Sample records for methods cell growth

  1. A study of cell electrophoresis as a means of purifying growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne

    1983-01-01

    Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.

  2. Development of a Monitoring Method for Nonlabeled Human Pluripotent Stem Cell Growth by Time-Lapse Image Analysis.

    PubMed

    Suga, Mika; Kii, Hiroaki; Niikura, Keiichi; Kiyota, Yasujiro; Furue, Miho K

    2015-07-01

    : Cell growth is an important criterion for determining healthy cell conditions. When somatic cells or cancer cells are dissociated into single cells for passaging, the cell numbers can be counted at each passage, providing information on cell growth as an indicator of the health conditions of these cells. In the case of human pluripotent stem cells (hPSCs), because the cells are usually dissociated into cell clumps of ∼50-100 cells for passaging, cell counting is time-consuming. In the present study, using a time-lapse imaging system, we developed a method to determine the growth of hPSCs from nonlabeled live cell phase-contrast images without damaging these cells. Next, the hPSC colony areas and number of nuclei were determined and used to derive equations to calculate the cell number in hPSC colonies, which were assessed on time-lapse images acquired using a culture observation system. The relationships between the colony areas and nuclei numbers were linear, although the equation coefficients were dependent on the cell line used, colony size, colony morphology, and culture conditions. When the culture conditions became improper, the change in cell growth conditions could be detected by analysis of the phase-contrast images. This method provided real-time information on colony growth and cell growth rates without using treatments that can damage cells and could be useful for basic research on hPSCs and cell processing for hPSC-based therapy. This is the first study to use a noninvasive method using images to systemically determine the growth of human pluripotent stem cells (hPSCs) without damaging or wasting cells. This method would be useful for quality control during cell culture of clinical hPSCs. ©AlphaMed Press.

  3. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  4. Development of an efficient, non-viral transfection method for studying gene function and bone growth in human primary cranial suture mesenchymal cells reveals that the cells respond to BMP2 and BMP3.

    PubMed

    Dwivedi, Prem P; Anderson, Peter J; Powell, Barry C

    2012-08-03

    Achieving efficient introduction of plasmid DNA into primary cultures of mammalian cells is a common problem in biomedical research. Human primary cranial suture cells are derived from the connective mesenchymal tissue between the bone forming regions at the edges of the calvarial plates of the skull. Typically they are referred to as suture mesenchymal cells and are a heterogeneous population responsible for driving the rapid skull growth that occurs in utero and postnatally. To better understand the molecular mechanisms involved in skull growth, and in abnormal growth conditions, such as craniosynostosis, caused by premature bony fusion, it is essential to be able to easily introduce genes into primary bone forming cells to study their function. A comparison of several lipid-based techniques with two electroporation-based techniques demonstrated that the electroporation method known as nucleofection produced the best transfection efficiency. The parameters of nucleofection, including cell number, amount of DNA and nucleofection program, were optimized for transfection efficiency and cell survival. Two different genes and two promoter reporter vectors were used to validate the nucleofection method and the responses of human primary suture mesenchymal cells by fluorescence microscopy, RT-PCR and the dual luciferase assay. Quantification of bone morphogenetic protein (BMP) signalling using luciferase reporters demonstrated robust responses of the cells to both osteogenic BMP2 and to the anti-osteogenic BMP3. A nucleofection protocol has been developed that provides a simple and efficient, non-viral alternative method for in vitro studies of gene and protein function in human skull growth. Human primary suture mesenchymal cells exhibit robust responses to BMP2 and BMP3, and thus nucleofection can be a valuable method for studying the potential competing action of these two bone growth factors in a model system of cranial bone growth.

  5. Experimental treatment of neoplasic diseases and tumors with iono magnetic therapy

    NASA Astrophysics Data System (ADS)

    Rizsanyi, Elek Karsay; Quiróz, David Lavan; Huamaccto, Carlos Levano; Marroquín, Erwin Guerra

    2001-10-01

    The Iono Magnetic Therapy is a alternative control method for cell growth population in pancreas and cerebral cancer. The magnetic field applied to cells with cancer decrease the growth of this cells or their multiplication. We observed a potential difference opposite to cell potential and propose that the ionic interchange is very slow tampering with cell growth in cancer.

  6. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    PubMed

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty.

  7. Identification of Growth Phases and Influencing Factors in Cultivations with AGE1.HN Cells Using Set-Based Methods

    PubMed Central

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty. PMID:23936299

  8. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone

    PubMed Central

    Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden

    2014-01-01

    Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552

  9. Enhanced growth medium and method for culturing human mammary epithelial cells

    DOEpatents

    Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  10. Mass sensors with mechanical traps for weighing single cells in different fluids.

    PubMed

    Weng, Yaochung; Delgado, Francisco Feijó; Son, Sungmin; Burg, Thomas P; Wasserman, Steven C; Manalis, Scott R

    2011-12-21

    We present two methods by which single cells can be mechanically trapped and continuously monitored within the suspended microchannel resonator (SMR) mass sensor. Since the fluid surrounding the trapped cell can be quickly and completely replaced on demand, our methods are well suited for measuring changes in cell size and growth in response to drugs or other chemical stimuli. We validate our methods by measuring the density of single polystyrene beads and Saccharomyces cerevisiae yeast cells with a precision of approximately 10(-3) g cm(-3), and by monitoring the growth of single mouse lymphoblast cells before and after drug treatment.

  11. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  12. A Novel Double Subculture Method and Its Theory for the Enumeration of Injured Cells in Stressed Microbial Population.

    PubMed

    Tsuchido, Tetsuaki

    2017-01-01

     A novel double subculture method, termed DiVSaL (Differential Viabilities between Solid and Liquid media) method, for the enumeration of injured cell population of a microorganism, which occurs after some sublethal to lethal treatment, was proposed. In this method injured cells were enumerated as the differential value between viabilities determined with two different techniques, the conventional plate counting using a solid agar medium and the growth delay analysis using a liquid medium. In the former technique, the viable cell number is obtained as colony forming unit (CFU) formed on an agar medium where sublethally injured cells are as much rescued as possible. In the latter technique, on the other hand," the integrated viability" defined by Takano and Tsuchido (1982) is introduced and is calculated from the growth delay of a stressed population, referred to unstressed one. For the growth delay analysis, in this paper, not only the original theoretical model, where the specific growth rate (and therefore the defined G 10 value) does not change after the exposure to a stress treatment, but also a novel modified theory, where the parameter changes, is proposed. On the theoretical background, this DiVSaL method as a double subculture method can be used to enumerate the injured cells without selection by addition of some inhibitor or by nutritional shortage.

  13. The radiosensitivity of a murine fibrosarcoma as measured by three cell survival assays.

    PubMed Central

    Rice, L.; Urano, M.; Suit, H. D.

    1980-01-01

    The radiation sensitivity of a weakly immunogenic spontaneous fibrosarcoma of the C3Hf/Sed mouse (designated FSa-II) was assessed by three in vivo cell survival methods: end-point dilution (TD50) assay, lung colony (LC) assay, and agar diffusion chamber (ADC) assay. The hypoxic fraction of this tumour was also determined by the ADC method. Although there was a good agreement of the cell survival data between the ADC and LC methods, the TD50 method yielded a considerably less steep cell survival curve. Beneficial aspects and limitations of each assay are discussed. In addition, the use of the ADC method for the growth of xenogeneic cell lines and a preliminary experiment with human tumour cells in non-immunosuppressed hosts suggest that this method may be a valuable adjunct for studying the growth and therapeutic responses of human tumour cells. PMID:6932931

  14. Optimization of cell seeding in a 2D bio-scaffold system using computational models.

    PubMed

    Ho, Nicholas; Chua, Matthew; Chui, Chee-Kong

    2017-05-01

    The cell expansion process is a crucial part of generating cells on a large-scale level in a bioreactor system. Hence, it is important to set operating conditions (e.g. initial cell seeding distribution, culture medium flow rate) to an optimal level. Often, the initial cell seeding distribution factor is neglected and/or overlooked in the design of a bioreactor using conventional seeding distribution methods. This paper proposes a novel seeding distribution method that aims to maximize cell growth and minimize production time/cost. The proposed method utilizes two computational models; the first model represents cell growth patterns whereas the second model determines optimal initial cell seeding positions for adherent cell expansions. Cell growth simulation from the first model demonstrates that the model can be a representation of various cell types with known probabilities. The second model involves a combination of combinatorial optimization, Monte Carlo and concepts of the first model, and is used to design a multi-layer 2D bio-scaffold system that increases cell production efficiency in bioreactor applications. Simulation results have shown that the recommended input configurations obtained from the proposed optimization method are the most optimal configurations. The results have also illustrated the effectiveness of the proposed optimization method. The potential of the proposed seeding distribution method as a useful tool to optimize the cell expansion process in modern bioreactor system applications is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    DTIC Science & Technology

    2012-09-01

    According to the recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re- growth is triggered by...shifting of microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize...the stem cell . We have established necessary mouse colonies and also developed the method to generate TAM. We have also shown that TAM indeed

  16. A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth

    PubMed Central

    Macklin, Paul

    2011-01-01

    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth. PMID:21331304

  17. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Valluri, Jagan V. (Inventor); Claudio, Pier Paolo (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  18. [Study on the effect of phloretin on inhibiting malignant pheotype of BEL-7402 cells].

    PubMed

    Luo, Hui; Wang, Ya-Jun; Chen, Jie; Liu, Jiang-Qin

    2008-07-01

    To investigate the effect of phloretin on inhibiting BEL-7402 cells' growth, invasive, migration and adhesion ability and the rate of colony formation. BEL-7402 cells' growth, invasive, migration and adhesion ability and the rate of colony formation were examined with MIT method and Costar Transwell. Phloretin inhibited the growth, invasive, migration and adhesion ability of BEL-7402 cells and reduced the rate of colony formation in dose-dependent. Phloretin can inhibit BEL-7402 cells' malignant pheotype.

  19. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Hedden, Douglas Keith (Inventor); Delucas, Lawrence (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  20. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell; Alterthum, Flavio

    1991-01-01

    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  1. The effect of growth phase and medium on the use of the firefly adenosine triphosphate (ATP) assay for the quantitation of bacteria

    NASA Technical Reports Server (NTRS)

    Bush, V. N.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was used as a rapid method to determine the number of bacteria in a urine sample after nonbacterial components were removed. Accurate cellular ATP values, determined when bacteria were grown in an environment similar to that in which they were found, were necessary for the calculation of bacterial titer in urine. Cellular ATP values vary depending on the extraction method, the cell growth phase, and cell growth conditions. ATP per cell values of stationary E. coli grown in urine were two times greater than ATP per cell values of cells grown in trypticase soy broth. Glucose and urea were examined as possible components responsible for the cellular ATP variation.

  2. Applications of novel effects derived from Si ingot growth inside Si melt without contact with crucible wall using noncontact crucible method to high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis

    2017-06-01

    The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.

  3. A Direct Cell Quenching Method for Cell-Culture Based Metabolomics

    EPA Science Inventory

    A crucial step in metabolomic analysis of cellular extracts is the cell quenching process. The conventional method first uses trypsin to detach cells from their growth surface. This inevitably changes the profile of cellular metabolites since the detachment of cells from the extr...

  4. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  5. Validation of a Medium-Throughput Method for Evaluation of Intracellular Growth of Mycobacterium tuberculosis▿

    PubMed Central

    Eklund, Daniel; Welin, Amanda; Schön, Thomas; Stendahl, Olle; Huygen, Kris; Lerm, Maria

    2010-01-01

    Intracellular pathogens such as Mycobacterium tuberculosis have adapted to a life inside host cells, in which they utilize host nutrients to replicate and spread. Ineffective methods for the evaluation of growth of intracellular pathogens in their true environment pose an obstacle for basic research and drug screening. Here we present the validation of a luminometry-based method for the analysis of intramacrophage growth of M. tuberculosis. The method, which is performed in a medium-throughput format, can easily be adapted for studies of other intracellular pathogens and cell types. The use of host cells in drug-screening assays dedicated to find antimicrobials effective against intracellular pathogens permits the discovery of not only novel antibiotics but also compounds with immunomodulatory and virulence-impairing activities, which may be future alternatives or complements to antibiotics. PMID:20107000

  6. Synthesis and Characterization of Doped ZnO Nanomaterials: Potential Application in Third Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Adcock Smith, Echo D.

    ZnO nanomaterials are being incorporated into next-generation solar cell designs including dye-sensitized solar cells, multijunction solar cells, and quantum dot sensitized solar cells. ZnO nanorod (NR) arrays and nanoparticles (NP) used in these devices are typically fabricated using chemical vapor deposition and/or high-temperature reaction conditions. These methods are costly, require high energy, pressure or excessive time, but produce repeatable, defined growth that is capable of easily incorporating metal dopants. Less expensive methods of fabrication such as chemical bath deposition (CBD) eliminate the costly steps but can suffer from undefined growth, excessive waste and have a difficult time incorporating dopants into ZnO materials without additives or increased pH. This dissertation presents a novel method of growing cobalt and vanadium doped ZnO nanomaterials through microwave synthesis. The cobalt growth was compared to standard CBD and found to be faster, less wasteful, reproducible and better at incorporating cobalt ions into the ZnO lattice than typical oven CBD method. The vanadium doped ZnO microwave synthesis procedure was found to produce nanorods, nanorod arrays, and nanoparticles simultaneously. Neither the cobalt nor the vanadium growth required pH changes, catalysts or additives to assist in doping and therefore use less materials than traditional CBD. This research is important because it offers a simple, quick way to grow ZnO nanostructures and is the first to report on growing both cobalt and vanadium doped zinc oxide nanorod arrays using microwave synthesis. This synthesis method presented is a viable candidate for replacing conventional growth synthesis which will result in lowering the cost and time of production of photovoltaics while helping drive forward the development of next-generation solar cells.

  7. Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.

    PubMed

    Lidgerwood, Grace E; Lim, Shiang Y; Crombie, Duncan E; Ali, Ray; Gill, Katherine P; Hernández, Damián; Kie, Josh; Conquest, Alison; Waugh, Hayley S; Wong, Raymond C B; Liang, Helena H; Hewitt, Alex W; Davidson, Kathryn C; Pébay, Alice

    2016-04-01

    We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.

  8. ITE inhibits growth of human pulmonary artery endothelial cells.

    PubMed

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  9. Ex Vivo Growth of Bioengineered Ligaments and Other Tissues

    NASA Technical Reports Server (NTRS)

    Altman, Gregory; Kaplan, David L.; Martin, Ivan; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues for use in surgical replacement of damaged anterior cruciate ligaments has been invented. An anterior cruciate ligament is one of two ligaments (the other being the posterior cruciate ligament) that cross in the middle of a knee joint and act to prevent the bones in the knee from sliding forward and backward relative to each other. Anterior cruciate ligaments are frequently torn in sports injuries and traffic accidents, resulting in pain and severe limitations on mobility. By making it possible to grow replacement anterior cruciate ligaments that structurally and functionally resemble natural ones more closely than do totally synthetic replacements, the method could create new opportunities for full or nearly full restoration of functionality in injured knees. The method is also adaptable to the growth of bioengineered replacements for other ligaments (e.g., other knee ligaments as well as those in the hands, wrists, and elbows) and to the production of tissues other than ligaments, including cartilage, bones, muscles, and blood vessels. The method is based on the finding that the histomorphological properties of a bioengineered tissue grown in vitro from pluripotent cells within a matrix are affected by the direct application of mechanical force to the matrix during growth generation. This finding provides important new insights into the relationships among mechanical stress, biochemical and cell-immobilization methods, and cell differentiation, and is applicable to the production of the variety of tissues mentioned above. Moreover, this finding can be generalized to nonmechanical (e.g., chemical and electromagnetic) stimuli that are experienced in vivo by tissues of interest and, hence, the method can be modified to incorporate such stimuli in the ex vivo growth of replacements for the various tissues mentioned above. In this method, a three-dimensional matrix made of a suitable material is seeded with pluripotent stem cells. The patient s bone-marrow stromal cells are preferably used as the pluripotent cells in this method. Suitable matrix materials are materials to which cells can adhere for example, collagen type I. The seeded matrix is attached to anchors at opposite ends and then the cells in the matrix are cultured under conditions appropriate for the growth and regeneration of cells. Suitable anchor materials are materials to which the matrix can attach; examples include demineralized bone and Goinopra coral that has been treated to convert its calcium carbonate to calcium phosphate.

  10. Immortalization of pig fibroblast cells by transposon-mediated ectopic expression of porcine telomerase reverse transcriptase.

    PubMed

    He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2016-08-01

    Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.

  11. Characterization of the cell growth analysis for detection of immortal cellular impurities in human mesenchymal stem cells.

    PubMed

    Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji

    2015-03-01

    The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. [Inhibitory effect of Biejiajian pills on HepG2 cell xenograft growth and expression of β-catenin and Tbx3 in nude mice].

    PubMed

    Wen, Bin; Sun, Hai-Tao; He, Song-Qi; LA, Lei; An, Hai-Yan; Pang, Jie

    2016-02-01

    To explore the molecular mechanism by which Biejiajian pills inhibit hepatocellular carcinoma in a nude mouse model bearing HepG2 cell xenograft. The inhibitory effect of Biejiajian pills on the growth of HepG2 cell xenograft in nude mice was observed. Immunohistochemical method was used to examine proliferating cell nuclear antigen (PCNA) expression in HepG2 cell xenograft, and TUNEL method was employed to detect the cell apoptosis; the expression levels of β-catenin and Tbx3 were measured by Western blotting. Biejiajian pills significantly suppressed the growth of HepG2 cell xenograft in nude mice. The tumor-bearing mice treated with a high and a moderate dose of Biejiajian pills showed significantly increased apoptosis rate of the tumor cells [(22.9±1.220)% and (14.7±0.50)%, respectively] compared with the control group [(5.5±0.90)%, P<0.05]. Treatment with Biejiajian pills significantly decreased the expressions of PNCA, β-catenin, and Tbx3 in the cell xenograft (P<0.05). Biejiajian pills can inhibit the growth of HepG2 cell xenograft in nude mice and promote tumor cell apoptosis possibly by inhibiting PNCA expression and the Wnt/β-catenin signaling pathway.

  13. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    NASA Technical Reports Server (NTRS)

    Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  14. Engineering a growth sensor to select intracellular antibodies in the cytosol of mammalian cells.

    PubMed

    Nguyen, Thuy Duong; Takasuka, Hitoshi; Kaku, Yoshihiro; Inoue, Satoshi; Nagamune, Teruyuki; Kawahara, Masahiro

    2017-07-01

    Intracellular antibodies (intrabodies) are expected to function as therapeutics as well as tools for elucidating in vivo function of proteins. In this study, we propose a novel intrabody selection method in the cytosol of mammalian cells by utilizing a growth signal, induced by the interaction of the target antigen and an scFv-c-kit growth sensor. Here, we challenge this method to select specific intrabodies against rabies virus nucleoprotein (RV-N) for the first time. As a result, we successfully select antigen-specific intrabodies from a naïve synthetic library using phage panning followed by our growth sensor-based intracellular selection method, demonstrating the feasibility of the method. Additionally, we succeed in improving the response of the growth sensor by re-engineering the linker region of its construction. Collectively, the described selection method utilizing a growth sensor may become a highly efficient platform for selection of functional intrabodies in the future. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Citrus-derived oils inhibit Satphylococcus aureus growth and alter its interaction with bovine mammary cells

    USDA-ARS?s Scientific Manuscript database

    This experiment examined the effects of cold-pressed, terpeneless citrus oil (CDO) on growth of Staphylococcus aureus, which a major cause of contagious bovine mastitis, and invasion of epithelial cells as modeled with bovine mammary cells (MAC-T). The broth dilution method (Muthaiyan et al., 2012)...

  16. Enhanced Growth and Hepatic Differentiation of Fetal Liver Epithelial Cells through Combinational and Temporal Adjustment of Soluble Factors

    PubMed Central

    Qian, Lichuan; Krause, Diane S.; Saltzman, W. Mark

    2012-01-01

    Fetal liver epithelial cells (FLEC) are valuable for liver cell therapy and tissue engineering, but methods for culture and characterization of these cells are not well developed. This work explores the influence of multiple soluble factors on FLEC, with the long-term goal of developing an optimal culture system to generate functional liver tissue. Our comparative analysis suggests hepatocyte growth factor (HGF) is required throughout the culture period. In the presence of HGF, addition of oncostatin M (OSM) at culture initiation results in concurrent growth and maturation, while constant presence of protective agents like ascorbic acid enhances cell survival. Study observations led to the development of a culture medium that provided optimal growth and hepatic differentiation conditions. FLEC expansion was observed to be ~2 fold of that under standard conditions, albumin secretion rate was 2 – 3 times greater than maximal values obtained with other media, and the highest level of glycogen accumulation among all conditions was observed with the developed medium. Our findings serve to advance culture methods for liver progenitors in cell therapy and tissue engineering applications. PMID:21922669

  17. Computational modelling of the scaffold-free chondrocyte regeneration: a two-way coupling between the cell growth and local fluid flow and nutrient concentration.

    PubMed

    Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B

    2015-11-01

    The in vitro chondrocyte cell culture process in a perfusion bioreactor provides enhanced nutrient supply as well as the flow-induced shear stress that may have a positive influence on the cell growth. Mathematical and computational modelling of such a culture process, by solving the coupled flow, mass transfer and cell growth equations simultaneously, can provide important insight into the biomechanical environment of a bioreactor and the related cell growth process. To do this, a two-way coupling between the local flow field and cell growth is required. Notably, most of the computational and mathematical models to date have not taken into account the influence of the cell growth on the local flow field and nutrient concentration. The present research aimed at developing a mathematical model and performing a numerical simulation using the lattice Boltzmann method to predict the chondrocyte cell growth without a scaffold on a flat plate placed inside a perfusion bioreactor. The model considers the two-way coupling between the cell growth and local flow field, and the simulation has been performed for 174 culture days. To incorporate the cell growth into the model, a control-volume-based surface growth modelling approach has been adopted. The simulation results show the variation of local fluid velocity, shear stress and concentration distribution during the culture period due to the growth of the cell phase and also illustrate that the shear stress can increase the cell volume fraction to a certain extent.

  18. Effects of aluminum in red spruce (Picea rubens) cell cultures: Cell growth and viability, mitochondrial activity, ultrastructure and potential sites of intracellular aluminum accumulation

    Treesearch

    Rakesh Minocha; Carolyn McQuattie; Wayne Fagerberg; Stephanie Long; Eun Woon Noh

    2001-01-01

    The effects of Al on red spruce (Picea rubens Sarg.) cell suspension cultures were examined using biochemical, stereo-logical and microscopic methods. Exposure to Al for 24-48 h resulted in a loss of cell viability, inhibition of growth and a significant decrease in mitochondrial activity. Soluble protein content increased in cells treated with Al....

  19. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  20. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  1. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  2. More Genetic Engineering With Cloned Hemoglobin Genes

    NASA Technical Reports Server (NTRS)

    Bailey, James E.

    1992-01-01

    Cells modified to enhance growth and production of proteins. Method for enhancing both growth of micro-organisms in vitro and production of various proteins or metalbolites in these micro-organisms provides for incorporation of selected chromosomal or extrachormosomal deoxyribonucleic acid (DNA) sequences into micro-organisms from other cells or from artificial sources. Incorporated DNA includes parts encoding desired product(s) or characteristic(s) of cells and parts that control expression of productor characteristic-encoding parts in response to variations in environment. Extended method enables increased research into growth of organisms in oxygen-poor environments. Industrial applications found in enhancement of processing steps requiring oxygen in fermentation, enzymatic degradation, treatment of wastes containing toxic chemicals, brewing, and some oxidative chemical reactions.

  3. The status of silicon ribbon growth technology for high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.

    1985-01-01

    More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).

  4. Method and system of culturing an algal mat

    DOEpatents

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  5. Mechanical forces and their second messengers in stimulating cell growth in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1992-01-01

    Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.

  6. A method to generate the surface cell layer of the 3D virtual shoot apex from apical initials.

    PubMed

    Kucypera, Krzysztof; Lipowczan, Marcin; Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2017-01-01

    The development of cell pattern in the surface cell layer of the shoot apex can be investigated in vivo by use of a time-lapse confocal images, showing naked meristem in 3D in successive times. However, how this layer is originated from apical initials and develops as a result of growth and divisions of their descendants, remains unknown. This is an open area for computer modelling. A method to generate the surface cell layer is presented on the example of the 3D paraboloidal shoot apical dome. In the used model the layer originates from three apical initials that meet at the dome summit and develops through growth and cell divisions under the isotropic surface growth, defined by the growth tensor. The cells, which are described by polyhedrons, divide anticlinally with the smallest division plane that passes depending on the used mode through the cell center, or the point found randomly near this center. The formation of the surface cell pattern is described with the attention being paid to activity of the apical initials and fates of their descendants. The computer generated surface layer that included about 350 cells required about 1200 divisions of the apical initials and their derivatives. The derivatives were arranged into three more or less equal clonal sectors composed of cellular clones at different age. Each apical initial renewed itself 7-8 times to produce the sector. In the shape and location and the cellular clones the following divisions of the initial were manifested. The application of the random factor resulted in more realistic cell pattern in comparison to the pure mode. The cell divisions were analyzed statistically on the top view. When all of the division walls were considered, their angular distribution was uniform, whereas in the distribution that was limited to apical initials only, some preferences related to their arrangement at the dome summit were observed. The realistic surface cell pattern was obtained. The present method is a useful tool to generate surface cell layer, study activity of initial cells and their derivatives, and how cell expansion and division are coordinated during growth. We expect its further application to clarify the question of a number and permanence or impermanence of initial cells, and possible relationship between their shape and oriented divisions, both on the ground of the growth tensor approach.

  7. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R

    2002-06-01

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less

  8. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    PubMed

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  9. An adjoint-based method for a linear mechanically-coupled tumor model: application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hormuth, David A.; Yankeelov, Thomas E.

    2018-06-01

    We present an efficient numerical method to quantify the spatial variation of glioma growth based on subject-specific medical images using a mechanically-coupled tumor model. The method is illustrated in a murine model of glioma in which we consider the tumor as a growing elastic mass that continuously deforms the surrounding healthy-appearing brain tissue. As an inverse parameter identification problem, we quantify the volumetric growth of glioma and the growth component of deformation by fitting the model predicted cell density to the cell density estimated using the diffusion-weighted magnetic resonance imaging data. Numerically, we developed an adjoint-based approach to solve the optimization problem. Results on a set of experimentally measured, in vivo rat glioma data indicate good agreement between the fitted and measured tumor area and suggest a wide variation of in-plane glioma growth with the growth-induced Jacobian ranging from 1.0 to 6.0.

  10. Effect of soy saponin on the growth of human colon cancer cells

    PubMed Central

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P < 0.05). Cells treated with saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P < 0.05). However, the apoptosis markers such as c-Jun and c-Fos were not significantly affected by saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  11. Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies.

    PubMed

    Wang, Xiaoyuan; Young, David James; Wu, Yun-Long; Loh, Xian Jun

    2018-03-02

    Stem cell culturing and differentiation is a very important research direction for tissue engineering. Thermogels are well suited for encapsulating cells because of their non-biotoxic nature and mild sol-gel transition as temperature increases. In particular, thermogels provide a 3D growth environment for stem cell growth, which is more similar to the extracellular matrix than flat substrates, so thermogels as a medium can overcome many of the cell abnormalities caused by 2D cell growth. In this review, we summarize the applications of thermogels in cell and stem cell culture in recent years. We also elaborate on the methods to induce stem cell differentiation by using thermogel-based 3D scaffolds. In particular, thermogels, encapsulating specific differentiation-inducing factor and having specific structures and moduli, can induce the differentiation into the desired tissue cells. Three dimensional thermogel scaffolds that control the growth and differentiation of cells will undoubtedly have a bright future in regenerative medicine.

  12. Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

    PubMed Central

    Fiorellini, Joseph P.

    2017-01-01

    Background For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Methods In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusions Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits. PMID:29090249

  13. Measurement of cellular copper levels in Bacillus megaterium during exponential growth and sporulation.

    PubMed

    Krueger, W B; Kolodziej, B J

    1976-01-01

    Both atomic absorption spectrophotometry (AAS) and neutron activation analysis have been utilized to determine cellular Cu levels in Bacillus megaterium ATCC 19213. Both methods were selected for their sensitivity to detection of nanogram quantities of Cu. Data from both methods demonstrated identical patterms of Cu uptake during exponenetial growth and sporulation. Late exponential phase cells contained less Cu than postexponential t2 cells while t5 cells contained amounts equivalent to exponential cells. The t11 phase-bright forespore containing cells had a higher Cu content than those of earlier time periods, and the free spores had the highest Cu content. Analysis of the culture medium by AAS corroborated these data by showing concomitant Cu uptake during exponential growth and into t2 postexponential phase of sporulation. From t2 to t4, Cu egressed from the cells followed by a secondary uptake during the maturation of phase-dark forespores into phase-bright forespores (t6--t9).

  14. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  15. Transgenic cells with increased plastoquinone levels and methods of use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, Richard T.; Subramanian, Sowmya; Cahoon, Edgar

    Disclosed herein are transgenic cells expressing a heterologous nucleic acid encoding a prephenate dehydrogenase (PDH) protein, a heterologous nucleic acid encoding a homogentisate solanesyl transferase (HST) protein, a heterologous nucleic acid encoding a deoxyxylulose phosphate synthase (DXS) protein, or a combination of two or more thereof. In particular examples, the disclosed transgenic cells have increased plastoquinone levels. Also disclosed are methods of increasing cell growth rates or production of biomass by cultivating transgenic cells expressing a heterologous nucleic acid encoding a PDH protein, a heterologous nucleic acid encoding an HST protein, a heterologous nucleic acid encoding a DXS protein, ormore » a combination of two or more thereof under conditions sufficient to produce cell growth or biomass.« less

  16. Determination of specific growth stages of plant cell suspension cultures by monitoring conductivity changes in the medium.

    PubMed

    Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M

    1974-03-01

    Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.

  17. A novel method for accurate patterning and positioning of biological cells

    NASA Astrophysics Data System (ADS)

    Jing, Gaoshan; Labukas, Joseph P.; Iqbal, Aziz; Perry, Susan Fueshko; Ferguson, Gregory S.; Tatic-Lucic, Svetlana

    2007-05-01

    The ability to anchor cells in predefined patterns on a surface has become very important for the development of cell-based sensors, tissue-engineering applications, and the understanding of basic cell functions. Currently, the most widely used technique to generate micrometer or sub-micrometer-sized patterns for various biological applications is microcontact printing (μCP). However, the fidelity of the final pattern may be compromised by deformation of the PDMS stamps used during printing. A novel technique for accurately patterning and positioning biological cells is presented, which can overcome this obstacle. We have fabricated a chip on a silicon wafer using standard photolithographic and deposition processes consisting of gold patterns on top of PECVD silicon dioxide. A hydrophobic self-assembled monolayer (SAM) derived from 1-hexadecanethiol (HDT) was coated on the gold surface to prevent cell growth, and a hydrophilic SAM derived from (3-trimethoxysilyl propyl)-diethylenetriamine (DETA) was coated on the exposed PECVD silicon dioxide surface to promote cell growth. Immortalized mouse hypothalamic neurons (GT1-7) were cultured in vitro on the chip, and patterned cells were fluorescently stained and visualized by fluorescence microscopy. By our method, hydrophobic and hydrophilic regions can be reliably generated and easily visualized under a microscope prior to cell culturing. Cell growth was precisely controlled and limited to specific areas. The achieved resolution was 2 microns, and it could be improved with high resolution photolithographic methods.

  18. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    PubMed

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  19. Growth Inhibitory Effect of Palatine Tonsil-derived Mesenchymal Stem Cells on Head and Neck Squamous Cell Carcinoma Cells

    PubMed Central

    Lim, Yun-Sung; Lee, Jin-Choon; Lee, Yoon Se; Wang, Soo-Geun

    2012-01-01

    Objectives Mesenchymal stem cells (MSCs) play an important role in the development and growth of tumor cells. However, the effect of human MSCs on the growth of human tumors is not well understood. The purpose of this study is to confirm the growth effect of palatine tonsil-derived MSCs (TD-MSCs) on head and neck squamous cell carcinoma (HNSCC) cell lines and to elucidate the mechanism of their action. Methods TD-MSCs were isolated from patient with chronic tonsillitis and tonsillar hypertrophy. Two human HNSCC cell lines (PNUH-12 and SNU-899) were studied and cocultured with isolated palatine tonsil-derived MSC. The growth inhibitory effect of MSCs on HNSCC cell lines was tested through methylthiazolyldiphenyl-tetrazolium (MTT) assay. The apoptosis induction effect of MSCs on cell lines was assessed with flow cytometry and reverse transcriptase (RT)-PCR. Results Palatine tonsil-derived MSCs exhibited a growth inhibitory effect on both cell lines. Cell cycle analysis showed an accumulation of tumor cells predominantly in G0/G1 phase with an increase in concentration of TD-MSCs, which was confirmed by increased mRNA expression of cell cycle negative regulator p21. Apoptosis of tumor cells increased significantly as concentration of cocultured TD-MSCs increased. Additionally, mRNA expression of caspase 3 was upregulated with increased concentration of TD-MSCs. Conclusion TD-MSCs have a potential growth inhibitory effect on HNSCC cell lines in vitro by inducing apoptotic cell death and G1 phase arrest of cell lines. PMID:22737289

  20. Large-cell Monte Carlo renormalization of irreversible growth processes

    NASA Technical Reports Server (NTRS)

    Nakanishi, H.; Family, F.

    1985-01-01

    Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.

  1. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  2. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  3. One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

    DOE PAGES

    Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...

    2016-11-16

    Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less

  4. One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herricks, Thurston; Dilworth, David J.; Mast, Fred D.

    Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less

  5. Methods of using viral replicase polynucleotides and polypeptides

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Bailey, Matthew A.; Gregory, Carolyn A.; Hoerster, George J.; Larkins, Brian A.; Dilkes, Brian R.; Burnett, Ronald; Woo, Young Min

    2007-12-18

    The invention provides novel methods of using viral replicase polypeptides and polynucleotides. Included are methods for increasing transformation frequencies, increasing crop yield, providing a positive growth advantage, modulating cell division, transiently modulating cell division, and for providing a means of positive selection.

  6. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-09-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.

  7. HLA-B27 Modulates Intracellular Growth of Salmonella Pathogenicity Island 2 Mutants and Production of Cytokines in Infected Monocytic U937 Cells

    PubMed Central

    Ge, Shichao; He, Qiushui; Granfors, Kaisa

    2012-01-01

    Background Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells. Methods/Principal Findings To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis. Conclusions The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis. PMID:22470519

  8. In vitro cholesteatoma growth and secretion of cytokines.

    PubMed

    Helgaland, Tore; Engelen, Bart; Olsnes, Carla; Aarstad, Hans Jørgen; Vassbotn, Flemming S

    2010-07-01

    Our results show a significant difference between skin and cholesteatoma biology in vitro. Cholesteatoma disease is a process of destruction characterized by uncontrolled growth of squamous epithelial cells in the middle ear or temporal bone. The pathophysiology behind the cholesteatoma development is controversial, and the mechanisms driving the cholesteatoma growth, migration and destructive properties is still unclear. We aimed to provide a method to study the effect of various compounds on cholesteatoma and skin tissue growth, as well as to further investigate the biological differences between normal skin and cholesteatoma tissue. We have established a method to study cholesteatoma biopsy tissue in vitro. Cholesteatoma tissues from patients undergoing surgery for chronic otitis were grown in culture medium and compared to growth patterns and behaviour of normal retroauricular skin. Conditioned medium was analysed for various secreted cytokines. We found a radial outgrowth of keratinocyte epithelium from the circular biopsies. After 5 days of culture we found a significant growth of both cholesteatoma and skin-derived cells. Cholesteatoma samples showed higher growth rate as compared with skin control cultures from the same patient. Moreover, the cholesteatoma cells showed higher production of monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-6 as compared with normal skin.

  9. Efavirenz directly modulates estrogen receptor and induces breast cancer cell growth

    PubMed Central

    Sikora, Matthew J.; Rae, James M.; Johnson, Michael D.; Desta, Zeruesenay

    2010-01-01

    Objectives Efavirenz-based HIV therapy is associated with breast hypertrophy and gynecomastia. Here, we tested the hypothesis that efavirenz induces gynecomastia through direct binding and modulation of estrogen receptor (ER). Methods To determine the effect of efavirenz on growth, the estrogen-dependent, ER-positive breast cancer cell lines MCF-7, T47D and ZR-75-1 were treated with efavirenz under estrogen-free conditions in the presence or absence of the anti-estrogen ICI 182,780. Cells treated with 17β-estradiol in the absence or presence of ICI 182,780 served as positive and negative controls, respectively. Cellular growth was assayed using the crystal violet staining method and an in vitro receptor binding assay was used to measure efavirenz’s ER binding affinity. Results Efavirenz induced growth in MCF-7 cells with an estimated EC50 of 15.7µM. This growth was reversed by ICI 182,780. Further, efavirenz binds directly to ER (IC50 of ~52µM) at roughly 1000-fold higher concentration than observed with E2. Conclusions Our data suggest that efavirenz-induced gynecomastia may be due, at least in part, to drug-induced ER activation in breast tissues. PMID:20408889

  10. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  11. The Use of Multidimensional Image-Based Analysis to Accurately Monitor Cell Growth in 3D Bioreactor Culture

    PubMed Central

    Baradez, Marc-Olivier; Marshall, Damian

    2011-01-01

    The transition from traditional culture methods towards bioreactor based bioprocessing to produce cells in commercially viable quantities for cell therapy applications requires the development of robust methods to ensure the quality of the cells produced. Standard methods for measuring cell quality parameters such as viability provide only limited information making process monitoring and optimisation difficult. Here we describe a 3D image-based approach to develop cell distribution maps which can be used to simultaneously measure the number, confluency and morphology of cells attached to microcarriers in a stirred tank bioreactor. The accuracy of the cell distribution measurements is validated using in silico modelling of synthetic image datasets and is shown to have an accuracy >90%. Using the cell distribution mapping process and principal component analysis we show how cell growth can be quantitatively monitored over a 13 day bioreactor culture period and how changes to manufacture processes such as initial cell seeding density can significantly influence cell morphology and the rate at which cells are produced. Taken together, these results demonstrate how image-based analysis can be incorporated in cell quality control processes facilitating the transition towards bioreactor based manufacture for clinical grade cells. PMID:22028809

  12. The use of multidimensional image-based analysis to accurately monitor cell growth in 3D bioreactor culture.

    PubMed

    Baradez, Marc-Olivier; Marshall, Damian

    2011-01-01

    The transition from traditional culture methods towards bioreactor based bioprocessing to produce cells in commercially viable quantities for cell therapy applications requires the development of robust methods to ensure the quality of the cells produced. Standard methods for measuring cell quality parameters such as viability provide only limited information making process monitoring and optimisation difficult. Here we describe a 3D image-based approach to develop cell distribution maps which can be used to simultaneously measure the number, confluency and morphology of cells attached to microcarriers in a stirred tank bioreactor. The accuracy of the cell distribution measurements is validated using in silico modelling of synthetic image datasets and is shown to have an accuracy >90%. Using the cell distribution mapping process and principal component analysis we show how cell growth can be quantitatively monitored over a 13 day bioreactor culture period and how changes to manufacture processes such as initial cell seeding density can significantly influence cell morphology and the rate at which cells are produced. Taken together, these results demonstrate how image-based analysis can be incorporated in cell quality control processes facilitating the transition towards bioreactor based manufacture for clinical grade cells.

  13. Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age.

    PubMed

    Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  14. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    NASA Astrophysics Data System (ADS)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna

    2017-03-01

    Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

  15. Electrochemical methods for generation of a biological proton motive force

    DOEpatents

    Zeikus, Joseph Gregory [Okemos, MI; Shin, Hyoun S [Lansing, MI; Jain, Mahendra K [Lexington, KY

    2008-12-02

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  16. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Gregory J.; Shin, Hyoun S.; Jain, Mahendra K.

    2002-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial, cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  17. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Joseph G.; Park, Doo

    2001-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  18. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  19. Platelet-rich plasma differs according to preparation method and human variability.

    PubMed

    Mazzocca, Augustus D; McCarthy, Mary Beth R; Chowaniec, David M; Cote, Mark P; Romeo, Anthony A; Bradley, James P; Arciero, Robert A; Beitzel, Knut

    2012-02-15

    Varying concentrations of blood components in platelet-rich plasma preparations may contribute to the variable results seen in recently published clinical studies. The purposes of this investigation were (1) to quantify the level of platelets, growth factors, red blood cells, and white blood cells in so-called one-step (clinically used commercial devices) and two-step separation systems and (2) to determine the influence of three separate blood draws on the resulting components of platelet-rich plasma. Three different platelet-rich plasma (PRP) separation methods (on blood samples from eight subjects with a mean age [and standard deviation] of 31.6 ± 10.9 years) were used: two single-spin processes (PRPLP and PRPHP) and a double-spin process (PRPDS) were evaluated for concentrations of platelets, red and white blood cells, and growth factors. Additionally, the effect of three repetitive blood draws on platelet-rich plasma components was evaluated. The content and concentrations of platelets, white blood cells, and growth factors for each method of separation differed significantly. All separation techniques resulted in a significant increase in platelet concentration compared with native blood. Platelet and white blood-cell concentrations of the PRPHP procedure were significantly higher than platelet and white blood-cell concentrations produced by the so-called single-step PRPLP and the so-called two-step PRPDS procedures, although significant differences between PRPLP and PRPDS were not observed. Comparing the results of the three blood draws with regard to the reliability of platelet number and cell counts, wide variations of intra-individual numbers were observed. Single-step procedures are capable of producing sufficient amounts of platelets for clinical usage. Within the evaluated procedures, platelet numbers and numbers of white blood cells differ significantly. The intra-individual results of platelet-rich plasma separations showed wide variations in platelet and cell numbers as well as levels of growth factors regardless of separation method.

  20. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  1. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells

    PubMed Central

    Gu, Ha Ra; Choi, Su Jin; Lee, Jae Cheol; Kim, You Cheoul; Han, Chul Ju; Kim, Jin; Yang, Ki Young; Kim, Yeon Joo; Noh, Geum Youb; No, So Hyeon; Jeong, Jae-Hoon

    2015-01-01

    Background/Aims Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. Methods Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. Results Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. Conclusions Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future. PMID:25834802

  2. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  3. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    NASA Astrophysics Data System (ADS)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  4. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.

    PubMed

    Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M

    2017-02-11

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  5. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone1[OPEN

    PubMed Central

    Avramova, Viktoriya; AbdElgawad, Hamada; Zhang, Zhengfeng; Fotschki, Bartosz; Casadevall, Romina; Vergauwen, Lucia; Knapen, Dries; Taleisnik, Edith; Guisez, Yves; Asard, Han; Beemster, Gerrit T.S.

    2015-01-01

    Drought is the most important crop yield-limiting factor, and detailed knowledge of its impact on plant growth regulation is crucial. The maize (Zea mays) leaf growth zone offers unique possibilities for studying the spatiotemporal regulation of developmental processes by transcriptional analyses and methods that require more material, such as metabolite and enzyme activity measurements. By means of a kinematic analysis, we show that drought inhibits maize leaf growth by inhibiting cell division in the meristem and cell expansion in the elongation zone. Through a microarray study, we observed the down-regulation of 32 of the 54 cell cycle genes, providing a basis for the inhibited cell division. We also found evidence for an up-regulation of the photosynthetic machinery and the antioxidant and redox systems. This was confirmed by increased chlorophyll content in mature cells and increased activity of antioxidant enzymes and metabolite levels across the growth zone, respectively. We demonstrate the functional significance of the identified transcriptional reprogramming by showing that increasing the antioxidant capacity in the proliferation zone, by overexpression of the Arabidopsis (Arabidopsis thaliana) iron-superoxide dismutase gene, increases leaf growth rate by stimulating cell division. We also show that the increased photosynthetic capacity leads to enhanced photosynthesis upon rewatering, facilitating the often-observed growth compensation. PMID:26297138

  6. Growth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development.

    PubMed

    Smaldone, Gregory T; Jin, Yujie; Whitfield, Damion L; Mu, Andrew Y; Wong, Edward C; Wuertz, Stefan; Singer, Mitchell

    2014-04-01

    Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.

  7. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling.

    PubMed

    Lal, Ashish; Thomas, Marshall P; Altschuler, Gabriel; Navarro, Francisco; O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy

    2011-11-01

    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.

