77 FR 63264 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... manufacturer cannot be identified, do a high frequency eddy current (HFEC) inspection for cracking of the... a high frequency eddy current (HFEC) method and, depending on findings, accomplishment of the... inspection of the rods to determine the manufacturer; and for affected parts, an inspection for any cracking...
Glanz, Karen; Keenan, Brendan T.; Branas, Charles C.
2017-01-01
Objectives: We explored how restaurant inspection frequency and restaurant neighborhood sociodemographic characteristics are related to food safety inspection outcomes in chain and nonchain restaurants to better understand external factors that may influence inspection outcomes. Methods: We categorized the results of restaurant inspections in Philadelphia, Pennsylvania, in 2013 and 2014 by restaurant type (chain or nonchain), inspection frequency (1, 2, or ≥3 per 2-year study period), and violation type (total number of violations, foodborne-illness risk factor violation, or good retail practice violation). We collected 2013 US Census block group sociodemographic data for each restaurant neighborhood. We used nested mixed-effects regression analyses to determine the association between restaurant inspection frequency and inspection violations, as well as between inspection violations and restaurant neighborhood sociodemographic variables, stratified by restaurant type. Results: Compared with nonchain restaurants, chain restaurants had significantly fewer total violations per inspection (mean [SD]: 6.5 [4.6] vs 9.6 [6.8] violations, P < .001). For nonchain restaurants, an increase from 1 to 2 inspections resulted in 0.8 (P < .001) fewer mean violations per inspection, and an increase from 1 to ≥3 inspections resulted in 1.6 (P < .001) fewer mean violations; this association was not seen in chain restaurants. For nonchain restaurants, a higher proportion of black residents in a restaurant neighborhood was associated with 0.6 (P < .001) fewer mean foodborne-illness risk factor violations but 1.0 (P < .001) more mean good retail practice violations per inspection. Conclusions: A risk-based stratified approach to restaurant food safety inspection frequency, based on whether or not restaurants are part of chains, could reduce the frequency of violations, particularly in restaurants with the most violations. PMID:28060568
Resonant frequency method for bearing ball inspection
Khuri-Yakub, B. T.; Hsieh, Chung-Kao
1993-01-01
The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.
Resonant frequency method for bearing ball inspection
Khuri-Yakub, B.T.; Chungkao Hsieh.
1993-11-02
The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.
30 CFR 250.516 - Blowout preventer system tests, inspections, and maintenance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inspection, whichever is longer. (2) You must visually inspect your BOP system and marine riser at least once.... The District Manager may approve alternate methods and frequencies to inspect a marine riser. (h) BOP... drills, and inspections of the BOP system, system components, and marine riser in the driller's report...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...
Automatically Inspecting Thin Ceramics For Pinholes
NASA Technical Reports Server (NTRS)
Honaker, James R.
1988-01-01
Proposed apparatus for inspecting prefired ceramic materials detects minute flaws that might escape ordinary visual inspections. Method detects flaws and marks locations. Intended for such thin ceramic parts as insulation in capacitors and some radio-frequency filters.
Defect inspection using a time-domain mode decomposition technique
NASA Astrophysics Data System (ADS)
Zhu, Jinlong; Goddard, Lynford L.
2018-03-01
In this paper, we propose a technique called time-varying frequency scanning (TVFS) to meet the challenges in killer defect inspection. The proposed technique enables the dynamic monitoring of defects by checking the hopping in the instantaneous frequency data and the classification of defect types by comparing the difference in frequencies. The TVFS technique utilizes the bidimensional empirical mode decomposition (BEMD) method to separate the defect information from the sea of system errors. This significantly improve the signal-to-noise ratio (SNR) and moreover, it potentially enables reference-free defect inspection.
30 CFR 250.1708 - What are my BOP inspection and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... inspect your BOP system and marine riser at least once every 3 days if weather and sea conditions permit... alternate methods and frequencies to inspect a marine riser. (b) BOP maintenance. You must maintain your BOP...
30 CFR 250.1708 - What are my BOP inspection and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... inspect your BOP system and marine riser at least once every 3 days if weather and sea conditions permit... alternate methods and frequencies to inspect a marine riser. (b) BOP maintenance. You must maintain your BOP...
30 CFR 250.517 - Blowout preventer system tests, inspections, and maintenance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... on a daily basis. You must visually inspect your subsea BOP system and marine riser at least once... equipment. The BSEE District Manager may approve alternate methods and frequencies to inspect a marine riser..., actuations, crew drills, and inspections of the BOP system, system components, and marine riser in the...
30 CFR 250.517 - Blowout preventer system tests, inspections, and maintenance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... on a daily basis. You must visually inspect your subsea BOP system and marine riser at least once... equipment. The BSEE District Manager may approve alternate methods and frequencies to inspect a marine riser..., actuations, crew drills, and inspections of the BOP system, system components, and marine riser in the...
Inspection system calibration methods
Deason, Vance A.; Telschow, Kenneth L.
2004-12-28
An inspection system calibration method includes producing two sideband signals of a first wavefront; interfering the two sideband signals in a photorefractive material, producing an output signal therefrom having a frequency and a magnitude; and producing a phase modulated operational signal having a frequency different from the output signal frequency, a magnitude, and a phase modulation amplitude. The method includes determining a ratio of the operational signal magnitude to the output signal magnitude, determining a ratio of a 1st order Bessel function of the operational signal phase modulation amplitude to a 0th order Bessel function of the operational signal phase modulation amplitude, and comparing the magnitude ratio to the Bessel function ratio.
Mode perturbation method for optimal guided wave mode and frequency selection.
Philtron, J H; Rose, J L
2014-09-01
With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. Copyright © 2014 Elsevier B.V. All rights reserved.
Millimeter Wave Holographical Inspection of Honeycomb Composites
NASA Technical Reports Server (NTRS)
Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.
2007-01-01
Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.
Millimeter Wave Holographical Inspection of Honeycomb Composites
NASA Astrophysics Data System (ADS)
Case, J. T.; Kharkovsky, S.; Zoughi, R.; Steffes, G.; Hepburn, F. L.
2008-02-01
Multi-layered composite structures manufactured with honeycomb, foam, or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites, standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as isband, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz-300 GHz with corresponding wavelengths of 10-1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.
75 FR 42643 - National Tunnel Inspection Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... inspectors; inspection frequencies; and a National Tunnel Inventory (NTI). DATES: Comments must be received... elements and specify an appropriate inspection frequency. Additionally, the DOT Inspector General (IG), in... with respect to how frequently tunnels are inspected. The frequency of tunnel inspections varies from...
Acoustic microscope surface inspection system and method
Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.
1991-01-01
An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.
Method and apparatus for inspecting an EUV mask blank
Goldberg, Kenneth A.
2005-11-08
An apparatus and method for at-wavelength EUV mask-blank characterization for inspection of moderate and low spatial frequency coating uniformity using a synchrotron or other source of EUV light. The apparatus provides for rapid, non-destruction, non-contact, at-wavelength qualification of large mask areas, and can be self-calibrating or be calibrated to well-characterized reference samples. It can further check for spatial variation of mask reflectivity or for global differences among masks. The apparatus and method is particularly suited for inspection of coating uniformity and quality and can detect defects in the order of 50 .mu.m and above.
78 FR 40050 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... inspections or high frequency eddy current inspections for cracks of the blended area of the fuselage skin... repetitive external detailed inspections or high frequency eddy current inspections for cracks of the blended..., 2009) is August 3, 2009. (h) Repetitive High Frequency Eddy Current (HFEC) Inspections For airplanes on...
Carbon Fiber TOW Angle Determination Using Microwave Reflectometry
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.
Nagy, Peter B; Simonetti, Francesco; Instanes, Geir
2014-09-01
Recent improvements in tomographic reconstruction techniques generated a renewed interest in short-range ultrasonic guided wave inspection for real-time monitoring of internal corrosion and erosion in pipes and other plate-like structures. Emerging evidence suggests that in most cases the fundamental asymmetric A0 mode holds a distinct advantage over the earlier market leader fundamental symmetric S0 mode. Most existing A0 mode inspections operate at relatively low inspection frequencies where the mode is highly dispersive therefore very sensitive to variations in wall thickness. This paper examines the potential advantages of increasing the inspection frequency to the so-called constant group velocity (CGV) point where the group velocity remains essentially constant over a wide range of wall thickness variation, but the phase velocity is still dispersive enough to allow accurate wall thickness assessment from phase angle measurements. This paper shows that in the CGV region the crucial issue of temperature correction becomes especially simple, which is particularly beneficial when higher-order helical modes are also exploited for tomography. One disadvantage of working at such relatively high inspection frequency is that, as the slower A0 mode becomes faster and less dispersive, the competing faster S0 mode becomes slower and more dispersive. At higher inspection frequencies these modes cannot be separated any longer based on their vibration polarization only, which is mostly tangential for the S0 mode while mostly normal for the A0 at low frequencies, as the two modes become more similar as the frequency increases. Therefore, we propose a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes. Copyright © 2014 Elsevier B.V. All rights reserved.
Acoustic microscope surface inspection system and method
Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.
1991-02-26
An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.
76 FR 38072 - Airworthiness Directives; The Boeing Company Model 777 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... above. This proposed AD would require repetitive detailed inspection and high frequency eddy current... high frequency eddy current (HFEC) inspection for cracks in the WCS web pockets of spanwise beams... = 160 frequency eddy current inspection per hour = $4,250 inspection cycle. airplanes x $4,250 of...
Leinwand, Sarah E; Glanz, Karen; Keenan, Brendan T; Branas, Charles C
We explored how restaurant inspection frequency and restaurant neighborhood sociodemographic characteristics are related to food safety inspection outcomes in chain and nonchain restaurants to better understand external factors that may influence inspection outcomes. We categorized the results of restaurant inspections in Philadelphia, Pennsylvania, in 2013 and 2014 by restaurant type (chain or nonchain), inspection frequency (1, 2, or ≥3 per 2-year study period), and violation type (total number of violations, foodborne-illness risk factor violation, or good retail practice violation). We collected 2013 US Census block group sociodemographic data for each restaurant neighborhood. We used nested mixed-effects regression analyses to determine the association between restaurant inspection frequency and inspection violations, as well as between inspection violations and restaurant neighborhood sociodemographic variables, stratified by restaurant type. Compared with nonchain restaurants, chain restaurants had significantly fewer total violations per inspection (mean [SD]: 6.5 [4.6] vs 9.6 [6.8] violations, P < .001). For nonchain restaurants, an increase from 1 to 2 inspections resulted in 0.8 ( P < .001) fewer mean violations per inspection, and an increase from 1 to ≥3 inspections resulted in 1.6 ( P < .001) fewer mean violations; this association was not seen in chain restaurants. For nonchain restaurants, a higher proportion of black residents in a restaurant neighborhood was associated with 0.6 ( P < .001) fewer mean foodborne-illness risk factor violations but 1.0 ( P < .001) more mean good retail practice violations per inspection. A risk-based stratified approach to restaurant food safety inspection frequency, based on whether or not restaurants are part of chains, could reduce the frequency of violations, particularly in restaurants with the most violations.
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.
Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming
2017-07-01
To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
Design and development of high frequency matrix phased-array ultrasonic probes
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Spencer, Roger L.
2012-05-01
High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.
Chu, Catherine. J.; Chan, Arthur; Song, Dan; Staley, Kevin J.; Stufflebeam, Steven M.; Kramer, Mark A.
2017-01-01
Summary Background High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. New Method The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. Results We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. Comparison with Existing Method The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Conclusions Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. PMID:27988323
78 FR 15281 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... horizontal stabilizer. This AD requires repetitive high frequency eddy current (HFEC) inspections for... repetitive high frequency eddy current (HFEC) inspections for cracking of the left and right rib hinge... high frequency eddy current (HFEC) inspection for cracking of the left and right rib hinge bearing lugs...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
78 FR 27001 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... one-time mid- frequency eddy current (MFEC) inspection, a low-frequency eddy current (LFEC) inspection... new AD instead requires repetitive external eddy current inspections for cracking of certain fuselage crown lap joints, and corrective actions if necessary; internal eddy current and detailed inspections...
A study on the prenatal zone of ultrasonic guided waves in plates
NASA Astrophysics Data System (ADS)
Thomas, Tibin; Balasubramaniam, Krishnan
2017-02-01
Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.
78 FR 4042 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... provides an option for a high frequency eddy current inspection for cracking of the critical fastener holes... for a high frequency eddy current inspection for cracking of the critical fastener holes, and repair..., August 9, 2007)), do a high frequency eddy current (HFEC) inspection for cracking of the four critical...
77 FR 5724 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... proposed AD would require repetitive low frequency eddy current inspections of the forward fuselage butt... repetitive [low frequency eddy current] inspections of the forward fuselage butt joints for cracks and, when... effective date of this AD, whichever occurs later, do a low frequency eddy current inspection of the forward...
Gadomski, Anne M; Vargha, Marybeth; Tallman, Nancy; Scribani, Melissa B; Kelsey, Timothy W
2016-03-01
OSHA inspection of dairy farms began in July 1, 2014 in New York State. As of September 2014, a total of eight farms were randomly selected for inspection. This case study addresses how dairy farm managers prepared for these inspections, and identifies farm level costs preparing for inspection and/or being inspected. Four farms that were OSHA inspected and 12 farms that were not inspected were included in this mixed method evaluation using a multimodal (telephone, email, or mail) survey. Descriptive analysis was carried out using frequencies, proportions, means, and medians. Overall, the impact of OSHA inspections was positive, leading to improved safety management and physical changes on the farm and worker trainings, although the farmers' perspectives about OSHA inspection were mixed. The cost of compliance was low relative to estimated overall production costs. Clarifications and engineering solutions for specific dairy farm hazard exposures are needed to facilitate compliance with OSHA regulations. © 2015 Wiley Periodicals, Inc.
Chu, Catherine J; Chan, Arthur; Song, Dan; Staley, Kevin J; Stufflebeam, Steven M; Kramer, Mark A
2017-02-01
High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. Copyright © 2016 Elsevier B.V. All rights reserved.
78 FR 60807 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... frequency eddy current (HFEC) inspection of the bear strap; External detailed and HFEC inspections of the... 737-53A1329, dated June 4, 2013, specifies contacting the manufacturer for inspection instructions... an internal detailed inspection of the skin assembly and bear strap, an internal high frequency eddy...
40 CFR 264.15 - General inspection requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., leaking fitting, eroding dike, etc.). (4) The frequency of inspection may vary for the items on the schedule. However, the frequency should be based on the rate of deterioration of the equipment and the.... At a minimum, the inspection schedule must include the items and frequencies called for in §§ 264.174...
78 FR 73457 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... frequency eddy current inspections for cracking of the tension tie at BS 760 or 780, as applicable, and do... ties, including doing an open-hole high frequency eddy current inspection for cracks, as applicable...) and paragraph (i) of this AD, but not as AMOCs for the high frequency eddy current inspections...
NASA Astrophysics Data System (ADS)
Huan, Qiang; Miao, Hongchen; Li, Faxin
2018-02-01
Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... if necessary. This proposed AD would also add an option for the high frequency eddy current... also adds an optional ultrasonic inspection for the high frequency eddy current inspection to detect... proposed AD would also add an option for the high frequency eddy current inspection for cracking of the...
77 FR 21395 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... would require performing a low frequency eddy current inspection for cracks of the lap joint of the rear...-frequency eddy current inspection of the lap joint for cracks and, depending on findings, repair of the lap... AD: Do a low frequency eddy current (LFEC) inspection for cracks of the lap joint of the rear...
Demodulation circuit for AC motor current spectral analysis
Hendrix, Donald E.; Smith, Stephen F.
1990-12-18
A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... airplanes. This AD requires repetitive detailed and high frequency eddy current inspections of the forward... high frequency eddy current (HFEC) inspections of the forward and aft sides of the strut front spar... date of this AD, whichever occurs later: Perform a detailed inspection and a high frequency eddy...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
NASA Astrophysics Data System (ADS)
Luk, B. L.; Liu, K. P.; Tong, F.; Man, K. F.
2010-05-01
The impact-acoustics method utilizes different information contained in the acoustic signals generated by tapping a structure with a small metal object. It offers a convenient and cost-efficient way to inspect the tile-wall bonding integrity. However, the existence of the surface irregularities will cause abnormal multiple bounces in the practical inspection implementations. The spectral characteristics from those bounces can easily be confused with the signals obtained from different bonding qualities. As a result, it will deteriorate the classic feature-based classification methods based on frequency domain. Another crucial difficulty posed by the implementation is the additive noise existing in the practical environments that may also cause feature mismatch and false judgment. In order to solve this problem, the work described in this paper aims to develop a robust inspection method that applies model-based strategy, and utilizes the wavelet domain features with hidden Markov modeling. It derives a bonding integrity recognition approach with enhanced immunity to surface roughness as well as the environmental noise. With the help of the specially designed artificial sample slabs, experiments have been carried out with impact acoustic signals contaminated by real environmental noises acquired under practical inspection background. The results are compared with those using classic method to demonstrate the effectiveness of the proposed method.
On-line welding quality inspection system for steel pipe based on machine vision
NASA Astrophysics Data System (ADS)
Yang, Yang
2017-05-01
In recent years, high frequency welding has been widely used in production because of its advantages of simplicity, reliability and high quality. In the production process, how to effectively control the weld penetration welding, ensure full penetration, weld uniform, so as to ensure the welding quality is to solve the problem of the present stage, it is an important research field in the field of welding technology. In this paper, based on the study of some methods of welding inspection, a set of on-line welding quality inspection system based on machine vision is designed.
77 FR 68050 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... repetitive [high frequency eddy current] inspections [for cracks] of certain crossbeams including those... actions have already been done. (g) Repetitive High Frequency Eddy Current Inspections (1) For airplanes... AD, whichever occurs first. FedEx stated that the current repetitive inspection interval is ten times...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... one-time high frequency eddy current inspection of fastener holes for cracks at the left and right... frequency eddy current inspection of fastener holes for cracks at the left and right side wing rear spar... frequency eddy current inspection for cracking of fastener holes at the left and right side wing rear spar...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... proposed AD would require a one-time high frequency eddy current inspection of fastener holes for cracks at... high frequency eddy current inspection of fastener holes for cracking at the left and right side wing... of this AD, do a one-time high frequency eddy current inspection for cracking of fastener holes at...
Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane
2017-01-01
Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434
Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane
2017-09-14
Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.
Center for Nondestructive Evaluation - Center for Nondestructive Evaluation
available for the full range of inspection methods, housed in a 52,000 sq. ft. facility with over $5M in - 1990): Development of NDE methods for application to DOE energy and weapons programs, including multi for enhanced frequency bandwidth and improved flaw reconstruction, and novel methods for poling
78 FR 46536 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... eddy current inspection of the fastener holes for defects and repair if necessary. We are proposing... also includes doing a high frequency eddy current inspection of the fastener holes for defects and... frequency eddy current inspection of the fastener holes for defects and all applicable repairs, in...
NASA Astrophysics Data System (ADS)
Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.
2009-03-01
This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.
Ultrasonic method for inspection of the propellant grain in the space shuttle solid rocket booster
NASA Astrophysics Data System (ADS)
Doyle, T. E.; Degtyar, A. D.; Sorensen, K. P.; Kelso, M. J.; Berger, T. A.
2000-05-01
Defects in solid rocket propellant may affect the safe operation of a space launch vehicle. The Space Shuttle reusable solid rocket motor (RSRM) is therefore routinely inspected with radiography for voids, cracks, and inclusions. Ultrasonic methods can be used to supplement radiography when an indication is difficult to interpret due to the projection geometry or low contrast. Such a method was developed to inspect a local region of propellant in an RSRM forward segment for a suspect inclusion. The method used a through-transmission approach, with a stationary transmitter on the propellant grain inside the segment and a receiving transducer scanned over the case surface. Low frequency (⩽250 kHz) pulses were propagated through 10-12 inches of propellant, 0.5 inches of NBR insulation, and 0.5 inches of steel case. Through-transmission images were constructed using time-of-flight analysis of the waveforms. The ultrasonic inspections supported results from extended radiographic studies, showing that the indication was not an inclusion but an artifact resulting from liner thickness variations and a low X-ray projection angle in the segment's dome region. This work demonstrated the feasibility of using ultrasonics for inspection of propellant grain in steel-cased rocket motors.
78 FR 12825 - Petition for Extension of Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... the frequency of the required visual track inspections. FRA issued the initial waiver that granted.... SEPTA requests an extension of approval to reduce the frequency of required, visual track inspections... with continuous welded rail. SEPTA proposes to conduct one visual track inspection per week, instead of...
77 FR 37788 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Model F.28 Mark 0100 airplane. This AD requires repetitive low frequency eddy current inspections of the... described above, this [EASA] AD requires repetitive [low frequency eddy current] inspections of the forward... eddy current inspection of the forward fuselage butt-joints for cracks, in accordance with the...
NASA Astrophysics Data System (ADS)
Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish
2016-02-01
The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.
Low Frequency Vibration approach to asess the Performance of wood structural Systems
Xiping Wang; Robert J. Ross; Michael O. Hunt
2004-01-01
The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time consuming process that is expensive, particularly if sheathing or other covering materials must be removed to access the structural members. This paper presents an effort to use a low frequency vibration method for assessing the structural...
Low frequency vibration approach for assessing performance of wood floor systems
Xiping Wang; Robert J. Ross; Michael O. Hunt; John R. Erickson; John W. Forsman
2005-01-01
The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time-consuming and expensive process, particularly if sheathing or other covering materials must be removed to access the structural members. The objective of this study was to determine if a low frequency vibration method could be used to...
NASA Astrophysics Data System (ADS)
Heffernan, Julieanne; Biedermann, Eric; Mayes, Alexander; Livings, Richard; Jauriqui, Leanne; Goodlet, Brent; Aldrin, John C.; Mazdiyasni, Siamack
2018-04-01
Process Compensated Resonant Testing (PCRT) is a full-body nondestructive testing (NDT) method that measures the resonance frequencies of a part and correlates them to the part's material and/or damage state. PCRT testing is used in the automotive, aerospace, and power generation industries via automated PASS/FAIL inspections to distinguish parts with nominal process variation from those with the defect(s) of interest. Traditional PCRT tests are created through the statistical analysis of populations of "good" and "bad" parts. However, gathering a statistically significant number of parts can be costly and time-consuming, and the availability of defective parts may be limited. This work uses virtual databases of good and bad parts to create two targeted PCRT inspections for single crystal (SX) nickel-based superalloy turbine blades. Using finite element (FE) models, populations were modeled to include variations in geometric dimensions, material properties, crystallographic orientation, and creep damage. Model results were verified by comparing the frequency variation in the modeled populations with the measured frequency variations of several physical blade populations. Additionally, creep modeling results were verified through the experimental evaluation of coupon geometries. A virtual database of resonance spectra was created from the model data. The virtual database was used to create PCRT inspections to detect crystallographic defects and creep strain. Quantification of creep strain values using the PCRT inspection results was also demonstrated.
