residues in green beans and peas using HPLC-UV and the results confirmed by GC-MS. The employed method involved initial extraction with acetonitrile after the addition of salts (magnesium sulfate and sodium chloride), followed by a cleanup step by activated neutral carbon. Validation parameters; linearity, matrix effect, LOQ, specificity, trueness and repeatability precision were attained. The spiking levels for the trueness and the precision experiments were (0.1, 0.5, 3 mg/kg). For HPLC-UV analysis, mean recoveries ranged between 83.69% to 91.58% and 81.99% to 107.85% for green beans and peas, respectively. For GC-MS analysis, mean recoveries ranged from 76.29% to 94.56% and 80.77% to 100.91% for green beans and peas, respectively. According to these results, the method has been proven to be efficient for extraction and determination of azoxystrobin residues in green beans and peas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zacharis, Constantinos K; Vastardi, Elli
2018-02-20
In the research presented we report the development of a simple and robust liquid chromatographic method for the quantification of two genotoxic alkyl sulphonate impurities (namely methyl p-toluenesulfonate and isopropyl p-toluenesulfonate) in Aprepitant API substances using the Analytical Quality by Design (AQbD) approach. Following the steps of AQbD protocol, the selected critical method attributes (CMAs) were the separation criterions between the critical peak pairs, the analysis time and the peak efficiencies of the analytes. The critical method parameters (CMPs) included the flow rate, the gradient slope and the acetonitrile content at the first step of the gradient elution program. Multivariate experimental designs namely Plackett-Burman and Box-Behnken designs were conducted sequentially for factor screening and optimization of the method parameters. The optimal separation conditions were estimated using the desirability function. The method was fully validated in the range of 10-200% of the target concentration limit of the analytes using the "total error" approach. Accuracy profiles - a graphical decision making tool - were constructed using the results of the validation procedures. The β-expectation tolerance intervals did not exceed the acceptance criteria of±10%, meaning that 95% of future results will be included in the defined bias limits. The relative bias ranged between - 1.3-3.8% for both analytes, while the RSD values for repeatability and intermediate precision were less than 1.9% in all cases. The achieved limit of detection (LOD) and the limit of quantification (LOQ) were adequate for the specific purpose and found to be 0.02% (corresponding to 48μgg -1 in sample) for both methyl and isopropyl p-toluenesulfonate. As proof-of-concept, the validated method was successfully applied in the analysis of several Aprepitant batches indicating that this methodology could be used for routine quality control analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
[Validation and verfication of microbiology methods].
Camaró-Sala, María Luisa; Martínez-García, Rosana; Olmos-Martínez, Piedad; Catalá-Cuenca, Vicente; Ocete-Mochón, María Dolores; Gimeno-Cardona, Concepción
2015-01-01
Clinical microbiologists should ensure, to the maximum level allowed by the scientific and technical development, the reliability of the results. This implies that, in addition to meeting the technical criteria to ensure their validity, they must be performed with a number of conditions that allows comparable results to be obtained, regardless of the laboratory that performs the test. In this sense, the use of recognized and accepted reference methodsis the most effective tool for these guarantees. The activities related to verification and validation of analytical methods has become very important, as there is continuous development, as well as updating techniques and increasingly complex analytical equipment, and an interest of professionals to ensure quality processes and results. The definitions of validation and verification are described, along with the different types of validation/verification, and the types of methods, and the level of validation necessary depending on the degree of standardization. The situations in which validation/verification is mandatory and/or recommended is discussed, including those particularly related to validation in Microbiology. It stresses the importance of promoting the use of reference strains as controls in Microbiology and the use of standard controls, as well as the importance of participation in External Quality Assessment programs to demonstrate technical competence. The emphasis is on how to calculate some of the parameters required for validation/verification, such as the accuracy and precision. The development of these concepts can be found in the microbiological process SEIMC number 48: «Validation and verification of microbiological methods» www.seimc.org/protocols/microbiology. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti
2017-08-11
In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.
An HMM model for coiled-coil domains and a comparison with PSSM-based predictions.
Delorenzi, Mauro; Speed, Terry
2002-04-01
Large-scale sequence data require methods for the automated annotation of protein domains. Many of the predictive methods are based either on a Position Specific Scoring Matrix (PSSM) of fixed length or on a window-less Hidden Markov Model (HMM). The performance of the two approaches is tested for Coiled-Coil Domains (CCDs). The prediction of CCDs is used frequently, and its optimization seems worthwhile. We have conceived MARCOIL, an HMM for the recognition of proteins with a CCD on a genomic scale. A cross-validated study suggests that MARCOIL improves predictions compared to the traditional PSSM algorithm, especially for some protein families and for short CCDs. The study was designed to reveal differences inherent in the two methods. Potential confounding factors such as differences in the dimension of parameter space and in the parameter values were avoided by using the same amino acid propensities and by keeping the transition probabilities of the HMM constant during cross-validation. The prediction program and the databases are available at http://www.wehi.edu.au/bioweb/Mauro/Marcoil
Breakdown parameter for kinetic modeling of multiscale gas flows.
Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao
2014-06-01
Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.
NASA Technical Reports Server (NTRS)
Schulte, Peter Z.; Moore, James W.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that flight performance requirements on parachute loads and terminal rate of descent are met. Design of Experiments (DoE) provides a systematic method for variation of simulation input parameters. When implemented and interpreted correctly, a DoE study of parachute simulation tools indicates values and combinations of parameters that may cause requirement limits to be violated. This paper describes one implementation of DoE that is currently being developed by CPAS, explains how DoE results can be interpreted, and presents the results of several preliminary studies. The potential uses of DoE to validate parachute simulation models and verify requirements are also explored.
NASA Astrophysics Data System (ADS)
Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.
2017-12-01
In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.
NASA Astrophysics Data System (ADS)
Han, Xiaobao; Li, Huacong; Jia, Qiusheng
2017-12-01
For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.
Molybdenum disulfide and water interaction parameters
NASA Astrophysics Data System (ADS)
Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.
2017-09-01
Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.
Bohm, Detlef A; Stachel, Carolin S; Gowik, Petra
2012-07-01
The presented multi-method was developed for the confirmation of 37 antibiotic substances from the six antibiotic groups: macrolides, lincosamides, quinolones, tetracyclines, pleuromutilines and diamino-pyrimidine derivatives. All substances were analysed simultaneously in a single analytical run with the same procedure, including an extraction with buffer, a clean-up by solid-phase extraction, and the measurement by liquid chromatography tandem mass spectrometry in ESI+ mode. The method was validated on the basis of an in-house validation concept with factorial design by combination of seven factors to check the robustness in a concentration range of 5-50 μg kg(-1). The honeys used were of different types with regard to colour and origin. The values calculated for the validation parameters-decision limit CCα (range, 7.5-12.9 μg kg(-1)), detection capability CCβ (range, 9.4-19.9 μg kg(-1)), within-laboratory reproducibility RSD(wR) (<20% except for tulathromycin with 23.5% and tylvalosin with 21.4 %), repeatability RSD(r) (<20% except for tylvalosin with 21.1%), and recovery (range, 92-106%)-were acceptable and in agreement with the criteria of Commission Decision 2002/657/EC. The validation results showed that the method was applicable for the residue analysis of antibiotics in honey to substances with and without recommended concentrations, although some changes had been tested during validation to determine the robustness of the method.
[Selection of risk and diagnosis in diabetic polyneuropathy. Validation of method of new systems].
Jurado, Jerónimo; Caula, Jacinto; Pou i Torelló, Josep Maria
2006-06-30
In a previous study we developed a specific algorithm, the polyneuropathy selection method (PSM) with 4 parameters (age, HDL-C, HbA1c, and retinopathy), to select patients at risk of diabetic polyneuropathy (DPN). We also developed a simplified method for DPN diagnosis: outpatient polyneuropathy diagnosis (OPD), with 4 variables (symptoms and 3 objective tests). To confirm the validity of conventional tests for DPN diagnosis; to validate the discriminatory power of the PSM and the diagnostic value of OPD by evaluating their relationship to electrodiagnosis studies and objective clinical neurological assessment; and to evaluate the correlation of DPN and pro-inflammatory status. Cross-sectional, crossed association for PSM validation. Paired samples for OPD validation. Primary care in 3 counties. Random sample of 75 subjects from the type-2 diabetes census for PSM evaluation. Thirty DPN patients and 30 non-DPN patients (from 2 DM2 sub-groups in our earlier study) for OPD evaluation. The gold standard for DPN diagnosis will be studied by means of a clinical neurological study (symptoms, physical examination, and sensitivity tests) and electrodiagnosis studies (sensitivity and motor EMG). Risks of neuropathy, macroangiopathy and pro-inflammatory status (PCR, TNF soluble fraction and total TGF-beta1) will be studied in every subject. Electrodiagnosis studies should confirm the validity of conventional tests for DPN diagnosis. PSM and OPD will be valid methods for selecting patients at risk and diagnosing DPN. There will be a significant relationship between DPN and pro-inflammatory tests.
Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software.
Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam
2015-05-01
Several sophisticated methods of footprint analysis currently exist. However, it is sometimes useful to apply standard measurement methods of recognized evidence with an easy and quick application. We sought to assess the reliability and validity of a new method of footprint assessment in a healthy population using Photoshop CS5 software (Adobe Systems Inc, San Jose, California). Forty-two footprints, corresponding to 21 healthy individuals (11 men with a mean ± SD age of 20.45 ± 2.16 years and 10 women with a mean ± SD age of 20.00 ± 1.70 years) were analyzed. Footprints were recorded in static bipedal standing position using optical podography and digital photography. Three trials for each participant were performed. The Hernández-Corvo, Chippaux-Smirak, and Staheli indices and the Clarke angle were calculated by manual method and by computerized method using Photoshop CS5 software. Test-retest was used to determine reliability. Validity was obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed high values (ICC, 0.98-0.99). Moreover, the validity test clearly showed no difference between techniques (ICC, 0.99-1). The reliability and validity of a method to measure, assess, and record the podometric indices using Photoshop CS5 software has been demonstrated. This provides a quick and accurate tool useful for the digital recording of morphostatic foot study parameters and their control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, A; Little, K; Chung, J
Purpose: To validate the use of a Channelized Hotelling Observer (CHO) model for guiding image processing parameter selection and enable improved nodule detection in digital chest radiography. Methods: In a previous study, an anthropomorphic chest phantom was imaged with and without PMMA simulated nodules using a GE Discovery XR656 digital radiography system. The impact of image processing parameters was then explored using a CHO with 10 Laguerre-Gauss channels. In this work, we validate the CHO’s trend in nodule detectability as a function of two processing parameters by conducting a signal-known-exactly, multi-reader-multi-case (MRMC) ROC observer study. Five naive readers scored confidencemore » of nodule visualization in 384 images with 50% nodule prevalence. The image backgrounds were regions-of-interest extracted from 6 normal patient scans, and the digitally inserted simulated nodules were obtained from phantom data in previous work. Each patient image was processed with both a near-optimal and a worst-case parameter combination, as determined by the CHO for nodule detection. The same 192 ROIs were used for each image processing method, with 32 randomly selected lung ROIs per patient image. Finally, the MRMC data was analyzed using the freely available iMRMC software of Gallas et al. Results: The image processing parameters which were optimized for the CHO led to a statistically significant improvement (p=0.049) in human observer AUC from 0.78 to 0.86, relative to the image processing implementation which produced the lowest CHO performance. Conclusion: Differences in user-selectable image processing methods on a commercially available digital radiography system were shown to have a marked impact on performance of human observers in the task of lung nodule detection. Further, the effect of processing on humans was similar to the effect on CHO performance. Future work will expand this study to include a wider range of detection/classification tasks and more observers, including experienced chest radiologists.« less
Sánchez, Raquel; Snell, James; Held, Andrea; Emons, Hendrik
2015-08-01
A simple, robust and reliable method for mercury determination in seawater matrices based on the combination of cold vapour generation and inductively coupled plasma mass spectrometry (CV-ICP-MS) and its complete in-house validation are described. The method validation covers parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), trueness, repeatability, intermediate precision and robustness. A calibration curve covering the whole working range was achieved with coefficients of determination typically higher than 0.9992. The repeatability of the method (RSDrep) was 0.5 %, and the intermediate precision was 2.3 % at the target mass fraction of 20 ng/kg. Moreover, the method was robust with respect to the salinity of the seawater. The limit of quantification was 2.7 ng/kg, which corresponds to 13.5 % of the target mass fraction in the future certified reference material (20 ng/kg). An uncertainty budget for the measurement of mercury in seawater has been established. The relative expanded (k = 2) combined uncertainty is 6 %. The performance of the validated method was demonstrated by generating results for process control and a homogeneity study for the production of a candidate certified reference material.
UV Spectrophotometric Determination and Validation of Hydroquinone in Liposome.
Khoshneviszadeh, Rabea; Fazly Bazzaz, Bibi Sedigheh; Housaindokht, Mohammad Reza; Ebrahim-Habibi, Azadeh; Rajabi, Omid
2015-01-01
The method has been developed and validated for the determination of hydroquinone in liposomal formulation. The samples were dissolved in methanol and evaluated in 293 nm. The validation parameters such as linearity, accuracy, precision, specificity, limit of detection (LOD) and limit of quantitation (LOQ) were determined. The calibration curve was linear in 1-50 µg/mL range of hydroquinone analyte with a regression coefficient of 0.9998. This study showed that the liposomal hydroquinone composed of phospholipid (7.8 %), cholesterol (1.5 %), alpha ketopherol (0.17 %) and hydroquinone (0.5 %) did not absorb wavelength of 293 nm if it diluted 500 times by methanol. The concentration of hydroquinone reached 10 µg/mL after 500 times of dilution. Furthermore, various validation parameters as per ICH Q2B guideline were tested and found accordingly. The recovery percentages of liposomal hydroquinone were found 102 ± 0.8, 99 ± 0.2 and 98 ± 0.4 for 80%, 100% and 120% respectively. The relative standard deviation values of inter and intra-day precisions were <%2. LOD and LOQ were 0.24 and 0.72 µg/mL respectively.
Tian, Guo-Liang; Li, Hui-Qiong
2017-08-01
Some existing confidence interval methods and hypothesis testing methods in the analysis of a contingency table with incomplete observations in both margins entirely depend on an underlying assumption that the sampling distribution of the observed counts is a product of independent multinomial/binomial distributions for complete and incomplete counts. However, it can be shown that this independency assumption is incorrect and can result in unreliable conclusions because of the under-estimation of the uncertainty. Therefore, the first objective of this paper is to derive the valid joint sampling distribution of the observed counts in a contingency table with incomplete observations in both margins. The second objective is to provide a new framework for analyzing incomplete contingency tables based on the derived joint sampling distribution of the observed counts by developing a Fisher scoring algorithm to calculate maximum likelihood estimates of parameters of interest, the bootstrap confidence interval methods, and the bootstrap testing hypothesis methods. We compare the differences between the valid sampling distribution and the sampling distribution under the independency assumption. Simulation studies showed that average/expected confidence-interval widths of parameters based on the sampling distribution under the independency assumption are shorter than those based on the new sampling distribution, yielding unrealistic results. A real data set is analyzed to illustrate the application of the new sampling distribution for incomplete contingency tables and the analysis results again confirm the conclusions obtained from the simulation studies.
Azizan, Amizon; Büchs, Jochen
2017-01-01
Biotechnological development in shake flask necessitates vital engineering parameters e.g. volumetric power input, mixing time, gas liquid mass transfer coefficient, hydromechanical stress and effective shear rate. Determination and optimization of these parameters through experiments are labor-intensive and time-consuming. Computational Fluid Dynamics (CFD) provides the ability to predict and validate these parameters in bioprocess engineering. This work provides ample experimental data which are easily accessible for future validations to represent the hydrodynamics of the fluid flow in the shake flask. A non-invasive measuring technique using an optical fluorescence method was developed for shake flasks containing a fluorescent solution with a waterlike viscosity at varying filling volume (V L = 15 to 40 mL) and shaking frequency ( n = 150 to 450 rpm) at a constant shaking diameter (d o = 25 mm). The method detected the leading edge (LB) and tail of the rotating bulk liquid (TB) relative to the direction of the centrifugal acceleration at varying circumferential heights from the base of the shake flask. The determined LB and TB points were translated into three-dimensional (3D) circumferential liquid distribution plots. The maximum liquid height (H max ) of the bulk liquid increased with increasing filling volume and shaking frequency of the shaking flask, as expected. The toroidal shapes of LB and TB are clearly asymmetrical and the measured TB differed by the elongation of the liquid particularly towards the torus part of the shake flask. The 3D liquid distribution data collected at varying filling volume and shaking frequency, comprising of LB and TB values relative to the direction of the centrifugal acceleration are essential for validating future numerical solutions using CFD to predict vital engineering parameters in shake flask.
NASA Astrophysics Data System (ADS)
Liu, Jian; Ren, Zhongzhou; Xu, Chang
2018-07-01
Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV < L < 62 MeV. The validity of this method is examined by the properties of finite nuclei. Results show that reasonable descriptions on the properties of finite nuclei and nuclear matter can be obtained together.
NASA Astrophysics Data System (ADS)
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
Huang, Shaodan; Xiong, Jianyin; Zhang, Yinping
2013-10-15
The indoor pollution caused by formaldehyde and volatile organic compounds (VOCs) emitted from building materials poses an adverse effect on people's health. It is necessary to understand and control the behaviors of the emission sources. Based on detailed mass transfer analysis on the emission process in a ventilated chamber, this paper proposes a novel method of measuring the three emission characteristic parameters, i.e., the initial emittable concentration, the diffusion coefficient and the partition coefficient. A linear correlation between the logarithm of dimensionless concentration and time is derived. The three parameters can then be calculated from the intercept and slope of the correlation. Compared with the closed chamber C-history method, the test is performed under ventilated condition thus some commonly-used measurement instruments (e.g., GC/MS, HPLC) can be applied. While compared with other methods, the present method can rapidly and accurately measure the three parameters, with experimental time less than 12h and R(2) ranging from 0.96 to 0.99 for the cases studied. Independent experiment was carried out to validate the developed method, and good agreement was observed between the simulations based on the determined parameters and experiments. The present method should prove useful for quick characterization of formaldehyde/VOC emissions from indoor materials. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
NASA Astrophysics Data System (ADS)
Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan
2016-03-01
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.
Exact Bayesian Inference for Phylogenetic Birth-Death Models.
Parag, K V; Pybus, O G
2018-04-26
Inferring the rates of change of a population from a reconstructed phylogeny of genetic sequences is a central problem in macro-evolutionary biology, epidemiology, and many other disciplines. A popular solution involves estimating the parameters of a birth-death process (BDP), which links the shape of the phylogeny to its birth and death rates. Modern BDP estimators rely on random Markov chain Monte Carlo (MCMC) sampling to infer these rates. Such methods, while powerful and scalable, cannot be guaranteed to converge, leading to results that may be hard to replicate or difficult to validate. We present a conceptually and computationally different parametric BDP inference approach using flexible and easy to implement Snyder filter (SF) algorithms. This method is deterministic so its results are provable, guaranteed, and reproducible. We validate the SF on constant rate BDPs and find that it solves BDP likelihoods known to produce robust estimates. We then examine more complex BDPs with time-varying rates. Our estimates compare well with a recently developed parametric MCMC inference method. Lastly, we performmodel selection on an empirical Agamid species phylogeny, obtaining results consistent with the literature. The SF makes no approximations, beyond those required for parameter quantisation and numerical integration, and directly computes the posterior distribution of model parameters. It is a promising alternative inference algorithm that may serve either as a standalone Bayesian estimator or as a useful diagnostic reference for validating more involved MCMC strategies. The Snyder filter is implemented in Matlab and the time-varying BDP models are simulated in R. The source code and data are freely available at https://github.com/kpzoo/snyder-birth-death-code. kris.parag@zoo.ox.ac.uk. Supplementary material is available at Bioinformatics online.
Abu-Jamous, Basel; Fa, Rui; Roberts, David J; Nandi, Asoke K
2015-06-04
Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.
Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo
2017-01-01
Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554
Jirousková, Zuzana; Vareková, Radka Svobodová; Vanek, Jakub; Koca, Jaroslav
2009-05-01
The electronegativity equalization method (EEM) was developed by Mortier et al. as a semiempirical method based on the density-functional theory. After parameterization, in which EEM parameters A(i), B(i), and adjusting factor kappa are obtained, this approach can be used for calculation of average electronegativity and charge distribution in a molecule. The aim of this work is to perform the EEM parameterization using the Merz-Kollman-Singh (MK) charge distribution scheme obtained from B3LYP/6-31G* and HF/6-31G* calculations. To achieve this goal, we selected a set of 380 organic molecules from the Cambridge Structural Database (CSD) and used the methodology, which was recently successfully applied to EEM parameterization to calculate the HF/STO-3G Mulliken charges on large sets of molecules. In the case of B3LYP/6-31G* MK charges, we have improved the EEM parameters for already parameterized elements, specifically C, H, N, O, and F. Moreover, EEM parameters for S, Br, Cl, and Zn, which have not as yet been parameterized for this level of theory and basis set, we also developed. In the case of HF/6-31G* MK charges, we have developed the EEM parameters for C, H, N, O, S, Br, Cl, F, and Zn that have not been parameterized for this level of theory and basis set so far. The obtained EEM parameters were verified by a previously developed validation procedure and used for the charge calculation on a different set of 116 organic molecules from the CSD. The calculated EEM charges are in a very good agreement with the quantum mechanically obtained ab initio charges. 2008 Wiley Periodicals, Inc.