  8. An interaction between hepatocyte growth factor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease

    PubMed Central

    Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela

    2011-01-01

    Background Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Design and Methods Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Results Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. Conclusions The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone. PMID:21486864

  9. Development of a micromanipulation method for single cell isolation of prokaryotes and its application in food safety.

    PubMed

    Hohnadel, Marisa; Maumy, Myriam; Chollet, Renaud

    2018-01-01

    For nearly a century, conventional microbiological methods have been standard practice for detecting and identifying pathogens in food. Nevertheless, the microbiological safety of food has improved and various rapid methods have been developed to overcome the limitations of conventional methods. Alternative methods are expected to detect low cell numbers, since the presence in food of even a single cell of a pathogenic organism may be infectious. With respect to low population levels, the performance of a detection method is assessed by producing serial dilutions of a pure bacterial suspension to inoculate representative food matrices with highly diluted bacterial cells (fewer than 10 CFU/ml). The accuracy of data obtained by multiple dilution techniques is not certain and does not exclude some colonies arising from clumps of cells. Micromanipulation techniques to capture and isolate single cells from environmental samples were introduced more than 40 years ago. The main limitation of the current micromanipulation technique is still the low recovery rate for the growth of a single cell in culture medium. In this study, we describe a new single cell isolation method and demonstrate that it can be used successfully to grow various types of microorganism from picked individual cells. Tests with Gram-positive and Gram-negative organisms, including cocci, rods, aerobes, anaerobes, yeasts and molds showed growth recovery rates from 60% to 100% after micromanipulation. We also highlight the use of our method to evaluate and challenge the detection limits of standard detection methods in food samples contaminated by a single cell of Salmonella enterica.

  10. Isolation and Characterization of Cancer Stem Cells of the Non-Small-Cell Lung Cancer (A549) Cell Line.

    PubMed

    Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham

    2016-01-01

    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.

  11. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and increased necrosis in the tumor mass. Conclusion The disparate molecular mechanisms of celecoxib-induced growth inhibition in human breast cancer cells depends upon the level of COX-2 expression and the invasive potential of the cell lines examined. Data suggest a role for COX-2 not only in the growth of cancer cells but also in activating the angiogenic pathway through regulating levels of vascular endothelial growth factor. PMID:15987447

  12. Single-Cell Growth Rates in Photoautotrophic Populations Measured by Stable Isotope Probing and Resonance Raman Microspectrometry

    PubMed Central

    Taylor, Gordon T.; Suter, Elizabeth A.; Li, Zhuo Q.; Chow, Stephanie; Stinton, Dallyce; Zaliznyak, Tatiana; Beaupré, Steven R.

    2017-01-01

    A new method to measure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm−1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably; mean coefficient of variation, CV, was 29 ± 3% (σ/x¯), of which only ~2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements. PMID:28824580

  13. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    PubMed

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  14. Effects of Non-Collagenous Proteins, TGF-β1, and PDGF-BB on Viability and Proliferation of Dental Pulp Stem Cells

    PubMed Central

    Tabatabaei, Fahimeh Sadat

    2016-01-01

    ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698

  15. The effect of crystallinity on cell growth in semi-crystalline microcellular foams by solid-state process: modeling and numerical simulation

    NASA Astrophysics Data System (ADS)

    Rezvanpanah, Elham; Ghaffarian Anbaran, S. Reza

    2017-11-01

    This study establishes a model and simulation scheme to describe the effect of crystallinity as one of the most effective parameters on cell growth phenomena in a solid batch foaming process. The governing model of cell growth dynamics, based on the well-known ‘Cell model’, is attained in details. To include the effect of crystallinity in the model, the properties of the polymer/gas mixtures (i.e. solubility, diffusivity, surface tension and viscosity) are estimated by modifying relations to consider the effect of crystallinity. A finite element-finite difference (FEFD) method is employed to solve the highly nonlinear and coupled equations of cell growth dynamics. The proposed simulation is able to evaluate all properties of the system at the given process condition and uses them to calculate the cell size, pressure and gas concentration gradient with time. A high-density polyethylene/nitrogen (HDPE/N2) system is used herein as a case study. Comparing the simulation results with the others works and experimental results verify the accuracy of the simulation scheme. The cell growth is a complicated combination of several phenomena. This study attempted to reach a better understanding of cell growth trend, driving and retarding forces and the effect of crystallinity on them.

  16. An Overview of NASA Biotechnology

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1997-01-01

    Biotechnology research at NASA has comprised three separate areas; cell science and tissue culture, separations methods, and macromolecular crystal growth. This presentation will primarily focus on the macromolecular crystal growth.

  17. Differential requirements for activation and growth of unprimed cytotoxic and helper T lymphocytes.

    PubMed

    Gullberg, M; Pobor, G; Bandeira, A; Larsson, E L; Coutinho, A

    1983-09-01

    The requirements for activation and growth of T lymphocytes capable of mediating either cytolytic activity or help to B lymphocytes were studied in unprimed splenic T cell populations. The selectivity of expression of Lyt-2 antigens, the reactivity to soluble concanavalin A (Con A), to partially purified interleukin 2 (IL 2, T cell growth factor[s]) and to lectin-pulsed macrophages (M phi) were used in this analysis. Lectin-dependent cytotoxicity assays and a novel method that allows for the detection of all effector helper cells, regardless of their clonal specificities, were used for the functional identification of the responding T cells. The results show a marked contrast between cytolytic and helper T cells in their growth and activation requirements. Thus, while Lyt-2+ cytotoxic T lymphocyte precursors grow exponentially in IL 2 after a short pulse with soluble Con A in the absence of accessory cells, Lyt-2- helper cell precursors completely fail to proliferate under the same conditions and require the continuous presence of lectin-pulsed M phi for significant growth. Furthermore, addition of IL 2 to M phi-stimulated cultures of Lyt-2- cells has no effect. T cells which produce IL 2 have the same growth characteristics as helper cells. In both cases, effector helper functions could be expanded more than 10-fold on a per cell basis by a 5-day-culture period under those growth supporting conditions. The development of effector helper functions, however, was strongly inhibited by the presence of Lyt-2+ T cells.

  18. Binding of fluoresceinated epidermal growth factor to A431 cell sub-populations studied using a model-independent analysis of flow cytometric fluorescence data.

    PubMed Central

    Chatelier, R C; Ashcroft, R G; Lloyd, C J; Nice, E C; Whitehead, R H; Sawyer, W H; Burgess, A W

    1986-01-01

    A method is developed for determining ligand-cell association parameters from a model-free analysis of data obtained with a flow cytometer. The method requires measurement of the average fluorescence per cell as a function of ligand and cell concentration. The analysis is applied to data obtained for the binding of fluoresceinated epidermal growth factor to a human epidermoid carcinoma cell line, A431. The results indicate that the growth factor binds to two classes of sites on A431 cells: 4 X 10(4) sites with a dissociation constant (KD) of less than or equal to 20 pM, and 1.5 X 10(6) sites with a KD of 3.7 nM. A derived plot of the average fluorescence per cell versus the average number of bound ligands per cell is used to construct binding isotherms for four sub-populations of A431 cells fractionated on the basis of low-angle light scatter. The four sub-populations bind the ligand with equal affinity but differ substantially in terms of the number of binding sites per cell. We also use this new analysis to critically evaluate the use of 'Fluorotrol' as a calibration standard in flow cytometry. PMID:3015587

  19. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  20. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices

    PubMed Central

    2018-01-01

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture. PMID:29552635

  1. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    PubMed

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  2. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    PubMed

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  3. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet

    1990-01-01

    Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.

  4. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    PubMed

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  5. GP88 (PC-Cell Derived Growth Factor, progranulin) stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    PubMed Central

    2011-01-01

    Background Aromatase inhibitors (AI) that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+) breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88), also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer. PMID:21658239

  6. Ion and lipid signaling in apical growth-a dynamic machinery responding to extracellular cues.

    PubMed

    Malhó, Rui; Serrazina, Susana; Saavedra, Laura; Dias, Fernando V; Ul-Rehman, Reiaz

    2015-01-01

    Apical cell growth seems to have independently evolved throughout the major lineages of life. To a certain extent, so does our body of knowledge on the mechanisms regulating this morphogenetic process. Studies on pollen tubes, root hairs, rhizoids, fungal hyphae, even nerve cells, have highlighted tissue and cell specificities but also common regulatory characteristics (e.g., ions, proteins, phospholipids) that our focused research sometimes failed to grasp. The working hypothesis to test how apical cell growth is established and maintained have thus been shaped by the model organism under study and the type of methods used to study them. The current picture is one of a dynamic and adaptative process, based on a spatial segregation of components that network to achieve growth and respond to environmental (extracellular) cues. Here, we explore some examples of our live imaging research, namely on cyclic nucleotide gated ion channels, lipid kinases and syntaxins involved in exocytosis. We discuss how their spatial distribution, activity and concentration suggest that the players regulating apical cell growth may display more mobility than previously thought. Furthermore, we speculate on the implications of such perspective in our understanding of the mechanisms regulating apical cell growth and their responses to extracellular cues.

  7. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    PubMed Central

    Rhode, Jennifer; Fogoros, Sarah; Zick, Suzanna; Wahl, Heather; Griffith, Kent A; Huang, Jennifer; Liu, J Rebecca

    2007-01-01

    Background Ginger (Zingiber officinale Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer. PMID:18096028

  8. Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors

    PubMed Central

    Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug

    2010-01-01

    Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288

  9. ASSESSMENT OF PC12 CELL DIFFERENTIATION AND NEURITE GROWTH: A COMPARISON OF MORPHOLOGICAL AND NEUROCHEMICAL MEASURES.

    EPA Science Inventory

    In order to screen large numbers of chemicals for their potential to produce developmental neurotoxicity new, in vitro methods are needed. One approach is to develop methods based on the biologic processes which underlie brain development including the growth and maturation of ce...

  10. Mathematical modeling of solid cancer growth with angiogenesis

    PubMed Central

    2012-01-01

    Background Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems. Methods We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms. Results The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer. Conclusions Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism. PMID:22300422

  11. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  12. Growth and differentiation of human lens epithelial cells in vitro on matrix

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  13. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.

    PubMed

    Kim, Kyukwang; Kim, Seunggyu; Jeon, Jessie S

    2018-02-03

    Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT) to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  14. Prospect of stem cell conditioned medium in regenerative medicine.

    PubMed

    Pawitan, Jeanne Adiwinata

    2014-01-01

    Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

  15. Overview of Methods for Overcoming Hindrance to Drug Delivery to Tumors, with Special Attention to Tumor Interstitial Fluid

    PubMed Central

    Baronzio, Gianfranco; Parmar, Gurdev; Baronzio, Miriam

    2015-01-01

    Every drug used to treat cancer (chemotherapeutics, immunological, monoclonal antibodies, nanoparticles, radionuclides) must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells, they must overcome a number of impediments created by the tumor microenvironment (TME), beginning with tumor interstitial fluid pressure (TIFP), and a multifactorial increase in composition of the extracellular matrix (ECM). A primary modifier of TME is hypoxia, which increases the production of growth factors, such as vascular endothelial growth factor and platelet-derived growth factor. These growth factors released by both tumor cells and bone marrow recruited myeloid cells form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass (tumor interstitial fluid), ultimately creating an increased pressure (TIFP). Fibroblasts are also up-regulated by the TME, and deposit fibers that further augment the density of the ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview, we will describe all the methods (drugs, nutraceuticals, and physical methods of treatment) able to lower TIFP and to modify ECM used for increasing drug concentration within the tumor tissue. PMID:26258072

  16. Isolation and culture of adult mouse vestibular nucleus neurons

    PubMed

    Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin

    2017-12-19

    Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.

  17. Adaptation of the "Dynamic Method" for measuring the specific respiration rate in oxygen transfer systems through diffusion membrane.

    PubMed

    Pamboukian, Marilena Martins; Pereira, Carlos Augusto; Augusto, Elisabeth de Fatima Pires; Tonso, Aldo

    2011-12-01

    Monitoring the specific respiration rate (Q(O2)) is a valuable tool to evaluate cell growth and physiology. However, for low Q(O2) values the accuracy may depend on the measurement methodology, as it is the case in animal cell culture. The widely used "Dynamic Method" imposes serious difficulties concerning oxygen transfer cancellation, especially through membrane oxygenation. This paper presents an improved procedure to this method, through an automated control of the gas inlet composition that can minimize the residual oxygen transfer driving force during the Q(O2) measurement phase. The improved technique was applied to animal cell cultivation, particularly three recombinant S2 (Drosophila melanogaster) insect cell lines grown in a membrane aeration bioreactor. The average measurements of the proposed method reached 98% of stationary liquid phase balance method, taken as a reference, compared to 21% when the traditional method was used. Furthermore, this methodology does not require knowledge of the volumetric transfer coefficient k(L)a, which may vary during growth. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    PubMed

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  19. A Simple Plant Growth Analysis.

    ERIC Educational Resources Information Center

    Oxlade, E.

    1985-01-01

    Describes the analysis of dandelion peduncle growth based on peduncle length, epidermal cell dimensions, and fresh/dry mass. Methods are simple and require no special apparatus or materials. Suggests that limited practical work in this area may contribute to students' lack of knowledge on plant growth. (Author/DH)

  20. Curcumin suppresses cell growth and invasion and induces apoptosis by down-regulation of Skp2 pathway in glioma cells

    PubMed Central

    Su, Jingna; Ma, Renqiang; Yin, Xuyuan; Zhou, Xiuxia; Li, Huabin; Wang, Zhiwei

    2015-01-01

    Studies have demonstrated that curcumin exerts its tumor suppressor function in a variety of human cancers including glioma. However, the exact underlying molecular mechanisms remain obscure. Emerging evidence has revealed that Skp2 (S-phase kinase associated protein 2) plays an oncogenic role in tumorigenesis. Therefore, we aim to determine whether curcumin suppresses the Skp2 expression, leading to the inhibition of cell growth, invasion, induction of apoptosis, and cell cycle arrest. To this end, we conducted multiple methods such as MTT assay, Flow cytometry, Wound healing assay, invasion assay, RT-PCR, Western blotting, and transfection to explore the functions and molecular insights of curcumin in glioma cells. We found that curcumin significantly inhibited cell growth, suppressed cell migration and invasion, induced apoptosis and cell cycle arrest in glioma cells. Furthermore, we observed that overexpression of Skp2 promoted cell growth, migration, and invasion, whereas depletion of Skp2 suppressed cell growth, migration, and invasion and triggered apoptosis in glioma cells. Mechanistically, we defined that curcumin markedly down-regulated Skp2 expression and subsequently up-regulated p57 expression. Moreover, our results demonstrated that curcumin exerts its antitumor activity through inhibition of Skp2 pathway. Collectively, our findings suggest that targeting Skp2 by curcumin could be a promising therapeutic approach for glioma prevention and therapy. PMID:26046466

  1. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  2. Antibacterial and anticancer PDMS surface for mammalian cell growth using the Chinese herb extract paeonol(4-methoxy-2-hydroxyacetophenone)

    NASA Astrophysics Data System (ADS)

    Jiao, Jiajia; Sun, Lili; Guo, Zaiyu; Hou, Sen; Holyst, Robert; Lu, Yun; Feng, Xizeng

    2016-12-01

    Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.

  3. A plant cell division algorithm based on cell biomechanics and ellipse-fitting

    PubMed Central

    Abera, Metadel K.; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L. A. T. M.; Carmeliet, Jan; Nicolai, Bart M.

    2014-01-01

    Background and Aims The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. Methods The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. Key Results The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. Conclusions The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico. PMID:24863687

  4. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.

    PubMed

    Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu

    2016-03-01

    The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.

    PubMed

    Roy, Jared N; Luckarift, Heather R; Sizemore, Susan R; Farrington, Karen E; Lau, Carolin; Johnson, Glenn R; Atanassov, Plamen

    2013-07-10

    In this work we present a biological fuel cell fabricated by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. This concept is devised as an extension to traditional biochemical methods by incorporating diverse biological catalysts with the aim of powering small devices. In preparing the biological fuel cell anode, novel hierarchical-structured architectures and biofilm configurations were investigated. A method for creating an artificial biofilm based on encapsulating microorganisms in a porous, thin film of silica was compared with S. oneidensis biofilms that were allowed to colonize naturally. Results indicate comparable current and power densities for artificial and natural biofilm formations, based on growth characteristics. As a result, this work describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Improved Protocol for Chondrogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells -Effect of PTHrP and FGF-2 on TGFβ1/BMP2-Induced Chondrocytes Hypertrophy.

    PubMed

    Nasrabadi, Davood; Rezaeiani, Siamak; Eslaminejad, Mohamadreza Baghaban; Shabani, Aliakbar

    2018-04-24

    Growth factors have a pivotal role in chondrogenic differentiation of stem cells. The differential effects of known growth factors involved in the maintenance and homeostasis of cartilage tissue have been previously studied in vitro. However, there are few reported researches about the interactional effects of growth factors on chondrogenic differentiation of stem cells. The aim of this study is to examine the combined effects of four key growth factors on chondrogenic differentiation of mesenchymal stem cells (MSCs). Isolated and expanded rabbit bone marrow-derived MSCs underwent chondrogenic differentiation in a micromass cell culture system that used a combination of the following growth factors: transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP2), parathyroid hormone related protein (PTHrP), and fibroblast growth factor 2 (FGF2) according to a defined program. The chondrogenic differentiation program was analyzed by histochemistry methods, quantitative RT-PCR (qRT-PCR), and measurement of matrix deposition of sulfated glycosaminoglycan (sGAG) and collagen content at days 16, 23, and 30. The results showed that the short-term combination of TGF-β1 and BMP-2 increased sGAG and collagen content, Alkaline phosphates (ALP) activity, and type X collagen (COL X) expression. Application of either PTHrP or FGF2 simultaneously decreased TGF-β1/BMP-2 induced hypertrophy and chondrogenic markers (at least for FGF2). However, successive application of PTHrP and FGF2 dramatically maintained the synergistic effects of TGF-β1/BMP-2 on the chondrogenic differentiation potential of MSCs and decreased unwanted hypertrophic markers. This new method can be used effectively in chondrogenic differentiation programs.

  7. A drift-diffusion checkpoint model predicts a highly variable and growth-factor-sensitive portion of the cell cycle G1 phase.

    PubMed

    Jones, Zack W; Leander, Rachel; Quaranta, Vito; Harris, Leonard A; Tyson, Darren R

    2018-01-01

    Even among isogenic cells, the time to progress through the cell cycle, or the intermitotic time (IMT), is highly variable. This variability has been a topic of research for several decades and numerous mathematical models have been proposed to explain it. Previously, we developed a top-down, stochastic drift-diffusion+threshold (DDT) model of a cell cycle checkpoint and showed that it can accurately describe experimentally-derived IMT distributions [Leander R, Allen EJ, Garbett SP, Tyson DR, Quaranta V. Derivation and experimental comparison of cell-division probability densities. J. Theor. Biol. 2014;358:129-135]. Here, we use the DDT modeling approach for both descriptive and predictive data analysis. We develop a custom numerical method for the reliable maximum likelihood estimation of model parameters in the absence of a priori knowledge about the number of detectable checkpoints. We employ this method to fit different variants of the DDT model (with one, two, and three checkpoints) to IMT data from multiple cell lines under different growth conditions and drug treatments. We find that a two-checkpoint model best describes the data, consistent with the notion that the cell cycle can be broadly separated into two steps: the commitment to divide and the process of cell division. The model predicts one part of the cell cycle to be highly variable and growth factor sensitive while the other is less variable and relatively refractory to growth factor signaling. Using experimental data that separates IMT into G1 vs. S, G2, and M phases, we show that the model-predicted growth-factor-sensitive part of the cell cycle corresponds to a portion of G1, consistent with previous studies suggesting that the commitment step is the primary source of IMT variability. These results demonstrate that a simple stochastic model, with just a handful of parameters, can provide fundamental insights into the biological underpinnings of cell cycle progression.

  8. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    PubMed Central

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID:24832156

  9. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    PubMed

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  10. Optimal control on bladder cancer growth model with BCG immunotherapy and chemotherapy

    NASA Astrophysics Data System (ADS)

    Dewi, C.; Trisilowati

    2015-03-01

    In this paper, an optimal control model of the growth of bladder cancer with BCG (Basil Calmate Guerin) immunotherapy and chemotherapy is discussed. The purpose of this optimal control is to determine the number of BCG vaccine and drug should be given during treatment such that the growth of bladder cancer cells can be suppressed. Optimal control is obtained by applying Pontryagin principle. Furthermore, the optimal control problem is solved numerically using Forward-Backward Sweep method. Numerical simulations show the effectiveness of the vaccine and drug in controlling the growth of cancer cells. Hence, it can reduce the number of cancer cells that is not infected with BCG as well as minimize the cost of the treatment.

  11. A novel tracing method for the segmentation of cell wall networks.

    PubMed

    De Vylder, Jonas; Rooms, Filip; Dhondt, Stijn; Inze, Dirk; Philips, Wilfried

    2013-01-01

    Cell wall networks are a common subject of research in biology, which are important for plant growth analysis, organ studies, etc. In order to automate the detection of individual cells in such cell wall networks, we propose a new segmentation algorithm. The proposed method is a network tracing algorithm, exploiting the prior knowledge of the network structure. The method is applicable on multiple microscopy modalities such as fluorescence, but also for images captured using non invasive microscopes such as differential interference contrast (DIC) microscopes.

  12. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  13. Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation.

    PubMed

    Chen, Kevin G; Mallon, Barbara S; Johnson, Kory R; Hamilton, Rebecca S; McKay, Ronald D G; Robey, Pamela G

    2014-05-01

    Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities. Here, we shed light on the structural relationship between hPSC colonies/embryoid bodies and early-stage embryos in order to optimize current culture methods based on the insights from developmental biology. We further highlight core signaling pathways that underlie multiple epithelial-to-mesenchymal transitions (EMTs), cellular heterogeneity, and chromosomal instability in hPSCs. We also analyze emerging methods such as non-colony type monolayer (NCM) and suspension culture, which provide alternative growth models for hPSC expansion and differentiation. Furthermore, based on the influence of cell-cell interactions and signaling pathways, we propose concepts, strategies, and solutions for production of clinical-grade hPSCs, stem cell precursors, and miniorganoids, which are pivotal steps needed for future clinical applications. Published by Elsevier B.V.

  14. Establishment of A431 cell membrane chromatography-RPLC method for screening target components from Radix Caulophylli.

    PubMed

    Hou, Xiaofang; Wang, Sicen; Hou, Jingjing; He, Langchong

    2011-03-01

    We describe here an analytical method of A431 cell membrane chromatography (A431/CMC) (CMC, cell membrane chromatography) combined with RPLC for recognition, separation, and identification of target components from traditional Chinese medicines (TCMs) Radix Caulophylli. The A431 cells with high expressed epidermal growth factor receptor (EGFR) were used to prepare the stationary phase in the CMC model. Retention fractions on the A431-CMC model were collected using an automated fraction collection and injection module (FC/I). Each fraction was analyzed by RPLC under the optimized conditions. Gefitinib and erlotinib were used as standard compounds to investigate the suitability and reliability of the A431 cell membrane chromatography-RPLC method prior to screening target component from Radix Caulophylli total alkaloids. The results indicated that caulophine and taspine were the target component acting on the epidermal growth factor receptor. This method could be an efficient way in drug discovery using natural medicinal herbs as a source of novel compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lignification of developing maize (Zea mays L.) endosperm transfer cells and starchy endosperm cells

    PubMed Central

    Rocha, Sara; Monjardino, Paulo; Mendonça, Duarte; da Câmara Machado, Artur; Fernandes, Rui; Sampaio, Paula; Salema, Roberto

    2014-01-01

    Endosperm transfer cells in maize have extensive cell wall ingrowths that play a key role in kernel development. Although the incorporation of lignin would support this process, its presence in these structures has not been reported in previous studies. We used potassium permanganate staining combined with transmission electron microscopy – energy dispersive X-ray spectrometry as well as acriflavine staining combined with confocal laser scanning microscopy to determine whether the most basal endosperm transfer cells (MBETCs) contain lignified cell walls, using starchy endosperm cells for comparison. We investigated the lignin content of ultrathin sections of MBETCs treated with hydrogen peroxide. The lignin content of transfer and starchy cell walls was also determined by the acetyl bromide method. Finally, the relationship between cell wall lignification and MBETC growth/flange ingrowth orientation was evaluated. MBETC walls and ingrowths contained lignin throughout the period of cell growth we monitored. The same was true of the starchy cells, but those underwent an even more extensive growth period than the transfer cells. Both the reticulate and flange ingrowths were also lignified early in development. The significance of the lignification of maize endosperm cell walls is discussed in terms of its impact on cell growth and flange ingrowth orientation. PMID:24688487

  16. Self-assembly of peptide-amphiphile nanofibers under physiological conditions

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Hartgerink, Jeffrey D [Pearland, TX; Beniash, Elia [Auburndale, MA

    2011-11-22

    The present invention provides a method of promoting neuron growth and development by contacting cells with a peptide amphiphile molecule in an aqueous solution in the presence of a metal ion. According to the method, the peptide amphiphile forms a cylindrical micellar nanofiber composed of beta-sheets, which promote neuron growth and development.

  17. Comparison of physical characteristics and cell culture test of hydroxyapatite/collagen composite coating on NiTi SMA: electrochemical deposition and chemically biomimetic growth

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Yang, Xianjin; Cai, Yanli; Cui, Zhenduo; Wei, Qiang

    2007-07-01

    A hydroxyapatite (HA)/collagen (COL) composite coating on NiTi shape memory alloy (SMA) was prepared by eletrochemical deposition (ELD) in modified simulated body fluid (MSBF). To draw comparisons of physical characteristics and bioactivity of the composite coating, the HA/COL composite coating was also prepared by chemically biomimetic growth (BG) and the ELD coating was re-soaked in MSBF again for further biomimetic growth (called EBG method in this paper). It was indicated that the c-axis of HA crystals was oriented parallel to the longitudinal direction of the COL fibril in BG and EBG coating, which could not found in ELD coating. The EBG method could induce a denser, thicker and better crystallized HA/COL coating. The cell culture test indicated that the BG coating presented better cell biocompatibility.

  18. Inferring time derivatives including cell growth rates using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  19. A novel concentration and viability detection method for Brettanomyces using the Cellometer image cytometry.

    PubMed

    Martyniak, Brian; Bolton, Jason; Kuksin, Dmitry; Shahin, Suzanne M; Chan, Leo Li-Ying

    2017-01-01

    Brettanomyces spp. can present unique cell morphologies comprised of excessive pseudohyphae and budding, leading to difficulties in enumerating cells. The current cell counting methods include manual counting of methylene blue-stained yeasts or measuring optical densities using a spectrophotometer. However, manual counting can be time-consuming and has high operator-dependent variations due to subjectivity. Optical density measurement can also introduce uncertainties where instead of individual cells counted, an average of a cell population is measured. In contrast, by utilizing the fluorescence capability of an image cytometer to detect acridine orange and propidium iodide viability dyes, individual cell nuclei can be counted directly in the pseudohyphae chains, which can improve the accuracy and efficiency of cell counting, as well as eliminating the subjectivity from manual counting. In this work, two experiments were performed to demonstrate the capability of Cellometer image cytometer to monitor Brettanomyces concentrations, viabilities, and budding/pseudohyphae percentages. First, a yeast propagation experiment was conducted to optimize software counting parameters for monitoring the growth of Brettanomyces clausenii, Brettanomyces bruxellensis, and Brettanomyces lambicus, which showed increasing cell concentrations, and varying pseudohyphae percentages. The pseudohyphae formed during propagation were counted either as multiple nuclei or a single multi-nuclei organism, where the results of counting the yeast as a single multi-nuclei organism were directly compared to manual counting. Second, a yeast fermentation experiment was conducted to demonstrate that the proposed image cytometric analysis method can monitor the growth pattern of B. lambicus and B. clausenii during beer fermentation. The results from both experiments displayed different growth patterns, viability, and budding/pseudohyphae percentages for each Brettanomyces species. The proposed Cellometer image cytometry method can improve efficiency and eliminate operator-dependent variations of cell counting compared with the traditional methods, which can potentially improve the quality of beverage products employing Brettanomyces yeasts.

  20. 9-AAA inhibits growth and induces apoptosis in human melanoma A375 and rat prostate adenocarcinoma AT-2 and Mat-LyLu cell lines but does not affect the growth and viability of normal fibroblasts.

    PubMed

    Korohoda, Włodzimierz; Hapek, Anna; Pietrzak, Monika; Ryszawy, Damian; Madeja, Zbigniew

    2016-11-01

    The present study found that, similarly to 5-fluorouracil, low concentrations (1-10 µM) of 9-aminoacridine (9-AAA) inhibited the growth of the two rat prostate cancer AT-2 and Mat-LyLu cell lines and the human melanoma A375 cell line. However, at the same concentrations, 9-AAA had no effect on the growth and apoptosis of normal human skin fibroblasts (HSFs). The differences between the cellular responses of the AT-2 and Mat-LyLu cell lines, which differ in malignancy, were found to be relatively small compared with the differences between normal HSFs and the cancer cell lines. Visible effects on the cell growth and survival of tumor cell lines were observed after 24-48 h of treatment with 9-AAA, and increased over time. The inhibition of cancer cell growth was found to be due to the gradually increasing number of cells dying by apoptosis, which was observed using two methods, direct counting and FlowSight analysis. Simultaneously, cell motile activity decreased to the same degree in cancer and normal cells within the first 8 h of incubation in the presence of 9-AAA. The results presented in the current study suggest that short-lasting tests for potential anticancer substances can be insufficient; which may result in cell type-dependent differences in the responses of cells to tested compounds that act with a delay being overlooked. The observed differences in responses between normal human fibroblasts and cancer cells to 9-AAA show the requirement for additional studies to be performed simultaneously on differently reacting cancer and normal cells, to determine the molecular mechanisms responsible for these differences.

  1. Optimising Cell Aggregate Expansion in a Perfused Hollow Fibre Bioreactor via Mathematical Modelling

    PubMed Central

    Chapman, Lloyd A. C.; Shipley, Rebecca J.; Whiteley, Jonathan P.; Ellis, Marianne J.; Byrne, Helen M.; Waters, Sarah L.

    2014-01-01

    The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet), together with the cell seeding distribution, on cell population growth in a single-fibre HFB. This is achieved using mathematical modelling and numerical methods to simulate the growth of cell aggregates along the outer surface of the fibre in response to the local oxygen concentration and fluid shear stress. The oxygen delivery to the cell aggregates and the fluid shear stress increase as the flow rate and pressure imposed at the lumen outlet are increased. Although the increased oxygen delivery promotes growth, the higher fluid shear stress can lead to cell death. For a given cell type and initial aggregate distribution, the operating parameters that give the most rapid overall growth can be identified from simulations. For example, when aggregates of rat cardiomyocytes that can tolerate shear stresses of up to are evenly distributed along the fibre, the inlet flow rate and outlet pressure that maximise the overall growth rate are predicted to be in the ranges to (equivalent to to ) and to (or 15.6 psi to 15.7 psi) respectively. The combined effects of the seeding distribution and flow on the growth are also investigated and the optimal conditions for growth found to depend on the shear tolerance and oxygen demands of the cells. PMID:25157635

  2. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE PAGES

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; ...

    2017-03-13

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  3. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    PubMed Central

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D; Strong, Elizabeth; Aizenberg, Joanna

    2017-01-01

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques. PMID:28287116

  4. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  5. Effects of aurothiomalate treatment on canine osteosarcoma in a murine xenograft model.

    PubMed

    Scharf, Valery F; Farese, James P; Siemann, Dietmar W; Abbott, Jeffrey R; Kiupel, Matti; Salute, Marc E; Milner, Rowan J

    2014-03-01

    Osteosarcoma is a highly fatal cancer, with most patients ultimately succumbing to metastatic disease. The purpose of this study was to evaluate the effects of the antirheumatoid drug aurothiomalate on canine and human osteosarcoma cells and on canine osteosarcoma growth and metastasis in a mouse xenograft model. We hypothesized that aurothiomalate would decrease osteosarcoma cell survival, tumor cellular proliferation, tumor growth, and metastasis. After performing clonogenic assays, aurothiomalate or a placebo was administered to 54 mice inoculated with canine osteosarcoma. Survival, tumor growth, embolization, metastasis, histopathology, cell proliferation marker Ki67, and apoptosis marker caspase-3 were compared between groups. Statistical analysis was carried out using the Kaplan-Meier method with the log-rank test and one-way analysis of variance with the Tukey's test or Dunn's method. Aurothiomalate caused dose-dependent inhibition of osteosarcoma cell survival (P<0.001) and decreased tumor growth (P<0.001). Pulmonary macrometastasis and Ki67 labeling were reduced with low-dose aurothiomalate (P=0.033 and 0.005, respectively), and tumor emboli and pulmonary micrometastases were decreased with high-dose aurothiomalate (P=0.010 and 0.011, respectively). There was no difference in survival, tumor development, ulceration, mitotic indices, tumor necrosis, nonpulmonary metastases, and caspase-3 labeling. Aurothiomalate treatment inhibited osteosarcoma cell survival and reduced tumor cell proliferation, growth, embolization, and pulmonary metastasis. Given aurothiomalate's established utility in canine and human medicine, our results suggest that this compound may hold promise as an adjunctive therapy for osteosarcoma. Further translational research is warranted to better characterize the dose response of canine and human osteosarcoma to aurothiomalate.

  6. High Beginning-of-Life Efficiency p/n InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Weizer, Victor G.; Jenkins, Phillip P.; Ringel, Steven A.; Scheiman, David A.; Wilt, David M.; Brinker, David J.

    2004-01-01

    We have achieved a new record efficiency of 17.6%, (AM0) for a p/n InP homo-epitaxy solar cell. In addition, we have eliminated a previously observed photo-degradation of cell performance, which was due to losses in J(sub sc). Cells soaked in AM0 spectrum at one-sun intensity for an hour showed no significant change in cell performance. We have discovered carrier passivation effects when using Zn as the p-type dopant in the OMVPE growth of InP and have found a method to avoid the unexpected effects which result from typical operation of OMVPE cell growth.

  7. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    PubMed

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  8. Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    PubMed Central

    Black, S. Lucas; Dawson, Angela; Ward, F. Bruce; Allen, Rosalind J.

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure. PMID:24040140

  9. Effects of murine natural killer cells on Cryptococcus neoformans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabavi Nouri, N.

    Previous data generated by Murphy and McDaniel indicate that normal murine nylon wool nonadherent splenic cells, with the characteristics of natural killer (NK) cells, effectively inhibit the in vitro growth of Cryptococcus neoformans, a yeast-like pathogen. Nylon wood nonadherent cells from spleens of 7-8 week old mice were further fractionated on discontinuous Percoll gradients. The enrichment of NK cells in Percoll fractions 1 and 2 was confirmed by morphological examination, immunofluorescent staining, and by assessing the cytolytic activity of each Percoll cell fraction against YAC-1 targets in the 4 h /sup 51/Cr release assay. Cells isolated from each Percoll fractionmore » were tested for growth inhibitory activity against C neoformans, using an in vitro 18 h growth inhibition assay. The results showed that NK cell enrichment was concomitant with the enrichment of anti-cryptococcal activity the Percoll fractions 1 and 2. An immunolabeling method combined with scanning electron microscopy was used to demonstrate that the effector cells attached to C. neoformans were asialo GM/sub 1/ positive and, therefore, had NK cell characteristics. NK cells have Fc receptors on their surfaces , and are capable of antibody-dependent cell-mediated cytotoxicity (ADCC) against IgG-coated target cells. The author examined the effects of the IgG fraction of rabbit anti-cryptococcal antibody on the NK cell-mediated growth inhibition of C. neoformans. The data indicated that the effector cells involved in antibody-dependent growth inhibition of cryptococci are either NK cells or copurify and coexist in the same population with NK cells.« less

  10. Growth in liquid media.

    PubMed

    Elbing, Karen; Brent, Roger

    2002-08-01

    The procedure for inoculating overnight (starter) cultures of E. coli from a single colony is described along with considerations for growing larger cultures. Also included are two methods for monitoring cell growth using a spectrophotometer or a hemacytometer.

  11. SU-E-T-751: Three-Component Kinetic Model of Tumor Growth and Radiation Response for Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y; Dahlman, E; Leder, K

    Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethallymore » damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.« less

  12. Dynamic metabolic modeling for a MAB bioprocess.

    PubMed

    Gao, Jianying; Gorenflo, Volker M; Scharer, Jeno M; Budman, Hector M

    2007-01-01

    Production of monoclonal antibodies (MAb) for diagnostic or therapeutic applications has become an important task in the pharmaceutical industry. The efficiency of high-density reactor systems can be potentially increased by model-based design and control strategies. Therefore, a reliable kinetic model for cell metabolism is required. A systematic procedure based on metabolic modeling is used to model nutrient uptake and key product formation in a MAb bioprocess during both the growth and post-growth phases. The approach combines the key advantages of stoichiometric and kinetic models into a complete metabolic network while integrating the regulation and control of cellular activity. This modeling procedure can be easily applied to any cell line during both the cell growth and post-growth phases. Quadratic programming (QP) has been identified as a suitable method to solve the underdetermined constrained problem related to model parameter identification. The approach is illustrated for the case of murine hybridoma cells cultivated in stirred spinners.

  13. Drug screens based on the newly found role of dystroglycan proteolysis and restoration of dystroglycan function thereof

    DOEpatents

    Bissell, Mina J.; Muschler, John L.

    2010-02-23

    The present invention provides methods and compositions for the diagnosis and treatment of cells lacking normal growth arresting characteristic. The present invention demonstrates that many tumor cells lack normal cell surface .alpha.-dystroglycan and thereby lack dystroglycan function. Dystroglycan can be lost from the cell surface by proteolytic shedding of a fragment of .alpha.-dystroglycan into the surrounding medium. Upon restoration of dystroglycan function and over-expression of the dystroglycan gene, the once tumorigenic cells revert to non-tumorigenic cells which polarize and arrest cell growth in the presence of basement membrane proteins, demonstrating that dystroglycan functions as a tumor marker and suppressor.

  14. Multiplication in liquid medium of Treponema sp. isolated from intestinal contents of swine.

    PubMed

    Binek, M; Szynkiewicz, Z

    1985-01-01

    Treponema hyodysenteriae and Treponema innocens were multiplied by a simple culture method in liquid medium. TSB medium was prepared by the PRAS method in plasma bottles containing glass beads. Spirochaetes were injected through the rubber stopper and the bottles were incubated while revolving round their axes. The most abundant growth of spirochaetes in rotary culture was observed after 72 h incubation at 40 degrees C. whereas the highest number of viable cells in stationary culture was observed after 120 h. However, in the latter case the number of cells was lower than introduced at inoculation. Growth of the bacteria was stimulated by equine serum and 5% addition of rumen fluid. Optimal growth temperature was 40 degrees C.

  15. Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity

    PubMed Central

    Tittarelli, A; Guerrero, I; Tempio, F; Gleisner, M A; Avalos, I; Sabanegh, S; Ortíz, C; Michea, L; López, M N; Mendoza-Naranjo, A; Salazar-Onfray, F

    2015-01-01

    Background: Alterations in connexin 43 (Cx43) expression and/or gap junction (GJ)-mediated intercellular communication are implicated in cancer pathogenesis. Herein, we have investigated the role of Cx43 in melanoma cell proliferation and apoptosis sensitivity in vitro, as well as metastatic capability and tumour growth in vivo. Methods: Connexin 43 expression levels, GJ coupling and proliferation rates were analysed in four different human melanoma cell lines. Furthermore, tumour growth and lung metastasis of high compared with low Cx43-expressing FMS cells were evaluated in vivo using a melanoma xenograft model. Results: Specific inhibition of Cx43 channel activity accelerated melanoma cell proliferation, whereas overexpression of Cx43 increased GJ coupling and reduced cell growth. Moreover, Cx43 overexpression in FMS cells increased basal and tumour necrosis factor-α-induced apoptosis and resulted in decreased melanoma tumour growth and lower number and size of metastatic foci in vivo. Conclusions: Our findings reveal an important role for Cx43 in intrinsically controlling melanoma growth, death and metastasis, and emphasise the potential use of compounds that selectively enhance Cx43 expression on melanoma in the future chemotherapy and/or immunotherapy protocols. PMID:26135897

  16. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth andmore » promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.« less

  17. Cryopreservation of Hair-Follicle Associated Pluripotent (HAP) Stem Cells Maintains Differentiation and Hair-Growth Potential.

    PubMed

    Hoffman, Robert M; Kajiura, Satoshi; Cao, Wenluo; Liu, Fang; Amoh, Yasuyuki

    2016-01-01

    Hair follicles contain nestin-expressing pluripotent stem cells which originate above the bulge area of the follicle, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. We have established efficient cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells as well as hair growth. We cryopreserved the whole hair follicle by slow-rate cooling in TC-Protector medium or in DMSO-containing medium and storage in liquid nitrogen or at -80 °C. After thawing and culture of the cryopreserved whisker follicles, growing HAP stem cells formed hair spheres. The hair spheres contained cells that differentiated to neurons, glial cells, and other cell types. The hair spheres derived from slow-cooling cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. We have also previously demonstrated that cryopreserved mouse whisker hair follicles maintain their hair-growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. DMSO-cryopreserved hair follicles also maintained the HAP stem cells, evidenced by P75 ntr expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair-shaft growth of cryopreserved hair follicles. HAP stem cells can be used for nerve and spinal-cord repair. This biobanking of hair follicles can allow each patient the potential for their own stem cell use for regenerative medicine or hair transplantation.

  18. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: A comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates.

    PubMed

    Glovinski, Peter V; Herly, Mikkel; Mathiasen, Anders B; Svalgaard, Jesper D; Borup, Rehannah; Talman, Maj-Lis M; Elberg, Jens J; Kølle, Stig-Frederik T; Drzewiecki, Krzysztof T; Fischer-Nielsen, Anne

    2017-02-01

    Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore, we tested PLs prepared via three methods from outdated buffy coat-derived platelet concentrates (PCs) to establish an efficient and feasible expansion of ASCs for clinical use. PLs were prepared by the freeze-thaw method from freshly drawn platelets or from outdated buffy coat-derived PCs stored in the platelet additive solution, InterSol. Three types of PLs were prepared from outdated PCs with platelets suspended in either (1) InterSol (not manipulated), (2) InterSol + supplemented with plasma or (3) plasma alone (InterSol removed). Using these PLs, we compared ASC population doubling time, cell yield, differentiation potential and cell surface markers. Gene expression profiles were analyzed using microarray assays, and growth factor concentrations in the cell culture medium were measured using enzyme-linked immunosorbent assay (ELISA). Of the three PL compositions produced from outdated PCs, removal of Intersol and resuspension in plasma prior to the first freezing process was overall the best. This specific outdated PL induced ASC growth kinetics, surface markers, plastic adherence and differentiation potentials comparable with PL from fresh platelets. ASCs expanded in PL from fresh versus outdated PCs exhibited different expressions of 17 overlapping genes, of which 10 were involved in cellular proliferation, although not significantly reflected by cell growth. Only minor differences in growth factor turnover were observed. PLs from outdated platelets may be an efficient and reliable source of human growth supplement allowing for large-scale ASC expansion for clinical use. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. In Vitro Expression of Cytokeratin 19 in Adipose-Derived Stem Cells Is Induced by Epidermal Growth Factor.

    PubMed

    Chen, Shangliang; Wang, Mingzhu; Chen, Xinglu; Chen, Shaolian; Liu, Li; Zhu, Jianbin; Wang, Jinhui; Yang, Xiaorong; Cai, Xiangsheng

    2018-06-21

    BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.

  20. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    PubMed Central

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines, or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoetin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines. PMID:18054822

  1. Overexpression of interleukin-6 and -8, cell growth inhibition and morphological changes in 2-hydroxyethyl methacrylate-treated human dental pulp mesenchymal stem cells.

    PubMed

    Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S

    2012-01-01

    To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA).   Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons.   Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05).   2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.

  2. Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data

    PubMed Central

    Kussell, Edo

    2017-01-01

    Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748

  3. Method for protecting bone marrow against chemotherapeutic drugs and radiation therapy using transforming growth factor beta 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.R.; Ruscetti, F.W.; Wiltrout, R.

    1989-06-29

    Presented is a method for protecting hematopoietic stem cells from the myelotoxicity of chemotherapeutic drugs or radiation therapy, which comprises administering to a subject a therapeutically effective amount of transforming growth factor beta 1 for protecting bone marrow from the myelotoxicity of chemotherapeutic drugs or radiation therapy.

  4. [Effect of EMP-1 gene on human esophageal cancer cell line].