NASA Astrophysics Data System (ADS)
Sugimoto, Tsuneyoshi; Sugimoto, Kazuko; Kosuge, Nobuaki; Utagawa, Noriyuki; Katakura, Kageyoshi
2017-07-01
The noncontact acoustic inspection method focuses on the resonance phenomenon, and the target surface is measured by being vibrated with an airborne sound. It is possible to detect internal defects near the surface layer of a concrete structure from a long distance. However, it requires a fairly long measurement time to achieve the signal-to-noise (S/N) ratio just to find some resonance frequencies. In our method using the conventional waveform “single-tone burst wave”, only one frequency was used for one-sound-wave emission to achieve a high S/N ratio using a laser Doppler vibrometer (LDV) at a safe low power (e.g., He-Ne 1 mW). On the other hand, in terms of the difference in propagation velocity between laser light and sound waves, the waveform that can be used for high-speed measurement was devised using plural frequencies for one-sound-wave emission (“multitone burst wave”). The measurement time at 35 measurement points has been dramatically decreased from 210 to 28 s when using this waveform. Accordingly, 7.5-fold high-speed measurement became possible. By some demonstration experiments, we confirmed the effectiveness of our measurement technique.
Ultrasonic inspection of rocket fuel model using laminated transducer and multi-channel step pulser
NASA Astrophysics Data System (ADS)
Mihara, T.; Hamajima, T.; Tashiro, H.; Sato, A.
2013-01-01
For the ultrasonic inspection for the packing of solid fuel in a rocket booster, an industrial inspection is difficult. Because the signal to noise ratio in ultrasonic inspection of rocket fuel become worse due to the large attenuation even using lower frequency ultrasound. For the improvement of this problem, we tried to applied the two techniques in ultrasonic inspection, one was the step function pulser system with the super wideband frequency properties and the other was the laminated element transducer. By combining these two techniques, we developed the new ultrasonic measurement system and demonstrated the advantages in ultrasonic inspection of rocket fuel model specimen.
Machine Vision Applied to Navigation of Confined Spaces
NASA Technical Reports Server (NTRS)
Briscoe, Jeri M.; Broderick, David J.; Howard, Ricky; Corder, Eric L.
2004-01-01
The reliability of space related assets has been emphasized after the second loss of a Space Shuttle. The intricate nature of the hardware being inspected often requires a complete disassembly to perform a thorough inspection which can be difficult as well as costly. Furthermore, it is imperative that the hardware under inspection not be altered in any other manner than that which is intended. In these cases the use of machine vision can allow for inspection with greater frequency using less intrusive methods. Such systems can provide feedback to guide, not only manually controlled instrumentation, but autonomous robotic platforms as well. This paper serves to detail a method using machine vision to provide such sensing capabilities in a compact package. A single camera is used in conjunction with a projected reference grid to ascertain precise distance measurements. The design of the sensor focuses on the use of conventional components in an unconventional manner with the goal of providing a solution for systems that do not require or cannot accommodate more complex vision systems.
Vision based tunnel inspection using non-rigid registration
NASA Astrophysics Data System (ADS)
Badshah, Amir; Ullah, Shan; Shahzad, Danish
2015-04-01
Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.
Track inspection planning and risk measurement analysis.
DOT National Transportation Integrated Search
2014-11-01
This project models track inspection operations on a railroad network and discusses how the inspection results can : be used to measure the risk of failure on the tracks. In particular, the inspection times of the tracks, inspection frequency of the ...
Force measurement-based discontinuity detection during friction stir welding
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...
2017-02-23
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Force measurement-based discontinuity detection during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Affordable housing and health: a health impact assessment on physical inspection frequency.
Klein, Elizabeth G; Keller, Brittney; Hood, Nancy; Holtzen, Holly
2015-01-01
To characterize the prevalence of health-related housing quality exposure for the vulnerable populations that live in affordable housing. Retrospective cross-sectional study. Affordable housing properties in Ohio inspected between 2007 and 2011. Stratified random sample of physical inspection reports (n = 370), including a case study of properties receiving multiple inspections (n = 35). Health-related housing factors, including mold, fire hazard, and others. The majority of affordable housing property inspections (85.1%) included at least 1 health-related housing quality issue. The prevalence of specific health-related violations was varied, with appliance and plumbing issues being the most common, followed by fire, mold, and pest violations. Across funding agencies, the actual implementation of inspection protocols differed. The majority of physical inspections identified housing quality issues that have the potential to impact human health. If the frequency of physical inspections is reduced as a result of inspection alignment, the most health protective inspection protocol should be selected for funding agency inspections; a standardized physical inspection tool is recommended to improve the consistency of inspection findings between mandatory physical inspections in order to promote optimum tenant health.
77 FR 26993 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... high frequency eddy current (HFEC) inspections for cracking in holes common to the splice strap and... tasks required by this paragraph: Before further flight, do a high frequency eddy current (HFEC... approval must specifically refer to this AD. (h) Detailed and High Frequency Eddy Current Inspections...
Terahertz NDE for Metallic Surface Roughness Evaluation
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2006-01-01
Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.
Eddy Current System and Method for Crack Detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2012-01-01
An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.
Rodgers, J.E.; Elebi, M.
2011-01-01
The 1994 Northridge earthquake caused brittle fractures in steel moment frame building connections, despite causing little visible building damage in most cases. Future strong earthquakes are likely to cause similar damage to the many un-retrofitted pre-Northridge buildings in the western US and elsewhere. Without obvious permanent building deformation, costly intrusive inspections are currently the only way to determine if major fracture damage that compromises building safety has occurred. Building instrumentation has the potential to provide engineers and owners with timely information on fracture occurrence. Structural dynamics theory predicts and scale model experiments have demonstrated that sudden, large changes in structure properties caused by moment connection fractures will cause transient dynamic response. A method is proposed for detecting the building-wide level of connection fracture damage, based on observing high-frequency, fracture-induced transient dynamic responses in strong motion accelerograms. High-frequency transients are short (<1 s), sudden-onset waveforms with frequency content above 25 Hz that are visually apparent in recorded accelerations. Strong motion data and damage information from intrusive inspections collected from 24 sparsely instrumented buildings following the 1994 Northridge earthquake are used to evaluate the proposed method. The method's overall success rate for this data set is 67%, but this rate varies significantly with damage level. The method performs reasonably well in detecting significant fracture damage and in identifying cases with no damage, but fails in cases with few fractures. Combining the method with other damage indicators and removing records with excessive noise improves the ability to detect the level of damage. ?? 2010 Elsevier B.V. All rights reserved.
23 CFR 650.311 - Inspection frequency.
Code of Federal Regulations, 2010 CFR
2010-04-01
... inspections. (1) Inspect each bridge at regular intervals not to exceed twenty-four months. (2) Certain bridges require inspection at less than twenty-four-month intervals. Establish criteria to determine the... characteristics, and known deficiencies. (3) Certain bridges may be inspected at greater than twenty-four month...
APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS
Taylor, E.R.; Mahoney, C.H.; Lay, C.R.
1961-10-24
An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)
77 FR 37332 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... the high frequency eddy current inspection for cracking of the critical fastener holes, and repair if... of the bulkhead, and repair if necessary; and proposed an option to the high frequency eddy current...-15152 (72 FR 44753, August 9, 2007)), do a high frequency eddy current (HFEC) inspection for cracking of...
40 CFR 265.15 - General inspection requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....g., inoperative sump pump, leaking fitting, eroding dike, etc.). (4) The frequency of inspection may vary for the items on the schedule. However, the frequency should be based on the rate of deterioration... and frequencies called for in §§ 265.174, 265.193, 265.195, 265.226, 265.260, 265.278, 265.304, 265...
Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowers, O.; Duxbury, D. J.; Velichko, A.
2015-03-31
The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is usedmore » to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left and... frequency eddy current (HFEC) inspection for cracking at the keyway of the fuel tank access door cutout on... frequency eddy current (HFEC) inspection for cracking of the keyway of the fuel tank access door cutout on...
Projects procedure guide : sampling frequencies for materials testing and inspection
DOT National Transportation Integrated Search
2002-02-01
The Bureau of Materials and Physical Research's Project Procedures Guide (PPG) is used as a resource for determining reasonable inspection procedures and sampling frequencies for materials used in highway construction. This Manual seeks to establish ...
Replacement of seam welded hot reheat pipe using narrow groove GTA machine welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, R.R.; Yanes, J.; Bryant, R.
1995-12-31
Southern California Edison, recognizing a potential safety concern, scrutinized its existing seam welded hot reheat pipe manufactured by the same supplier as that which failed. Alternatives were narrowed to two in dealing with the installed seam welded pipe. The overriding consideration, however, was one of safety. With this in mind, the utility company evaluated replacement of the seam welded hot reheat pipe with seamless pipe or increasing the frequency of its inspection program. Although increased inspection was much costly, pipe replacement was chosen due to potential safety concerns with seam welded pipe even with more frequent inspection. The utility companymore » then proceeded to determine the most effective method to complete this work. Analysis showed machine-made (automatic) gas tungsten arc welds (GTAW) as the method of choice due to cleanliness and superior mechanical properties. In conjunction with this method, the narrow groove (3{degree} bevel) weld joint as opposed to the traditional groove (37 1/2{degree} bevel) was shown to provide significant technical advantages.« less
Status of FAA Studies in Thermal Acoustics
NASA Astrophysics Data System (ADS)
Lively, John; Ouyang, Zhong; Brasche, Lisa; Holland, Steve; Eisenmann, David; Bantel, Tom; Hassan, Waled
2008-02-01
As with many aerospace applications, commercial jet engine components are operated in demanding environments, often at extreme temperature and stress conditions. The predominant used surface inspection method used on these components is fluorescent penetrant inspection. Research has been ongoing for a number of years on a new technology using a short burst of low frequency (˜20 KHz) ultrasound to "heat up" cracks and make them visible in the infrared range. The basic premise of the Thermal Acoustic method is to use an energy source with recent efforts using an ultrasonic horn originally intended for use in ultrasonic welding to excite the component. The energy source causes an increase in local heating, which is detectable with infrared cameras typically used in Thermographic inspection. While considerable research is underway, additional information on the sensitivity and applicability of this technique to engine components and alloys is needed prior to widespread use in the aviation industry. The purpose of this program is to provide additional data to determine applicability of this method to engine components.
NASA Astrophysics Data System (ADS)
Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki
2003-10-01
We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.
NASA Technical Reports Server (NTRS)
Zoughi, R.
2005-01-01
Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.
NASA Astrophysics Data System (ADS)
Yang, Lei; Gong, Jie; Ume, I. Charles
2014-02-01
In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be applied to any unknown chip before inspection. A wealth of information can be provided by this learning procedure, which greatly benefits the interpretation of inspection signals afterwards.
Development of an Inverse Algorithm for Resonance Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Canhai; Xu, Wei; Sun, Xin
2012-10-01
Resonance inspection (RI), which employs the natural frequency spectra shift between the good and the anomalous part populations to detect defects, is a non-destructive evaluation (NDE) technique with many advantages such as low inspection cost, high testing speed, and broad applicability to structures with complex geometry compared to other contemporary NDE methods. It has already been widely used in the automobile industry for quality inspections of safety critical parts. Unlike some conventionally used NDE methods, the current RI technology is unable to provide details, i.e. location, dimension, or types, of the flaws for the discrepant parts. Such limitation severely hindersmore » its wide spread applications and further development. In this study, an inverse RI algorithm based on maximum correlation function is proposed to quantify the location and size of flaws for a discrepant part. A dog-bone shaped stainless steel sample with and without controlled flaws are used for algorithm development and validation. The results show that multiple flaws can be accurately pinpointed back using the algorithms developed, and the prediction accuracy decreases with increasing flaw numbers and decreasing distance between flaws.« less
NASA Astrophysics Data System (ADS)
Tanigawa, Hiroshi; Seno, Hiroaki; Watanabe, Yoshiaki; Nakajima, Koshiro
1998-05-01
A nondestructive inspection method to estimate the contact condition of soil on the surface of an underground pipe, utilizing the resonance of a transverse Lamb wave circulating along the pipe wall is proposed.The Q factor of the resonance is considered and measured under some contact conditions by sweeping the vibrating frequency in a 150-mm-inner diameter Fiberglass Reinforced Plastic Mortar (FRPM) pipe. It is confirmed that the Q factor shows a clear response to the change in the contact conditions. For example, the Q factor is 8.4 when the pipe is in ideal contact with the soil plane and goes up to 19.2 when a 100-mm-diameter void is located at the contact surface of the soil.The spatial resolution of the proposed inspection method is also measured by moving the sensing point along the direction of laying the length of the pipe into a 85-mm-diameter void. The resolution of the proposed method is estimated at about 50 mm.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... Standards (UPCS) inspection protocol was designed to be a uniform inspection process and standard for HUD's... frequency of inspections based on the results the UPCS inspection. UPCS was designed to assess the condition... physical assessment score. HUD Response: The UPCS inspection protocol as designed assesses the physical...
Rolling ball sifting algorithm for the augmented visual inspection of carotid bruit auscultation
NASA Astrophysics Data System (ADS)
Huang, Adam; Lee, Chung-Wei; Liu, Hon-Man
2016-07-01
Carotid bruits are systolic sounds associated with turbulent blood flow through atherosclerotic stenosis in the neck. They are audible intermittent high-frequency (above 200 Hz) sounds mixed with background noise and transmitted low-frequency (below 100 Hz) heart sounds that wax and wane periodically. It is a nontrivial task to extract both bruits and heart sounds with high fidelity for further computer-aided auscultation and diagnosis. In this paper we propose a rolling ball sifting algorithm that is capable to filter signals with a sharper frequency selectivity mechanism in the time domain. By rolling two balls (one above and one below the signal) of a suitable radius, the balls are large enough to roll over bruits and yet small enough to ride on heart sound waveforms. The high-frequency bruits can then be extracted according to a tangibility criterion by using the local extrema touched by the balls. Similarly, the low-frequency heart sounds can be acquired by a larger radius. By visualizing the periodicity information of both the extracted heart sounds and bruits, the proposed visual inspection method can potentially improve carotid bruit diagnosis accuracy.
75 FR 5692 - Airworthiness Directives; The Boeing Company Model 747-200C and -200F Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... all Model 747-200C and -200F series airplanes. This AD requires a high frequency eddy current (HFEC... on July 6, 2009 (74 FR 31894). That NPRM proposed to require a high frequency eddy current inspection..., whichever occurs later: Do an open-hole high frequency eddy current (HFEC) inspection of all the fastener...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... frequency eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left... NPRM proposed to require doing a high frequency eddy current inspection for [[Page 35610
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Wastewater-Inspection and Monitoring..., Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Wastewater-Inspection and Monitoring..., Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection...
Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Thadd
1994-01-04
This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled datamore » acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.« less
Assessment of disinfection of hospital surfaces using different monitoring methods1
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos, Aires Garcia
2015-01-01
OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process. PMID:26312634
Evaluation of the Frequencies for Canister Inspections for SCC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockman, Christine; Bryan, Charles R.
2016-02-02
This report fulfills the M3 milestone M3FT-15SN0802042, “Evaluate the Frequencies for Canister Inspections for SCC” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. It reviews the current state of knowledge on the potential for stress corrosion cracking (SCC) of dry storage canisters and evaluates the implications of this state of knowledge on the establishment of an SCC inspection frequency. Models for the prediction of SCC by the Japanese Central Research Institute of Electric Power Industry (CRIEPI), the United States (U.S.) Electric Power Research Institute (EPRI), and Sandia National Laboratories (SNL) are summarized, and their limitations discussed.
30 CFR 250.1742 - What other methods can I use to verify that a site is clear?
Code of Federal Regulations, 2010 CFR
2010-07-01
...— And you must— (a) Sonar cover 100 percent of the appropriate grid area listed in § 250.1741(a) Use a sonar signal with a frequency of at least 500 kHz. (b) A diver ensure that the diver visually inspects...
9 CFR 590.580 - Laboratory tests and analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Laboratory tests and analyses. 590.580 Section 590.580 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... sequence, frequency, and approved laboratory methods as prescribed by the AMS Science Division Director...
9 CFR 590.580 - Laboratory tests and analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Laboratory tests and analyses. 590.580 Section 590.580 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... sequence, frequency, and approved laboratory methods as prescribed by the AMS Science Division Director...
9 CFR 590.580 - Laboratory tests and analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Laboratory tests and analyses. 590.580 Section 590.580 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... sequence, frequency, and approved laboratory methods as prescribed by the AMS Science Division Director...
21 CFR 1316.13 - Frequency of administrative inspections.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Frequency of administrative inspections. 1316.13 Section 1316.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE... as circumstances may require, based in part on the registrant's history of compliance with the...
21 CFR 1316.13 - Frequency of administrative inspections.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Frequency of administrative inspections. 1316.13 Section 1316.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE... as circumstances may require, based in part on the registrant's history of compliance with the...
21 CFR 1316.13 - Frequency of administrative inspections.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Frequency of administrative inspections. 1316.13 Section 1316.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE... as circumstances may require, based in part on the registrant's history of compliance with the...
21 CFR 1316.13 - Frequency of administrative inspections.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Frequency of administrative inspections. 1316.13 Section 1316.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE... as circumstances may require, based in part on the registrant's history of compliance with the...
21 CFR 1316.13 - Frequency of administrative inspections.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Frequency of administrative inspections. 1316.13 Section 1316.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE... as circumstances may require, based in part on the registrant's history of compliance with the...
78 FR 21576 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-11
... with Inspection Condition 5: Repeat the high frequency eddy current or magnetic particle inspection to... latch pins for discrepancies; and an HFEC or magnetic particle inspection of cam latch 1 and cam latch 2...
NASA Astrophysics Data System (ADS)
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
15 CFR Supplement No. 1 to Part 716 - Notification, Duration and Frequency of Inspections
Code of Federal Regulations, 2010 CFR
2010-01-01
... prior to arrival of Inspection Team at the point of entry (initial); 24 hours prior to arrival of Inspection Team at the point of entry (routine) 48 hours prior to arrival of Inspection Team at the plant site 120 hours prior to arrival of Inspection Team at the plant site 120 hours prior to arrival of...
15 CFR Supplement No. 1 to Part 716 - Notification, Duration and Frequency of Inspections
Code of Federal Regulations, 2011 CFR
2011-01-01
... prior to arrival of Inspection Team at the point of entry (initial); 24 hours prior to arrival of Inspection Team at the point of entry (routine) 48 hours prior to arrival of Inspection Team at the plant site 120 hours prior to arrival of Inspection Team at the plant site 120 hours prior to arrival of...
15 CFR Supplement No. 1 to Part 716 - Notification, Duration and Frequency of Inspections
Code of Federal Regulations, 2013 CFR
2013-01-01
... prior to arrival of Inspection Team at the point of entry (initial); 24 hours prior to arrival of Inspection Team at the point of entry (routine) 48 hours prior to arrival of Inspection Team at the plant site 120 hours prior to arrival of Inspection Team at the plant site 120 hours prior to arrival of...
NASA Technical Reports Server (NTRS)
Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, Frank L.
2006-01-01
Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the recent Space Shuttle Discovery's flight. From immediately after the Columbia accident, microwave and millimeter wave nondestructive testing methods were considered as potential effective inspection tools for evaluating the integrity of the SOFI. To this end and as a result of these efforts, both real-focused, synthetic focusing and holographical techniques, at a wide range of frequencies covering 24 GHz to 150 GHz, have been developed for this purpose. Images of various complex SOFI panels with a wide range of embedded anomalies (representing real potential defects) have been produced using these techniques, including relatively small anomalies located near complex structural features representative of the external tank. These real-focused and 3D holographical images have effectively demonstrated the utility of these methods for SOFI inspection as being viable, robust, repeatable, simple, portable and relatively inexpensive (tens of $K as opposed to hundreds of $K). In addition, the potential viability of these methods for inspecting acreage heat tiles have has been demonstrated. This paper presents an overview of these activities, representative images of these panels using all of the imaging techniques used and a discussion of the practical attributes of these inspection methods.
Perceptions of Physical Inspections as a Tool to Protect Housing Quality and Promote Health Equity.
Holtzen, Holly; Klein, Elizabeth G; Keller, Brittney; Hood, Nancy
2016-01-01
Physical inspections that assess how well affordable housing properties meet quality and safety standards help to ensure that low-income tenants live in a healthy built environment. This study was part of a larger Health Impact Assessment (HIA) conducted between January 2012 and November 2013 to inform policymakers about the potential health consequences of a proposed policy decision to align the physical inspections required by housing funding agencies, which would result in a reduction of the frequency of physical inspections. Key informant interviews (n=18) of property managers and tenants were used to explore the inspection process, identification of housing quality issues, and potential effects on the health of affordable housing tenants and the impact on property management practices. Results indicate that physical inspection frequency may be an important trigger for property managers and tenants to adhere to proper maintenance schedules.
15 CFR Supplement No. 1 to Part 716 - Notification, Duration and Frequency of Inspections
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL... Schedule 3 Unscheduled discrete organic chemicals Notice of initial or routine inspection to USNA 72 hours... Inspection Team at the point of entry (routine) 48 hours prior to arrival of Inspection Team at the plant...
15 CFR Supplement No. 1 to Part 716 - Notification, Duration and Frequency of Inspections
Code of Federal Regulations, 2014 CFR
2014-01-01
... Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL... Schedule 3 Unscheduled discrete organic chemicals Notice of initial or routine inspection to USNA 72 hours... Inspection Team at the point of entry (routine) 48 hours prior to arrival of Inspection Team at the plant...
Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian J.; Bender, Donald A.
Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less
Assessment of disinfection of hospital surfaces using different monitoring methods.
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos Junior, Aires Garcia
2015-01-01
to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
... Traveler TSTF-510, Revision 2, ``Revision to Steam Generator Program Inspection Frequencies and Tube Sample...-510, Revision 2, ``Revision to Steam Generator Program Inspection Frequencies and Tube Sample Selection.'' TSTF-510, Revision 2, is available in the Agencywide Documents Access and Management System...
76 FR 63172 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
... repetitive detailed and high frequency eddy current (HFEC) inspections of the station (STA) 1809.5 bulkhead... detailed and high frequency eddy current (HFEC) inspections for cracking as specified in Parts 1, 2, 3, and... rule to provide the applicable, current SRMs; we have re-identified subsequent tables accordingly. We...
77 FR 43178 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... eddy current high frequency (ETHF) inspections for cracking on the aft side of the left and right wing... NPRM proposed to require repetitive eddy current high frequency (ETHF) inspections for cracking on the...,000 flight cycles after the effective date of this AD, whichever occurs later, do an eddy current high...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... investigative actions include a surface high- frequency eddy current inspection for cracking of the inner.... The related investigative actions include a surface high-frequency eddy current inspection for... total flight hours and 5,335 total flight cycles. Analysis by the manufacturer revealed that the broken...
Statistical analysis of 59 inspected SSME HPFTP turbine blades (uncracked and cracked)
NASA Technical Reports Server (NTRS)
Wheeler, John T.