Measurement of drill grinding parameters using laser sensor
NASA Astrophysics Data System (ADS)
Yanping, Peng; Kumehara, Hiroyuki; Wei, Zhang; Nomura, Takashi
2005-12-01
To measure the grinding parameters and geometry parameters accurately for a drill point is essential to its design and reconditioning. In recent years, a number of non-contact coordinate measuring apparatuses, using CCD camera or laser sensors, are developed. But, a lot work is to be done for further improvement. This paper reports another kind of laser coordinate meter. As an example of its application, the method for geometry inspection of the drill flank surface is detailed. Measured data from laser scanning on the flank surface around some points with several 2-dimensional curves are analyzed with mathematical procedure. If one of these curves turns to be a straight line, it must be the generatrix of the grinding cone. Thus, the grinding parameters are determined by a set of three generatrices. Then, the measurement method and data processing procedure are proposed. Its validity is assessed by measuring a sample with given parameters. The point geometry measured agrees well with the known values. In comparison with other methods in the published literature, it is simpler in computation and more accurate in results.
Direct and accelerated parameter mapping using the unscented Kalman filter.
Zhao, Li; Feng, Xue; Meyer, Craig H
2016-05-01
To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.
Vasak, Christoph; Strbac, Georg D; Huber, Christian D; Lettner, Stefan; Gahleitner, André; Zechner, Werner
2015-02-01
The study aims to evaluate the accuracy of the NobelGuide™ (Medicim/Nobel Biocare, Göteborg, Sweden) concept maximally reducing the influence of clinical and surgical parameters. Moreover, the study was to compare and validate two validation procedures versus a reference method. Overall, 60 implants were placed in 10 artificial edentulous mandibles according to the NobelGuide™ protocol. For merging the pre- and postoperative DICOM data sets, three different fusion methods (Triple Scan Technique, NobelGuide™ Validation software, and AMIRA® software [VSG - Visualization Sciences Group, Burlington, MA, USA] as reference) were applied. Discrepancies between the virtual and the actual implant positions were measured. The mean deviations measured with AMIRA® were 0.49 mm (implant shoulder), 0.69 mm (implant apex), and 1.98°mm (implant axis). The Triple Scan Technique as well as the NobelGuide™ Validation software revealed similar deviations compared with the reference method. A significant correlation between angular and apical deviations was seen (r = 0.53; p < .001). A greater implant diameter was associated with greater deviations (p = .03). The Triple Scan Technique as a system-independent validation procedure as well as the NobelGuide™ Validation software are in accordance with the AMIRA® software. The NobelGuide™ system showed similar or less spatial and angular deviations compared with others. © 2013 Wiley Periodicals, Inc.
Picking ChIP-seq peak detectors for analyzing chromatin modification experiments
Micsinai, Mariann; Parisi, Fabio; Strino, Francesco; Asp, Patrik; Dynlacht, Brian D.; Kluger, Yuval
2012-01-01
Numerous algorithms have been developed to analyze ChIP-Seq data. However, the complexity of analyzing diverse patterns of ChIP-Seq signals, especially for epigenetic marks, still calls for the development of new algorithms and objective comparisons of existing methods. We developed Qeseq, an algorithm to detect regions of increased ChIP read density relative to background. Qeseq employs critical novel elements, such as iterative recalibration and neighbor joining of reads to identify enriched regions of any length. To objectively assess its performance relative to other 14 ChIP-Seq peak finders, we designed a novel protocol based on Validation Discriminant Analysis (VDA) to optimally select validation sites and generated two validation datasets, which are the most comprehensive to date for algorithmic benchmarking of key epigenetic marks. In addition, we systematically explored a total of 315 diverse parameter configurations from these algorithms and found that typically optimal parameters in one dataset do not generalize to other datasets. Nevertheless, default parameters show the most stable performance, suggesting that they should be used. This study also provides a reproducible and generalizable methodology for unbiased comparative analysis of high-throughput sequencing tools that can facilitate future algorithmic development. PMID:22307239
Picking ChIP-seq peak detectors for analyzing chromatin modification experiments.
Micsinai, Mariann; Parisi, Fabio; Strino, Francesco; Asp, Patrik; Dynlacht, Brian D; Kluger, Yuval
2012-05-01
Numerous algorithms have been developed to analyze ChIP-Seq data. However, the complexity of analyzing diverse patterns of ChIP-Seq signals, especially for epigenetic marks, still calls for the development of new algorithms and objective comparisons of existing methods. We developed Qeseq, an algorithm to detect regions of increased ChIP read density relative to background. Qeseq employs critical novel elements, such as iterative recalibration and neighbor joining of reads to identify enriched regions of any length. To objectively assess its performance relative to other 14 ChIP-Seq peak finders, we designed a novel protocol based on Validation Discriminant Analysis (VDA) to optimally select validation sites and generated two validation datasets, which are the most comprehensive to date for algorithmic benchmarking of key epigenetic marks. In addition, we systematically explored a total of 315 diverse parameter configurations from these algorithms and found that typically optimal parameters in one dataset do not generalize to other datasets. Nevertheless, default parameters show the most stable performance, suggesting that they should be used. This study also provides a reproducible and generalizable methodology for unbiased comparative analysis of high-throughput sequencing tools that can facilitate future algorithmic development.
Valente-Campos, Simone; Yonamine, Mauricio; de Moraes Moreau, Regina Lucia; Silva, Ovandir Alves
2006-06-02
The objective of the present work was to compare previously published methods and provide validation data to detect simultaneously cocaine (COC), benzoylecgonine (BE) and norcocaine (NCOC) in nail. Finger and toenail samples (5mg) were cut in very small pieces and submitted to an initial procedure for external decontamination. Methanol (3 ml) was used to release analytes from the matrix. A cleanup step was performed simultaneously by solid-phase extraction (SPE) and the residue was derivatized with pentafluoropropionic anhydride/pentafluoropropanol (PFPA/PFP). Gas chromatography-mass spectrometry (GC-MS) was used to detect the analytes in selected ion monitoring mode (SIM). Confidence parameters of validation of the method were: recovery, intra- and inter-assay precision, as well as limit of detection (LOD) of the analytes. The limits of detection were: 3.5 ng/mg for NCOC and 3.0 ng/mg for COC and BE. Good intra-assay precision was observed for all detected substances (coefficient of variation (CV)<11%). The inter-assay precision for norcocaine and benzoylecgonine were <4%. For intra- and inter-assay precision deuterated internal standards were used. Toenail and fingernail samples from eight declared cocaine users were submitted to the validated method.
Piecewise-homotopy analysis method (P-HAM) for first order nonlinear ODE
NASA Astrophysics Data System (ADS)
Chin, F. Y.; Lem, K. H.; Chong, F. S.
2013-09-01
In homotopy analysis method (HAM), the determination for the value of the auxiliary parameter h is based on the valid region of the h-curve in which the horizontal segment of the h-curve will decide the valid h-region. All h-value taken from the valid region, provided that the order of deformation is large enough, will in principle yield an approximation series that converges to the exact solution. However it is found out that the h-value chosen within this valid region does not always promise a good approximation under finite order. This paper suggests an improved method called Piecewise-HAM (P-HAM). In stead of a single h-value, this method suggests using many h-values. Each of the h-values comes from an individual h-curve while each h-curve is plotted by fixing the time t at a different value. Each h-value is claimed to produce a good approximation only about a neighborhood centered at the corresponding t which the h-curve is based on. Each segment of these good approximations is then joined to form the approximation curve. By this, the convergence region is enhanced further. The P-HAM is illustrated and supported by examples.
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.
Greis, Tillman; Helmholz, Kathrin; Schöniger, Hans Matthias; Haarstrick, Andreas
2012-06-01
In this study, a 3D urban groundwater model is presented which serves for calculation of multispecies contaminant transport in the subsurface on the regional scale. The total model consists of two submodels, the groundwater flow and reactive transport model, and is validated against field data. The model equations are solved applying finite element method. A sensitivity analysis is carried out to perform parameter identification of flow, transport and reaction processes. Coming from the latter, stochastic variation of flow, transport, and reaction input parameters and Monte Carlo simulation are used in calculating probabilities of pollutant occurrence in the domain. These probabilities could be part of determining future spots of contamination and their measure of damages. Application and validation is exemplarily shown for a contaminated site in Braunschweig (Germany), where a vast plume of chlorinated ethenes pollutes the groundwater. With respect to field application, the methods used for modelling reveal feasible and helpful tools to assess natural attenuation (MNA) and the risk that might be reduced by remediation actions.
NASA Astrophysics Data System (ADS)
Truckenbrodt, Sina C.; Schmullius, Christiane C.
2018-03-01
Ground reference data are a prerequisite for the calibration, update, and validation of retrieval models facilitating the monitoring of land parameters based on Earth Observation data. Here, we describe the acquisition of a comprehensive ground reference database which was created to test and validate the recently developed Earth Observation Land Data Assimilation System (EO-LDAS) and products derived from remote sensing observations in the visible and infrared range. In situ data were collected for seven crop types (winter barley, winter wheat, spring wheat, durum, winter rape, potato, and sugar beet) cultivated on the agricultural Gebesee test site, central Germany, in 2013 and 2014. The database contains information on hyperspectral surface reflectance factors, the evolution of biophysical and biochemical plant parameters, phenology, surface conditions, atmospheric states, and a set of ground control points. Ground reference data were gathered at an approximately weekly resolution and on different spatial scales to investigate variations within and between acreages. In situ data collected less than 1 day apart from satellite acquisitions (RapidEye, SPOT 5, Landsat-7 and -8) with a cloud coverage ≤ 25 % are available for 10 and 15 days in 2013 and 2014, respectively. The measurements show that the investigated growing seasons were characterized by distinct meteorological conditions causing interannual variations in the parameter evolution. Here, the experimental design of the field campaigns, and methods employed in the determination of all parameters, are described in detail. Insights into the database are provided and potential fields of application are discussed. The data will contribute to a further development of crop monitoring methods based on remote sensing techniques. The database is freely available at PANGAEA (https://doi.org/10.1594/PANGAEA.874251).
Vyas, Shaleen; Nagarajappa, Sandesh; Dasar, Pralhad L.; Mishra, Prashant
2018-01-01
AIM: To translate OHIP-14 into Hindi and test its psychometric properties among school teacher community. METHODS: The OHIP-14 was translated to OHIP-14-H using WHO recommended translation protocol. During pre-testing, an expert panel assessed content validity of the questionnaire. Face validity was assessed on a sample of 10 individuals. The OHIP-14-H was administered on a random sample of 170 primary school teachers. Internal consistency and test-retest reliability were assessed using Cronbach's alpha and Intra-class correlation coefficient (ICC) respectively, with 2 weeks interval. Predictive validity was tested by comparing OHIP-14-H scores with clinical parameters. The concurrent validity was assessed using self-reported oral health and discriminant validity was ascertained through negative association with sociodemographic variables. RESULTS: The mean OHIP-14-H score was 9.57 (S.D = 4.58). ICC and Cronbach's alpha for OHIP-14-H was 0.96 and 0.92 respectively. Concurrent validity using binomial regression model indicated that good (OR = 0.56, 95% CI = 0.55 – 4.47) and moderate (OR = 0.25, 95% CI = 0.17 – 1.87) OHIP-14-H scores were negative but significant risk indicators of poor self reported oral health (P < 0.009). Significant predictive validity was observed between OHIP-14-H scores and clinical parameters (P < 0.000). CONCLUSION: Translated and culturally adapted OHIP-14-H indicates good reliability and validity among primary school teachers. PMID:29417064
Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis
2017-03-01
A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.
da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues
2015-01-01
This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.
Validation of Milliflex® Quantum for Bioburden Testing of Pharmaceutical Products.
Gordon, Oliver; Goverde, Marcel; Staerk, Alexandra; Roesti, David
2017-01-01
This article reports the validation strategy used to demonstrate that the Milliflex ® Quantum yielded non-inferior results to the traditional bioburden method. It was validated according to USP <1223>, European Pharmacopoeia 5.1.6, and Parenteral Drug Association Technical Report No. 33 and comprised the validation parameters robustness, ruggedness, repeatability, specificity, limit of detection and quantification, accuracy, precision, linearity, range, and equivalence in routine operation. For the validation, a combination of pharmacopeial ATCC strains as well as a broad selection of in-house isolates were used. In-house isolates were used in stressed state. Results were statistically evaluated regarding the pharmacopeial acceptance criterion of ≥70% recovery compared to the traditional method. Post-hoc test power calculations verified the appropriateness of the used sample size to detect such a difference. Furthermore, equivalence tests verified non-inferiority of the rapid method as compared to the traditional method. In conclusion, the rapid bioburden on basis of the Milliflex ® Quantum was successfully validated as alternative method to the traditional bioburden test. LAY ABSTRACT: Pharmaceutical drug products must fulfill specified quality criteria regarding their microbial content in order to ensure patient safety. Drugs that are delivered into the body via injection, infusion, or implantation must be sterile (i.e., devoid of living microorganisms). Bioburden testing measures the levels of microbes present in the bulk solution of a drug before sterilization, and thus it provides important information for manufacturing a safe product. In general, bioburden testing has to be performed using the methods described in the pharmacopoeias (membrane filtration or plate count). These methods are well established and validated regarding their effectiveness; however, the incubation time required to visually identify microbial colonies is long. Thus, alternative methods that detect microbial contamination faster will improve control over the manufacturing process and speed up product release. Before alternative methods may be used, they must undergo a side-by-side comparison with pharmacopeial methods. In this comparison, referred to as validation, it must be shown in a statistically verified manner that the effectiveness of the alternative method is at least equivalent to that of the pharmacopeial methods. Here we describe the successful validation of an alternative bioburden testing method based on fluorescent staining of growing microorganisms applying the Milliflex ® Quantum system by MilliporeSigma. © PDA, Inc. 2017.
Zhao, Xueli; Arsenault, Andre; Lavoie, Kim L; Meloche, Bernard; Bacon, Simon L
2007-01-01
Forearm Endothelial Function (FEF) is a marker that has been shown to discriminate patients with cardiovascular disease (CVD). FEF has been assessed using several parameters: the Rate of Uptake Ratio (RUR), EWUR (Elbow-to-Wrist Uptake Ratio) and EWRUR (Elbow-to-Wrist Relative Uptake Ratio). However, the modeling functions of FEF require more robust models. The present study was designed to compare an empirical method with quantitative modeling techniques to better estimate the physiological parameters and understand the complex dynamic processes. The fitted time activity curves of the forearms, estimating blood and muscle components, were assessed using both an empirical method and a two-compartment model. Although correlational analyses suggested a good correlation between the methods for RUR (r=.90) and EWUR (r=.79), but not EWRUR (r=.34), Altman-Bland plots found poor agreement between the methods for all 3 parameters. These results indicate that there is a large discrepancy between the empirical and computational method for FEF. Further work is needed to establish the physiological and mathematical validity of the 2 modeling methods.
Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.
Farsani, Zahra Amini; Schmid, Volker J
2017-01-01
In the estimation of physiological kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data, the determination of the arterial input function (AIF) plays a key role. This paper proposes a Bayesian method to estimate the physiological parameters of DCE-MRI along with the AIF in situations, where no measurement of the AIF is available. In the proposed algorithm, the maximum entropy method (MEM) is combined with the maximum a posterior approach (MAP). To this end, MEM is used to specify a prior probability distribution of the unknown AIF. The ability of this method to estimate the AIF is validated using the Kullback-Leibler divergence. Subsequently, the kinetic parameters can be estimated with MAP. The proposed algorithm is evaluated with a data set from a breast cancer MRI study. The application shows that the AIF can reliably be determined from the DCE-MRI data using MEM. Kinetic parameters can be estimated subsequently. The maximum entropy method is a powerful tool to reconstructing images from many types of data. This method is useful for generating the probability distribution based on given information. The proposed method gives an alternative way to assess the input function from the existing data. The proposed method allows a good fit of the data and therefore a better estimation of the kinetic parameters. In the end, this allows for a more reliable use of DCE-MRI. Schattauer GmbH.
Design of experiments in medical physics: Application to the AAA beam model validation.
Dufreneix, S; Legrand, C; Di Bartolo, C; Bremaud, M; Mesgouez, J; Tiplica, T; Autret, D
2017-09-01
The purpose of this study is to evaluate the usefulness of the design of experiments in the analysis of multiparametric problems related to the quality assurance in radiotherapy. The main motivation is to use this statistical method to optimize the quality assurance processes in the validation of beam models. Considering the Varian Eclipse system, eight parameters with several levels were selected: energy, MLC, depth, X, Y 1 and Y 2 jaw dimensions, wedge and wedge jaw. A Taguchi table was used to define 72 validation tests. Measurements were conducted in water using a CC04 on a TrueBeam STx, a TrueBeam Tx, a Trilogy and a 2300IX accelerator matched by the vendor. Dose was computed using the AAA algorithm. The same raw data was used for all accelerators during the beam modelling. The mean difference between computed and measured doses was 0.1±0.5% for all beams and all accelerators with a maximum difference of 2.4% (under the 3% tolerance level). For all beams, the measured doses were within 0.6% for all accelerators. The energy was found to be an influencing parameter but the deviations observed were smaller than 1% and not considered clinically significant. Designs of experiment can help define the optimal measurement set to validate a beam model. The proposed method can be used to identify the prognostic factors of dose accuracy. The beam models were validated for the 4 accelerators which were found dosimetrically equivalent even though the accelerator characteristics differ. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Parametric study of statistical bias in laser Doppler velocimetry
NASA Technical Reports Server (NTRS)
Gould, Richard D.; Stevenson, Warren H.; Thompson, H. Doyle
1989-01-01
Analytical studies have often assumed that LDV velocity bias depends on turbulence intensity in conjunction with one or more characteristic time scales, such as the time between validated signals, the time between data samples, and the integral turbulence time-scale. These parameters are presently varied independently, in an effort to quantify the biasing effect. Neither of the post facto correction methods employed is entirely accurate. The mean velocity bias error is found to be nearly independent of data validation rate.
Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O.P.; Singh, Bhupinder
2016-01-01
The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett–Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm with Rf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50–800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. PMID:26912808
Shah, Malay; Agrawal, Yadvendra
2013-01-01
The present paper describes an in silico solubility behavior of drug and lipids, an essential screening study in preparation of solid lipid nanoparticles (SLN). Ciprofloxacin HCl was selected as a model drug along with 11 lipids and 5 organic solvents. In silico miscibility study of drug/lipid/solvent was performed using Hansen solubility parameter approach calculated by group contribution method of Van Krevelen and Hoftyzer. Predicted solubility was validated by determining solubility of lipids in various solvent at different temperature range, while miscibility of drug in lipids was determined by apparent solubility study and partition experiment. The presence of oxygen and OH functionality increases the polarity and hydrogen bonding possibilities of the compound which has reflected the highest solubility parameter values for Geleol and Capmul MCM C8. Ethyl acetate, Geleol and Capmul MCM C8 was identified as suitable organic solvent, solid lipid and liquid lipid respectively based on a solubility parameter approach which was in agreement with the result of an apparent solubility study and partition coefficient. These works demonstrate the validity of solubility parameter approach and provide a feasible predictor to the rational selection of excipients in designing SLN formulation.
NASA Astrophysics Data System (ADS)
Paja, W.; Wrzesień, M.; Niemiec, R.; Rudnicki, W. R.
2015-07-01
The climate models are extremely complex pieces of software. They reflect best knowledge on physical components of the climate, nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a crash of simulation. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to crash of simulation, and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the dataset used in this research using different methodology. We confirm the main conclusion of the original study concerning suitability of machine learning for prediction of crashes. We show, that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three other are relevant but redundant, and two are not relevant at all. We also show that the variance due to split of data between training and validation sets has large influence both on accuracy of predictions and relative importance of variables, hence only cross-validated approach can deliver robust prediction of performance and relevance of variables.