    PubMed

    Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min

    2002-03-01

    EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.

  5. Development of a method to analyze single cell activity by using dielectrophoretic levitation.

    PubMed

    Hakoda, M; Hachisu, T; Wakizaka, Y; Mii, S; Kitajima, N

    2005-01-01

    In cell fusion and genetic recombination, although the activity of single cells is extremely important, there is no method to analyze single cell activity. Development of a quick analyzing method for single cell activity is desired in various fields. Dielectrophoresis (DEP) refers to the force exerted on the induced dipole moment of an uncharged dielectric and/or conductive particle by a nonuniform electric field. By applying DEP, we obtained experimentally a relationship between the cell activity and the dielectric property, Re[K(omega)], and examined how to evaluate the single cell activity by measuring Re[K(omega)] of a single cell. A cone and plate electrode geometry was adapted in order to achieve the feedback-controlled DEP levitation. The single cell is exposed to a nonuniform field induced by the cone and plate electrode, and a more polarizable cell is moved to the direction of the cone electrode by the DEP force. The cell settles in the position where the DEP force and gravity are balanced by controlling applied voltage. This settled position, measured on the center axis of the cone electrode, depended on the dielectric constant of the cell. From these results, the relationship between the specific growth rates in cell growth phase and the dielectric properties Re[K(omega)] was obtained. Furthermore, the effect on the cell activity of various stresses, such as concentration of carbon dioxide, temperature, etc., was examined.

  6. Three-dimensional simulation of pseudopod-driven swimming of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Campbell, Eric; Bagchi, Prosenjit

    2016-11-01

    Pseudopod-driven locomotion is common in eukaryotic cells, such as amoeba, neutrophils, and cancer cells. Pseudopods are protrusions of the cell body that grow, bifurcate, and retract. Due to the dynamic nature of pseudopods, the shape of a motile cell constantly changes. The actin-myosin protein dynamics is a likely mechanism for pseudopod growth. Existing theoretical models often focus on the acto-myosin dynamics, and not the whole cell shape dynamics. Here we present a full 3D simulation of pseudopod-driven motility by coupling a surface-bound reaction-diffusion (RD) model for the acto-myosin dynamics, a continuum model for the cell membrane deformation, and flow of the cytoplasmic and extracellular fluids. The whole cell is represented as a viscous fluid surrounded by a membrane. A finite-element method is used to solve the membrane deformation, and the RD model on the deforming membrane, while a finite-difference/spectral method is used to solve the flow fields inside and outside the cell. The fluid flow and cell deformation are coupled by the immersed-boundary method. The model predicts pseudopod growth, bifurcation, and retraction as observed for a swimming amoeba. The work provides insights on the role of membrane stiffness and cytoplasmic viscosity on amoeboid swimming. Funded by NSF CBET 1438255.

  7. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  8. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainey, Mel F.; Redwing, Joan M.

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis onmore » methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.« less

  9. Reversal of experimental Laron Syndrome by xenotransplantation of microencapsulated porcine Sertoli cells.

    PubMed

    Luca, Giovanni; Calvitti, Mario; Mancuso, Francesca; Falabella, Giulia; Arato, Iva; Bellucci, Catia; List, Edward O; Bellezza, Enrico; Angeli, Giovanni; Lilli, Cinzia; Bodo, Maria; Becchetti, Ennio; Kopchick, John J; Cameron, Don F; Baroni, Tiziano; Calafiore, Riccardo

    2013-01-10

    Recombinant human IGF-1 currently represents the only available treatment option for the Laron Syndrome, a rare human disorder caused by defects in the gene encoding growth hormone receptor, resulting in irreversibly retarded growth. Unfortunately, this treatment therapy, poorly impacts longitudinal growth (13% in females and 19% in males), while burdening the patients with severe side effects, including hypoglycemia, in association with the unfair chore of taking multiple daily injections that cause local intense pain. In this study, we have demonstrated that a single intraperitoneal graft of microencapsulated pig Sertoli cells, producing pig insulin-like growth factor-1, successfully promoted significant proportional growth in the Laron mouse, a unique animal model of the human Laron Syndrome. These findings indicate a novel, simply, safe and successful method for the cell therapy-based cure of the Laron Syndrome, potentially applicable to humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.

    PubMed

    Chung, Hyun Suk; Han, Gill Sang; Park, So Yeon; Shin, Hee-Won; Ahn, Tae Kyu; Jeong, Sohee; Cho, In Sun; Jung, Hyun Suk

    2015-05-20

    We report on the direct growth of anatase TiO2 nanorod arrays (A-NRs) on transparent conducting oxide (TCO) substrates that can be directly applied to various photovoltaic devices via a seed layer mediated epitaxial growth using a facile low-temperature hydrothermal method. We found that the crystallinity of the seed layer and the addition of an amine functional group play crucial roles in the A-NR growth process. The A-NRs exhibit a pure anatase phase with a high crystallinity and preferred growth orientation in the [001] direction. Importantly, for depleted heterojunction solar cells (TiO2/PbS), the A-NRs improve both electron transport and injection properties, thereby largely increasing the short-circuit current density and doubling their efficiency compared to TiO2 nanoparticle-based solar cells.

  11. The effect of isolation and culture methods on epithelial stem cell populations and their progeny-toward an improved cell expansion protocol for clinical application.

    PubMed

    Lenihan, Catherine; Rogers, Caroline; Metcalfe, Anthony D; Martin, Yella H

    2014-12-01

    The use of cultured epithelial keratinocytes in the treatment of burns and skin graft donor sites is well established in clinical practice. The most widely used culture method for clinical use was originally developed by Rheinwald and Green 40 years ago. This system uses irradiated mouse dermal fibroblasts as a feeder cell layer to promote keratinocyte growth, a process that is costly and labor-intensive for health care providers. The medium formulation contains several components of animal origin, which pose further safety risks for patients. Improvements and simplification in the culturing process would lead to clear advantages: improved safety through reduction of xenobiotic components and reduction in cost for health care providers by dispensing with feeder cells. We compared the Rheinwald and Green method to culture in three commercially available, feeder-free media systems with defined/absent components of animal origin. During the isolation process, short incubation times in high-strength trypsin resulted in increased numbers of liberated keratinocyte stem cells compared with longer incubation times. All three commercially available media tested in this study could support the expansion of keratinocytes, with phenotypes comparable to cells expanded using the established Rheinwald and Green method. Growth rates varied, with two of the media displaying comparable growth rates, whereas the third was significantly slower. Our study demonstrates the suitability of such feeder-free media systems in clinical use. It further outlines a range of techniques to evaluate keratinocyte phenotype when assessing the suitability of cells for clinical application. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2014-01-01

    An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.

  13. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    PubMed

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  14. Production of extracellular chitinase Beauveria bassiana under submerged fermentation conditions

    NASA Astrophysics Data System (ADS)

    Elawati, N. E.; Pujiyanto, S.; Kusdiyantini, E.

    2018-05-01

    Chitinase-producing microbes have attracted attention as one of the potential agents for control of phytopathogenic fungi and insect pests. The fungus that potentially produces chitinase is Beauveria bassiana. This study aims to determine the growth curve and chitinase activities of B. bassiana isolated from Helopeltis antonii insects after application. Method of measuring growth curve was done by dry cell period method, while for measurement of enzyme activity done by measuring absorbance at spectrophotometer. The results showed optimum growth time of B. bassiana with the highest cell count of 0.031 g on day 4 which was log phase, while the highest enzyme activity was 0,585 U / mL on the 4th day for 7 days incubation. Based on these results when correlated growth with enzyme production, chitinase enzyme products are produced in log phase and categorized as primary metabolism.

  15. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  16. Methods for transforming and expression screening of filamentous fungal cells with a DNA library

    DOEpatents

    Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie

    2015-06-02

    The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.

  17. [Experimental study on Dendrobium candidum polysaccharides on promotion of hair growth].

    PubMed

    Chen, Jian; Qi, Hui; Li, Jin-Biao; Yi, Yan-Qun; Chen, Dan; Hu, Xiao-Hong; Wang, Mei-Ling; Sun, Xing-Li; Wei, Xiao-Yong

    2014-01-01

    To observe the effect and mechanism of Dendrobium candidum polysaccharides (DCP) in promoting hair growth, in order to lay a foundation for the development and utilization of D. candidum. The water-extraction and alcohol-precipitation method was adopted to extract DCP, and the phenol-sulphuric acid method was used to determine its content. Thirty C57BL6J mice were collected to establish the hair loss model with hair removal cream. They were randomly divided into the control group, the positive control group and the DCP group, and given 0.2 mL of ultra-pure water, minoxidil tincture and DCP (5.0 g x L(-1)) 21 days. The mice hair growth scoring standard was adopted to evaluate the hair growth of C57BL/6J mice at 7, 14 d. The hairs in unit hair-losing areas of treated C57BL/6J mice at 21 d were weighed to evaluate the effect of DCP on the promotion of hair growth. MTT assay and RT-PCR method were used to evaluate the effect of DCP on the proliferatin of HaCaT cells and the mRNA expression of VEGF in HaCaT cells. The extraction percent of DCP was 29.87%, and its content was 79.65%. The average scores for the hair growth and weight of C57BL/6J mice of DCP group were much higher than the control group. The survival rate and mRNA expression of VEGF of HaCaT cells were much higher than the control group. DCP has the effect in promoting hair growth. Its mechanism may be related to the up-regulation of the mRNA expression of VEGF.

  18. Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening.

    PubMed

    Amaral, Robson L F; Miranda, Mariza; Marcato, Priscyla D; Swiech, Kamilla

    2017-01-01

    Introduction: Cell-based assays using three-dimensional (3D) cell cultures may reflect the antitumor activity of compounds more accurately, since these models reproduce the tumor microenvironment better. Methods: Here, we report a comparative analysis of cell behavior in the two most widely employed methods for 3D spheroid culture, forced floating (Ultra-low Attachment, ULA, plates), and hanging drop (HD) methods, using the RT4 human bladder cancer cell line as a model. The morphology parameters and growth/metabolism of the spheroids generated were first characterized, using four different cell-seeding concentrations (0.5, 1.25, 2.5, and 3.75 × 10 4 cells/mL), and then, subjected to drug resistance evaluation. Results: Both methods generated spheroids with a smooth surface and round shape in a spheroidization time of about 48 h, regardless of the cell-seeding concentration used. Reduced cell growth and metabolism was observed in 3D cultures compared to two-dimensional (2D) cultures. The optimal range of spheroid diameter (300-500 μm) was obtained using cultures initiated with 0.5 and 1.25 × 10 4 cells/mL for the ULA method and 2.5 and 3.75 × 10 4 cells/mL for the HD method. RT4 cells cultured under 3D conditions also exhibited a higher resistance to doxorubicin (IC 50 of 1.00 and 0.83 μg/mL for the ULA and HD methods, respectively) compared to 2D cultures (IC 50 ranging from 0.39 to 0.43). Conclusions: Comparing the results, we concluded that the forced floating method using ULA plates was considered more suitable and straightforward to generate RT4 spheroids for drug screening/cytotoxicity assays. The results presented here also contribute to the improvement in the standardization of the 3D cultures required for widespread application.

  19. Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening

    PubMed Central

    Amaral, Robson L. F.; Miranda, Mariza; Marcato, Priscyla D.; Swiech, Kamilla

    2017-01-01

    Introduction: Cell-based assays using three-dimensional (3D) cell cultures may reflect the antitumor activity of compounds more accurately, since these models reproduce the tumor microenvironment better. Methods: Here, we report a comparative analysis of cell behavior in the two most widely employed methods for 3D spheroid culture, forced floating (Ultra-low Attachment, ULA, plates), and hanging drop (HD) methods, using the RT4 human bladder cancer cell line as a model. The morphology parameters and growth/metabolism of the spheroids generated were first characterized, using four different cell-seeding concentrations (0.5, 1.25, 2.5, and 3.75 × 104 cells/mL), and then, subjected to drug resistance evaluation. Results: Both methods generated spheroids with a smooth surface and round shape in a spheroidization time of about 48 h, regardless of the cell-seeding concentration used. Reduced cell growth and metabolism was observed in 3D cultures compared to two-dimensional (2D) cultures. The optimal range of spheroid diameter (300–500 μm) was obtained using cultures initiated with 0.5 and 1.25 × 104 cells/mL for the ULA method and 2.5 and 3.75 × 104 cells/mL for the HD method. RT4 cells cultured under 3D conditions also exhibited a higher resistance to doxorubicin (IC50 of 1.00 and 0.83 μg/mL for the ULA and HD methods, respectively) compared to 2D cultures (IC50 ranging from 0.39 to 0.43). Conclusions: Comparing the results, we concluded that the forced floating method using ULA plates was considered more suitable and straightforward to generate RT4 spheroids for drug screening/cytotoxicity assays. The results presented here also contribute to the improvement in the standardization of the 3D cultures required for widespread application. PMID:28878686

  20. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  1. Gelatin-based laser direct-write technique for the precise spatial patterning of cells.

    PubMed

    Schiele, Nathan R; Chrisey, Douglas B; Corr, David T

    2011-03-01

    Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.

  2. Microarray platform affords improved product analysis in mammalian cell growth studies

    PubMed Central

    Li, Lingyun; Migliore, Nicole; Schaefer, Eugene; Sharfstein, Susan T.; Dordick, Jonathan S.; Linhardt, Robert J.

    2014-01-01

    High throughput (HT) platforms serve as cost-efficient and rapid screening method for evaluating the effect of cell culture conditions and screening of chemicals. The aim of the current study was to develop a high-throughput cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/MSX CHO cell line, which produces a therapeutic monoclonal antibody, was examined using microarray system in conjunction with conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60 nl spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base media results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the high-throughput microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as, cell growth, metabolism and productivity. PMID:24227746

  3. Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.

    PubMed

    Tambo, Asongu L; Bhanu, Bir

    2016-05-01

    The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.

  4. The Effect of Created Local Hyperosmotic Microenvironment in Microcapsule for the Growth and Metabolism of Osmotolerant Yeast Candida krusei

    PubMed Central

    Chen, Guo; Yao, Shanjing

    2013-01-01

    Candida krusei is osmotolerant yeast used for the production of glycerol. Addition of osmolyte such as NaCl into culture medium can increase the production of glycerol from glucose, but osmolytes may burden the glycerol separation. A coencapsulation method was suggested to create local extracellular hyperosmotic stress for glycerol accumulation. Firstly, the influence of osmotic stress induced by the addition of PEG4000 on growth and metabolism of free cell was studied in detail. Glycerol accumulation could be improved by employing PEG4000 as osmoregulator. Secondly, cells and PEG4000 were coentrapped in NaCS/PDMDAAC capsules to create local hyperosmotic stress. The effects of local hyperosmotic microenvironment on the cell growth and metabolism were studied. The coentrapment method increased the glycerol concentration by 25%, and the glycerol concentration attained 50 gL−1 with productivity of 18.8 gL−1Day−1 in shake flask. More importantly, the glycerol could be directly separated from the encapsulated cells. The entrapped cells containing PEG4000 were also cultivated for 15 days in an airlift reactor. The yield and productivity were ca. 35% and 21 gL−1Day−1, respectively. PMID:24294610

  5. The effect of created local hyperosmotic microenvironment in microcapsule for the growth and metabolism of osmotolerant yeast Candida krusei.

    PubMed

    Chen, Guo; Yao, Shanjing

    2013-01-01

    Candida krusei is osmotolerant yeast used for the production of glycerol. Addition of osmolyte such as NaCl into culture medium can increase the production of glycerol from glucose, but osmolytes may burden the glycerol separation. A coencapsulation method was suggested to create local extracellular hyperosmotic stress for glycerol accumulation. Firstly, the influence of osmotic stress induced by the addition of PEG4000 on growth and metabolism of free cell was studied in detail. Glycerol accumulation could be improved by employing PEG4000 as osmoregulator. Secondly, cells and PEG4000 were coentrapped in NaCS/PDMDAAC capsules to create local hyperosmotic stress. The effects of local hyperosmotic microenvironment on the cell growth and metabolism were studied. The coentrapment method increased the glycerol concentration by 25%, and the glycerol concentration attained 50 gL⁻¹ with productivity of 18.8 gL⁻¹Day⁻¹ in shake flask. More importantly, the glycerol could be directly separated from the encapsulated cells. The entrapped cells containing PEG4000 were also cultivated for 15 days in an airlift reactor. The yield and productivity were ca. 35% and 21 gL⁻¹Day⁻¹, respectively.

  6. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  7. Simultaneous screening of four epidermal growth factor receptor antagonists from Curcuma longa via cell membrane chromatography online coupled with HPLC-MS.

    PubMed

    Sun, Meng; Ma, Wei-na; Guo, Ying; Hu, Zhi-gang; He, Lang-chong

    2013-07-01

    The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC-MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar-turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose-dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves

    PubMed Central

    Andersen, Natalia D.; Srinivas, Shruthi; Piñero, Gonzalo; Monje, Paula V.

    2016-01-01

    We herein developed a protocol for the rapid procurement of adult nerve-derived Schwann cells (SCs) that was optimized to implement an immediate enzymatic dissociation of fresh nerve tissue while maintaining high cell viability, improving yields and minimizing fibroblast and myelin contamination. This protocol introduces: (1) an efficient method for enzymatic cell release immediately after removal of the epineurium and extensive teasing of the nerve fibers; (2) an adaptable drop-plating method for selective cell attachment, removal of myelin debris, and expansion of the initial SC population in chemically defined medium; (3) a magnetic-activated cell sorting purification protocol for rapid and effective fibroblast elimination; and (4) an optional step of cryopreservation for the storage of the excess of cells. Highly proliferative SC cultures devoid of myelin and fibroblast growth were obtained within three days of nerve processing. Characterization of the initial, expanded, and cryopreserved cell products confirmed maintenance of SC identity, viability and growth rates throughout the process. Most importantly, SCs retained their sensitivity to mitogens and potential for differentiation even after cryopreservation. To conclude, this easy-to-implement and clinically relevant protocol allows for the preparation of expandable homogeneous SC cultures while minimizing time, manipulation of the cells, and exposure to culture variables. PMID:27549422

  9. Measuring bacterial growth by refractive index tapered fiber optic biosensor.

    PubMed

    Zibaii, Mohammad Ismail; Kazemi, Alireza; Latifi, Hamid; Azar, Mahmoud Karimi; Hosseini, Seyed Masoud; Ghezelaiagh, Mohammad Hossein

    2010-12-02

    A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-l-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Fiber optic biosensor fabricated for measuring the growth rate of Escherichia coli K-12 in the aqueous

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Kazemi, A.; Latifi, H.; Karimi Azar, M.; Hosseini, S. M.; Ghezelaiagh, M. H.

    2010-09-01

    A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-L-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria.

  11. Method for passivating crystal silicon surfaces

    DOEpatents

    Wang, Qi [Littleton, CO; Wang, Tihu [Littleton, CO; Page, Matthew R [Littleton, CO; Yan, Yanfa [Littleton, CO

    2009-12-08

    In a method of making a c-Si-based cell or a .mu.c-Si-based cell, the improvement of increasing the minority charge carrier's lifetime, comprising: a) placing a c-Si or polysilicon wafer into CVD reaction chamber under a low vacuum condition and subjecting the substrate of the wafer to heating; and b) passing mixing gases comprising NH.sub.3/H.sub.2 through the reaction chamber at a low vacuum pressure for a sufficient time and at a sufficient flow rate to enable growth of an a-Si:H layer sufficient to increase the lifetime of the c-Si or polysilicon cell beyond that of the growth of an a-Si:H layer without treatment of the wafer with NH.sub.3/H.sub.2.

  12. Cell growth and differentiation on feeder layers is predicted to be influenced by bioreactor geometry.

    PubMed

    Peng, C A; Palsson, B Ø

    1996-06-05

    Tissue function is comprised of a complex interplay between biological and physicochemical rate processes. The design of bioreactors for tissue engineering must account for these processes simultaneously in order to obtain a bioreactor that provides a uniform environment for tissue growth and development. In the present study we consider the effects of fluid flow and mass transfer on the growth of a tissue in a parallel-plate bioreactor configuration. The parenchymal cells grow on a preformed stromal (feeder) layer that secretes a growth factor that stimulates parenchymal stem cell replication and differentiation. The biological dynamics are described by a unilineage model that describes the replication and differentiation of the tissue stem cell. The physicochemical rates are described by the Navier-Stokes and convective-diffusion equations. The model equations are solved by a finite element method. Two dimensionless groups govern the behavior of the solution. One is the Graetz number (Gz) that describes the relative rates of convection and diffusion, and the other a new dimensionless ratio (designated by P) that describes the interplay of the growth factor production, diffusion, and stimulation. Four geometries (slab, gondola, diamond, and radial shapes) for the parallel-plate bioreactor are analyzed. The uniformity of cell growth is measured by a two-dimensional coefficient of variance. The concentration distribution of the stroma-derived growth factor was computed first based on fluid flow and bioreactor geometry. Then the concomitant cell density distribution was obtained by integrating the calculated growth factor concentration with the parenchymal cell growth and unilineage differentiation process. The spatiotemporal cell growth patterns in four different bioreactor configurations were investigated under a variety of combinations of Gz (10(-1), 10(0), and 10(1)) and P(10(-2), 10(-1), 10(0), 10(1), and 10(2)). The results indicate high cell density and uniformity can be achieved for parameter values of P = 0.01, ..., 0.1 and Gz = 0.1, ..., 1.0. Among the four geometries investigated the radial-flow-type bioreactor provides the most uniform environment in which parenchymal cells can grow and differentiate ex vivo due to the absence of walls that are parallel to the flow paths creating slow flowing regions.

  13. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    PubMed

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process. © 2015 Wiley Periodicals, Inc.

  14. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  15. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less

  16. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    PubMed

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  17. Nerve growth factor injected into the gastric ulcer base incorporates into endothelial, neuronal, glial and epithelial cells: implications for angiogenesis, mucosal regeneration and ulcer healing.

    PubMed

    Tanigawa, T; Ahluwalia, A; Watanabe, T; Arakawa, T; Tarnawski, A S

    2015-08-01

    A previous study has demonstrated that locally administered growth factors such as epidermal growth factor, basic fibroblast growth factor and hepatocyte growth factor can accelerate healing of experimental gastric ulcers in rats. That study indicates that locally administered growth factors can exert potent biological effects resulting in enhanced gastric ulcers healing. However, the fate of injected growth factors, their retention and localization to specific cellular compartments have not been examined. In our preliminary study, we demonstrated that local injection of nerve growth factor to the base of experimental gastric ulcers dramatically accelerates ulcer healing, increases angiogenesis - new blood vessel formation, and improves the quality of vascular and epithelial regeneration. Before embarking on larger, definitive and time sequence studies, we wished to determine whether locally injected nerve growth factor is retained in gastric ulcer's tissues and taken up by specific cells during gastric ulcer healing. Gastric ulcers were induced in anesthetized rats by local application of acetic acid using standard methods; and, 60 min later fluorescein isothiocyanate-labeled nerve growth factor was injected locally to the ulcer base. Rats were euthanized 2, 5 and 10 days later. Gastric specimens were obtained and processed for histology. Unstained paraffin sections were examined under a fluorescence microscope, and the incorporation of fluorescein isothiocyanate-labeled nerve growth factor into various gastric tissue cells was determined and quantified. In addition, we performed immunostaining for S100β protein that is expressed in neural components. Five and ten days after ulcer induction labeled nerve growth factor (injected to the gastric ulcer base) was incorporated into endothelial cells of blood vessels, neuronal, glial and epithelial cells, myofibroblasts and muscle cells. This study demonstrates for the first time that during gastric ulcer healing locally administered exogenous nerve growth factor is retained in gastric tissue and is taken up by endothelial, neural, muscle and epithelial cells. This is likely the basis for the therapeutic action of locally administered nerve growth factor and its stimulation of angiogenesis, tissue regeneration and gastric ulcer healing.

  18. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  19. Covalent growth factor tethering to direct neural stem cell differentiation and self-organization.

    PubMed

    Ham, Trevor R; Farrag, Mahmoud; Leipzig, Nic D

    2017-04-15

    Tethered growth factors offer exciting new possibilities for guiding stem cell behavior. However, many of the current methods present substantial drawbacks which can limit their application and confound results. In this work, we developed a new method for the site-specific covalent immobilization of azide-tagged growth factors and investigated its utility in a model system for guiding neural stem cell (NSC) behavior. An engineered interferon-γ (IFN-γ) fusion protein was tagged with an N-terminal azide group, and immobilized to two different dibenzocyclooctyne-functionalized biomimetic polysaccharides (chitosan and hyaluronan). We successfully immobilized azide-tagged IFN-γ under a wide variety of reaction conditions, both in solution and to bulk hydrogels. To understand the interplay between surface chemistry and protein immobilization, we cultured primary rat NSCs on both materials and showed pronounced biological effects. Expectedly, immobilized IFN-γ increased neuronal differentiation on both materials. Expression of other lineage markers varied depending on the material, suggesting that the interplay of surface chemistry and protein immobilization plays a large role in nuanced cell behavior. We also investigated the bioactivity of immobilized IFN-γ in a 3D environment in vivo and found that it sparked the robust formation of neural tube-like structures from encapsulated NSCs. These findings support a wide range of potential uses for this approach and provide further evidence that adult NSCs are capable of self-organization when exposed to the proper microenvironment. For stem cells to be used effectively in regenerative medicine applications, they must be provided with the appropriate cues and microenvironment so that they integrate with existing tissue. This study explores a new method for guiding stem cell behavior: covalent growth factor tethering. We found that adding an N-terminal azide-tag to interferon-γ enabled stable and robust Cu-free 'click' immobilization under a variety of physiologic conditions. We showed that the tagged growth factors retained their bioactivity when immobilized and were able to guide neural stem cell lineage commitment in vitro. We also showed self-organization and neurulation from neural stem cells in vivo. This approach will provide another tool for the orchestration of the complex signaling events required to guide stem cell integration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Non-contact method for directing electrotaxis

    NASA Astrophysics Data System (ADS)

    Ahirwar, Dinesh K.; Nasser, Mohd W.; Jones, Travis H.; Sequin, Emily K.; West, Joseph D.; Henthorne, Timothy L.; Javor, Joshua; Kaushik, Aniruddha M.; Ganju, Ramesh K.; Subramaniam, Vish V.

    2015-06-01

    We present a method to induce electric fields and drive electrotaxis (galvanotaxis) without the need for electrodes to be in contact with the media containing the cell cultures. We report experimental results using a modification of the transmembrane assay, demonstrating the hindrance of migration of breast cancer cells (SCP2) when an induced a.c. electric field is present in the appropriate direction (i.e. in the direction of migration). Of significance is that migration of these cells is hindered at electric field strengths many orders of magnitude (5 to 6) below those previously reported for d.c. electrotaxis, and even in the presence of a chemokine (SDF-1α) or a growth factor (EGF). Induced a.c. electric fields applied in the direction of migration are also shown to hinder motility of non-transformed human mammary epithelial cells (MCF10A) in the presence of the growth factor EGF. In addition, we also show how our method can be applied to other cell migration assays (scratch assay), and by changing the coil design and holder, that it is also compatible with commercially available multi-well culture plates.

  1. Epidermal growth factor-like growth factors prevent apoptosis of alcohol-exposed human placental cytotrophoblast cells.

    PubMed

    Wolff, Garen S; Chiang, Po Jen; Smith, Susan M; Romero, Roberto; Armant, D Randall

    2007-07-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0-100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1-2 h of exposure to 50 mM alcohol. Exposure to 25-50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism.

  2. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    PubMed

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel

    2017-09-01

    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines.

    PubMed

    Singh, Mahipal; Sharma, Anil K

    2011-02-01

    Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.

  4. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh.

    PubMed

    Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon

    2015-03-11

    For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.

  5. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    PubMed Central

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  6. Inhibition effects of scorpion venom extracts (Buthus matensii Karsch) on the growth of human breast cancer MCF-7 cells.

    PubMed

    Li, Weiling; Li, Ye; Zhao, Yuwan; Yuan, Jieli; Mao, Weifeng

    2014-01-01

    To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms. Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting. Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group. These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.

  7. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    PubMed

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  8. Induction of biliary cholangiocarcinoma cell apoptosis by 103Pd cholangial radioactive stent gamma-rays.

    PubMed

    He, Gui-jin; Sun, Dan-dan; Ji, Da-wei; Sui, Dong-ming; Yu, Fa-qiang; Gao, Qin-yi; Dai, Xian-wei; Gao, Hong; Jiang, Tao; Dai, Chao-liu

    2008-06-05

    In recent years, interventional tumor therapy, involving implantation of intra-cholangial metal stents through percutaneous trans-hepatic punctures, has provided a new method for treating cholangiocarcinoma. (103)Pd cholangial radioactive stents can concentrate high radioactive dosages into the malignant tumors and kill tumor cells effectively, in order to prevent re-stenosis of the lumen caused by a relapsed tumor. The aim of the present study was to investigate the efficacy of gamma-rays released by the (103)Pd biliary duct radioactive stent in treating cholangiocarcinoma via induction of biliary cholangiocarcinoma cell apoptosis. A group of biliary duct cancer cells was collectively treated with a dose of gamma-rays. Cells were then examined by the 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl terazolium-bromide (MTT) technique for determining the inhibition rate of the biliary duct cancer cells, as well as with other methods including electron microscopy, DNA agarose gel electrophoresis, and flow cytometry were applied for the evaluation of their morphological and biochemical characteristics. The growth curve and the growth inhibition rate of the cells were determined, and the changes in the ultrastructure of the cholangiocarcinoma cells and the DNA electrophoresis bands were examined under a UV-lamp. The gamma-ray released by (103)Pd inhibited cholangiocarcinoma cell growth, as demonstrated when the growth rate of the cells was stunned by a gamma-ray with a dosage larger than 197.321 MBq. Typical features of cholangiocarcinoma cell apoptosis were observed in the 197.321 MBq dosage group, while cell necrosis was observed when irradiated by a dosage above 245.865 MBq. DNA agarose gel electrophoresis results were different between the 197.321 MBq irradiation dosage group, the 245.865 MBq irradiation dosage group, and the control group. (103)Pd radioactive stents which provide a radioactive dosage of 197.321 MBq are effective in the treatment of cholangiocarcinoma; (103)Pd radioactive stents should be useful for the clinical treatment of cholangiocarcinoma.

  9. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics.

    PubMed

    Pomo, Joseph M; Taylor, Robert M; Gullapalli, Rama R

    2016-01-01

    Spheroid based culture methods are gaining prominence to elucidate the role of the microenvironment in liver carcinogenesis. Additionally, the phenomenon of epithelial-mesenchymal transition also plays an important role in determining the metastatic potential of liver cancer. Tumor spheroids are thus important models to understand the basic biology of liver cancer. We cultured, characterized and examined the formation of compact 3-D micro-tumor spheroids in five hepatocellular carcinoma (HCC) cell lines, each with differing TP53 mutational status (wt vs mutant vs null). Spheroid viability and death was systematically measured over a course of a 10 day growth period using various assays. We also examined the TP53 and E-cadherin (CDH1) mRNA and protein expression status in each cell line of the 2-D and 3-D cell models. A novel finding of our study was the identification of variable 3-D spheroid morphology in individual cell lines, ranging from large and compact, to small and unstable spheroid morphologies. The observed morphological differences between the spheroids were robust and consistent over the duration of spheroid culture growth of 10 days in a repeatable manner. Highly variable CDH1 expression was identified depending on the TP53 mutational status of the individual HCC cell line, which may explain the variable spheroid morphology. We observed consistent patterns of TP53 and CDH1 expression in both 2-D and 3-D culture models. In conclusion, we show that 3-D spheroids are a useful model to determine the morphological growth characteristics of cell lines which are not immediately apparent in routine 2-D culture methods. 3-D culture methods may provide a better alternative to study the process of epithelial-mesenchymal transition (EMT) which is important in the process of liver cancer metastasis.

  10. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  11. Directional freezing for the cryopreservation of adherent mammalian cells on a substrate

    PubMed Central

    Braslavsky, Ido

    2018-01-01

    Successfully cryopreserving cells adhered to a substrate would facilitate the growth of a vital confluent cell culture after thawing while dramatically shortening the post-thaw culturing time. Herein we propose a controlled slow cooling method combining initial directional freezing followed by gradual cooling down to -80°C for robust preservation of cell monolayers adherent to a substrate. Using computer controlled cryostages we examined the effect of cooling rates and dimethylsulfoxide (DMSO) concentration on cell survival and established an optimal cryopreservation protocol. Experimental results show the highest post-thawing viability for directional ice growth at a speed of 30 μm/sec (equivalent to freezing rate of 3.8°C/min), followed by gradual cooling of the sample with decreasing rate of 0.5°C/min. Efficient cryopreservation of three widely used epithelial cell lines: IEC-18, HeLa, and Caco-2, provides proof-of-concept support for this new freezing protocol applied to adherent cells. This method is highly reproducible, significantly increases the post-thaw cell viability and can be readily applied for cryopreservation of cellular cultures in microfluidic devices. PMID:29447224

  12. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture

    PubMed Central

    Pijuan-Galitó, Sara; Tamm, Christoffer; Schuster, Jens; Sobol, Maria; Forsberg, Lars; Merry, Catherine L. R.; Annerén, Cecilia

    2016-01-01

    Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. PMID:27405751

  13. Directional freezing for the cryopreservation of adherent mammalian cells on a substrate.

    PubMed

    Bahari, Liat; Bein, Amir; Yashunsky, Victor; Braslavsky, Ido

    2018-01-01

    Successfully cryopreserving cells adhered to a substrate would facilitate the growth of a vital confluent cell culture after thawing while dramatically shortening the post-thaw culturing time. Herein we propose a controlled slow cooling method combining initial directional freezing followed by gradual cooling down to -80°C for robust preservation of cell monolayers adherent to a substrate. Using computer controlled cryostages we examined the effect of cooling rates and dimethylsulfoxide (DMSO) concentration on cell survival and established an optimal cryopreservation protocol. Experimental results show the highest post-thawing viability for directional ice growth at a speed of 30 μm/sec (equivalent to freezing rate of 3.8°C/min), followed by gradual cooling of the sample with decreasing rate of 0.5°C/min. Efficient cryopreservation of three widely used epithelial cell lines: IEC-18, HeLa, and Caco-2, provides proof-of-concept support for this new freezing protocol applied to adherent cells. This method is highly reproducible, significantly increases the post-thaw cell viability and can be readily applied for cryopreservation of cellular cultures in microfluidic devices.

  14. Growth Patterns Inferred from Anatomical Records 1

    PubMed Central

    Silk, Wendy Kuhn; Lord, Elizabeth M.; Eckard, Kathleen J.

    1989-01-01

    Our objective was to test whether accurate growth analyses can be obtained from anatomical records and some mathematical formulas. Roots of Zea mays L. were grown at one of two temperatures (19°C or 29°C) and were prepared with standard techniques for light microscopy. Positions of cell walls were digitized from micrographs. The digitized data were averaged and smoothed and used in formulas to estimate growth trajectories, Z(t), velocities, v(z), and strain rates, r(z), where Z(t) is the location occupied by the cellular particle at time t; and v(z) and r(z) are, respectively, the fields of growth velocity and strain rate. The relationships tested are: for Z(t), t = n * c; v(z) = l(z) * f; and r(z) = f * (∂/∂z (l(z))). In the formulas, n represents the number of cells between the origin and the position Z(t); l(z) is local cell length; the constant c, named the `cellochron,' denotes the time for successive cells to pass a spatial point distal to the meristem; l(z) is local cell length, and f is cell flux. Growth trajectories and velocity fields from the anatomical method are in good agreement with earlier analyses based on marking experiments at the two different temperatures. Growth strain rate fields show an unexpected oscillation which may be due to numerical artifacts or to a real oscillation in cell production rate. Images Figure 2 PMID:16666832

  15. The biocompatibility of modified experimental Portland cements with potential for use in dentistry.

    PubMed

    Camilleri, J

    2008-12-01

    To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.

  16. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions.

    PubMed

    Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K

    2017-03-15

    Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Real-Time Single Molecule Visualization of SH2 Domain Membrane Recruitment in Growth Factor Stimulated Cells.

    PubMed

    Oh, Dongmyung

    2017-01-01

    In the last decade, single molecule tracking (SMT) techniques have emerged as a versatile tool for molecular cell biology research. This approach allows researchers to monitor the real-time behavior of individual molecules in living cells with nanometer and millisecond resolution. As a result, it is possible to visualize biological processes as they occur at a molecular level in real time. Here we describe a method for the real-time visualization of SH2 domain membrane recruitment from the cytoplasm to epidermal growth factor (EGF) induced phosphotyrosine sites on the EGF receptor. Further, we describe methods that utilize SMT data to define SH2 domain membrane dynamics parameters such as binding (τ), dissociation (k d ), and diffusion (D) rates. Together these methods may allow us to gain greater understanding of signal transduction dynamics and the molecular basis of disease-related aberrant pathways.

  18. Monitoring of Water Spectral Pattern Reveals Differences in Probiotics Growth When Used for Rapid Bacteria Selection.

    PubMed

    Slavchev, Aleksandar; Kovacs, Zoltan; Koshiba, Haruki; Nagai, Airi; Bázár, György; Krastanov, Albert; Kubota, Yousuke; Tsenkova, Roumiana

    2015-01-01

    Development of efficient screening method coupled with cell functionality evaluation is highly needed in contemporary microbiology. The presented novel concept and fast non-destructive method brings in to play the water spectral pattern of the solution as a molecular fingerprint of the cell culture system. To elucidate the concept, NIR spectroscopy with Aquaphotomics were applied to monitor the growth of sixteen Lactobacillus bulgaricus one Lactobacillus pentosus and one Lactobacillus gasseri bacteria strains. Their growth rate, maximal optical density, low pH and bile tolerances were measured and further used as a reference data for analysis of the simultaneously acquired spectral data. The acquired spectral data in the region of 1100-1850nm was subjected to various multivariate data analyses - PCA, OPLS-DA, PLSR. The results showed high accuracy of bacteria strains classification according to their probiotic strength. Most informative spectral fingerprints covered the first overtone of water, emphasizing the relation of water molecular system to cell functionality.

  19. Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109

    PubMed Central

    Hockla, Alexandra; Radisky, Derek C.

    2010-01-01

    Serine proteases have been implicated in many stages of cancer development, facilitating tumor cell growth, invasion, and metastasis, and naturally occurring serine protease inhibitors have shown promise as potential anticancer therapeutics. Optimal design of inhibitors as potential therapeutics requires the identification of the specific serine proteases involved in disease progression and the functional targets responsible for the tumor-promoting properties. Here, we use the HMT-3522 breast cancer progression series grown in 3D organotypic culture conditions to find that serine protease inhibitors cause morphological reversion of the malignant T4-2 cells, assessed by inhibition of proliferation and formation of acinar structures with polarization of basal markers, implicating serine protease activity in their malignant growth behavior. We identify PRSS3/mesotrypsin upregulation in T4-2 cells as compared to their nonmalignant progenitors, and show that knockdown of PRSS3 attenuates, and treatment with recombinant purified mesotrypsin enhances, the malignant growth phenotype. Using proteomic methods, we identify CD109 as the functional proteolytic target of mesotrypsin. Our study identifies a new mediator and effector of breast cancer growth and progression. PMID:20035377

  20. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival

    PubMed Central

    Cruickshank, Sheena M; Wakenshaw, Louise; Cardone, John; Howdle, Peter D; Murray, Peter J; Carding, Simon R

    2008-01-01

    AIM: To investigate the function of NOD2 in colonic epithelial cells (CEC). METHODS: A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. RESULTS: In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2-/- mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. CONCLUSION: These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation. PMID:18855982

  1. Exact analytic solutions for a global equation of plant cell growth.

    PubMed

    Pietruszka, Mariusz

    2010-05-21

    A generalization of the Lockhart equation for plant cell expansion in isotropic case is presented. The goal is to account for the temporal variation in the wall mechanical properties--in this case by making the wall extensibility a time dependent parameter. We introduce a time-differential equation describing the plant growth process with some key biophysical aspects considered. The aim of this work was to improve prior modeling efforts by taking into account the dynamic character of the plant cell wall with characteristics reminiscent of damped (aperiodic) motion. The equations selected to encapsulate the time evolution of the wall extensibility offer a new insight into the control of cell wall expansion. We find that the solutions to the time dependent second order differential equation reproduce much of the known experimental data for long- and short-time scales. Additionally, in order to support the biomechanical approach, a new growth equation based on the action of expansin proteins is proposed. Remarkably, both methods independently converge to the same kind, sigmoid-shaped, growth description functional V(t) proportional, exp(-exp(-t)), properly describing the volumetric growth and, consequently, growth rate as its time derivative. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Therapeutic silence of pleiotrophin by targeted delivery of siRNA and its effect on the inhibition of tumor growth and metastasis.

    PubMed

    Zha, Lisha; He, Lichun; Xie, Weidong; Cheng, Jin; Li, Tong; Mohsen, Mona O; Lei, Fan; Storni, Federico; Bachmann, Martin; Chen, Hongquan; Zhang, Yaou

    2017-01-01

    Pleiotrophin (PTN) is a secreted cytokine that is expressed in various cancer cell lines and human tumor such as colon cancer, lung cancer, gastric cancer and melanoma. It plays significant roles in angiogenesis, metastasis, differentiation and cell growth. The expression of PTN in the adult is limited to the hippocampus in an activity-dependent manner, making it a very attractive target for cancer therapy. RNA interference (RNAi) offers great potential as a new powerful therapeutic strategy based on its highly specific and efficient silencing of a target gene. However, efficient delivery of small interfering RNA (siRNA) in vivo remains a significant hurdle for its successful therapeutic application. In this study, we first identified, on a cell-based experiment, applying a 1:1 mixture of two PTN specific siRNA engenders a higher silencing efficiency on both mRNA and protein level than using any of them discretely at the same dose. As a consequence, slower melanoma cells growth was also observed for using two specific siRNA combinatorially. To establish a robust way for siRNA delivery in vivo and further investigate how silence of PTN affects tumor growth, we tested three different methods to deliver siRNA in vivo: first non-targeted in-vivo delivery of siRNA via jetPEI; second lung targeted delivery of siRNA via microbubble coated jetPEI; third tumor cell targeted delivery of siRNA via transferrin-polyethylenimine (Tf-PEI). As a result, we found that all three in-vivo siRNAs delivery methods led to an evident inhibition of melanoma growth in non-immune deficiency C57BL/6 mice without a measureable change of ALT and AST activities. Both targeted delivery methods showed more significant curative effect than jetPEI. The lung targeted delivery by microbubble coated jetPEI revealed a comparable therapeutic effect with Tf-PEI, indicating its potential application for target delivery of siRNA in vivo.

  3. Therapeutic silence of pleiotrophin by targeted delivery of siRNA and its effect on the inhibition of tumor growth and metastasis

    PubMed Central

    Xie, Weidong; Cheng, Jin; Li, Tong; Mohsen, Mona O.; Lei, Fan; Storni, Federico; Bachmann, Martin; Chen, Hongquan; Zhang, Yaou

    2017-01-01

    Pleiotrophin (PTN) is a secreted cytokine that is expressed in various cancer cell lines and human tumor such as colon cancer, lung cancer, gastric cancer and melanoma. It plays significant roles in angiogenesis, metastasis, differentiation and cell growth. The expression of PTN in the adult is limited to the hippocampus in an activity-dependent manner, making it a very attractive target for cancer therapy. RNA interference (RNAi) offers great potential as a new powerful therapeutic strategy based on its highly specific and efficient silencing of a target gene. However, efficient delivery of small interfering RNA (siRNA) in vivo remains a significant hurdle for its successful therapeutic application. In this study, we first identified, on a cell-based experiment, applying a 1:1 mixture of two PTN specific siRNA engenders a higher silencing efficiency on both mRNA and protein level than using any of them discretely at the same dose. As a consequence, slower melanoma cells growth was also observed for using two specific siRNA combinatorially. To establish a robust way for siRNA delivery in vivo and further investigate how silence of PTN affects tumor growth, we tested three different methods to deliver siRNA in vivo: first non-targeted in-vivo delivery of siRNA via jetPEI; second lung targeted delivery of siRNA via microbubble coated jetPEI; third tumor cell targeted delivery of siRNA via transferrin-polyethylenimine (Tf-PEI). As a result, we found that all three in-vivo siRNAs delivery methods led to an evident inhibition of melanoma growth in non-immune deficiency C57BL/6 mice without a measureable change of ALT and AST activities. Both targeted delivery methods showed more significant curative effect than jetPEI. The lung targeted delivery by microbubble coated jetPEI revealed a comparable therapeutic effect with Tf-PEI, indicating its potential application for target delivery of siRNA in vivo. PMID:28562667

  4. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury.