1987-01-01
The numerical results of statistical analysis of the test data of Space Shuttle Main Engine high pressure fuel turbopump second-stage turbine blades, including some with cracks are presented. Several statistical methods use the test data to determine the application of differences in frequency variations between the uncracked and cracked blades.
Bjork, Adam; Sosin, Daniel M
We studied departures from regulatory requirements identified on US Federal Select Agent Program (FSAP) inspections to increase transparency regarding biosafety and security risk at FSAP-regulated entities and identify areas for programmatic improvement. Regulatory departures from inspections led by Centers for Disease Control and Prevention inspectors during 2014-15 were grouped into "biosafety," "security," and "other" observation categories and assigned a risk level and score reflecting perceived severity. The resulting 2,267 biosafety (n = 1,153) and security (n = 1,114) observations from 296 inspections were analyzed by frequency and risk across entity and inspection characteristics. The greatest proportion of biosafety observations involved equipment and facilities (28%), and the greatest proportion of security observations involved access restrictions (33%). The greatest proportion of higher-risk observations for biosafety were containment issues and for security were inventory discrepancies. Commercial entities had the highest median cumulative risk score per inspection (17), followed by private (13), academic (10), federal government (10), and nonfederal government (8). Maximum containment (BSL-4) inspections had higher median biosafety risk per inspection (13) than other inspections (5) and lower security risk (0 vs 4). Unannounced inspections had proportionally more upper risk level observations than announced (biosafety, 21% vs 12%; security, 18% vs 7%). Possessors of select agents had higher median biosafety risk per inspection (6) than nonpossessors (4) and more upper risk level security observations (10% vs 0%). Programmatic changes to balance resources according to entity risk may strengthen FSAP oversight. Varying inspection methods by select agent possession and entity type, and conducting more unannounced inspections, may be beneficial.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Wastewater-Inspection and Monitoring... Production Pt. 63, Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Wastewater-Inspection and Monitoring... Production Pt. 63, Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of...
Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle
Bencsik, Martin; Le Conte, Yves; Reyes, Maritza; Pioz, Maryline; Whittaker, David; Crauser, Didier; Simon Delso, Noa; Newton, Michael I.
2015-01-01
Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time. PMID:26580393
Natural frequency identification of smart washer by using adaptive observer
NASA Astrophysics Data System (ADS)
Ito, Hitoshi; Okugawa, Masayuki
2014-04-01
Bolted joints are used in many machines/structures and some of them have been loosened during long time use, and unluckily these bolt loosening may cause a great accident of machines/structures system. These bolted joint, especially in important places, are main object of maintenance inspection. Maintenance inspection with human- involvement is desired to be improved owing to time-consuming, labor-intensive and high-cost. By remote and full automation monitoring of the bolt loosening, constantly monitoring of bolted joint is achieved. In order to detect loosening of bolted joints without human-involvement, applying a structural health monitoring technique and smart structures/materials concept is the key objective. In this study, a new method of bolt loosening detection by adopting a smart washer has been proposed, and the basic detection principle was discussed with numerical analysis about frequency equation of the system, was confirmed experimentally. The smart washer used in this study is in cantilever type with piezoelectric material, which adds the washer the self-sensing and actuation function. The principle used to detect the loosening of the bolts is a method of a bolt loosening detection noted that the natural frequency of a smart washer system is decreasing by the change of the bolt tightening axial tension. The feature of this proposed method is achieving to identify the natural frequency at current condition on demand by adopting the self-sensing and actuation function and system identification algorithm for varying the natural frequency depending the bolt tightening axial tension. A novel bolt loosening detection method by adopting adaptive observer is proposed in this paper. The numerical simulations are performed to verify the possibility of the adaptive observer-based loosening detection. Improvement of the detection accuracy for a bolt loosening is confirmed by adopting initial parameter and variable adaptive gain by numerical simulation.
Real-time ultrasonic weld evaluation system
NASA Astrophysics Data System (ADS)
Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.
1996-11-01
Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.
NASA Astrophysics Data System (ADS)
Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo
2017-10-01
We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.
Delamination Detection Using Guided Wave Phased Arrays
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara
2016-01-01
This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.
Advanced signal processing methods applied to guided waves for wire rope defect detection
NASA Astrophysics Data System (ADS)
Tse, Peter W.; Rostami, Javad
2016-02-01
Steel wire ropes, which are usually composed of a polymer core and enclosed by twisted wires, are used to hoist heavy loads. These loads are different structures that can be clamshells, draglines, elevators, etc. Since the loading of these structures is dynamic, the ropes are working under fluctuating forces in a corrosive environment. This consequently leads to progressive loss of the metallic cross-section due to abrasion and corrosion. These defects can be seen in the forms of roughened and pitted surface of the ropes, reduction in diameter, and broken wires. Therefore, their deterioration must be monitored so that any unexpected damage or corrosion can be detected before it causes fatal accident. This is of vital importance in the case of passenger transportation, particularly in elevators in which any failure may cause a catastrophic disaster. At present, the widely used methods for thorough inspection of wire ropes include visual inspection and magnetic flux leakage (MFL). Reliability of the first method is questionable since it only depends on the operators' eyes that fails to determine the integrity of internal wires. The later method has the drawback of being a point by point and time-consuming inspection method. Ultrasonic guided wave (UGW) based inspection, which has proved its capability in inspecting plate like structures such as tubes and pipes, can monitor the cross-section of wire ropes in their entire length from a single point. However, UGW have drawn less attention for defect detection in wire ropes. This paper reports the condition monitoring of a steel wire rope from a hoisting elevator with broken wires as a result of corrosive environment and fatigue. Experiments were conducted to investigate the efficiency of using magnetostrictive based UGW for rope defect detection. The obtained signals were analyzed by two time-frequency representation (TFR) methods, namely the Short Time Fourier Transform (STFT) and the Wavelet analysis. The location of the defect and its severity were successfully identified and characterized.
9 CFR 303.2 - Experimentation: Intensity of inspection coverage.
Code of Federal Regulations, 2014 CFR
2014-01-01
... inspection coverage. 303.2 Section 303.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... under the Act and regulations is required, the frequency with which and the manner in which meat food... by Program employees is to be based on considerations relevant to effective regulation of meat food...
Restaurant inspection frequency: The RestoFreq Study.
Medu, Olanrewaju; Turner, Hollie; Cushon, Jennifer A; Melis, Deborah; Rea, Leslie; Abdellatif, Treena; Neudorf, Cory O; Schwandt, Michael
2017-03-01
Foodborne illness is an important contributor to morbidity and health system costs in Canada. Using number of critical hazards as a proxy for food safety, we sought to better understand how to improve food safety in restaurants. We compared the current standard of annual inspections to twice-yearly inspections among restaurants "at risk" for food safety infractions. These were restaurants that had three or more elevated-risk inspection ratings in the preceding 36 months. We conducted a two-arm randomized controlled trial between November 2012 and October 2014. The intervention was twice-yearly routine restaurant inspection compared to standard once-yearly routine inspection. Included were all restaurants within Saskatoon Health Region that were assessed as "at risk", with 73 restaurants in the intervention arm and 78 in the control arm. Independent sample t-tests were conducted between groups to compare: i) average number of critical hazards per inspection; and ii) proportion of inspections resulting in a rating indicating an elevated hazard. Over time we noted statistically significant improvements across both study arms, in number of both critical food safety hazards (decreased by 61%) and elevated-risk inspection ratings (decreased by 45%) (p < 0.0001). We observed no significant differences between the two groups pre- or post-intervention. Results suggest increasing the number of annual routine inspections in high-risk restaurants was not associated with a significant difference in measures of compliance with food safety regulations. Findings of this study do not provide evidence supporting increased frequency of restaurant inspection from annually to twice annually.
Wavelet analysis of poorly-focused ultrasonic signal of pressure tube inspection in nuclear industry
NASA Astrophysics Data System (ADS)
Zhao, Huan; Gachagan, Anthony; Dobie, Gordon; Lardner, Timothy
2018-04-01
Pressure tube fabrication and installment challenges combined with natural sagging over time can produce issues with probe alignment for pressure tube inspection of the primary circuit of CANDU reactors. The ability to extract accurate defect depth information from poorly focused ultrasonic signals would reduce additional inspection procedures, which leads to a significant time and cost saving. Currently, the defect depth measurement protocol is to simply calculate the time difference between the peaks of the echo signals from the tube surface and the defect from a single element probe focused at the back-wall depth. When alignment issues are present, incorrect focusing results in interference within the returning echo signal. This paper proposes a novel wavelet analysis method that employs the Haar wavelet to decompose the original poorly focused A-scan signal and reconstruct detailed information based on a selected high frequency component range within the bandwidth of the transducer. Compared to the original signal, the wavelet analysis method provides additional characteristic defect information and an improved estimate of defect depth with errors less than 5%.
Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation.
Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser
2017-05-01
Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.
Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves
NASA Astrophysics Data System (ADS)
díAz Valdés, Sergio H.; Soutis, Costas
2002-05-01
Amid the nondestructive evaluation techniques available for the inspection of composite materials, only a few are suitable for implementation while the component is in service. The investigation examines the application of Lamb waves at low-frequency-thickness products for the detection of delaminations in thick composite laminates. Surface-mounted piezoelectric devices were excited with a tone burst to generate elastic waves in the structure. Experiments were carried out on composite beam specimens where wave propagation distances over 2 m were achieved and artificially induced delaminations as small as 1 cm2 were successfully identified. The feasibility of employing piezoelectric devices for the development of smart structures, where a small and lightweight transducer system design is required, has been demonstrated. The resonance spectrum method, which is based on the study of spectra obtained by forced mechanical resonance of samples using sine-sweep excitation, has been proposed as a technique for measuring the Ao Lamb mode phase velocity. The finite-element method was also used to investigate qualitatively the dynamic response of laminates to wave propagation. Several locations and spatial distribution of the actuators were examined showing the advantages of using transducers arrays for the inspection of large structures.
Evaluation of overhead support inspection program.
DOT National Transportation Integrated Search
2015-01-01
This study evaluated the adequacy and frequency of the current structural support inspection program for overhead : sign supports (including bridge mounted), mast arm signal supports and high mast light supports. While ODOT provides : statewide guida...
Ruggiero, Nicole; Magna, Battista; Cornaggia, Nicoletta; Rosa, Anna Maria; Ferrero, Orazio; Mazzieri, Massimiliano; Consonni, Dario; Cantoni, Susanna
2018-02-20
In recent years, Italy has seen a reduction in workplace accidents due to several factors, including the controls carried out by the Health and Safety at Work Services (PSAL) of the Local Health Units (ATS). To verify the contribution of PSAL Services to injury reduction. In particular, to identify the existence of a difference between incidence rates of accidents in companies before and after inspections and possible variations in rates between inspected and non-inspected companies. We analyzed data of the activities carried out by the PSAL Services of the Lombardy Region in the system I.M.Pre.S@ (Computerization and Health Prevention Monitoring) in the period 2010-2015, together with data from the Regional Accident Database of the National Institute for Insurance against Accidents at Work (INAIL). The "difference in difference" (DID) method was used to evaluate the different effect on inspected and non-inspected industries. Between the pre- and post-vigilance periods, inspected companies showed a greater reduction either of total injury rates (DID=-2.7 per 1000 worker-years; 90% confidence interval (CI): -4.1; -1.3) or of severe injury rates (DID=-1.1; 90% CI: -1.7; -0.5). These effects were visible in the majority of ATS and occupational sectors. This study, made possible by a valid and efficient regional data tracking system, has shown the positive effect of the PSAL prevention actions on the frequency of both total and severe injuries.
NASA Astrophysics Data System (ADS)
Merabet, Lucas; Robert, Sébastien; Prada, Claire
2018-04-01
In this paper, we present two frequency-domain algorithms for 2D imaging with plane wave emissions, namely Stolt's migration and Lu's method. The theoretical background is first presented, followed by an analysis of the algorithm complexities. The frequency-domain methods are then compared to the time-domain plane wave imaging in a realistic inspection configuration where the array elements are not in contact with the specimen. Imaging defects located far away from the array aperture is assessed and computation times for the three methods are presented as a function of the number of pixels of the reconstructed image. We show that Lu's method provides a time gain of up to 33 compared to the time-domain algorithm, and demonstrate the limitations of Stolt's migration for defects far away from the aperture.
Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg
2006-09-30
Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure.more » The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces low-frequency eddy currents in ferromagnetic pipes and tubes. Since this is a new inspection method, both theory and experiment were used to determine fundamental capabilities and limitations. Fundamental finite element modeling analysis and experimental investigations performed during this development have led to the derivation of a first order analytical equation for designing rotating magnetizers to induce current and positioning sensors to record signals from anomalies. Experimental results confirm the analytical equation and the finite element calculations provide a firm basis for the design of RPMI systems. Experimental results have shown that metal loss anomalies and wall thickness variations can be detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. The design exploits the phenomenon that circumferential currents are easily detectable at distances well away from the magnets. Current changes at anomalies were detectable with commercial low cost Hall Effect sensors. Commercial analog to digital converters can be used to measure the sensor output and data analysis can be performed in real time using PC computer systems. The technology was successfully demonstrated during two blind benchmark tests where numerous metal loss defects were detected. For this inspection technology, the detection threshold is a function of wall thickness and corrosion depth. For thinner materials, the detection threshold was experimentally shown to be comparable to magnetic flux leakage. For wall thicknesses greater than three tenths of an inch, the detection threshold increases with wall thickness. The potential for metal loss anomaly sizing was demonstrated in the second benchmarking study, again with accuracy comparable to existing magnetic flux leakage technologies. The rotating permanent magnet system has the potential for inspecting unpiggable pipelines since the magnetizer configurations can be sufficiently small with respect to the bore of the pipe to pass obstructions that limit the application of many inspection technologies. Also, since the largest dimension of the Hall Effect sensor is two tenths of an inch, the sensor packages can be small, flexible and light. The power consumption, on the order of ten watts, is low compared to some inspection systems; this would enable autonomous systems to inspect longer distances between charges. This project showed there are no technical barriers to building a field ready unit that can pass through narrow obstructions, such as plug valves. The next step in project implementation is to build a field ready unit that can begin to establish optimal performance capabilities including detection thresholds, sizing capability, and wall thickness limitations.« less
15 CFR 716.5 - Notification, duration and frequency of inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., facilities that request advance team assistance are not required to reimburse the U.S. Government for costs... inspected 1-2 days after OPCW notification for logistical and administrative preparations If advance team...
Corrugated steel culvert pipe deterioration : final report, August 2009.
DOT National Transportation Integrated Search
2009-08-01
This research provides the basis for developing a comprehensive plan for inspection, cleaning, condition assessment and : prediction of remaining service life of CSCP (Corrugated Steel Culvert Pipe). Inspection frequency guidelines were developed : t...
Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw; Robert Vatalaro
2005-01-01
This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...
Terahertz NDE Application for Corrosion Detection and Evaluation under Shuttle Tiles
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.
2007-01-01
Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.
Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles
NASA Astrophysics Data System (ADS)
Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.
2007-04-01
Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.
78 FR 9 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... AD adds repetitive inspections for cracking using different inspection methods and inspecting... cracking using different inspection methods and would inspect additional areas, and corrective actions if... an acceptable method for accomplishing the inspections in areas covered by non-terminating repairs as...
47 CFR 2.936 - FCC inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false FCC inspection. 2.936 Section 2.936 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL... manufacturing plant and facilities. [62 FR 10471, Mar. 7, 1997] ...
47 CFR 2.936 - FCC inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false FCC inspection. 2.936 Section 2.936 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL... manufacturing plant and facilities. [62 FR 10471, Mar. 7, 1997] ...
Baseline UT Measurements for Armor Inspection
NASA Astrophysics Data System (ADS)
Margetan, Frank J.; Richter, Nate; Barnard, Dan; Hsu, David; Gray, Tim; Brasche, Lisa; Bruce Thompson, R.
2010-02-01
Some prototype armor panels are fabricated from several layers of dissimilar material bonded together. These may include ceramics, graphite composites, fiberglass composites and rubber. The ultrasonic properties of these layers influence inspections for armor defects. In this paper we describe measurements of ultrasonic velocity, attenuation, sound beam distortion and signal fluctuations for the individual layers comprising one armor prototype. We then discuss how knowledge of these properties can be used when choosing an optimum frequency for an ultrasonic pitch/catch immersion inspection. In our case an effective inspection frequency near 1.5 MHz affords: (1) adequate strength of through-transmitted signals in unflawed armor; (2) adequate lateral resolution for detecting small disbonds at interfaces; and (3) low levels of UT signal fluctuations due to the natural inhomogeneity of certain armor layers. The utility of this approach is demonstrated using armor panels containing artificial disbonds at selected interfaces.
Choosing a reliability inspection plan for interval censored data
Lu, Lu; Anderson-Cook, Christine Michaela
2017-04-19
Reliability test plans are important for producing precise and accurate assessment of reliability characteristics. This paper explores different strategies for choosing between possible inspection plans for interval censored data given a fixed testing timeframe and budget. A new general cost structure is proposed for guiding precise quantification of total cost in inspection test plan. Multiple summaries of reliability are considered and compared as the criteria for choosing the best plans using an easily adapted method. Different cost structures and representative true underlying reliability curves demonstrate how to assess different strategies given the logistical constraints and nature of the problem. Resultsmore » show several general patterns exist across a wide variety of scenarios. Given the fixed total cost, plans that inspect more units with less frequency based on equally spaced time points are favored due to the ease of implementation and consistent good performance across a large number of case study scenarios. Plans with inspection times chosen based on equally spaced probabilities offer improved reliability estimates for the shape of the distribution, mean lifetime, and failure time for a small fraction of population only for applications with high infant mortality rates. The paper uses a Monte Carlo simulation based approach in addition to the common evaluation based on the asymptotic variance and offers comparison and recommendation for different applications with different objectives. Additionally, the paper outlines a variety of different reliability metrics to use as criteria for optimization, presents a general method for evaluating different alternatives, as well as provides case study results for different common scenarios.« less
Choosing a reliability inspection plan for interval censored data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Lu; Anderson-Cook, Christine Michaela
Reliability test plans are important for producing precise and accurate assessment of reliability characteristics. This paper explores different strategies for choosing between possible inspection plans for interval censored data given a fixed testing timeframe and budget. A new general cost structure is proposed for guiding precise quantification of total cost in inspection test plan. Multiple summaries of reliability are considered and compared as the criteria for choosing the best plans using an easily adapted method. Different cost structures and representative true underlying reliability curves demonstrate how to assess different strategies given the logistical constraints and nature of the problem. Resultsmore » show several general patterns exist across a wide variety of scenarios. Given the fixed total cost, plans that inspect more units with less frequency based on equally spaced time points are favored due to the ease of implementation and consistent good performance across a large number of case study scenarios. Plans with inspection times chosen based on equally spaced probabilities offer improved reliability estimates for the shape of the distribution, mean lifetime, and failure time for a small fraction of population only for applications with high infant mortality rates. The paper uses a Monte Carlo simulation based approach in addition to the common evaluation based on the asymptotic variance and offers comparison and recommendation for different applications with different objectives. Additionally, the paper outlines a variety of different reliability metrics to use as criteria for optimization, presents a general method for evaluating different alternatives, as well as provides case study results for different common scenarios.« less
Non-destructive evaluation of coating thickness using guided waves
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice
2015-04-01
Among existing strategies for non-destructive evaluation of coating thickness, ultrasonic methods based on the measurement of the Time-of-Flight (ToF) of high frequency bulk waves propagating through the thickness of a structure are widespread. However, these methods only provide a very localized measurement of the coating thickness and the precision on the results is largely affected by the surface roughness, porosity or multi-layered nature of the host structure. Moreover, since the measurement is very local, inspection of large surfaces can be time consuming. This article presents a robust methodology for coating thickness estimation based on the generation and measurement of guided waves. Guided waves have the advantage over ultrasonic bulk waves of being less sensitive to surface roughness, and of measuring an average thickness over a wider area, thus reducing the time required to inspect large surfaces. The approach is based on an analytical multi-layer model and intercorrelation of reference and measured signals. The method is first assessed numerically for an aluminum plate, where it is demonstrated that coating thickness can be measured within a precision of 5 micrometers using the S0 mode at frequencies below 500 kHz. Then, an experimental validation is conducted and results show that coating thicknesses in the range of 10 to 200 micrometers can be estimated within a precision of 10 micrometers of the exact coating thickness on this type of structure.
NASA Astrophysics Data System (ADS)
Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.
2017-08-01
The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.
Study of acoustic emission during mechanical tests of large flight weight tank structure
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Mccauley, B. O.; Veach, C. L.
1972-01-01
A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws.
This working paper examines the effect of increased inspection frequency occurring under the Energy Policy Act of 2005 on compliance with release detection and prevention requirements at underground storage tank facilities in Louisiana.
Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.
Active THz inspection of water content in plants
NASA Astrophysics Data System (ADS)
Etayo, D.; Iriarte, J. C.; Palacios, I.; Teniente, J.; Ederra, I.; Gonzalo, R.
2010-04-01
The THz range offers the possibility of measuring water content. This can be useful in wine industry to control plants water levels and also to decrease irrigation costs. This paper presents a THz imaging system used to characterise water content in leaves using frequency and time domain methods from 0.14 to 0.22 THz. Our results show the possibility of getting useful information out of the preformed measurements.
Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength
NASA Astrophysics Data System (ADS)
Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.
2018-02-01
To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.
NASA Technical Reports Server (NTRS)
Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.
2005-01-01
The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.
Defect inspection and printability study for 14 nm node and beyond photomask
NASA Astrophysics Data System (ADS)
Seki, Kazunori; Yonetani, Masashi; Badger, Karen; Dechene, Dan J.; Akima, Shinji
2016-10-01
Two different mask inspection techniques are developed and compared for 14 nm node and beyond photomasks, High resolution and Litho-based inspection. High resolution inspection is the general inspection method in which a 19x nm wavelength laser is used with the High NA inspection optics. Litho-based inspection is a new inspection technology. This inspection uses the wafer lithography information, and as such, this method has automatic defect classification capability which is based on wafer printability. Both High resolution and Litho-based inspection methods are compared using 14 nm and 7 nm node programmed defect and production design masks. The defect sensitivity and mask inspectability is compared, in addition to comparing the defect classification and throughput. Additionally, the Cost / Infrastructure comparison is analyzed and the impact of each inspection method is discussed.
In-service inspection methods for graphite-epoxy structures on commercial transport aircraft
NASA Technical Reports Server (NTRS)
Phelps, M. L.
1981-01-01
In-service inspection methods for graphite-epoxy composite structures on commercial transport aircraft are determined. Graphite/epoxy structures, service incurred defects, current inspection practices and concerns of the airline and manufacturers, and other related information were determind by survey. Based on this information, applicable inspection nondestructive inspection methods are evaluated and inspection techniques determined. Technology is developed primarily in eddy current inspection.
Ultrasonic guided wave inspection of Inconel 625 brazed lap joints
NASA Astrophysics Data System (ADS)
Comot, Pierre; Bocher, Philippe; Belanger, Pierre
2016-04-01
The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.