Compartment Venting Analyses of Ares I First Stage Systems Tunnel
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Arner, Stephen
2009-01-01
Compartment venting analyses have been performed for the Ares I first stage systems tunnel using both the lumped parameter method and the three-dimensional (31)) transient computational fluid dynamics (CFD) approach. The main objective of venting analyses is to predict the magnitudes of differential pressures across the skin so the integrity of solid walls can be evaluated and properly designed. The lumped parameter method assumes the gas pressure and temperature inside the systems tunnel are spatially uniform, which is questionable since the tunnel is about 1,700 in. long and 4 in. wide. Therefore, 31) transient CFD simulations using the commercial CFD code FLUENT are performed in order to examine the gas pressure and temperature variations inside the tunnel. It was found that the uniform pressure and temperature assumptions inside the systems tunnel are valid during ascent. During reentry, the uniform pressure assumption is also reasonable but the uniform temperature assumption is not valid. Predicted pressure and temperature inside the systems tunnel using CFD are also compared with those from the lumped parameter method using the NASA code CHCHVENT. In general, the average pressure and temperature inside the systems tunnel from CFD are between the burst and crush results from CHCHVENT during both ascent and reentry. The skin differential pressure and pressure inside the systems tunnel relative to freestream pressure from CHCHVENT as well as velocity vectors and streamlines are also discussed in detail.
Zimmermann, Johannes; Wright, Aidan G C
2017-01-01
The interpersonal circumplex is a well-established structural model that organizes interpersonal functioning within the two-dimensional space marked by dominance and affiliation. The structural summary method (SSM) was developed to evaluate the interpersonal nature of other constructs and measures outside the interpersonal circumplex. To date, this method has been primarily descriptive, providing no way to draw inferences when comparing SSM parameters across constructs or groups. We describe a newly developed resampling-based method for deriving confidence intervals, which allows for SSM parameter comparisons. In a series of five studies, we evaluated the accuracy of the approach across a wide range of possible sample sizes and parameter values, and demonstrated its utility for posing theoretical questions on the interpersonal nature of relevant constructs (e.g., personality disorders) using real-world data. As a result, the SSM is strengthened for its intended purpose of construct evaluation and theory building. © The Author(s) 2015.
Abu El-Enin, Mohammed Abu Bakr; Al-Ghaffar Hammouda, Mohammed El-Sayed Abd; El-Sherbiny, Dina Tawfik; El-Wasseef, Dalia Rashad; El-Ashry, Saadia Mahmoud
2016-02-01
A valid, sensitive and rapid spectrofluorimetric method has been developed and validated for determination of both tadalafil (TAD) and vardenafil (VAR) either in their pure form, in their tablet dosage forms or spiked in human plasma. This method is based on measurement of the native fluorescence of both drugs in acetonitrile at λem 330 and 470 nm after excitation at 280 and 275 nm for tadalafil and vardenafil, respectively. Linear relationships were obtained over the concentration range 4-40 and 10-250 ng/mL with a minimum detection of 1 and 3 ng/mL for tadalafil and vardenafil, respectively. Various experimental parameters affecting the fluorescence intensity were carefully studied and optimized. The developed method was applied successfully for the determination of tadalafil and vardenafil in bulk drugs and tablet dosage forms. Moreover, the high sensitivity of the proposed method permitted their determination in spiked human plasma. The developed method was validated in terms of specificity, linearity, lower limit of quantification (LOQ), lower limit of detection (LOD), precision and accuracy. The mean recoveries of the analytes in pharmaceutical preparations were in agreement with those obtained from the comparison methods, as revealed by statistical analysis of the obtained results using Student's t-test and the variance ratio F-test. Copyright © 2015 John Wiley & Sons, Ltd.
Martins, Danielly da Fonte Carvalho; Florindo, Lorena Coimbra; Machado, Anna Karolina Mouzer da Silva; Todeschini, Vítor; Sangoi, Maximiliano da Silva
2017-11-01
This study presents the development and validation of UV spectrophotometric methods for the determination of pinaverium bromide (PB) in tablet assay and dissolution studies. The methods were satisfactorily validated according to International Conference on Harmonization guidelines. The response was linear (r2 > 0.99) in the concentration ranges of 2-14 μg/mL at 213 nm and 10-70 μg/mL at 243 nm. The LOD and LOQ were 0.39 and 1.31 μg/mL, respectively, at 213 nm. For the 243 nm method, the LOD and LOQ were 2.93 and 9.77 μg/mL, respectively. Precision was evaluated by RSD, and the obtained results were lower than 2%. Adequate accuracy was also obtained. The methods proved to be robust using a full factorial design evaluation. For PB dissolution studies, the best conditions were achieved using a United States Pharmacopeia Dissolution Apparatus 2 (paddle) at 50 rpm and with 900 mL 0.1 M hydrochloric acid as the dissolution medium, presenting satisfactory results during the validation tests. In addition, the kinetic parameters of drug release were investigated using model-dependent methods, and the dissolution profiles were best described by the first-order model. Therefore, the proposed methods were successfully applied for the assay and dissolution analysis of PB in commercial tablets.
Determination of some phenolic compounds in red wine by RP-HPLC: method development and validation.
Burin, Vívian Maria; Arcari, Stefany Grützmann; Costa, Léa Luzia Freitas; Bordignon-Luiz, Marilde T
2011-09-01
A methodology employing reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and validated for simultaneous determination of five phenolic compounds in red wine. The chromatographic separation was carried out in a C(18) column with water acidify with acetic acid (pH 2.6) (solvent A) and 20% solvent A and 80% acetonitrile (solvent B) as the mobile phase. The validation parameters included: selectivity, linearity, range, limits of detection and quantitation, precision and accuracy, using an internal standard. All calibration curves were linear (R(2) > 0.999) within the range, and good precision (RSD < 2.6%) and recovery (80-120%) was obtained for all compounds. This method was applied to quantify phenolics in red wine samples from Santa Catarina State, Brazil, and good separation peaks for phenolic compounds in these wines were observed.
Design and validation of diffusion MRI models of white matter
NASA Astrophysics Data System (ADS)
Jelescu, Ileana O.; Budde, Matthew D.
2017-11-01
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Design and validation of diffusion MRI models of white matter
Jelescu, Ileana O.; Budde, Matthew D.
2018-01-01
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus. PMID:29755979
Estimating physiological skin parameters from hyperspectral signatures
NASA Astrophysics Data System (ADS)
Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe
2013-05-01
We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.
Validation d'un nouveau calcul de reference en evolution pour les reacteurs thermiques
NASA Astrophysics Data System (ADS)
Canbakan, Axel
Resonance self-shielding calculations are an essential component of a deterministic lattice code calculation. Even if their aim is to correct the cross sections deviation, they introduce a non negligible error in evaluated parameters such as the flux. Until now, French studies for light water reactors are based on effective reaction rates obtained using an equivalence in dilution technique. With the increase of computing capacities, this method starts to show its limits in precision and can be replaced by a subgroup method. Originally used for fast neutron reactor calculations, the subgroup method has many advantages such as using an exact slowing down equation. The aim of this thesis is to suggest a validation as precise as possible without burnup, and then with an isotopic depletion study for the subgroup method. In the end, users interested in implementing a subgroup method in their scheme for Pressurized Water Reactors can rely on this thesis to justify their modelization choices. Moreover, other parameters are validated to suggest a new reference scheme for fast execution and precise results. These new techniques are implemented in the French lattice scheme SHEM-MOC, composed of a Method Of Characteristics flux calculation and a SHEM-like 281-energy group mesh. First, the libraries processed by the CEA are compared. Then, this thesis suggests the most suitable energetic discretization for a subgroup method. Finally, other techniques such as the representation of the anisotropy of the scattering sources and the spatial representation of the source in the MOC calculation are studied. A DRAGON5 scheme is also validated as it shows interesting elements: the DRAGON5 subgroup method is run with a 295-eenergy group mesh (compared to 361 groups for APOLLO2). There are two reasons to use this code. The first involves offering a new reference lattice scheme for Pressurized Water Reactors to DRAGON5 users. The second is to study parameters that are not available in APOLLO2 such as self-shielding in a temperature gradient and using a flux calculation based on MOC in the self-shielding part of the simulation. This thesis concludes that: (1) The subgroup method is at least more precise than a technique based on effective reaction rates, only if we use a 361-energy group mesh; (2) MOC with a linear source in a geometrical region gives better results than a MOC with a constant model. A moderator discretization is compulsory; (3) A P3 choc law is satisfactory, ensuring a coherence with 2D full core calculations; (4) SHEM295 is viable with a Subgroup Projection Method for DRAGON5.
Rashid, Md Mamunur; Lee, Hyunbeom; Jung, Byung Hwa
2018-01-01
PP242 is a second generation novel selective ATP-competitive inhibitor of mTOR that displayed promising anti-cancer activity over several cancer types by inhibiting both the complexes of mTOR (mTORC1 and mTORC2). The purpose of this study is to identify the possible metabolites and to evaluate the pharmacokinetic profile of PP242 after a single oral administration to Sprague-Dawley (SD) rats. Two metabolites, including one phase I and one phase II, were identified by in vitro and in vivo studies using rat liver microsomes (RLMs) as well as rat plasma, urine and feces, respectively, through ultra high-performance liquid chromatography-linear ion trap quadrupole-orbitrap-mass spectrometry (UHPLC-LTQ-Orbitrap-MS). The major biotransformation pathways of PP242 were hydroxylation and glucuronide conjugation. Additionally, a simple and rapid quantification method was developed and validated. The method recovery was within 79.7-84.6%, whereas the matrix effect was 78.1-96.0% in all three quality control (QC) concentrations (low, medium and high) including the LLOQ. Other parameters showed acceptable results according to the US food and drug administration (FDA) guidelines for bioanalytical method validation. Afterwards, pharmacokinetic parameters were evaluated in rat plasma by successfully applying the validated method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). After a single oral administration at a dose of 5mg/kg, the maximum plasma concentration (C max ) of PP242 was 0.17±0.08μg/mL, while the elimination was moderately fast (T 1/2 : 172.18±45.54min). All of the obtained information on the metabolite identification and pharmacokinetic parameter elucidation could facilitate the further development of PP242. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fer, I.; Kelly, R.; Andrews, T.; Dietze, M.; Richardson, A. D.
2016-12-01
Our ability to forecast ecosystems is limited by how well we parameterize ecosystem models. Direct measurements for all model parameters are not always possible and inverse estimation of these parameters through Bayesian methods is computationally costly. A solution to computational challenges of Bayesian calibration is to approximate the posterior probability surface using a Gaussian Process that emulates the complex process-based model. Here we report the integration of this method within an ecoinformatics toolbox, Predictive Ecosystem Analyzer (PEcAn), and its application with two ecosystem models: SIPNET and ED2.1. SIPNET is a simple model, allowing application of MCMC methods both to the model itself and to its emulator. We used both approaches to assimilate flux (CO2 and latent heat), soil respiration, and soil carbon data from Bartlett Experimental Forest. This comparison showed that emulator is reliable in terms of convergence to the posterior distribution. A 10000-iteration MCMC analysis with SIPNET itself required more than two orders of magnitude greater computation time than an MCMC run of same length with its emulator. This difference would be greater for a more computationally demanding model. Validation of the emulator-calibrated SIPNET against both the assimilated data and out-of-sample data showed improved fit and reduced uncertainty around model predictions. We next applied the validated emulator method to the ED2, whose complexity precludes standard Bayesian data assimilation. We used the ED2 emulator to assimilate demographic data from a network of inventory plots. For validation of the calibrated ED2, we compared the model to results from Empirical Succession Mapping (ESM), a novel synthesis of successional patterns in Forest Inventory and Analysis data. Our results revealed that while the pre-assimilation ED2 formulation cannot capture the emergent demographic patterns from ESM analysis, constrained model parameters controlling demographic processes increased their agreement considerably.
Remote measurements of water pollution with a lidar polarimeter
NASA Technical Reports Server (NTRS)
Sheives, T. C.; Rouse, J. W., Jr.; Mayo, W. T., Jr.
1974-01-01
This paper examines a dual polarization laser backscatter system as a method for remote measurements of certain water quality parameters. Analytical models for describing the backscatter from turbid water and oil on turbid water are presented and compared with experimental data. Laser backscatter field measurements from natural waterways are presented and compared with simultaneous ground observations of the water quality parameters: turbidity, suspended solids, and transmittance. The results of this study show that the analytical models appear valid and that the sensor investigated is applicable to remote measurements of these water quality parameters and oil spills on water.-
Validation of the Poisson Stochastic Radiative Transfer Model
NASA Technical Reports Server (NTRS)
Zhuravleva, Tatiana; Marshak, Alexander
2004-01-01
A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.
Application of solid/liquid extraction for the gravimetric determination of lipids in royal jelly.
Antinelli, Jean-François; Davico, Renée; Rognone, Catherine; Faucon, Jean-Paul; Lizzani-Cuvelier, Louisette
2002-04-10
Gravimetric lipid determination is a major parameter for the characterization and the authentication of royal jelly quality. A solid/liquid extraction was compared to the reference method, which is based on liquid/liquid extraction. The amount of royal jelly and the time of the extraction were optimized in comparison to the reference method. Boiling/rinsing ratio and spread of royal jelly onto the extraction thimble were identified as critical parameters, resulting in good accuracy and precision for the alternative method. Comparison of reproducibility and repeatability of both methods associated with gas chromatographic analysis of the composition of the extracted lipids showed no differences between the two methods. As the intra-laboratory validation tests were comparable to the reference method, while offering rapidity and a decrease in amount of solvent used, it was concluded that the proposed method should be used with no modification of quality criteria and norms established for royal jelly characterization.
NASA Technical Reports Server (NTRS)
Taylor, Brian R.
2012-01-01
A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.
NASA Astrophysics Data System (ADS)
Nasser Eddine, Achraf; Huard, Benoît; Gabano, Jean-Denis; Poinot, Thierry
2018-06-01
This paper deals with the initialization of a non linear identification algorithm used to accurately estimate the physical parameters of Lithium-ion battery. A Randles electric equivalent circuit is used to describe the internal impedance of the battery. The diffusion phenomenon related to this modeling is presented using a fractional order method. The battery model is thus reformulated into a transfer function which can be identified through Levenberg-Marquardt algorithm to ensure the algorithm's convergence to the physical parameters. An initialization method is proposed in this paper by taking into account previously acquired information about the static and dynamic system behavior. The method is validated using noisy voltage response, while precision of the final identification results is evaluated using Monte-Carlo method.
Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.
Measurement and modelization of silica opal optical properties
NASA Astrophysics Data System (ADS)
Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès
2014-03-01
We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.
Baudrexel, Simon; Nöth, Ulrike; Schüre, Jan-Rüdiger; Deichmann, Ralf
2018-06-01
The variable flip angle method derives T 1 maps from radiofrequency-spoiled gradient-echo data sets, acquired with different flip angles α. Because the method assumes validity of the Ernst equation, insufficient spoiling of transverse magnetization yields errors in T 1 estimation, depending on the chosen radiofrequency-spoiling phase increment (Δϕ). This paper presents a versatile correction method that uses modified flip angles α' to restore the validity of the Ernst equation. Spoiled gradient-echo signals were simulated for three commonly used phase increments Δϕ (50°/117°/150°), different values of α, repetition time (TR), T 1 , and a T 2 of 85 ms. For each parameter combination, α' (for which the Ernst equation yielded the same signal) and a correction factor C Δϕ (α, TR, T 1 ) = α'/α were determined. C Δϕ was found to be independent of T 1 and fitted as polynomial C Δϕ (α, TR), allowing to calculate α' for any protocol using this Δϕ. The accuracy of the correction method for T 2 values deviating from 85 ms was also determined. The method was tested in vitro and in vivo for variable flip angle scans with different acquisition parameters. The technique considerably improved the accuracy of variable flip angle-based T 1 maps in vitro and in vivo. The proposed method allows for a simple correction of insufficient spoiling in gradient-echo data. The required polynomial parameters are supplied for three common Δϕ. Magn Reson Med 79:3082-3092, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks
NASA Astrophysics Data System (ADS)
Shi, Ying; Jian, Shaoyong
2018-03-01
an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.
A simple method to measure the complex permittivity of materials at variable temperatures
NASA Astrophysics Data System (ADS)
Yang, Xiaoqing; Yin, Yang; Liu, Zhanwei; Zhang, Di; Wu, Shiyue; Yuan, Jianping; Li, Lixin
2017-10-01
Measurement of the complex permittivity (CP) of a material at different temperatures in microwave heating applications is difficult and complicated. In this paper a simple and convenient method is employed to measure the CP of a material over variable temperature. In this method the temperature of a sample is increased experimentally to obtain the formula for the relationship between CP and temperature by a genetic algorithm. We chose agar solution (sample) and a Yangshao reactor (microwave heating system) to validate the reliability and feasibility of this method. The physical parameters (the heat capacity, C p , density, ρ, and thermal conductivity, k) of the sample are set as constants in the process of simulation and inversion. We analyze the influence of the variation of physical parameters with temperature on the accuracy of the inversion results. It is demonstrated that the variation of these physical parameters has little effect on the inversion results in a certain temperature range.
An optimization method for defects reduction in fiber laser keyhole welding
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei
2016-01-01
Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.
NASA Astrophysics Data System (ADS)
Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy
2017-04-01
Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method
Stevens, Andreas; Bahlo, Simone; Licha, Christina; Liske, Benjamin; Vossler-Thies, Elisabeth
2016-11-30
Subnormal performance in attention tasks may result from various sources including lack of effort. In this report, the derivation and validation of a performance validity parameter for reaction time is described, using a set of malingering-indices ("Slick-criteria"), and 3 independent samples of participants (total n =893). The Slick-criteria yield an estimate of the probability of malingering based on the presence of an external incentive, evidence from neuropsychological testing, from self-report and clinical data. In study (1) a validity parameter is derived using reaction time data of a sample, composed of inpatients with recent severe brain lesions not involved in litigation and of litigants with and without brain lesion. In study (2) the validity parameter is tested in an independent sample of litigants. In study (3) the parameter is applied to an independent sample comprising cooperative and non-cooperative testees. Logistic regression analysis led to a derived validity parameter based on median reaction time and standard deviation. It performed satisfactorily in studies (2) and (3) (study 2 sensitivity=0.94, specificity=1.00; study 3 sensitivity=0.79, specificity=0.87). The findings suggest that median reaction time and standard deviation may be used as indicators of negative response bias. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy
2011-12-01
Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.
Regionalized rainfall-runoff model to estimate low flow indices
NASA Astrophysics Data System (ADS)
Garcia, Florine; Folton, Nathalie; Oudin, Ludovic
2016-04-01
Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Junjie; Jia, Hongzhi, E-mail: hzjia@usst.edu.cn
2015-11-15
We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental resultsmore » are consistent and demonstrate the rationality and validity of this method.« less
Development and validation of a BEAMnrc component module for a miniature multileaf collimator.
Doerner, E; Hartmann, G H
2012-05-21
A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.
Development and validation of a BEAMnrc component module for a miniature multileaf collimator
NASA Astrophysics Data System (ADS)
Doerner, E.; Hartmann, G. H.
2012-05-01
A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.
Wang, Hongyuan; Zhang, Wei; Dong, Aotuo
2012-11-10
A modeling and validation method of photometric characteristics of the space target was presented in order to track and identify different satellites effectively. The background radiation characteristics models of the target were built based on blackbody radiation theory. The geometry characteristics of the target were illustrated by the surface equations based on its body coordinate system. The material characteristics of the target surface were described by a bidirectional reflectance distribution function model, which considers the character of surface Gauss statistics and microscale self-shadow and is obtained by measurement and modeling in advance. The contributing surfaces of the target to observation system were determined by coordinate transformation according to the relative position of the space-based target, the background radiation sources, and the observation platform. Then a mathematical model on photometric characteristics of the space target was built by summing reflection components of all the surfaces. Photometric characteristics simulation of the space-based target was achieved according to its given geometrical dimensions, physical parameters, and orbital parameters. Experimental validation was made based on the scale model of the satellite. The calculated results fit well with the measured results, which indicates the modeling method of photometric characteristics of the space target is correct.
Hubert, C; Houari, S; Rozet, E; Lebrun, P; Hubert, Ph
2015-05-22
When using an analytical method, defining an analytical target profile (ATP) focused on quantitative performance represents a key input, and this will drive the method development process. In this context, two case studies were selected in order to demonstrate the potential of a quality-by-design (QbD) strategy when applied to two specific phases of the method lifecycle: the pre-validation study and the validation step. The first case study focused on the improvement of a liquid chromatography (LC) coupled to mass spectrometry (MS) stability-indicating method by the means of the QbD concept. The design of experiments (DoE) conducted during the optimization step (i.e. determination of the qualitative design space (DS)) was performed a posteriori. Additional experiments were performed in order to simultaneously conduct the pre-validation study to assist in defining the DoE to be conducted during the formal validation step. This predicted protocol was compared to the one used during the formal validation. A second case study based on the LC/MS-MS determination of glucosamine and galactosamine in human plasma was considered in order to illustrate an innovative strategy allowing the QbD methodology to be incorporated during the validation phase. An operational space, defined by the qualitative DS, was considered during the validation process rather than a specific set of working conditions as conventionally performed. Results of all the validation parameters conventionally studied were compared to those obtained with this innovative approach for glucosamine and galactosamine. Using this strategy, qualitative and quantitative information were obtained. Consequently, an analyst using this approach would be able to select with great confidence several working conditions within the operational space rather than a given condition for the routine use of the method. This innovative strategy combines both a learning process and a thorough assessment of the risk involved. Copyright © 2015 Elsevier B.V. All rights reserved.