    PubMed

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-07-28

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.

  5. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury

    PubMed Central

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-01-01

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI. PMID:28751784

  6. Optimum 3D Matrix Stiffness for Maintenance of Cancer Stem Cells Is Dependent on Tissue Origin of Cancer Cells

    PubMed Central

    Jabbari, Esmaiel; Sarvestani, Samaneh K.; Daneshian, Leily; Moeinzadeh, Seyedsina

    2015-01-01

    Introduction The growth and expression of cancer stem cells (CSCs) depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells’ tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA) hydrogel without the interference of other factors in the microenvironment. Methods Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density of 0.6x106 cells/mL. Micropatterning was used to optimize the growth of encapsulated cells with respect to average tumorsphere size. The CSC sub-population of the encapsulated cells was characterized by cell number, tumorsphere size and number density, and mRNA expression of CSC markers. Results The optimum matrix stiffness for growth and marker expression of CSC sub-population of cancer cells was 5 kPa for breast MCF7 and MDA231, 25 kPa for colorectal HCT116 and gastric AGS, and 50 kPa for bone U2OS cells. Conjugation of a CD44 binding peptide to the gel stopped tumorsphere formation by cancer cells from different tissue origin. The expression of YAP/TAZ transcription factors by the encapsulated cancer cells was highest at the optimum stiffness indicating a link between the Hippo transducers and CSC growth. The optimum average tumorsphere size for CSC growth and marker expression was 50 μm. Conclusion The marker expression results suggest that the CSC sub-population of cancer cells resides within a niche with optimum stiffness which depends on the cancer cells’ tissue origin. PMID:26168187

  7. EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth

    PubMed Central

    2013-01-01

    Introduction The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs). Methods HMECs were transfected by an adenoviral system for transient overexpression of EpCAM. Thereafter, changes in cell proliferation and migration were studied using a real time measurement system. Target gene expression was evaluated by transcriptome analysis in proliferating and polarized HMEC cultures. A Chicken Chorioallantoic Membrane (CAM) xenograft model was used to study effects on in vivo growth of HMECs. Results EpCAM overexpression in HMECs did not significantly alter gene expression profile of proliferating or growth arrested cells. Proliferating HMECs displayed predominantly glycosylated EpCAM isoforms and were inhibited in cell proliferation and migration by upregulation of p27KIP1 and p53. HMECs with overexpression of EpCAM showed a down regulation of E-cadherin. Moreover, cells were more resistant to TGF-β1 induced growth arrest and maintained longer capacities to proliferate in vitro. EpCAM overexpressing HMECs xenografts in chicken embryos showed hyperplastic growth, lack of lumen formation and increased infiltrates of the chicken leukocytes. Conclusions EpCAM revealed oncogenic features in normal human breast cells by inducing resistance to TGF-β1-mediated growth arrest and supporting a cell phenotype with longer proliferative capacities in vitro. EpCAM overexpression resulted in hyperplastic growth in vivo. Thus, we suggest that EpCAM acts as a prosurvival factor counteracting terminal differentiation processes in normal mammary glands. PMID:23758908

  8. Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate.

    PubMed

    Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro

    2017-10-01

    Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. A Modified In vitro Invasion Assay to Determine the Potential Role of Hormones, Cytokines and/or Growth Factors in Mediating Cancer Cell Invasion.

    PubMed

    Bagati, Archis; Koch, Zethan; Bofinger, Diane; Goli, Haneesha; Weiss, Laura S; Dau, Rosie; Thomas, Megha; Zucker, Shoshanna N

    2015-04-24

    Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted "X"). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.

  10. Hormones that Stimulate the Growth of Blood Cells.

    ERIC Educational Resources Information Center

    Golde, David W.; Gasson, Judith C.

    1988-01-01

    Describes the nature and action of hematopoietic proteins which regulate the production of specific sets of blood cells. Discusses the production of these hematopoietins by recombinant-DNA methods in an effort to enable physicians to treat patients by eliciting production of specific types of blood cells. (CW)

  11. [Establishment and characterization of a new carcinoma cell line from uterine cervix of Uyghur women].

    PubMed

    Zhang, Lu; Aerziguli, Tursun; Guzalnur, Abliz

    2012-04-01

    To establish a uterine cervical carcinoma cell line of Uyghur ethnical background and to evaluate the related biological characteristics for future biomedical investigations of diseases in the Uyghur population. Poorly-differentiated squamous cell carcinoma specimens of Uyghur patients were obtained and cultured in vitro by enzymatic digestion method, followed by continuous passaging to reach a stable growth determined by cell viability and growth curve. Morphological study, cell cycling and chromosomal analysis were performed. Tumorigenesis study was conducted by inoculation of nude mice. Biomarker (CK17, CD44, Ki-67, CK14 and vimentin) expression was detected by immunofluorescence and immunocytochemical techniques. A cervical carcinoma cell line was successfully established and maintained for 12 months through 70 passages. The cell line had a stable growth with a population doubling time of 51.9 h. Flask method and double agar-agar assay showed that the cell line had colony-forming rates of 32.5% and 15.6%, respectively. Ultrastructural evaluation demonstrated numerous cell surface protrusions or microvilli, a large number of rod-shape structures in cytoplasm, typical desmosomes and nuclear atypia. Chromosomal analysis revealed human karyotype with the number of chromosomes per cell varying from 32 - 97 with a majority of 54 - 86 (60.3%). Xenogeneic tumors formed in nude mice showed histological structures identical to those of the primary tumor. The cells had high expression of CK17, CD44, Ki-67 and vimentin but no CK14 expression. A cervical carcinoma cell line from a female Uyghur patient is successfully established. The cell line has the characteristics of human cervical squamous cell carcinoma, and it is stable with maintaining the characteristic biological and morphological features in vitro for more than 12 months, therefore, qualified as a stable cell line for further biomedical research.

  12. Cell growth inhibition and apoptosis in breast cancer cells induced by anti-FZD7 scFvs: involvement of bioinformatics-based design of novel epitopes.

    PubMed

    Zarei, Neda; Fazeli, Mehdi; Mohammadi, Mozafar; Nejatollahi, Foroogh

    2018-06-01

    FZD7 has a critical role as a surface receptor of Wnt/β-catenin signaling in cancer cells. Suppressing Wnt signaling through blocking FZD7 is shown to decrease cell viability, metastasis and invasion. Bioinformatic methods have been a powerful tool in epitope designing studies. Small size, high affinity and human origin of scFv antibodies have provided unique advantages for these recombinant antibodies. Two epitopes from extracellular domain of FZD7 were designed using bioinformatic methods. Specific anti-FZD7 scFvs were selected against these epitopes through panning process. The specificity of the scFvs was assessed by phage ELISA and the ability to bind to FZD7 expressing cell line (MDA-MB-231) was determined by flowcytometry. Antiproliferative and apoptotic effects of the scFvs were evaluated by MTT and Annexin V/PI assays. The effects of selected scFvs on expression level of Surivin, c-Myc and Dvl genes were also evaluated by real-time PCR. Results demonstrated selection of two specific scFvs (scFv-I and scFv-II) with frequencies of 35 and 20%. Both antibodies bound to the corresponding peptides and cell surface receptors as shown by phage ELISA and flowcytometry, respectively. The scFvs inhibited cell growth of MDA-MB-231 cells significantly as compared to untreated cells. Growth inhibition of 58.6 and 53.1% were detected for scFv-I and scFv-II, respectively. No significant growth inhibition was detected for SKBR-3 negative control cells. The scFvs induced apoptotic effects in the MDA-MB-231 treated cells after 48 h, which were 81.6 and 74.9% for scFv-I and scFv-II, respectively. Downregulation of Surivin, c-Myc and Dvl genes were also shown after 48h treatment of cells with either of scFvs (59.3-93.8%). ScFv-I showed significant higher antiproliferative and apoptotic effects than scFv-II. Bioinformatic methods could effectively select potential epitopes of FZD7 protein and suggest that epitope designing by bioinformatic methods could contribute to the selection of key antigens for cancer immunotherapy. The selected scFvs, especially scFv-I, with high antiproliferative and apoptotic effects could be considered as effective agents for immunotherapy of cancers expressing FZD7 receptor including triple negative breast cancer.

  13. In vitro 3D regeneration-like growth of human patient brain tissue.

    PubMed

    Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J

    2018-05-01

    In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Role of TGF-β signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells

    PubMed Central

    Datta, Raktima; Halder, Sunil K.

    2014-01-01

    Purpose Curcumin has been shown to have potent anti-cancer activities like inhibition of cell proliferation, induction of apoptosis, and suppression of angiogenesis. Transforming growth factor-β (TGF-β) signaling plays a complex role in tumor suppression and promotion depending on the tumor type and stage. However, the effect of curcumin on TGF-β signaling in cancer cells and the role of TGF-β signaling in curcumin-induced anticancer activities have not been determined. Here, we investigate the role of curcumin on TGF-β signaling, and whether TGF-β signaling is involved in the antitumor activities of curcumin. Methods Human non-small cell lung cancer (NSCLC) cell lines, ACC-LC-176 (without TGF-β signaling), H358, and A549 (with TGF-β signaling) were treated with curcumin to determine cell growth, apoptosis, and tumorigenicity. Antitumor activities of curcumin were determined using these cell lines and an in vivo mouse model. We also tested the effect of curcumin on TGF-β/Smad signaling by western blotting and by luciferase assays. Results Curcumin inhibited cell growth and induced apoptosis of all three NSCLC cell lines in vitro and in vivo. It significantly reduced subcutaneous tumor growth by these three cell lines irrespective of TGF-β signaling status. Curcumin inhibited TGF-β-induced Smad2/3 phosphorylation and transcription in H358 and A549 cells, but not in ACC-LC-176 cells. Conclusions Curcumin reduces tumorigenicity of human lung cancer cells in vitro and in vivo by inhibiting cell proliferation and promoting apoptosis. These results suggest that TGF-β signaling is not directly involved in curcumin-mediated growth inhibition, induction of apoptosis, and inhibition of tumorigenicity. PMID:23224523

  15. A novel mechanism of vascular endothelial growth factor, leptin and transforming growth factor-beta2 sequestration in a subpopulation of human ovarian follicle cells.

    PubMed

    Antczak, M; Van Blerkom, J; Clark, A

    1997-10-01

    This study describes the occurrence of a highly specialized subpopulation of granulosa and cumulus oophorus cells that accumulate and sequester specific growth factors by a novel mechanism. These cells are characterized by multiple balloon-like processes tethered to the cell by means of a slender stalk of plasma membrane. Time-lapse analyses demonstrate that these tethered structures (TS) form in minutes and frequently detach from the cell with the bulbous portion remaining motile on the cell surface. Serial section reconstruction of transmission electron microscopic images shows a specific and stable intracellular organization in which an apparent secretory compartment composed of densely packed vacuoles, vesicles, and cisternae is separated by a thick filamentous network from a nuclear compartment containing mitochondria, polyribosomes, lipid inclusions, and rough-surfaced endoplasmic reticulum. Immunofluorescent analysis performed during the formation of these structures showed a progressive accumulation of vascular endothelial growth factor, leptin, and transforming growth factor-beta2 in the bulbous region. TS were identified in newly aspirated masses of granulosa and cumulus oophorus, and their production persists for months in culture. Observations of TS-forming cells made over several days of culture indicates that their production is episodic and factor release from these cells may be pulsatile. The findings suggest that a novel method of growth factor storage and release by an apparent apocrine-like mechanism occurs in the human ovarian follicle. The results are discussed with respect to possible roles in pre- and post-ovulatory follicular development.

  16. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1.

    PubMed

    Treas, Justin; Tyagi, Tulika; Singh, Kamaleshwar P

    2013-11-01

    Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation. © 2013 Wiley Periodicals, Inc.

  17. Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems.

    PubMed

    Duedu, Kwabena O; French, Christopher E

    2017-04-01

    Monitoring bacterial growth is an important technique required for many applications such as testing bacteria against compounds (e.g. drugs), evaluating bacterial composition in the environment (e.g. sewage and wastewater or food suspensions) and testing engineered bacteria for various functions (e.g. cellulose degradation). T?=1,^FigItem(1) ^ReloadFigure=Yesraditionally, rapid estimation of bacterial growth is performed using spectrophotometric measurement at 600nm (OD600) but this estimation does not differentiate live and dead cells or other debris. Colony counting enumerates live cells but the process is laborious and not suitable for large numbers of samples. Enumeration of live bacteria by flow cytometry is a more suitable rapid method with the use of dual staining with SYBR I Green nucleic acid gel stain and Propidium Iodide (SYBR-I/PI). Flow cytometry equipment and maintenance costs however are relatively high and this technique is unavailable in many laboratories that may require a rapid method for evaluating bacteria growth. We therefore sought to adapt and evaluate the SYBR-I/PI technique of enumerating live bacterial cells for a cheaper platform, a fluorimeter. The fluorimetry adapted SYBR-I/PI enumeration of bacteria in turbid growth media had direct correlations with OD600 (p>0.001). To enable comparison of fluorescence results across labs and instruments, a fluorescence intensity standard unit, the equivalent fluorescent DNA (EFD) was proposed, evaluated and found useful. The technique was further evaluated for its usefulness in enumerating bacteria in turbid media containing insoluble particles. Reproducible results were obtained which OD600 could not give. An alternative method based on the assessment of total protein using the Pierce Coomassie Plus (Bradford) Assay was also evaluated and compared. In all, the SYBR-I/PI method was found to be the quickest and most reliable. The protocol is potentially useful for high-throughput applications such as monitoring of growth of live bacterial cells in 96-well microplates and in assessing in vivo activity of cellulose degrading enzyme systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops.

    PubMed

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S; Ding, Shi-You; Ciesielski, Peter N; Yang, Shihui; Tucker, Melvin P; Himmel, Michael E

    2015-01-01

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.

  19. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: Implications for the genetic engineering of bioenergy crops

    DOE PAGES

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.; ...

    2015-05-13

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, for this study, we utilize a CaCl 2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This hasmore » led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. Finally, the implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.« less

  20. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops

    PubMed Central

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.; Ding, Shi-You; Ciesielski, Peter N.; Yang, Shihui; Tucker, Melvin P.; Himmel, Michael E.

    2015-01-01

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed. PMID:26029221

  1. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: Implications for the genetic engineering of bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, for this study, we utilize a CaCl 2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This hasmore » led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. Finally, the implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.« less

  2. Non-Hermitian Operator Modelling of Basic Cancer Cell Dynamics

    NASA Astrophysics Data System (ADS)

    Bagarello, Fabio; Gargano, Francesco

    2018-04-01

    We propose a dynamical system of tumor cells proliferation based on operatorial methods. The approach we propose is quantum-like: we use ladder and number operators to describe healthy and tumor cells birth and death, and the evolution is ruled by a non-hermitian Hamiltonian which includes, in a non reversible way, the basic biological mechanisms we consider for the system. We show that this approach is rather efficient in describing some processes of the cells. We further add some medical treatment, described by adding a suitable term in the Hamiltonian, which controls and limits the growth of tumor cells, and we propose an optimal approach to stop, and reverse, this growth.

  3. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  4. BioMig--A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water.

    PubMed

    Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun

    2015-10-06

    In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster assessment of growth-supporting properties of plastics with BioMig compared to established tests.

  5. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  6. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F William [Stony Brook, NY

    2009-07-14

    Disclosed is a method for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise, the transcription being under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells. Initially, a culture media is provided which includes: i) an inducer that causes induction of transcription from said promoter in said bacterial cells; and ii) a metabolite that prevents induction by said inducer, the concentration of said metabolite being adjusted so as to substantially preclude induction by said inducer in the early stages of growth of the bacterial culture, but such that said metabolite is depleted to a level that allows induction by said inducer at a later stage of growth. The culture medium is inoculated with a bacterial inoculum, the inoculum comprising bacterial cells containing cloned DNA, the transcription of which is induced by said inducer. The culture is then incubated under conditions appropriate for growth of the bacterial cells.

  7. Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system.

    PubMed

    Jugnia, Louis-B; Sime-Ngando, Télesphore; Gilbert, Daniel

    2006-10-01

    The growth rate and losses of bacterioplankton in the epilimnion of an oligo-mesotrophic reservoir were simultaneously estimated using three different methods for each process. Bacterial production was determined by means of the tritiated thymidine incorporation method, the dialysis bag method and the dilution method, while bacterial mortality was assessed with the dilution method, the disappearance of thymidine-labeled natural cells and ingestion of fluorescent bacterial tracers by heterotrophic flagellates. The different methods used to estimate bacterial growth rates yielded similar results. On the other hand, the mortality rates obtained with the dilution method were significantly lower than those obtained with the use of thymidine-labeled natural cells. The bacterial ingestion rate by flagellates accounted on average for 39% of total bacterial mortality estimated by the dilution method, but this value fell to 5% when the total mortality was measured by the thymidine-labeling method. Bacterial abundance and production varied in opposite phase to flagellate abundance and the various bacterial mortality rates. All this points to the critical importance of methodological aspects in the elaboration of quantitative models of matter and energy flows over the time through microbial trophic networks in aquatic systems, and highlights the role of bacterioplankton as a source of carbon for higher trophic levels in the studied system.

  8. Bioelectrochemical control of neural cell development on conducting polymers.

    PubMed

    Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción

    2010-12-01

    Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell.

    PubMed

    Li, Na; Kakarla, Ramesh; Moon, Jung Mi; Min, Booki

    2015-07-01

    Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/g- COD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-COD-substrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation.

  10. Establishment of highly metastatic KRAS mutant lung cancer cell sublines in long-term three-dimensional low attachment cultures

    PubMed Central

    Nakano, Tomoyuki; Kanai, Yoshihiko; Amano, Yusuke; Yoshimoto, Taichiro; Matsubara, Daisuke; Shibano, Tomoki; Tamura, Tomoko; Oguni, Sachiko; Katashiba, Shizuka; Ito, Takeshi; Murakami, Yoshinori; Fukayama, Masashi; Murakami, Takashi; Endo, Shunsuke; Niki, Toshiro

    2017-01-01

    Decreased cell-substratum adhesion is crucially involved in metastasis. Previous studies demonstrated that lung cancer with floating cell clusters in histology is more likely to develop metastasis. In the present study, we investigated whether cancer cells in long-term, three-dimensional low attachment cultures acquire high metastatic potential; these cells were then used to examine the mechanisms underlying metastasis. Two KRAS-mutated adenocarcinoma cell lines (A549 and H441) were cultured and selected on ultra-low attachment culture dishes, and the resulting cells were defined as FL (for floating) sublines. Cancer cells were inoculated into NOD/SCID mice via an intracardiac injection, and metastasis was evaluated using luciferase-based imaging and histopathology. In vitro cell growth (in attachment or suspension cultures), migration, and invasion were assayed. A whole genomic analysis was performed to identify key molecular alterations in FL sublines. Upon detachment on low-binding dishes, parental cells initially formed rounded spheroids with limited growth activity. However, over time in cultures, cells gradually formed smaller spheroids that grew slowly, and, after 3–4 months, we obtained FL sublines that regained prominent growth potential in suspension cultures. On ordinary dishes, FL cells reattached and exhibited a more spindle-shaped morphology than parental cells. No marked differences were observed in cell growth with attachment, migration, or invasion between FL sublines and parental cell lines; however, FL cells exhibited markedly increased growth potential under suspended conditions in vitro and stronger metastatic abilities in vivo. A genomic analysis identified epithelial-mesenchymal transition (EMT) and c-Myc amplification in A549-FL and H441-FL cells, respectively, as candidate mechanisms for metastasis. The growth potential of FL cells was markedly inhibited by lentiviral ZEB1 knockdown in A549-FL cells and by the inhibition of c-Myc through lentiviral knockdown or the pharmacological inhibitor JQ1 in H441-FL cells. Long-term three-dimensional low attachment cultures may become a useful method for investigating the mechanisms underlying metastasis mediated by decreased cell-substratum adhesion. PMID:28786996

  11. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  12. Autologous method for ex vivo expansion of human limbal epithelial progenitor cells based on plasma rich in growth factors technology.

    PubMed

    Riestra, A C; Vazquez, N; Chacon, M; Berisa, S; Sanchez-Avila, R M; Orive, G; Anitua, E; Meana, A; Merayo-Lloves, J

    2017-04-01

    Develop an autologous culture method for ex vivo expansion of human limbal epithelial progenitor cells (LEPCs) using Plasma Rich in Growth Factors (PRGF) as a growth supplement and as a scaffold for the culture of LEPCs. LEPCs were cultivated in different media supplemented with 10% fetal bovine serum (FBS) or 10% PRGF. The outgrowths, total number of cells, colony forming efficiency (CFE), morphology and immunocytochemistry against p63- α and cytokeratins 3 and 12 (CK3-CK12) were analyzed. PRGF was also used to elaborate a fibrin membrane. The effects of the scaffold on the preservation of stemness and the phenotypic characterization of LEPCs were investigated through analysis of CK3-CK12, ABCG-2 and p63. LEPCs cultivated with PRGF showed a significantly higher growth area than FBS cultures. Moreover, the number of cells were also higher in PRGF than FBS, while displaying a better morphology overall. CFE was found to be also higher in PRGF groups compared to FBS, and the p63-α expression also differed between groups. LEPCs cultivated on PRGF membranes appeared as a confluent monolayer of cells and still retained p63 and ABCG-2 expression, being negative for CK3-CK12. PRGF can be used in corneal tissue engineering, supplementing the culture media, even in a basal media without any other additives, as well as providing a scaffold for the culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Changes in gene expression and cellular localization of insulin-like growth factors 1 and 2 in the ovaries during ovary development of the yellowtail, Seriola quinqueradiata.

    PubMed

    Higuchi, Kentaro; Gen, Koichiro; Izumida, Daisuke; Kazeto, Yukinori; Hotta, Takuro; Takashi, Toshinori; Aono, Hideaki; Soyano, Kiyoshi

    2016-06-01

    A method of controlling the somatic growth and reproduction of yellowtail fish (Seriola quinqueradiata) is needed in order to establish methods for the efficient aquaculture production of the species. However, little information about the hormonal interactions between somatic growth and reproduction is available for marine teleosts. There is accumulating evidence that insulin-like growth factor (IGF), a major hormone related somatic growth, plays an important role in fish reproduction. As the first step toward understanding the physiological role of IGF in the development of yellowtail ovaries, we characterized the expression and cellular localization of IGF-1 and IGF-2 in the ovary during development. We histologically classified the maturity of two-year-old females with ovaries at various developmental stages into the perinucleolar (Pn), yolk vesicle (Yv), primary yolk (Py), secondary yolk and tertiary yolk (Ty) stages, according to the most advanced type of oocyte present. The IGF-1 gene expression showed constitutively high levels at the different developmental stages, although IGF-1 mRNA levels tended to increase from the Py to the Ty stage with vitellogenesis, reaching maximum levels during the Ty stage. The IGF-2 mRNA levels increased as ovarian development advanced. Using immunohistochemistry methods, immunoreactive IGF-1 was mainly detected in the theca cells of ovarian follicles during late secondary oocyte growth, and in part of the granulosa cells of Ty stage oocytes. IGF-2 immunoreactivity was observed in all granulosa cells in layer in Ty stage oocytes. These results indicate that follicular IGFs may be involved in yellowtail reproduction via autocrine/paracrine mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Growth-inhibiting effects of taxol on human liver cancer in vitro and in nude mice

    PubMed Central

    Yuan, Jin Hui; Zhang, Ru Ping; Zhang, Ru Gang; Guo, Li Xia; Wang, Xing Wang; Luo, Dan; Xie, Yong; Xie, Hong

    2000-01-01

    AIM: To investigate the effects of taxol on SMMC-7721 human hepatoma and its mechanisms. METHODS: In vitro cell growth was assessed by trypan blue exclusion method. Experimental hepatoma model was established by seeding SMMC-7721 cells subcutaneously into Balb/c (nu/nu) nude mice. In vivo tumor growth was determined by measurement of tumor diameter with Vernier calipers. The syntheses of DNA, RNA and protein were analyzed by incorporation of 3H-thymidine, 3H-uridine and 3H-leucine respectively. Using light and electron microscopes to observe the morphological changes of cells including mitosis and apoptosis. RESULTS: Taxol was effective against SMMC-7721 human hepatoma cell growth in the ranges of 2.5 nmol/L-10 nmol/L- with mitotic arrest and apoptosis in vitro. DNA, RNA and protein syntheses in cells were also obviously suppressed by in vitro treatment of taxol for 72 h. Taxol at 2.5 nmol/L reduced 3H-thymidine uptake to about 34% of the control value (P < 0.05). Increasing the dose of taxol to 20 nmol/L resulted in a greater decrease in 3H-thymidine incorporation to 60% of the control value (P < 0.01). At a concentration of 20 nmol/L, the 3H-uridine and 3H-leucine uptakes were reduced to 52% (P < 0.05) and 63% (P < 0.01), respectively. In vivo, taxol significantly inhibited SMMC-7721 tumor growth at 10 mg/kg, i.p. once daily for 10 d. A more than 90% decrease in tumor volume was observed by day 11 (P < 0.01) similarly with mitotic arrest and cell apoptosis. CONCLUSION: Taxol has a marked anticancer activity in SMMC-7721 human hepatoma both in vitro and in nude mice. Its mechanisms might be associated with mitotic arrest, subsequently, apoptosis of the hepatoma cells. No obvious toxicity was observed with in vivo administration of taxol. PMID:11819558

  15. Screening anti-tumor compounds from Ligusticum wallichii using cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry.

    PubMed

    Zhang, Tao; Ding, Yuanyuan; An, Hongli; Feng, Liuxin; Wang, Sicen

    2015-07-14

    Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as cell membrane stationary phase. Specificity and reproducibility of the cell membrane chromatography was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, Nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatographic column. The retained fraction was directly eluted into high-performance liquid chromatography with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional high-performance liquid chromatography method can screen and identify potential anti-tumor ingredients which specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Synergistic growth inhibition in HL-60 cells by the combination of acyclic retinoid and vitamin K2.

    PubMed

    Kitagawa, Junichi; Hara, Takeshi; Tsurumi, Hisashi; Ninomiya, Soranobu; Ogawa, Kengo; Adachi, Seiji; Kanemura, Nobuhiro; Kasahara, Senji; Shimizu, Masahito; Moriwaki, Hisataka

    2011-05-01

    The aim of this study was to assess the effects of acyclic retinoid (ACR) and vitamin K(2) (VK(2)) in HL-60 cells. We used HL-60 cells, and the Trypan Blue dye exclusion method was used for cell proliferation assays. For detection of apoptosis, the Annexin V-binding capacity of treated cells was examined by flow cytometry. To evaluate the cell cycle, we used a FITC BrdU Flow KIT and flow cytometry. Total extracted and equivalent amounts of protein were examined by Western blotting using specific antibodies. ACR and VK(2) dose dependently inhibited the proliferation of HL-60 cells. These two agents in combination synergistically inhibited cell growth and induced apoptosis. VK(2) inhibited activation of the Ras/MAPK signaling pathway, and ACR plus VK(2) cooperatively inhibited phosphorylation of RXRα and the growth of HL-60 cells. Moreover, ACR and VK(2) induced increases in G0/G1 phase HL-60 cells, alone and synergistically in combination. The synergistic effects of ACR and VK(2) on HL-60 cells may provide a novel strategy for treating leukemia.

  17. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  18. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Aishu; Qiu, Yu; Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, 401147

    Objective: To explore whether inhibition of H3K9 Methyltransferase G9a could exert an antitumoral effect in oral squamous cell carcinoma (OSCC). Materials and methods: First we checked G9a expression in two OSCC cell lines Tca8113 and KB. Next we used a special G9a inhibitor BIX01294 (BIX) to explore the effect of inhibition of G9a on OSCC in vitro. Cell growth was tested by typlan blue staining, MTT assay and Brdu immunofluorescence staining. Cell autophagy was examined by monodansylcadaverine (MDC) staining, LC3-II immunofluorescence staining and LC3-II western blot assay. Cell apoptosis was checked by FITC Annexin-V and PI labeling, tunnel staining and caspasemore » 3 western blot assay. Finally, the effect of inhibition of G9a on clonogenesis and tumorigenesis capacity of OSCC was analyzed by soft agar growth and xenograft model. Results: Here we showed that G9a was expressed in both Tca8113 and KB cells. Inhibition of G9a using BIX significantly reduced cell growth and proliferation in Tca8113 and KB. Inhibition of G9a induced cell autophagy with conversion of LC3-I to LC3-II and cell apoptosis with the expression of cleaved caspase 3. We also found that inhibition of G9a reduced colony formation in soft agar and repressed tumor growth in mouse xenograph model. Conclusion: Our results suggested that G9a might be a potential epigenetic target for OSCC treatment. - Highlights: • Inhibition of G9a reduced cell growth and proliferation in OSCC cells. • Inhibition of G9a induces autophagy and apoptosis in OSCC cells. • Inhibition of G9a repressed tumor growth in mouse xenograph model.« less

  19. Automated inference procedure for the determination of cell growth parameters

    NASA Astrophysics Data System (ADS)

    Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.

    2016-01-01

    The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.

  20. Improved function and growth of pancreatic cells in a three-dimensional bioreactor environment.

    PubMed

    Samuelson, Lisa; Gerber, David A

    2013-01-01

    Methods of three-dimensional (3D) cell culture have made significant progress in recent years due to a better understanding of cell to cell interactions and the cell's interface with their surrounding environment. We hypothesized that a microgravity 3D culture system would improve upon the growth and function of a pancreatic progenitor cell population. We developed a rotating wall vessel bioreactor and established a culture system using a pancreatic cell line. Cells in the bioreactors showed robust proliferation, enhanced transcriptional signaling, and improved translation of pancreatic genes compared with two-dimensional static culture. Cells also gained the ability to respond to glucose stimulation, which was not observed in the control cultures. These findings suggest that a 3D microgravity bioreactor environment mimics the niche of the pancreas yielding a cell source with potential for cell-based therapy in the treatment of diabetes.

  1. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth.

    PubMed

    Wei, Dai-Xu; Dao, Jin-Wei; Liu, Hua-Wei; Chen, Guo-Qiang

    2018-04-13

    Different forms of biopolyester PHBVHHx microspheres were prepared so as to compare the mammalian cell behaviors in suspension cultivation system. Based on a microbial terpolyester PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV), and 3-hydroxyhexanoate (HHx), solid microspheres (SMSs), hollow microspheres (HMSs), and porous microspheres (PMS) were successfully prepared by a modified solvent evaporation method involving gas-in-oil-in-water (G1/O/W2) double emulsion, water-in-oil-in-water (W1/O/W2) double emulsion and oil-in-water (O/W) single emulsion, respectively. Generally, PMSs have diameters ranging from 330 to 400 μm with pore sizes of 10 to 60 μm. The pores inside the PMSs were found well interconnected compared with PHBVHHx prepared by the traditional solvent evaporation method, resulting in the highest water uptake ratio. When inoculated with human osteoblast-like cells lasting 6 days, PMS showed much better cell attachment and proliferation compared with other less porous microspheres due to its large inner space as a 3 D carrier. Cell migration towards surface and other interconnected inner pores was clearly observable. Dead or apoptotic cells were found more common among less porous SMSs or HMSs compared with highly porous PMSs. It is therefore concluded that porous PHBVHHx microspheres with larger surface open pores and interconnected inner pores can serve as a carrier or scaffold supporting more and better cell growth for either injectable purposes or simply supporting cell growth.

  2. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.

    PubMed

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-11-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.

  3. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors

    PubMed Central

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-01-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or coopted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host. PMID:22053884

  4. The extraction of simple relationships in growth factor-specific multiple-input and multiple-output systems in cell-fate decisions by backward elimination PLS regression.

    PubMed

    Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya

    2013-01-01

    Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.

  5. Investigating the use of in situ liquid cell scanning transmission electron microscopy to explore DNA-mediated gold nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Nguy, Amanda

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine bases. However, the results reported here contradict the previously reported data. Future prospectives on this work are outlined.

  6. A virally inactivated functional growth factor preparation from human platelet concentrates.

    PubMed

    Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T

    2009-08-01

    Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.

  7. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine.

    PubMed

    Schneider, Sandra; Unger, Marina; van Griensven, Martijn; Balmayor, Elizabeth R

    2017-05-19

    The use of mesenchymal stem cells (MSCs) in research and in regenerative medicine has progressed. Bone marrow as a source has drawbacks because of subsequent morbidities. An easily accessible and valuable source is adipose tissue. This type of tissue contains a high number of MSCs, and obtaining higher quantities of tissue is more feasible. Fat tissue can be harvested using different methods such as liposuction and resection. First, a detailed isolation protocol with complete characterization is described. This also includes highlighting problems and pitfalls. Furthermore, some comparisons of these different harvesting methods exist. However, the later characterization of the cells is conducted poorly in most cases. We performed an in-depth characterization over five passages including an investigation of the effect of freezing and thawing. Characterization was performed using flow cytometry with CD markers, metabolic activity with Alamar Blue, growth potential in between passages, and cytoskeleton staining. Our results show that the cells isolated with distinct isolation methods (solid versus liposuction "liquid") have the same MSC potential. However, the percentage of cells positive for the markers CD73, CD90, and CD105 is initially quite low. The cells isolated from the liquid fat tissue grow faster at higher passages, and significantly more cells display MSC markers. In summary, we show a simple and efficient method to isolate adipose-derived mesenchymal stem cells from different preparations. Liposuctions and resection can be used, whereas liposuction has more growth potential at higher passages.

  8. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    PubMed Central

    Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly available. PMID:25974182

  9. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix.

    PubMed

    Brown, Bryan N; Freund, John M; Han, Li; Rubin, J Peter; Reing, Janet E; Jeffries, Eric M; Wolf, Mathew T; Tottey, Stephen; Barnes, Christopher A; Ratner, Buddy D; Badylak, Stephen F

    2011-04-01

    Extracellular matrix (ECM)-based scaffold materials have been used successfully in both preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. Results of numerous studies have shown that ECM scaffolds are capable of supporting the growth and differentiation of multiple cell types in vitro and of acting as inductive templates for constructive tissue remodeling after implantation in vivo. Adipose tissue represents a potentially abundant source of ECM and may represent an ideal substrate for the growth and adipogenic differentiation of stem cells harvested from this tissue. Numerous studies have shown that the methods by which ECM scaffold materials are prepared have a dramatic effect upon both the biochemical and structural properties of the resultant ECM scaffold material as well as the ability of the material to support a positive tissue remodeling outcome after implantation. The objective of the present study was to characterize the adipose ECM material resulting from three methods of decellularization to determine the most effective method for the derivation of an adipose tissue ECM scaffold that was largely free of potentially immunogenic cellular content while retaining tissue-specific structural and functional components as well as the ability to support the growth and adipogenic differentiation of adipose-derived stem cells. The results show that each of the decellularization methods produced an adipose ECM scaffold that was distinct from both a structural and biochemical perspective, emphasizing the importance of the decellularization protocol used to produce adipose ECM scaffolds. Further, the results suggest that the adipose ECM scaffolds produced using the methods described herein are capable of supporting the maintenance and adipogenic differentiation of adipose-derived stem cells and may represent effective substrates for use in tissue engineering and regenerative medicine approaches to soft tissue reconstruction.

  10. Wall yield threshold and effective turgor in growing bean leaves.

    PubMed

    Van Volkenburgh, E; Cleland, R E

    1986-01-01

    The rate of cell enlargement depends on cell-wall extensibility (m) and on the amount of turgor pressure (P) which exceeds the wall yield threshold (Y). The difference (P-Y) is the growth-effective turgor (P e). Values of P, Y and P ehave been measured in growing bean (Phaseolus vulgaris L.) leaves with an isopiestic psychrometer, using the stress-relaxation method to derive Y. When rapid leaf growth is initiated by light, P, Y and P eall decrease. Thereafter, while the growth rate declines in maturing leaves, Y continues to decrease and P eactually increases. These data confirm earlier results indicating that the changes in light-stimulated leaf growth rate are primarily controlled by changes in m, and not by changes in P e. Seedlings incubated at 100% relative humidity have increased P, but this treatment does not increase growth rate. In some cases Y changes in parallel with P, so that P eremains unchanged. These data point out the importance of determining P e, rather than just P, when relating cell turgor to the growth rate.

  11. Monitoring the development of xenograft triple-negative breast cancer models using diffusion-weighted magnetic resonance imaging.

    PubMed

    Stephen, Renu M; Pagel, Mark D; Brown, Kathy; Baker, Amanda F; Meuillet, Emmanuelle J; Gillies, Robert J

    2012-11-01

    Evaluations of tumor growth rates and molecular biomarkers are traditionally used to assess new mouse models of human breast cancers. This study investigated the utility of diffusion weighted (DW)-magnetic resonance imaging (MRI) for evaluating cellular proliferation of new tumor models of triple-negative breast cancer, which may augment traditional analysis methods. Eleven human breast cancer cell lines were used to develop xenograft tumors in severe combined immunodeficient mice, with two of these cell lines exhibiting sufficient growth to be serially passaged. DW-MRI was performed to measure the distributions of the apparent diffusion coefficient (ADC) in these two tumor xenograft models, which showed a correlation with tumor growth rates and doubling times during each passage. The distributions of the ADC values were also correlated with expression of Ki67, a biomarker of cell proliferation, and hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor receptor-2 (VEGFR2), which are essential proteins involved in regulating aerobic glycolysis and angiogenesis that support tumor cell proliferation. Although phosphatase and tensin homolog (PTEN) levels were different between the two xenograft models, AKT levels did not differ nor did they correlate with tumor growth. This last result demonstrates the complexity of signaling protein pathways and the difficulty in interpreting the effects of protein expression on tumor cell proliferation. In contrast, DW-MRI may be a more direct assessment of tumor growth and cancer cell proliferation.

  12. Nanopipette Apparatus for Manipulating Cells

    NASA Technical Reports Server (NTRS)

    Vilozny, Boaz (Inventor); Seger, R. Adam (Inventor); Actis, Paolo (Inventor); Pourmand, Nader (Inventor)

    2017-01-01

    Disclosed herein are methods and systems for controlled ejection of desired material onto surfaces including in single cells using nanopipettes, as well as ejection onto and into cells. Some embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller for depositing a user defined pattern on an arbitrary substrate for the purpose of controlled cell adhesion and growth. Alternate embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller and electronic control of a voltage differential in a bore of the nanopipette electroosmotically injecting material into a cell in a high-throughput manner and with minimal damage to the cell. Yet other embodiments are directed to method and system comprising functionalized nanopipettes combined with scanning ion conductance microscopy for studying molecular interactions and detection of biomolecules inside a single living cell.

  13. Polyploidization delay in rat hepatocytes under liver growth inhibition by hypokinesia

    NASA Technical Reports Server (NTRS)

    Faktor, V. M.; Malyutin, V. F.; Li, S. Y.; Brodskiy, V. Y.

    1981-01-01

    A study of young rats, weighing 55 to 59 g, after being for 10 days in conditions of limited mobility, shows a retardation of body growth as well as that of liver growth. The decrease in the rate of growth is accompanied by a reduction of cell proliferation and by delay polyploidization of hepatocytes in the liver of experimental rats. The materials, methods, and results of research are discussed.

  14. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    PubMed Central

    2011-01-01

    Background Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. Methods The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. Results BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. Conclusions These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent. PMID:21864401

  15. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  16. Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen

    PubMed Central

    Vogler, Frank; Konrad, Sebastian S. A.; Sprunck, Stefanie

    2015-01-01

    Pollen tubes are an excellent system for studying the cellular dynamics and complex signaling pathways that coordinate polarized tip growth. Although several signaling mechanisms acting in the tip-growing pollen tube have been described, our knowledge on the subcellular and molecular events during pollen germination and growth site selection at the pollen plasma membrane is rather scarce. To simultaneously track germinating pollen from up to 12 genetically different plants we developed an inexpensive and easy mounting technique, suitable for every standard microscope setup. We performed high magnification live-cell imaging during Arabidopsis pollen activation, germination, and the establishment of pollen tube tip growth by using fluorescent marker lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization during pollen activation and characteristic growth kinetics during pollen germination and pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and forms a uniform roundish bulge, followed by a transition phase with vesicles heavily accumulating at the growth site before switching to rapid tip growth. Furthermore, we found the two sperm cells to be transported into the pollen tube after the phase of rapid tip growth has been initiated. The method presented here is suitable to quantitatively study subcellular events during Arabidopsis pollen germination and growth, and for the detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth site selection at the pollen plasma membrane. PMID:25954283

  17. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    PubMed

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also reflect taxa-specific responses nitrogen availability. Finally, this study demonstrates that under nitrogen-limiting conditions, the phytoplankton community and its various taxa are capable of using both urea and nitrate to support growth.

  18. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA)

    PubMed Central

    Paerl, Hans W.; Wetz, Michael S.

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also reflect taxa-specific responses nitrogen availability. Finally, this study demonstrates that under nitrogen-limiting conditions, the phytoplankton community and its various taxa are capable of using both urea and nitrate to support growth. PMID:27504970

  19. Overexpressed HDGF as an independent prognostic factor is involved in poor prognosis in Chinese patients with liver cancer

    PubMed Central

    2010-01-01

    Background Hepatoma-derived growth factor (HDGF) is involved in the hepatocarcinogenesis. In this study, we investigated the HDGF expression in hepatocellular carcinoma (HCC) and its correlation with clinicopathologic features, including the survival of patients with HCC. Furthermore, we examined the biological processes regulated by HDGF during the development of using HepG2 cell line as a model system. Methods we used immunohistochemistry to compare HDGF protein expression in HCC and normal liver tissues and further analyze the HDGF protein expression in clinicopathologically characterized 137 HCC cases. We stably knocked down the endogenous expression level of HDGF in HepG2 cells with specific shRNA-expressing lentiviral vector. Following the successful establishment of stable cells, we examined in vitro cell growth by MTT assay, anchorage-independent growth by soft-agar colony formation assay and cell migration/invasion by transwell and boyden chamber assay. And in addition, we also investigated the in vivo tumor growth by xenograft transplantation of HepG2 cells into nude mice. Results Protein expression level of HDGF was markedly higher in HCC tissues than that in the normal liver tissues(P = 0.011). In addition, high expression of HDGF protein was positively correlated with T classification(p < 0.001), N classification (p < 0.001), and clinical stage (p < 0.001) of HCC patients. Patients with higher HDGF expression showed a significantly shorter overall survival time than did patients with low HDGF expression. Multivariate analysis suggested that HDGF expression might be an independent prognostic indicator(p < 0.001) for the survival of patients with HCC. HDGF-specific shRNA (shHDGF) successfully knocked down its endogenous expression in HepG2 cells. Compared to the parental and control shRNA-transfected (shCtrl) HepG2 cells, the shHDGF cells exhibited significantly reduced in vitro cell growth, anchorage-independent growth, cell migration and invasion (p < 0.05). In vivo, the xenograft transplants from shHDGF cells gave rise to much smaller tumors as compared to those from shCtrl cells. Conclusion High HDGF expression is associated with poor overall survival in patients with HCC. Down-regulation of HDGF inhibits the growth, anchorage-independent growth, migration and invasion of HepG2 cells. PMID:20846397

  20. Limitation of thiamine pyrophosphate supply to growing Escherichia coli switches metabolism to efficient D-lactate formation.

    PubMed

    Tian, Kangming; Niu, Dandan; Liu, Xiaoguang; Prior, Bernard A; Zhou, Li; Lu, Fuping; Singh, Suren; Wang, Zhengxiang

    2016-01-01

    Efficient production of D-lactate by engineered Escherichia coli entails balancing cell growth and product synthesis. To develop a metabolic switch to implement a desirable transition from cell growth to product fermentation, a thiamine auxotroph B0013-080A was constructed in a highly efficient D-lactate producer E. coli strain B0013-070. This was achieved by inactivation of thiE, a gene encoding a thiamine phosphate synthase for biosynthesis of thiamine monophosphate. The resultant mutant B0013-080A failed to grow on the medium in the absence of thiamine yet growth was restored when exogenous thiamine was provided. A linear relationship between cell mass formation and amount of thiamine supplemented was mathematically determined in a shake flask experiment and confirmed in a 7-L bioreactor system. This calculation revealed that ∼ 95-96 thiamine molecules per cell were required to satisfy cell growth. This relationship was employed to develop a novel fermentation process for D-lactate production by using thiamine as a limiting condition. A D-lactate productivity of 4.11 g · L(-1) · h(-1) from glycerol under microaerobic condition and 3.66 g · L(-1) · h(-1) from glucose under anaerobic condition was achieved which is 19.1% and 10.2% higher respectively than the parental strain. These results revealed a convenient and reliable method to control cell growth and improve D-lactate fermentation. This control strategy could be applied to other biotechnological processes that require optimal allocation of carbon between cell growth and product formation. © 2015 Wiley Periodicals, Inc.