30 CFR 250.617 - What are my BOP inspection and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... your BOP system and marine riser at least once each day if weather and sea conditions permit. You may... and frequencies to inspect a marine riser. (b) BOP maintenance. You must maintain your BOP system to...
30 CFR 250.618 - What are my BOP inspection and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... marine riser at least once every 3 days if weather and sea conditions permit. You may use television... frequencies to inspect a marine riser. (b) BOP maintenance. You must maintain your BOP system to ensure that...
30 CFR 250.617 - What are my BOP inspection and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... BOP system and marine riser at least once each day if weather and sea conditions permit. You may use... frequencies to inspect a marine riser. (b) BOP maintenance. You must maintain your BOP system to ensure that...
30 CFR 250.618 - What are my BOP inspection and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... marine riser at least once every 3 days if weather and sea conditions permit. You may use television... frequencies to inspect a marine riser. (b) BOP maintenance. You must maintain your BOP system to ensure that...
Radar analysis of free oscillations of rail for diagnostics defects
NASA Astrophysics Data System (ADS)
Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.
2018-05-01
One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.
Rapid Ultrasonic Inspection of Artillery Projectiles
1980-11-01
field behavior as a function of gap separation d 26 Fig. 14 Electromagnet equivalent circuit model use for final design of yoke, pole pieces and...card 64 Fig. 37 Frequency response of receiver circuit 66 Fig. 38 a) Configuration of EMAT used to launch both longitudinal and circumferential... circuit for OD and ID location 88 Fig. 51 Photograph of fully assembled EMAT inspection system during projectile inspection 92 Fig. 52 Sequence
Multi-level scanning method for defect inspection
Bokor, Jeffrey; Jeong, Seongtae
2002-01-01
A method for performing scanned defect inspection of a collection of contiguous areas using a specified false-alarm-rate and capture-rate within an inspection system that has characteristic seek times between inspection locations. The multi-stage method involves setting an increased false-alarm-rate for a first stage of scanning, wherein subsequent stages of scanning inspect only the detected areas of probable defects at lowered values for the false-alarm-rate. For scanning inspection operations wherein the seek time and area uncertainty is favorable, the method can substantially increase inspection throughput.
NASA Astrophysics Data System (ADS)
Oettl, Dietmar; Kropsch, Michael; Mandl, Michael
2018-05-01
The assessment of odour annoyance varies vastly among countries even within the European Union. Using so-called odour-hour frequencies offers the distinct possibility for either applying dispersion models or field inspections, both generally assumed to be equivalent. In this study, odour-hours based on field inspections according to the European standard EN 16841-1 (2017) in the vicinity of a pig-fattening farm have been compared with modelled ones using the Lagrangian particle model GRAL, which uses odour-concentration variances for computing odour hours as recently proposed by Oettl and Ferrero (2017). Using a threshold of 1 ou m-3 (ou = odour units) for triggering odour hours in the model, as prescribed by the German guideline for odour assessment, led to reasonable agreements between the two different methodologies. It is pointed out that the individual odour sensitivity of qualified panel members, who carry out field inspections, is of crucial importance for selecting a proper odour-hour model. Statistical analysis of a large number of data stemming from dynamic olfactometry (EN 13725, 2003), that cover a wide range of odorants, suggests that the prescribed method in Germany for modelling odour hours may likely result in an overestimation, and hence, equivalence with field inspections is not given. The dataset is freely available on request.
High Resolution Millimeter Wave Inspecting of the Orbiter Acreage Heat Tiles of the Space Shuttle
NASA Technical Reports Server (NTRS)
Case, J. T.; Khakovsky, S.; Zoughi, r.; Hepburn, F.
2007-01-01
Presence of defects such as disbonds, delaminations, impact damage, in thermal protection systems can significantly reduce safety of the Space Shuttle and its crew. The physical cause of Space Shuttle Columbia's catastrophic failure was a breach in its thermal protection system, caused by a piece of external tank insulating foam separating from the external tank and striking the leading edge of the left wing of the orbiter. There is an urgent need for a rapid, robust and life-circle oriented nondestructive testing (NDT) technique capable of inspecting the external tank insulating foam as well as the orbiter's protective (acreage) heat tiles and its fuselage prior and subsequent to a launch. Such a comprehensive inspection technique enables NASA to perform life-cycle inspection on critical components of the orbiter and its supporting hardware. Consequently, NASA Marshall Space Flight Center initiated an investigation into several potentially viable NDT techniques for this purpose. Microwave and millimeter wave NDT methods have shown great potential to achieve these goals. These methods have been successfully used to produce images of the interior of various complex, thick and thin external tank insulating foam structures for real focused reflectometer at operating frequency from 50-100 GHz and for synthetic aperture techniques at Ku-band (12-18 GHz) and K-band (18-26 GHz). Preliminary results of inspecting heat tile specimens show that increasing resolution of the measurement system is an important issue. This paper presents recent results of an investigation for the purpose of detecting anomalies such as debonds and corrosion in metal substrate in complex multi-sectioned protective heat tile specimens using a real focused 150 GHz (D-band) reflectometer and wide-band millimeter wave holography at 33-50, GHz (Q-band).
Press, Joel; Liem, Brian; Walega, David; Garfin, Steven
2013-09-15
Survey from July 2011 to April 2012 of adult patients with primary complaint of low back pain (LBP). To determine the frequency of physical examination being performed by various providers, as measured by frequency of inspection and palpation, of patients with LBP and to describe patient ratings of these examinations. The physical examination is a cornerstone of any evaluation of patients with LBP. With increasing reliance on diagnostic imaging, there is concern that patients are not being examined comprehensively, but to our knowledge, no studies have ever investigated how often the physical examination is performed in patients with LBP. Survey participants were asked to list the types of physicians that they had seen for LBP within the past 1 year and for each physician encounter to answer 2 "yes/no" questions: (1) whether they had removed their clothes or put on a gown or shorts during the examination (our proxy for inspection) and (2) whether the provider had placed his or her hands on the patient (our proxy for palpation). Subjects also provided quality ratings for each provider's physical examination. Main outcome measures included frequency of inspection and palpation and subjects' ratings of each physical examination. A total of 295 surveys were collected reflecting 696 prior physician encounters. Inspection was done in 57% of physician encounters. Across specialties, orthopedic surgeons had the highest reported rate of inspection at 72%. The worst was among chiropractors at 40%. Palpation occurred in 80% of physician encounters. Chiropractors had the highest rate of palpation at 94%. The lowest rate was among neurosurgeons at 58%. Our data suggest that approximately 43% of patient visits for LBP involved no inspection and nearly 20% without palpation. These numbers reflect a need for improvement among providers who treat patients with LBP. N/A.
Decision support methodology to establish priorities on the inspection of structures
NASA Astrophysics Data System (ADS)
Cortes, V. Juliette; Sterlacchini, Simone; Bogaard, Thom; Frigerio, Simone; Schenato, Luca; Pasuto, Alessandro
2014-05-01
For hydro-meteorological hazards in mountain areas, the regular inspection of check dams and bridges is important due to the effect of their functional status on water-sediment processes. Moreover, the inspection of these structures is time consuming for organizations due to their extensive number in many regions. However, trained citizen-volunteers can support civil protection and technical services in the frequency, timeliness and coverage of monitoring the functional status of hydraulic structures. Technicians should evaluate and validate these reports to get an index for the status of the structure. Thus, preventive actions could initiate such as the cleaning of obstructions or to pre-screen potential problems for a second level inspection. This study proposes a decision support methodology that technicians can use to assess an index for three parameters representing the functional status of the structure: a) condition of the structure at the opening of the stream flow, b) level of obstruction at the structure and c) the level of erosion in the stream bank. The calculation of the index for each parameter is based upon fuzzy logic theory to handle ranges in precision of the reports and to convert the linguistic rating scales into numbers representing the structure's status. A weighting method and multi-criteria method (Analytic Hierarchy Process- AHP and TOPSIS), can be used by technicians to combine the different ratings according to the component elements of the structure and the completeness of the reports. Finally, technicians can set decision rules based on the worst rating and a threshold for the functional indexes. The methodology was implemented as a prototype web-based tool to be tested with technicians of the Civil Protection in the Fella basin, Northern Italy. Results at this stage comprise the design and implementation of the web-based tool with GIS interaction to evaluate available reports and to set priorities on the inspection of structures. Keywords Decision-making, Multi-criteria methods, Torrent control structures, Web-based tools.
SU-E-P-20: Personnel Lead Apparel Integrity Inspection: Where We Are and What We Need?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S; Zhang, J; Anaskevich, L
Purpose: In recent years, tremendous efforts have been devoted to radiation dose reduction, especially for patients who are directly exposed to primary radiation or receive radiopharmaceuticals. Limited efforts have been focused on those personnel who are exposed to secondary radiation while fulfilling their work responsibilities associated with diagnostic imaging and image-guided interventions. Occupational exposure is compounded in daily practice and can lead to a significant radiation dose over time. Personnel lead apparel is a well-accepted engineering control to protect healthcare workers when radiation is inevitable. The question is, do we have a nationally established program to protect personnel? This studymore » is to investigate the lead apparel inspection programs among the USA. Methods: A series of surveys of state regulations, the University Health System Consortium, and federal regulations and regulations determined by accrediting bodies were conducted. The surveys were used to determine the current status of lead apparel programs regarding integrity inspections. Based on the survey results, a thorough program was proposed accordingly. Results: Of 50 states, seventeen states and Washington D.C. require lead apparel integrity inspections within their state regulations. Eleven of these states specify that the inspection is required on an annual basis. Two of these states require lead apron integrity checks to be performed semi-annually. Eleven out of the two hundred academic medical centers surveyed responded. The results show that the method (visually vs. fluoroscopy) used to conduct lead apparel integrity checks differ greatly amongst healthcare organizations. The FDA, EPA, CRCPD and NCRP require lead apparel integrity checks. However, the level of policies is different. A standard program is not well established and clearly there is a lack of standardization. Conclusion: A program led by legislative (state or federal government) and with specific frequency, methods, tracking and criteria is needed to ensure the integrity of personnel lead apparel.« less
Surface inspection system for carriage parts
NASA Astrophysics Data System (ADS)
Denkena, Berend; Acker, Wolfram
2006-04-01
Quality standards are very high in carriage manufacturing, due to the fact, that the visual quality impression is highly relevant for the purchase decision for the customer. In carriage parts even very small dents can be visible on the varnished and polished surface by observing reflections. The industrial demands are to detect these form errors on the unvarnished part. In order to meet the requirements, a stripe projection system for automatic recognition of waviness and form errors is introduced1. It bases on a modified stripe projection method using a high resolution line scan camera. Particular emphasis is put on achieving a short measuring time and a high resolution in depth, aiming at a reliable automatic recognition of dents and waviness of 10 μm on large curved surfaces of approximately 1 m width. The resulting point cloud needs to be filtered in order to detect dents. Therefore a spatial filtering technique is used. This works well on smoothly curved surfaces, if frequency parameters are well defined. On more complex parts like mudguards the method is restricted by the fact that frequencies near the define dent frequencies occur within the surface as well. To allow analysis of complex parts, the system is currently extended by including 3D CAD models into the process of inspection. For smoothly curved surfaces, the measuring speed of the prototype is mainly limited by the amount of light produced by the stripe projector. For complex surfaces the measuring speed is limited by the time consuming matching process. Currently, the development focuses on the improvement of the measuring speed.
Courtney, T K; Clancy, E A
1998-08-01
Information on the frequency and cost of OSHA enforcement penalties for musculoskeletal disorders (MSD) in the literature is limited. Such information would be of value to organizations in estimating the likelihood and financial impact of enforcement activity in their operations. This descriptive study utilized data from federal Occupational Safety and Health Administration (OSHA) inspections to examine the distribution of penalty costs arising from inspections with MSD-related citations from January 1985 to June 1994 and to estimate the probability of OSHA inspection in general and OSHA citation for MSD hazards from October 1985 to September 1993. The mean and median values of proposed penalties were $47,707 and $3600 respectively. A substantial influence of 1991 changes to the penalty structure was noted with decreasing mean and increasing median penalty values. Penalty values increased with establishment size and were higher for unplanned than for planned inspections. The probability of a federal OSHA inspection for any establishment ranged from 1:50 in 1986 to 1:100 in 1993 whereas the estimated probability of an inspection with MSD-related citations ranged from 1:167,000 in 1996 to as much as 1:38,000 during the peak of enforcement activity in 1990. The probability of an inspection with MSD citations for the largest establishments during the period was more than 1000 times greater than that for the smallest. The results of this study may be utilized by organizations seeking to demonstrate the advantages of reducing musculoskeletal morbidity in the workplace.
Damage evaluation and repair methods for prestressed concrete bridge members
NASA Astrophysics Data System (ADS)
Shanafelt, G. O.; Horn, W. B.
1980-11-01
The types of accidental damage occurring and the severity and frequency of their occurrence are summarized. Practices and equipment used for assessing damage and making repairs are presented and evaluated. Guidelines for inspection, assessing damage, and selection of repair methods are given. Methods of repair includes adding external prestress, a metal sleeve splice, and splicing broken strands or rods. The findings of this study suggest that in some instances better repair techniques should be used. The findings of this study also indicate that proper selection of repair methods may reduce the number of damaged girders presently being replaced. Plausible methods of repair requiring additional research are identified and techniques for testing are outlined.
Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection
NASA Technical Reports Server (NTRS)
Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.
2009-01-01
The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.
78 FR 18922 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... specifically invite comments on the overall regulatory, economic, environmental, and energy aspects of this..., or incorrect rigging. (iii) Repeat the high frequency eddy current (HFEC) or magnetic particle... inspection of the cam latches and latch pins for discrepancies; and an HFEC or magnetic particle inspection...
Thin Wall Pipe Ultrasonic Inspection through Paint Coating
NASA Astrophysics Data System (ADS)
Predoi, Mihai Valentin; Petre, Cristian Cătălin
Classical ultrasonic inspection of welds is currently done for plates thicker than 8 mm. The inspection of but welds in thin walled pipes has considerable implementation difficulties, due to guided waves dominating ultrasonic pulses propagation. Generation of purely symmetric modes, either torsional or longitudinal, requires a circumferential uniform distribution of transducers and dedicated inspection equipment, which are increasing the inspection costs. Moreover, if the surface is paint coated, the received signals are close to the detection level. The present work implies a single transducer, coupled to the painted surface. The proper choice of the guided mode and frequency range, allows the detection of a standard, small diameter through thickness hole. In this way, the inspection of pipe welds can use the same equipment as for thick materials, with only wedge adaptation.
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-01-01
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB. PMID:28036040
Paparo, M.; Benko, J. M.; Hareter, M.; ...
2016-06-17
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparo, M.; Benko, J. M.; Hareter, M.
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor.
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-12-28
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB.
40 CFR 282.88 - Pennsylvania State-Administered Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... actions, as well as in accordance with other statutory and regulatory provisions. (c) To retain program....C.P. Rule 2329Action of Court on Petition Pa R.C.P. Rule 2330Practice (iii) The following statutory... contaminated materials) Section 245.411Inspection frequency (insofar as the section addresses inspections by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... treatment in any part of the digestive tract. (7) Veterinary medical officer. An inspector of the Program... noncertified calves, as determined by the veterinary medical officer during ante-mortem inspection, will be...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... treatment in any part of the digestive tract. (7) Veterinary medical officer. An inspector of the Program... noncertified calves, as determined by the veterinary medical officer during ante-mortem inspection, will be...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... treatment in any part of the digestive tract. (7) Veterinary medical officer. An inspector of the Program... noncertified calves, as determined by the veterinary medical officer during ante-mortem inspection, will be...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... treatment in any part of the digestive tract. (7) Veterinary medical officer. An inspector of the Program... noncertified calves, as determined by the veterinary medical officer during ante-mortem inspection, will be...
77 FR 24355 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... cracks found in the Web pockets of the wing center section (WCS) spanwise beams. This AD requires repetitive detailed inspections and high frequency eddy current inspections for cracks of the WCS spanwise beams, and repair if necessary. We are issuing this AD to detect and correct cracking in the WCS...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... of Technical Specifications Task Force Traveler TSTF-510, Revision 2, ``Revision to Steam Generator..., Revision 2, ``Revision to Steam Generator [(SG)] Program Inspection Frequencies and Tube Sample Selection..., ``Steam Generator (SG) Program,'' Specification 5.6.7, ``Steam Generator Tube Inspection Report,'' and the...
Project #OPE-FY15-0018, January 20, 2015. The EPA OIG plans to begin preliminary research on EPA’s progress in meeting minimum inspection requirements under the RCRA at treatment, storage and disposal facilities (TSDFs).
49 CFR 234.253 - Flashing light units and lamp voltage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Flashing light units and lamp voltage. 234.253... Maintenance, Inspection, and Testing Inspections and Tests § 234.253 Flashing light units and lamp voltage. (a... proper alignment and frequency of flashes in accordance with installation specifications. (b) Lamp...
49 CFR 234.253 - Flashing light units and lamp voltage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Flashing light units and lamp voltage. 234.253... Maintenance, Inspection, and Testing Inspections and Tests § 234.253 Flashing light units and lamp voltage. (a... proper alignment and frequency of flashes in accordance with installation specifications. (b) Lamp...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... treatment in any part of the digestive tract. (7) Veterinary medical officer. An inspector of the Program... noncertified calves, as determined by the veterinary medical officer during ante-mortem inspection, will be...
O' Connell bridge inspection by means of Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Santos Assuncao, Sonia, ,, Dr
2016-04-01
Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.
Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals
Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.
2014-01-01
Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402
Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals.
Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F
2014-01-01
Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory.
Keall, Michael D; Newstead, Stuart
2013-09-01
Although previous research suggests that safety benefits accrue from periodic vehicle inspection programmes, little consideration has been given to whether the benefits are sufficient to justify the often considerable costs of such schemes. Methodological barriers impede many attempts to evaluate the overall safety benefits of periodic vehicle inspection schemes, including this study, which did not attempt to evaluate the New Zealand warrant of fitness scheme as a whole. Instead, this study evaluated one aspect of the scheme: the effects of doubling the inspection frequency, from annual to biannual, when the vehicle reaches six years of age. In particular, reductions in safety-related vehicle faults were estimated together with the value of the safety benefits compared to the costs. When merged crash data, licensing data and roadworthiness inspection data were analysed, there were estimated to be improvements in injury crash involvement rates and prevalence of safety-related faults of respectively 8% (95% CI 0.4-15%) and 13.5% (95% CI 12.8-14.2%) associated with the increase from annual to 6-monthly inspections. The wide confidence interval for the drop in crash rate shows considerably statistical uncertainty about the precise size of the drop. Even assuming that this proportion of vehicle faults prevented by doubling the inspection frequency could be maintained over the vehicle age range 7-20 years, the safety benefits are very unlikely to exceed the additional costs of the 6-monthly inspections to the motorists, valued at $NZ 500 million annually excluding the overall costs of administering the scheme. The New Zealand warrant of fitness scheme as a whole cannot be robustly evaluated using the analysis approach used here, but the safety benefits would need to be substantial--yielding an unlikely 12% reduction in injury crashes--for benefits to equal costs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Detection of small surface defects using DCT based enhancement approach in machine vision systems
NASA Astrophysics Data System (ADS)
He, Fuqiang; Wang, Wen; Chen, Zichen
2005-12-01
Utilizing DCT based enhancement approach, an improved small defect detection algorithm for real-time leather surface inspection was developed. A two-stage decomposition procedure was proposed to extract an odd-odd frequency matrix after a digital image has been transformed to DCT domain. Then, the reverse cumulative sum algorithm was proposed to detect the transition points of the gentle curves plotted from the odd-odd frequency matrix. The best radius of the cutting sector was computed in terms of the transition points and the high-pass filtering operation was implemented. The filtered image was then inversed and transformed back to the spatial domain. Finally, the restored image was segmented by an entropy method and some defect features are calculated. Experimental results show the proposed small defect detection method can reach the small defect detection rate by 94%.
Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Lai, Canhai; Sun, Xin
To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RImore » faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.« less
Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material
NASA Astrophysics Data System (ADS)
Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.
2014-02-01
Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.
Qin, Xinyan; Wu, Gongping; Fan, Fei; Ye, Xuhui; Mei, Quanjie
2018-01-01
With the growth of the national economy, there is increasing demand for electricity, which forces transmission line corridors to become structurally complicated and extend to complex environments (e.g., mountains, forests). It is a great challenge to inspect transmission line in these regions. To address these difficulties, a novel method of autonomous inspection for transmission line is proposed based on cable inspection robot (CIR) LiDAR data, which mainly includes two steps: preliminary inspection and autonomous inspection. In preliminary inspection, the position and orientation system (POS) data is used for original point cloud dividing, ground point filtering, and structured partition. A hierarchical classification strategy is established to identify the classes and positions of the abnormal points. In autonomous inspection, CIR can autonomously reach the specified points through inspection planning. These inspection targets are imaged with PTZ (pan, tilt, zoom) cameras by coordinate transformation. The feasibility and effectiveness of the proposed method are verified by test site experiments and actual line experiments, respectively. The proposed method greatly reduces manpower and improves inspection accuracy, providing a theoretical basis for intelligent inspection of transmission lines in the future. PMID:29462865
NASA Technical Reports Server (NTRS)
Anselmo, Victor J.; Gammell, Paul M.; Clark, Jerry
1987-01-01
Two proposed methods for grading beef quality based on inspection by electronic equipment: one method uses television camera to generate image of a cut of beef as customer sees it; other uses ultrasonics to inspect live animal or unsliced carcasses. Both methods show promise for automated meat inspection.
Knoeferle, Pia; Carminati, Maria Nella; Abashidze, Dato; Essig, Kai
2011-01-01
Eye-tracking findings suggest people prefer to ground their spoken language comprehension by focusing on recently seen events more than anticipating future events: When the verb in NP1-VERB-ADV-NP2 sentences was referentially ambiguous between a recently depicted and an equally plausible future clipart action, listeners fixated the target of the recent action more often at the verb than the object that hadn’t yet been acted upon. We examined whether this inspection preference generalizes to real-world events, and whether it is (vs. isn’t) modulated by how often people see recent and future events acted out. In a first eye-tracking study, the experimenter performed an action (e.g., sugaring pancakes), and then a spoken sentence either referred to that action or to an equally plausible future action (e.g., sugaring strawberries). At the verb, people more often inspected the pancakes (the recent target) than the strawberries (the future target), thus replicating the recent-event preference with these real-world actions. Adverb tense, indicating a future versus past event, had no effect on participants’ visual attention. In a second study we increased the frequency of future actions such that participants saw 50/50 future and recent actions. During the verb people mostly inspected the recent action target, but subsequently they began to rely on tense, and anticipated the future target more often for future than past tense adverbs. A corpus study showed that the verbs and adverbs indicating past versus future actions were equally frequent, suggesting long-term frequency biases did not cause the recent-event preference. Thus, (a) recent real-world actions can rapidly influence comprehension (as indexed by eye gaze to objects), and (b) people prefer to first inspect a recent action target (vs. an object that will soon be acted upon), even when past and future actions occur with equal frequency. A simple frequency-of-experience account cannot accommodate these findings. PMID:22207858
76 FR 78574 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... box and failure of the wing. This proposed AD would require repetitive high frequency eddy current..., dated August 12, 2011: Do a high frequency eddy current (HFEC) inspection to detect cracking of the...