Dinç Zor, Şule; Aşçı, Bürge; Aksu Dönmez, Özlem; Yıldırım Küçükkaraca, Dilek
2016-07-01
In this study, development and validation of a HPLC method was described for simultaneous determination of potassium sorbate, sodium benzoate, quinoline yellow and sunset yellow. A Box-Behnken design using three variables at three levels was employed to determine the optimum conditions of chromatographic separation: pH of mobile phase, 6.0-7.0; flow rate, 0.8-1.2 mL min(-1) and the ratio of mobile phase composed of a 0.025 M sodium acetate/acetic acid buffer, 80-90%. Resolution was chosen as a response. The optimized method was validated for linearity, the limits of detection and quantification, accuracy, precision and stability. All the validation parameters were within the acceptance range. The applicability of the developed method to the determination of these food additives in commercial lemonade and lemon sauce samples was successfully demonstrated. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
da Luz, Suzane Rickes; Pazdiora, Paulo Cesar; Dallagnol, Leandro José; Dors, Giniani Carla; Chaves, Fábio Clasen
2017-04-01
Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beyond Corroboration: Strengthening Model Validation by Looking for Unexpected Patterns
Chérel, Guillaume; Cottineau, Clémentine; Reuillon, Romain
2015-01-01
Models of emergent phenomena are designed to provide an explanation to global-scale phenomena from local-scale processes. Model validation is commonly done by verifying that the model is able to reproduce the patterns to be explained. We argue that robust validation must not only be based on corroboration, but also on attempting to falsify the model, i.e. making sure that the model behaves soundly for any reasonable input and parameter values. We propose an open-ended evolutionary method based on Novelty Search to look for the diverse patterns a model can produce. The Pattern Space Exploration method was tested on a model of collective motion and compared to three common a priori sampling experiment designs. The method successfully discovered all known qualitatively different kinds of collective motion, and performed much better than the a priori sampling methods. The method was then applied to a case study of city system dynamics to explore the model’s predicted values of city hierarchisation and population growth. This case study showed that the method can provide insights on potential predictive scenarios as well as falsifiers of the model when the simulated dynamics are highly unrealistic. PMID:26368917
NASA Astrophysics Data System (ADS)
Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.
2016-03-01
High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.
Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew
2014-10-08
Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1986-01-01
A technique to construct a uniformly valid perturbation series solution to a particular class of nonlinear difference equations is shown. The method allows the determination of approximations to the periodic solutions to these equations. An example illustrating the technique is presented.
A Novel Extraction Approach of Extrinsic and Intrinsic Parameters of InGaAs/GaN pHEMTs
2015-07-01
presented, for the first time, artificial bee colony algorithm is applied to the global-optimization based parameter extraction and a novel intrinsic...conservation of the gate charge is well satisfied which further validates this novel extraction method. Index Terms —InGaAs/GaN pHEMTs, artificial bee ...increase the uniqueness of the extraction. Artificial bee colony (ABC) algorithm is adopted as the optimizer due to its excellent ability to escape
Camino-Sánchez, F J; Zafra-Gómez, Alberto; Pérez-Trujillo, J P; Conde-González, J E; Marques, J C; Vílchez, José Luis
2011-08-01
A multiresidue method for the analysis of 86 persistent pollutants in marine sediments at ultra-trace level has been developed and validated using pressurized liquid extraction (PLE) and stir-bar sorptive extraction (SBSE) coupled with thermal desorption and gas chromatography-triple quadrupole mass spectrometry (TD-GC-MS/MS QqQ). The compounds analyzed belong to various families such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenylethers, organophosphorus and organochlorine pesticides and other pesticides such as urons, and triazines. The analytes have very different polarities and log K(ow) values, which is an important parameter in the optimization of a SBSE method. Due to PLE high efficiency and throughput rates, along with the proven ability for multiresidue analysis and excellent sensitivity of SBSE, we present an efficient method. The limits of quantification obtained ranged from 0.014 to 1.0 ng g(-1), with detection limits below pg g(-1) levels. In order to validate the proposed methodology, quality parameters such as recovery, linearity and reproducibility were studied. Recoveries ranged from 63% to 119%, reproducibility (in terms of Relative Standard Deviation for ten determinations) was lower than 35% in all cases, and determination coefficients higher than 0.990 for all analytes. The main factors that affect PLE, SBSE and GC-MS/MS procedures were optimized. The method was applied to the analysis of nine marine sediments obtained from the nine main submarine wastewater discharge points (emissaries) presents along the coast of Tenerife Island (Canary Islands, Spain). Copyright © 2011 Elsevier Ltd. All rights reserved.
Jank, Louise; Martins, Magda Targa; Arsand, Juliana Bazzan; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara
2015-01-01
This study describes the development and validation procedures for scope extension of a method for the determination of β-lactam antibiotic residues (ampicillin, amoxicillin, penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin, ceftiofur, cefquinome, cefoperazone, cephapirine, cefalexin and cephalonium) in bovine milk. Sample preparation was performed by liquid-liquid extraction (LLE) followed by two clean-up steps, including low temperature purification (LTP) and a solid phase dispersion clean-up. Extracts were analysed using a liquid chromatography-electrospray-tandem mass spectrometry system (LC-ESI-MS/MS). Chromatographic separation was performed in a C18 column, using methanol and water (both with 0.1% of formic acid) as mobile phase. Method validation was performed according to the criteria of Commission Decision 2002/657/EC. Main validation parameters such as linearity, limit of detection, decision limit (CCα), detection capability (CCβ), accuracy, and repeatability were determined and were shown to be adequate. The method was applied to real samples (more than 250) and two milk samples had levels above maximum residues limits (MRLs) for cloxacillin - CLX and cefapirin - CFAP.
NASA Astrophysics Data System (ADS)
Ayoub, Bassam M.
2016-11-01
New univariate spectrophotometric method and multivariate chemometric approach were developed and compared for simultaneous determination of empagliflozin and metformin manipulating their zero order absorption spectra with application on their pharmaceutical preparation. Sample enrichment technique was used to increase concentration of empagliflozin after extraction from tablets to allow its simultaneous determination with metformin without prior separation. Validation parameters according to ICH guidelines were satisfactory over the concentration range of 2-12 μg mL- 1 for both drugs using simultaneous equation with LOD values equal to 0.20 μg mL- 1 and 0.19 μg mL- 1, LOQ values equal to 0.59 μg mL- 1 and 0.58 μg mL- 1 for empagliflozin and metformin, respectively. While the optimum results for the chemometric approach using partial least squares method (PLS-2) were obtained using concentration range of 2-10 μg mL- 1. The optimized validated methods are suitable for quality control laboratories enable fast and economic determination of the recently approved pharmaceutical combination Synjardy® tablets.
IMPLEMENTATION AND VALIDATION OF A FULLY IMPLICIT ACCUMULATOR MODEL IN RELAP-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zou, Ling; Zhang, Hongbin
2016-01-01
This paper presents the implementation and validation of an accumulator model in RELAP-7 under the framework of preconditioned Jacobian free Newton Krylov (JFNK) method, based on the similar model used in RELAP5. RELAP-7 is a new nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). RELAP-7 is a fully implicit system code. The JFNK and preconditioning methods used in RELAP-7 is briefly discussed. The slightly modified accumulator model is summarized for completeness. The implemented model was validated with LOFT L3-1 test and benchmarked with RELAP5 results. RELAP-7 and RELAP5 had almost identical results for themore » accumulator gas pressure and water level, although there were some minor difference in other parameters such as accumulator gas temperature and tank wall temperature. One advantage of the JFNK method is its easiness to maintain and modify models due to fully separation of numerical methods from physical models. It would be straightforward to extend the current RELAP-7 accumulator model to simulate the advanced accumulator design.« less
Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Wu, John Z
2013-11-25
The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures.
Error analysis of mechanical system and wavelength calibration of monochromator
NASA Astrophysics Data System (ADS)
Zhang, Fudong; Chen, Chen; Liu, Jie; Wang, Zhihong
2018-02-01
This study focuses on improving the accuracy of a grating monochromator on the basis of the grating diffraction equation in combination with an analysis of the mechanical transmission relationship between the grating, the sine bar, and the screw of the scanning mechanism. First, the relationship between the mechanical error in the monochromator with the sine drive and the wavelength error is analyzed. Second, a mathematical model of the wavelength error and mechanical error is developed, and an accurate wavelength calibration method based on the sine bar's length adjustment and error compensation is proposed. Based on the mathematical model and calibration method, experiments using a standard light source with known spectral lines and a pre-adjusted sine bar length are conducted. The model parameter equations are solved, and subsequent parameter optimization simulations are performed to determine the optimal length ratio. Lastly, the length of the sine bar is adjusted. The experimental results indicate that the wavelength accuracy is ±0.3 nm, which is better than the original accuracy of ±2.6 nm. The results confirm the validity of the error analysis of the mechanical system of the monochromator as well as the validity of the calibration method.
Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei
2014-11-01
A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.
Solving delay differential equations in S-ADAPT by method of steps.
Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech
2013-09-01
S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.
Statistical Bayesian method for reliability evaluation based on ADT data
NASA Astrophysics Data System (ADS)
Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong
2018-05-01
Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.
XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling
NASA Astrophysics Data System (ADS)
Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.
2017-08-01
XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.
NASA Astrophysics Data System (ADS)
Hancock, G. R.; Webb, A. A.; Turner, L.
2017-11-01
Sediment transport and soil erosion can be determined by a variety of field and modelling approaches. Computer based soil erosion and landscape evolution models (LEMs) offer the potential to be reliable assessment and prediction tools. An advantage of such models is that they provide both erosion and deposition patterns as well as total catchment sediment output. However, before use, like all models they require calibration and validation. In recent years LEMs have been used for a variety of both natural and disturbed landscape assessment. However, these models have not been evaluated for their reliability in steep forested catchments. Here, the SIBERIA LEM is calibrated and evaluated for its reliability for two steep forested catchments in south-eastern Australia. The model is independently calibrated using two methods. Firstly, hydrology and sediment transport parameters are inferred from catchment geomorphology and soil properties and secondly from catchment sediment transport and discharge data. The results demonstrate that both calibration methods provide similar parameters and reliable modelled sediment transport output. A sensitivity study of the input parameters demonstrates the model's sensitivity to correct parameterisation and also how the model could be used to assess potential timber harvesting as well as the removal of vegetation by fire.
Penalized spline estimation for functional coefficient regression models.
Cao, Yanrong; Lin, Haiqun; Wu, Tracy Z; Yu, Yan
2010-04-01
The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.
NASA Astrophysics Data System (ADS)
Ulrich, J. C.; Guilhen, S. N.; Cotrim, M. E. B.; Pires, M. A. F.
2018-03-01
IPEN’s research reactor, IEA-R1, an open pool type research reactor moderated and cooled by light water. High quality water is a key factor in preventing the corrosion of the spent fuel stored in the pool. Leaching of radionuclides from the corroded fuel cladding may be prevented by an efficient water treatment and purification system. However, as a safety management policy, IPEN has adopted a water chemistry control which periodically monitors the levels of uranium (U) and silicon (Si) in the pool’s reactor, since IEA-R1 employs U3Si2-Al dispersion fuel. An analytical method was developed and validated for the determination of uranium and silicon by ICP OES. This work describes the validation process, in a context of quality assurance, including the parameters selectivity, linearity, quantification limit, precision and recovery.
Validating a large geophysical data set: Experiences with satellite-derived cloud parameters
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Haskins, Robert D.; Knighton, James E.; Pursch, Andrew; Granger-Gallegos, Stephanie
1992-01-01
We are validating the global cloud parameters derived from the satellite-borne HIRS2 and MSU atmospheric sounding instrument measurements, and are using the analysis of these data as one prototype for studying large geophysical data sets in general. The HIRS2/MSU data set contains a total of 40 physical parameters, filling 25 MB/day; raw HIRS2/MSU data are available for a period exceeding 10 years. Validation involves developing a quantitative sense for the physical meaning of the derived parameters over the range of environmental conditions sampled. This is accomplished by comparing the spatial and temporal distributions of the derived quantities with similar measurements made using other techniques, and with model results. The data handling needed for this work is possible only with the help of a suite of interactive graphical and numerical analysis tools. Level 3 (gridded) data is the common form in which large data sets of this type are distributed for scientific analysis. We find that Level 3 data is inadequate for the data comparisons required for validation. Level 2 data (individual measurements in geophysical units) is needed. A sampling problem arises when individual measurements, which are not uniformly distributed in space or time, are used for the comparisons. Standard 'interpolation' methods involve fitting the measurements for each data set to surfaces, which are then compared. We are experimenting with formal criteria for selecting geographical regions, based upon the spatial frequency and variability of measurements, that allow us to quantify the uncertainty due to sampling. As part of this project, we are also dealing with ways to keep track of constraints placed on the output by assumptions made in the computer code. The need to work with Level 2 data introduces a number of other data handling issues, such as accessing data files across machine types, meeting large data storage requirements, accessing other validated data sets, processing speed and throughput for interactive graphical work, and problems relating to graphical interfaces.
Trujillo, William A.; Sorenson, Wendy R.; La Luzerne, Paul; Austad, John W.; Sullivan, Darryl
2008-01-01
The presence of aristolochic acid in some dietary supplements is a concern to regulators and consumers. A method has been developed, by initially using a reference method as a guide, during single laboratory validation (SLV) for the determination of aristolochic acid I, also known as aristolochic acid A, in botanical species and dietary supplements at concentrations of approximately 2 to 32 μg/g. Higher levels were determined by dilution to fit the standard curve. Through the SLV, the method was optimized for quantification by liquid Chromatography with ultraviolet detection (LC-UV) and LC/mass Spectrometry (MS) confirmation. The test samples were extracted with organic solvent and water, then injected on a reverse phase LC column. Quantification was achieved with linear regression using a laboratory automation system. The SLV study included systematically optimizing the LC-UV method with regard to test sample size, fine grinding of solids, and solvent extraction efficiency. These parameters were varied in increments (and in separate optimization studies), in order to ensure that each parameter was individually studied; the test results include corresponding tables of parameter variations. In addition, the chromatographic conditions were optimized with respect to injection volume and detection wavelength. Precision studies produced overall relative standard deviation values from 2.44 up to 8.26% for aristolochic acid I. Mean recoveries were between 100 and 103% at the 2 μg/g level, between 102 and 103% at the 10 μg/g level, and 104% at the 30 μg/g level. PMID:16915829
Trujillo, William A; Sorenson, Wendy R; La Luzerne, Paul; Austad, John W; Sullivan, Darryl
2006-01-01
The presence of aristolochic acid in some dietary supplements is a concern to regulators and consumers. A method has been developed, by initially using a reference method as a guide, during single laboratory validation (SLV) for the determination of aristolochic acid I, also known as aristolochic acid A, in botanical species and dietary supplements at concentrations of approximately 2 to 32 microg/g. Higher levels were determined by dilution to fit the standard curve. Through the SLV, the method was optimized for quantification by liquid chromatography with ultraviolet detection (LC-UV) and LC/mass spectrometry (MS) confirmation. The test samples were extracted with organic solvent and water, then injected on a reverse phase LC column. Quantification was achieved with linear regression using a laboratory automation system. The SLV study included systematically optimizing the LC-UV method with regard to test sample size, fine grinding of solids, and solvent extraction efficiency. These parameters were varied in increments (and in separate optimization studies), in order to ensure that each parameter was individually studied; the test results include corresponding tables of parameter variations. In addition, the chromatographic conditions were optimized with respect to injection volume and detection wavelength. Precision studies produced overall relative standard deviation values from 2.44 up to 8.26% for aristolochic acid I. Mean recoveries were between 100 and 103% at the 2 microg/g level, between 102 and 103% at the 10 microg/g level, and 104% at the 30 microg/g level.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Karasakal, A; Ulu, S T
2014-05-01
A novel, sensitive and selective spectrofluorimetric method was developed for the determination of tamsulosin in spiked human urine and pharmaceutical preparations. The proposed method is based on the reaction of tamsulosin with 1-dimethylaminonaphthalene-5-sulfonyl chloride in carbonate buffer pH 10.5 to yield a highly fluorescent derivative. The described method was validated and the analytical parameters of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, recovery and robustness were evaluated. The proposed method showed a linear dependence of the fluorescence intensity on drug concentration over the range 1.22 × 10(-7) to 7.35 × 10(-6) M. LOD and LOQ were calculated as 1.07 × 10(-7) and 3.23 × 10(-7) M, respectively. The proposed method was successfully applied for the determination of tamsulosin in pharmaceutical preparations and the obtained results were in good agreement with those obtained using the reference method. Copyright © 2013 John Wiley & Sons, Ltd.
Lopez-Moreno, Cristina; Perez, Isabel Viera; Urbano, Ana M
2016-03-01
The purpose of this study is to develop the validation of a method for the analysis of certain preservatives in meat and to obtain a suitable Certified Reference Material (CRM) to achieve this task. The preservatives studied were NO3(-), NO2(-) and Cl(-) as they serve as important antimicrobial agents in meat to inhibit the growth of bacteria spoilage. The meat samples were prepared using a treatment that allowed the production of a known CRM concentration that is highly homogeneous and stable in time. The matrix effects were also studied to evaluate the influence on the analytical signal for the ions of interest, showing that the matrix influence does not affect the final result. An assessment of the signal variation in time was carried out for the ions. In this regard, although the chloride and nitrate signal remained stable for the duration of the study, the nitrite signal decreased appreciably with time. A mathematical treatment of the data gave a stable nitrite signal, obtaining a method suitable for the validation of these anions in meat. A statistical study was needed for the validation of the method, where the precision, accuracy, uncertainty and other mathematical parameters were evaluated obtaining satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Results of an integrated structure/control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1989-01-01
A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.
Fractional viscoelasticity of soft elastomers and auxetic foams
NASA Astrophysics Data System (ADS)
Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William
2018-03-01
Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.
NASA Astrophysics Data System (ADS)
Choiri, S.; Ainurofiq, A.; Ratri, R.; Zulmi, M. U.
2018-03-01
Nifedipin (NIF) is a photo-labile drug that easily degrades when it exposures a sunlight. This research aimed to develop of an analytical method using a high-performance liquid chromatography and implemented a quality by design approach to obtain effective, efficient, and validated analytical methods of NIF and its degradants. A 22 full factorial design approach with a curvature as a center point was applied to optimize of the analytical condition of NIF and its degradants. Mobile phase composition (MPC) and flow rate (FR) as factors determined on the system suitability parameters. The selected condition was validated by cross-validation using a leave one out technique. Alteration of MPC affected on time retention significantly. Furthermore, an increase of FR reduced the tailing factor. In addition, the interaction of both factors affected on an increase of the theoretical plates and resolution of NIF and its degradants. The selected analytical condition of NIF and its degradants has been validated at range 1 – 16 µg/mL that had good linearity, precision, accuration and efficient due to an analysis time within 10 min.
Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting.
Oshima, Taku; Ragusa, Marco; Graf, Séverine; Dupertuis, Yves Marc; Heidegger, Claudia-Paula; Pichard, Claude
2017-12-01
The international ICALIC initiative aims at developing a new indirect calorimeter according to the needs of the clinicians and researchers in the field of clinical nutrition and metabolism. The project initially focuses on validating the calorimeter for use in mechanically ventilated acutely ill adult patient. However, standard methods to validate the accuracy of calorimeters have not yet been established. This paper describes the procedures for the in-vitro tests to validate the accuracy of the new indirect calorimeter, and defines the ranges for the parameters to be evaluated in each test to optimize the validation for clinical and research calorimetry measurements. Two in-vitro tests have been defined to validate the accuracy of the gas analyzers and the overall function of the new calorimeter. 1) Gas composition analysis allows validating the accuracy of O 2 and CO 2 analyzers. Reference gas of known O 2 (or CO 2 ) concentration is diluted by pure nitrogen gas to achieve predefined O 2 (or CO 2 ) concentration, to be measured by the indirect calorimeter. O 2 and CO 2 concentrations to be tested were determined according to their expected ranges of concentrations during calorimetry measurements. 2) Gas exchange simulator analysis validates O 2 consumption (VO 2 ) and CO 2 production (VCO 2 ) measurements. CO 2 gas injection into artificial breath gas provided by the mechanical ventilator simulates VCO 2 . Resulting dilution of O 2 concentration in the expiratory air is analyzed by the calorimeter as VO 2 . CO 2 gas of identical concentration to the fraction of inspired O 2 (FiO 2 ) is used to simulate identical VO 2 and VCO 2 . Indirect calorimetry results from publications were analyzed to determine the VO 2 and VCO 2 values to be tested for the validation. O 2 concentration in respiratory air is highest at inspiration, and can decrease to 15% during expiration. CO 2 concentration can be as high as 5% in expired air. To validate analyzers for measurements of FiO 2 up to 70%, ranges of O 2 and CO 2 concentrations to be tested were defined as 15-70% and 0.5-5.0%, respectively. The mean VO 2 in 426 adult mechanically ventilated patients was 270 ml/min, with 2 standard deviation (SD) ranges of 150-391 ml/min. Thus, VO 2 and VCO 2 to be simulated for the validation were defined as 150, 250, and 400 ml/min. The procedures for the in-vitro tests of the new indirect calorimeter and the ranges for the parameters to be evaluated in each test have been defined to optimize the validation of accuracy for clinical and research indirect calorimetry measurements. The combined methods will be used to validate the accuracy of the new indirect calorimeter developed by the ICALIC initiative, and should become the standard method to validate the accuracy of any future indirect calorimeters. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
Engineering topological edge states in two dimensional magnetic photonic crystal
NASA Astrophysics Data System (ADS)
Yang, Bing; Wu, Tong; Zhang, Xiangdong
2017-01-01
Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."