  1. Comparative study of time-dependent effects of 4 and 8 Hz mechanical vibration at infrasound frequency on E. coli K-12 cells proliferation.

    PubMed

    Martirosyan, Varsik; Ayrapetyan, Sinerik

    2015-01-01

    The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth.

  2. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  3. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE PAGES

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...

    2017-10-18

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  4. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    PubMed

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO 2 method for delipidation and decellularization of adipose tissue whilst retaining its ECM and its subsequent utilization as a bioactive surface coating material for soft tissue engineering, angiogenesis and wound healing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cell division in Escherichia coli cultures monitored at single cell resolution

    PubMed Central

    Roostalu, Johanna; Jõers, Arvi; Luidalepp, Hannes; Kaldalu, Niilo; Tenson, Tanel

    2008-01-01

    Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E. coli. PMID:18430255

  6. In silico characterization of cell-cell interactions using a cellular automata model of cell culture.

    PubMed

    Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun

    2017-07-14

    Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.

  7. Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells

    PubMed Central

    Schiele, Nathan R.; Chrisey, Douglas B.

    2011-01-01

    Laser direct-writing provides a method to pattern living cells in vitro, to study various cell–cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research. PMID:20849381

  8. Individual cell lag time distributions of Cronobacter (Enterobacter sakazakii) and impact of pooling samples on its detection in powdered infant formula.

    PubMed

    Miled, Rabeb Bennour; Guillier, Laurent; Neves, Sandra; Augustin, Jean-Christophe; Colin, Pierre; Besse, Nathalie Gnanou

    2011-06-01

    Cells of six strains of Cronobacter were subjected to dry stress and stored for 2.5 months at ambient temperature. The individual cell lag time distributions of recovered cells were characterized at 25 °C and 37 °C in non-selective broth. The individual cell lag times were deduced from the times taken by cultures from individual cells to reach an optical density threshold. In parallel, growth curves for each strain at high contamination levels were determined in the same growth conditions. In general, the extreme value type II distribution with a shape parameter fixed to 5 (EVIIb) was the most effective at describing the 12 observed distributions of individual cell lag times. Recently, a model for characterizing individual cell lag time distribution from population growth parameters was developed for other food-borne pathogenic bacteria such as Listeria monocytogenes. We confirmed this model's applicability to Cronobacter by comparing the mean and the standard deviation of individual cell lag times to populational lag times observed with high initial concentration experiments. We also validated the model in realistic conditions by studying growth in powdered infant formula decimally diluted in Buffered Peptone Water, which represents the first enrichment step of the standard detection method for Cronobacter. Individual lag times and the pooling of samples significantly affect detection performances. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Establishment and Characterization of a New Muscle Cell Line of Zebrafish (Danio rerio) as an In Vitro Model for Gene Expression Studies.

    PubMed

    Kumar, Amit; Singh, Neha; Goswami, Mukunda; Srivastava, J K; Mishra, Akhilesh K; Lakra, W S

    2016-01-01

    A new continuous fibroblast cell line was established from the muscle tissue of healthy juvenile Danio rerio (Zebrafish) through explant method. Fish cell lines serve as useful tool for investigating basic fish biology, as a model for bioassay of environmental toxicant, toxicity ranking, and for developing molecular biomarkers. The cell line was continuously subcultured for a period of 12 months (61 passages) and maintained at 28 °C in L-15 medium supplemented with 10% FBS and 10 ng/mL of basic fibroblastic growth factor (bFGF) without use of antibiotics. Its growth rate was proportional to the FBS concentration, with optimum growth at 15% FBS. DNA barcoding (16SrRNA and COX1) was used to authenticate the cell line. Cells were incubated with propidium iodide and sorted via flow cytometry to calculate the DNA content to confirm the genetic stability. Significant green fluorescent protein (GFP) signals confirmed the utility of cell line in transgenic and genetic manipulation studies. In vitro assay was performed with MTT to examine the growth potential of the cell line. The muscle cell line would provide a novel invaluable in vitro model to identify important genes to understand regulatory mechanisms that govern the molecular regulation of myogenesis and should be useful in biomedical research.

  10. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    PubMed

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p < 0.05). This study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  11. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Donguk; Park, Young; Kim, Minha

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity,more » surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.« less

  12. Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis

    PubMed Central

    Jin, Kideok; Pandey, Niranjan B.; Popel, Aleksander S.

    2017-01-01

    Triple negative breast cancer (TNBC) as a metastatic disease is currently incurable. Reliable and reproducible methods for testing drugs against metastasis are not available. Stromal cells may play a critical role in tumor progression and metastasis. In this study, we determined that fibroblasts and macrophages secreted IL-8 upon induction by tumor cell-conditioned media (TCM) from MDA-MB-231 cancer cells. Our data showed that the proliferation of MDA-MB-231 cells co-cultured with fibroblasts or macrophages was enhanced compared to the monoculture. Furthermore, TNBC cell migration, a key step in tumor metastasis, was promoted by conditioned media (CM) from TCM-induced fibroblasts or macrophages. Knockdown of the IL-8 receptor CXCR2 by CRISPR-Cas9 reduces MDA-MB-231 cell proliferation and migration compared to wild type. In a mouse xenograft tumor model, the growth of MDA-MB-231-CXCR2−/− tumor was significantly decreased compared to the growth of tumors from wild-type cells. In addition, the incidence of thoracic metastasis of MDA-MB-231-CXCR2−/− tumors was reduced compared to wild type. We found that the auto- and paracrine loop exists between TNBC cells and stroma, which results in enhanced IL-8 secretion from the stromal components. Significantly, inhibition of the IL-8 signaling pathway by reparixin, an inhibitor of the IL-8 receptor, CXCR1/2, reduced MDA-MB-231 tumor growth and metastasis. Taken together, these findings implicate IL-8 signaling as a critical event in TNBC tumor growth and metastasis via crosstalk with stromal components. PMID:28947965

  13. Fibrin glue inhibits migration of ocular surface epithelial cells

    PubMed Central

    Yeung, A M; Faraj, L A; McIntosh, O D; Dhillon, V K; Dua, H S

    2016-01-01

    Purpose Fibrin glue has been used successfully in numerous ophthalmic surgical procedures. Recently, fibrin glue has been used in limbal stem cell transplantation to reduce both operative time and to negate the need for sutures. The aim of this study was to determine the effects of fibrin glue on epithelial cell migration in vitro. Methods Corneoscleral rims were split to retain the epithelial layer, Bowman's layer, and anterior stroma. Rims were cut into eight equal-sized pieces and were placed directly on culture plates or affixed with fibrin glue. Rims were maintained in culture for 25 days and epithelial cell growth was monitored. Cells were photographed to measure area or growth and immunofluorescence staining of explants for fibrin was performed. Results Explants that were glued demonstrated significantly delayed epithelial cell growth and migration as compared with explants without glue. By day 16, all fibrin glue had dissolved and coincided with onset of cell growth from glued explants. Cell growth commenced between days 3 and 4 for control explants without glue and around days 14–16 for explants with fibrin glue. Conclusions Fibrin glue delays epithelial cell migration by acting as a physical barrier and can potentially interfere with explant-derived limbal epithelial cell migration on to the corneal surface. We propose that glue should be used to attach the conjunctival frill of the limbal explant but care should be taken to ensure that the glue does not wrap around the explant if used to secure the explant as well. Strategic use of glue, to attach the recessed conjunctiva, can be advantageous in delaying conjunctival cell migration and reducing the need for sequential sector conjunctival epitheliectomy. PMID:27367746

  14. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  15. Self-Elongation with Sequential Folding of a Filament of Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Honda, Ryojiro; Wakita, Jun-ichi; Katori, Makoto

    2015-11-01

    Under hard-agar and nutrient-rich conditions, a cell of Bacillus subtilis grows as a single filament owing to the failure of cell separation after each growth and division cycle. The self-elongating filament of cells shows sequential folding processes, and multifold structures extend over an agar plate. We report that the growth process from the exponential phase to the stationary phase is well described by the time evolution of fractal dimensions of the filament configuration. We propose a method of characterizing filament configurations using a set of lengths of multifold parts of a filament. Systems of differential equations are introduced to describe the folding processes that create multifold structures in the early stage of the growth process. We show that the fitting of experimental data to the solutions of equations is excellent, and the parameters involved in our model systems are determined.

  16. Establishment and Analysis of the 3-dimensional (3D) Spheroids Generated from the Nasopharyngeal Carcinoma Cell Line HK1.

    PubMed

    Muniandy, Kalaivani; Sankar, Prabu Siva; Xiang, Benedict Lian Shi; Soo-Beng, Alan Khoo; Balakrishnan, Venugopal; Mohana-Kumaran, Nethia

    2016-11-01

    Spheroids have been shown to recapitulate the tumour in vivo with properties such as the tumour microenvironment, concentration gradients, and tumour phenotype. As such, it can serve as a platform for determining the growth and invasion behaviour pattern of the cancer cells as well as be utilised for drug sensitivity assays; capable of exhibiting results that are closer to what is observed in vivo compared to two-dimensional (2D) cell culture assays. This study focused on establishing a three-dimensional (3D) cell culture model using the Nasopharyngeal Carcinoma (NPC) cell line, HK1 and analysing its growth and invasion phenotypes. The spheroids will also serve as a model to elucidate their sensitivity to the chemotherapeutic drug, Flavopiridol. The liquid overlay method was employed to generate the spheroids which was embedded in bovine collagen I matrix for growth and invasion phenotypes observation. The HK1 cells formed compact spheroids within 72 hours. Our observation from the 3 days experiments revealed that the spheroids gradually grew and invaded into the collagen matrix, showing that the HK1 spheroids are capable of growth and invasion. Progressing from these experiments, the HK1 spheroids were employed to perform a drug sensitivity assay using the chemotherapeutic drug, Flavopiridol. The drug had a dose-dependent inhibition on spheroid growth and invasion.

  17. Improved performance of mesostructured perovskite solar cells via an anti-solvent method

    NASA Astrophysics Data System (ADS)

    Hao, Jiabin; Hao, Huiying; Cheng, Feiyu; Li, Jianfeng; Zhang, Haiyu; Dong, Jingjing; Xing, Jie; Liu, Hao; Wu, Jian

    2018-06-01

    One-step solution process is a facile and widely used procedure to prepare organic-inorganic perovskite materials. However, the poor surface morphology of the films attributed to the uncontrollable nucleation and crystal growth in the process is unfavorable to solar cells. In this study, an anti-solvent treatment during the one-step solution process, in which ethyl acetate (EA) was dropped on the sample during spinning the precursor solution containing CH3NH3Cl, was adopted to fabricate perovskite materials and solar cells. It was found that the morphology of the perovskite film was significantly improved due to the rapid nucleation and slow crystal growth process. The modified process enabled us to fabricate the mesoporous solar cell with power conversion efficiency of 14%, showing an improvement of 40% over the efficiency of 9.7% of the device prepared by conventional one-step method. The controlling effect of annealing time on the morphology, crystal structure and transport properties of perovskite layer as well as the performance of device fabricated by the anti-solvent method were investigated and the possible mechanism was discussed.

  18. Agrobacterium-mediated transformation of lipomyces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Magnuson, Jon K.; Deng, Shuang

    This disclosure provides Agrobacterium-mediated transformation methods for the oil-producing (oleaginous) yeast Lipomyces sp., as well as yeast produced by the method. Such methods utilize Agrobacterium sp. cells that have a T-DNA binary plasmid, wherein the T-DNA binary plasmid comprises a first nucleic acid molecule encoding a first protein and a second nucleic acid molecule encoding a selective marker that permits growth of transformed Lipomyces sp. cells in selective culture media comprising an antibiotic.

  19. Paradigm shift in plant growth control.

    PubMed

    Körner, Christian

    2015-06-01

    For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit. Copyright © 2015. Published by Elsevier Ltd.

  20. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yunguang; Zheng Siyuan; Torossian, Artour

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133more » and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.« less

  1. Normal platelet function in platelet concentrates requires non-platelet cells: a comparative in vitro evaluation of leucocyte-rich (type 1a) and leucocyte-poor (type 3b) platelet concentrates

    PubMed Central

    Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir

    2016-01-01

    Background Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Methods Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Results Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl2, and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). Conclusions These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction. PMID:27900155

  2. Evaluation of Fetal Intestinal Cell Growth and Antimicrobial Biofunctionalities of Donor Human Milk After Preparative Processes.

    PubMed

    Kanaprach, Pasinee; Pongsakul, Nutkridta; Apiwattanakul, Nopporn; Muanprasat, Chatchai; Supapannachart, Sarayut; Nuntnarumit, Pracha; Chutipongtanate, Somchai

    2018-04-01

    Donor human milk is considered the next best nutrition following mother's own milk to prevent neonatal infection and necrotizing enterocolitis in preterm infants who are admitted at neonatal intensive care unit. However, donor milk biofunctionalities after preparative processes have rarely been documented. To evaluate biofunctionalities preserved in donor milk after preparative processes by cell-based assays. Ten pools of donor milk were produced from 40 independent specimens. After preparative processes, including bacterial elimination methods (holder pasteurization and cold-sterilization microfiltration) and storage conditions (-20°C freezing storage and lyophilization) with varied duration of storage (0, 3, and 6, months), donor milk biofunctionalities were examined by fetal intestinal cell growth and antimicrobial assays. At baseline, raw donor milk exhibited 193.1% ± 12.3% of fetal intestinal cell growth and 42.4% ± 11.8% of antimicrobial activities against Escherichia coli. After bacteria eliminating processes, growth promoting activity was better preserved in pasteurized donor milk than microfiltrated donor milk (169.5% ± 14.3% versus 146.0% ± 11.8%, respectively; p < 0.005), whereas antimicrobial activity showed no difference between groups (38.3% ± 14.1% versus 53.7% ± 17.3%, respectively; p = 0.499). The pasteurized donor milk was further examined for the effects of storage conditions at 3 and 6 months. Freezing storage, but not lyophilization, could preserve higher growth-promoting activity during 6 months of storage (163.0% ± 9.4% versus 72.8% ± 6.2%, respectively; p < 0.005). Nonetheless, antimicrobial activity was lost at 6 months, regardless of the storage methods. This study revealed that fetal intestinal cell growth and antimicrobial assays could be applied to measure donor milk biofunctionalities and support the utilization of donor milk within 3 months after preparative processes.

  3. Video bioinformatics analysis of human embryonic stem cell colony growth.

    PubMed

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-05-20

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion.

  4. Taguchi method for partial differential equations with application in tumor growth.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena

    2014-01-01

    The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

  5. Efavirenz directly modulates the oestrogen receptor and induces breast cancer cell growth.

    PubMed

    Sikora, M J; Rae, J M; Johnson, M D; Desta, Z

    2010-10-01

    Efavirenz-based HIV therapy is associated with breast hypertrophy and gynaecomastia. Here, we tested the hypothesis that efavirenz induces gynaecomastia through direct binding and modulation of the oestrogen receptor (ER). To determine the effect of efavirenz on growth, the oestrogen-dependent, ER-positive breast cancer cell lines MCF-7, T47D and ZR-75-1 were treated with efavirenz under oestrogen-free conditions in the presence or absence of the anti-oestrogen ICI 182,780. Cells treated with 17β-oestradiol in the absence or presence of ICI 182,780 served as positive and negative controls, respectively. Cellular growth was assayed using the crystal violet staining method and an in vitro receptor binding assay was used to measure the ER binding affinity of efavirenz. Efavirenz induced growth in MCF-7 cells with an estimated effective concentration for half-maximal growth (EC(50)) of 15.7 μM. This growth was reversed by ICI 182,780. Further, efavirenz binds directly to the ER [inhibitory concentration for half maximal binding (IC(50)) of ∼52 μM] at a roughly 1000-fold higher concentration than observed with 17β-oestradiol. Our data suggest that efavirenz-induced gynaecomastia may be caused, at least in part, by drug-induced ER activation in breast tissues.

  6. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.

    PubMed

    Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei

    2015-09-16

    The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.

  7. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{submore » 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated with superoxide levels as assessed by flow cytometry. ► Synergism between arsenite and MG132 in U937 leukemia cell line. ► Synergism turned into antagonism by low levels of hydrogen peroxide. ► Resistance to arsenic cytotoxicity linked to early superoxide anion increased levels.« less

  8. A brief review on microfluidic platforms for hormones detection.

    PubMed

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2017-01-01

    Lab-on-chip technology is attracting great interest due to its potential as miniaturized devices that can automate and integrate many sample-handling steps, minimize consumption of reagent and samples, have short processing time and enable multiplexed analysis. Microfluidic devices have demonstrated their potential for a broad range of applications in life sciences, including point-of-care diagnostics and personalized medicine, based on the routine diagnosis of levels of hormones, cancer markers, and various metabolic products in blood, serum, etc. Microfluidics offers an adaptable platform that can facilitate cell culture as well as monitor their activity and control the cellular environment. Signaling molecules released from cells such as neurotransmitters and hormones are important in assessing the health of cells and the effect of drugs on their functions. In this review, we provide an insight into the state-of-art applications of microfluidics for monitoring of hormones released by cells. In our works, we have demonstrated efficient detection methods for bovine growth hormones using nano and microphotonics integrated microfluidics devices. The bovine growth hormone can be used as a growth promoter in dairy farming to enhance the milk and meat production. In the recent years, a few attempts have been reported on developing very sensitive, fast and low-cost methods of detection of bovine growth hormone using micro devices. This paper reviews the current state-of-art of detection and analysis of hormone using integrated optical micro and nanofluidics systems. In addition, the paper also focuses on various lab-on-a-chip technologies reported recently, and their benefits for screening growth hormones in milk.

  9. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  10. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    PubMed

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Effects of Above-Optimum Growth Temperature and Cell Morphology on Thermotolerance of Listeria monocytogenes Cells Suspended in Bovine Milk

    PubMed Central

    Rowan, Neil J.; Anderson, John G.

    1998-01-01

    The thermotolerances of two different cell forms of Listeria monocytogenes (serotype 4b) grown at 37 and 42.8°C in commercially pasteurized and laboratory-tyndallized whole milk (WM) were investigated. Test strains, after growth at 37 or 42.8°C, were suspended in WM at concentrations of approximately 1.5 × 108 to 3.0 × 108 cells/ml and were then heated at 56, 60, and 63°C for various exposure times. Survival was determined by enumeration on tryptone-soya-yeast extract agar and Listeria selective agar, and D values (decimal reduction times) and Z values (numbers of degrees Celsius required to cause a 10-fold change in the D value) were calculated. Higher average recovery and higher D values (i.e., seen as a 2.5- to 3-fold increase in thermotolerance) were obtained when cells were grown at 42.8°C prior to heat treatment. A relationship was observed between thermotolerance and cell morphology of L. monocytogenes. Atypical Listeria cell types (consisting predominantly of long cell chains measuring up to 60 μm in length) associated with rough (R) culture variants were shown to be 1.2-fold more thermotolerant than the typical dispersed cell form associated with normal smooth (S) cultures (P ≤ 0.001). The thermal death-time (TDT) curves of R-cell forms contained a tail section in addition to the shoulder section characteristic of TDT curves of normal single to paired cells (i.e., S form). The factors shown to influence the thermoresistance of suspended Listeria cells (P ≤ 0.001) were as follows: growth and heating temperatures, type of plating medium, recovery method, and cell morphology. Regression analysis of nonlinear data can underestimate survival of L. monocytogenes; the end point recovery method was shown to be a better method for determining thermotolerance because it takes both shoulders and tails into consideration. Despite their enhanced heat resistance, atypical R-cell forms of L. monocytogenes were unable to survive the low-temperature, long-time pasteurization process when freely suspended and heated in WM. PMID:9603815

  12. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  13. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth.

    PubMed

    Li, Zheng Jun; Choi, Hye-In; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Lee, Young-Ho; Lee, Jeung-Hoon; Lee, Young

    2012-07-01

    Recently, autologous platelet-rich plasma (PRP) has attracted attention in various medical fields, including plastic and orthopedic surgery and dermatology, for its ability to promote wound healing. PRP has been tested during facelift and hair transplantation to reduce swelling and pain and to increase hair density. To investigate the effects of PRP on hair growth using in vivo and in vitro models. PRP was prepared using the double-spin method and applied to dermal papilla (DP) cells. The proliferative effect of activated PRP on DP cells was measured. To understand the mechanisms of activated PRP on hair growth, we evaluated signaling pathways. In an in vivo study, mice received subcutaneous injections of activated PRP, and their results were compared with control mice. Activated PRP increased the proliferation of DP cells and stimulated extracellular signal-regulated kinase (ERK) and Akt signaling. Fibroblast growth factor 7 (FGF-7) and beta-catenin, which are potent stimuli for hair growth, were upregulated in DP cells. The injection of mice with activated PRP induced faster telogen-to-anagen transition than was seen on control mice. Although few studies tested the effects of activated PRP on hair growth, this research provides support for possible clinical application of autologous PRP and its secretory factors for promotion of hair growth. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  14. Cell culture of the mucinous variant of human colorectal carcinoma.

    PubMed

    Tibbetts, L M; Chu, M Y; Vezeridis, M P; Miller, P G; Tibbetts, L L; Poisson, M H; Camara, P D; Calabresi, P

    1988-07-01

    Two cell lines, RW-2982 and RW-7213, have been established for the first time from the mucinous variant of human colorectal carcinoma, which is a distinctive and important subtype that has a worse prognosis than the more common nonmucogenic large bowel carcinoma. Methods of establishment and observations made during 7 and 3 years, respectively, of continuous culture are described. These cell lines required 4-9 months of adaptation to tissue culture conditions before noticeable growth occurred. Both cell lines have the following unique properties: (a) growth in vitro as delicate branching three-dimensional tumor particles within a wide gel of insoluble, often translucent mucus (proteoglycan); (b) production of large quantities of carcinoembryonic antigen; (c) ability to survive or adapt to growth in media free of serum, hormones, growth factors, and all protein; and (d) tumorigenicity in multiple sites in nude mice, including liver, with especially rapid growth in the peritoneal cavity as gelatinous material that is nonadherent and noninvasive and thus resembles pseudomyxoma peritonei. Unlike other reported colorectal cell lines, these mucus-coated particulate cell lines will not readily grow as monolayers and grow much more slowly with a doubling time of 2 weeks or more. A serially transplantable tumor from the RW-7213 surgical specimen has also been maintained in nude mice since August 8, 1984. This tumor retains properties of the original specimen. Observations made on the tumor biology of mucogenic colorectal carcinoma using these cell lines are discussed.

  15. 3D Tracking of individual growth factor receptors on polarized cells

    NASA Astrophysics Data System (ADS)

    Werner, James; Stich, Dominik; Cleyrat, Cedric; Phipps, Mary; Wadinger-Ness, Angela; Wilson, Bridget

    We have been developing methods for following 3D motion of selected biomolecular species throughout mammalian cells. Our approach exploits a custom designed confocal microscope that uses a unique spatial filter geometry and active feedback 200 times/second to follow fast 3D motion. By exploiting new non-blinking quantum dots as fluorescence labels, individual molecular trajectories can be observed for several minutes. We also will discuss recent instrument upgrades, including the ability to perform spinning disk fluorescence microscopy on the whole mammalian cell performed simultaneously with 3D molecular tracking experiments. These instrument upgrades were used to quantify 3D heterogeneous transport of individual growth factor receptors (EGFR) on live human renal cortical epithelial cells.

  16. Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun

    2018-07-01

    Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.

  17. Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun

    2018-03-01

    Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.

  18. An in vitro monocyte culture method and establishment of a human monocytic cell line (K63).

    PubMed

    Kadoi, Katsuyuki

    2011-01-01

    A novel method of monocyte culture in vitro was developed. The fraction of monocytes was obtained by density centrifugation of heparinised human venous blood samples. Monocytes were suspended in a modified Rosewell Park Memorial Institute medium (RPMI)-1640 (mRPMI) supplemented with 10% non-inactivated autologous serum added to the feeder cells. An avian cell line was used for feeder cells. Only those monocytes that settled on feeder cells grew rapidly at 37°C-38°C into a formation of clumped masses within two to three days. The cell mass was harvested and subcultures were made without feeder cells. A stable cell line (K63) was established from subcultures using a limited dilution method and cell cloning in microplates. K63 cells were adapted for later growth in the mRPMI medium supplemented with 10% foetal calf serum. The cells were well maintained at over 50th passage levels. This method proved to be applicable for monocyte cultures of animals as well.

  19. Directional solidification of silicon in carbon crucibles by an oscillating crucible technique

    NASA Technical Reports Server (NTRS)

    Daud, T.; Dumas, K. A.; Schwuttke, G. H.; Smetana, P.; Kim, K. M.

    1982-01-01

    The quality of silicon cast by present techniques is limited by the presence of dislocations and grain boundaries in unseeded growth and by cellular structures with dislocation networks in the case of the seeded growth. To address these concerns, a new method of directional solidification called the oscillating crucible technique (OCT) is developed. During growth, a carbon crucible is oscillated to provide for effective stirring of the melt. This growth technique (seeded growth only), along with material characterization and solar-cell fabrication and testing, is described. Solar-cell efficiencies of up to 13 percent at 100 mW/sq cm area obtained in the single crystalline areas. Minority-carrier diffusion lengths exceeding 100 microns are measured even in the polycrystalline areas of the wafers. Limitations of the present setup and possible future improvements are discussed.

  20. An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies.

    PubMed

    Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick; Hölttä, Teemu; Choat, Brendan; Meir, Patrick; O'Grady, Anthony; Tissue, David; Zweifel, Roman; Sevanto, Sanna; Pfautsch, Sebastian

    2017-02-01

    Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  1. Using self-assembled monolayers to pattern ECM proteins and cells on substrates.

    PubMed

    Ostuni, Emanuele; Whitesides, George M; Ingber, Donald E; Chen, Christopher S

    2009-01-01

    We present a method that uses microcontact printing of alkanethiols on gold to generate patterned substrates presenting "islands" of extracellular matrix (ECM) surrounded by nonadhesive regions such that single cells attach and spread only on the adhesive regions. We have used this micropatterning technology to demonstrate that mammalian cells can be switched between growth and apoptosis programs in the presence of saturating concentrations of growth factors by either promoting or preventing cell spreading (Science 276:1425-1428, 1997). From the perspective of fundamental cell biology, these results suggested that the local differentials in growth and viability that are critical for the formation of complex tissue patterns may be generated by local changes in cell-ECM interactions. In the context of cell culture technologies, such as bioreactors and cellular engineering applications, the regulation of cell function by cell shape indicates that the adhesive microenvironment around cells can be carefully optimized by patterning a substrate in addition to using soluble factors (Biotech. Prog. 14:356-363, 1998). Micropatterning technology is playing a central role both in our understanding how ECM and cell shape regulate cell physiology and in facilitating the development of cellular biosensor and tissue engineering applications (Science 264:696-698, 1994; J. Neurosci. Res. 13:213-20, 1985; Biotech. Bioeng. 43:792-800, 1994).

  2. New materials for old problems: What can nanomaterials do for biology and neuroscience?

    NASA Astrophysics Data System (ADS)

    Srivatsan, Malathi; Badanavalu, Mahadevappa P.; Yancey, Justin; Xie, Jining; Chen, Linfeng; Hankins, Philip T.; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    The emerging field of nanotechnology offers the development of new materials and methods for crucial neuroscience applications namely (a) promoting survival and growth of the neurons, and (b) monitoring physiological signals generated in the nervous system such as excitation, synaptic transmission, release of neurotransmitter molecules and cell-to-cell communication. Such bio-devices will have several novel applications in basic science, laboratory analysis and therapeutic treatments. Our goals in this field of research include (a) development of new biocompatible substrates to guide and promote neuronal growth along specific pathways; (b) designing a neuron-friendly, bio-molecule delivery system for neuroprotection; (c) monitoring of electrical activity from neuron and also from neuronal networks; (d) determining the diffusion and intracellular localization of nanomaterial interacting with neurons at high resolution; and (e) detection of release of neurotransmitter molecules by means of newly designed nanosensors. Here we describe the fabrication and use of magnetic nanotubes and nanowire electrode arrays in studies using a cell culture model of neuronally differentiating rat pheochromocytoma (PC 12) cells. The magnetic nanotubes were fabricated by a template method yielding hematite (α-Fe2O3) nanotubes. These nanotubes were coupled with nerve growth factor (NGF). Vertically aligned nanowires were fabricated on glass substrates using the lithography-assisted template bonding (LATB) method. Rat pheochromocytoma (PC12) cells were cultured on these nanotubes and polylysine coated nanowire electrodes. Our results showed that magnetic nanotube bound NGF was available to PC12 cells as they showed significant differentiation into neurons. PC12 cells growing on nanowires in the presence of NGF differentiated into neurons capable of synthesis and release of dopamine upon stimulation. The neurons grew healthy neurites appearing to form synapses with other neurons in the dish. These results show that the magnetic nanotubes were capable of delivering neurotrophic molecules and the nanowire electrodes are neuron-friendly, promote cell to cell communication and can be used as bio-sensors in the nervous system.

  3. Radiobiological features of acute myeloblastic leukemia: comparison of self-renewal versus terminally differentiated populations.

    PubMed

    Cowen, D; Richaud, P; Landriau, S; Lagarde, P; Mahon, F X; Baudet, J J; Belloc, F; Gualde, N; Reiffers, J

    1994-12-01

    To evaluate the radiosensitivity of self-renewing progenitor cells in acute myeloblastic leukemia (AML), we have compared the radiosensitivity of the cells grown either in methylcellulose alone for 7 days, or first in suspension culture for 7 days before being plated in methylcellulose. Methylcellulose selects for terminal-dividing cells and suspension cultures have been developed because they allow self-renewal to occur: The exponential growth of the progenitors of AML cultured in suspension is due to self-renewal. Cells were harvested from previously untreated leukemic human bone marrows. The myeloblastic lineage of the colonies was assessed by morphological, cytochemical, and immunophenotypic analysis, and by the use of growth factors that did not stimulate the growth of T-lymphocytes. The cell-cycle distribution of the blasts was analyzed by flow cytometry and was comparable for all samples. The irradiation was performed with gamma-photons at a dose-rate of 0.05 Gy/min, similar to the clinical conditions used in our institution for total body irradiation (TBI). The culture methods selected aggressive leukemias. There were large variations of the individual radiosensitivity whatever culture method was used. The progenitor cells capable of self-renewal were more radiosensitive than terminal dividing cells. In two cases, a shoulder was found in the initial part of the cell-survival curves of cells capable of self-renewal. In these two cases, the best fit for the data was the linear quadratic model (survival = e-alpha D-beta D2) with alpha/beta values of 1.49 Gy and 3.12 Gy, respectively. The very low values of alpha/beta suggest a reduced antileukemic effect in case of fractionated TBI, and may lead to more reliable screening methods to determine the most appropriate technique for radiation ablation of bone marrow prior to bone marrow transplantation (BMT).

  4. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma

    PubMed Central

    Kwak, Tae Won; Shin, Hee Jae; Jeong, Young-Il; Han, Myoung-Eun; Oh, Sae-Ock; Kim, Hyun-Jung; Kim, Do Hyung; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to investigate the anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Methods The anticancer activity of streptochlorin was evaluated in vitro in various cholangiocarcinoma cell lines for apoptosis, proliferation, invasiveness, and expression of various protein levels. A liver metastasis model was prepared by splenic injection of HuCC-T1 cholangiocarcinoma cells using a BALB/c nude mouse model to study the systemic antimetastatic efficacy of streptochlorin 5 mg/kg at 8 weeks. The antitumor efficacy of subcutaneously injected streptochlorin was also assessed using a solid tumor xenograft model of SNU478 cells for 22 days in the BALB/c nude mouse. Results Streptochlorin inhibited growth and secretion of vascular endothelial growth factor by cholangiocarcinoma cells in a dose-dependent manner and induced apoptosis in vitro. In addition, streptochlorin effectively inhibited invasion and migration of cholangiocarcinoma cells. Secretion of vascular endothelial growth factor and activity of matrix metalloproteinase-9 in cholangiocarcinoma cells were also suppressed by treatment with streptochlorin. Streptochlorin effectively regulated metastasis of HuCC-T1 cells in a mouse model of liver metastasis. In a tumor xenograft study using SNU478 cells, streptochlorin significantly inhibited tumor growth without changes in body weight when compared with the control. Conclusion These results reveal that streptochlorin is a promising chemotherapeutic agent to the treatment of cholangiocarcinoma. PMID:25931814

  5. How do fission yeast cells grow and connect growth to the mitotic cycle?

    PubMed

    Sveiczer, Ákos; Horváth, Anna

    2017-05-01

    To maintain size homeostasis in a unicellular culture, cells should coordinate growth to the division cycle. This is achieved via size control mechanisms (also known as size checkpoints), i.e. some events during the mitotic cycle supervene only if the cell has reached a critical size. Rod-shaped cells like those of fission yeast are ideal model organisms to study these checkpoints via time-lapse microphotography. By applying this method, once we can analyse the growth process between two consecutive divisions at a single (or even at an 'average') cellular level, moreover, we can also position the size checkpoint(s) at the population level. Finally, any of these controls can be abolished in appropriate cell cycle mutants, either in steady-state or in induction synchronised cultures. In the latter case, we produce abnormally oversized cells, and microscopic experiments with them clearly show the existence of a critical size above which the size checkpoint ceases (becomes cryptic). In this review, we delineate the development of our knowledge both on the growth mode of fission yeast and on the operating size control(s) during its mitotic cycle. We finish these historical stories with our recent findings, arguing that three different size checkpoints exist in the fission yeast cell cycle, namely in late G1, in mid G2 and in late G2, which has been concluded by analysing these controls in several cell cycle mutants.

  6. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis

    PubMed Central

    Fino, Kristin K.; Matters, Gail L.; McGovern, Christopher O.; Gilius, Evan L.

    2012-01-01

    Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G1 to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer. PMID:22442157

  7. Synchronization of Somatic Embryogenesis in Date Palm Suspension Culture Using Abscisic Acid.

    PubMed

    Alwael, Hussain A; Naik, Poornananda M; Al-Khayri, Jameel M

    2017-01-01

    Somatic embryogenesis is considered the most effective method for commercial propagation of date palm. However, the limitation of obtaining synchronized development of somatic embryos remains an impediment. The synchronization of somatic embryo development is ideal for the applications to produce artificial seeds. Abscisic acid (ABA) is associated with stress response and influences in vitro growth and development. This chapter describes an effective method to achieve synchronized development of somatic embryos in date palm cell suspension culture. Among the ABA concentrations tested (0, 1, 10, 50, 100 μM), the best synchronized growth was obtained in response to 50-100 μM. Here we provide a comprehensive protocol for in vitro plant regeneration of date palm starting with shoot-tip explant, callus initiation and growth, cell suspension establishment, embryogenesis synchronization with ABA treatment, somatic embryo germination, and rooting as well as acclimatized plantlet establishment.

  8. Down-regulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by baicalin

    PubMed Central

    2012-01-01

    Background Baicalin, a flavone present in Scutellaria baicalensis Georgi, inhibits the growth of human leukemia and myeloma cells through induction of apoptosis. Methods The present study was undertaken to ascertain whether cultured Burkitt lymphoma cells undergo apoptosis when treated with baicalin. Growth rates were measured using MTT and colony formation assays, and induction of apoptosis was quantified using Annexin V and DNA fragmentation assays. Mechanisms underlying observed growth suppression were examined using Western blotting. Results Treatment of CA46 Burkitt lymphoma cells with baicalin for 48 h markedly decreased the rate of cell proliferation; an IC50 value of 10 μM was obtained. Colony formation was almost fully suppressed at 10 μM baicalin. CA46 cells underwent apoptosis in response to baicalin treatment as evidenced by an increase in the percentage of cells stainable with Annexin V, by increased DNA fragmentation, and by activation of the intrinsic (mitochondrial) pathway for cell death as characterized by increased expression of the cleaved forms of caspase-9, caspase-3, and poly (ADP-ribose) polymerase. Additionally, baicalin was found to down-regulate anti-apoptotic and up-regulate apoptotic components of the phosphatidylinositide-3-kinase (PI3K)/serine/threonine kinase (Akt) signaling pathway. Conclusions The concentrations at which baicalin altered expression of components of the PI3K/Akt pathway in CA46 cells were comparable to those that suppressed growth and induced apoptosis, supporting the hypothesis that the observed growth-inhibitory and apoptosis-inducing actions of baicalin in these cells are mediated by down-regulation of this pathway. PMID:22607709

  9. Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate

    PubMed Central

    Pourmollaabbassi, Babak; Karbasi, Saeed; Hashemibeni, Batool

    2016-01-01

    Background: The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Materials and Methods: In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. Results: The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. Conclusions: It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface. PMID:27761431

  10. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Amrita; Jones, Michael K.; Department of Medicine, University of California, Irvine, CA

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 andmore » VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is independent of its primary function in the induction of angiogenesis.« less

  11. A Novel Strategy for Enrichment and Isolation of Osteoprogenitor Cells from Induced Pluripotent Stem Cells Based on Surface Marker Combination

    PubMed Central

    Ochiai-Shino, Hiromi; Kato, Hiroshi; Sawada, Takashi; Onodera, Shoko; Saito, Akiko; Takato, Tsuyoshi; Shibahara, Takahiko; Muramatsu, Takashi; Azuma, Toshifumi

    2014-01-01

    In this study, we developed a new method to stimulate osteogenic differentiation in tissue-nonspecific alkaline phosphatase (TNAP)-positive cells liberated from human induced pluripotent stem cells (hiPSCs)-derived embryoid bodies (EBs) with 14 days long TGF-β/IGF-1/FGF-2 treatment. TNAP is a marker protein of osteolineage cells. We analyzed and isolated TNAP-positive and E-cadherin-negative nonepithelial cells by fluorescence-activated cell sorting. Treating the cells with a combination of transforming growth factor (TGF)-β, insulin-like growth factor (IGF)-1, and fibroblast growth factor (FGF)-2 for 14 days greatly enhanced TNAP expression and maximized expression frequency up to 77.3%. The isolated cells expressed high levels of osterix, which is an exclusive osteogenic marker. Culturing these TNAP-positive cells in osteoblast differentiation medium (OBM) led to the expression of runt-related transcription factor 2, type I collagen, bone sialoprotein, and osteocalcin (OCN). These cells responded to treatment with activated vitamin D3 by upregulating OCN. Furthermore, in OBM they were capable of generating many mineralized nodules with strong expression of receptor activator of NF-kappaB ligand and sclerostin (SOST). Real-time RT-PCR showed a significant increase in the expression of osteocyte marker genes, including SOST, neuropeptide Y, and reelin. Scanning electron microscopy showed dendritic morphology. Examination of semi-thin toluidine blue-stained sections showed many interconnected dendrites. Thus, TNAP-positive cells cultured in OBM may eventually become terminally differentiated osteocyte-like cells. In conclusion, treating hiPSCs-derived cells with a combination of TGF-β, IGF-1, and FGF-2 generated TNAP-positive cells at high frequency. These TNAP-positive cells had a high osteogenic potential and could terminally differentiate into osteocyte-like cells. The method described here may reveal new pathways of osteogenesis and provide a novel tool for regenerative medicine and drug development. PMID:24911063

  12. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer.

    PubMed

    Lauder, J M

    1977-04-22

    The effects of early hypo- and hyperthyroidism on the rates of cell acquisition and proliferation have been studied in the external granular layer (EGL) of the developing rat cerebellar cortex at 10 days of age using quantitative autoradiographic methods. Both altered thyroid states reduce the rate of cell acquisition in the EGL, but appear to do so for different reasons. Hyperthyroidism shortens the average length of the cell cycle by decreasing the duration of the pre-DNA synthetic phase (G1), indicating that excess thyroxine may exert a direct effect on the EGL. This action involves the early onset of neuronal differentiation (cessation of proliferation)46 which presumably leads to the observed decrease in the rate of cell acquisition (increased doubling time). Such differentiating cells do not, however, leave the proliferative zone or the EGL prematurely, resulting in a reduced labeling index, mitotic index, and growth fraction as non-dividing cells dilute the proliferating cell population. Hypothyroidism, on the other hand, leads to no significant change in the length of the cell cycle or in the mitotic index, but causes a decreased labeling index and growth fraction, as well as a reduced rate of cell acquisition (increased doubling time). No significant change in the amount of cell death in the EGL could be found to explain this apparent discrepancy between the rate of cell proliferation (cell cycle length) and cell acqusiition. The answer to this puzzle appears to lie in the mitotic index, which is not affected to the same extent as the labeling index, although it is also slightly reduced. If cells were to remain longer in mitosis, this could result in a decreased labeling index and growth fraction but nearly normal mitotic index and cell cycle length (as measured using the % labeled mitoses method), since those cells dropping out of the cycling population would be counted as mitoses...

  13. [Growth inhibition effect of immobilized pectinase on Microcystis aeruginosa].

    PubMed

    Shen, Qing-Qing; Peng, Qian; Lai, Yong-Hong; Ji, Kai-Yan; Han, Xiu-Lin

    2012-12-01

    To confirm the growth inhibition effect of immobilized pectinase on algae, co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa. After co-cultivation, the damage status of the algae was observed through electron microscope, and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured. The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase. Under electron microscope, plasmolysis was found in the slightly damaged cells, and the cell surface of these cells was rough, uneven and irregular; the severely damaged cells were collapsed or disintegrated completely. The algal yield and the chlorophyll a content decreased significantly with the increase of the treating time. The measurement of the malondiadehyde (MDA) value showed that the antioxidation system of the treated algal cells was destroyed, and their membrane lipid was severely peroxidated. The study indicated that the immobilized pectinase could efficiently inhibit the growth of M. aeruginosa, and the inhibitory rate reached up to 96%.

  14. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism

    PubMed Central

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2015-01-01

    Background and objectives Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. Methods The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Results Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Conclusions Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies. PMID:22068162

  15. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and is Upregulated in a Subset of Human Colon Cancers

    PubMed Central

    Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.

    2015-01-01

    Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. Conclusions KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors may benefit from KIT RTK inhibitors. PMID:26026391

  16. CHARACTERISTICS OF GROWTH OF SARCOMA AND CARCINOMA CULTIVATED IN VITRO

    PubMed Central

    Lambert, Robert A.; Hanes, Frederic M.

    1911-01-01

    1. The transplantable sarcomata of rats and mice grow very readily by the method of cultivating tissues in vitro. 2. Sarcomatous tissue grows in conformity to a type which may be regarded as characteristic for tissues of mesenchymal origin. 3. The growth of sarcoma cells in vitro consists in ameboid wandering into the surrounding plasma, karyokinetic proliferation. and evidences of active metabolism on the part of the cells. 4. Mouse carcinomata can be cultivated in vitro. The outgrowth of carcinoma cells assumes a sheet-like form, only one cell in thickness. They migrate into the plasma by ameboid movement, the advancing edge showing numerous prolongations of the cytoplasm into pseudopods. 5. Karyokinetic figures are frequently seen in growing carcinoma cells. The cells show evidences of active metabolism. 6. Both sarcoma and carcinoma cells cultivated in vitro show active phagocytosis; carmin particles placed in the plasma are taken up rapidly by the growing cells. PMID:19867430

  17. Combination of low-concentration of novel phytoestrogen (8,9)-furanyl-pterocarpan-3-ol from Pachyrhizus erosus attenuated tamoxifen-associated growth inhibition on breast cancer T47D cells

    PubMed Central

    Nurrochmad, Arief; Lukitaningsih, Endang; Monikawati, Ameilinda; Septhea, Dita Brenna; Meiyanto, Edy

    2013-01-01

    Objective To investigate the estrogenic effect of (8,9)-furanyl-pterocarpan-3-ol (FPC) on growth of human breast cancer T47D cells and the interactions between the FPC and tamoxifen (TAM), on the growth of estrogen receptor-dependent breast cancer T47D cells. Methods The proliferation effect of FPC were conducted on T47D cells in vitro by MTT test. T47D cells were treated with FPC alone (0.01-200 µmol/L) or in combination with TAM 20 nmol/L. Furthermore, the expression of ERα or c-Myc were also determined by immunohistochemistry. Results The results indicated that administration of an anti-estrogen TAM showed growth inhibitory effect on T47D cells, wheraes co-administered with low concentration (less than 1 µmol/L) of FPC attenuated to promote cell proliferation. In contrast, the combination of TAM with higher doses (more than 20 µmol/L) of FPC showed growth inhibitory. This result was supported by immunocytochemistry studies that the administration of 20 nmol/L TAM down-regulated ER-α and c-Myc, but the combination of 20 nmol/L TAM and 1 µmol/L FPC robustly up-regulated expression of ER-α. Thus, the reduced growth inhibition of TAM 20 nmol/L by FPC 1 µmol/L on T47D cells may act via the modulation of ER-α. Conclusions The findings indicate and suggest that FPC had estrogenic activity at low concentrations and anti-estrogenic effect that are likely to be regulated by c-Myc and estrogen receptors. We also confirm that low concentration of FPC attenuated the growth-inhibitory effects of TAM on mammary tumor prevention. Therefore, the present study suggests that caution is warranted regarding the consumption of dietary FPC by breast cancer patients while on TMA therapy.