Study of acoustic emission during mechanical tests of large flight weight tank structure
NASA Technical Reports Server (NTRS)
Mccauley, B. O.; Nakamura, Y.; Veach, C. L.
1973-01-01
A PPO-insulated, flight-weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test x-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws. For these non-verifiable emission sources, a problem still remains in correctly interpreting observed emission signals.
Breast self-examination: importance of technique in early diagnosis.
Hislop, T G; Coldman, A J; Skippen, D H
1984-01-01
Shortly after diagnosis of breast cancer 416 patients were interviewed about their use of screening procedures and the method of tumour detection. Although 72% reported that they performed breast self-examination (BSE), only 12% actually inspected and palpated their breasts monthly. BSE was not significantly associated with tumour size or involvement of the lymph nodes; however, thorough inspection was associated with smaller tumours, and careful palpation with the absence of palpable nodes. Of those who no longer or never had examined their breasts 40% reported having annual breast examinations by their physician and had significantly smaller tumours than did the others. Most of the women (86%) reported having detected their own tumours, and BSE did not significantly increase the likelihood of self-detection. The frequency of use of screening procedures was similar in a sample of women without breast cancer. PMID:6498686
Experimental investigation on frequency shifting of imperfect adhesively bonded pipe joints
NASA Astrophysics Data System (ADS)
Haiyam, F. N.; Hilmy, I.; Sulaeman, E.; Firdaus, T.; Adesta, E. Y. T.
2018-01-01
Inspection tests for any manufactured structure are compulsory in order to detect the existence of damage.It is to ensure the product integrity, reliability and to avoid further catastrophic failure. In this research, modal analysis was utilized to detect structural damage as one of the Non Destructive Testing (NDT) methods. Comparing the vibration signal of a healthy structure with a non-healthy signal was performed. A modal analysis of an adhesively bonded pipe joint was investigated with a healthy joint as a reference. The damage joint was engineered by inserting a nylon fiber, which act as an impurity at adhesive region. The impact test using hammer was utilized in this research. Identification of shifting frequency of a free supported and clamped pipe joint was performed.It was found that shifting frequency occurred to the lower side by 5%.
14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...
14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...
14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...
14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...
14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...
40 CFR 63.1366 - Monitoring and inspection requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Production § 63.1366 Monitoring and inspection requirements. (a) To provide evidence of continued compliance... shall be divided by the production rate, per process, for 12-month periods at the frequency specified in... hydrocarbon in air); and (B) Mixtures of methane in air at a concentration less than 10,000 parts per million...
40 CFR 63.1017 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Recordkeeping requirements. 63.1017... inspections as specified in § 63.1007(b)(4). (ii) Documentation of dual mechanical seal pump visual inspections as specified in § 63.1007(e)(1)(v). (iii) For the criteria as to the presence and frequency of...
Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.
2007-10-01
An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.
Johnson, Kjell; Guo, Cen; Gosink, Mark; Wang, Vicky; Hauben, Manfred
2012-12-01
A principal objective of pharmacovigilance is to detect adverse drug reactions that are unknown or novel in terms of their clinical severity or frequency. One method is through inspection of spontaneous reporting system databases, which consist of millions of reports of patients experiencing adverse effects while taking one or more drugs. For such large databases, there is an increasing need for quantitative and automated screening tools to assist drug safety professionals in identifying drug-event combinations (DECs) worthy of further investigation. Existing algorithms can effectively identify problematic DECs when the frequencies are high. However these algorithms perform differently for low-frequency DECs. In this work, we provide a method based on the multinomial distribution that identifies signals of disproportionate reporting, especially for low-frequency combinations. In addition, we comprehensively compare the performance of commonly used algorithms with the new approach. Simulation results demonstrate the advantages of the proposed method, and analysis of the Adverse Event Reporting System data shows that the proposed method can help detect interesting signals. Furthermore, we suggest that these methods be used to identify DECs that occur significantly less frequently than expected, thus identifying potential alternative indications for these drugs. We provide an empirical example that demonstrates the importance of exploring underexpected DECs. Code to implement the proposed method is available in R on request from the corresponding authors. kjell@arboranalytics.com or Mark.M.Gosink@Pfizer.com Supplementary data are available at Bioinformatics online.
Retail Deli Slicer Inspection Practices: An EHS-Net Study.
Lipcsei, Lauren E; Brown, Laura G; Hoover, E Rickamer; Faw, Brenda V; Hedeen, Nicole; Matis, Bailey; Nicholas, David; Ripley, Danny
2018-05-01
The Centers for Disease Control and Prevention (CDC) estimates that 3,000 people die in the United States each year from foodborne illness, and Listeria monocytogenes causes the third highest number of deaths. Risk assessment data indicate that L. monocytogenes contamination of particularly delicatessen meats sliced at retail is a significant contributor to human listeriosis. Mechanical deli slicers are a major source of L. monocytogenes cross-contamination and growth. In an attempt to prevent pathogen cross-contamination and growth, the U.S. Food and Drug Administration (FDA) created guidance to promote good slicer cleaning and inspection practices. The CDC's Environmental Health Specialists Network conducted a study to learn more about retail deli practices concerning these prevention strategies. The present article includes data from this study on the frequency with which retail delis met the FDA recommendation that slicers should be inspected each time they are properly cleaned (defined as disassembling, cleaning, and sanitizing the slicer every 4 h). Data from food worker interviews in 197 randomly selected delis indicate that only 26.9% of workers ( n = 53) cleaned and inspected their slicers at this frequency. Chain delis and delis that serve more than 300 customers on their busiest day were more likely to have properly cleaned and inspected slicers. Data also were collected on the frequency with which delis met the FDA Food Code provision that slicers should be undamaged. Data from observations of 685 slicers in 298 delis indicate that only 37.9% of delis ( n = 113) had slicers that were undamaged. Chain delis and delis that provide worker training were more likely to have slicers with no damage. To improve slicer practices, food safety programs and the retail food industry may wish to focus on worker training and to focus interventions on independent and smaller delis, given that these delis were less likely to properly inspect their slicers and to have undamaged slicers.
NASA Astrophysics Data System (ADS)
Chong, See Yenn; Victor, Jared J.; Todd, Michael D.
2017-04-01
In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability
NASA Technical Reports Server (NTRS)
Lingbloom, Mike S.
2008-01-01
During redesign of the Space Shuttle reusable solid rocket motor (RSRM), NASA amended the contract with ATK Launch Systems (then Morton Thiokol Inc.) with Change Order 966 to implement a contamination control and cleanliness verification method. The change order required: (1) A quantitative inspection method (2) A written record of actual contamination levels versus a known reject level (3) A method that is more sensitive than existing methods of visual and black light inspection. Black light inspection is only useful for inspection of contaminants that fluoresce near the 365 nm spectral line and is not useful for inspection of most silicones that will not produce strong fluorescence. Black light inspection conducted by a qualified inspector under controlled light is capable of detecting Conoco HD-2 grease in gross amounts and is very subjective due to operator sensitivity. Optically stimulated electron emission (OSEE), developed at the Materials and Process Laboratory at Marshall Space Flight Center (MSFC), was selected to satisfy Change Order 966. OSEE offers several important advantages over existing laboratory methods with similar sensitivity, e.g., spectroscopy and nonvolatile residue sampling, which provide turn around time, real time capability, and full coverage inspection capability. Laboratory methods require sample gathering and in-lab analysis, which sometimes takes several days to get results. This is not practical in a production environment. In addition, these methods do not offer full coverage inspection of the large components
Research on UAV Intelligent Obstacle Avoidance Technology During Inspection of Transmission Line
NASA Astrophysics Data System (ADS)
Wei, Chuanhu; Zhang, Fei; Yin, Chaoyuan; Liu, Yue; Liu, Liang; Li, Zongyu; Wang, Wanguo
Autonomous obstacle avoidance of unmanned aerial vehicle (hereinafter referred to as UAV) in electric power line inspection process has important significance for operation safety and economy for UAV intelligent inspection system of transmission line as main content of UAV intelligent inspection system on transmission line. In the paper, principles of UAV inspection obstacle avoidance technology of transmission line are introduced. UAV inspection obstacle avoidance technology based on particle swarm global optimization algorithm is proposed after common obstacle avoidance technologies are studied. Stimulation comparison is implemented with traditional UAV inspection obstacle avoidance technology which adopts artificial potential field method. Results show that UAV inspection strategy of particle swarm optimization algorithm, adopted in the paper, is prominently better than UAV inspection strategy of artificial potential field method in the aspects of obstacle avoidance effect and the ability of returning to preset inspection track after passing through the obstacle. An effective method is provided for UAV inspection obstacle avoidance of transmission line.
NASA Astrophysics Data System (ADS)
Wang, Gaochao; Tse, Peter W.; Yuan, Maodan
2018-02-01
Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.
Paparo, M.; Benko, J. M.; Hareter, M.; ...
2016-05-11
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparo, M.; Benko, J. M.; Hareter, M.
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less
Field evaluation of highway safety hardware maintenance guidelines.
DOT National Transportation Integrated Search
1987-01-01
The objective of this study was to evaluate with field tests, a procedure developed for the Federal Highway Administration for determining frequencies at which highway safety hardware needs to be inspected and repaired. The frequencies arrived at wer...
High-speed optical coherence tomography by circular interferometric ranging
NASA Astrophysics Data System (ADS)
Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.
2018-02-01
Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.
Field documentation and client presentation of IR inspections on new masonry structures
NASA Astrophysics Data System (ADS)
McMullan, Phillip C.
1991-03-01
With the adoption of American Concrete Institute's Design Standard 530 (ACI 530-88/ASCE 5-88) and Specifications (ACI 530.1-88/ASCE 6-88) by more governing bodies throughout the United States, the level and method of inspecting masonry structures is rapidly changing. These new standards set forth inspection criteria such that the Professional of Record (i.e., Architect), can determine the level of inspection based on the type and complexity of the structure being built. For example, a hospital would require considerably more inspection than a Seven-Eleven mini-market. However, the standards require that all new masonry buildings must be inspected. Infrared thermography has proven to be an effective tool to assist in the required inspections. These inspections focus on evaluating masonry for compliance with the design specifications with regard to material, structural strength and thermal performance, the use of video infrared thermography provides a thorough systematic method for inspection of structural solids and thermal integrity of masonry structures. In conducting masonry inspections, the creation of a permanent, well-documented record is valuable in avoiding potential controversy over the inspection findings. Therefore, the inspection method, verification of findings, and presentation of the inspection data are key to the successful use of infrared thermography as an inspection tool. This paper will focus on the method of inspection which TSI employs in conducting new masonry inspections. Additionally, an important component of any work is the presentation of the data. We will look at the information which is generated during this type of inspection and how that data can be converted into a usable report for the various parties involved in construction of a new masonry building.
Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy
NASA Astrophysics Data System (ADS)
Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi
2015-07-01
In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.
NASA Technical Reports Server (NTRS)
Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.
A flexible and wearable terahertz scanner
NASA Astrophysics Data System (ADS)
Suzuki, D.; Oda, S.; Kawano, Y.
2016-12-01
Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.
2003-01-01
In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.
GPR applications for geotechnical stability of transportation infrastructures
NASA Astrophysics Data System (ADS)
Benedetto, A.; Benedetto, F.; Tosti, F.
2012-09-01
Nowadays, severe meteorological events are always more frequent all over the world. This causes a strong impact on the environment such as numerous landslides, especially in rural areas. Rural roads are exposed to an increased risk for geotechnical instability. In the meantime, financial resources for maintenance are certainly decreased due to the international crisis and other different domestic factors. In this context, the best allocation of funds becomes a priority: efficiency and effectiveness of plans and actions are crucially requested. For this purpose, the correct localisation of geotechnically instable domains is strategic. In this paper, the use of Ground-Penetrating Radar (GPR) for geotechnical inspection of pavement and sub-pavement layers is proposed. A three-step protocol has been calibrated and validated to allocate efficiently and effectively the maintenance funds. In the first step, the instability is localised through an inspection at traffic speed using a 1-GHz GPR horn launched antenna. The productivity is generally about or over 300 Km/day. Data are processed offline by automatic procedures. In the second step, a GPR inspection restricted to the critical road sections is carried out using two coupled antennas. One antenna is used for top pavement inspection (1.6 GHz central frequency) and a second antenna (600 MHz central frequency) is used for sub-pavement structure diagnosis. Finally, GPR data are post-processed in the time and frequency domains to identify accurately the geometry of the instability. The case study shows the potentiality of this protocol applied to the rural roads exposed to a landslide.
NASA Technical Reports Server (NTRS)
Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.
Multi-frequency local wavenumber analysis and ply correlation of delamination damage.
Juarez, Peter D; Leckey, Cara A C
2015-09-01
Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method. Published by Elsevier B.V.
Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang
2014-03-01
We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.
Final Report Inspection of Aged/Degraded Containments Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, Dan J; Ellingwood, B R; Oland, C Barry
2005-09-01
The Inspection of Aged/Degraded Containments Program had primary objectives of (1) understanding the significant factors relating corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and liners of reinforced concrete containments; (2) providing the United States Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments, and concrete containments as limited by liner integrity; (3) providing recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containmentmore » degradation; and (4) providing technical assistance to the USNRC (as requested) related to concrete technology. Primary program accomplishments have included development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of high-frequency acoustic imaging, magnetostrictive sensor, electromagnetic acoustic transducer, and multimode guided plate wave technologies for inspection of inaccessible regions of containment metallic pressure boundaries; development of a continuum damage mechanics-based approach for structural deterioration; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion. In addition, data and information assembled under this program has been transferred to the technical community through review meetings and briefings, national and international conference participation, technical committee involvement, and publications of reports and journal articles. Appendix A provides a listing of program reports, papers, and publications; and Appendix B contains a listing of program-related presentations.« less
Precision optical device of freeform defects inspection
NASA Astrophysics Data System (ADS)
Meguellati, S.
2015-09-01
This method of optical scanning presented in this paper is used for precision measurement deformation in shape or absolute forms in comparison with a reference component form, of optical or mechanical components, on reduced surfaces area that are of the order of some mm2 and more. The principle of the method is to project the image of the source grating to palpate optically surface to be inspected, after reflection; the image of the source grating is printed by the object topography and is then projected onto the plane of reference grating for generate moiré fringe for defects detection. The optical device used allows a significant dimensional surface magnification of up to 1000 times the area inspected for micro-surfaces, which allows easy processing and reaches an exceptional nanometric imprecision of measurements. According to the measurement principle, the sensitivity for displacement measurement using moiré technique depends on the frequency grating, for increase the detection resolution. This measurement technique can be used advantageously to measure the deformations generated by the production process or constraints on functional parts and the influence of these variations on the function. The optical device and optical principle, on which it is based, can be used for automated inspection of industrially produced goods. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard; which saves time, money and accuracy. The technique has found various applications in diverse fields, from biomedical to industrial and scientific applications.
Restrepo-Agudelo, Sebastian; Roldan-Vasco, Sebastian; Ramirez-Arbelaez, Lina; Cadavid-Arboleda, Santiago; Perez-Giraldo, Estefania; Orozco-Duque, Andres
2017-08-01
The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of structural deterioration and associated airline maintenance problems
NASA Technical Reports Server (NTRS)
Henniker, H. D.; Mitchell, R. G.
1972-01-01
Airline operations involving the detection of structural deterioration and associated maintenance problems are discussed. The standard approach to the maintenance and inspection of aircraft components and systems is described. The frequency of inspections and the application of preventive maintenance practices are examined. The types of failure which airline transport aircraft encounter and the steps taken to prevent catastrophic failure are reported.
Choi, Jihee; Scharff, Robert L
2017-07-01
The increased frequency with which people are dining out coupled with an increase in the publicity of foodborne disease outbreaks has led the public to an increased awareness of food safety issues associated with food service establishments. To accommodate consumer needs, local health departments have increasingly publicized food establishments' health inspection scores. The objective of this study was to estimate the effect of the color-coded inspection score disclosure system in place since 2006 in Columbus, OH, by controlling for several confounding factors. This study incorporated cross-sectional time series data from food safety inspections performed from the Columbus Public Health Department. An ordinary least squares regression was used to assess the effect of the new inspection regime. The introduction of the new color-coded food safety inspection disclosure system increased inspection scores for all types of establishments and for most types of inspections, although significant differences were found in the degree of improvement. Overall, scores increased significantly by 1.14 points (of 100 possible). An exception to the positive results was found for inspections in response to foodborne disease complaints. Scores for these inspections declined significantly by 10.2 points. These results should be useful for both food safety researchers and public health decision makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
A single-pixel X-ray imager concept and its application to secure radiographic inspections
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.; ...
2017-07-01
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
A single-pixel X-ray imager concept and its application to secure radiographic inspections
NASA Astrophysics Data System (ADS)
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.; White, Timothy A.; Pitts, William Karl; Jarman, Kenneth D.; Seifert, Allen
2017-07-01
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixel optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. In particular, it is found that an inspection with low noise ( < 1 %) and high undersampling ( > 256 ×) exhibits high robustness and security.
Ageing airplane repair assessment program for Airbus A300
NASA Technical Reports Server (NTRS)
Gaillardon, J. M.; Schmidt, HANS-J.; Brandecker, B.
1992-01-01
This paper describes the current status of the repair categorization activities and includes all details about the methodologies developed for determination of the inspection program for the skin on pressurized fuselages. For inspection threshold determination two methods are defined based on fatigue life approach, a simplified and detailed method. The detailed method considers 15 different parameters to assess the influences of material, geometry, size location, aircraft usage, and workmanship on the fatigue life of the repair and the original structure. For definition of the inspection intervals a general method is developed which applies to all concerned repairs. For this the initial flaw concept is used by considering 6 parameters and the detectable flaw sizes depending on proposed nondestructive inspection methods. An alternative method is provided for small repairs allowing visual inspection with shorter intervals.
NASA Astrophysics Data System (ADS)
Harb, M. S.; Yuan, F. G.
2015-03-01
Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser ultrasound technique in non-contact characterization of Lamb wave dispersion and material anisotropy of composite plates using simple Snell's law method.
Some Inspection Methods for Quality Control and In-service Inspection of GLARE
NASA Astrophysics Data System (ADS)
Sinke, J.
2003-07-01
Quality control of materials and structures is an important issue, also for GLARE. During the manufacturing stage the processes and materials should be monitored and checked frequently in order to obtain a qualified product. During the operation of the aircraft, frequent monitoring and inspections are performed to maintain the quality at a prescribed level. Therefore, in-service inspection methods are applied, and when necessary repair activities are conducted. For the quality control of the GLARE panels and components during manufacturing, the C-scan method proves to be an effective tool. For in-service inspection the Eddy Current Method is one of the suitable options. In this paper a brief overview is presented of both methods and their application on GLARE products.
Automated Inspection And Precise Grinding Of Gears
NASA Technical Reports Server (NTRS)
Frint, Harold; Glasow, Warren
1995-01-01
Method of precise grinding of spiral bevel gears involves automated inspection of gear-tooth surfaces followed by adjustments of machine-tool settings to minimize differences between actual and nominal surfaces. Similar to method described in "Computerized Inspection of Gear-Tooth Surfaces" (LEW-15736). Yields gears of higher quality, with significant reduction in manufacturing and inspection time.
Methods and apparatus for multi-parameter acoustic signature inspection
Diaz, Aaron A [Richland, WA; Samuel, Todd J [Pasco, WA; Valencia, Juan D [Kennewick, WA; Gervais, Kevin L [Richland, WA; Tucker, Brian J [Pasco, WA; Kirihara, Leslie J [Richland, WA; Skorpik, James R [Kennewick, WA; Reid, Larry D [Benton City, WA; Munley, John T [Benton City, WA; Pappas, Richard A [Richland, WA; Wright, Bob W [West Richland, WA; Panetta, Paul D [Richland, WA; Thompson, Jason S [Richland, WA
2007-07-24
A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.
Compliance with OSHA's respiratory protection standard in hospitals.
Krishnan, U; Janicak, C A
1999-01-01
This study examined the incidence of violations of occupational safety and health standards for respiratory protection in hospitals. Data from Occupational Safety and Health Administration inspections that occurred in hospitals and resulted in violations of the respiratory protection standards were examined. From July 1, 1990, to June 30, 1995, the complaint rates for hazards in the workplace significantly increased. During 1990-1991, tuberculosis hazard complaint inspections rates were approximately 5 complaints per 1000 complaint inspections conducted. During 1994-1995, tuberculosis hazard complaint inspections rates were approximately 76 complaints per 1000 complaint inspections conducted, representing an increase of over 15 times. During this same period, the percentage of respiratory protection violations in relation to all violations doubled. Increased employee awareness of the hazards and current safety laws could have contributed to the increased frequency of employee complaints, leading to increases in inspections, violations, and fines. Employers must adhere to the current safety and health requirements specifically as they pertain to respiratory hazards and tuberculosis.
7 CFR 51.2947 - Method of inspection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Method of inspection. 51.2947 Section 51.2947 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... STANDARDS) United States Standards for Grades of Walnuts in the Shell General § 51.2947 Method of inspection...
Comparisons of NDT Methods to Inspect Cork and Cork filled Epoxy Bands
NASA Technical Reports Server (NTRS)
Lingbloom, Mike
2007-01-01
Sheet cork and cork filled epoxy provide external insulation for the Reusable Solid Rocket Motor (RSRM) on the Nation's Space Transportation System (STS). Interest in the reliability of the external insulation bonds has increased since the Columbia incident. A non-destructive test (NDT) method that will provide the best inspection for these bonds has been under evaluation. Electronic Shearography has been selected as the primary NDT method for inspection of these bond lines in the RSRM production flow. ATK Launch Systems Group has purchased an electronic shearography system that includes a vacuum chamber that is used for evaluation of test parts and custom vacuum windows for inspection of full-scale motors. Although the electronic shearography technology has been selected as the primary method for inspection of the external bonds, other technologies that exist continue to be investigated. The NASA/Marshall Space Flight Center (MSFC) NDT department has inspected several samples for comparison with electronic shearography with various inspections systems in their laboratory. The systems that were evaluated are X-ray backscatter, terahertz imaging, and microwave imaging. The samples tested have some programmed flaws as well as some flaws that occurred naturally during the sample making process. These samples provide sufficient flaw variation for the evaluation of the different inspection systems. This paper will describe and compare the basic functionality, test method and test results including dissection for each inspection technology.
Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified here using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how such an inspection would be made which can maintain high robustness and security. In particular, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
Software Formal Inspections Guidebook
NASA Technical Reports Server (NTRS)
1993-01-01
The Software Formal Inspections Guidebook is designed to support the inspection process of software developed by and for NASA. This document provides information on how to implement a recommended and proven method for conducting formal inspections of NASA software. This Guidebook is a companion document to NASA Standard 2202-93, Software Formal Inspections Standard, approved April 1993, which provides the rules, procedures, and specific requirements for conducting software formal inspections. Application of the Formal Inspections Standard is optional to NASA program or project management. In cases where program or project management decide to use the formal inspections method, this Guidebook provides additional information on how to establish and implement the process. The goal of the formal inspections process as documented in the above-mentioned Standard and this Guidebook is to provide a framework and model for an inspection process that will enable the detection and elimination of defects as early as possible in the software life cycle. An ancillary aspect of the formal inspection process incorporates the collection and analysis of inspection data to effect continual improvement in the inspection process and the quality of the software subjected to the process.
Payami, Haydeh; Kay, Denise M; Zabetian, Cyrus P; Schellenberg, Gerard D; Factor, Stewart A; McCulloch, Colin C
2010-01-01
Age-related variation in marker frequency can be a confounder in association studies, leading to both false-positive and false-negative findings and subsequently to inconsistent reproducibility. We have developed a simple method, based on a novel extension of moving average plots (MAP), which allows investigators to inspect the frequency data for hidden age-related variations. MAP uses the standard case-control association data and generates a birds-eye view of the frequency distributions across the age spectrum; a picture in which one can see if, how, and when the marker frequencies in cases differ from that in controls. The marker can be specified as an allele, genotype, haplotype, or environmental factor; and age can be age-at-onset, age when subject was last known to be unaffected, or duration of exposure. Signature patterns that emerge can help distinguish true disease associations from spurious associations due to age effects, age-varying associations from associations that are uniform across all ages, and associations with risk from associations with age-at-onset. Utility of MAP is illustrated by application to genetic and epidemiological association data for Alzheimer's and Parkinson's disease. MAP is intended as a descriptive method, to complement standard statistical techniques. Although originally developed for age patterns, MAP is equally useful for visualizing any quantitative trait.
Fujiwara, Hisako; Greiner, Hansel M.; Lee, Ki Hyeong; Holland-Bouley, Katherine D.; Seo, Joo Hee; Arthur, Todd; Mangano, Francesco T.; Leach, James L.; Rose, Douglas F.
2012-01-01
Summary Purpose Intracranial electroencephalography (EEG) is performed as part of an epilepsy surgery evaluation when noninvasive tests are incongruent or the putative seizure-onset zone is near eloquent cortex. Determining the seizure-onset zone using intracranial EEG has been conventionally based on identification of specific ictal patterns with visual inspection. High-frequency oscillations (HFOs, >80 Hz) have been recognized recently as highly correlated with the epileptogenic zone. However, HFOs can be difficult to detect because of their low amplitude. Therefore, the prevalence of ictal HFOs and their role in localization of epileptogenic zone on intracranial EEG are unknown. Methods We identified 48 patients who underwent surgical treatment after the surgical evaluation with intracranial EEG, and 44 patients met criteria for this retrospective study. Results were not used in surgical decision making. Intracranial EEG recordings were collected with a sampling rate of 2,000 Hz. Recordings were first inspected visually to determine ictal onset and then analyzed further with time-frequency analysis. Forty-one (93%) of 44 patients had ictal HFOs determined with time-frequency analysis of intracranial EEG. Key Findings Twenty-two (54%) of the 41 patients with ictal HFOs had complete resection of HFO regions, regardless of frequency bands. Complete resection of HFOs (n = 22) resulted in a seizure-free outcome in 18 (82%) of 22 patients, significantly higher than the seizure-free outcome with incomplete HFO resection (4/19, 21%). Significance Our study shows that ictal HFOs are commonly found with intracranial EEG in our population largely of children with cortical dysplasia, and have localizing value. The use of ictal HFOs may add more promising information compared to interictal HFOs because of the evidence of ictal propagation and followed by clinical aspect of seizures. Complete resection of HFOs is a favorable prognostic indicator for surgical outcome. PMID:22905734
Total focusing method (TFM) robustness to material deviations
NASA Astrophysics Data System (ADS)
Painchaud-April, Guillaume; Badeau, Nicolas; Lepage, Benoit
2018-04-01
The total focusing method (TFM) is becoming an accepted nondestructive evaluation method for industrial inspection. What was a topic of discussion in the applied research community just a few years ago is now being deployed in critical industrial applications, such as inspecting welds in pipelines. However, the method's sensitivity to unexpected parametric changes (material and geometric) has not been rigorously assessed. In this article, we investigate the robustness of TFM in relation to unavoidable deviations from modeled nominal inspection component characteristics, such as sound velocities and uncertainties about the parts' internal and external diameters. We also review TFM's impact on the standard inspection modes often encountered in industrial inspections, and we present a theoretical model supported by empirical observations to illustrate the discussion.
Wavelet-based adaptive thresholding method for image segmentation
NASA Astrophysics Data System (ADS)
Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl
2001-05-01
A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.
A new measurement method of coatings thickness based on lock-in thermography
NASA Astrophysics Data System (ADS)
Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao
2016-05-01
Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.
Fixtureless nonrigid part inspection using depth cameras
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming
2016-10-01
In automobile industry, flexible thin shell parts are used to cover car body. Such parts could have a different shape in a free state than the design model due to dimensional variation, gravity loads and residual strains. Special inspection fixtures are generally indispensable for geometric inspection. Recently, some researchers have proposed fixtureless nonridged inspect methods using intrinsic geometry or virtual spring-mass system, based on some assumptions about deformation between Free State shape and nominal CAD shape. In this paper, we propose a new fixtureless method to inspect flexible parts with a depth camera, which is efficient and low computational complexity. Unlike traditional method, we gather two point cloud set of the manufactured part in two different states, and make correspondences between them and one of them to the CAD model. The manufacturing defects can be derived from the correspondences. Finite element method (FEM) disappears in our method. Experimental evaluation of the proposed method is presented.
Automated Telerobotic Inspection Of Surfaces
NASA Technical Reports Server (NTRS)
Balaram, J.; Prasad, K. Venkatesh
1996-01-01
Method of automated telerobotic inspection of surfaces undergoing development. Apparatus implementing method includes video camera that scans over surfaces to be inspected, in manner of mine detector. Images of surfaces compared with reference images to detect flaws. Developed for inspecting external structures of Space Station Freedom for damage from micrometeorites and debris from prior artificial satellites. On Earth, applied to inspection for damage, missing parts, contamination, and/or corrosion on interior surfaces of pipes or exterior surfaces of bridges, towers, aircraft, and ships.
NASA Technical Reports Server (NTRS)
Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.
2005-01-01
The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.
WELDSMART: A vision-based expert system for quality control
NASA Technical Reports Server (NTRS)
Andersen, Kristinn; Barnett, Robert Joel; Springfield, James F.; Cook, George E.
1992-01-01
This work was aimed at exploring means for utilizing computer technology in quality inspection and evaluation. Inspection of metallic welds was selected as the main application for this development and primary emphasis was placed on visual inspection, as opposed to other inspection methods, such as radiographic techniques. Emphasis was placed on methodologies with the potential for use in real-time quality control systems. Because quality evaluation is somewhat subjective, despite various efforts to classify discontinuities and standardize inspection methods, the task of using a computer for both inspection and evaluation was not trivial. The work started out with a review of the various inspection techniques that are used for quality control in welding. Among other observations from this review was the finding that most weld defects result in abnormalities that may be seen by visual inspection. This supports the approach of emphasizing visual inspection for this work. Quality control consists of two phases: (1) identification of weld discontinuities (some of which may be severe enough to be classified as defects), and (2) assessment or evaluation of the weld based on the observed discontinuities. Usually the latter phase results in a pass/fail judgement for the inspected piece. It is the conclusion of this work that the first of the above tasks, identification of discontinuities, is the most challenging one. It calls for sophisticated image processing and image analysis techniques, and frequently ad hoc methods have to be developed to identify specific features in the weld image. The difficulty of this task is generally not due to limited computing power. In most cases it was found that a modest personal computer or workstation could carry out most computations in a reasonably short time period. Rather, the algorithms and methods necessary for identifying weld discontinuities were in some cases limited. The fact that specific techniques were finally developed and successfully demosntrated to work illustrates that the general approach taken here appears to be promising for commercial development of computerized quality inspection systems. Inspection based on these techniques may be used to supplement or substitute more elaborate inspection methods, such as x-ray inspections.
Microwave NDE of impact damaged fiberglass and elastomer layered composites
NASA Astrophysics Data System (ADS)
Greenawald, E. C.; Levenberry, L. J.; Qaddoumi, N.; McHardy, A.; Zoughi, R.; Poranski, C. F.
2000-05-01
Layered composites have been proposed as advanced materials for future use in large naval sonar domes. Unlike today's steel/rubber composite domes, such materials promise engineered acoustic properties and less costly resin-transfer fabrication methods. The development and deployment of these large and complex composite structures will result in challenging NDE requirements for both manufacturing quality assurance and in-service needs. Among the anticipated in-service requirements is the detection and characterization of the impact damage associated with striking a submerged object at sea. A one-sided inspection method is desired, preferably applicable in the underwater environment. In this paper, we present preliminary microwave NDE results from impact test coupons of a proposed thick FRP/elastomer/FRP "sandwich" composite. The coupons were scanned using a near-field microwave probe that responds to the composite's dielectric properties. The unprocessed scan data was displayed in an image format to reveal damaged areas. Results are compared with those from x-ray backscatter imaging and ultrasonic testing, and are verified by destructive analysis of the coupons. The difficulties posed by the application are discussed, as are the operating principles and advantages of the microwave methods. The importance of optimizing inspection parameters such as frequency and standoff distance is emphasized for future work.
A study on the seismic source parameters for earthquakes occurring in the southern Korean Peninsula
NASA Astrophysics Data System (ADS)
Rhee, H. M.; Sheen, D. H.
2015-12-01
We investigated the characteristics of the seismic source parameters of the southern part of the Korean Peninsula for the 599 events with ML≥1.7 from 2001 to 2014. A large number of data are carefully selected by visual inspection in the time and frequency domains. The data set consist of 5,093 S-wave trains on three-component seismograms recorded at broadband seismograph stations which have been operating by the Korea Meteorological Administration and the Korea Institute of Geoscience and Mineral Resources. The corner frequency, stress drop, and moment magnitude of each event were measured by using the modified method of Jo and Baag (2001), based on the methods of Snoke (1987) and Andrews (1986). We found that this method could improve the stability of the estimation of source parameters from S-wave displacement spectrum by an iterative process. Then, we compared the source parameters with those obtained from previous studies and investigated the source scaling relationship and the regional variations of source parameters in the southern Korean Peninsula.
Feng, Qingshan; Li, Rui; Nie, Baohua; Liu, Shucong; Zhao, Lianyu; Zhang, Hong
2016-01-01
Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL) inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT) inspection and remote field eddy current (RFDC) inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology. PMID:28036016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparó, M.; Benkő, J. M.; Hareter, M.
A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT . We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges)more » were found in the 5–21 d{sup −1} region where the pairs of the sequences are shifted (between 0.5 and 0.59 d{sup −1}) by twice the value of the estimated rotational splitting frequency (0.269 d{sup −1}). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d{sup −1}) are in better agreement with the sum of a possible 1.710 d{sup −1} large separation and two or one times, respectively, the value of the rotational frequency.« less
2017-01-01
Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied. PMID:29283430
Katunin, Andrzej
2017-12-28
Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied.
Transducer Modules for Dry-Coupled Ultrasonic Inspection of Aircraft Structures
NASA Astrophysics Data System (ADS)
Komsky, Igor N.
2004-02-01
Several types of transducer modules have been developed at Northwestern University to overcome the problems that are associated with the application of liquid or gel couplants. The modules deploy polymer films to transmit the ultrasound through a dry interface. These films are very flexible, so even with a low pressure they can be adapted to the irregular inspection surfaces. The dry-coupled transducer modules may be used for transmission and reception of both longitudinal and transverse ultrasonic waves in the MHz frequency range. The prototype modules have been integrated with the portable ultrasonic inspection units and tested on a number of aircraft structures.
NASA Astrophysics Data System (ADS)
Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.
2009-03-01
A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.
Modeling of pulse-echo inspections of multi-layer panels containing delaminations
NASA Astrophysics Data System (ADS)
Richter, Nathaniel Lawrence
To meet the needs of counter insurgency operations the armor of tanks need to be lighter. This is accomplished by using a combination of materials: metals, composites, and ceramics. This multi-material composite armor using any combination of the above materials will need to be inspected for manufacturing error, shipping damage, and combat damage. Nondestructive inspection, particularly ultrasonic inspection, has a long history of successfully inspecting thick composite structures. To more easily develop inspection plans for many layered composites a computational model would be of use. A model of this type would need to have the ability to account for multiple material types and flaws that are larger than the beam size. Also, as a result of armor thickness any model would need to consider attenuation and effects of focused transducers. This was accomplishing by extending the Thompson-Gray Measurement Model for use with multiple layers at normal incidence to the transducer and large planar defects parallel to the layers. Material values of the armor and the characteristics of the transducers were determined for use in the model. The model results are compared to experimentally collected data to show agreement. The model is then used to determine the requirements of a new inspection plan through varying the frequency and focal length of the transducers. The defect reflection amplitudes for 5 MHz with the focal lengths in water of 7.5, 8.5, and 9.5 inches are 0.55178, 0.75270, and 0.44836. The same for 10 MHz are 0.12474, 0.21425, and 0.10637. The 8.5 in focal length also is the equivilent thickness in water for the material leading to the defect interface. This focal length would, from theory, cause the greatest amplitude from the defect. This is supported by the results in that the highest amplitude occurs at 8.5 inches for both sets of frequencies. It is also evident that the response at 5 MHz is greater than that at 10 MHz. As such, the 5 MHz transducer with an 8.5 inch focal length is nominal for this inspection.
High frequency copolymer ultrasonic transducer array of size-effective elements
NASA Astrophysics Data System (ADS)
Decharat, Adit; Wagle, Sanat; Habib, Anowarul; Jacobsen, Svein; Melandsø, Frank
2018-02-01
A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform.
NASA Astrophysics Data System (ADS)
Imperiale, Alexandre; Chatillon, Sylvain; Darmon, Michel; Leymarie, Nicolas; Demaldent, Edouard
2018-04-01
The high frequency models gathered in the CIVA software allow fast computations and provide satisfactory quantitative predictions in a wide range of situations. However, the domain of validity of these models is limited since they do not accurately predict the ultrasound response in configurations involving subwavelength complex phenomena. In addition, when modelling backwall breaking defects inspection, an important challenge remains to capture the propagation of the creeping waves that are generated at the critical angle. Hybrid models combining numerical and asymptotic methods have already been shown to be an effective strategy to overcome these limitations in 2D [1]. However, 3D simulations remain a crucial issue for industrial applications because of the computational cost of the numerical solver. A dedicated three dimensional high order finite element model combined with a domain decomposition method has been recently proposed to tackle 3D limitations [2]. In this communication, we will focus on the specific case of planar backwall breaking defects, with an adapted coupling strategy in order to efficiently model the propagation of creeping waves. Numerical and experimental validations will be proposed on various configurations.
NASA Astrophysics Data System (ADS)
Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela
2016-02-01
The 2015 World Federation of NDE Centers (WFNDEC) eddy current benchmark problem involves the inspection of two EDM notches placed at the edge of a conducting plate with a pancake coil that runs parallel to the plate's edge line. Experimental data consists of impedance variation measured with a precision LCR bridge as a XY scanner moves the coil. The authors are pleased to present the numerical results obtained with commercial FEM packages (OPERA 3-D). Values of electrical resistance and inductive reactance variation between base material and the region around the notch are plotted as function of the coil displacement over the plate. The calculations were made for frequencies of 1 kHz and 10 kHz and agreement between experimental and numerical results are excellent for all inspection conditions. Explanations are made about how the impedance is calculated as well as pros and cons of the presented methods.
Automated optical inspection and image analysis of superconducting radio-frequency cavities
NASA Astrophysics Data System (ADS)
Wenskat, M.
2017-05-01
The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97 % and the positive predictive value (PPV) 99 % within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ = -0.93 with a significance of 6 σ between an obtained surface variable and the maximal accelerating field was found.
2017-01-05
AFRL-AFOSR-JP-TR-2017-0002 Advanced Computational Methods for Optimization of Non-Periodic Inspection Intervals for Aging Infrastructure Manabu...Computational Methods for Optimization of Non-Periodic Inspection Intervals for Aging Infrastructure 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386...UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report for the project titled ’Advanced Computational Methods for Optimization of
1978-04-01
3 1.7 Production Rate Change Time . . . . 3 1.8 Time of Fatigue Test Start . ..... 3 1.9 Fatigue Test Acceleration Factor . 3 1.10 Corrosion...simulation logic. SAIFE accounts for the following factors : (1) aircraft design analysis; (2) component and full-scale fatigue testing; (3) production ...reliability; production , servi ce,Information Service, Springfield, and corrosion defects; crack or corrosi on Virginia 22151 detection probability; crack
Technical and Management Support for the Gun Weapon System Replacement Program,
1980-08-01
initiate data retrieval via telecommunications by polling each respective NAVSEACEN as to how many inspections are currently in the system. NOSIH uses a DATA...As previously discussed, NOSIH would control the frequency of data exchange by polling the NAVSEACENs regarding how many inspections are available and...OrdAlts be available? What activities will be responsible for the installations? How will the ships’ forces be indoctrinated regarding operation and
Ease of identifying words degraded by visual noise.
Barber, P; de la Mahotière, C
1982-08-01
A technique is described for investigating word recognition involving the superimposition of 'noise' on the visual target word. For this task a word is printed in the form of letters made up of separate elements; noise consists of additional elements which serve to reduce the ease whereby the words may be recognized, and a threshold-like measure can be obtained in terms of the amount of noise. A word frequency effect was obtained for the noise task, and for words presented tachistoscopically but in conventional typography. For the tachistoscope task, however, the frequency effect depended on the method of presentation. A second study showed no effect of inspection interval on performance on the noise task. A word-frequency effect was also found in a third experiment with tachistoscopic exposure of the noise task stimuli in undegraded form. The question of whether common processes are drawn on by tasks entailing different ways of varying ease of recognition is addressed, and the suitability of different tasks for word recognition research is discussed.
Sushko, V O; Nezgovorova, G A; Degtjarova, L V; Kolosynska, O O; Gromadska, V M
2015-12-01
Аim: The determination of morphological features of stomach and duodenum mucous of membrane (MM) damage at a personnel that works in radiation hazard conditions at the object of "Shelter" of Chornobyl NPP (OS) by the endoscopic monitoring with biopsy material inspection from a gastro-duodenal zone on the stages of check - in (InC) and the special medical control (SpC). the complex clinical-endoscopic and morphological examination with the biopsy of MM of stomach and duodenum in 126 workers of OS (man in the age from 20 to 59) was carried out. Doses of external radiation exposure were from 0,14 to 79,6 mSv, доза internal radiation exposure were from 0,1 to 3 mSv/Results: For the personnel of OS contract organisations differently directed pathomorphological changes of MM at InC and increase of frequency of their exposure at an inspection during SC, that generally correspond to chronic H.pylori-associated pangastritis with violation of microcirculation and trophism, disregeneration changes of epithelial layer. for the personnel of contract organizations, which participated in radiation hazard works on ОS a presence of chronic H.pylori-associated pangastritis with the increase of frequency of atrophic changes of MM (nonmetaplastic or metaplastic type) and development of erosive-ulcerous defects of gastro-duodenal zone was founded out.For workers, who had previous influence of ionizing irradiation the greater frequency of disregeneration (hyperplasia / intestinal metaplasia) changes of epithelium that accordingly promotes the risk of neoplasmes transformations was clarified.Providing of EGDFS (at a necessity with the biopsy of MM) is at InC and next stages of medical control for personnel, that executes radiation hazard works on ОS is the highly informative evidential and necessary method of inspection for determination of form and degree of pathological changes of overhead departments of gastrointestinal tract for warning of progress of disease and development of complications, maintenance of workers health and workability. V. O. Sushko, G. A. Nezgovorova, L. V. Degtjarova, O. O.Kolosynska, V. M.Gromadska.
Characterization of Developer Application Methods Used in Fluorescent Penetrant Inspection
NASA Astrophysics Data System (ADS)
Brasche, L. J. H.; Lopez, R.; Eisenmann, D.
2006-03-01
Fluorescent penetrant inspection (FPI) is the most widely used inspection method for aviation components seeing use for production as well as an inservice inspection applications. FPI is a multiple step process requiring attention to the process parameters for each step in order to enable a successful inspection. A multiyear program is underway to evaluate the most important factors affecting the performance of FPI, to determine whether existing industry specifications adequately address control of the process parameters, and to provide the needed engineering data to the public domain. The final step prior to the inspection is the application of developer with typical aviation inspections involving the use of dry powder (form d) usually applied using either a pressure wand or dust storm chamber. Results from several typical dust storm chambers and wand applications have shown less than optimal performance. Measurements of indication brightness and recording of the UVA image, and in some cases, formal probability of detection (POD) studies were used to assess the developer application methods. Key conclusions and initial recommendations are provided.
76 FR 9495 - Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT-802A Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
...-18, which requires you to repetitively inspect (using the eddy current method) the two outboard... through 0101 and AT-802A-0092 through 0101: To perform, using the eddy current method, two inspections at... through 0178 and AT-802A-0102 through 0178 to perform using the eddy current method, two inspections at 5...
NASA Astrophysics Data System (ADS)
Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca
2012-12-01
Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor nuisance caused by a single source when other odors are present, because only the most unpleasant odor is reported. We conclude that these two assessment methods provide reasonable estimates of odor nuisance.
Emerging nondestructive inspection methods for aging aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, A; Dahlke, L; Gieske, J
This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with amore » discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.« less
A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces.
Sun, Zhenguo; Cai, Dong; Zou, Cheng; Zhang, Wenzeng; Chen, Qiang
2016-06-23
A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB) technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
Review of progress in magnetic particle inspection
NASA Astrophysics Data System (ADS)
Eisenmann, David J.; Enyart, Darrel; Lo, Chester; Brasche, Lisa
2014-02-01
Magnetic particle inspection (MPI) has been widely utilized for decades, and sees considerable use in the aerospace industry with a majority of the steel parts being inspected with MPI at some point in the lifecycle. Typical aircraft locations inspected are landing gear, engine components, attachment hardware, and doors. In spite of its numerous applications the method remains poorly understood, and there are many aspects of that method which would benefit from in-depth study. This shortcoming is due to the fact that MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To promote understanding of the intricate method issues that affect sensitivity, or to assist with the revision of industry specifications and standards, research studies will be prioritized through the guidance of a panel of industry experts, using an approach which has worked successfully in the past to guide fluorescent penetrant inspection (FPI) research efforts.
Ultrasonic inspection of carbon fiber reinforced plastic by means of sample-recognition methods
NASA Technical Reports Server (NTRS)
Bilgram, R.