NASA Astrophysics Data System (ADS)
Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio
2011-02-01
Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.
NASA Astrophysics Data System (ADS)
Adalarasan, R.; Santhanakumar, M.
2015-01-01
In the present work, yield strength, ultimate strength and micro-hardness of the lap joints formed with Al 6061 alloy sheets by using the processes of Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) welding were studied for various combinations of the welding parameters. The parameters taken for study include welding current, voltage, welding speed and inert gas flow rate. Taguchi's L9 orthogonal array was used to conduct the experiments and an integrated technique of desirability grey relational analysis was disclosed for optimizing the welding parameters. The ignored robustness in desirability approach is compensated by the grey relational approach to predict the optimal setting of input parameters for the TIG and MIG welding processes which were validated through the confirmation experiments.
Extracting physicochemical features to predict protein secondary structure.
Huang, Yin-Fu; Chen, Shu-Ying
2013-01-01
We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances.
Extracting Physicochemical Features to Predict Protein Secondary Structure
Chen, Shu-Ying
2013-01-01
We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances. PMID:23766688
Airframe Icing Research Gaps: NASA Perspective
NASA Technical Reports Server (NTRS)
Potapczuk, Mark
2009-01-01
qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.
Dewhirst, Oliver P; Roskilly, Kyle; Hubel, Tatjana Y; Jordan, Neil R; Golabek, Krystyna A; McNutt, J Weldon; Wilson, Alan M
2017-02-01
Changes in stride frequency and length with speed are key parameters in animal locomotion research. They are commonly measured in a laboratory on a treadmill or by filming trained captive animals. Here, we show that a clustering approach can be used to extract these variables from data collected by a tracking collar containing a GPS module and tri-axis accelerometers and gyroscopes. The method enables stride parameters to be measured during free-ranging locomotion in natural habitats. As it does not require labelled data, it is particularly suitable for use with difficult to observe animals. The method was tested on large data sets collected from collars on free-ranging lions and African wild dogs and validated using a domestic dog. © 2017. Published by The Company of Biologists Ltd.
Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O P; Singh, Bhupinder
2016-01-01
The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett-Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm withRf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50-800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shiao, S Pamela K; Grayson, James; Lie, Amanda; Yu, Chong Ho
2018-06-20
To personalize nutrition, the purpose of this study was to examine five key genes in the folate metabolism pathway, and dietary parameters and related interactive parameters as predictors of colorectal cancer (CRC) by measuring the healthy eating index (HEI) in multiethnic families. The five genes included methylenetetrahydrofolate reductase ( MTHFR ) 677 and 1298, methionine synthase ( MTR ) 2756, methionine synthase reductase ( MTRR 66), and dihydrofolate reductase ( DHFR ) 19bp , and they were used to compute a total gene mutation score. We included 53 families, 53 CRC patients and 53 paired family friend members of diverse population groups in Southern California. We measured multidimensional data using the ensemble bootstrap forest method to identify variables of importance within domains of genetic, demographic, and dietary parameters to achieve dimension reduction. We then constructed predictive generalized regression (GR) modeling with a supervised machine learning validation procedure with the target variable (cancer status) being specified to validate the results to allow enhanced prediction and reproducibility. The results showed that the CRC group had increased total gene mutation scores compared to the family members ( p < 0.05). Using the Akaike's information criterion and Leave-One-Out cross validation GR methods, the HEI was interactive with thiamine (vitamin B1), which is a new finding for the literature. The natural food sources for thiamine include whole grains, legumes, and some meats and fish which HEI scoring included as part of healthy portions (versus limiting portions on salt, saturated fat and empty calories). Additional predictors included age, as well as gender and the interaction of MTHFR 677 with overweight status (measured by body mass index) in predicting CRC, with the cancer group having more men and overweight cases. The HEI score was significant when split at the median score of 77 into greater or less scores, confirmed through the machine-learning recursive tree method and predictive modeling, although an HEI score of greater than 80 is the US national standard set value for a good diet. The HEI and healthy eating are modifiable factors for healthy living in relation to dietary parameters and cancer prevention, and they can be used for personalized nutrition in the precision-based healthcare era.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Optimization of radial-type superconducting magnetic bearing using the Taguchi method
NASA Astrophysics Data System (ADS)
Ai, Liwang; Zhang, Guomin; Li, Wanjie; Liu, Guole; Liu, Qi
2018-07-01
It is important and complicated to model and optimize the levitation behavior of superconducting magnetic bearing (SMB). That is due to the nonlinear constitutive relationships of superconductor and ferromagnetic materials, the relative movement between the superconducting stator and PM rotor, and the multi-parameter (e.g., air-gap, critical current density, and remanent flux density, etc.) affecting the levitation behavior. In this paper, we present a theoretical calculation and optimization method of the levitation behavior for radial-type SMB. A simplified model of levitation force calculation is established using 2D finite element method with H-formulation. In the model, the boundary condition of superconducting stator is imposed by harmonic series expressions to describe the traveling magnetic field generated by the moving PM rotor. Also, experimental measurements of the levitation force are performed and validate the model method. A statistical method called Taguchi method is adopted to carry out an optimization of load capacity for SMB. Then the factor effects of six optimization parameters on the target characteristics are discussed and the optimum parameters combination is determined finally. The results show that the levitation behavior of SMB is greatly improved and the Taguchi method is suitable for optimizing the SMB.
NASA Astrophysics Data System (ADS)
Qian, Xiaoshan
2018-01-01
The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.
NASA Astrophysics Data System (ADS)
Amanulla, C. H.; Nagendra, N.; Suryanarayana Reddy, M.
2018-03-01
An analysis of this paper is examined, two-dimensional, laminar with heat and mass transfer of natural convective nanofluid flow past a semi-infinite vertical plate surface with velocity and thermal slip effects are studied theoretically. The coupled governing partial differential equations are transformed to ordinary differential equations by using non-similarity transformations. The obtained ordinary differential equations are solved numerically by a well-known method named as Keller Box Method (KBM). The influences of the emerging parameters i.e. Casson fluid parameter (β), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Buoyancy ratio parameter (N), Lewis number (Le), Prandtl number (Pr), Velocity slip factor (Sf) and Thermal slip factor (ST) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length. The major sources of nanoparticle migration in Nanofluids are Thermophoresis and Brownian motion. A suitable agreement with existing published literature is made and an excellent agreement is observed for the limiting case and also validation of solutions with a Nakamura tridiagonal method has been included. It is observed that nanoparticle concentrations on surface decreases with an increase in slip parameter. The study is relevant to enrobing processes for electric-conductive nano-materials, of potential use in aerospace and other industries.
A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer.
Morin, Jean-Benoît; Belli, Alain
2004-01-01
The aim of this study was to propose and validate a post-hoc correction method to obtain maximal power values taking into account inertia of the flywheel during sprints on friction-loaded cycle ergometers. This correction method was obtained from a basic postulate of linear deceleration-time evolution during the initial phase (until maximal power) of a sprint and included simple parameters as flywheel inertia, maximal velocity, time to reach maximal velocity and friction force. The validity of this model was tested by comparing measured and calculated maximal power values for 19 sprint bouts performed by five subjects against 0.6-1 N kg(-1) friction loads. Non-significant differences between measured and calculated maximal power (1151+/-169 vs. 1148+/-170 W) and a mean error index of 1.31+/-1.20% (ranging from 0.09% to 4.20%) showed the validity of this method. Furthermore, the differences between measured maximal power and power neglecting inertia (20.4+/-7.6%, ranging from 9.5% to 33.2%) emphasized the usefulness of power correcting in studies about anaerobic power which do not include inertia, and also the interest of this simple post-hoc method.
Musci, Marilena; Yao, Shicong
2017-12-01
Pu-erh tea is a post-fermented tea that has recently gained popularity worldwide, due to potential health benefits related to the antioxidant activity resulting from its high polyphenolic content. The Folin-Ciocalteu method is a simple, rapid, and inexpensive assay widely applied for the determination of total polyphenol content. Over the past years, it has been subjected to many modifications, often without any systematic optimization or validation. In our study, we sought to optimize the Folin-Ciocalteu method, evaluate quality parameters including linearity, precision and stability, and then apply the optimized model to determine the total polyphenol content of 57 Chinese teas, including green tea, aged and ripened Pu-erh tea. Our optimized Folin-Ciocalteu method reduced analysis time, allowed for the analysis of a large number of samples, to discriminate among the different teas, and to assess the effect of the post-fermentation process on polyphenol content.
Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita
2018-03-01
The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.
Jasiecka-Mikołajczyk, A; Jaroszewski, J J
2017-03-01
Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.
Spectral embedding finds meaningful (relevant) structure in image and microarray data
Higgs, Brandon W; Weller, Jennifer; Solka, Jeffrey L
2006-01-01
Background Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented. Results We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison. Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons. Conclusion Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology. PMID:16483359
NASA Astrophysics Data System (ADS)
Jeon, Dae-Young; Park, So Jeong; Mouis, Mireille; Barraud, Sylvain; Kim, Gyu-Tae; Ghibaudo, Gérard
2013-11-01
A new and simple method for the extraction of electrical parameters in junctionless transistors (JLTs) is presented. The bulk channel mobility (μbulk) and flat-band voltage (Vfb) were successfully extracted from the new method, based on a linear dependence between the inverse of transconductance squared (1/gm2) vs gate voltage in the partially depleted operation regime (Vth < Vg < Vfb). The validity of the new method is also proved by 2D numerical simulation and newly defined Maserjian's-like function for gm of JLT devices.
NASA Astrophysics Data System (ADS)
Paja, Wiesław; Wrzesien, Mariusz; Niemiec, Rafał; Rudnicki, Witold R.
2016-03-01
Climate models are extremely complex pieces of software. They reflect the best knowledge on the physical components of the climate; nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a simulation crashing. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to the simulation crashing and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the data set used in this research using different methodology. We confirm the main conclusion of the original study concerning the suitability of machine learning for the prediction of crashes. We show that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three others are relevant but redundant and two are not relevant at all. We also show that the variance due to the split of data between training and validation sets has a large influence both on the accuracy of predictions and on the relative importance of variables; hence only a cross-validated approach can deliver a robust prediction of performance and relevance of variables.
Suspension parameter estimation in the frequency domain using a matrix inversion approach
NASA Astrophysics Data System (ADS)
Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.
2011-12-01
The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.
Quantitative validation of carbon-fiber laminate low velocity impact simulations
English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.
2015-09-26
Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less
MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft
Zhang, Jing
2015-01-01
This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839
NASA Astrophysics Data System (ADS)
Maghsoudi, Mastoureh; Bakar, Shaiful Anuar Abu
2017-05-01
In this paper, a recent novel approach is applied to estimate the threshold parameter of a composite model. Several composite models from Transformed Gamma and Inverse Transformed Gamma families are constructed based on this approach and their parameters are estimated by the maximum likelihood method. These composite models are fitted to allocated loss adjustment expenses (ALAE). In comparison to all composite models studied, the composite Weibull-Inverse Transformed Gamma model is proved to be a competitor candidate as it best fit the loss data. The final part considers the backtesting method to verify the validation of VaR and CTE risk measures.
NASA Astrophysics Data System (ADS)
Farrell, Kathryn; Oden, J. Tinsley
2014-07-01
Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and methods through applications to representative atomic structures and we discuss extensions to the validation process for molecular models of polymer structures encountered in certain semiconductor nanomanufacturing processes. The powerful method of model plausibility as a means for selecting interaction potentials for coarse-grained models is discussed in connection with a coarse-grained hexane molecule. Discussions of how all-atom information is used to construct priors are contained in an appendix.
Dubey, J K; Patyal, S K; Sharma, Ajay
2018-03-19
In the present day scenario of increasing awareness and concern about the pesticides, it is very important to ensure the quality of data being generated in pesticide residue analysis. To impart confidence in the products, terms like quality assurance and quality control are used as an integral part of quality management. In order to ensure better quality of results in pesticide residue analysis, validation of analytical methods to be used is extremely important. Keeping in view the importance of validation of method, the validation of QuEChERS (quick, easy, cheap, effective, rugged, and safe) a multiresidue method for extraction of 13 organochlorines and seven synthetic pyrethroids in fruits and vegetables followed by GC ECD for quantification was done so as to use this method for analysis of samples received in the laboratory. The method has been validated as per the Guidelines issued by SANCO (French words Sante for Health and Consommateurs for Consumers) in accordance with their document SANCO/XXXX/2013. Various parameters analyzed, viz., linearity, specificity, repeatability, reproducibility, and ruggedness were found to have acceptable values with a per cent RSD of less than 10%. Limit of quantification (LOQ) for the organochlorines was established to be 0.01 and 0.05 mg kg -1 for the synthetic pyrethroids. The uncertainty of the measurement (MU) for all these compounds ranged between 1 and 10%. The matrix-match calibration was used to compensate the matrix effect on the quantification of the compounds. The overall recovery of the method ranged between 80 and 120%. These results demonstrate the applicability and acceptability of this method in routine estimation of pesticide residues of these 20 pesticides in the fruits and vegetables by the laboratory.
Gupta, Abhishek; Singh, Yogendra; Srinivas, Kona S.; Jain, Garima; Sreekumar, V. B.; Semwal, Vinod Prasad
2010-01-01
Objective: Arterolane maleate is an antimalarial drug currently under Phase III clinical evaluation, and presents a simple, economical and scalable synthesis, and does not suffer from safety problems. Arterolane maleate is more active than artemisinin; and is cheap to produce. It has a longer lifetime in the plasma, so it stays active longer in the body. To provide quality control over the manufacture of any API, it is essential to develop highly selective analytical methods. In the current article we are reporting the development and validation of a rapid and specific Head space gas chromatographic (HSGC) method for the determination of organic volatile impurities (residual solvents) in Arterolane Maleate bulk drug. Materials and Methods: The method development and its validation were performed on Perkin Elmer's gas chromatographic system equipped with Flame Ionization detector and head space analyzer. The method involved a thermal gradient elution of ten residual solvents present in arterolane maleate salt in RTx-624, 30 m × 0.32 mm, 1.8 μ column using nitrogen gas as a carrier. The flow rate was 0.5 ml/min and flame ionization detector (FID) was used. Results: During method validation, parameters such as precision, linearity, accuracy, limit of quantification and detection and specificity were evaluated, which remained within acceptable limits. Conclusions: The method has been successfully applied for the quantification of the amount of residual solvents present in arterolane maleate bulk drug.The method presents a simple and reliable solution for the routine quantitative analysis of residual solvents in Arterolane maleate bulk drug. PMID:21814428
Methodology for Software Reliability Prediction. Volume 2.
1987-11-01
The overall acquisition ,z program shall include the resources, schedule, management, structure , and controls necessary to ensure that specified AD...Independent Verification/Validation - Programming Team Structure - Educational Level of Team Members - Experience Level of Team Members * Methods Used...Prediction or Estimation Parameter Supported: Software - Characteristics 3. Objectives: Structured programming studies and Government Ur.’.. procurement
The Personnel Effectiveness Grid (PEG): A New Tool for Estimating Personnel Department Effectiveness
ERIC Educational Resources Information Center
Petersen, Donald J.; Malone, Robert L.
1975-01-01
Examines the difficulties inherent in attempting a formal personnel evaluation system, the major formal methods currently used for evaluating personnel department accountabilities, some parameters that should be part of a valid evaluation program, and a model for conducting the evaluation. (Available from Office of Publications, Graduate School of…
A summary and evaluation of semi-empirical methods for the prediction of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Pegg, R. J.
1979-01-01
Existing prediction techniques are compiled and described. The descriptions include input and output parameter lists, required equations and graphs, and the range of validity for each part of the prediction procedures. Examples are provided illustrating the analysis procedure and the degree of agreement with experimental results.
Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin
2008-08-20
An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
NASA Astrophysics Data System (ADS)
Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.
2016-09-01
The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.
NASA Astrophysics Data System (ADS)
Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng
2018-04-01
Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.
Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony
1992-01-01
Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.
Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy
NASA Astrophysics Data System (ADS)
Jintao, Xue; Liming, Ye; Yufei, Liu; Chunyan, Li; Han, Chen
2017-05-01
This research was to develop a method for noninvasive and fast blood glucose assay in vivo. Near-infrared (NIR) spectroscopy, a more promising technique compared to other methods, was investigated in rats with diabetes and normal rats. Calibration models are generated by two different multivariate strategies: partial least squares (PLS) as linear regression method and artificial neural networks (ANN) as non-linear regression method. The PLS model was optimized individually by considering spectral range, spectral pretreatment methods and number of model factors, while the ANN model was studied individually by selecting spectral pretreatment methods, parameters of network topology, number of hidden neurons, and times of epoch. The results of the validation showed the two models were robust, accurate and repeatable. Compared to the ANN model, the performance of the PLS model was much better, with lower root mean square error of validation (RMSEP) of 0.419 and higher correlation coefficients (R) of 96.22%.
NASA Astrophysics Data System (ADS)
Coakley, Kevin J.; Vecchia, Dominic F.; Hussey, Daniel S.; Jacobson, David L.
2013-10-01
At the NIST Neutron Imaging Facility, we collect neutron projection data for both the dry and wet states of a Proton-Exchange-Membrane (PEM) fuel cell. Transmitted thermal neutrons captured in a scintillator doped with lithium-6 produce scintillation light that is detected by an amorphous silicon detector. Based on joint analysis of the dry and wet state projection data, we reconstruct a residual neutron attenuation image with a Penalized Likelihood method with an edge-preserving Huber penalty function that has two parameters that control how well jumps in the reconstruction are preserved and how well noisy fluctuations are smoothed out. The choice of these parameters greatly influences the resulting reconstruction. We present a data-driven method that objectively selects these parameters, and study its performance for both simulated and experimental data. Before reconstruction, we transform the projection data so that the variance-to-mean ratio is approximately one. For both simulated and measured projection data, the Penalized Likelihood method reconstruction is visually sharper than a reconstruction yielded by a standard Filtered Back Projection method. In an idealized simulation experiment, we demonstrate that the cross validation procedure selects regularization parameters that yield a reconstruction that is nearly optimal according to a root-mean-square prediction error criterion.
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-01-01
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-09-03
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.
The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation
2015-08-20
way correlations. For instance, if crime waves are associated with increases in unemployment or drops in police presence, that would be hard to...time lag, ai , bj are parameters in a linear combination, 1, 2 are error terms, and Prepared for Dr. Harold Hawkins US Government Contract...selecting a proper representation for the underlying data. A qualitative comparison of GC and DTW methods on World Bank data indicates that both methods
NASA Astrophysics Data System (ADS)
Nir, A.; Doughty, C.; Tsang, C. F.
Validation methods which developed in the context of deterministic concepts of past generations often cannot be directly applied to environmental problems, which may be characterized by limited reproducibility of results and highly complex models. Instead, validation is interpreted here as a series of activities, including both theoretical and experimental tests, designed to enhance our confidence in the capability of a proposed model to describe some aspect of reality. We examine the validation process applied to a project concerned with heat and fluid transport in porous media, in which mathematical modeling, simulation, and results of field experiments are evaluated in order to determine the feasibility of a system for seasonal thermal energy storage in shallow unsaturated soils. Technical details of the field experiments are not included, but appear in previous publications. Validation activities are divided into three stages. The first stage, carried out prior to the field experiments, is concerned with modeling the relevant physical processes, optimization of the heat-exchanger configuration and the shape of the storage volume, and multi-year simulation. Subjects requiring further theoretical and experimental study are identified at this stage. The second stage encompasses the planning and evaluation of the initial field experiment. Simulations are made to determine the experimental time scale and optimal sensor locations. Soil thermal parameters and temperature boundary conditions are estimated using an inverse method. Then results of the experiment are compared with model predictions using different parameter values and modeling approximations. In the third stage, results of an experiment performed under different boundary conditions are compared to predictions made by the models developed in the second stage. Various aspects of this theoretical and experimental field study are described as examples of the verification and validation procedure. There is no attempt to validate a specific model, but several models of increasing complexity are compared with experimental results. The outcome is interpreted as a demonstration of the paradigm proposed by van der Heijde, 26 that different constituencies have different objectives for the validation process and therefore their acceptance criteria differ also.