  18. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguy, Amanda

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achievedmore » through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine bases. However, the results reported here contradict the previously reported data. Future prospectives on this work are outlined.« less

  19. Growth of Foot-and-Mouth Disease Virus in Dispersed Tissue Cells

    PubMed Central

    Patty, R. E.; Tozzini, F.; Seibold, H. R.; Callis, J. J.

    1962-01-01

    Methods are described for rapid and economical production of large quantities of foot-and-mouth disease virus in stationary cultures of trypsin-dispersed bovine kidney cells in a simple medium. Yields of between 107 and 108 plaque-forming units per milliliter were obtained from serum-free cultures containing approximately a million and a half viable trypsin-dispersed cells per milliliter. Some of the advantages and disadvantages of these methods of virus production are discussed. ImagesFig. 1Fig. 2Fig. 3 PMID:17649388

  20. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling.

    PubMed

    Ginovart, Marta; Carbó, Rosa; Blanco, Mónica; Portell, Xavier

    2017-01-01

    Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM- Saccha . Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then discussed and compared to simulation results generated with INDISIM- Saccha , which allowed us to advance in the development of this yeast model, and illustrated the utility of data at different levels of observation and the needs and logic behind the development of a microbial individual-based model.

  1. Scalable cultivation of human pluripotent stem cells on chemically-defined surfaces

    NASA Astrophysics Data System (ADS)

    Hsiung, Michael Chi-Wei

    Human stem cells (SCs) are classified as self-renewing cells possessing great ability in therapeutic applications due of their ability to differentiate along any major cell lineage in the human body. Despite their restorative potential, widespread use of SCs is hampered by strenuous control issues. Along with the need for strict xeno-free environments to sustain growth in culture, current methods for growing human pluripotent stem cells (hPSCs) rely on platforms which impede large-scale cultivation and therapeutic delivery. Hence, any progress towards development of large-scale culture systems is severely hindered. In a concentrated effort to develop a scheme that can serve as a model precursor for large scale SC propagation in clinical use, we have explored methods for cultivating hPSCs on completely defined surfaces. We discuss novel approaches with the potential to go beyond the limitations presented by current methods. In particular, we studied the cultivation of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on surface which underwent synthetic or chemical modification. Current methods for hPSCs rely on animal-based extracellular matrices (ECMs) such as mouse embryonic fibroblasts (MEFs) or feeders and murine sacoma cell-derived substrates to facilitate their growth. While these layers or coatings can be used to maximize the output of hPSC production, they cannot be considered for clinical use because they risk introducing foreign pathogens into culture. We have identified and developed conditions for a completely defined xeno-free substrate used for culturing hPSCs. By utilizing coupling chemistry, we can functionalize ester groups on a given surface and conjugate synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif, known for their role in cell adhesion. This method offers advantages over traditional hPSC culture by keeping the modified substrata free of xenogenic response and can be scaled up in adherent microcarrier culture. To treat a major organ such as the heart or kidney, producing large quantities of clinical-grade pluripotent cells is a necessity for cell-based therapy. Here we apply our approach to spherical beads or microcarriers for large-scale cultivation of hPSCs in a stirred-suspension bioreactor. Stem cells seeded on microcarriers and cultivated for multiple six day passages in a stirred-suspension bioreactors remained viable (≥90%) and increased by an average of 25.0+/-7.2-fold in concentration. The cells maintained their expression of pluripotency markers POU5F1 and NANOG as assessed by RT-PCR and quantitative PCR. These findings aim at the development of a flexible cost-effect method for the generation of pluripotent cells which can be repurposed and utilized for cell therapies. This work also aims to promote exploration into different methods of surface modification to develop new tactics for culturing hPSCs that can achieve higher fold growth while maintaining overall therapeutic potential.

  2. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  3. [Preliminary study on molecular mechanism of curcumine anti-mouse melanoma].

    PubMed

    Gui, Fei; Ma, Wei-Feng; Cai, Shao-Hui; Li, Xiao-Kun; Tan, Yi; Zhou, Chun-Ling; Chen, Hong-Yuan

    2008-11-01

    To investigate the effects of curcumine on mouse B16 melanoma growth and possible mechanism of Bcl-2, P53 and glutathione in tumor cells. The inhibitory effect on growth of melanoma in vivo were examined by mice melanoma models transplanted B16 cells to C57BL/6J mice. MTT method was used to assay the contribution of curcumine to B16 cells in vitro. The apoptosis and expression of Bcl-2, P53 gene of B16 cells were analyzed by flow cytometry, and HPLC assay was used to detect the change of GSH in B16 melanom tissues of C57BL/6J mouse caused by curcumine. Curcumine had obvious inhibitory effect on the growth of mouse B16 melanoma in time and dose dependent manner and the gene expression of bcl-2 in B16 cells decreased after 24 hours supplied with curcumine, whereas P53 protein expression increased; Curcumine depressed the GSH quantity in melanoma tissues. The growth inhibitory effect of curcumine on mouse melanom is proved in vivo and in vitro respectively. Curcumine can induce some cells to apoptosis which may be relevant to downregulation of bcl-2 expression and upregulation of P53 expression as well as exhaustion of GSH in tumor organization.

  4. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold.

    PubMed

    Hassanein, Wessam; Uluer, Mehmet C; Langford, John; Woodall, Jhade D; Cimeno, Arielle; Dhru, Urmil; Werdesheim, Avraham; Harrison, Joshua; Rivera-Pratt, Carlos; Klepfer, Stephen; Khalifeh, Ali; Buckingham, Bryan; Brazio, Philip S; Parsell, Dawn; Klassen, Charlie; Drachenberg, Cinthia; Barth, Rolf N; LaMattina, John C

    2017-01-02

    Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.

  5. Method for detection of a few pathogenic bacteria and determination of live versus dead cells

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Chen, I.-Hsuan; Du, Songtao; Liu, Yuzhe; Wikle, Howard C.; Suh, Sang-Jin; Barbaree, James M.; Chin, Bryan A.

    2016-05-01

    This paper presents a method for detection of a few pathogenic bacteria and determination of live versus dead cells. The method combines wireless phage-coated magnetoelastic (ME) biosensors and a surface-scanning dectector, enabling real-time monitoring of the growth of specific bacteria in a nutrient broth. The ME biosensor used in this investigation is composed of a strip-shaped ME resonator upon which an engineered bacteriophage is coated to capture a pathogen of interest. E2 phage with high binding affinity for Salmonella Typhimurium was used as a model study. The specificity of E2 phage has been reported to be 1 in 105 background bacteria. The phage-coated ME biosensors were first exposed to a low-concentration Salmonella suspension to capture roughly 300 cells on the sensor surface. When the growth of Salmonella in the broth occurs, the mass of the biosensor increases, which results in a decrease in the biosensor's resonant frequency. Monitoring of this mass- induced resonant frequency change allows for real-time detection of the presence of Salmonella. Detection of a few bacteria is also possible by growing them to a sufficient number. The surface-scanning detector was used to measure resonant frequency changes of 25 biosensors sequentially in an automated manner as a function of time. This methodology offers direct, real-time detection, quantification, and viability determination of specific bacteria. The rate of the sensor's resonant frequency change was found to be largely dependent on the number of initially bound cells and the efficiency of cell growth.

  6. Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line

    PubMed Central

    2013-01-01

    Background Propolis is a honey bee product which contains many active compounds, such as CAPE or chrysin, and has many beneficial activities. Recently, its anti-tumor properties have been discussed. We have tested whether the ethanolic extract of propolis (EEP) interferes with temozolomide (TMZ) to inhibit U87MG cell line growth. Methods The U87MG glioblastoma cell line was exposed to TMZ (10-100 μM), EEP (10-100 μg/ml) or a mixture of TMZ and EEP during 24, 48 or 72 hours. The cell division was examined by the H3-thymidine incorporation, while the western blot method was used for detection of p65 subunit of NF-κB and ELISA test to measure the concentration of its p50 subunit in the nucleus. Results We have found that both, TMZ and EEP administrated alone, had a dose- and time-dependent inhibitory effect on the U87MG cell line growth, which was manifested by gradual reduction of cell viability and alterations in proliferation rate. The anti-tumor effect of TMZ (20 μM) was enhanced by EEP, which was especially well observed after a short time of exposition, where simultaneous usage of TMZ and EEP resulted in a higher degree of growth inhibition than each biological factor used separately. In addition, cells treated with TMZ presented no changes in NF-κB activity in prolonged time of treatment and EEP only slightly reduced the nuclear translocation of this transcription factor. In turn, the combined incubation with TMZ and EEP led to an approximately double reduction of NF-κB nuclear localization. Conclusions We conclude that EEP presents cytotoxic properties and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line. This phenomenon may be at least partially mediated by a reduced activity of NF-κB. PMID:23445763

  7. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice

    PubMed Central

    2011-01-01

    Background Short half-life and low levels of growth factors in the niche of injured microenvironment necessitates the exogenous and sustainable delivery of growth factors along with stem cells to augment the regeneration of injured tissues. Methods Here, recombinant human hepatocyte growth factor (HGF) was incorporated into chitosan nanoparticles (CNP) by ionic gelation method and studied for its morphological and physiological characteristics. Cirrhotic mice received either hematopoietic stem cells (HSC) or mesenchymal stemcells (MSC) with or without HGF incorporated chitosan nanoparticles (HGF-CNP) and saline as control. Biochemical, histological, immunostaining and gene expression assays were carried out using serum and liver tissue samples. One way analysis of variance was used for statics application Results Serum levels of selected liver protein and enzymes were significantly increased in the combination of MSC and HGF-CNP (MSC+HGF-CNP) treated group. Immunopositive staining for albumin (Alb) and cytokeratin 18 (CK18), and reverse transcription-polymerase chain reaction (RT-PCR) for Alb, alpha fetoprotein (AFP), CK18, cytokeratin 19 (CK19) ascertained that MSC-HGF-CNP treatment could be an effective combination to repopulate liver parenchymal cells in the liver cirrhosis. Zymogram and western blotting for matrix metalloproteinases 2 and 9 (MMP2 and MMP9) revealed that MMP2 actively involved in the fibrolysis of cirrhotic tissue. Immunostaining for alpha smooth muscle actin (αSMA) and type I collagen showed decreased expression in the MSC+HGF-CNP treatment. These results indicated that HGF-CNP enhanced the differentiation of stem cells into hepatocytes and supported the reversal of fibrolysis of extracellular matrix (ECM). Conclusion Bone marrow stem cells were isolated, characterized and transplanted in mice model. Biodegradable biopolymeric nanoparticles were prepared with the pleotrophic protein molecule and it worked well for the differentiation of stem cells, especially mesenchymal phenotypic cells. Transplantation of bone marrow MSC in combination with HGF-CNP could be an ideal approach for the treatment of liver cirrhosis. PMID:21526984

  8. Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Tay, S. E. R.; Goode, A. E.; Nelson Weker, J.; Cruickshank, A. A.; Heutz, S.; Porter, A. E.; Ryan, M. P.; Toney, M. F.

    2016-01-01

    The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation. Electronic supplementary information (ESI) available: Methods and videos of nanoparticle growth. See DOI: 10.1039/c5nr07019h

  9. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-08-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.

  10. Geographic information system (GIS)-based image analysis for assessing growth of Physarum polycephalum on a solid medium.

    PubMed

    Tran, Hanh T M; Stephenson, Steven L; Tullis, Jason A

    2015-01-01

    The conventional method used to assess growth of the plasmodium of the slime mold Physarum polycephalum in solid culture is to measure the extent of plasmodial expansion from the point of inoculation by using a ruler. However, plasmodial growth is usually rather irregular, so the values obtained are not especially accurate. Similar challenges exist in quantification of the growth of a fungal mycelium. In this paper, we describe a method that uses geographic information system software to obtain highly accurate estimates of plasmodial growth over time. This approach calculates plasmodial area from images obtained at particular intervals following inoculation. In addition, the correlation between plasmodial area and its dry cell weight value was determined. The correlation could be used for biomass estimation without the need of having to terminate the cultures in question. The method described herein is simple but effective and could also be used for growth measurements of other microorganisms such as fungi on solid media.

  11. Stimulation of growth hormone secretion from seabream pituitary cells in primary culture by growth hormone secretagogues is independent of growth hormone transcription.

    PubMed

    Chan, C B; Fung, C K; Fung, Wendy; Tse, Margaret C L; Cheng, Christopher H K

    2004-10-01

    The action of a number of growth hormone secretagogues (GHS) on growth hormone (GH) secretion and gene expression was studied in a primary culture of pituitary cells isolated from the black seabream Acanthopagrus schlegeli. The peptide GHS employed included growth hormone-releasing peptide (GHRP)-2, ipamorelin, and human ghrelin. The nonpeptide GHS employed included the benzolactam GHS L692,585 and the spiropiperidine GHS L163,540. Secreted GH was measured in the culture medium by an enzyme-linked immunosorbent assay (ELISA) method using a specific antibody against seabream GH. The GH mRNA content in the incubated cells was assessed by reverse transcription polymerase chain reaction (RT-PCR) using a pair of gene-specific primers designed from the cloned black seabream GH cDNA sequence. A dose-dependent stimulation of GH release was demonstrated by all the GHS tested, except human ghrelin, with EC(50) values in the nanomolar range. Simultaneous measurement of GH mRNA levels in the incubated seabream pituitary cells indicated that the GHS-stimulated increase in GH secretion was not paralleled by corresponding changes in GH gene expression. In contrast to the situation previously reported in the rat, no change in GH gene expression was noticed in the seabream pituitary cells even though the time of stimulation by GHS was increased up to 48 h, confirming that the GHS-stimulated GH secretion in seabream is independent of GH gene transcription.

  12. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  13. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    PubMed

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for further label-free optical tools to diagnose the disease.

  14. Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E.G7 tumor cells in vivo.

    PubMed

    Toyota, Hiroko; Yanase, Noriko; Yoshimoto, Takayuki; Harada, Mitsunori; Kato, Yasuki; Mizuguchi, Junichiro

    2015-01-01

    Immunotherapy has gained special attention due to its specific effects on tumor cells and systemic action to block metastasis. We recently demonstrated that ovalbumin (OVA) conjugated to the surface of nanoparticles (NPs) (OVA‑NPs) can manipulate humoral immune responses. In the present study, we aimed to ascertain whether vaccination with OVA-NPs entrapping IL-7 (OVA-NPs-IL-7) are able to induce antitumor immune responses in vivo. Pretreatment with a subcutaneous inoculation of OVA-NPs delayed the growth of thymic lymphoma cells expressing a model tumor antigen OVA (E.G7-OVA), and OVA-NPs-IL-7 substantially blocked the growth of E.G7-OVA tumor cells, although NPs-IL-7 alone had a meager effect, as assessed by the mean tumor size and the percentage of tumor-free mice. However, pretreatment with OVA-NPs-IL-7 failed to reduce the growth of parental thymic tumor cells, suggesting that the antitumor effect was antigen-specific. A tetramer assay revealed that vaccination with OVA-NPs-IL-7 tended to enhance the proportion of cytotoxic T cells (CTLs) specific for OVA. When the tumor-free mice inoculated with OVA-NPs-IL-7 plus EG.7 cells were rechallenged with E.G7-OVA cells, they demonstrated reduced growth compared with that in the control mice. Thus, a single subcutaneous injection of OVA-NPs-IL-7 into mice induced tumor-specific and also memory-like immune responses, resulting in regression of tumor cells. Antigens on NPs entrapping IL-7 would be a promising carrier to develop and enhance immune responses, including humoral and cellular immunity as well as a method of drug delivery to a specific target of interest.

  15. [The preparation of recombinant adenovirus Ad-Rad50-GFP and detection of the optimal multiplicity of infection in CNE1 transfected hv Ad-Rad50-GFP].

    PubMed

    Yan, Ruicheng; Huang, Jiancong; Zhu, Ling; Chang, Lihong; Li, Jingjia; Wu, Xifu; Ye, Jin; Zhang, Gehua

    2015-12-01

    The optimal multiplicity of infection (MOI) of the recombinant adenovirus Ad-Rad50-GFP carrying a mutant Rad50 gene expression region on the cell growth of nasopharyngeal carcinoma and the viral amplification efficiency of CNE1 cell infected by this adenovirus were studied. The biological titer of Ad-Rad50-GFP was measured by end point dilution method. The impact of recombinant adenoviral vector transfection on the growth of CNE1 cells was observed by cell growth curve. Transfection efficacy of recombinant adenoviral vector was observed and calculated through fluorescence microscope. The expression f mutant Rad50 in the Ad-Rad50-GFP transfected CNE1 cells with optimal MOI was detected by Western Blot after transfection. The biological titer of Ad-Rad50-GFP was 1.26 x 10¹¹ pfu/ml. CNE1 cell growth was not influenced significantly as they were transfected by recombinant adenoviral vector with MOI less than 50. Transfection efficacy of recombinant adenoviral vector was most salient at 24 hours after transfection, with the high expression of mutant Rad50, and the efficiency still remained about 70% after 72 hours. Recombinant adenoviral vector Ad-Rad50-GFP could transfect CNE1 cells as well as result in the expression of mutant Rad50 in CNE1 cells effectively. MOI = 50 was the optimal multiplicity of infection of CNE1 cells transfected by recombinant adenoviral vector Ad-Rad50-GFP.

  16. A Prospective, Randomized, Double-blind, Split-face Clinical Trial Comparing the Efficacy of Two Topical Human Growth Factors for the Rejuvenation of the Aging Face

    PubMed Central

    Goldman, Mitchel P.

    2017-01-01

    Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality. PMID:28670356

  17. A Prospective, Randomized, Double-blind, Split-face Clinical Trial Comparing the Efficacy of Two Topical Human Growth Factors for the Rejuvenation of the Aging Face.

    PubMed

    Wu, Douglas C; Goldman, Mitchel P

    2017-05-01

    Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality.

  18. The finite state projection approach to analyze dynamics of heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  19. [Harringtonine induces apoptosis in NB4 cells through down-regulation of Mcl-1].

    PubMed

    Wu, Chunxiao; Shen, Hongqiang; Xia, Dajing

    2013-07-01

    To investigate the growth inhibition effect, cytotoxicity and apoptotic induction of harringtonine (HT) in human acute promyelocytic leukemia (APL) NB4 cells,and the related mechanism. NB4 cells were treated with HT. Total cell numbers were counted by hemocytometer, and cell viabilities were determined by trypan blue exclusion. Apoptotic cells were determined by fluorescence microscopy and FACS after staining with AO and EB or PI, respectively. The cleavage of PARP and the activation of Bax and the expression of anti-apoptotic proteins were determined by Western Blot. siRNA was used to silence the expression of target genes. Primary cells were isolated following Ficoll-Hypaque density gradient centrifugation method. HT inhibited cell growth and induced apoptosis of NB4 cells in a dose- and time-dependent manner. Apoptosis induced by HT was correlated with the down-regulation of Mcl-1 and the cleavage of PARP, while HT did not affect the protein level of Bax and Bak or change the protein level of Bcl-2. The silence of Bcl-XL sensitized HT-induced apoptosis in NB4 cells.Apoptosis induced by HT in primarily cultured APL cells was also correlated with the down-regulation of Mcl-1. HT inhibits cell growth and induces apoptosis in NB4 cells and primarily cultured APL cells, which may be associated with down-regulation of Mcl-1.

  20. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay.

    PubMed

    Solaiman, Daniel K Y; Ashby, Richard D; Uknalis, Joseph

    2017-05-01

    Sophorolipid (SL) is a class of glycolipid biosurfactant produced by yeast and has potent antimicrobial activity against many microorganisms. In this paper, a microplate-based method was developed to characterize the growth inhibition by SL on five representative species of caries-causing oral bacteria. Bacterial growth on microplate in the absence and presence of varying concentrations of SL was continuously monitored by recording the absorbance at 600nm of the cultures using a microplate reader. The results showed that SL completely inhibited the growth of the Lactobacilli at ≥1mg/ml and the Streptococci at much lower concentrations of ≥50μg/ml. More importantly, we further defined the mechanism of antimicrobial activity of SL by analyzing the pattern of the cell growth curves. SL at sublethal concentrations (<1mg/ml) is bactericidal towards the Lactobacilli; it lengthens the apparent cell-doubling time (T d ) and decreases the final cell density (as indicated by A 600nm ) in a concentration-dependent manner. Against the oral Streptococci, on the other hand, SL at sublethal concentrations (<50μg/ml) is bacteriostatic; it delays the onset of cell growth in a concentration-dependent fashion, but once the cell growth is commenced there is no noticeable adverse effect on T d and the final A 600nm . Scanning electron microscopic (SEM) study of L. acidophilus grown in sublethal concentration of SL reveals extensive structural damage to the cells. S. mutans grown in sublethal level of SL did not show morphological damage to the cells, but numerous protruding structures could be seen on the cell surface. At the respective lethal levels of SL, L. acidophilus cells were lysed (at 1mg/ml SL) and the cell surface structure of S. mutans (at 130μg/ml SL) was extensively deformed. In summary, this paper presents the first report on a detailed analysis of the effects of SL on Lactobacilli and Streptococci important to oral health and hygiene. Published by Elsevier B.V.

  1. Metabolomics Guides Rational Development of a Simplified Cell Culture Medium for Drug Screening against Trypanosoma brucei

    PubMed Central

    Creek, Darren J.; Nijagal, Brunda; Kim, Dong-Hyun; Rojas, Federico; Matthews, Keith R.

    2013-01-01

    In vitro culture methods underpin many experimental approaches to biology and drug discovery. The modification of established cell culture methods to make them more biologically relevant or to optimize growth is traditionally a laborious task. Emerging metabolomic technology enables the rapid evaluation of intra- and extracellular metabolites and can be applied to the rational development of cell culture media. In this study, untargeted semiquantitative and targeted quantitative metabolomic analyses of fresh and spent media revealed the major nutritional requirements for the growth of bloodstream form Trypanosoma brucei. The standard culture medium (HMI11) contained unnecessarily high concentrations of 32 nutrients that were subsequently removed to make the concentrations more closely resemble those normally found in blood. Our new medium, Creek's minimal medium (CMM), supports in vitro growth equivalent to that in HMI11 and causes no significant perturbation of metabolite levels for 94% of the detected metabolome (<3-fold change; α = 0.05). Importantly, improved sensitivity was observed for drug activity studies in whole-cell phenotypic screenings and in the metabolomic mode of action assays. Four-hundred-fold 50% inhibitory concentration decreases were observed for pentamidine and methotrexate, suggesting inhibition of activity by nutrients present in HMI11. CMM is suitable for routine cell culture and offers important advantages for metabolomic studies and drug activity screening. PMID:23571546

  2. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis.

    PubMed

    Larimer, Curtis; Winder, Eric; Jeters, Robert; Prowant, Matthew; Nettleship, Ian; Addleman, Raymond Shane; Bonheyo, George T

    2016-01-01

    The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms.

  3. Poly(3-hydroxybutyrate) anabolism in Cupriavidus necator cultivated at various carbon-to-nitrogen ratios: insights from single-cell Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tao, Zhanhua; Zhang, Pengfei; Qin, Zhaojun; Li, Yong-Qing; Wang, Guiwen

    2016-09-01

    Cupriavidus necator accumulates large amounts of poly(3-hydroxybutyrate) (PHB), a biodegradable substitute for petroleum-based plastics, under certain nutrient conditions. Conventional solvent-extraction-based methods for PHB quantification only obtain average information from cell populations and, thus, mask the heterogeneity among individual cells. Laser tweezers Raman spectroscopy (LTRS) was used to monitor dynamic changes in the contents of PHB, nucleic acids, and proteins in C. necator at the population and single-cell levels when the microorganism cells were cultivated at various carbon-to-nitrogen ratios. The biosynthetic activities of nucleic acids and proteins were maintained at high levels, and only a small amount of PHB was produced when the bacterial cells were cultured under balanced growth conditions. By contrast, the syntheses of nucleic acids and proteins were blocked, and PHB was accumulated in massive amount inside the microbial cells under nitrogen-limiting growth circumstances. Single-cell analysis revealed a relatively high heterogeneity in PHB level at the early stage of the bacterial growth. Additionally, bacterial cells in populations at certain cultivation stages were composed of two or three subpopulations on the basis of their PHB abundance. Overall, LTRS is a reliable single-cell analysis tool that can provide insights into PHB fermentation.

  4. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  5. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice

    PubMed Central

    2012-01-01

    Background Many human cancer cells express filamin A (FLNA), an actin-binding structural protein that interacts with a diverse set of cell signaling proteins, but little is known about the biological importance of FLNA in tumor development. FLNA is also expressed in endothelial cells, which may be important for tumor angiogenesis. In this study, we defined the impact of targeting Flna in cancer and endothelial cells on the development of tumors in vivo and on the proliferation of fibroblasts in vitro. Methods First, we used a Cre-adenovirus to simultaneously activate the expression of oncogenic K-RAS and inactivate the expression of Flna in the lung and in fibroblasts. Second, we subcutaneously injected mouse fibrosarcoma cells into mice lacking Flna in endothelial cells. Results Knockout of Flna significantly reduced K-RAS–induced lung tumor formation and the proliferation of oncogenic K-RAS–expressing fibroblasts, and attenuated the activation of the downstream signaling molecules ERK and AKT. Genetic deletion of endothelial FLNA in mice did not impact cardiovascular development; however, knockout of Flna in endothelial cells reduced subcutaneous fibrosarcoma growth and vascularity within tumors. Conclusions We conclude that FLNA is important for lung tumor growth and that endothelial Flna impacts local tumor growth. The data shed new light on the biological importance of FLNA and suggest that targeting this protein might be useful in cancer therapeutics. PMID:22857000

  6. A Review of the Cell to Graphene-Based Nanomaterial Interface

    NASA Astrophysics Data System (ADS)

    Darbandi, Arash; Gottardo, Erik; Huff, Joshua; Stroscio, Michael; Shokuhfar, Tolou

    2018-04-01

    The area of cellular interactions of nanomaterials is an important research interest. The sensitivity of cells toward their extracellular matrix allows researchers to create microenvironments for guided stem cell differentiation. Among nanomaterials, graphene, often called the "wonder material," and its derivatives are at the forefront of such endeavors. Graphene's carbon backbone, paired with its biocompatibility and ease of functionalization, has been used as an enhanced method of controlled cell proliferation. Graphene's honeycomb nature allows for compatibility with polymers and biological material for the creation of nanocomposite scaffolds that help differentiation into cell types that have otherwise been proven difficult. Such materials and their role in guiding cell growth can aid the construction of tissue grafts where shortages and patient compatibility create a low success rate. This review will bring together novel studies and techniques used to understand and optimizes graphene's role in cell growth mechanisms.

  7. Fentanyl inhibits proliferation and invasion of colorectal cancer via β-catenin

    PubMed Central

    Zhang, Xiu-Lai; Chen, Min-Li; Zhou, Sheng-Li

    2015-01-01

    Background and aim: Fentanyl is widely used for relieving pain and narcotizing in cancer patients. However, there are few published reports regarding the effects of fentanyl on tumor control and treatment. Here we investigated the effects of fentanyl on tumor growth and cell invasion in the human colorectal carcinoma (HCT116) cells. Methods: Nude mice xenografts of HCT116 cells were established to assess the inhibition effect on tumor growth by fentanyl. MTT and Transwell were employed to determine the cell survival rate and cell invasion, respectively. MicroRNAs and mRNAs expression were quantified by real-time PCR. β-catenin and matrix metalloproteinases (MMP-2 and MMP-9) expression were assayed by western blotting. β-Catenin-specific small interfering RNA (Si-β-catenin) and miR-182 mimics were transfected in cells to investigate the mechanism underlying the effects of fentanyl on the colorectal tumor and HCT116 cells. Results: Treatment with fentanyl inhibited the tumor growth and HCT116 cells invasion. Fentanyl also downregulated the expression of β-catenin and miR-182 in both xenograft tumors and HCT116 cells, and decreased the protein level of MMP-9 in HCT116 cells. Downregulation of β-Catenin resulted in the decrease of miR-182 expression in colorectal cells. In addition, the overexpression of miR-182 reversed the effect of fentanyl on MMP-9 expression and cell invasion of HCT116 cells. Conclusions: The current study demonstrated that the inhibition of tumor growth and cell invasion in colorectal cancer by fentanyl is probably due to downregulation of miR-182 and MMP-9 expression by β-catenin. PMID:25755709

  8. microRNA-137 modulates pancreatic cancer cells tumor growth, invasion and sensitivity to chemotherapy

    PubMed Central

    Xiao, Jie; Peng, Feng; Yu, Chao; Wang, Min; Li, Xu; Li, Zhipeng; Jiang, Jianxin; Sun, Chengyi

    2014-01-01

    Background: We intended to investigate the role of microRNA 137 (miR-137) in regulating pancreatic cancer cells’ growth in vitro and tumor development in vivo. Methods: QTR-PCR was used to examine the expression of miR-137 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-137 mimic was used to overexpress miR-137 in PANC-1 and MIA PaCa-2 cells. The effects of overexpressing miR-137 on pancreatic cancer cell invasion and chemo-sensitivity to 5-fluorouracil (5-FU) were examined by cell migration and survival essays in vitro. The molecular target of miR-137, pleiotropic growth factor (PTN), was down-regulated by siRNA to examine its effects on cancer cell invasion. MIA PaCa-2 cells with endogenously overexpressed miR-137 were transplanted into null mice to examine tumor growth in vivo. Results: We found miR-137 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lentivirus containing miR-137 mimic was able to markedly upregulate endogenous expression of miR-137, inhibited cancer cell invasion and increased sensitivities to chemotherapy reagent 5-FU. PTN was significantly down-regulated by overexpressing miR-137 in pancreatic cancer cells, and knocking down PTN was effective to rescue the reduced cancer cell invasion ability caused by miR-137 overexpression. More importantly, overexpressing miR-137 led to significant inhibition on tumor formation, including reductions in tumor weight and tumor size in vivo. Conclusion: Our study demonstrated that miR-137 played an important role in pancreatic cancer development. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer. PMID:25550779

  9. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit

    PubMed Central

    Li, Yue-Hui; Liu, Yan; Li, Yan-Dong; Liu, Yan-Hong; Li, Feng; Ju, Qiang; Xie, Ping-Li; Li, Guan-Cheng

    2012-01-01

    AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang’s liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ. CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC. PMID:22690081

  10. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Kazuki; Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180; Feril, Loreto B., E-mail: ferilism@yahoo.com

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA,more » which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.« less

  11. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell.

    PubMed

    Lei, M; Wang, J; Li, J R; Wang, Y G; Tang, H L; Wang, W J

    2014-08-11

    Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100-150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10(-8) A/cm(2). The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm(-2). After being maintained at 100 mA cm(-2) for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.

  12. FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801

    PubMed Central

    2013-01-01

    Background Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Methods Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. Results NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801. Conclusions Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801. PMID:24112473

  13. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms

    PubMed Central

    Zamykal, Martin; Martens, Tobias; Matschke, Jakob; Günther, Hauke S.; Kathagen, Annegret; Schulte, Alexander; Peters, Regina; Westphal, Manfred; Lamszus, Katrin

    2015-01-01

    Background Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models. Methods U87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro. Results IMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12–treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect. Conclusions IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery. PMID:25543125

  14. Visualization and Analysis of Microtubule Dynamics Using Dual Color-Coded Display of Plus-End Labels

    PubMed Central

    Garrison, Amy K.; Xia, Caihong; Wang, Zheng; Ma, Le

    2012-01-01

    Investigating spatial and temporal control of microtubule dynamics in live cells is critical to understanding cell morphogenesis in development and disease. Tracking fluorescently labeled plus-end-tracking proteins over time has become a widely used method to study microtubule assembly. Here, we report a complementary approach that uses only two images of these labels to visualize and analyze microtubule dynamics at any given time. Using a simple color-coding scheme, labeled plus-ends from two sequential images are pseudocolored with different colors and then merged to display color-coded ends. Based on object recognition algorithms, these colored ends can be identified and segregated into dynamic groups corresponding to four events, including growth, rescue, catastrophe, and pause. Further analysis yields not only their spatial distribution throughout the cell but also provides measurements such as growth rate and direction for each labeled end. We have validated the method by comparing our results with ground-truth data derived from manual analysis as well as with data obtained using the tracking method. In addition, we have confirmed color-coded representation of different dynamic events by analyzing their history and fate. Finally, we have demonstrated the use of the method to investigate microtubule assembly in cells and provided guidance in selecting optimal image acquisition conditions. Thus, this simple computer vision method offers a unique and quantitative approach to study spatial regulation of microtubule dynamics in cells. PMID:23226282

  15. Synthesis and characterization of metal oxide semiconductors by a facile co-electroplating-annealing method and formation of ZnO/CuO pn heterojunctions with rectifying behavior

    NASA Astrophysics Data System (ADS)

    Turkdogan, Sunay; Kilic, Bayram

    2018-01-01

    We have developed a unique growth method and demonstrated the growth of CuO and ZnO semiconductor materials and the fabrication of their pn heterojunctions in ambient atmosphere. The pn heterojunctions were constructed using inherently p-type CuO and inherently n-type ZnO materials. Both p- and n-type semiconductors and pn heterojunctions were prepared using a simple but versatile growth method that relies on the transformation of electroplated Cu and Zn metals into CuO and ZnO semiconductors, respectively and is capable of a large-scale production desired in most of the applications. The structural, chemical, optical and electrical properties of the materials and junctions were investigated using various characterization methods and the results show that our growth method, materials and devices are quite promising to be utilized for various applications including but not limited to solar cells, gas/humidity sensors and photodetectors.

  16. Dietary rice component, Oryzanol, inhibits tumor growth in tumor-bearing Mice

    USDA-ARS?s Scientific Manuscript database

    Scope: We investigated the effects of rice bran and components on tumor growth in mice. Methods and results: Mice fed standard diets supplemented with rice bran, '-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet fo...

  17. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Reza Saadatzadeh, M; Wang, Haiyan; Nguyen, Angie; Kamocka, Malgorzata M; Cai, Wenjing; Cohen-Gadol, Aaron A; Halum, Stacey L; Sarkaria, Jann N; Pollok, Karen E; Safa, Ahmad R

    2017-12-01

    OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN administration at 100 mg/kg for 5-day cycles repeated for 3 weeks significantly decreased the growth of ectopic xenografts that were established from the early passage of primary cultures of GBM10. CONCLUSIONS These results suggest that SFN is a potent anti-GBM agent that targets several apoptosis and cell survival pathways and further preclinical and clinical studies may prove that SFN alone or in combination with other therapies may be potentially useful for GBM therapy.

  18. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth

    PubMed Central

    Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.

    2017-01-01

    We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697

  19. Tissue Engineering Strategies for Promoting Vascularized Bone Regeneration

    PubMed Central

    Almubarak, Sarah; Nethercott, Hubert; Freeberg, Marie; Beaudon, Caroline; Jha, Amit; Jackson, Wesley; Marcucio, Ralph; Miclau, Theodore; Healy, Kevin; Bahney, Chelsea

    2016-01-01

    This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods. PMID:26608518

  20. Soft fibrin gels promote selection and growth of tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  1. Modified methods for growing 3-D skin equivalents: an update.

    PubMed

    Lamb, Rebecca; Ambler, Carrie A

    2014-01-01

    Artificial epidermis can be reconstituted in vitro by seeding primary epidermal cells (keratinocytes) onto a supportive substrate and then growing the developing skin equivalent at the air-liquid interface. In vitro skin models are widely used to study skin biology and for industrial drug and cosmetic testing. Here, we describe updated methods for growing 3-dimensional skin equivalents using de-vitalized, de-epidermalized dermis (DED) substrates including methods for DED substrate preparation, cell seeding, growth conditions, and fixation procedures.

  2. Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells.

    PubMed

    You, Zaichun; Qian, Hang; Wang, Changzheng; He, Binfeng; Yan, Jiawei; Mao, Chengde; Wang, Guansong

    2015-12-01

    Here we provide raw and processed data and methods behind mTOR siRNA loaded DNA nanotubes (siRNA-DNA-NTs) in the growth of pulmonary arterial smooth muscle cells (PASMCs) under both normoxic and hypoxic condition, and also related to (You et al., Biomaterials, 2015, 67:137-150, [1]). The MTT analysis, Semi-quantitative RT-PCR data presented here were used to probe cytotoxicity of mTOR siRNA-DNA-NT complex in its TAE-Mg(2+) buffer. siRNA-DNA-NTs have a lower cytotoxicity and higher transfection efficiency and can, based on inhibition of mTOR expression, decrease PASMCs growth both hypoxic and normal condition.

  3. Length and activity of the root apical meristem revealed in vivo by infrared imaging.

    PubMed

    Bizet, François; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice

    2015-03-01

    Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells

    PubMed Central

    Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu

    2017-01-01

    Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1′-dioctadecyl-3,3,3′,3′-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration. PMID:29067104

  5. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study

    PubMed Central

    Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua

    2012-01-01

    Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID:23225855

  6. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    PubMed

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  7. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation,more » or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.« less

  8. Inhibition of Tumorigenesis by the Thyroid Hormone Receptor β in Xenograft Models

    PubMed Central

    Kim, Won Gu; Zhao, Li; Kim, Dong Wook; Willingham, Mark C.

    2014-01-01

    Background: Previous studies showed a close association between several types of human cancers and somatic mutations of thyroid hormone receptor β (TRβ) and reduced expression of TRβ due to epigenetic inactivation and/or deletion of the THRB gene. These observations suggest that TRβ could act as a tumor suppressor in carcinogenesis. However, the mechanisms by which TRβ could function to inhibit tumorigenesis are less well understood. Methods: We used the human follicular thyroid cancer cell lines (FTC-133 and FTC-236 cells) to elucidate how functional expression of the THRB gene could affect tumorigenesis. We stably expressed the THRB gene in FTC cells and evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. Results: Expression of TRβ in FTC-133 cells, as compared with control FTC cells without TRβ, reduced cancer cell proliferation and impeded migration of tumor cells through inhibition of the AKT-mTOR-p70 S6K pathway. TRβ expression in FTC-133 and FTC-236 led to less tumor growth in xenograft models. Importantly, new vessel formation was significantly suppressed in tumors induced by FTC cells expressing TRβ compared with control FTC cells without TRβ. The decrease in vessel formation was mediated by the downregulation of vascular endothelial growth factor in FTC cells expressing TRβ. Conclusions: These findings indicate that TRβ acts as a tumor suppressor through downregulation of the AKT-mTOR-p70 S6K pathway and decreased vascular endothelial growth factor expression in FTC cells. The present results raise the possibility that TRβ could be considered as a potential therapeutic target for thyroid cancer. PMID:23731250

  9. Adaptation to statins restricts human tumour growth in Nude mice

    PubMed Central

    2011-01-01

    Background Statins have long been used as anti-hypercholesterolemia drugs, but numerous lines of evidence suggest that they may also bear anti-tumour potential. We have recently demonstrated that it was possible to isolate cancer cells adapted to growth in the continuous presence of lovastatin. These cells grew more slowly than the statin-sensitive cells of origin. In the present study, we compared the ability of both statin-sensitive and statin-resistant cells to give rise to tumours in Nude mice. Methods HGT-1 human gastric cancer cells and L50 statin-resistant derivatives were injected subcutaneously into Nude mice and tumour growth was recorded. At the end of the experiment, tumours were recovered and marker proteins were analyzed by western blotting, RT-PCR and immunohistochemistry. Results L50 tumours grew more slowly, showed a strong decrease in cyclin B1, over-expressed collagen IV, and had reduced laminin 332, VEGF and CD34 levels, which, collectively, may have restricted cell division, cell adhesion and neoangiogenesis. Conclusions Taken together, these results showed that statin-resistant cells developed into smaller tumours than statin-sensitive cells. This may be reflective of the cancer restricting activity of statins in humans, as suggested from several retrospective studies with subjects undergoing statin therapy for several years. PMID:22107808

  10. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines.

    PubMed

    Aghapour, Fahimeh; Moghadamnia, Ali Akbar; Nicolini, Andrea; Kani, Seydeh Narges Mousavi; Barari, Ladan; Morakabati, Payam; Rezazadeh, Leyla; Kazemi, Sohrab

    2018-06-12

    Quercetin is a plant polyphenol from the flavonoid group that plays a fundamental role in controlling homeostasis due to its potent antioxidant properties. However, quercetin has extremely low water solubility, which is a major challenge in drug absorption. In this study, we described a simple method for the synthesis of quercetin nanoparticles. The quercetin nanoparticles had an average diameter of 82 nm and prominent yellow emission under UV irradiation. Therefore, we used an in vitro model treated with quercetin and quercetin nanoparticles to investigate the effects of quercetin nanoparticles on MCF-7 breast cancer cell line. MCF-7 cells were cultured with different concentrations (1-100 μM) of quercetin nanoparticles at the 24th, 48th and 72 nd hours, and cell cycle and apoptosis assays were detected by flow cytometry (FCM). In this study, we found that quercetin nanoparticles (1-100 μM) could significantly reduce cell vitality, growth rate and colony formation of MCF-7 cells. Quercetin nanoparticles can inhibit cell growth by blocking the cell cycle and promoting apoptosis in MCF-7 cells more than quercetin. As a result, quercetin nanoparticles may be useful therapy or prevention on breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Sex differences in the MB49 syngeneic, murine model of bladder cancer

    PubMed Central

    White-Gilbertson, Shai; Davis, Megan; Voelkel-Johnson, Christina; Kasman, Laura M.

    2016-01-01

    OBJECTIVE The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). METHODS Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro. RESULTS MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro. CONCLUSIONS The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice. PMID:26998503

  12. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    PubMed Central

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  13. Growth of BaSi2 continuous films on Ge(111) by molecular beam epitaxy and fabrication of p-BaSi2/n-Ge heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Toko, Kaoru; Suemasu, Takashi

    2017-05-01

    We grew BaSi2 films on Ge(111) substrates by various growth methods based on molecular beam epitaxy (MBE). First, we attempted to form BaSi2 films directly on Ge(111) by MBE without templates. We next formed BaSi2 films using BaGe2 templates as commonly used for MBE growth of BaSi2 on Si substrates. Contrary to our prediction, the lateral growth of BaSi2 was not promoted by these two methods; BaSi2 formed not into a continuous film but into islands. Although streaky patterns of reflection high-energy electron diffraction were observed inside the growth chamber, no X-ray diffraction lines of BaSi2 were observed in samples taken out from the growth chamber. Such BaSi2 islands were easily to get oxidized. We finally attempted to form a continuous BaSi2 template layer on Ge(111) by solid phase epitaxy, that is, the deposition of amorphous Ba-Si layers onto MBE-grown BaSi2 epitaxial islands, followed by post annealing. We achieved the formation of an approximately 5-nm-thick BaSi2 continuous layer by this method. Using this BaSi2 layer as a template, we succeeded in forming a-axis-oriented 520-nm-thick BaSi2 epitaxial films on Ge substrates, although (111)-oriented Si grains were included in the grown layer. We next formed a B-doped p-BaSi2(20 nm)/n-Ge(111) heterojunction solar cell. A wide-spectrum response from 400 to 2000 nm was achieved. At an external bias voltage of 1 V, the external quantum efficiency reached as high as 60%, demonstrating the great potential of BaSi2/Ge combination. However, the efficiency of a solar cell under AM1.5 illumination was quite low (0.1%). The origin of such a low efficiency was examined.

  14. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells*

    PubMed Central

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-01-01

    Objective: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. Methods: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. Results: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 μmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. Conclusions: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway. PMID:25091987

  15. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    PubMed

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Reactivation of Embryonic Nodal Signaling is Associated with Tumor Progression and Promotes the Growth of Prostate Cancer Cells

    PubMed Central

    Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.

    2011-01-01

    Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830

  17. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle.

    PubMed

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-02-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.