1985-01-01
In the case of carbon fiber reinforced plastic (CFRP), it has not yet been possible to detect nonlocal defects and material degradation related to aging with the aid of nondestructive inspection method. An approach for overcoming difficulties regarding such an inspection involves an extension of the ultrasonic inspection procedure on the basis of a use of signal processing and sample recognition methods. The basic concept involved in this approach is related to the realization that the ultrasonic signal contains information regarding the medium which is not utilized in conventional ultrasonic inspection. However, the analytical study of the phyiscal processes involved is very complex. For this reason, an empirical approach is employed to make use of the information which has not been utilized before. This approach uses reference signals which can be obtained with material specimens of different quality. The implementation of these concepts for the supersonic inspection of CFRP laminates is discussed.
NASA Astrophysics Data System (ADS)
di Maio, Rosa; Meola, Carosena; Fedi, Maurizio; Carlomagno, Giovanni Maria
2010-05-01
An integration of high-resolution non-destructive techniques is presented for the inspection and evaluation of ancient architectonic structures. Infrared thermography (IRT) represents a valuable tool for nondestructive evaluation of architectonic structures and artworks because it is capable of giving indications about most of the degradation sources of artworks and buildings of both historical interest and civil use. In particular, it is possible to detect cracks, disbondings, alteration of material consistency, etc. Indeed, by choosing the most adequate thermographic technique, it is possible to monitor the conservation state of artworks in time and to detect the presence of many types of defects (e.g., voids, cracks, disbondings, etc.) in different types of materials (e.g., concrete, masonry structures, bronze, etc.). The main advantages of infrared thermography when dealing with precious artworks may be summarized with three words: non-contact, non-invasive, and two-dimensionality. It is possible to inspect either a large surface such as the facade of a palace, or a very small surface of only few square millimetres. Conversely, the inspection depth is quite small; generally, of the order of centimetres. However, as demonstrated in previous work, IRT well matches with electric-and electromagnetic-type geophysical methods to characterize the overlapping zone from low-to-high depth in masonry structures. In particular, the use of high-frequency electromagnetic techniques, such as the ground penetrating radar (GPR), permits to reach investigation depths of some ten of centimetres by choosing appropriate frequencies of the transmitted electromagnetic signal. In the last decade a large utilisation of the GPR methodology to non-destructive analysis of engineering and architectural materials and structures has been experienced. This includes diverse features, such as definition of layer thickness, characterisation of different constructive materials, identification of voids and/or degraded zones, water content mapping, location of reinforcing bars and metal elements in concrete structures. The attention of this work is focused on the integration of both techniques for inspection of architectonic structures. First, an integration of techniques is performed in laboratory by considering an ad hoc specimen with insertion of anomalies. Then, the techniques are used for the inspection in situ of some important Italian archaeological sites, such as Pompei (Naples) and Nora (Cagliari). In the first site, the exploration is devoted to the analysis of wall decoration of the architectonical complex of Villa Imperiale with the aim to support the hypothesis that attributes the Villa to Imperial property as well as to evaluate the state of conservation of frescoes and underneath structure. As main findings, the applied techniques allows for detection of hidden previous decorative layers and for discrimination of different types of paint used as well as for identification of areas damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials. In the archaeological area of Nora, instead, the prospecting is devised to the evaluation of the state of degradation of two significant buildings of the ancient site: the temple and the theatre. Due to the very high horizontal and vertical resolution of the performed surveys, detailed physical anomaly maps of the investigated structures are obtained. Large portions of the masonry walls appear interested by decomposition of the mortar binding the stone blocks, which sometimes propagates along the whole stone wall. The information coming from a joint interpretation of IRT and GPR data allows detailed 3D images of the two investigated buildings, which are useful for future restoration planning.
7 CFR 75.7 - Inspection in accordance with methods prescribed or approved.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Inspection in accordance with methods prescribed or approved. 75.7 Section 75.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...
7 CFR 75.7 - Inspection in accordance with methods prescribed or approved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Inspection in accordance with methods prescribed or approved. 75.7 Section 75.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...
7 CFR 75.7 - Inspection in accordance with methods prescribed or approved.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Inspection in accordance with methods prescribed or approved. 75.7 Section 75.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...
7 CFR 75.7 - Inspection in accordance with methods prescribed or approved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Inspection in accordance with methods prescribed or approved. 75.7 Section 75.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...
7 CFR 75.7 - Inspection in accordance with methods prescribed or approved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Inspection in accordance with methods prescribed or approved. 75.7 Section 75.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...
Integrated light maintenance and inspection system for high-mast poles.
DOT National Transportation Integrated Search
2005-01-01
Virginia highway high-mast light poles must be inspected periodically for structural defects to prevent failures. The visual inspection methods currently used include use of binoculars and telescopes and up-close inspection with bucket trucks. These ...
NASA Astrophysics Data System (ADS)
Zhang, Fan; Liu, Pinkuan
2018-04-01
In order to improve the inspection precision of the H-drive air-bearing stage for wafer inspection, in this paper the geometric error of the stage is analyzed and compensated. The relationship between the positioning errors and error sources are initially modeled, and seven error components are identified that are closely related to the inspection accuracy. The most effective factor that affects the geometric error is identified by error sensitivity analysis. Then, the Spearman rank correlation method is applied to find the correlation between different error components, aiming at guiding the accuracy design and error compensation of the stage. Finally, different compensation methods, including the three-error curve interpolation method, the polynomial interpolation method, the Chebyshev polynomial interpolation method, and the B-spline interpolation method, are employed within the full range of the stage, and their results are compared. Simulation and experiment show that the B-spline interpolation method based on the error model has better compensation results. In addition, the research result is valuable for promoting wafer inspection accuracy and will greatly benefit the semiconductor industry.
49 CFR 213.119 - Continuous welded rail (CWR); plan contents.
Code of Federal Regulations, 2012 CFR
2012-10-01
... repairs, in-track welding, and in conjunction with adjustments made in the area of tight track, a track... frequency identified in paragraph (h)(6)(i) of this section, provided that: (A) All CWR joints have been... determining the frequency of inspections under paragraph (h)(6)(i) of this section. (iv) All CWR joints that...
49 CFR 213.119 - Continuous welded rail (CWR); plan contents.
Code of Federal Regulations, 2014 CFR
2014-10-01
... repairs, in-track welding, and in conjunction with adjustments made in the area of tight track, a track... frequency identified in paragraph (h)(6)(i) of this section, provided that: (A) All CWR joints have been... determining the frequency of inspections under paragraph (h)(6)(i) of this section. (iv) All CWR joints that...
49 CFR 213.119 - Continuous welded rail (CWR); plan contents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... repairs, in-track welding, and in conjunction with adjustments made in the area of tight track, a track... frequency identified in paragraph (h)(6)(i) of this section, provided that: (A) All CWR joints have been... determining the frequency of inspections under paragraph (h)(6)(i) of this section. (iv) All CWR joints that...
NASA Astrophysics Data System (ADS)
Bakhri, S.; Sumarno, E.; Himawan, R.; Akbar, T. Y.; Subekti, M.; Sunaryo, G. R.
2018-02-01
Three research reactors owned by BATAN have been more than 25 years. Aging of (Structure, System and Component) SSC which is mainly related to mechanical causes become the most important issue for the sustainability and safety operation. Acoustic Emission (AE) is one of the appropriate and recommended methods by the IAEA for inspection as well as at the same time for the monitoring of mechanical SSC related. However, the advantages of AE method in detecting the acoustic emission both for the inspection and the online monitoring require a relatively complex measurement system including hardware software system for the signal detection and analysis purposes. Therefore, aim of this work was to develop an AE system based on an embedded system which capable for doing both the online monitoring and inspection of the research reactor’s integrity structure. An embedded system was selected due to the possibility to install the equipment on the field in extreme environmental condition with capability to store, analyses, and send the required information for further maintenance and operation. The research was done by designing the embedded system based on the Field Programmable Gate Array (FPGA) platform, because of their execution speed and system reconfigurable opportunities. The AE embedded system is then tested to identify the AE source location and AE characteristic under tensile material testing. The developed system successfully acquire the AE elastic waveform and determine the parameter-based analysis such as the amplitude, peak, duration, rise time, counts and the average frequency both for the source location test and the tensile test.
State Compliance Monitoring Expectations | ECHO | US EPA
EPA sets national goals for how frequently facilities should be evaluated by the authorized enforcement agency for three programs included in ECHO (Clean Air Act, Clean Water Act, and Resource Conservation and Recovery Act). EPA develops Compliance Monitoring Strategies (CMSs) to ensure that the regulated facilities across the country are evaluated for compliance on a regular basis. Information on CMSs, evaluations (such as on-site inspections), and inspection frequency goals that are defined by each program is included.
1983-06-03
current not power. inspection groups . The experimental procedure for the resistance TABLE I non -linearity inspection will be to condition the crystal...comparatively small [24]. By eali effect, the precision with which the effect micht controlling the experimental conditions we estimate be controlled ...intended to be a accepted on an individual basis for Group A predictor of long term performance. It is another testing. check on process control
Use of volunteers' information to support proactive inspection of hydraulic structures
NASA Astrophysics Data System (ADS)
Cortes Arevalo, Juliette; Sterlacchini, Simone; Bogaard, Thom; Frigerio, Simone; Junier, Sandra; Schenato, Luca; van den Giesen, Nick
2016-04-01
Proactive management is particularly important to deal with the increasing occurrence of hydro-meteorological hazards in mountain areas were threats are often caused by multiple and sudden onset hazards such as debris flows. Citizen volunteers can be involved in supporting technicians on inspecting the structures' functional status. Such collaborative effort between managing organizations and local volunteers becomes more important under limited resources. To consider volunteers' information in support of proactive inspection of hydraulic structures, we developed a methodology applicable in day-to-day risk management. At first, in collaboration with technicians-in-charge, a data collection approach was developed for first level or pre-screening visual inspections that can be performed by volunteers. Methods comprise of a data collection exercise, an inspection forms and a learning session based on existent procedures in the FVG region and neighbouring regions. To systematically evaluate the individual inspection reports, we designed a support method by means of a multi-criteria method with fuzzy terms. The method allows the technicians-in-charge to categorize the reports in one of three levels, each corresponding with a course of action. To facilitate the evaluation of inspection reports, we transformed the decision support method into a prototype Web-GIS application. The design process of the Web-GIS framework followed a user-centred approach. The conceptual design incorporates four modules for managing the inspection reports: 1) Registered users, 2) Inspection planning; 3) Available reports and 4) Evaluation of reports. The development of the prototype focused on the evaluation module and was implemented based on standard and interoperable open source tools. Finally, we organized a workshop with technicians in the study area to test the decision support method and get insights about the usefulness of the Web-GIS framework. Participants that took part of the workshop included technicians that were not involved in previous research activities. The involvement of new technicians was important due to their fresh perspectives. We looked at the effect of the quality of the input reports on the output of the decision support method. In addition, we compared the differences in the participants' advice during the inspection and the output from the decision support method. Participants' feedback led to a set of suggested improvements in the decision support method and the web-GIS application. We hope that the knowledge, theory and concept behind this decision support method can be developed into a full-scale web-GIS application. The advantage of using this decision support method is that it allows inspections to be carried out by either skilled volunteers or technicians while ensuring technicians-in-charge that they can systematically evaluate the collected reports. Volunteers can become skilled inspectors by teaming up with technicians for the inspection of hydraulic structures. Technicians can become more aware about local impacts and changes in the structures' status by teaming up with volunteers.
Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS
NASA Astrophysics Data System (ADS)
Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo
2014-01-01
The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.
Development of Inspection for Friction Stir Welds for Rocket Fuel Tanks
NASA Technical Reports Server (NTRS)
Russell, Samuel S.
2012-01-01
During development of the Ares I weld processes nondestructive and destructive testing were used to identify and characterize defects that occurred. These defects were named and character noted. This catalogue of defects and characteristics was then used to develop inspection methods for Self Reacting Friction Stir Welds (SR ]FSW) and Conventional Friction Stir Welds (C ]FSW). Dye penetrant, eddy current, x ]radiography, single element ultrasonic, and phased array ultrasonic (PAUT) inspection procedures were developed to target the expected defects. Once the method procedure was developed a comparison was performed to allow for selection of the best inspection method. Tests of the effectiveness of the inspection were performed on purposely fabricated flawed specimens and electrodischarge machined notches. The initial test results prompted a revisit of the PAUT procedure and a redesign of the inspection. Subsequent testing showed that a multi ]angle PAUT inspection resulted in better detection capability. A discussion of the most effective orientations of the PAUT transducer will be presented. Also, the implementation of the inspection on production hardware will be presented. In some cases the weld tool is used as the transducer manipulator and in some cases a portable scanner is used
Dielectric inspection of erythrocyte morphology.
Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji
2008-05-21
We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.
Development of inspection robots for bridge cables.
Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.
Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.
2013-11-14
As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
Seismic response and damage detection analyses of an instrumented steel moment-framed building
Rodgers, J.E.; Celebi, M.
2006-01-01
The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections in a number of buildings following the M 6.7 Northridge earthquake of January 17, 1994. A case study of the seismic behavior of an extensively instrumented 13-story steel moment frame building located in the greater Los Angeles area of California is described herein. Response studies using frequency domain, joint time-frequency, system identification, and simple damage detection analyses are performed using an extensive strong motion dataset dating from 1971 to the present, supported by engineering drawings and results of postearthquake inspections. These studies show that the building's response is more complex than would be expected from its highly symmetrical geometry. The response is characterized by low damping in the fundamental mode, larger accelerations in the middle and lower stories than at the roof and base, extended periods of vibration after the cessation of strong input shaking, beating in the response, elliptical particle motion, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses conducted indicate that the response of the structure was elastic in all recorded earthquakes to date, including Northridge. Also, several simple damage detection methods employed did not indicate any structural damage or connection fractures. The combination of a large, real structure and low instrumentation density precluded the application of many recently proposed advanced damage detection methods in this case study. Overall, however, the findings of this study are consistent with the limited code-compliant postearthquake intrusive inspections conducted after the Northridge earthquake, which found no connection fractures or other structural damage. ?? ASCE.
Quasi-Rayleigh waves in butt-welded thick steel plate
NASA Astrophysics Data System (ADS)
Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin
2015-03-01
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.
International Roughness Index (IRI) measurement using Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Zhang, Wenjin; Wang, Ming L.
2018-03-01
International Roughness Index (IRI) is an important metric to measure condition of roadways. This index is usually used to justify the maintenance priority and scheduling for roadways. Various inspection methods and algorithms are used to assess this index through the use of road profiles. This study proposes to calculate IRI values using Hilbert-Huang Transform (HHT) algorithm. In particular, road profile data is provided using surface radar attached to a vehicle driving at highway speed. Hilbert-Huang transform (HHT) is used in this study because of its superior properties for nonstationary and nonlinear data. Empirical mode decomposition (EMD) processes the raw data into a set of intrinsic mode functions (IMFs), representing various dominating frequencies. These various frequencies represent noises from the body of the vehicle, sensor location, and the excitation induced by nature frequency of the vehicle, etc. IRI calculation can be achieved by eliminating noises that are not associated with the road profile including vehicle inertia effect. The resulting IRI values are compared favorably to the field IRI values, where the filtered IMFs captures the most characteristics of road profile while eliminating noises from the vehicle and the vehicle inertia effect. Therefore, HHT is an effect method for road profile analysis and for IRI measurement. Furthermore, the application of HHT method has the potential to eliminate the use of accelerometers attached to the vehicle as part of the displacement measurement used to offset the inertia effect.
Development of Inspection Robots for Bridge Cables
Kim, Se-Hoon; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453
Apparatus for inspecting a group of containers and method of using same
Lee, Jr., James H.; Salton, Jonathan R [Albuquerque, NM; Spletzer, Barry L [Albuquerque, NM
2012-02-28
An apparatus and method for inspecting a plurality of containers are provided. Each container has an outer surface for housing at least one material therein. The techniques provided involve at least one inspection vehicle and at least one detector. Each inspection vehicle has a plurality of wheels for movably positioning about the plurality of containers. The wheels may have at least one magnet for selectively adhering to the outer surface of at least one of the containers whereby the inspection vehicle traverses the container(s). The detector is positionable proximate at least one of the containers. The detector may be deployable from the inspection vehicle to a position adjacent the container(s). The detector has at least one sensor for measuring at least one characteristic of the plurality of containers. At least one base station may be provided for communicating with the inspection vehicle(s) and/or detector(s).
Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu
2016-01-01
This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.
NASA Astrophysics Data System (ADS)
Hao, Xiangyang; Liu, Songlin; Zhao, Fulai; Jiang, Lixing
2015-05-01
The packing presswork is an important factor of industrial product, especially for the luxury commodities such as cigarettes. In order to ensure the packing presswork to be qualified, the products should be inspected and unqualified one be picked out piece by piece with the vision-based inspection method, which has such advantages as no-touch inspection, high efficiency and automation. Vision-based inspection of packing presswork mainly consists of steps as image acquisition, image registration and defect inspection. The registration between inspected image and reference image is the foundation and premise of visual inspection. In order to realize rapid, reliable and accurate image registration, a registration method based on virtual orientation points is put forward. The precision of registration between inspected image and reference image can reach to sub pixels. Since defect is without fixed position, shape, size and color, three measures are taken to improve the inspection effect. Firstly, the concept of threshold template image is put forward to resolve the problem of variable threshold of intensity difference. Secondly, the color difference is calculated by comparing each pixel with the adjacent pixels of its correspondence on reference image to avoid false defect resulted from color registration error. Thirdly, the strategy of image pyramid is applied in the inspection algorithm to enhance the inspection efficiency. Experiments show that the related algorithm is effective to defect inspection and it takes 27.4 ms on average to inspect a piece of cigarette packing presswork.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song
2017-08-01
Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.
Self-shielded electron linear accelerators designed for radiation technologies
NASA Astrophysics Data System (ADS)
Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.
2009-09-01
This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.
Silva, M Z; Gouyon, R; Lepoutre, F
2003-06-01
Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.
Webster, P; Maddox-Hyttel, C; Nöckler, K; Malakauskas, A; van der Giessen, J; Pozio, E; Boireau, P; Kapel, C M O
2006-01-01
A new EU directive relating to meat inspection for Trichinella, expected to come into force in 2006, imposes important modifications to current legislation. Nevertheless, several issues need more attention. Optimisation of methods, especially concerning sensitivity and digestibility of the meat to be inspected, along with further simplification of the legislation with regard to the number of techniques accepted, is recommended to guarantee that all member states of the EU will be given tools to perform inspection of consumer meat at the same high level. Additionally, there is a need for guidelines and protocols regarding optimal proficiency testing procedures. This paper presents an overview of the current methods for Trichinella meat inspection and their implementation in the EU, listing advantages and disadvantages for each method, including some suggestions for specific points of improvement.
49 CFR 7.14 - Requests for records.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., frequency distributions, trends, or comparisons. In those instances where DOT determines that creating a new... be made available for inspection and copying during regular business hours at the place where it is...
49 CFR 7.14 - Requests for records.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., frequency distributions, trends, or comparisons. In those instances where DOT determines that creating a new... be made available for inspection and copying during regular business hours at the place where it is...
NASA Astrophysics Data System (ADS)
Wu, Zhe; Taylor, Lawrence S.; Rubens, Deborah J.; Parker, Kevin J.
2004-03-01
The shear wave velocity is one of a few important parameters that characterize the mechanical properties of bio-materials. In this paper, two noninvasive methods are proposed to measure the shear velocity by inspecting the shear wave interference patterns. In one method, two shear wave sources are placed on the opposite two sides of a sample, driven by the identical sinusoidal signals. The shear waves from the two sources interact to create interference patterns, which are visualized by the vibration sonoelastography technique. The spacing between the pattern bands equals half of the shear wavelength. The shear velocity can be obtained by taking the product of the wavelength and the frequency. An alternative method is to drive the two vibration sources at slightly different frequencies. In this case, the interference patterns no longer remain stationary. It is proved that the apparent velocity of the moving patterns is proportional to the shear velocity in the medium. Since the apparent velocity of the patterns can be measured by analysing the video sequence, the shear velocity can be obtained thereafter. These approaches are validated by a conventional shear wave time-of-flight approach, and they are accurate within 4% on various homogeneous tissue-mimicking phantoms.
Railway Tunnel Clearance Inspection Method Based on 3D Point Cloud from Mobile Laser Scanning
Zhou, Yuhui; Wang, Shaohua; Mei, Xi; Yin, Wangling; Lin, Chunfeng; Mao, Qingzhou
2017-01-01
Railway tunnel clearance is directly related to the safe operation of trains and upgrading of freight capacity. As more and more railway are put into operation and the operation is continuously becoming faster, the railway tunnel clearance inspection should be more precise and efficient. In view of the problems existing in traditional tunnel clearance inspection methods, such as low density, slow speed and a lot of manual operations, this paper proposes a tunnel clearance inspection approach based on 3D point clouds obtained by a mobile laser scanning system (MLS). First, a dynamic coordinate system for railway tunnel clearance inspection has been proposed. A rail line extraction algorithm based on 3D linear fitting is implemented from the segmented point cloud to establish a dynamic clearance coordinate system. Second, a method to seamlessly connect all rail segments based on the railway clearance restrictions, and a seamless rail alignment is formed sequentially from the middle tunnel section to both ends. Finally, based on the rail alignment and the track clearance coordinate system, different types of clearance frames are introduced for intrusion operation with the tunnel section to realize the tunnel clearance inspection. By taking the Shuanghekou Tunnel of the Chengdu–Kunming Railway as an example, when the clearance inspection is carried out by the method mentioned herein, its precision can reach 0.03 m, and difference types of clearances can be effectively calculated. This method has a wide application prospects. PMID:28880232
Baktemur, Gökhan; Taşkın, Hatıra; Büyükalaca, Saadet
2013-01-01
Irradiated pollen technique is the most successful haploidization technique within Cucurbitaceae. After harvesting of fruits pollinated with irradiated pollen, classical method called as “inspecting the seeds one by one” is used to find haploid embryos in the seeds. In this study, different methods were used to extract the embryos more easily, quickly, economically, and effectively. “Inspecting the seeds one by one” was used as control treatment. Other four methods tested were “sowing seeds direct nutrient media,” “inspecting seeds in the light source,” “floating seeds on liquid media,” and “floating seeds on liquid media after surface sterilization.” Y2 and Y3 melon genotypes selected from the third backcross population of Yuva were used as plant material. Results of this study show that there is no statistically significant difference among methods “inspecting the seeds one by one,” “sowing seeds direct CP nutrient media,” and “inspecting seeds in the light source,” although the average number of embryos per fruit is slightly different. No embryo production was obtained from liquid culture because of infection. When considered together with labor costs and time required for embryo rescue, the best methods were “sowing seeds directly in the CP nutrient media“ and ”inspecting seeds in the light source.” PMID:23818825
Feature extraction for ultrasonic sensor based defect detection in ceramic components
NASA Astrophysics Data System (ADS)
Kesharaju, Manasa; Nagarajah, Romesh
2014-02-01
High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.