Pham, T. Anh; Nguyen, Huy -Viet; Rocca, Dario; ...
2013-04-26
Inmore » a recent paper we presented an approach to evaluate quasiparticle energies based on the spectral decomposition of the static dielectric matrix. This method does not require the calculation of unoccupied electronic states or the direct diagonalization of large dielectric matrices, and it avoids the use of plasmon-pole models. The numerical accuracy of the approach is controlled by a single parameter, i.e., the number of eigenvectors used in the spectral decomposition of the dielectric matrix. Here we present a comprehensive validation of the method, encompassing calculations of ionization potentials and electron affinities of various molecules and of band gaps for several crystalline and disordered semiconductors. Lastly, we demonstrate the efficiency of our approach by carrying out G W calculations for systems with several hundred valence electrons.« less
High fidelity studies of exploding foil initiator bridges, Part 1: Experimental method
NASA Astrophysics Data System (ADS)
Bowden, Mike; Neal, William
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage and in the case of EFIs, flyer velocity. Correspondingly, experimental methods have in general been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, predicting a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately validated. In this first paper of a three part study, the experimental method for determining the current, voltage, flyer velocity and multi-dimensional profile of detonator components is presented. This improved capability, along with high fidelity simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
Error estimation for CFD aeroheating prediction under rarefied flow condition
NASA Astrophysics Data System (ADS)
Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2014-12-01
Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.
Estimation of hysteretic damping of structures by stochastic subspace identification
NASA Astrophysics Data System (ADS)
Bajrić, Anela; Høgsberg, Jan
2018-05-01
Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.
2015-10-01
In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.
Peng, Ming; Liu, Jin; Lu, Dan; Yang, Yong-Jian
2012-09-01
Blonanserin is a novel atypical antipsychotic agent for the treatment of schizophrenia. Ethyl alcohol, isopropyl alcohol and toluene are utilized in the synthesis route of this bulk drug. A new validated gas chromatographic (GC) method for the simultaneous determination of residual solvents in blonanserin is described in this paper. Blonanserin was dissolved in N, N-dimethylformamide to make a sample solution that was directly injected into a DB-624 column. A postrun oven temperature at 240°C for approximately 2 h after the analysis cycle was performed to wash out blonanserin residue in the GC column. Quantitation was performed by external standard analyses and the validation was carried out according to International Conference on Harmonization validation guidelines Q2A and Q2B. The method was shown to be specific (no interference in the blank solution), linear (correlation coefficients ≥0.99998, n = 10), accurate (average recoveries between 94.1 and 101.7%), precise (intra-day and inter-day precision ≤2.6%), sensitive (limit of detection ≤0.2 ng, and limit of quantitation ≤0.7 ng), robust (small variations of carrier gas flow, initial oven temperature, temperature ramping rate, injector and detector temperatures did not significantly affect the system suitability test parameters and peak areas) and stable (reference standard and sample solutions were stable over 48 h). This extensively validated method is ready to be used for the quality control of blonanserin.
NASA Astrophysics Data System (ADS)
Yamamoto, Shu; Ara, Takahiro
Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.
Kranvogl, Roman; Knez, Jure; Miuc, Alen; Vončina, Ernest; Vončina, Darinka Brodnjak; Vlaisavljević, Veljko
2014-01-01
A GC-MS method was successfully applied to measure simultaneously the concentrations of endocrine disrupting compounds (5 dialkyl phthalates, 9 phthalate monoesters, 3 alkylphenols and bisphenol A) in 136 male urine samples. In the present study the method was validated and concentrations of EDCs were determined. The results were compared with results from other studies. Correlations between endocrine disrupting compounds and also correlations of endocrine disrupting compounds with two semen quality parameters are presented and evaluated. Significant positive correlations were found between almost all the endocrine disrupting compounds. The parameter sum of DEHP (SUM DEHP) was positively correlated to all the endocrine disrupting compounds but negatively to two semen quality parameters. Negative correlations between the endocrine disrupting compounds and the semen quality parameters could indicate that endocrine disrupting compounds could cause reproductive problems by decreasing the semen count and quality. This research will have helped to evaluate human exposure to endocrine disrupting compounds.
Genetic algorithms for the application of Activated Sludge Model No. 1.
Kim, S; Lee, H; Kim, J; Kim, C; Ko, J; Woo, H; Kim, S
2002-01-01
The genetic algorithm (GA) has been integrated into the IWA ASM No. 1 to calibrate important stoichiometric and kinetic parameters. The evolutionary feature of GA was used to configure the multiple local optima as well as the global optimum. The objective function of optimization was designed to minimize the difference between estimated and measured effluent concentrations at the activated sludge system. Both steady state and dynamic data of the simulation benchmark were used for calibration using denitrification layout. Depending upon the confidence intervals and objective functions, the proposed method provided distributions of parameter space. Field data have been collected and applied to validate calibration capacity of GA. Dynamic calibration was suggested to capture periodic variations of inflow concentrations. Also, in order to verify this proposed method in real wastewater treatment plant, measured data sets for substrate concentrations were obtained from Haeundae wastewater treatment plant and used to estimate parameters in the dynamic system. The simulation results with calibrated parameters matched well with the observed concentrations of effluent COD.
NASA Astrophysics Data System (ADS)
Brown, Alexander; Eviston, Connor
2017-02-01
Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.
Pereira, G. F.; Mikkelsen, L. P.; McGugan, M.
2015-01-01
In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model. PMID:26513653
NASA Astrophysics Data System (ADS)
Zhong, XiaoXu; Liao, ShiJun
2018-01-01
Analytic approximations of the Von Kármán's plate equations in integral form for a circular plate under external uniform pressure to arbitrary magnitude are successfully obtained by means of the homotopy analysis method (HAM), an analytic approximation technique for highly nonlinear problems. Two HAM-based approaches are proposed for either a given external uniform pressure Q or a given central deflection, respectively. Both of them are valid for uniform pressure to arbitrary magnitude by choosing proper values of the so-called convergence-control parameters c 1 and c 2 in the frame of the HAM. Besides, it is found that the HAM-based iteration approaches generally converge much faster than the interpolation iterative method. Furthermore, we prove that the interpolation iterative method is a special case of the first-order HAM iteration approach for a given external uniform pressure Q when c 1 = - θ and c 2 = -1, where θ denotes the interpolation iterative parameter. Therefore, according to the convergence theorem of Zheng and Zhou about the interpolation iterative method, the HAM-based approaches are valid for uniform pressure to arbitrary magnitude at least in the special case c 1 = - θ and c 2 = -1. In addition, we prove that the HAM approach for the Von Kármán's plate equations in differential form is just a special case of the HAM for the Von Kármán's plate equations in integral form mentioned in this paper. All of these illustrate the validity and great potential of the HAM for highly nonlinear problems, and its superiority over perturbation techniques.
40 CFR 761.389 - Testing parameter requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... variable testing parameters described in this section which may be used in the validation study. The conditions demonstrated in the validation study for these variables shall become the required conditions for.... During the validation study, use the same ratio of contaminated surface area to soak solvent volume as...
40 CFR 761.389 - Testing parameter requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... variable testing parameters described in this section which may be used in the validation study. The conditions demonstrated in the validation study for these variables shall become the required conditions for.... During the validation study, use the same ratio of contaminated surface area to soak solvent volume as...
40 CFR 761.389 - Testing parameter requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... variable testing parameters described in this section which may be used in the validation study. The conditions demonstrated in the validation study for these variables shall become the required conditions for.... During the validation study, use the same ratio of contaminated surface area to soak solvent volume as...
confFuse: High-Confidence Fusion Gene Detection across Tumor Entities.
Huang, Zhiqin; Jones, David T W; Wu, Yonghe; Lichter, Peter; Zapatka, Marc
2017-01-01
Background: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.
Re-Tooling the Agency's Engineering Predictive Practices for Durability and Damage Tolerance
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Knight, Norman F., Jr.
2017-01-01
Over the past decade, the Agency has placed less emphasis on testing and has increasingly relied on computational methods to assess durability and damage tolerance (D&DT) behavior when evaluating design margins for fracture-critical components. With increased emphasis on computational D&DT methods as the standard practice, it is paramount that capabilities of these methods are understood, the methods are used within their technical limits, and validation by well-designed tests confirms understanding. The D&DT performance of a component is highly dependent on parameters in the neighborhood of the damage. This report discusses D&DT method vulnerabilities.
An operational modal analysis method in frequency and spatial domain
NASA Astrophysics Data System (ADS)
Wang, Tong; Zhang, Lingmi; Tamura, Yukio
2005-12-01
A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.
Control Method Stretches Suspensions by Measuring the Sag of Strands in Cable-Stayed Bridges
NASA Astrophysics Data System (ADS)
Bętkowski, Piotr
2017-10-01
In the article is described the method that allows on evaluation and validation of measurement correctness of dynamometers (strain gauges, tension meters) used in systems of suspensions. Control of monitoring devices such as dynamometers is recommended in inspections of suspension bridges. Control device (dynamometer) works with an anchor, and the degree of this cooperation could have a decisive impact on the correctness of the results. Method, which determines the stress in the strand (cable), depending on the sag of stayed cable, is described. This method can be used to control the accuracy of measuring devices directly on the bridge. By measuring the strand sag, it is possible to obtain information about the strength (force) which occurred in the suspension cable. Digital camera is used for the measurement of cable sag. Control measurement should be made independently from the controlled parameter but should verify this parameter directly (it is the best situation). In many cases in practice the controlled parameter is not designation by direct measurement, but the calculations, i.e. relation measured others parameters, as in the method described in the article. In such cases occurred the problem of overlapping error of measurement of intermediate parameters (data) and the evaluation of the reliability of the results. Method of control calculations made in relation to installed in the bridge measuring devices is doubtful without procedure of uncertainty estimation. Such an assessment of the accuracy can be performed using the interval numbers. With the interval numbers are possible the analysis of parametric relationship accuracy of the designation of individual parameters and uncertainty of results. Method of measurements, relations and analytical formulas, and numerical example can be found in the text of the article.
A RSSI-based parameter tracking strategy for constrained position localization
NASA Astrophysics Data System (ADS)
Du, Jinze; Diouris, Jean-François; Wang, Yide
2017-12-01
In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Palmiotti, Giuseppe; Salvatores, Massimo
2012-01-01
The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
NASA Astrophysics Data System (ADS)
Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro
2018-02-01
This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.
Verster, Joris C; Roth, Thomas
2012-03-01
There are various methods to examine driving ability. Comparisons between these methods and their relationship with actual on-road driving is often not determined. The objective of this study was to determine whether laboratory tests measuring driving-related skills could adequately predict on-the-road driving performance during normal traffic. Ninety-six healthy volunteers performed a standardized on-the-road driving test. Subjects were instructed to drive with a constant speed and steady lateral position within the right traffic lane. Standard deviation of lateral position (SDLP), i.e., the weaving of the car, was determined. The subjects also performed a psychometric test battery including the DSST, Sternberg memory scanning test, a tracking test, and a divided attention test. Difference scores from placebo for parameters of the psychometric tests and SDLP were computed and correlated with each other. A stepwise linear regression analysis determined the predictive validity of the laboratory test battery to SDLP. Stepwise regression analyses revealed that the combination of five parameters, hard tracking, tracking and reaction time of the divided attention test, and reaction time and percentage of errors of the Sternberg memory scanning test, together had a predictive validity of 33.4%. The psychometric tests in this test battery showed insufficient predictive validity to replace the on-the-road driving test during normal traffic.
[Population pharmacokinetics applied to optimising cisplatin doses in cancer patients].
Ramón-López, A; Escudero-Ortiz, V; Carbonell, V; Pérez-Ruixo, J J; Valenzuela, B
2012-01-01
To develop and internally validate a population pharmacokinetics model for cisplatin and assess its prediction capacity for personalising doses in cancer patients. Cisplatin plasma concentrations in forty-six cancer patients were used to determine the pharmacokinetic parameters of a two-compartment pharmacokinetic model implemented in NONMEN VI software. Pharmacokinetic parameter identification capacity was assessed using the parametric bootstrap method and the model was validated using the nonparametric bootstrap method and standardised visual and numerical predictive checks. The final model's prediction capacity was evaluated in terms of accuracy and precision during the first (a priori) and second (a posteriori) chemotherapy cycles. Mean population cisplatin clearance is 1.03 L/h with an interpatient variability of 78.0%. Estimated distribution volume at steady state was 48.3 L, with inter- and intrapatient variabilities of 31,3% and 11,7%, respectively. Internal validation confirmed that the population pharmacokinetics model is appropriate to describe changes over time in cisplatin plasma concentrations, as well as its variability in the study population. The accuracy and precision of a posteriori prediction of cisplatin concentrations improved by 21% and 54% compared to a priori prediction. The population pharmacokinetic model developed adequately described the changes in cisplatin plasma concentrations in cancer patients and can be used to optimise cisplatin dosing regimes accurately and precisely. Copyright © 2011 SEFH. Published by Elsevier Espana. All rights reserved.
Bias in error estimation when using cross-validation for model selection.
Varma, Sudhir; Simon, Richard
2006-02-23
Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.
Mazurek, Artur; Jamroz, Jerzy
2015-04-15
In food analysis, a method for determination of vitamin C should enable measuring of total content of ascorbic acid (AA) and dehydroascorbic acid (DHAA) because both chemical forms exhibit biological activity. The aim of the work was to confirm applicability of HPLC-DAD method for analysis of total content of vitamin C (TC) and ascorbic acid in various types of food by determination of validation parameters such as: selectivity, precision, accuracy, linearity and limits of detection and quantitation. The results showed that the method applied for determination of TC and AA was selective, linear and precise. Precision of DHAA determination by the subtraction method was also evaluated. It was revealed that the results of DHAA determination obtained by the subtraction method were not precise which resulted directly from the assumption of this method and the principles of uncertainty propagation. The proposed chromatographic method should be recommended for routine determinations of total vitamin C in various food. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bozzolino, Cristina; Leporati, Marta; Gani, Federica; Ferrero, Cinzia; Vincenti, Marco
2018-02-20
A fast analytical method for the simultaneous detection of 24 β 2 -agonists in human urine was developed and validated. The method covers the therapeutic drugs most commonly administered, but also potentially abused β 2 -agonists. The procedure is based on enzymatic deconjugation with β-glucuronidase followed by SPE clean up using mixed-phase cartridges with both ion-exchange and lipophilic properties. Instrumental analysis conducted by UHPLC-MS/MS allowed high peak resolution and rapid chromatographic separation, with reduced time and costs. The method was fully validated according ISO 17025:2005 principles. The following parameters were determined for each analyte: specificity, selectivity, linearity, limit of detection, limit of quantification, precision, accuracy, matrix effect, recovery and carry-over. The method was tested on real samples obtained from patients subjected to clinical treatment under chronic or acute therapy with either formoterol, indacaterol, salbutamol, or salmeterol. The drugs were administered using pressurized metered dose inhalers. All β 2 -agonists administered to the patients were detected in the real samples. The method proved adequate to accurately measure the concentration of these analytes in the real samples. The observed analytical data are discussed with reference to the administered dose and the duration of the therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamrick, Todd
2011-01-01
Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less
Willis, Brian H; Riley, Richard D
2017-09-20
An important question for clinicians appraising a meta-analysis is: are the findings likely to be valid in their own practice-does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity-where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple ('leave-one-out') cross-validation technique, we demonstrate how we may test meta-analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta-analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta-analysis and a tailored meta-regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within-study variance, between-study variance, study sample size, and the number of studies in the meta-analysis. Finally, we apply Vn to two published meta-analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta-analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Analysis of the sensitivity properties of a model of vector-borne bubonic plague.
Buzby, Megan; Neckels, David; Antolin, Michael F; Estep, Donald
2008-09-06
Model sensitivity is a key to evaluation of mathematical models in ecology and evolution, especially in complex models with numerous parameters. In this paper, we use some recently developed methods for sensitivity analysis to study the parameter sensitivity of a model of vector-borne bubonic plague in a rodent population proposed by Keeling & Gilligan. The new sensitivity tools are based on a variational analysis involving the adjoint equation. The new approach provides a relatively inexpensive way to obtain derivative information about model output with respect to parameters. We use this approach to determine the sensitivity of a quantity of interest (the force of infection from rats and their fleas to humans) to various model parameters, determine a region over which linearization at a specific parameter reference point is valid, develop a global picture of the output surface, and search for maxima and minima in a given region in the parameter space.
Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation
NASA Astrophysics Data System (ADS)
Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten
2015-04-01
Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.
PP/PS anisotropic stereotomography
NASA Astrophysics Data System (ADS)
Nag, Steinar; Alerini, Mathias; Ursin, Bjørn
2010-04-01
Stereotomography is a slope tomographic method which gives good results for background velocity model estimation in 2-D isotropic media. We develop here the extension of the method to 3-D general anisotropic media for PP and PS events. We do not take into account the issue of shear wave degeneracy. As in isotropic media, the sensitivity matrix of the inversion can be computed by paraxial ray tracing. We introduce a `constant Z stereotomography' approach, which can reduce the size of the sensitivity matrix. Based on ray perturbation theory, we give all the derivatives of stereotomography data parameters with respect to model parameters in a 3-D general anisotropic medium. These general formulas for the derivatives can also be used in other applications that rely on anisotropic ray perturbation theory. In particular, we obtain derivatives of the phase velocity with respect to position, phase angle and elastic medium parameters, all for general anisotropic media. The derivatives are expressed using the Voigt notation for the elastic medium parameters. We include a Jacobian that allows to change the model parametrization from Voigt to Thomsen parameters. Explicit expressions for the derivatives of the data are given for the case of 2-D tilted transversely isotropic (TTI) media. We validate the method by single-parameter estimation of each Thomsen parameter field of a 2-D TTI synthetic model, where data are modelled by ray tracing. For each Thomsen parameter, the estimated velocity field fits well with the true velocity field.
A Monte Carlo simulation based inverse propagation method for stochastic model updating
NASA Astrophysics Data System (ADS)
Bao, Nuo; Wang, Chunjie
2015-08-01
This paper presents an efficient stochastic model updating method based on statistical theory. Significant parameters have been selected implementing the F-test evaluation and design of experiments, and then the incomplete fourth-order polynomial response surface model (RSM) has been developed. Exploiting of the RSM combined with Monte Carlo simulation (MCS), reduces the calculation amount and the rapid random sampling becomes possible. The inverse uncertainty propagation is given by the equally weighted sum of mean and covariance matrix objective functions. The mean and covariance of parameters are estimated synchronously by minimizing the weighted objective function through hybrid of particle-swarm and Nelder-Mead simplex optimization method, thus the better correlation between simulation and test is achieved. Numerical examples of a three degree-of-freedom mass-spring system under different conditions and GARTEUR assembly structure validated the feasibility and effectiveness of the proposed method.
Evidence conflict measure based on OWA operator in open world
Wang, Shiyu; Liu, Xiang; Zheng, Hanqing; Wei, Boya
2017-01-01
Dempster-Shafer evidence theory has been extensively used in many information fusion systems since it was proposed by Dempster and extended by Shafer. Many scholars have been conducted on conflict management of Dempster-Shafer evidence theory in past decades. However, how to determine a potent parameter to measure evidence conflict, when the given environment is in an open world, namely the frame of discernment is incomplete, is still an open issue. In this paper, a new method which combines generalized conflict coefficient, generalized evidence distance, and generalized interval correlation coefficient based on ordered weighted averaging (OWA) operator, to measure the conflict of evidence is presented. Through ordered weighted average of these three parameters, the combinatorial coefficient can still measure the conflict effectively when one or two parameters are not valid. Several numerical examples demonstrate the effectiveness of the proposed method. PMID:28542271
Schmidt, Robert L; Factor, Rachel E; Affolter, Kajsa E; Cook, Joshua B; Hall, Brian J; Narra, Krishna K; Witt, Benjamin L; Wilson, Andrew R; Layfield, Lester J
2012-01-01
Diagnostic test accuracy (DTA) studies on fine-needle aspiration cytology (FNAC) often show considerable variability in diagnostic accuracy between study centers. Many factors affect the accuracy of FNAC. A complete description of the testing parameters would help make valid comparisons between studies and determine causes of performance variation. We investigated the manner in which test conditions are specified in FNAC DTA studies to determine which parameters are most commonly specified and the frequency with which they are specified and to see whether there is significant variability in reporting practice. We identified 17 frequently reported test parameters and found significant variation in the reporting of these test specifications across studies. On average, studies reported 5 of the 17 items that would be required to specify the test conditions completely. A more complete and standardized reporting of methods, perhaps by means of a checklist, would improve the interpretation of FNAC DTA studies.
Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders
NASA Astrophysics Data System (ADS)
Zhou, Mengcheng; Huang, Shangyu; Liu, Wei; Lei, Yu; Yan, Shiwei
2018-03-01
A novel process method combines powder compaction and sintering was employed to fabricate thin sheets of cadmium-free silver based filler metals, the compaction densification behaviour of Ag60Cu30Sn10 mixed metal powders was investigated experimentally. Based on the equivalent density method, the density-dependent Drucker-Prager Cap (DPC) model was introduced to model the powder compaction behaviour. Various experiment procedures were completed to determine the model parameters. The friction coefficients in lubricated and unlubricated die were experimentally determined. The determined material parameters were validated by experiments and numerical simulation of powder compaction process using a user subroutine (USDFLD) in ABAQUS/Standard. The good agreement between the simulated and experimental results indicates that the determined model parameters are able to describe the compaction behaviour of the multicomponent mixed metal powders, which can be further used for process optimization simulations.
NASA Astrophysics Data System (ADS)
Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.
2018-06-01
An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.
Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe
NASA Astrophysics Data System (ADS)
Muchini, Ronald; Gumindoga, Webster; Togarepi, Sydney; Pinias Masarira, Tarirai; Dube, Timothy
2018-05-01
Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.
Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation
Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.
2009-01-01
The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355
Li, Wenkui; Doherty, John P; Kulmatycki, Kenneth; Smith, Harold T; Tse, Francis Ls
2012-06-01
In support of a pilot clinical trial using acetaminophen as the model compound to assess dried blood spot (DBS) sampling as the method for clinical pharmacokinetic sample collection, a novel sensitive LC-MS/MS method was developed and validated for the simultaneous determination of acetaminophen and its major metabolites, acetaminophen glucuronide and sulfate, in human DBS samples collected by subjects via fingerprick. The validated assay dynamic range was from 50.0 to 5000 ng/ml for each compound using a 1/8´´ (3-mm) disc punched from a DBS sample. Baseline separation of the three analytes was achieved to eliminate the possible impact of insource fragmentation of the conjugated metabolites on the analysis of the parent. The overall extraction efficiency was from 61.3 to 78.8% for the three analytes by direct extraction using methanol. The validated method was successfully implemented in the pilot clinical study with the obtained pharmacokinetic parameters in agreement with the values reported in literature.
Errors in reporting on dissolution research: methodological and statistical implications.
Jasińska-Stroschein, Magdalena; Kurczewska, Urszula; Orszulak-Michalak, Daria
2017-02-01
In vitro dissolution testing provides useful information at clinical and preclinical stages of the drug development process. The study includes pharmaceutical papers on dissolution research published in Polish journals between 2010 and 2015. They were analyzed with regard to information provided by authors about chosen methods, performed validation, statistical reporting or assumptions used to properly compare release profiles considering the present guideline documents addressed to dissolution methodology and its validation. Of all the papers included in the study, 23.86% presented at least one set of validation parameters, 63.64% gave the results of the weight uniformity test, 55.68% content determination, 97.73% dissolution testing conditions, and 50% discussed a comparison of release profiles. The assumptions for methods used to compare dissolution profiles were discussed in 6.82% of papers. By means of example analyses, we demonstrate that the outcome can be influenced by the violation of several assumptions or selection of an improper method to compare dissolution profiles. A clearer description of the procedures would undoubtedly increase the quality of papers in this area.
NASA Technical Reports Server (NTRS)
Bremner, P. G.; Blelloch, P. A.; Hutchings, A.; Shah, P.; Streett, C. L.; Larsen, C. E.
2011-01-01
This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity.
Hollands, Wendy J; Voorspoels, Stefan; Jacobs, Griet; Aaby, Kjersti; Meisland, Ane; Garcia-Villalba, Rocio; Tomas-Barberan, Francisco; Piskula, Mariusz K; Mawson, Deborah; Vovk, Irena; Needs, Paul W; Kroon, Paul A
2017-04-28
There is a lack of data for individual oligomeric procyanidins in apples and apple extracts. Our aim was to develop, validate and evaluate an analytical method for the separation, identification and quantification of monomeric and oligomeric flavanols in apple extracts. To achieve this, we prepared two types of flavanol extracts from freeze-dried apples; one was an epicatechin-rich extract containing ∼30% (w/w) monomeric (-)-epicatechin which also contained oligomeric procyanidins (Extract A), the second was an oligomeric procyanidin-rich extract depleted of epicatechin (Extract B). The parameters considered for method optimisation were HPLC columns and conditions, sample heating, mass of extract and dilution volumes. The performance characteristics considered for method validation included standard linearity, method sensitivity, precision and trueness. Eight laboratories participated in the method evaluation. Chromatographic separation of the analytes was best achieved utilizing a Hilic column with a binary mobile phase consisting of acidic acetonitrile and acidic aqueous methanol. The final method showed linearity for epicatechin in the range 5-100μg/mL with a correlation co-efficient >0.999. Intra-day and inter-day precision of the analytes ranged from 2 to 6% and 2 to 13% respectively. Up to dp3, trueness of the method was >95% but decreased with increasing dp. Within laboratory precision showed RSD values <5 and 10% for monomers and oligomers, respectively. Between laboratory precision was 4 and 15% (Extract A) and 7 and 30% (Extract B) for monomers and oligomers, respectively. An analytical method for the separation, identification and quantification of procyanidins in an apple extract was developed, validated and assessed. The results of the inter-laboratory evaluation indicate that the method is reliable and reproducible. Copyright © 2017. Published by Elsevier B.V.
Codevilla, Cristiane Franco; Lemos, Alice Machado; Delgado, Leila Schreiner; Rolim, Clarice Madalena Bueno; Adams, Andréa Inês Horn; Bergold, Ana Maria
2011-08-01
A stability-indicating liquid chromatographic method has been developed for the quantitative determination of lodenafil carbonate in tablets. The method employs a Synergi Fusion C18 column (250 × 4.6 mm, i.d., 4 μm particle size), with mobile phase consisting of a mixture of methanol-acetic acid 0.1% pH 4.0 (65:35, v/v) and UV detection at 290 nm, using a photodiode array detector. A linear response (r = 0.9999) was observed in the range of 10-80 μg/mL. The method showed good recoveries (average 100.3%) and also intra and inter-day precision (RSD < 2.0%). Validation parameters as specificity and robustness were also determined. Specificity analysis showed that no impurities or degradation products were co-eluting with the lodenafil carbonate peak. The method was found to be stability-indicating and due to its simplicity and accuracy can be applied for routine quality control analysis of lodenafil carbonate in tablets.
Buiarelli, Francesca; Coccioli, Franco; Jasionowska, Renata; Terracciano, Alessandro
2008-09-01
A fast and accurate micellar electrokinetic capillary chromatography method was developed for quality control of pharmaceutical preparations containing cold remedies as acetaminophen, salicylamide, caffeine, phenylephrine, pseudoephedrine, norephedrine and chlorpheniramine. The method optimization was realized on a Beckman P/ACE System MDQ instrument. The baseline separation of seven analytes was performed in an uncoated fused silica capillary internal diameter (ID)=50 microm using tris-borate (20 mM, pH=8.5) containing sodium dodecyl sulphate 30 mM BGE. On line-UV detection at 214 nm was performed and the applied voltage was 10 kV. The operating temperature was 25 degrees C. After experimental conditions optimization, the proposed method was validated. The evaluated parameters were: precision of migration time and of corrected peak area ratio, linearity range, limit of detection, limit of quantification, accuracy (recovery), ruggedness and applicability. The method was then successfully applied for the analysis of three pharmaceutical preparations containing some of the analytes listed before.
An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications
Tong, Mingsi; Song, John; Chu, Wei
2015-01-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441
An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications.
Tong, Mingsi; Song, John; Chu, Wei
2015-01-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation.
Cell-free measurements of brightness of fluorescently labeled antibodies
Zhou, Haiying; Tourkakis, George; Shi, Dennis; Kim, David M.; Zhang, Hairong; Du, Tommy; Eades, William C.; Berezin, Mikhail Y.
2017-01-01
Validation of imaging contrast agents, such as fluorescently labeled imaging antibodies, has been recognized as a critical challenge in clinical and preclinical studies. As the number of applications for imaging antibodies grows, these materials are increasingly being subjected to careful scrutiny. Antibody fluorescent brightness is one of the key parameters that is of critical importance. Direct measurements of the brightness with common spectroscopy methods are challenging, because the fluorescent properties of the imaging antibodies are highly sensitive to the methods of conjugation, degree of labeling, and contamination with free dyes. Traditional methods rely on cell-based assays that lack reproducibility and accuracy. In this manuscript, we present a novel and general approach for measuring the brightness using antibody-avid polystyrene beads and flow cytometry. As compared to a cell-based method, the described technique is rapid, quantitative, and highly reproducible. The proposed method requires less than ten microgram of sample and is applicable for optimizing synthetic conjugation procedures, testing commercial imaging antibodies, and performing high-throughput validation of conjugation procedures. PMID:28150730
NASA Astrophysics Data System (ADS)
Ren, Luchuan
2015-04-01
A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method
NASA Astrophysics Data System (ADS)
Seiffert, Betsy R.; Ducrozet, Guillaume
2018-01-01
We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.
2013-01-01
Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142
Development and Validation of an NPSS Model of a Small Turbojet Engine
NASA Astrophysics Data System (ADS)
Vannoy, Stephen Michael
Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.
Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing
NASA Astrophysics Data System (ADS)
Rabbitt, Christopher
This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.
Error Analysis and Validation for Insar Height Measurement Induced by Slant Range
NASA Astrophysics Data System (ADS)
Zhang, X.; Li, T.; Fan, W.; Geng, X.
2018-04-01
InSAR technique is an important method for large area DEM extraction. Several factors have significant influence on the accuracy of height measurement. In this research, the effect of slant range measurement for InSAR height measurement was analysis and discussed. Based on the theory of InSAR height measurement, the error propagation model was derived assuming no coupling among different factors, which directly characterise the relationship between slant range error and height measurement error. Then the theoretical-based analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of slant range error to height measurement. In addition, the simulation validation of InSAR error model induced by slant range was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were further discussed and evaluated.
Caracterisation mecanique dynamique de materiaux poro-visco-elastiques
NASA Astrophysics Data System (ADS)
Renault, Amelie
Poro-viscoelastic materials are well modelled with Biot-Allard equations. This model needs a number of geometrical parameters in order to describe the macroscopic geometry of the material and elastic parameters in order to describe the elastic properties of the material skeleton. Several characterisation methods of viscoelastic parameters of porous materials are studied in this thesis. Firstly, quasistatic and resonant characterization methods are described and analyzed. Secondly, a new inverse dynamic characterization of the same modulus is developed. The latter involves a two layers metal-porous beam, which is excited at the center. The input mobility is measured. The set-up is simplified compared to previous methods. The parameters are obtained via an inversion procedure based on the minimisation of the cost function comparing the measured and calculated frequency response functions (FRF). The calculation is done with a general laminate model. A parametric study identifies the optimal beam dimensions for maximum sensitivity of the inversion model. The advantage of using a code which is not taking into account fluid-structure interactions is the low computation time. For most materials, the effect of this interaction on the elastic properties is negligible. Several materials are tested to demonstrate the performance of the method compared to the classical quasi-static approaches, and set its limitations and range of validity. Finally, conclusions about their utilisation are given. Keywords. Elastic parameters, porous materials, anisotropy, vibration.
Automated Tumor Volumetry Using Computer-Aided Image Segmentation
Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A.; Ali, Zarina S.; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M.; Davatzikos, Christos
2015-01-01
Rationale and Objectives Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. Materials and Methods A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Results Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where 5 indicated perfect segmentation. Conclusions The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. PMID:25770633
Estimation of geotechnical parameters on the basis of geophysical methods and geostatistics
NASA Astrophysics Data System (ADS)
Brom, Aleksander; Natonik, Adrianna
2017-12-01
The paper presents possible implementation of ordinary cokriging and geophysical investigation on humidity data acquired in geotechnical studies. The Author describes concept of geostatistics, terminology of geostatistical modelling, spatial correlation functions, principles of solving cokriging systems, advantages of (co-)kriging in comparison with other interpolation methods, obstacles in this type of attempt. Cross validation and discussion of results was performed with an indication of prospect of applying similar procedures in various researches..
NASA Astrophysics Data System (ADS)
Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert
2010-05-01
We are developing and testing a steep-incidence D region sounding method for inferring profile information, principally regarding electron density. The method uses lightning emissions (in the band 5-500 kHz) as the probe signal. The data are interpreted by comparison against a newly developed single-reflection model of the radio wave's encounter with the lower ionosphere. The ultimate application of the method will be to study transient, localized disturbances of the nocturnal D region, including those instigated by lightning itself. Prior to applying the method to study lightning-induced perturbations of the nighttime D region, we have performed a validation test against more stable and predictable daytime observations, where the profile of electron density is largely determined by direct solar X-ray illumination. This article reports on the validation test. Predictions from our recently developed full-wave ionospheric-reflection model are compared to statistical summaries of daytime lightning radiated waveforms, recorded by the Los Alamos Sferic Array. The comparison is used to retrieve best fit parameters for an exponential profile of electron density in the ionospheric D region. The optimum parameter values are compared to those found elsewhere using a narrowband beacon technique, which used totally different measurements, ranges, and modeling approaches from those of the work reported here.
Ayoub, Bassam M; Mowaka, Shereen; Elzanfaly, Eman S; Ashoush, Nermeen; Elmazar, Mohamed M; Mousa, Shaker A
2017-05-31
The present study considered the pharmacokinetic evaluation of empagliflozin after administration to Egyptian volunteers, and the results were compared with other ethnic populations. The FDA recognizes that standard methods of defining racial subgroups are necessary to compare results across pharmacokinetic studies and to assess potential subgroup differences. The design of the study was as an open labeled, randomized, one treatment, one period, single dose pharmacokinetic study. The main pharmacokinetic parameters estimated were C max , T max , t 1/2 , elimination rate constant, AUC 0-t and AUC 0-inf . The insignificant difference in pharmacokinetic parameters between Egyptians and white German subjects suggests that no dose adjustment should be considered with administration of 25 mg empagliflozin to Egyptian population. A new LC-MS/MS method was developed and validated, allowing sensitive estimation of empagliflozin (25-600 ng mL -1 ) in human plasma using dapagliflozin as an internal standard (IS). The method was applied successfully on the underlying pharmacokinetic study with enhanced sample preparation that involved liquid-liquid extraction. Multiple Reaction Monitoring (MRM) of the transition pairs of m/z 449.01 to 371.21 for empagliflozin and m/z 407.00 to 328.81 for dapagliflozin (IS) was employed utilizing negative mode Electro Spray Ionization (ESI). The validated LC-MS/MS method is suitable for further toxicodynamic and bioequivalence studies.
Domènech, Albert; Cortés-Francisco, Nuria; Palacios, Oscar; Franco, José M; Riobó, Pilar; Llerena, José J; Vichi, Stefania; Caixach, Josep
2014-02-07
A multitoxin method has been developed for quantification and confirmation of lipophilic marine biotoxins in mussels by liquid chromatography coupled to high resolution mass spectrometry (HRMS), using an Orbitrap-Exactive HCD mass spectrometer. Okadaic acid (OA), yessotoxin, azaspiracid-1, gymnodimine, 13-desmethyl spirolide C, pectenotoxin-2 and Brevetoxin B were analyzed as representative compounds of each lipophilic toxin group. HRMS identification and confirmation criteria were established. Fragment and isotope ions and ion ratios were studied and evaluated for confirmation purpose. In depth characterization of full scan and fragmentation spectrum of the main toxins were carried out. Accuracy (trueness and precision), linearity, calibration curve check, limit of quantification (LOQ) and specificity were the parameters established for the method validation. The validation was performed at 0.5 times the current European Union permitted levels. The method performed very well for the parameters investigated. The trueness, expressed as recovery, ranged from 80% to 94%, the precision, expressed as intralaboratory reproducibility, ranged from 5% to 22% and the LOQs range from 0.9 to 4.8pg on column. Uncertainty of the method was also estimated for OA, using a certified reference material. A top-down approach considering two main contributions: those arising from the trueness studies and those coming from the precision's determination, was used. An overall expanded uncertainty of 38% was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...
2010-12-08
We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less
Flight instrument and telemetry response and its inversion
NASA Technical Reports Server (NTRS)
Weinberger, M. R.
1971-01-01
Mathematical models of rate gyros, servo accelerometers, pressure transducers, and telemetry systems were derived and their parameters were obtained from laboratory tests. Analog computer simulations were used extensively for verification of the validity for fast and large input signals. An optimal inversion method was derived to reconstruct input signals from noisy output signals and a computer program was prepared.
Investigation of a Nonparametric Procedure for Assessing Goodness-of-Fit in Item Response Theory
ERIC Educational Resources Information Center
Wells, Craig S.; Bolt, Daniel M.
2008-01-01
Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…
Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters
NASA Astrophysics Data System (ADS)
Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai
2016-04-01
Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion
Identification of absolute conversion to geraldol from fisetin and pharmacokinetics in mouse.
Jo, Jun Hyeon; Jo, Jung Jae; Lee, Jae-Mok; Lee, Sangkyu
2016-12-01
Fisetin (3,3',4',7-tetrahydroxyflavone) is a flavonoid found in several fruits, vegetables, nuts, and wine and has anti-oxidant, anti-inflammatory, and anti-angiogenic properties. Geraldol is the 3'-methoxylated metabolite of fisetin (3,4',7-trihydroxy-3'-methoxyflavone). The concentration of fisetin and geraldol in mouse plasma was determined by LC-MS/MS, following direct protein precipitation. These concentrations were determined after administration of fisetin at doses of 2mg/kg (i.v.) and 100 and 200mg/kg (p.o.). The method was validated in terms of linearity, accuracy, precision, matrix effect, and stability. The pharmacokinetics parameters of fisetin and geraldol were successfully determined using a validated method in mice. Results indicated that fisetin was very rapidly methylated to geraldol in vivo. Following administration of fisetin, it was observed that the C max and AUC values for geraldol were higher than those of fisetin. The absolute bioavailability of fisetin was calculated as 7.8% and 31.7% after oral administration of 100 and 200mg/kg fisetin, respectively. This method was successfully applied to determine the pharmacokinetic parameters of fisetin and its main metabolite geraldol in mouse plasma. Geraldol was the dominant circulating metabolite after fisetin administration in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Extended Analytic Device Optimization Employing Asymptotic Expansion
NASA Technical Reports Server (NTRS)
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
Salehi, Simin; Rasoul-Amini, Sara; Adib, Noushin; Shekarchi, Maryam
2016-08-01
In this study a novel method is described for selective quantization of domperidone in biological matrices applying molecular imprinted polymers (MIPs) as a sample clean up procedure using high performance liquid chromatography coupled with a fluorescence detector. MIPs were synthesized with chloroform as the porogen, ethylene glycol dimethacrylate as the crosslinker, methacrylic acid as the monomer, and domperidone as the template molecule. The new imprinted polymer was used as a molecular sorbent for separation of domperidone from serum. Molecular recognition properties, binding capacity and selectivity of MIPs were determined. The results demonstrated exceptional affinity for domperidone in biological fluids. The domperidone analytical method using MIPs was verified according to validation parameters, such as selectivity, linearity (5-80ng/mL, r(2)=0.9977), precision and accuracy (10-40ng/mL, intra-day=1.7-5.1%, inter-day=4.5-5.9%, and accuracy 89.07-98.9%).The limit of detection (LOD) and quantization (LOQ) of domperidone was 0.0279 and 0.092ng/mL, respectively. The simplicity and suitable validation parameters makes this a highly valuable selective bioequivalence method for domperidone analysis in human serum. Copyright © 2016 Elsevier B.V. All rights reserved.
Polygenic scores via penalized regression on summary statistics.
Mak, Timothy Shin Heng; Porsch, Robert Milan; Choi, Shing Wan; Zhou, Xueya; Sham, Pak Chung
2017-09-01
Polygenic scores (PGS) summarize the genetic contribution of a person's genotype to a disease or phenotype. They can be used to group participants into different risk categories for diseases, and are also used as covariates in epidemiological analyses. A number of possible ways of calculating PGS have been proposed, and recently there is much interest in methods that incorporate information available in published summary statistics. As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a pertinent question is how we can use LD information available elsewhere to supplement such analyses. To answer this question, we propose a method for constructing PGS using summary statistics and a reference panel in a penalized regression framework, which we call lassosum. We also propose a general method for choosing the value of the tuning parameter in the absence of validation data. In our simulations, we showed that pseudovalidation often resulted in prediction accuracy that is comparable to using a dataset with validation phenotype and was clearly superior to the conservative option of setting the tuning parameter of lassosum to its lowest value. We also showed that lassosum achieved better prediction accuracy than simple clumping and P-value thresholding in almost all scenarios. It was also substantially faster and more accurate than the recently proposed LDpred. © 2017 WILEY PERIODICALS, INC.