  18. Species-specific viability analysis of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus in mixed culture by flow cytometry

    PubMed Central

    2014-01-01

    Background Bacterial species coexist commonly in mixed communities, for instance those occurring in microbial infections of humans. Interspecies effects contribute to alterations in composition of communities with respect to species and thus, to the course and severity of infection. Therefore, knowledge concerning growth and viability of single species in medically-relevant mixed communities is of high interest to resolve complexity of interspecies dynamics and to support development of treatment strategies. In this study, a flow cytometric method was established to assess the species-specific viability in defined three-species mixed cultures. The method enables the characterization of viability of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus, which are relevant to lung infections of Cystic Fibrosis (CF) patients. The method combines fluorescence detection by antibody and lectin labeling with viability fluorescence staining using SYBR®Green I and propidium iodide. In addition, species-specific cell enumeration analysis using quantitative terminal restriction fragment length polymorphisms (qT-RFLP) was used to monitor the growth dynamics. Finally, to investigate the impact of substrate availability on growth and viability, concentrations of main substrates and metabolites released were determined. Results For each species, the time course of growth and viability during mixed culture cultivations was obtained by using qT-RFLP analysis in combination with flow cytometry. Comparison between mixed and pure cultures revealed for every species differences in growth properties, e.g. enhanced growth of P. aeruginosa in mixed culture. Differences were also observed for B. cepacia and S. aureus in the time course of viability, e.g. an early and drastic reduction of viability of S. aureus in mixed culture. Overall, P. aeruginosa clearly dominated the mixed culture with regard to obtained cell concentrations. Conclusions In combination with qT-RFLP analysis, the methods enabled monitoring of species-specific cell concentrations and viability during co-cultivation of theses strains. Experimental findings suggest that the predominance of P. aeruginosa over B. cepacia and S. aureus in mixed culture under the chosen cultivation conditions is promoted by more efficient substrate consumption of P. aeruginosa, and antagonistic interspecies effects induced by P. aeruginosa. PMID:24606608

  19. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    PubMed Central

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  20. The novel kinase inhibitor ponatinib is an effective anti-angiogenic agent against neuroblastoma.

    PubMed

    Whittle, Sarah B; Patel, Kalyani; Zhang, Linna; Woodfield, Sarah E; Du, Michael; Smith, Valeria; Zage, Peter E

    2016-12-01

    Background High-risk neuroblastoma has poor outcomes with high rates of relapse despite aggressive treatment, and novel therapies are needed to improve these outcomes. Ponatinib is a multi-tyrosine kinase inhibitor that targets many pathways implicated in neuroblastoma pathogenesis. We hypothesized that ponatinib would be effective against neuroblastoma in preclinical models. Methods We evaluated the effects of ponatinib on survival and migration of human neuroblastoma cells in vitro. Using orthotopic xenograft mouse models of human neuroblastoma, we analyzed tumors treated with ponatinib for growth, gross and histologic appearance, and vascularity. Results Ponatinib treatment of neuroblastoma cells resulted in decreased cell viability and migration in vitro. In mice with orthotopic xenograft neuroblastoma tumors, treatment with ponatinib resulted in decreased growth and vascularity. Conclusions Ponatinib reduces neuroblastoma cell viability in vitro and reduces tumor growth and vascularity in vivo. The antitumor effects of ponatinib suggest its potential as a novel therapeutic agent for neuroblastoma, and further preclinical testing is warranted.

  1. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    PubMed

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  2. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    PubMed

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  3. Enhancement of human neural stem cell self-renewal in 3D hypoxic culture.

    PubMed

    Ghourichaee, Sasan Sharee; Powell, Elizabeth M; Leach, Jennie B

    2017-05-01

    The pathology of neurological disorders is associated with the loss of neuronal and glial cells that results in functional impairments. Human neural stem cells (hNSCs), due to their self-renewing and multipotent characteristics, possess enormous tissue-specific regenerative potential. However, the efficacy of clinical applications is restricted due to the lack of standardized in vitro cell production methods with the capability of generating hNSC populations with well-defined cellular compositions. At any point, a population of hNSCs may include undifferentiated stem cells, intermediate and terminally differentiated progenies, and dead cells. Due to the plasticity of hNSCs, environmental cues play crucial roles in determining the cellular composition of hNSC cultures over time. Here, we investigated the independent and synergistic effect of three important environmental factors (i.e., culture dimensionality, oxygen concentration, and growth factors) on the survival, renewal potential, and differentiation of hNSCs. Our experimental design included two dimensional (2D) versus three dimensional (3D) cultures and normoxic (21% O 2 ) versus hypoxic (3% O 2 ) conditions in the presence and absence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Additionally, we discuss the feasibility of mathematical models that predict hNSC growth and differentiation under these culture conditions by adopting a negative feedback regulatory term. Our results indicate that the synergistic effect of culture dimensionality and hypoxic oxygen concentration in the presence of growth factors enhances the proliferation of viable, undifferentiated hNSCs. Moreover, the same synergistic effect in the absence of growth factors promotes the differentiation of hNSCs. Biotechnol. Bioeng. 2017;114: 1096-1106. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Inhibition of Human MCF-7 Breast Cancer Cells and HT-29 Colon Cancer Cells by Rice-Produced Recombinant Human Insulin-Like Growth Binding Protein-3 (rhIGFBP-3)

    PubMed Central

    Liu, Lizhong; Liu, Qiaoquan; Lan, Linlin; Tong, Peter C. Y.; Sun, Samuel S. M.

    2013-01-01

    Background Insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I) to form a complex (IGF-I/IGFBP-3) that can treat growth hormone insensitivity syndrome (GHIS) and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. Methodology/Principal Findings We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3) in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL) were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively) and HT-29 colon cancer cells (65.14 ±3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively) when compared with wild type rice. Conclusion/Significance These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future. PMID:24143239

  5. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor.

    PubMed

    Guyot, Y; Luyten, F P; Schrooten, J; Papantoniou, I; Geris, L

    2015-12-01

    Bone tissue engineering strategies use flow through perfusion bioreactors to apply mechanical stimuli to cells seeded on porous scaffolds. Cells grow on the scaffold surface but also by bridging the scaffold pores leading a fully filled scaffold following the scaffold's geometric characteristics. Current computational fluid dynamic approaches for tissue engineering bioreactor systems have been mostly carried out for empty scaffolds. The effect of 3D cell growth and extracellular matrix formation (termed in this study as neotissue growth), on its surrounding fluid flow field is a challenge yet to be tackled. In this work a combined approach was followed linking curvature driven cell growth to fluid dynamics modeling. The level-set method (LSM) was employed to capture neotissue growth driven by curvature, while the Stokes and Darcy equations, combined in the Brinkman equation, provided information regarding the distribution of the shear stress profile at the neotissue/medium interface and within the neotissue itself during growth. The neotissue was assumed to be micro-porous allowing flow through its structure while at the same time allowing the simulation of complete scaffold filling without numerical convergence issues. The results show a significant difference in the amplitude of shear stress for cells located within the micro-porous neo-tissue or at the neotissue/medium interface, demonstrating the importance of taking along the neotissue in the calculation of the mechanical stimulation of cells during culture.The presented computational framework is used on different scaffold pore geometries demonstrating its potential to be used a design as tool for scaffold architecture taking into account the growing neotissue. Biotechnol. Bioeng. 2015;112: 2591-2600. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer

    PubMed Central

    Xu, Lixia; Zhang, Xinhua; Peng, Sui; He, Yulong; Cai, Shirong; Zeng, Zhirong; Chen, Minhu

    2017-01-01

    Background Tumor cells produce vascular endothelial growth factor (VEGF) which interact with the membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth in an angiogenesis-independent fashion. Apatinib, a highly selective VEGFR2 inhibitor, is the only effective drug for patients with terminal gastric cancer (GC) who have no other chemotherapeutic options. However, its treatment efficacy is still controversy and the mechanism behind remains undetermined. In this study, we aimed to investigate the role of autocrine VEGF signaling in the growth of gastric cancer cells and the efficacy of Apatinib treatment. Methods The expression of phosphor VEGFR2 in gastric cancer cell lines was determined by real-time PCR, immunofluorescence, and Western blot. The gastric cancer cells were administrated with or without recombination human VEGF (rhVEGF), VEGFR2 neutralizing antibody, U73122, SU1498, and Apatinib. The nude mice were used for xenograft tumor model. Results we found that autocrine VEGF induced high VEGFR2-expression, promoted phosphorylation of VEGFR2, and further enhanced internalization of pVEGFR2 in gastric cancer cells. The autocrine VEGF was self-sustained through increasing VEGF mRNA and protein expression. It exerted pro-proliferative effect through a PLC-ERK1/2 dependent pathway. Furthermore, we demonstrated that in VEGFR2 overexpressing gastric cancer cells, Apatinib inhibited cell proliferation in vitro and delayed xenograft tumor growth in vivo. However, these effects were not observed in VEGFR2 low expressing gastric cancer cells. Conclusion These results suggested that autocrine VEGF signaling promotes gastric cancer cell proliferation and enhances Apatinib treatment outcome in VEGFR2 overexpression gastric cancer cells both in vitro and in vivo. This study would enable better stratification of gastric cancer patients for clinical treatment decision. PMID:28061477

  7. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains ofmore » nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.« less

  8. [Effect of Yiguan Decoction on differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells: an experimental research].

    PubMed

    Ping, Jian; Chen, Hong-Yun; Yang, Zhou; Yang, Cheng; Xu, Lie-Ming

    2014-03-01

    To observe the effect of Yiguan Decoction (YGD) on differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro. Rat BMSCs were isolated using whole bone marrow adherent method. The properties of BMSCs were identified by analyzing the expression of surface cytokines by flow cytometry. The third passage cells were differentiated into fat cells to identify their features. BMSCs were incubated with hepatocyte growth factor (HGF) plus fibroblast growth factor 4 (FGF4) or YGD containing serum YGD for 21 days. The mRNA expression of alpha-fetoprotein (alphaAFP), albumin (Alb), and hepatocyte nuclear factor 4alpha (HNF4alpha) were detected by real time PCR. Expression of AFP and cytokeratin 18 (CK18) protein was detected by cell immunofluorescence. Glycogen synthesis was observed using periodic acid-Schiff stain (PAS). CK18, Wnt 3alpha, and alphacatenin protein expressions were detected by Western blot. High expression of CD90, CD29, and CD44, and low expression of CD34 and CD11b were observed in BMSCs isolated by whole bone mar- row adherent method, and numerous lipid droplets were observed in BMSCs using oil red O staining. Both YGD containing serum and growth factor stimulated the expression levels of Alb, AFP, HNF4alpha mRNA and CK18 protein. The down-regulated expression of Wnt 3alpha and beta-catenin could be detected at 21 days after induction. The synthesized glycogen granule could be seen. Down-regulated Wnt 3alpha and beta-catenin expression could also be observed. YGD could induce the differentiation of rat BMSCs into hepatocyte-like cells, which was related to down-regulating Wnt/beta-catenin signal pathway.

  9. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells

    PubMed Central

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Introduction Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. Methods We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERα and ERβ expression in both cell lines – and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Results Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERα in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex™ exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERβ. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. Conclusion The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer. PMID:17986353

  10. Plant proteolytic enzyme papain abrogates angiogenic activation of human umbilical vein endothelial cells (HUVEC) in vitro

    PubMed Central

    2013-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of physiologic and pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. It is known that cysteine proteases from plants, like bromelain and papain are capable to suppress inflammatory activation. Recent studies have demonstrated that they may interfere with angiogenesis related pathways as well. The aim of this study was to investigate the anti-angiogenic effects of papain on human umbilical vein endothelial cells (HUVEC) in vitro. Methods Cell viability after prolonged treatment with papain was investigated by life cell staining and lactate dehydrogenase release assay. Angiogenic activation was assessed by ELISA against phosphorylated proteins AKT, MEK1/2, ERK1/2, SAPK/JNK and p38-MAPK. Growth inhibition was determined by means of an MTT-assay and cell migration by means of a scratch assay. Capability to form a capillary network was investigated using a tube formation assay. Results Papain did not induce proteolysis or cell detachment of HUVEC in a concentration range between 0 and 25 μg/mL. Four hours treatment with 10 μg/mL papain resulted in a reduced susceptibility of endothelial cells to activation by VEGF as determined by phosphorylation levels of Akt, MEK1/2, SAPK/JNK. Papain exerted a distinct inhibitory effect on cell growth, cell migration and tube formation with inhibition of tube formation detectable at concentrations as low as 1 μg/mL. Bromelain and ficin displayed similar effects with regard to cell growth and tube formation. Conclusion Papain showed a strong anti-angiogenic effect in VEGF activated HUVEC. This effect may be due to interference with AKT, MEK1/2 and SAPK/JNK phosphorylation. Two other plant derived cysteine proteases displayed similar inhibition of HUVEC cell growth and tube formation. These findings indicate that plant proteolytic enzymes may have potential as preventive and therapeutic agents against angiogenesis related human diseases. PMID:24053149

  11. Infused polymers for cell sheet release

    NASA Astrophysics Data System (ADS)

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-05-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  12. Infused polymers for cell sheet release

    PubMed Central

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-01-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering. PMID:27189419

  13. Infused polymers for cell sheet release.

    PubMed

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L; Lin, Jennifer J; Sutton, Amy; Aizenberg, Joanna

    2016-05-18

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  14. The interaction between RACK1 and WEE1 regulates the growth of gastric cancer cell line HGC27

    PubMed Central

    Liu, Chao; Ren, Lili; Wang, Yizhao; Liu, Yimeng; Xiao, Jianying

    2017-01-01

    Receptor of activated C Kinase 1 (RACK1) is an essential scaffold and anchoring protein, which serves an important role in multiple tumorigenesis signaling pathways. The present study aimed to investigate the expression of RACK1 in gastric cancer (GC), and its association with the occurrence and development of GC. In addition, the effect and mechanism of RACK1 overexpression on the growth, and proliferation of GC cells was examined. Firstly, the protein expression of RACK1 was detected in 70 cases of GC tissues and 30 cases of noncancerous tissues using immunohistochemical staining, and the association between clinical and pathological features of GC was analyzed. Secondly, the mRNA and protein expression of RACK1 was determined in the poorly-differentiated human gastric cancer cell line HGC27 and gastric epithelial cell line GES-1. The growth of HGC27 cells following the upregulation of RACK1 was detected using MTT method. Subsequently, the interaction and co-location between RACK1, and WEE1 homolog (S. pombe) (WEE1) in HGC27 cells was confirmed using co-immunoprecipitation and indirect immunofluorescence. The expression level of RACK1 in GC was significantly lower compared with that in pericarcinous tissues (P<0.05). The protein level of RACK1 expression correlated with tumor node metastasis stage, tumor differentiation and lymph node metastasis. The mRNA and protein levels of RACK1 in HGC27 cells were significantly reduced, and overexpressed RACK1 downregulated WEE1 protein expression, thus inhibiting the growth of HGC27 cells. Co-immunoprecipitation and immunofluorescence confirmed that RACK1, and WEE1 interacted and co-located in the cytoplasm of HGC27 cells. Therefore, the abnormal expression of RACK1 in GC tissues was identified to be involved in the occurrence and development of GC. Overexpression of RACK1 was able to inhibit the growth of HGC27 cells. The current study suggests that low expression of RACK1 is an important indicator of poor prognosis of GC. RACK1 and WEE1 interact to regulate the growth of HGC27 cells. PMID:29085480

  15. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    PubMed

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics

    NASA Astrophysics Data System (ADS)

    Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.

    2017-06-01

    Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.

  17. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold.

    PubMed

    Blakeney, Bryan A; Tambralli, Ajay; Anderson, Joel M; Andukuri, Adinarayana; Lim, Dong-Jin; Dean, Derrick R; Jun, Ho-Wook

    2011-02-01

    A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less-dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold that is more advantageous for highly porous interconnectivity and demonstrates great potential for tackling current challenges of electrospun scaffolds. 2010 Elsevier Ltd. All rights reserved.

  18. Isolation of Salmonella from alfalfa seed and demonstration of impaired growth of heat-injured cells in seed homogenates.

    PubMed

    Liao, Ching-Hsing; Fett, William F

    2003-05-15

    Three major foodborne outbreaks of salmonellosis in 1998 and 1999 were linked to the consumption of raw alfalfa sprouts. In this report, an improved method is described for isolation of Salmonella from alfalfa seed lots, which had been implicated in these outbreaks. From each seed lot, eight samples each containing 25 g of seed were tested for the presence of Salmonella by the US FDA Bacteriological Analytical Manual (BAM) procedure and by a modified method applying two successive pre-enrichment steps. Depending on the seed lot, one to four out of eight samples tested positive for Salmonella by the standard procedure and two to seven out of eight samples tested positive by the modified method. Thus, the use of two consecutive pre-enrichment steps led to a higher detection rate than a single pre-enrichment step. This result indirectly suggested that Salmonella cells on contaminated seeds might be injured and failed to fully resuscitate in pre-enrichment broth containing seed components during the first 24 h of incubation. Responses of heat-injured Salmonella cells grown in buffered peptone water (BPW) and in three alfalfa seed homogenates were investigated. For preparation of seed homogenates, 25 g of seeds were homogenized in 200 ml of BPW using a laboratory Stomacher and subsequently held at 37 degrees C for 24 h prior to centrifugation and filtration. While untreated cells grew at about the same rate in BPW and in seed homogenates, heat-injured cells (52 degrees C, 10 min) required approximately 0.5 to 4.0 h longer to resuscitate in seed homogenates than in BPW. This result suggests that the alfalfa seed components or fermented metabolites from native bacteria hinder the repair and growth of heat-injured cells. This study also shows that an additional pre-enrichment step increases the frequency of isolation of Salmonella from naturally contaminated seeds, possibly by alleviating the toxic effect of seed homogenates on repair or growth of injured cells.

  19. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect.

    PubMed

    Renaud, Stéphanie; Corcé, Vincent; Cannie, Isabelle; Ropert, Martine; Lepage, Sylvie; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2015-08-01

    Tumor cell growth requires large iron quantities and the deprivation of this metal induced by synthetic metal chelators is therefore an attractive method for limiting the cancer cell proliferation. The antiproliferative effect of the Quilamine HQ1-44, a new iron chelator vectorized toward tumor cells by a polyamine chain, is related to its high selectivity for the Polyamine Transport System (PTS), allowing its preferential uptake by tumoral cells. The difference in PTS activation between healthy cells and tumor cells enables tumor cells to be targeted, whereas the strong dependence of these cells on iron ensures a secondary targeting. Here, we demonstrated in vitro that HQ1-44 inhibits DNA synthesis and cell proliferation of HCT116 cells by modulating the intracellular metabolism of both iron and polyamines. Moreover, in vivo, in xenografted athymic nude mice, we found that HQ1-44 was as effective as cis-platin in reducing HCT116 tumor growth, without its side effects. Furthermore, as suggested by in vitro data, the depletion in exogenous or endogenous polyamines, known to activate the PTS, dramatically enhanced the antitumor efficiency of HQ1-44. These data support the need for further studies to assess the value of HQ1-44 as an adjuvant treatment in cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Resveratrol Targets AKT and p53 in Glioblastoma and Glioblastoma Stem-like Cells to Suppress Growth and Infiltration

    PubMed Central

    Clark, Paul A.; Bhattacharya, Saswati; Elmayan, Ardem; Darjatmoko, Soesiawati R.; Thuro, Bradley A.; Yan, Michael B.; van Ginkel, Paul R.; Polans, Arthur S.; Kuo, John S.

    2016-01-01

    Object Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than two years with current treatment. GBM exhibits extensive intra-tumor and inter-patient heterogeneity, suggesting that successful therapies should exert broad anti-cancer activities. Therefore, the natural non-toxic pleiotropic agent, resveratrol, was studied for anti-tumorigenic effects against GBM. Methods Resveratrol’s effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. Results Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability of GSCs, suggesting anti-stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel transwell assay at doses similar to those mediating anti-proliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intra-tumor or peri-tumor resveratrol injection further suppressed growth and approximating tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared to intravenous delivery, and with no apparent toxicity. Conclusions Resveratrol potently inhibited GBM and GBM stem-like cell growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other anti-tumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e. convection enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in brain. Resveratrol’s non-toxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies. PMID:27419830

  1. Putting Theory to the Test: Which Regulatory Mechanisms Can Drive Realistic Growth of a Root?

    PubMed Central

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T. S.

    2014-01-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a ‘Uniform Longitudinal Strain Rule’ (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of generating virtual root growth kinematics to dissect and understand the mechanisms controlling this biological system. PMID:25358093

  2. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    PubMed

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of generating virtual root growth kinematics to dissect and understand the mechanisms controlling this biological system.

  3. Hedgehog signal inhibitor forskolin suppresses cell proliferation and tumor growth of human rhabdomyosarcoma xenograft.

    PubMed

    Yamanaka, Hiroaki; Oue, Takaharu; Uehara, Shuichiro; Fukuzawa, Masahiro

    2011-02-01

    We have previously reported that the Hedgehog (Hh) signaling pathway is activated in pediatric malignancies. In this study, we examined the effect of the Hh signal inhibitor forskolin on the growth of rhabdomyosarcoma (RMS) in vivo and in vitro and thereby elucidated the possibility of considering Hh signaling pathway as a therapeutic target for RMS. We evaluated the messenger RNA expressions of Hh signal mediators in 3 human RMS cell lines using reverse transcriptase-polymerase chain reaction method. The effect of forskolin on the tumor cell proliferation was investigated using WST-1 assay (Dojindo Co, Kumamoto, Japan). We inoculated 10(7) tumor cells into the back of nude mice to create RMS xenograft tumor models. Forskolin was subcutaneously administered in the region around the tumor, and the effect on the tumor growth was evaluated. The messenger RNA expression of glioma-associated oncogene homolog 1, the marker of Hh signaling activation, was expressed at various levels in RMS cell lines. The proliferation of RMS cells was inhibited in a dose-dependent fashion by forskolin. Similarly, in the xenograft model, tumor growth was also significantly reduced by forskolin treatment. Our findings suggest that the Hh signaling pathway plays an important role in the tumorigenesis of RMS and that this pathway can be considered to be a potential molecular target of new treatment strategies for RMS. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Transforming growth factor-{alpha} enhances corneal epithelial cell migration by promoting EGFR recycling.

    PubMed

    McClintock, Jennifer L; Ceresa, Brian P

    2010-07-01

    PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF.

  5. Hydrothermal growth of highly monodispersed TiO2 nanoparticles: Functional properties and dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Navaneethan, M.; Nithiananth, S.; Abinaya, R.; Harish, S.; Archana, J.; Sudha, L.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y.

    2017-10-01

    Monodispersed anatase TiO2 nanoparticles were synthesized by hydrothermal method using citric acid as a capping agent. The effect of citric acid and the growth time on the formation of TiO2, functional properties and dye-sensitized solar cell performances were investigated. X-ray diffraction pattern (XRD) and Raman spectroscopy results revealed that the TiO2 nanoparticles possess the anatase phase. Transmission electron microscopy (TEM) measurement revealed the formation of spherical nanoparticles with monodispersity in size and morphology. An average size of 14 nm was obtained for the growth period of 15 h. The maximum efficiency (η) of dye-sensitized solar cell was achieved for TiO2 nanoparticles grown for 15 h as 7.66% which was higher than that of commercial P25 TiO2 (5.23%) and uncapped nanoparticles (3.68%).

  6. Characterization of three new serous epithelial ovarian cancer cell lines

    PubMed Central

    Ouellet, Véronique; Zietarska, Magdalena; Portelance, Lise; Lafontaine, Julie; Madore, Jason; Puiffe, Marie-Line; Arcand, Suzanna L; Shen, Zhen; Hébert, Josée; Tonin, Patricia N; Provencher, Diane M; Mes-Masson, Anne-Marie

    2008-01-01

    Background Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Methods In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice. Results While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease. Conclusion This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient. PMID:18507860

  7. Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.

    PubMed

    Iwashima, Shigejiro; Ozaki, Takenori; Maruyama, Shoichi; Saka, Yousuke; Kobori, Masato; Omae, Kaoru; Yamaguchi, Hirotake; Niimi, Tomoaki; Toriyama, Kazuhiro; Kamei, Yuzuru; Torii, Shuhei; Murohara, Toyoaki; Yuzawa, Yukio; Kitagawa, Yasuo; Matsuo, Seiichi

    2009-05-01

    Accumulating evidence suggests that the delivery of human adipose tissue-derived stromal cells (hASCs) has great potential as regenerative therapy. This was performed to develop a method for expanding hASCs by reducing the amount of serum required. We demonstrate that hASCs were able to expand efficiently in media containing 2% serum and fibroblast growth factor-2. These cells, or low serum cultured hASCs (hLASCs), expressed cell surface markers similar to those on bone marrow-derived mesenchymal stem cells, and could be differentiated into cells of mesenchymal lineage. Of interest, hLASCs secreted higher levels of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) than hASCs cultured in 20% serum (hHASCs). Moreover, hLASC-conditioned media significantly increased endothelial cell (EC) proliferation and decreased EC apoptosis compared to that obtained from hHASCs or control media only. Antibodies against VEGF and HGF virtually negated these effects. When hASCs were administered into the ischemic hindlimbs of nude rats, hLASCs improved blood flow, increased capillary density, and raised the levels of VEGF and HGF in the muscles as compared with hHASCs. In conclusion, we demonstrate a novel low serum culture system for hASCs, which may have great potential in regenerative cell therapy for damaged organs in the clinical setting.

  8. Evaluation of physicochemical and biological properties of chitosan/poly (vinyl alcohol) polymer blend membranes and their correlation for Vero cell growth.

    PubMed

    Sharma, Parul; Mathur, Garima; Dhakate, Sanjay R; Chand, Subhash; Goswami, Navendu; Sharma, Sanjeev K; Mathur, Ashwani

    2016-02-10

    The blend membranes with varying weight ratios of chitosan/poly (vinyl alcohol) (CS/PVA) (1:0, 1:1, 1:2.5, 1.5:1, 1.5: 2.5) were prepared using solvent casting method and were evaluated for their potential application in single-use membrane bioreactors (MBRs). The physicochemical properties of the prepared membranes were investigated for chemical interactions (FTIR), surface morphology (SEM), water uptake, protein sorption (qe), ammonia sorption and growth kinetics of Vero cells. CS/PVA blend membrane having weight ratio of 1.5:1 had shown enhanced membrane flexibility, reduced water uptake, less protein sorption and no ammonium sorption compared to CS membrane. This blend membrane also showed comparatively enhanced higher specific growth rate (0.82/day) of Vero cells. Improved physicochemical properties and growth kinetics obtrude CS/PVA (1.5:1) as a potential surface for adhesion and proliferation with possible application in single use membrane bioreactors. Additionally, new insight explaining correlation between water holding (%) of CS/PVA (1.5:1) blend membrane and doubling time (td) of Vero cells is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Optimal Resting-Growth Strategies of Microbial Populations in Fluctuating Environments

    PubMed Central

    Geisel, Nico; Vilar, Jose M. G.; Rubi, J. Miguel

    2011-01-01

    Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments. PMID:21525975

  10. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  11. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    PubMed Central

    2011-01-01

    Background Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. Methods GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. Results GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Conclusions Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK 293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer PMID:22051164

  12. Rapid Identification of Dengue Virus Serotypes Using Monoclonal Antibodies in an Indirect Immunofluorescence Test.

    DTIC Science & Technology

    1982-06-18

    areas !i). Presently, the only certain method of identification is through the use of rigidly standardized reference antiserum in a virus plaque...low passaged or unpassaged dengue virus from humans or insects using an indirect immunofluorescence 71 test. MATERIALS AND METHODS :, j Cell cultures...streptomycin. Maintanance medium for infected cell cultures consisted of the appropriate growth medium containing 0.4% bovine plasma albumin instead of FBS

  13. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation.

    PubMed

    Frithiof, Henrik; Aaltonen, Kristina; Rydén, Lisa

    2016-01-01

    Amplification of the HER-2/neu ( HER-2 ) proto-oncogene occurs in 10%-15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC) analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH)-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line), an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients showing that one out of six patients acquired CTC HER-2 amplification during treatment against metastatic disease. HER-2 amplification status of CTCs can be determined following CellSearch isolation and further enrichment. FISH is superior to protein assessment of HER-2 status in predicting response to HER-2-targeted immunotherapy in breast cancer patients. This assay has the potential of identifying patients with a shift in HER-2 status who may benefit from treatment adjustments.

  14. Information dynamics in carcinogenesis and tumor growth.

    PubMed

    Gatenby, Robert A; Frieden, B Roy

    2004-12-21

    The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant cells are minimum information systems. EPI theory also predicts that the estimated age of a clinically observed tumor is subject to a root-mean square error of about 30%. This is due to information loss and tissue disorganization and probably manifests as a randomly variable lag phase in the growth pattern that has been observed experimentally. This difference between tumor size and age may impose a fundamental limit on the efficacy of screening based on early detection of small tumors. Independent of the EPI analysis, Monte Carlo methods are applied to predict statistical tumor growth due to perturbed information flow from the environment into transformed cells. A "simplest" Monte Carlo model is suggested by the findings in the EPI approach that tumor growth arises out of a minimally complex mechanism. The outputs of large numbers of simulations show that (a) about 40% of the populations do not survive the first two-generations due to mutations in critical gene segments; but (b) those that do survive will experience power law growth identical to the predicted rate obtained from the independent EPI approach. The agreement between these two very different approaches to the problem strongly supports the idea that tumor cells regress to a state of minimum information during carcinogenesis, and that information dynamics are integrally related to tumor development and growth.

  15. Development of an in silico stochastic 4D model of tumor growth with angiogenesis.

    PubMed

    Forster, Jake C; Douglass, Michael J J; Harriss-Phillips, Wendy M; Bezak, Eva

    2017-04-01

    A stochastic computer model of tumour growth with spatial and temporal components that includes tumour angiogenesis was developed. In the current work it was used to simulate head and neck tumour growth. The model also provides the foundation for a 4D cellular radiotherapy simulation tool. The model, developed in Matlab, contains cell positions randomised in 3D space without overlap. Blood vessels are represented by strings of blood vessel units which branch outwards to achieve the desired tumour relative vascular volume. Hypoxic cells have an increased cell cycle time and become quiescent at oxygen tensions less than 1 mmHg. Necrotic cells are resorbed. A hierarchy of stem cells, transit cells and differentiated cells is considered along with differentiated cell loss. Model parameters include the relative vascular volume (2-10%), blood oxygenation (20-100 mmHg), distance from vessels to the onset of necrosis (80-300 μm) and probability for stem cells to undergo symmetric division (2%). Simulations were performed to observe the effects of hypoxia on tumour growth rate for head and neck cancers. Simulations were run on a supercomputer with eligible parts running in parallel on 12 cores. Using biologically plausible model parameters for head and neck cancers, the tumour volume doubling time varied from 45 ± 5 days (n = 3) for well oxygenated tumours to 87 ± 5 days (n = 3) for severely hypoxic tumours. The main achievements of the current model were randomised cell positions and the connected vasculature structure between the cells. These developments will also be beneficial when irradiating the simulated tumours using Monte Carlo track structure methods. © 2017 American Association of Physicists in Medicine.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp; Yamauchi, Motohiro; Oka, Yasuyoshi

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% andmore » 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.« less

  17. Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method

    PubMed Central

    Salwe, Sukeshani; Kothari, Sweta; Chowdhary, Abhay; Deshmukh, Ranjana A.

    2018-01-01

    12–14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population. PMID:29682352

  18. Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method.

    PubMed

    Gosavi, Rahul Ashok; Salwe, Sukeshani; Mukherjee, Sandeepan; Dahake, Ritwik; Kothari, Sweta; Patel, Vainav; Chowdhary, Abhay; Deshmukh, Ranjana A

    2018-01-01

    12-14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference ( P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.

  19. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture

    PubMed Central

    Takeuchi, Hiroki; Nakatsuji, Norio; Suemori, Hirofumi

    2014-01-01

    Insulin-producing cells (IPCs) derived from human pluripotent stem cells (hPSCs) may be useful in cell therapy and drug discovery for diabetes. Here, we examined various growth factors and small molecules including those previously reported to develop a robust differentiation method for induction of mature IPCs from hPSCs. We established a protocol that induced PDX1-positive pancreatic progenitor cells at high efficiency, and further induced mature IPCs by treatment with forskolin, dexamethasone, Alk5 inhibitor II and nicotinamide in 3D culture. The cells that differentiated into INSULIN-positive and C-PEPTIDE-positive cells secreted insulin in response to glucose stimulation, indicating a functional IPC phenotype. We also found that this method was applicable to different types of hPSCs. PMID:24671046

  20. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system.

    PubMed

    Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng

    2015-12-01

    Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A rapid method for measuring intracellular pH using BCECF-AM.

    PubMed

    Ozkan, Pinar; Mutharasan, Raj

    2002-08-15

    A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.

  2. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  3. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.

    PubMed

    Chinnasamy, Dhanalakshmi; Yu, Zhiya; Theoret, Marc R; Zhao, Yangbing; Shrimali, Rajeev K; Morgan, Richard A; Feldman, Steven A; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-01

    Immunotherapies based on adoptive cell transfer are highly effective in the treatment of metastatic melanoma, but the use of this approach in other cancer histologies has been hampered by the identification of appropriate target molecules. Immunologic approaches targeting tumor vasculature provide a means for the therapy of multiple solid tumor types. We developed a method to target tumor vasculature, using genetically redirected syngeneic or autologous T cells. Mouse and human T cells were engineered to express a chimeric antigen receptor (CAR) targeted against VEGFR-2, which is overexpressed in tumor vasculature and is responsible for VEGF-mediated tumor progression and metastasis. Mouse and human T cells expressing the relevant VEGFR-2 CARs mediated specific immune responses against VEGFR-2 protein as well as VEGFR-2-expressing cells in vitro. A single dose of VEGFR-2 CAR-engineered mouse T cells plus exogenous IL-2 significantly inhibited the growth of 5 different types of established, vascularized syngeneic tumors in 2 different strains of mice and prolonged the survival of mice. T cells transduced with VEGFR-2 CAR showed durable and increased tumor infiltration, correlating with their antitumor effect. This approach provides a potential method for the gene therapy of a variety of human cancers.

  4. Three-dimentional growth of liver / stem cells in vitro under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Feng, Mei Fu

    Liver is a important and largest parenchymatous organ in vivo, and have complex and diverse structures and functions. In the world, there are many peoples suffers from liver injury and dis-ease, especially in Asia, but serious shortage of donor organ, especially for organic pathological changes, is a big problem in the world. Stem cells have the capabilities to self-renew and differ-entiate into multiple lineages, and are very significant in both theoretical research and clinical applications. Compared with traditional cell culture, cells of 3D growth are more close to their situation in vivo. The specific physics environment in space provides a great opportunity for 3D growth of cells and tissues. Due to the chance for entering into the space is so scarce, to mimic microgravity effects using a rotating cell culture system (RCCS) designed by NASA, and some other methods were studied for cellular 3D growth in vitro. Neonatal mouse liver Cells, hepatic progenitor/stem cells from fetal liver and WB-F344 cells were cultured in a 1:1 mixture of DMEM and F-12 supplemented with 10 % FCS and several factors, and seeded into the RCCS, 6-well and 24-well plates. Their growth characteristic, metabolism, differentiation and gene expression were studied by SEM, Histochemistry, Flow Cytometry, RT-PCR and so on. The results showed: 1. Neonatal mouse liver Cells (1day after birth) seem easy to grow for a three-dimentional-like structure, when the cells were cultured in the RCCS, a cell aggregate formed after 1 day of culture and were kept during 10 days culture. The size of aggregate was about 1 2 mm in diameter. 2. Hepatic progenitor/stem cells from fetal liver seem a good cell resource for liver disease'cell therapy. They expressed AFP and CKs, and no mature hepato-cytes marker and bile duct epithelial cells marker were detected. When were transplanted into Nod-Scid mice, they had multi-potential differentiation. 3. WB-F344 cells, a liver epithelial cell line, could grew well on Cytodex 3 microcarrier beads, and expressed OV6 at a higher level and Cykt-18 and Cykt-19 at a lower level, but no Cykt-7 and Cykt-8. They are easy to get a large amount of cells, and could be thought as a convenient cell resource. The experiments are going on, and their differentiation and 3D growth are being studied.

  5. Real-time detection of neurite outgrowth using microfluidic device

    NASA Astrophysics Data System (ADS)

    Kim, Samhwan; Jang, Jongmoon; Choi, Hongsoo; Moon, Cheil

    2013-05-01

    We developed a simple method for real-time detection of the neurite outgrowth using microfluidic device. Our microfluidic device contains three compartmentalized channels which are for cell seeding, hydrogel and growth factors. Collagen gel is filled in the middle channel and pheochromocytoma (PC12) cells are seeded in the left channel. To induce differentiation of PC12 cells, 50 ng/ml to1000 ng/ml of nerve growth factor (NGF) is introduced into the right channel. After three days of NGF treatment, PC12 cells begin to extend neurites and formed neurite network from sixth day. Quantification of neurite outgrowth is analyzed by measuring the total area of neurites. On sixth day, the area is doubled compared to the area on third day and increases by 20 times on ninth day.

  6. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro.

    PubMed

    Knight, Eleanor; Przyborski, Stefan

    2015-12-01

    Research in mammalian cell biology often relies on developing in vitro models to enable the growth of cells in the laboratory to investigate a specific biological mechanism or process under different test conditions. The quality of such models and how they represent the behavior of cells in real tissues plays a critical role in the value of the data produced and how it is used. It is particularly important to recognize how the structure of a cell influences its function and how co-culture models can be used to more closely represent the structure of real tissue. In recent years, technologies have been developed to enhance the way in which researchers can grow cells and more readily create tissue-like structures. Here we identify the limitations of culturing mammalian cells by conventional methods on two-dimensional (2D) substrates and review the popular approaches currently available that enable the development of three-dimensional (3D) tissue models in vitro. There are now many ways in which the growth environment for cultured cells can be altered to encourage 3D cell growth. Approaches to 3D culture can be broadly categorized into scaffold-free or scaffold-based culture systems, with scaffolds made from either natural or synthetic materials. There is no one particular solution that currently satisfies all requirements and researchers must select the appropriate method in line with their needs. Using such technology in conjunction with other modern resources in cell biology (e.g. human stem cells) will provide new opportunities to create robust human tissue mimetics for use in basic research and drug discovery. Application of such models will contribute to advancing basic research, increasing the predictive accuracy of compounds, and reducing animal usage in biomedical science. © 2014 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  7. [Effect of thalidomide combined with dexamethasone on multiple myeloma KM3 cells].

    PubMed

    He, Bin; Zhang, Yu; Zhou, Wei; Gao, Na; Gao, Bo; Gu, Jian; Li, Jian-Yong

    2009-08-01

    The purpose of this study was to investigate the effect of thalidomide (THD) combined with dexamethasone (Dx) on multiple myeloma KM3 cells and its mechanism. The effect of the different concentrations and treatment time of THD or THD + Dx on KM3 cells was assayed by cytotoxicity test (MTT method), the inhibitory ratio of THD or THD + Dx on the KM3 cell growth was detected for choosing the best intervention condition. The expression levels of IL-6, TNF-alpha, VEGF, ES, survivin in supernatant of cells treated with best intervention condition were measured by indirect ELISA. The results indicated that an enhancement of cell growth inhibition was observed in treated KM3 cells along with increasing of drug concentrations and prolonging of treatment times, at the same time the THD combined with Dx could significantly inhibit the KM3 cell growth. The combination of THD in concentration of 80 or 100 microg/ml with Dx in concentration of 4 microg/ml decreased the expression of IL-6, TNF-alpha and survivin, increased the expression of ES, while no influence on VEGF expression was found. It is concluded that THD combined with Dx shows the synergistic inhibitory effect on KM3 cells, they bring the effect resistant to multiple myeloma probably through down-regulating the expression of IL-6, TNF-alpha and survivin, and up-regulating the expression of ES in KM3 cell.

  8. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells.

    PubMed

    Tong, H Q; Jiang, Z Q; Dou, T F; Li, Q H; Xu, Z Q; Liu, L X; Gu, D H; Rong, H; Huang, Y; Chen, X B; Jois, M; Te Pas, M F W; Ge, C R; Jia, J J

    2016-10-05

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province that undergoes non-selection breeding and is slow growing. In this study, we aimed to explore differences in the proliferation and differentiation properties of satellite cells isolated from the two chicken breeds. Using immunofluorescence, hematoxylin-eosin staining and real-time polymerase chain reaction analysis, we analyzed the in vitro characteristics of proliferating and differentiating satellite cells isolated from the two chicken breeds. The growth curve of satellite cells was S-shaped, and cells from Wuding chickens entered the logarithmic phase and plateau phase 1 day later than those from Avian chicken. The results also showed that the two skeletal muscle satellite cell lines were positive for Pax7, MyoD and IGF-1. The expression of Pax7 followed a downward trend, whereas that of MyoD and IGF-1 first increased and subsequently decreased in cells isolated from the two chickens. These data indicated that the skeletal muscle satellite cells of Avian chicken grow and differentiate faster than did those of Wuding chickens. We suggest that the methods of breeding selection applied to these breeds regulate the characteristics of skeletal muscle satellite cells to influence muscle growth.

  9. Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility

    PubMed Central

    2011-01-01

    Background Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231). Methods Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion. Results Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis. Conclusions Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer. PMID:21849050

  10. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    PubMed Central

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  11. HDAC gene expression in pancreatic tumor cell lines following treatment with the HDAC inhibitors panobinostat (LBH589) and trichostatine (TSA).

    PubMed

    Mehdi, Ouaïssi; Françoise, Silvy; Sofia, Costa Lima; Urs, Giger; Kevin, Zemmour; Bernard, Sastre; Igor, Sielezneff; Anabela, Cordeiro-da-Silva; Dominique, Lombardo; Eric, Mas; Ali, Ouaïssi

    2012-01-01

    In this study, the effect of LBH589 and trichostatin (TSA), a standard histone deacetylase inhibitor (HDACi) toward the growth of pancreatic cancer cell lines was studied. Thus, we examined for the first time, the HDAC family gene expression levels before and after drug treatment. Several human pancreatic cancer cell lines (Panc-1, BxPC-3, SOJ-6) and a normal human pancreatic duct immortalized epithelial cell line (HPDE/E6E7) were used as target cells. The cell growth was measured by MTT assay, cell cycle alteration, membrane phosphatidylserine exposure, DNA fragmentation, mitochondrial membrane potential loss, RT-PCR and Western blots were done using standard methods. The effect of drugs on tumor growth in vivo was studied using subcutaneous xenograft model. Except in the case of certain HDAC gene/tumor cell line couples: (SIRT1/HPDE-SOJ6/TSA- or LBH589-treated cells; LBH589-treated Panc-1 Cells; HDAC2/BxPC-3/LBH589-treated cells or TSA-treated SOJ-6-1 cells), there were no major significant changes of HDACs genes transcription in cells upon drug treatment. However, significant variation in HDACs and SIRTs protein expression levels could be seen among individual cell samples. The in vivo results showed that LBH589 formulation exhibited similar tumor reduction efficacy as the commercial drug gemcitabine. Our data demonstrate that LBH589 induced the death of pancreatic tumor cell by apoptosis. In line with its in vitro activity, LBH589 achieved a significant reduction in tumor growth in BxPC-3 pancreatic tumor cell line subcutaneous xenograft mouse model. Furthermore, exploring the impact of LBH589 on HDACs encoding genes expression revealed for the first time that some of them, depending on the cell line considered, seem to be regulated during translation. Copyright © 2012 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  12. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    NASA Technical Reports Server (NTRS)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or clusters of genes with common activity profiles may overlook the most critical features of cellular information processing which normally determine how signal specificity is established and maintained in living cells. Copyright 2000 Academic Press.

  13. A Novel In Vitro Method for Detecting Undifferentiated Human Pluripotent Stem Cells as Impurities in Cell Therapy Products Using a Highly Efficient Culture System

    PubMed Central

    Tano, Keiko; Yasuda, Satoshi; Kuroda, Takuya; Saito, Hirohisa; Umezawa, Akihiro; Sato, Yoji

    2014-01-01

    Innovative applications of cell therapy products (CTPs) derived from human pluripotent stem cells (hPSCs) in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs) using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs) or human neurons at the ratio of 0.001%–0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process. PMID:25347300

  14. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.

    PubMed

    Rahman, Maryam; Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W; Stringer, Brett W; Boyd, Andrew W; Johns, Terrance G; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A

    2015-03-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

  15. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines

    PubMed Central

    Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W.; Stringer, Brett W.; Boyd, Andrew W.; Johns, Terrance G.; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A.