Parameter tuning method for dither compensation of a pneumatic proportional valve with friction
NASA Astrophysics Data System (ADS)
Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei
2016-05-01
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.
Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed
2014-01-01
Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576
Clemen, Christof B; Benderoth, Günther E K; Schmidt, Andreas; Hübner, Frank; Vogl, Thomas J; Silber, Gerhard
2017-01-01
In this study, useful methods for active human skeletal muscle material parameter determination are provided. First, a straightforward approach to the implementation of a transversely isotropic hyperelastic continuum mechanical material model in an invariant formulation is presented. This procedure is found to be feasible even if the strain energy is formulated in terms of invariants other than those predetermined by the software's requirements. Next, an appropriate experimental setup for the observation of activation-dependent material behavior, corresponding data acquisition, and evaluation is given. Geometry reconstruction based on magnetic resonance imaging of different deformation states is used to generate realistic, subject-specific finite element models of the upper arm. Using the deterministic SIMPLEX optimization strategy, a convenient quasi-static passive-elastic material characterization is pursued; the results of this approach used to characterize the behavior of human biceps in vivo indicate the feasibility of the illustrated methods to identify active material parameters comprising multiple loading modes. A comparison of a contact simulation incorporating the optimized parameters to a reconstructed deformed geometry of an indented upper arm shows the validity of the obtained results regarding deformation scenarios perpendicular to the effective direction of the nonactivated biceps. However, for a valid, activatable, general-purpose material characterization, the material model needs some modifications as well as a multicriteria optimization of the force-displacement data for different loading modes. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].
Liu, Qing-Jie; Jing, Lin-Hai; Wang, Meng-Fei; Lin, Qi-Zhong
2013-03-01
Model selection for support vector machine (SVM) involving kernel and the margin parameter values selection is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyperspectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, artificial immune clonal selection algorithm is introduced to the optimal selection of SVM (CSSVM) kernel parameter a and margin parameter C to improve the training efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for testing the novel CSSVM, as well as a traditional SVM classifier with general Grid Searching cross-validation method (GSSVM) for comparison. And then, evaluation indexes including SVM model training time, classification overall accuracy (OA) and Kappa index of both CSSVM and GSSVM were all analyzed quantitatively. It is demonstrated that OA of CSSVM on test samples and whole image are 85.1% and 81.58, the differences from that of GSSVM are both within 0.08% respectively; And Kappa indexes reach 0.8213 and 0.7728, the differences from that of GSSVM are both within 0.001; While the ratio of model training time of CSSVM and GSSVM is between 1/6 and 1/10. Therefore, CSSVM is fast and accurate algorithm for hyperspectral image classification and is superior to GSSVM.
Baker, William L; Williams, Mark A
2018-03-01
An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.
Bodiwala, Kunjan Bharatkumar; Shah, Shailesh; Thakor, Jeenal; Marolia, Bhavin; Prajapati, Pintu
2016-11-01
A rapid, sensitive, and stability-indicating high-performance thin-layer chromatographic method was developed and validated to study degradation kinetics of Alogliptin benzoate (ALG) in an alkaline medium. ALG was degraded under acidic, alkaline, oxidative, and thermal stress conditions. The degraded samples were chromatographed on silica gel 60F254-TLC plates, developed using a quaternary-solvent system (chloroform-methanol-ethyl acetate-triethyl amine, 9+1+1+0.5, v/v/v/v), and scanned at 278 nm. The developed method was validated per International Conference on Harmonization guidelines using validation parameters such as specificity, linearity and range, precision, accuracy, LOD, and LOQ. The linearity range for ALG was 100-500 ng/band (correlation coefficient = 0.9997) with an average recovery of 99.47%. The LOD and LOQ for ALG were 9.8 and 32.7 ng/band, respectively. The developed method was successfully applied for the quantitative estimation of ALG in its synthetic mixture with common excipients. Degradation kinetics of ALG in an alkaline medium was studied by degrading it under three different temperatures and three different concentrations of alkali. Degradation of ALG in the alkaline medium was found to follow first-order kinetics. Contour plots have been generated to predict degradation rate constant, half-life, and shelf life of ALG in various combinations of temperature and concentration of alkali using Design Expert software.
Guan, Jin; Min, Jie; Yan, Feng; Xu, Wen-Ya; Shi, Shuang; Wang, Si-Lin
2017-04-01
A new gas chromatographic method for the simultaneous determination of six organic residual solvents (acetonitrile, tetrahydrofuran, ethanol, acetone, 2-propanol and ethyl acetate) in azilsartan bulk drug is described. The chromatographic determination was achieved on an OV-624 capillary column employing programmed temperature within 21 min. The validation was carried out according to International Conference on Harmonization validation guidelines. The method was shown to be specific (no interference in the blank solution), sensitive (Limit of detection can achieve 1.5 μg/mL), precise (relative standard deviation of repeatability and intermediate precision ≤5.0%), linear (r≥ 0.999), accurate (recoveries range from 98.8% to 107.8%) and robust (carrier gas flow from 2.7 to 3.3 mL/min, initial oven temperature from 35°C to 45°C, temperature ramping rate from 19°C/min to 21°C/min, final oven temperature from 145°C to 155°C, injector temperature from 190°C to 210°C and detector temperature from 240°C to 260°C did not significantly affect the system suitability, test parameters and peak areas). This extensively validated method has been applied to the determination of residual solvents in real azilsartan bulk samples. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Content validity and reliability of test of gross motor development in Chilean children
Cano-Cappellacci, Marcelo; Leyton, Fernanda Aleitte; Carreño, Joshua Durán
2016-01-01
ABSTRACT OBJECTIVE To validate a Spanish version of the Test of Gross Motor Development (TGMD-2) for the Chilean population. METHODS Descriptive, transversal, non-experimental validity and reliability study. Four translators, three experts and 92 Chilean children, from five to 10 years, students from a primary school in Santiago, Chile, have participated. The Committee of Experts has carried out translation, back-translation and revision processes to determine the translinguistic equivalence and content validity of the test, using the content validity index in 2013. In addition, a pilot implementation was achieved to determine test reliability in Spanish, by using the intraclass correlation coefficient and Bland-Altman method. We evaluated whether the results presented significant differences by replacing the bat with a racket, using T-test. RESULTS We obtained a content validity index higher than 0.80 for language clarity and relevance of the TGMD-2 for children. There were significant differences in the object control subtest when comparing the results with bat and racket. The intraclass correlation coefficient for reliability inter-rater, intra-rater and test-retest reliability was greater than 0.80 in all cases. CONCLUSIONS The TGMD-2 has appropriate content validity to be applied in the Chilean population. The reliability of this test is within the appropriate parameters and its use could be recommended in this population after the establishment of normative data, setting a further precedent for the validation in other Latin American countries. PMID:26815160
A Simple Method for Assessing Upper-Limb Force-Velocity Profile in Bench Press.
Rahmani, Abderrahmane; Samozino, Pierre; Morin, Jean-Benoit; Morel, Baptiste
2018-02-01
To analyze the reliability and validity of a field computation method based on easy-to-measure data to assess the mean force ([Formula: see text]) and velocity ([Formula: see text]) produced during a ballistic bench-press movement and to verify that the force-velocity profile (F-v) obtained with multiple loaded trials is accurately described. Twelve participants performed ballistic bench presses against various lifted mass from 30% to 70% of their body mass. For each trial, [Formula: see text] and [Formula: see text] were determined from an accelerometer (sampling rate 500 Hz; reference method) and a simple computation method based on upper-limb mass, barbell flight height, and push-off distance. These [Formula: see text] and [Formula: see text] data were used to establish the F-v relationship for each individual and method. A strong to almost perfect reliability was observed between the 2 trials (ICC > .90 for [Formula: see text] and .80 for [Formula: see text], CV% < 10%), whatever the considered method. The mechanical variables ([Formula: see text], [Formula: see text]) measured with the 2 methods and all the variables extrapolated from the F-v relationships were strongly correlated (r 2 > .80, P < .001). The practical differences between the methods for the extrapolated mechanical parameters were all <5%, indicating very probably no differences. The findings suggest that the simple computation method used here provides valid and reliable information on force and velocity produced during ballistic bench press, in line with that observed in laboratory conditions. This simple method is thus a practical tool, requiring only 3 simple parameters (upper-limb mass, barbell flight height, and push-off distance).
Jin, Gaowa; Guo, Zhimou; Xiao, Yuansheng; Yan, Jingyu; Dong, Xuefang; Shen, Aijin; Wang, Chaoran; Liang, Xinmiao
2016-10-01
A practical method was established for the definition of chromatographic parameters in preparative liquid chromatography. The parameters contained both the peak broadening level under different amounts of sample loading and the concentration distribution of the target compound in the elution. The parameters of the peak broadening level were defined and expressed as a matrix, which consisted of sample loading, the forward broadening and the backward broadening levels. The concentration distribution of the target compound was described by the heat map of the elution profile. The most suitable stationary phase should exhibit the narrower peak broadening and it was best to broaden to both sides to compare to the peak under analytical conditions. Besides, the concentration distribution of the target compounds should be focused on the middle of the elution. The guiding principles were validated by purification of amitriptyline from the mixture of desipramine and amitriptyline. On the selected column, when the content of the impurity desipramine was lower than 0.1%, the recovery of target compound was much higher than the other columns even when the sample loading was as high as 8.03 mg/cm 3 . The parameters and methods could be used for the evaluation and selection of stationary phases in preparative chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ayoub, B. M.
2017-11-01
Two simple spectrophotometric methods were developed for determination of empagliflozin and metformin by manipulating their ratio spectra with application on a recently approved pharmaceutical combination, Synjardy® tablets. A spiking technique was used to increase the concentration of empagliflozin after extraction from the tablets to allow its simultaneous determination with metformin. Validation parameters according to ICH guidelines were acceptable over the concentration range of 2-12 μg/mL for both drugs using constant multiplication and spectrum subtraction methods. The optimized methods are suitable for QC labs.
Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.
Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen
2014-08-01
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
NASA Astrophysics Data System (ADS)
Eisfeld, Eugen; Roth, Johannes
2018-05-01
Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.
Low resolution spectroscopic investigation of Am stars using Automated method
NASA Astrophysics Data System (ADS)
Sharma, Kaushal; Joshi, Santosh; Singh, Harinder P.
2018-04-01
The automated method of full spectrum fitting gives reliable estimates of stellar atmospheric parameters (Teff, log g and [Fe/H]) for late A, F, G, and early K type stars. Recently, the technique was further improved in the cooler regime and the validity range was extended up to a spectral type of M6 - M7 (Teff˜ 2900 K). The present study aims to explore the application of this method on the low-resolution spectra of Am stars, a class of chemically peculiar stars, to examine its robustness for these objects. We use ULySS with the Medium-resolution INT Library of Empirical Spectra (MILES) V2 spectral interpolator for parameter determination. The determined Teff and log g values are found to be in good agreement with those obtained from high-resolution spectroscopy.
NASA Astrophysics Data System (ADS)
Rigden, Angela J.; Salvucci, Guido D.
2015-04-01
A novel method of estimating evapotranspiration (ET), referred to as the ETRHEQ method, is further developed, validated, and applied across the U.S. from 1961 to 2010. The ETRHEQ method estimates the surface conductance to water vapor transport, which is the key rate-limiting parameter of typical ET models, by choosing the surface conductance that minimizes the vertical variance of the calculated relative humidity profile averaged over the day. The ETRHEQ method, which was previously tested at five AmeriFlux sites, is modified for use at common weather stations and further validated at 20 AmeriFlux sites that span a wide range of climates and limiting factors. Averaged across all sites, the daily latent heat flux RMSE is ˜26 W·m-2 (or 15%). The method is applied across the U.S. at 305 weather stations and spatially interpolated using ANUSPLIN software. Gridded annual mean ETRHEQ ET estimates are compared with four data sets, including water balance-derived ET, machine-learning ET estimates based on FLUXNET data, North American Land Data Assimilation System project phase 2 ET, and a benchmark product that integrates 14 global ET data sets, with RMSEs ranging from 8.7 to 12.5 cm·yr-1. The ETRHEQ method relies only on data measured at weather stations, an estimate of vegetation height derived from land cover maps, and an estimate of soil thermal inertia. These data requirements allow it to have greater spatial coverage than direct measurements, greater historical coverage than satellite methods, significantly less parameter specification than most land surface models, and no requirement for calibration.
Lumped-parameters equivalent circuit for condenser microphones modeling.
Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar
2017-10-01
This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.
Aslan, Alper; Destek, Mehmet Akif; Okumus, Ilyas
2018-01-01
This study aims to examine the validity of inverted U-shaped Environmental Kuznets Curve by investigating the relationship between economic growth and environmental pollution for the period from 1966 to 2013 in the USA. Previous studies based on the assumption of parameter stability and obtained parameters do not change over the full sample. This study uses bootstrap rolling window estimation method to detect the possible changes in causal relations and also obtain the parameters for sub-sample periods. The results show that the parameter of economic growth has increasing trend in 1982-1996 sub-sample periods, and it has decreasing trend in 1996-2013 sub-sample periods. Therefore, the existence of inverted U-shaped Environmental Kuznets Curve is confirmed in the USA.
Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence
NASA Astrophysics Data System (ADS)
van der Straeten, Erik; Beck, Christian
2009-09-01
We report a general technique to study a given experimental time series with superstatistics. Crucial for the applicability of the superstatistics concept is the existence of a parameter β that fluctuates on a large time scale as compared to the other time scales of the complex system under consideration. The proposed method extracts the main superstatistical parameters out of a given data set and examines the validity of the superstatistical model assumptions. We test the method thoroughly with surrogate data sets. Then the applicability of the superstatistical approach is illustrated using real experimental data. We study two examples, velocity time series measured in turbulent Taylor-Couette flows and time series of log returns of the closing prices of some stock market indices.
A multiplicative regularization for force reconstruction
NASA Astrophysics Data System (ADS)
Aucejo, M.; De Smet, O.
2017-02-01
Additive regularizations, such as Tikhonov-like approaches, are certainly the most popular methods for reconstructing forces acting on a structure. These approaches require, however, the knowledge of a regularization parameter, that can be numerically computed using specific procedures. Unfortunately, these procedures are generally computationally intensive. For this particular reason, it could be of primary interest to propose a method able to proceed without defining any regularization parameter beforehand. In this paper, a multiplicative regularization is introduced for this purpose. By construction, the regularized solution has to be calculated in an iterative manner. In doing so, the amount of regularization is automatically adjusted throughout the resolution process. Validations using synthetic and experimental data highlight the ability of the proposed approach in providing consistent reconstructions.
Average activity of excitatory and inhibitory neural populations
NASA Astrophysics Data System (ADS)
Roulet, Javier; Mindlin, Gabriel B.
2016-09-01
We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activities are computed. Two different excitable systems are studied: Adler units and theta neurons. The resulting bifurcation diagrams are compared with those obtained from studying the phenomenological Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well as higher dimensional chaotic solutions, are observed. We study numerical simulations to further validate the equations.
Nguyen Dinh, Duc; Nguyen, Pham Dinh
2017-01-01
Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821
Average activity of excitatory and inhibitory neural populations
Mindlin, Gabriel B.
2016-01-01
We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activities are computed. Two different excitable systems are studied: Adler units and theta neurons. The resulting bifurcation diagrams are compared with those obtained from studying the phenomenological Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well as higher dimensional chaotic solutions, are observed. We study numerical simulations to further validate the equations. PMID:27781447
Mansuori, M; Zareei, G H; Hashemi, H
2015-10-01
We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.
Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method
NASA Astrophysics Data System (ADS)
Yuan, Zhe; Zhang, Yiming; Zheng, Qijia
2018-02-01
An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I establish a valid parameter range if I have chosen to continuously monitor parameters? 60.4410 Section 60.4410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of...
2014-01-01
The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583
Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin
2014-07-25
The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.
Robert, Christelle; Brasseur, Pierre-Yves; Dubois, Michel; Delahaut, Philippe; Gillard, Nathalie
2016-08-01
A new multi-residue method for the analysis of veterinary drugs, namely amoxicillin, chlortetracycline, colistins A and B, doxycycline, fenbendazole, flubendazole, ivermectin, lincomycin, oxytetracycline, sulfadiazine, tiamulin, tilmicosin and trimethoprim, was developed and validated for feed. After acidic extraction, the samples were centrifuged, purified by SPE and analysed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Quantitative validation was done in accordance with the guidelines laid down in European Commission Decision 2002/657/CE. Matrix-matched calibration with internal standards was used to reduce matrix effects. The target level was set at the authorised carryover level (1%) and validation levels were set at 0.5%, 1% and 1.5%. Method performances were evaluated by the following parameters: linearity (0.986 < R(2) < 0.999), precision (repeatability < 12.4% and reproducibility < 14.0%), accuracy (89% < recovery < 107%), sensitivity, decision limit (CCα), detection capability (CCβ), selectivity and expanded measurement uncertainty (k = 2).This method has been used successfully for three years for routine monitoring of antibiotic residues in feeds during which period 20% of samples were found to exceed the 1% authorised carryover limit and were deemed non-compliant.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
A multi-frequency iterative imaging method for discontinuous inverse medium problem
NASA Astrophysics Data System (ADS)
Zhang, Lei; Feng, Lixin
2018-06-01
The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.
Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L
2018-03-01
Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.
Estimation of viscoelastic surface wave parameters using a low cost optical deflection method
NASA Astrophysics Data System (ADS)
Brum, J.; Balay, G.; Arzúa, A.; Núñez, I.; Negreira, C.
2010-01-01
In this work an optical deflection method was used to study surface vibrations created by a low frequency source placed on the sample's surface. The optical method consists in placing a laser beam perpendicularly the sample's surface (gelatine based phantom). A beam-splitter is placed between the laser and the sample to project the reflected beam into a screen. As the surface moves due to the action of the low frequency source the laser beam on the screen also moves. Recording this movement with a digital camera allow us to reconstruct de surface motion using the light reflection law. If the scattering of the surface is very strong (such the one in biological tissue) a lens is placed between the surface and the beam-splitter to collect the scattered light. As validation method the surface movement was measured using a 10 MHz ultrasonic transducer placed normal to the surface in pulse-eco mode. The optical measurements were in complete agreement with the acoustical measurements. The optical measurement has the following advantages over the acoustic: 2-dimensional motion could be recorded and it is low cost. Since the acquisition was synchronized and the source-laser beam distance is known, measuring the time of flight an estimation of the surface wave velocity is obtained in order to measure the elasticity of the sample. The authors conclude that a reliable optical, low cost method for obtaining surface wave parameters of biological tissue was developed and successfully validate.
Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Massonnet, F.; Goosse, H.; Fichefet, T.; Counillon, F.
2014-07-01
The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, "trial-and-error" recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Protocols and programs for high-throughput growth and aging phenotyping in yeast.
Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L
2015-01-01
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
NASA Astrophysics Data System (ADS)
Nair, B. G.; Winter, N.; Daniel, B.; Ward, R. M.
2016-07-01
Direct measurement of the flow of electric current during VAR is extremely difficult due to the aggressive environment as the arc process itself controls the distribution of current. In previous studies the technique of “magnetic source tomography” was presented; this was shown to be effective but it used a computationally intensive iterative method to analyse the distribution of arc centre position. In this paper we present faster computational methods requiring less numerical optimisation to determine the centre position of a single distributed arc both numerically and experimentally. Numerical validation of the algorithms were done on models and experimental validation on measurements based on titanium and nickel alloys (Ti6Al4V and INCONEL 718). The results are used to comment on the effects of process parameters on arc behaviour during VAR.
Formal Methods for Automated Diagnosis of Autosub 6000
NASA Technical Reports Server (NTRS)
Ernits, Juhan; Dearden, Richard; Pebody, Miles
2009-01-01
This is a progress report on applying formal methods in the context of building an automated diagnosis and recovery system for Autosub 6000, an Autonomous Underwater Vehicle (AUV). The diagnosis task involves building abstract models of the control system of the AUV. The diagnosis engine is based on Livingstone 2, a model-based diagnoser originally built for aerospace applications. Large parts of the diagnosis model can be built without concrete knowledge about each mission, but actual mission scripts and configuration parameters that carry important information for diagnosis are changed for every mission. Thus we use formal methods for generating the mission control part of the diagnosis model automatically from the mission script and perform a number of invariant checks to validate the configuration. After the diagnosis model is augmented with the generated mission control component model, it needs to be validated using verification techniques.