    2015-01-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture. PMID:25806119

  16. Transforming Growth Factor-β1 activates ΔNp63/c-Myc to promote Oral Squamous cell carcinoma

    PubMed Central

    Hu, Lihua; Li, Zhi; Liu, Jingpeng; Wang, Chunling; Nawshad, Ali

    2016-01-01

    Objective During the development of oral squamous cell carcinoma (OSCC), the transformed epithelial cells undergo increased proliferation resulting in tumor growth and invasion. Interestingly, throughout all phases of differentiation and progression of OSCC, TGFβ1 induces cell cycle arrest/apoptosis, however; the role of TGFβ1 in promoting cancer cell proliferation has not been explored in detail. The purpose of this study was to identify the effect of TGFβ1 on OSCC cell proliferation. Methods Using both human OSCC samples and cell lines (UMSCC38 and UMSCC 11B), we employed biochemical experiments to show protein, mRNA, gene expression and protein-DNA interactions during OSCC progression. Results Our results showed that TGFβ1 increased OSCC cell proliferation by up-regulating the expression of ΔNp63 and c-Myc oncogenes. While the basal OSCC cell proliferation is sustained by activating ΔNp63, increased induction of c-Myc causes unregulated OSCC cell proliferation. Following induction of the cell cycle by ΔNp63 and c-Myc, cancer cells that halt c-Myc activity undergo EMT/invasion while those that continue to express ΔNp63/c-Myc undergo unlimited progression through the cell cycle. Conclusion We conclude that OSCC proliferation is manifested by the induction of c-Myc in response to TGFβ1 signaling, which is essential for OSCC growth. Our data highlights the potential role of TGFβ1 in the induction of cancer progression and invasion of OSCC. PMID:27567435

  17. Concentrated Growth Factor Enhanced Fat Graft Survival: A Comparative Study.

    PubMed

    Hu, Yun; Jiang, Yichen; Wang, Muyao; Tian, Weidong; Wang, Hang

    2018-06-08

    Concentrated growth factors (CGFs) belong to a new generation biomaterials that concentrate large number of growth factors and CD34 stem cells in small volume of plasma. The purpose of this study was to evaluate the impact of the new technique, CGF, on fat graft survival, which compared with platelet-rich plasma (PRP) and platelet-rich fibrin (PRF). Nude mice received fat graft were divided into PRP group, PRF group, CGF group, and saline. The grafts were volumetrically and histologically evaluated at 4, 8, and 12 weeks after fat grafting. In vitro growth factor levels in PRP, PRF, and CGF were compared using enzyme-linked immunoassay method. Cell count and real-time polymerase chain reaction were used to evaluate the impact of CGF in medium on human adipose-derived stem cell (hADSC) proliferation and vascular differentiation, respectively. Fat graft weight was significantly higher in the CGF group than those in the other groups, and histologic evaluation revealed greater vascularity, fewer cysts, and less fibrosis. Adding CGF to the medium maximally promoted hADSC proliferation and expressing vascular endothelial growth factor and PECAM-1. In this preliminary study, CGF treatment improved the survival and quality of fat grafts.

  18. Bacterial safety of cell-based therapeutic preparations, focusing on haematopoietic progenitor cells.

    PubMed

    Störmer, M; Wood, E M; Schurig, U; Karo, O; Spreitzer, I; McDonald, C P; Montag, T

    2014-05-01

    Bacterial safety of cellular preparations, especially haematopoietic progenitor cells (HPCs), as well as advanced therapy medicinal products (ATMPs) derived from stem cells of various origins, present a challenge for physicians, manufacturers and regulators. The article describes the background and practical issues in this area and illustrates why sterility of these products cannot currently be guaranteed. Advantages and limitations of approaches both for classical sterility testing and for microbiological control using automated culture systems are discussed. The review considers novel approaches for growth-based rapid microbiological control with high sensitivity and faster availability of results, as well as new methods for rapid bacterial detection in cellular preparations enabling meaningful information about product contamination within one to two hours. Generally, however, these direct rapid methods are less sensitive and have greater sampling error compared with the growth-based methods. Opportunities for pyrogen testing of cell therapeutics are also discussed. There is an urgent need for development of novel principles and methods applicable to bacterial safety of cellular therapeutics. We also need a major shift in approach from the traditional view of sterility evaluation (identify anything and everything) to a new thinking about how to find what is clinically relevant within the time frame available for the special clinical circumstances in which these products are used. The review concludes with recommendations for optimization of microbiological control of cellular preparations, focusing on HPCs. © 2013 International Society of Blood Transfusion.

  19. Immobilization of microalgae cells in alginate facilitates isolation of DNA and RNA.

    PubMed

    Lopez, Blanca R; Hernandez, Juan-Pablo; Bashan, Yoav; de-Bashan, Luz E

    2017-04-01

    Isolation of nucleic acids from Chlorella is difficult, given the chemically complex nature of their cell walls and variable production of metabolites. Immobilization of microalgae in polymers adds additional difficulty. Here, we modified, amended, and standardized methods for isolation of nucleic acids and compared the yield of DNA and RNA from free-living and encapsulated microalgae C. sorokiniana. Isolation of nucleic acids from immobilized cells required two steps in dissolving the alginate matrix, releasing the cells, and mechanical disruption with glass beads. For DNA extraction, we used modified versions of a commercial kit along with the hexadecyltrimethylammonium bromide (CTAB) method. For RNA extraction, we used the commercial TRI reagent procedure and the CTAB-dithiotreitol method. Quantity and quality of nucleic acids in extracts varied with growth conditions, isolation procedures, and time of incubation of the original culture. There were consistently higher amounts of DNA and RNA in extracts from immobilized cells. Quantitatively, the modified procedure with the commercial Promega kit was the most reliable procedure for isolating DNA and a modified commercial TRI reagent procedure was the choice for isolating RNA. All four procedures eliminated proteins efficiently and had low levels of contamination from residual polysaccharides from the matrices and/or metabolites naturally produced by the microalgae. All DNA extracts under both growth conditions, time of incubation, and two isolation methods successfully amplified the 18S ribosomal RNA by PCR and quantitative reverse transcription (RT-qPCR). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling

    PubMed Central

    Ginovart, Marta; Carbó, Rosa; Blanco, Mónica; Portell, Xavier

    2018-01-01

    Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM-Saccha. Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then discussed and compared to simulation results generated with INDISIM-Saccha, which allowed us to advance in the development of this yeast model, and illustrated the utility of data at different levels of observation and the needs and logic behind the development of a microbial individual-based model. PMID:29354112

  1. Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-α production with an on-line model-based glycerol feeding strategy.

    PubMed

    Gao, Min-Jie; Zheng, Zhi-Yong; Wu, Jian-Rong; Dong, Shi-Juan; Li, Zhen; Jin, Hu; Zhan, Xiao-Bei; Lin, Chi-Chung

    2012-02-01

    Effective expression of porcine interferon-α (pIFN-α) with recombinant Pichia pastoris was conducted in a bench-scale fermentor. The influence of the glycerol feeding strategy on the specific growth rate and protein production was investigated. The traditional DO-stat feeding strategy led to very low cell growth rate resulting in low dry cell weight (DCW) of about 90 g/L during the subsequent induction phase. The previously reported Artificial Neural Network Pattern Recognition (ANNPR) model-based glycerol feeding strategy improved the cell density to 120 g DCW/L, while the specific growth rate decreased from 0.15 to 0.18 to 0.03-0.08 h(-1) during the last 10 h of the glycerol feeding stage leading to a variation of the porcine interferon-α production, as the glycerol feeding scheme had a significant effect on the induction phase. This problem was resolved by an improved ANNPR model-based feeding strategy to maintain the specific growth rate above 0.11 h(-1). With this feeding strategy, the pIFN-α concentration reached a level of 1.43 g/L, more than 1.5-fold higher than that obtained with the previously adopted feeding strategy. Our results showed that increasing the specific growth rate favored the target protein production and the glycerol feeding methods directly influenced the induction stage. Consequently, higher cell density and specific growth rate as well as effective porcine interferon-α production have been achieved by our novel glycerol feeding strategy.

  2. Heterogeneity in the growth hormone pituitary gland system of rats and humans: Implications to microgravity based research

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R.; Hayes, C.; Lanham, J. W.; Cleveland, C.; Todd, P.; Morrison, Dennis R.

    1988-01-01

    The cell separation techniques of velocity sedimentation, flow cytometry and continuous flow electrophoresis were used to obtain enriched populations of growth hormone (GH) cells. The goal was to isolate a GH cell subpopulation which releases GH molecules which are very high in biological activity, it was important to use a method which was effective in processing large numbers of cells over a short time span. The techniques based on sedimentation are limited by cell density overlaps and streaming. While flow cytometry is useful in the analytical mode for objectively establishing cell purity, the numbers of cells which can be processed in the sort mode are so small as to make this approach ineffective in terms of the long term goals. It was shown that continuous flow electrophoresis systems (CFES) can separate GH cells from other cell types on the basis of differences in surface charge. The bioreactive producers appear to be more electrophoretically mobile than the low producers. Current ground based CFES efforts are hampered by cell clumping in low ionic strength buffers and poor cell recoveries from the CFES device.

  3. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

  4. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    DOE PAGES

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    2016-09-21

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

  5. Validation of shortened 2-day sterility testing of mesenchymal stem cell-based therapeutic preparation on an automated culture system.

    PubMed

    Lysák, Daniel; Holubová, Monika; Bergerová, Tamara; Vávrová, Monika; Cangemi, Giuseppina Cristina; Ciccocioppo, Rachele; Kruzliak, Peter; Jindra, Pavel

    2016-03-01

    Cell therapy products represent a new trend of treatment in the field of immunotherapy and regenerative medicine. Their biological nature and multistep preparation procedure require the application of complex release criteria and quality control. Microbial contamination of cell therapy products is a potential source of morbidity in recipients. The automated blood culture systems are widely used for the detection of microorganisms in cell therapy products. However the standard 2-week cultivation period is too long for some cell-based treatments and alternative methods have to be devised. We tried to verify whether a shortened cultivation of the supernatant from the mesenchymal stem cell (MSC) culture obtained 2 days before the cell harvest could sufficiently detect microbial growth and allow the release of MSC for clinical application. We compared the standard Ph. Eur. cultivation method and the automated blood culture system BACTEC (Becton Dickinson). The time to detection (TTD) and the detection limit were analyzed for three bacterial and two fungal strains. The Staphylococcus aureus and Pseudomonas aeruginosa were recognized within 24 h with both methods (detection limit ~10 CFU). The time required for the detection of Bacillus subtilis was shorter with the automated method (TTD 10.3 vs. 60 h for 10-100 CFU). The BACTEC system reached significantly shorter times to the detection of Candida albicans and Aspergillus brasiliensis growth compared to the classical method (15.5 vs. 48 and 31.5 vs. 48 h, respectively; 10-100 CFU). The positivity was demonstrated within 48 h in all bottles, regardless of the size of the inoculum. This study validated the automated cultivation system as a method able to detect all tested microorganisms within a 48-h period with a detection limit of ~10 CFU. Only in case of B. subtilis, the lowest inoculum (~10 CFU) was not recognized. The 2-day cultivation technique is then capable of confirming the microbiological safety of MSC and allows their timely release for clinical application.

  6. Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nepal, Neeraj; Anderson, Virginia R.; Johnson, Scooter D.

    The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities duemore » to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to understand nucleation and growth mechanisms of ALEp to enable improvement in material quality and broaden its application.« less

  7. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve

    PubMed Central

    dos Santos, Cyndia Mara Bezerra; Ludwig, Adriana; Kessler, Rafael Luis; Rampazzo, Rita de Cássia Pontello; Inoue, Alexandre Haruo; Krieger, Marco Aurélio; Pavoni, Daniela Parada; Probst, Christian Macagnan

    2018-01-01

    BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins. PMID:29668769

  8. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  9. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.

  10. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions.

    PubMed

    Zecher, Karsten; Jagmann, Nina; Seemann, Philipp; Philipp, Bodo

    2015-12-01

    Interactions between photoautotrophic diatoms and heterotrophic bacteria are important for the biogeochemical C-cycle in the oceans. Additionally, biofilms formed by diatoms and bacteria are the initiating step of biofouling processes, which causes high costs in shipping. Despite this ecological and economical importance, the knowledge about biochemical and molecular mechanisms underlying these interkingdom interactions is relatively small. For analyzing these mechanisms, laboratory model systems are required. In this study, an efficient screening method for isolating bacteria influencing photoautotrophic diatom growth was established. First, diatom cultures of Phaeodactylum tricornutum and Thalassiosira pseudonana were made axenic by applying β-lactam antibiotics. Second, a non-invasive method for measuring growth of multiple parallel diatom cultures by chlorophyll fluorescence was established. This method allowed semi-quantitative chlorophyll determination of cultures with up to 3 μg (chlorophyll) ml(-1). Axenic diatom cultures were then used for enriching bacteria and led to the isolation of 24 strains influencing growth of both diatom strains in various ways. For example, Rheinheimera sp. strain Tn16 inhibited growth of T. pseudonana, while it stimulated growth and cell aggregation of P. tricornutum. Thus, this screening method is appropriate for isolating heterotrophic bacteria showing different interactions with different diatom species ranging from synergistic to antagonistic. In consecutive applications, this method will be useful to screen for bacterial mutants with altered phenotypes regarding the influence on diatom growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Extract of Stellerachamaejasme L(ESC) inhibits growth and metastasis of human hepatocellular carcinoma via regulating microRNA expression.

    PubMed

    Liu, Xiaoni; Wang, Shuang; Xu, Jianji; Kou, Buxin; Chen, Dexi; Wang, Yajie; Zhu, Xiaoxin

    2018-03-20

    MicroRNAs(miRNAs)are involved in the initiation and progression of hepatocellular carcinoma. ESC, an extract of Stellerachamaejasme L, had been confirmed as a potential anti-tumor extract of Traditional Chinese Medicine. In light of the important role of miRNAs in hepatocellular carcinoma, we questioned whether the inhibitory effects of ESC on hepatocellular carcinoma (HCC) were associated with miRNAs. The proliferation inhibition of ESC on HCC cells was measured with MTT assay. The migration inhibition of ESC on HCC cells was measured with transwell assay. The influences of ESC on growth and metastasis inhibition were evaluated with xenograft tumor model of HCC. Protein expressions were measured with western blot and immunofluorescence methods and miRNA profiles were detected with miRNA array. Differential miRNA and target mRNAs were verified with real-time PCR. The results showed that ESC could inhibit proliferation and epithelial mesenchymal transition (EMT) in HCC cells in vitro and tumor growth and metastasis in xenograft models in vivo. miRNA array results showed that 69 differential miRNAs in total of 429 ones were obtained in MHCC97H cells treated by ESC. hsa-miR-107, hsa-miR-638, hsa-miR-106b-5p were selected to be validated with real-time PCR method in HepG2 and MHCC97H cells. Expressions of hsa-miR-107 and hsa-miR-638 increased obviously in HCC cells treated by ESC. Target genes of three miRNAs were also validated with real-time PCR. Interestingly, only target genes of hsa-miR-107 changed greatly. ESC downregulated the MCL1, SALL4 and BCL2 gene expressions significantly but did not influence the expression of CACNA2D1. The findings suggested ESC regressed growth and metastasis of human hepatocellular carcinoma via regulating microRNAs expression and their corresponding target genes.

  12. The in vitro inhibitory effects of crude extracts of traditional Chinese herbs on 3-hydroxy-3-methylglutaryl-coenzyme A reductase on Vero cells.

    PubMed

    Liu, Ju-Chi; Chan, Paul; Hsu, Feng-Lin; Chen, Yi-Jen; Hsieh, Ming-Hsiung; Lo, Ming-Yu; Lin, Jung-Yaw

    2002-01-01

    Cardiovascular disease is still the leading cause of death in Western countries. Epidemiological studies have shown that hypercholesterolemia is a major risk factor for coronary artery disease. Clinical trials of lipid lowering therapy with 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A) reductase inhibitor have been shown to decrease coronary events and mortality. Flavonoids are polyphenolic natural antioxidants occurring in natural products such as traditional Chinese herbs, fruits and beverages such as tea and wine. The aim of this study was to evaluate the effects of crude extracts from traditional Chinese herbs on HMG Co-A reductase. The methods for analysis of specific inhibitors of mevalonate biosynthesis have been well-established by using Vero cells, a cell line obtained from kidneys of African green monkeys. Crude extracts from different traditional Chinese herbs were dissolved in 1% Dulbecco's modified Eagle's medium and incubated with Vero cells with or without the addition of 1 mM mevalonate or 5 mM sodium acetate for 24 hours in order to observe cell growth. Pravastatin, a specific HMG Co-A reductase inhibitor, was used as a positive control which inhibits Vero cells growth effectively and cell growth inhibition was reversible after 1 mM mevalonate. Among 100 traditional Chinese herbs used for the study, only two herbs: Curcuma zedoaria Roscoe and Poncirus trifoliata Raf. showed significant growth inhibition of Vero cells. This study shows that some crude extracts isolated from traditional medicinal herbs were effective HMG Co-A reductase inhibitors which might be developed into new hypocholesterolemic agents.

  13. NI-1: a novel canine mastocytoma model for studying drug resistance and IgER-dependent mast cell activation

    PubMed Central

    Hadzijusufovic, E; Peter, B; Herrmann, H; Rülicke, T; Cerny-Reiterer, S; Schuch, K; Kenner, L; Thaiwong, T; Yuzbasiyan-Gurkan, V; Pickl, W F; Willmann, M; Valent, P

    2012-01-01

    Background Advanced mast cell (MC) disorders are characterized by uncontrolled growth of neoplastic MC in various organs, mediator-related symptoms, and a poor prognosis. Kit mutations supposedly contribute to abnormal growth and drug resistance in these patients. Methods We established a novel canine mastocytoma cell line, NI-1, from a patient suffering from MC leukemia. Results NI-1 cells were found to form mastocytoma lesions in NOD/SCID IL-2Rgammanull mice and to harbor several homozygous Kit mutations, including missense mutations at nucleotides 107(C→T) and 1187(A→G), a 12-bp duplication (nucleotide 1263), and a 12-bp deletion (nucleotide 1550). NI-1 cells expressed several MC differentiation antigens, including tryptase, Kit, and a functional IgE receptor. Compared to the C2 mastocytoma cell line harboring a Kit exon 11 mutation, NI-1 cells were found to be less responsive against the Kit tyrosine kinase inhibitors (TKI) masitinib and imatinib, but were even more sensitive against proliferation-inhibitory effects of the mammalian target of rapamycin (mTOR) blocker RAD001 and PI3-kinase/mTOR blocker NVP-BEZ235. The Kit-targeting multikinase inhibitors PKC412 and dasatinib were also found to override TKI resistance in NI-1 cells, and produced growth inhibition with reasonable IC50 values (<0.1 μM). Conclusion NI-1 may serve as a useful tool to investigate IgE-dependent reactions and mechanisms of abnormal growth and drug resistance in neoplastic MC in advanced mastocytosis. PMID:22583069

  14. Method of increasing radiation sensitivity by inhibition of beta one integrin

    DOEpatents

    Park, Catherine [San Francisco, CA; Bissell, Mina J [Berkeley, CA

    2009-11-17

    A method for increasing or monitoring apoptosis in tumor cells by the co-administration of ionizing radiation and an anti-integrin antibody. Increasing apoptosis reduces tumor growth in vivo and in a cell culture model. The antibody is directed against the beta-1 integrin subunit and is inhibitory of beta-1 integrin signaling. Other molecules having an inhibitory effect on beta-1 integrin, either in signaling or in binding to its cognate extracellular receptors may also be used. The present method is particularly of interest in treatment of tumor cells associated with breast cancer, wherein radiation is currently used alone. The present method further contemplates a monoclonal antibody suitable for human administration that may further comprise a radioisotope attached thereto.

  15. Production of cloned calves using roscovitine-treated adult somatic cells as donors.

    PubMed

    Miyoshi, Kazuchika; Arat, Sezen; Stice, Steven L

    2006-01-01

    The stage of the donor cell cycle is a major factor in the success of cloning. Quiescent cells arrested in the G0/G1 phases of the cell cycle by either serum starvation or growth arrest when cultured cells reach confluence have been used as donors to produce cloned animals. Recently, we have developed a novel and effective method using roscovitine to synchronize adult bovine granulosa cells in the G0/G1 cell cycle stage. The resulting fetal and calf survival after transfer of cloned embryos was enhanced in the roscovitine-treated group compared with serum-starved controls. The methods described in this chapter outline (1) the preparation of donor cells, (2) the preparation of recipient oocytes, and (3) the production of cloned embryos. The first section involves methods for the preparation of donor cell stocks from isolated granulosa cells and the roscovitine treatment of the cells before nuclear transfer. The second section explains procedures of in vitro maturation of recipient oocytes. The last section involves methods for the production of cell-oocyte complexes, the fusion of the complexes, and the activation, in vitro culture, and transfer into recipient females of cloned embryos.

  16. Increase in gap junctional intercellular communication by high molecular weight hyaluronic acid associated with fibroblast growth factor 2 and keratinocyte growth factor production in normal human dermal fibroblasts.

    PubMed

    Park, Jeong Ung; Tsuchiya, Toshie

    2002-07-01

    The effects of different molecular weights of hyaluronic acid (HA), a major component of extracellular matrix, on gap junctional intercellular communication (GJIC) in normal human dermal fibroblasts (NHDF cells) were investigated. NHDF cells were cultured for 4 days with different molecular weights of HA and then the extent of GJIC was assessed by the scrape-loading dye transfer method, using Lucifer yellow. The area of dye transfer was greater in the dishes coated with HA than in those to which HA was added. Thus, NHDF cells cultured on surfaces coated with high molecular weight (HMW) HA (MW, 800 kDa) showed greatly enhanced GJIC. Furthermore, another aim of this study was to evaluate the effects of different molecular weights of HA on the production of FGF-2 and KGF, because both are important cytokines produced by NHDF cells. When FGF-2 and KGF cultured levels of cell extracts and media were determined by ELISA, both levels were significantly enhanced when cells were grown on plates coated with HMW HA. This finding indicated that the function of gap junction channels in NHDF cells grown on plates coated with HMW HA may promote the biosynthesis of growth factors such as FGF-2 and KGF.

  17. Changes in Cell Wall Polysaccharides Associated With Growth 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1968-01-01

    Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862

  18. Effect of amniotic fluid on the in vitro culture of human corneal endothelial cells.

    PubMed

    Feizi, Sepehr; Soheili, Zahra-Soheila; Bagheri, Abouzar; Balagholi, Sahar; Mohammadian, Azam; Rezaei-Kanavi, Mozhgan; Ahmadieh, Hamid; Samiei, Shahram; Negahban, Kambiz

    2014-05-01

    The present study was designed to evaluate the effects of human amniotic fluid (HAF) on the growth of human corneal endothelial cells (HCECs) and to establish an in vitro method for expanding HCECs. HCECs were cultured in DMEM-F12 supplemented with 20% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using either FBS- or HAF-containing media. Cell proliferation and cell death ELISA assays were performed to determine the effect of HAF on cell growth and viability. The identity of the cells cultured in 20% HAF was determined using immunocytochemistry (ICC) and real-time reverse transcription polymerase chain reaction (RT-PCR) techniques to evaluate the expression of factors that are characteristic of HCECs, including Ki-67, Vimentin, Na+/K+-ATPase and ZO-1. HCEC primary cultures were successfully established using 20% HAF-containing medium, and these cultures demonstrated rapid cell proliferation according to the cell proliferation and death ELISA assay results. The ICC and real time RT-PCR results indicated that there was a higher expression of Na+/K+-ATPase and ZO-1 in the 20% HAF cell cultures compared with the control (20% FBS) (P < 0.05). The 20% HAF-containing medium exhibited a greater stimulatory effect on HCEC growth and could represent a potential enriched supplement for HCEC regeneration studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  20. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

    PubMed Central

    Schilz, Jodi R.; Reddy, K. J.; Nair, Sreejayan; Johnson, Thomas E.; Tjalkens, Ronald B.; Krueger, Kem P.; Clark, Suzanne

    2015-01-01

    In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters. PMID:26132311

  1. Responses of plant seedlings to hypergravity: cellular and molecular aspects

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.

    Hypergravity produced by centrifugation has been used to analyze the responses of plant seedlings to gravity stimulus. Elongation growth of stem organs is suppressed by hypergravity, which can be recognized as a way for plants to resist gravitational force. The mechanisms inducing growth suppression under hypergravity conditions were analyzed at cellular and molecular levels. When growth was suppressed by hypergravity, a decrease in the cell wall extensibility was brought about in various plants. Hypergravity also induced a cell wall thickening and an increase in the molecular mass of the certain hemicellulosic polysaccharides. Both a decrease in the activities hydrolyzing such polysaccharides and an increase in the apoplast pH were involved in such changes in the cell wall constituents. Thus, the cell wall metabolism is greatly modified under hypergravity conditions, which causes a decrease in the cell wall extensibility, thereby inhibiting elongation growth in stem organs. On the other hand, to identify genes involved in hypergravity-induced growth suppression, changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by differential display method. Sixty-two genes were expressed differentially: expression levels of 39 genes increased, whereas those of 23 genes decreased under hypergravity conditions. The expression of these genes was further analyzed using RT-PCR. One of genes upregulated by hypergravity encoded hydroxymethylglutaryl-CoA reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of hormones such as gibberellic acid and abscisic acid. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR activity, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water. These cellular and molecular changes appear to be involved in a series of events leading to growth suppression of stem organs under hypergravity conditions.

  2. Odontogenic ameloblast-associated protein (ODAM) inhibits growth and migration of human melanoma cells and elicits PTEN elevation and inactivation of PI3K/AKT signaling

    PubMed Central

    2013-01-01

    Background The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility, and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma cell lines. Methods The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition, ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival in many neoplasms. Results ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore, AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN (phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation. Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM expression had no effect in PTEN-deficient BT-549 breast cancer cells. Conclusions The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior. PMID:23648148

  3. In situ electrochemical assessment of cytotoxicity of chlorophenols in MCF-7 and HeLa cells.

    PubMed

    Qin, Hongwei; Liu, Jiguang; Zhang, Zeshi; Li, Jinlian; Gao, Guanggang; Yang, Yuxin; Yuan, Xing; Wu, Dongmei

    2014-10-01

    An in situ electrochemical method was used to assess the cytotoxicity of chlorophenols using human breast cancer (MCF-7) and cervical carcinoma (HeLa) cells as models. On treatment with different chlorophenols, the electrochemical responses of the selected cells, resulting from the oxidation of guanine and xanthine in the cytoplasm, indicated the cell viability. In addition, the in situ in vitro electrochemical method was further compared with the traditional MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Although similar cytotoxicity data were obtained from both methods, the effective concentrations of chlorophenols that inhibited 50% cell growth (EC50 values) from the electrochemical method were only slightly lower than those from the MTT assay. These results indicate that the in situ in vitro electrochemical method paves a simple, rapid, strongly responsive, and label-free way to the cytotoxicity assessment of different chlorophenol pollutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Polyprenylated polycyclic acylphloroglucinol: Angiogenesis inhibitor from Garcinia multiflora.

    PubMed

    Cheng, Lin-Yang; Chen, Chun-Lin; Kuo, Yueh-Hsiung; Chang, Tsung-Hsien; Lin, I-Wei; Wang, Shih-Wei; Chung, Mei-Ing; Chen, Jih-Jung

    2018-06-01

    A new polyprenylated polycyclic acylphloroglucinol, garcimultiflorone K (1), has been isolated from the stems of Garcinia multiflora, together with two known compounds, garcimultiflorone A (2) and garcimultiflorone B (3). The structure of new compound 1 was determined through spectroscopic methods including 1D and 2D NMR and MS analyses. The anti-angiogenic and anti-cancer effects of compounds 1-3 were evaluated in human endothelial progenitor cells (EPCs) and cancer cells. Of these, garcimultiflorone K (1) displayed the most potent anti-angiogenic property by suppressing cell growth and tube formation of EPCs. Compound 1 also exhibited growth-inhibitory activities against human hepatocellular carcinoma cell line SK-Hep-1 and hormone refractory prostate cancer cell line PC-3 with GI 50 values of 4.3 ± 1.6 and 6.6 ± 0.4 μM, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Characterization of Uterine Derived Growth Inhibitor (UDGI): A Novel Growth Inhibitor of Estrogen Receptor Negative Breast Cancer Cells

    DTIC Science & Technology

    2000-06-01

    1988. 23. Rawlings, N. D. and Barrett, A. J. Families of serine peptidases . Methods Enzymol., 244: 19-61, 1994. 24. Bork, P. and Beckmann, G. The CUB...suppression of IGF-1 gene expression and serum level by a somatostatin analogue. Biochem. Biophys. Res. Commun. 203:254-259 38. Huynh, H., Tetenes, E

  6. Cell division and endoreduplication: doubtful engines of vegetative growth.

    PubMed

    John, Peter C L; Qi, Ruhu

    2008-03-01

    Currently, there is little information to indicate whether plant cell division and development is the collective effect of individual cell programming (cell-based) or is determined by organ-wide growth (organismal). Modulation of cell division does not confirm cell autonomous programming of cell expansion; instead, final cell size seems to be determined by the balance between cells formed and subsequent tissue growth. Control of growth in regions of the plant therefore has great importance in determining cell, organ and plant development. Here, we question the view that formation of new cells and their programmed expansion is the driving force of growth. We believe there is evidence that division does not drive, but requires, cell growth and a similar requirement for growth is detected in the modified cycle termed endoreduplication.

  7. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  8. Detecting Cancer Quickly and Accurately

    NASA Astrophysics Data System (ADS)

    Gourley, Paul; McDonald, Anthony; Hendricks, Judy; Copeland, Guild; Hunter, John; Akhil, Ohmar; Capps, Heather; Curry, Marc; Skirboll, Steve

    2000-03-01

    We present a new technique for high throughput screening of tumor cells in a sensitive nanodevice that has the potential to quickly identify a cell population that has begun the rapid protein synthesis and mitosis characteristic of cancer cell proliferation. Currently, pathologists rely on microscopic examination of cell morphology using century-old staining methods that are labor-intensive, time-consuming and frequently in error. New micro-analytical methods for automated, real time screening without chemical modification are critically needed to advance pathology and improve diagnoses. We have teamed scientists with physicians to create a microlaser biochip (based upon our R&D award winning bio-laser concept)1 which evaluates tumor cells by quantifying their growth kinetics. The key new discovery was demonstrating that the lasing spectra are sensitive to the biomolecular mass in the cell, which changes the speed of light in the laser microcavity. Initial results with normal and cancerous human brain cells show that only a few hundred cells -- the equivalent of a billionth of a liter -- are required to detect abnormal growth. The ability to detect cancer in such a minute tissue sample is crucial for resecting a tumor margin or grading highly localized tumor malignancy. 1. P. L. Gourley, NanoLasers, Scientific American, March 1998, pp. 56-61. This work supported under DOE contract DE-AC04-94AL85000 and the Office of Basic Energy Sciences.

  9. A phenotypic screening approach to identify anticancer compounds derived from marine fungi.

    PubMed

    Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F

    2014-04-01

    This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.

  10. Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model.

    PubMed

    Chi, Chau-Hwa; Wang, Yu-Shan; Lai, Yen-Shuae; Chi, Kwan-Hwa

    2003-01-01

    We evaluated the effect of in vivo electrogene therapy (EGT), a newly-developed gene transfer method using electroporation on the induction of anti-cancer immunity. The in vivo EGT was carried out by direct injection of plasmid DNAs encoding mouse interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in a subcutaneous murine hepatoma model of 1MEA.7R.1 cells. Six electric pulses were generated in situ from a square-wave electroporator fitted with a circular, six-needle electrode array. 1MEA.7R1 cells in vitro were modified to secret IL-2 (1MEA.7R.1/IL-2 cells). The 1MEA.7R.1/IL-2 cells had a similar cell doubling-time as their parent cells but showed a much slower growth rate on Balb/C mice. One, or 3 rounds of single gene EGT with IL-2 gene showed a dose-responsive effect of growth retardation. Co-administration of 3 rounds of IL-2/GM-CSF double genes EGT had a stronger growth inhibition effect than 3 rounds of IL-2 single gene EGT. Three rounds of IL-2/GM-CSF EGT rendered the tumor to a growth rate of stably transfected 1MEA.7R.1/IL-2 cells. Seven rounds of IL-2/GM-CSF EGT markedly inhibited the tumor growth. Reverse transciptase-polymerase chain reaction confirmed the expression of IL-2, GM-CSF and interferon-gamma within treated tumors. Systemic inhibitory effects can be demonstrated from tumor-re-challenged experiments on mice which received 3 rounds of double-gene EGT. The T cell proliferation assay revealed an increased T cell proliferation in double-gene EGT-treated mice. This experiment showed that partial systemic immunity can be provoked by IL-2/GM-CSF double-gene EGT. These findings suggest that our immuno-gene therapy protocol has the potential for future clinical applications.

  11. New anti-cancer chemicals Ertredin and its derivatives, regulate oxidative phosphorylation and glycolysis and suppress sphere formation in vitro and tumor growth in EGFRvIII-transformed cells.

    PubMed

    Atsumi, Sonoko; Nosaka, Chisato; Adachi, Hayamitsu; Kimura, Tomoyuki; Kobayashi, Yoshihiko; Takada, Hisashi; Watanabe, Takumi; Ohba, Shun-Ichi; Inoue, Hiroyuki; Kawada, Manabu; Shibasaki, Masakatsu; Shibuya, Masabumi

    2016-07-19

    EGFRvIII is a mutant form of the epidermal growth factor receptor gene (EGFR) that lacks exons 2-7. The resulting protein does not bind to ligands and is constitutively activated. The expression of EGFRvIII is likely confined to various types of cancer, particularly glioblastomas. Although an anti-EGFRvIII vaccine is of great interest, low-molecular-weight substances are needed to obtain better therapeutic efficacy. Thus, the purpose of this study is to identify low molecular weight substances that can suppress EGFRvIII-dependent transformation. We constructed a new throughput screening system and searched for substances that decreased cell survival of NIH3T3/EGFRvIII spheres under 3-dimensional (3D)-culture conditions, but retained normal NIH3T3 cell growth under 2D-culture conditions. In vivo activity was examined using a mouse transplantation model, and derivatives were chemically synthesized. Functional characterization of the candidate molecules was investigated using an EGFR kinase assay, immunoprecipitation, western blotting, microarray analysis, quantitative polymerase chain reaction analysis, and measurement of lactate and ATP synthesis. In the course of screening 30,000 substances, a reagent, "Ertredin" was found to inhibit anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII cDNA. Ertredin also inhibited sphere formation in cells expressing wild-type EGFR in the presence of EGF. However, it did not affect anchorage-dependent 2D growth of parental NIH3T3 cells. The 3D-growth-inhibitory activity of some derivatives, including those with new structures, was similar to Ertredin. Furthermore, we demonstrated that Ertredin suppressed tumor growth in an allograft transplantation mouse model injected with EGFRvIII- or wild-type EGFR-expressing cells; a clear toxicity to host animals was not observed. Functional characterization of Ertredin in cells expressing EGFRvIII indicated that it stimulated EGFRvIII ubiquitination, suppressed both oxidative phosphorylation and glycolysis under 3D conditions, and promoted cell apoptosis. We developed a high throughput screening method based on anchorage-independent sphere formation induced by EGFRvIII-dependent transformation. In the course of screening, we identified Ertredin, which inhibited anchorage-independent 3D growth and tumor formation in nude mice. Functional analysis suggests that Ertredin suppresses both mitochondrial oxidative phosphorylation and cytosolic glycolysis in addition to promoting EGFRvIII degradation, and stimulates apoptosis in sphere-forming, EGFRvIII-overexpressing cells.

  12. Rapid Growth of Uropathogenic Escherichia coli during Human Urinary Tract Infection.

    PubMed

    Forsyth, Valerie S; Armbruster, Chelsie E; Smith, Sara N; Pirani, Ali; Springman, A Cody; Walters, Matthew S; Nielubowicz, Greta R; Himpsl, Stephanie D; Snitkin, Evan S; Mobley, Harry L T

    2018-03-06

    Uropathogenic Escherichia coli (UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenic E. coli (ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than other E. coli isolates and survive in that niche. To date, there has not been a reliable method available to measure their growth rate in vivo Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robust in vivo , matching or exceeding in vitro growth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth rates in vivo at 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR, E. coli in urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth rates in vivo and resistance to the innate immune response appear to be critical phenotypes of UPEC strains. IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized by E. coli to colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measure in vivo growth rates of other bacterial pathogens during host colonization. Copyright © 2018 Forsyth et al.

  13. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications.

    PubMed

    Gabrielyan, Nare; Saranti, Konstantina; Manjunatha, Krishna Nama; Paul, Shashi

    2013-02-15

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid-solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used.The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices.

  14. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications

    PubMed Central

    2013-01-01

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid–solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used. The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices. PMID:23413969

  15. Comparison of point-of-care methods for preparation of platelet concentrate (platelet-rich plasma).

    PubMed

    Weibrich, Gernot; Kleis, Wilfried K G; Streckbein, Philipp; Moergel, Maximilian; Hitzler, Walter E; Hafner, Gerd

    2012-01-01

    This study analyzed the concentrations of platelets and growth factors in platelet-rich plasma (PRP), which are likely to depend on the method used for its production. The cellular composition and growth factor content of platelet concentrates (platelet-rich plasma) produced by six different procedures were quantitatively analyzed and compared. Platelet and leukocyte counts were determined on an automatic cell counter, and analysis of growth factors was performed using enzyme-linked immunosorbent assay. The principal differences between the analyzed PRP production methods (blood bank method of intermittent flow centrifuge system/platelet apheresis and by the five point-of-care methods) and the resulting platelet concentrates were evaluated with regard to resulting platelet, leukocyte, and growth factor levels. The platelet counts in both whole blood and PRP were generally higher in women than in men; no differences were observed with regard to age. Statistical analysis of platelet-derived growth factor AB (PDGF-AB) and transforming growth factor β1 (TGF-β1) showed no differences with regard to age or gender. Platelet counts and TGF-β1 concentration correlated closely, as did platelet counts and PDGF-AB levels. There were only rare correlations between leukocyte counts and PDGF-AB levels, but comparison of leukocyte counts and PDGF-AB levels demonstrated certain parallel tendencies. TGF-β1 levels derive in substantial part from platelets and emphasize the role of leukocytes, in addition to that of platelets, as a source of growth factors in PRP. All methods of producing PRP showed high variability in platelet counts and growth factor levels. The highest growth factor levels were found in the PRP prepared using the Platelet Concentrate Collection System manufactured by Biomet 3i.

  16. Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from tomato pollen for "omics" analysis.

    PubMed

    Lu, Yunlong; Wei, Liqin; Wang, Tai

    2015-01-01

    The development of sperm cells (SCs) from microspores involves a set of finely regulated molecular and cellular events and the coordination of these events. The mechanisms underlying these events and their interconnections remain a major challenge. Systems analysis of genome-wide molecular networks and functional modules with high-throughput "omics" approaches is crucial for understanding the mechanisms; however, this study is hindered because of the difficulty in isolating a large amount of cells of different types, especially generative cells (GCs), from the pollen. Here, we optimized the conditions of tomato pollen germination and pollen tube growth to allow for long-term growth of pollen tubes in vitro with SCs generated in the tube. Using this culture system, we developed methods for isolating GCs, SCs and vegetative cell nuclei (VN) from just-germinated tomato pollen grains and growing pollen tubes and their purification by Percoll density gradient centrifugation. The purity and viability of isolated GCs and SCs were confirmed by microscopy examination and fluorescein diacetate staining, respectively, and the integrity of VN was confirmed by propidium iodide staining. We could obtain about 1.5 million GCs and 2.0 million SCs each from 180 mg initiated pollen grains, and 10 million VN from 270 mg initiated pollen grains germinated in vitro in each experiment. These methods provide the necessary preconditions for systematic biology studies of SC development and differentiation in higher plants.

  17. Detection of bacteria in platelet concentrates prepared from spiked single donations using cultural and molecular genetic methods.

    PubMed

    Störmer, M; Cassens, U; Kleesiek, K; Dreier, J

    2007-02-01

    Bacteria show differences in their growth kinetics depending on the type of blood component. On to storage at 22 degrees C, platelet concentrates (PCs) seem to be more prone to bacterial multiplication than red cell concentrates. Knowledge of the potential for bacterial proliferation in blood components, which are stored at a range of temperatures, is essential before considering implementation of a detection strategy. The efficacy of bacterial detection was determined, using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), following bacterial growth in blood components obtained from a deliberately contaminated whole-blood (WB) unit. Cultivation was used as the reference method. WB was spiked with 2 colony-forming units mL(-1)Staphylococcus epidermidis or Klebsiella pneumoniae, kept for 15 h at room temperature and component preparation was processed. Samples were drawn, at intervals throughout the whole separation process, from each blood component. Nucleic acids were extracted using an automated high-volume extraction method. The 15-h storage revealed an insignificant increase in bacterial titre. No bacterial growth was detected in red blood cell or plasma units. K. pneumoniae showed rapid growth in the pooled PC and could be detected immediately after preparation using RT-PCR. S. epidermidis grew slowly and was detected 24 h after separation. These experiments show that sampling is indicative at 24 h after preparation of PCs at the earliest to minimize the sampling error.

  18. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  19. Effect of centrifugation time on growth factor and MMP release of an experimental platelet-rich fibrin-type product.

    PubMed

    Eren, Gülnihal; Gürkan, Ali; Atmaca, Harika; Dönmez, Ayhan; Atilla, Gül

    2016-07-01

    Platelet-rich fibrin (PRF) has a controlled release of growth factors due to the fibrin matrix structure. Different centrifugation protocols were suggested for PRF preparation. Since the derivation method of PRF can alter its contents, in the present study it is aimed to investigate the cell contents and transforming growth factor beta-1 (TGF-β1), platelet-derived growth factor (PDGF-AB), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and-8 release from experimental PRF-type membranes obtained with different centrifugation times at 400 gravity. Three blood samples were collected from 20 healthy non-smoker volunteers. One tube was used for whole blood analyses. The other two tubes were centrifuged at 400 g for 10 minutes (group A) or 12 minutes (group B). Each experimental PRF-type membrane was placed in Dulbecco's Modified Eagle's Medium (DMEM)and at 1, 24 and 72 hours, TGF-β1, PDGF-AB, VEGF, MMP-1 and -8 release amounts were analysed by enzyme-linked immunosorbent assay (ELISA). The blood cell count of membranes was determined by subtracting plasma supernatant and red blood cell (RBC) mixture from the whole blood cell counts. At 72 hours, the VEGF level of group B was statistically higher than that of group A (p = 0.040). The centrifugation time was not found to influence the release of other growth factors, enzymes and cell counts. Within the limits of the present study, it might be suggested that centrifugation time at a constant gravity has a significant effect on the VEGF levels released from experimental PRF-type membrane. It can be concluded that due to the importance of VEGF in the tissue healing process, membranes obtained at 12-minute centrifugation time may show a superior potential in wound healing.

  20. Estradiol and corticosterone stimulate the proliferation of a GH cell line, MtT/S: Proliferation of growth hormone cells.

    PubMed

    Nogami, Haruo; Hiraoka, Yoshiki; Aiso, Sadakazu

    2016-08-01

    Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH). Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum. The relative cell density after culture was estimated by the Cell Titer-Glo Luminescent Cell Viability Assay System, and the proliferation rate was determined by the BrdU incorporation method. The mRNA levels were determined by real-time PCR. Estradiol and the specific agonist for both estrogen receptor (ER) α and ERβ stimulated MtT/S growth at a dose dependent manner. The membrane impermeable estrogen, 17β-estradiol-bovine serum albumin conjugate also stimulated the MtT/S proliferation. The effects of all estrogens were inhibited by an estrogen receptor antagonist, ICI182780. Corticosterone stimulated the proliferation of MtT/S cells at doses lower than 10nM without stimulating GH gene transcription, whereas it did not change the proliferation rate at 1μM. The effects of corticosterone were inhibited by glucocorticoid receptor inhibitor, RU486, but not by the mineralocorticoid receptor antagonist, spironolactone. Both estrogens and glucocorticoids were found to stimulate the proliferation of MtT/S, increasing the mRNA expression of cyclins D1, D3, and E. The results suggest that estrogens and glucocorticoids may be involved in the mechanisms responsible for the proliferation of GH cells in the course of pituitary development, to maintain the population of GH cells in the adult pituitary gland, and also in the promotion of GH cell tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top