Detection of solder bump defects on a flip chip using vibration analysis
NASA Astrophysics Data System (ADS)
Liu, Junchao; Shi, Tielin; Xia, Qi; Liao, Guanglan
2012-03-01
Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.
Evaluation of rail test frequencies using risk analysis
DOT National Transportation Integrated Search
2009-03-03
Several industries now use risk analysis to develop : inspection programs to ensure acceptable mechanical integrity : and reliability. These industries include nuclear and electric : power generation, oil refining, gas processing, onshore and : offsh...
Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J
2016-04-01
This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.
Guided wave phased array sensor tuning for improved defect detection and characterization
NASA Astrophysics Data System (ADS)
Philtron, Jason H.; Rose, Joseph L.
2014-03-01
Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.
Standardized Methods for Electronic Shearography
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.
1997-01-01
Research was conducted in development of operating procedures and standard methods to evaluate fiber reinforced composite materials, bonded or sprayed insulation, coatings, and laminated structures with MSFC electronic shearography systems. Optimal operating procedures were developed for the Pratt and Whitney Electronic Holography/Shearography Inspection System (EH/SIS) operating in shearography mode, as well as the Laser Technology, Inc. (LTI) SC-4000 and Ettemeyer SHS-94 ISTRA shearography systems. Operating practices for exciting the components being inspected were studied, including optimal methods for transient heating with heat lamps and other methods as appropriate to enhance inspection capability.
Lo, Carlos Wing-Hung; Fryxell, Gerald E; van Rooij, Benjamin; Wang, Wei; Honying Li, Pansy
2012-11-30
This study investigates how local government support for enforcement and internal agency obstacles explain the enforcement gap in Guangzhou, China. It was found that agency obstacles associated with insufficient resources and job ambiguity, in particular, affect enforcement officials' perceptions of enforcement difficulty. Somewhat more surprisingly, however, local government support was not found to be a significant predictor of these perceptions. In addition, this study identified four significant relationships associated with specific enforcement actions. First and second, perceptions of enforcement difficulty appear to lead to fewer inspections, but also have a weak positive effect on the frequency of fines levied. Third, poor coordination within the bureau was found to be associated with fewer violations being processed. Fourth, and contrary to expectations, local government support was found to suppress the frequency of inspections while having no significant effect on violations or fines. Overall, these findings suggest that increased local government support for the enforcement of environmental regulation in China may not necessarily lead to more rigorous enforcement, at least if enforcement rigor is measured in terms of inspections, citations and fines. Copyright © 2012 Elsevier Ltd. All rights reserved.
Eddy current inspection tool. [Patent application
Petrini, R.R.; Van Lue, D.F.
1980-10-29
A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment with a probe coil, and associated coaxial coil cable, oil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of a fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator for generating audible signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.
ERIC Educational Resources Information Center
Stewart, Kelise K.; Carr, James E.; Brandt, Charles W.; McHenry, Meade M.
2007-01-01
The present study evaluated the effects of both a traditional lecture and the conservative dual-criterion (CDC) judgment aid on the ability of 6 university students to visually inspect AB-design line graphs. The traditional lecture reliably failed to improve visual inspection accuracy, whereas the CDC method substantially improved the performance…
Development of X-ray computed tomography inspection facility for the H-II solid rocket boosters
NASA Astrophysics Data System (ADS)
Sasaki, M.; Fujita, T.; Fukushima, Y.; Shimizu, M.; Itoh, S.; Satoh, A.; Miyamoto, H.
The National Space Development Agency of Japan (NASDA) initiated the development of an X-ray computed tomography (CT) equipment for the H-II solid rocket boosters (SRBs) in 1987 for the purpose of minimizing inspection time and achieving high cost-effectiveness. The CT facility has been completed in Jan. 1991 in Tanegashima Space Center for the inspection of the SRBs transported from the manufacturer's factory to the launch site. It was first applied to the qualification model SRB from Feb. to Apr. in 1991. Through the CT inspection of the SRB, it has been confirmed that inspection time decreased significantly compared with the X-ray radiography method and that even an unskilled inspector could find various defects. As a result, the establishment of a new reliable inspection method for the SRB has been verified. In this paper, the following are discussed: (1) the defect detectability of the CT equipment using a dummy SRB with various artificial defects, (2) the performance comparison between the CT method and the X-ray radiography method, (3) the reliability of the CT equipment, and (4) the radiation shield design of the nondestructive test building.
Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections
NASA Astrophysics Data System (ADS)
Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David
2015-10-01
Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.
Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance
NASA Technical Reports Server (NTRS)
Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.;
1997-01-01
Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.
Investigation of Fiber Waviness in a Thick Glass Composite Beam Using THz NDE
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.
2008-01-01
Fiber waviness in laminated composite material is introduced during manufacture because of uneven curing, resin shrinkage, or ply buckling caused by bending the composite lay-up into its final shape prior to curing. The resulting waviness has a detrimental effect on mechanical properties, therefore this condition is important to detect and characterize. Ultrasonic characterization methods are difficult to interpret because elastic wave propagation is highly dependent on ply orientation and material stresses. By comparison, the pulsed terahertz response of the composite is shown to provide clear indications of the fiber waviness. Pulsed Terahertz NDE is an electromagnetic inspection method that operates in the frequency range between 300 GHz and 3 THz. Its propagation is influenced by refractive index variations and interfaces. This work applies pulsed Terahertz NDE to the inspection of a thick composite beam with fiber waviness. The sample is a laminated glass composite material approximately 15mm thick with a 90-degree bend. Terahertz response from the planar section, away from the bend, is indicative of a homogeneous material with no major reflections from internal plies, while the multiple reflections at the bend area correspond to the fiber waviness. Results of these measurements are presented for the planar and bend areas.
NASA Astrophysics Data System (ADS)
Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.
2011-03-01
Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.
Rosenthal, Marjorie S; Jeon, Sangchoon; Crowley, Angela A
2016-05-01
To determine frequency of non-compliance with child care regulations among family day care homes (FDCH) and identify the role of income in compliance. We analyzed non-compliance in 746 routine, unannounced inspection and re-inspection reports of FDCH collected by the Connecticut Department of Public Health licensing specialists in 2007-2008 and linked results to median income of zip code data. We grouped the 83 state regulations into 12 regulation categories, analyzed 11 categories, and used latent class analysis to classify each FDCH as high or low compliance for each category. We used logistic regression analysis to estimate the odds ratios of low compliance. Among the 746 FDCH inspections (594 first inspections and 152 re-inspections), we found high rates of non-compliance in inspection regulations in immunizations (32.9 %), water temperature (35.6 %) and hazards (30.0 %). Among the 11 regulation categories, 4 categories (indoor safety, emergency preparedness, child/family/staff documentation, and qualifications of provider) had regulations with high non-compliance. Median household income of FDCH zip code was lower for re-inspection sites than for inspection sites ($34,715 vs. $57,118, p < 0.0001) and FDCH in the lowest quartile of income had greater odds of low compliance in indoor safety (OR 1.86, 95 % CI 1.04, 3.35, p < 0.05). The majority of FDCH were in compliance with the majority of regulations, yet there are glaring non-compliance issues in inspections and re-inspections and there are income-based inequities that place children at higher risk who are already at high risk for suboptimal health outcomes.
Application of the Deming management method to equipment-inspection processes.
Campbell, C A
1996-01-01
The Biomedical Engineering staff at the Washington Hospital Center has designed an inspection process that optimizes timely completion of scheduled equipment inspections. The method used to revise the process was primarily Deming, but certainly the method incorporates the re-engineering concept of questioning the basic assumptions around which the original process was designed. This effort involved a review of the existing process in its entirety by task groups made up of representatives from all involved departments. Complete success in all areas has remained elusive. However, the lower variability of inspection completion ratios follows Deming's description of a successfully revised process. Further CQI efforts targeted at specific areas with low completion ratios will decrease this variability even further.
NASA Technical Reports Server (NTRS)
Sastri, Sankar
1990-01-01
The purpose of this experiment is to familiarize the student with magnetic particle inspection and relate it to classification of various defects. Magnetic particle inspection is a method of detecting the presence of cracks, laps, tears, inclusions, and similar discontinuities in ferromagnetic materials such as iron and steel. This method will most clearly show defects that are perpendicular to the magnetic field. The Magnaglo method uses a liquid which is sprayed on the workpiece to be inspected, and the part is magnetized at the same time. The workpiece is then viewed under a black light, and the presence of discontinuity is shown by the formation of a bright indication formed by the magnetic particles over the discontinuity. The equipment and experimental procedures are described.
NASA Astrophysics Data System (ADS)
Wang, Guangqin; Shen, Jingling; Jia, Yan
2007-07-01
The terahertz spectrum of ketamine hydrochloride at room temperature, in the range of 0.2-2.6THz, has been measured by terahertz time-domain spectroscopy (TDS). Full-geometry optimizations and frequency calculations using the density functional theory (DFT) are also applied to predict the absorption spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine (MDMA). The results of the simulation show qualitative agreement with the experimental data especially for MDMA, and the observed spectra features are assigned based on the DFT calculation. The results suggest that use of the terahertz TDS technique can be an effective method for the detection and inspection of illicit drugs.
Cohen, N D; Dresser, B T; Peloso, J G; Mundy, G D; Woods, A M
1999-09-01
To determine the frequency and anatomic location of musculoskeletal injuries incurred by Quarter Horses during races and to compare data from injured horses and matched control horses. Matched case-control study. 97 Quarter Horses that sustained a musculoskeletal injury during races and 291 horses from the same races that were not injured. Data examined included racing history, race-entrant characteristics, racing events determined by analysis of videotapes of races, and, when performed, results of prerace physical inspections. Data for injured horses were compared with data for control horses, using conditional logistic regression. Incidence of a catastrophic injury among Quarter Horses during races was approximately 0.8/1,000 race starts, whereas incidence of musculoskeletal injury during racing was approximately 2.2/1,000 race starts. Odds of musculoskeletal injury were approximately 8 times greater among horses assessed to be at increased risk of injury on the basis of results of prerace physical inspection than for horses not considered to be at increased risk of injury. Evidence was lacking that 2-year-old horses were at increased risk of injury or that sex influenced the risk of injury among Quarter Horses during races. Incidence of racing injury among Quarter Horses appears to be lower than that observed among Thoroughbreds. Regulatory veterinarians can identify horses at increased risk of injury on the basis of prerace physical inspection, indicating that these inspections could be used to reduce the risk of injury during races.
Fault location method for unexposed gas trunk line insulation at stray current constant effect area
NASA Astrophysics Data System (ADS)
Tsenev, A. N.; Nosov, V. V.; Akimova, E. V.
2017-10-01
For the purpose of gas trunk lines safe operation, two types of pipe wall metal anticorrosion protection are generally used - the passive (insulation coating) protection and the active (electrochemical) protection. In the process of a pipeline long-term operation, its insulation is subject to wear and damage. Electrochemical protection means of a certain potential value prevent metal dissolution in the soil. When insulation wear and tear attains a level of insufficiency of the protection potential value, the insulating coating needs repair which is a labor-consuming procedure. To reduce the risk of such situation, it is necessary to make inspection rounds to monitor the condition of pipe insulation. A method for pipeline insulation coating unexposed fault location based on Pearson method is considered, wherein a working cathodic protection station signal of 100 Hz frequency is used, which makes installation of a generator unnecessary, and also a specific generator signal of 1 kHz frequency is used at high noise immunity and sensitivity of the instrument complex. This method enables detection and sizing of unexposed pipeline defects within the zones of earth current permanent action. High noise immunity of selective indicators allows for operation in proximity to 110 kV, 220 kV, and 500 kV power transmission lines in action.
Chang, C Y; Yuan, F G
2018-05-16
Guided wave dispersion curves in isotropic and anisotropic materials are extracted automatically from measured data by Matrix Pencil (MP) method investigating through k-t or x-ω domain with a broadband signal. A piezoelectric wafer emits a broadband excitation, linear chirp signal to generate guided waves in the plate. The propagating waves are measured at discrete locations along the lines for one-dimensional laser Doppler vibrometer (1-D LDV). Measurements are first Fourier transformed into either wavenumber-time k-t domain or space-frequency x-ω domain. MP method is then employed to extract the dispersion curves explicitly associated with different wave modes. In addition, the phase and group velocity are deduced by the relations between wavenumbers and frequencies. In this research, the inspections for dispersion relations on an aluminum plate by MP method from k-t or x-ω domain are demonstrated and compared with two-dimensional Fourier transform (2-D FFT). Other experiments on a thicker aluminum plate for higher modes and a composite plate are analyzed by MP method. Extracted relations of composite plate are confirmed by three-dimensional (3-D) theoretical curves computed numerically. The results explain that the MP method not only shows more accuracy for distinguishing the dispersion curves on isotropic material, but also obtains good agreements with theoretical curves on anisotropic and laminated materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Head Teachers' Experiences of School Inspection under Ofsted's January 2012 Framework
ERIC Educational Resources Information Center
Courtney, Steven J.
2013-01-01
This article focuses on head teachers' experiences of inspection under Ofsted's revised school inspection framework, their views of its principles and its implications for school leaders and leadership. The article draws on findings from a mixed-methods study to show that inspections are more focused on pupils' attainment and progress. Head…
Damping characteristics of damaged fiber composite components
NASA Technical Reports Server (NTRS)
Eberle, K.
1986-01-01
Defects in fiber composite components produce changes with respect to the vibrational characteristics of the material. These changes can be recognized in the form of a frequency shift or an alteration of the damping process. The present investigation is concerned with questions regarding the possibility of a utilization of the changes in suitable defect-detecting inspection procedures. A description is given of a method for measuring the damping characteristics of a specimen. This method provides a spectrum of the damping coefficients of the sample as a basis for a comprehensive evaluation of the damping behavior. The correlation between defects and change in the damping characteristics is demonstrated with the aid of results obtained in measurements involving specimens of carbon-fiber composites and a component consisting of glass-fiber-reinforced plastics.
NASA Astrophysics Data System (ADS)
Namdar, Abdolrahman; Feizollahi Onsoroudi, Rana; Khoshsima, Habib; Sahrai, Mostafa
2018-03-01
The surface plasmon-polaritons in one-dimensional graphene-based Fibonacci photonic superlattices in the terahertz frequency range have been theoretically investigated. Our numerical study shows that surface plasmon-polaritons can be realized in both transverse electric and transverse magnetic polarizations. It is shown that these modes are manageable by varying the quasi-periodic generation orders which play a critical role in the occurrence of surface modes. In addition, the effect of thickness of cap layer and chemical potential of graphene sheets on surface plasmon-polaritons and their electric field distribution are studied. We have verified the excitation of surface plasmon-polaritons by using the attenuated total reflection method. This inspection confirms that all the predicted surface modes in the dispersion curves are actually excitable with this method.
Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades
NASA Astrophysics Data System (ADS)
Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.
2010-02-01
All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings from the beginning up to today at the example of Saarschmiede GmbH explains the difficulties in implementing changes and gives an outlook over the current progression.
NASA Astrophysics Data System (ADS)
Zhou, Shunhua; Liang, Chen; Rogers, Craig A.; Sun, Fanping P.; Vick, L.
1993-07-01
Applications of polymeric adhesives in joining different materials have necessitated quantitative health inspection of adhesive joints (coverage, state of cure, adhesive strength, location of voids, etc.). A new in-situ sensory method has been proposed in this paper to inspect the amount and distribution of the critical constituents of polymers and to measure the characteristic parameters (complex Young's modulus and damping). In this technique, ferromagnetic particles have been embedded in a polymeric matrix, similar to a particle- reinforced composite. The dynamic signatures extracted from the tests as a result of magnetic excitation of the embedded ferromagnetic particles are used to evaluate the complex Young's modulus of the host polymers. Moreover, the amplitude of the frequency response is utilized to identify the amount and distribution of embedded particles in polymeric materials or adhesive joints. The results predicted from the theoretical model agree well with the experimental results. The theoretical analyses and the experimental work conducted have demonstrated the utility of the sensory technique presented for in-service health interrogation.
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures
Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo
2018-01-01
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures.
Sefa Orak, Mehmet; Nasrollahi, Amir; Ozturk, Turgut; Mas, David; Ferrer, Belen; Rizzo, Piervincenzo
2018-04-18
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling.
The evaluation of a rake method to quantify submersed vegetation in the Upper Mississippi River
Yin, Yao; Kreiling, Rebecca M.
2011-01-01
A long-handled, double-headed garden rake was used to collect submersed aquatic vegetation (SAV) and compared to in-boat visual inspection to record species presence at 67 individual sites. Six rake subsamples were taken at each site and a rake density rating was given to each species collected in the subsamples. Presence at the site, frequency of occurrence in the six rake samples, and additive density rating (the sum of the six rake density ratings) were quantified for each species at each site. The validity of the indices was tested against biomass data collected by clipping all remaining vegetation from the 67 sites. In the turbid water of the Mississippi River, visual inspection of SAV from boats was ineffective with only 27% of the species detected, while raking retrieved on average 70% of the total number of submersed species in the 67 sites. Presence of species at individual sites was correlated with biomass from Stuckenia pectinata, while frequency of occurrence and additive density rating were correlated with biomass for species with greater than 21 g of total biomass from all sites. The efficiency of the rake to collect biomass varied among species; only 18% of total biomass was captured via raking the site six times. Additive density rating as an index of abundance can be used to detect temporal changes in the same water body; however, cross-species comparison is not encouraged unless the efficiency of the rake has been determined for each species being compared.
Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio
1997-11-01
A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).
Dimensional Metrology of Non-rigid Parts Without Specialized Inspection Fixtures =
NASA Astrophysics Data System (ADS)
Sabri, Vahid
Quality control is an important factor for manufacturing companies looking to prosper in an era of globalization, market pressures and technological advances. Functionality and product quality cannot be guaranteed without this important aspect. Manufactured parts have deviations from their nominal (CAD) shape caused by the manufacturing process. Thus, geometric inspection is a very important element in the quality control of mechanical parts. We will focus here on the geometric inspection of non-rigid (flexible) parts which are widely used in the aeronautic and automotive industries. Non-rigid parts can have different forms in a free-state condition compared with their nominal models due to residual stress and gravity loads. To solve this problem, dedicated inspection fixtures are generally used in industry to compensate for the displacement of such parts for simulating the use state in order to perform geometric inspections. These fixtures and the installation and inspection processes are expensive and time-consuming. Our aim in this thesis is therefore to develop an inspection method which eliminates the need for specialized fixtures. This is done by acquiring a point cloud from the part in a free-state condition using a contactless measuring device such as optical scanning and comparing it with the CAD model for the deviation identification. Using a non-rigid registration method and finite element analysis, we numerically inspect the profile of a non-rigid part. To do so, a simulated displacement is performed using an improved definition of displacement boundary conditions for simulating unfixed parts. In addition, we propose a numerical method for dimensional metrology of non-rigid parts in a free-state condition based on the arc length measurement by calculating the geodesic distance using the Fast Marching Method (FMM). In this thesis, we apply our developed methods on industrial non-rigid parts with free-form surfaces simulated with different types of displacement, defect, and measurement noise in order to evaluate the metrological performance of the developed methods.
An intelligent system for real time automatic defect inspection on specular coated surfaces
NASA Astrophysics Data System (ADS)
Li, Jinhua; Parker, Johné M.; Hou, Zhen
2005-07-01
Product visual inspection is still performed manually or semi automatically in most industries from simple ceramic tile grading to complex automotive body panel paint defect and surface quality inspection. Moreover, specular surfaces present additional challenge to conventional vision systems due to specular reflections, which may mask the true location of objects and lead to incorrect measurements. There are some sophisticated visual inspection methods developed in recent years. Unfortunately, most of them are highly computational. Systems built on those methods are either inapplicable or very costly to achieve real time inspection. In this paper, we describe an integrated low-cost intelligent system developed to automatically capture, extract, and segment defects on specular surfaces with uniform color coatings. The system inspects and locates regular surface defects with lateral dimensions as small as a millimeter. The proposed system is implemented on a group of smart cameras using its on-board processing ability to achieve real time inspection. The experimental results on real test panels demonstrate the effectiveness and robustness of proposed system.
Development of a PCR Diagnostic System for Iris yellow spot tospovirus in Quarantine
Shin, Yong-Gil; Rho, Jae-Young
2014-01-01
Iris yellow spot virus (IYSV) is a plant pathogenic virus which has been reported to continuously occur in onion bulbs, allium field crops, seed crops, lisianthus, and irises. In South Korea, IYSV is a “controlled” virus that has not been reported, and inspection is performed when crops of the genus Iris are imported into South Korea. In this study, reverse-transcription polymerase chain reaction (RT-PCR) and nested PCR inspection methods, which can detect IYSV, from imported crops of the genus Iris at quarantine sites, were developed. In addition, a modified positive plasmid, which can be used as a positive control during inspection, was developed. This modified plasmid can facilitate a more accurate inspection by enabling the examination of a laboratory contamination in an inspection system. The inspection methods that were developed in this study are expected to contribute, through the prompt and accurate inspection of IYSV at quarantine sites to the plant quarantine in South Korea. PMID:25506310
Machine vision method for online surface inspection of easy open can ends
NASA Astrophysics Data System (ADS)
Mariño, Perfecto; Pastoriza, Vicente; Santamaría, Miguel
2006-10-01
Easy open can end manufacturing process in the food canning sector currently makes use of a manual, non-destructive testing procedure to guarantee can end repair coating quality. This surface inspection is based on a visual inspection made by human inspectors. Due to the high production rate (100 to 500 ends per minute) only a small part of each lot is verified (statistical sampling), then an automatic, online, inspection system, based on machine vision, has been developed to improve this quality control. The inspection system uses a fuzzy model to make the acceptance/rejection decision for each can end from the information obtained by the vision sensor. In this work, the inspection method is presented. This surface inspection system checks the total production, classifies the ends in agreement with an expert human inspector, supplies interpretability to the operators in order to find out the failure causes and reduce mean time to repair during failures, and allows to modify the minimum can end repair coating quality.
Built-in-test by signature inspection (bitsi)
Bergeson, Gary C.; Morneau, Richard A.
1991-01-01
A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.
Automated optical inspection of liquid crystal display anisotropic conductive film bonding
NASA Astrophysics Data System (ADS)
Ni, Guangming; Du, Xiaohui; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong
2016-10-01
Anisotropic conductive film (ACF) bonding is widely used in the liquid crystal display (LCD) industry. It implements circuit connection between screens and flexible printed circuits or integrated circuits. Conductive microspheres in ACF are key factors that influence LCD quality, because the conductive microspheres' quantity and shape deformation rate affect the interconnection resistance. Although this issue has been studied extensively by prior work, quick and accurate methods to inspect the quality of ACF bonding are still missing in the actual production process. We propose a method to inspect ACF bonding effectively by using automated optical inspection. The method has three steps. The first step is that it acquires images of the detection zones using a differential interference contrast (DIC) imaging system. The second step is that it identifies the conductive microspheres and their shape deformation rate using quantitative analysis of the characteristics of the DIC images. The final step is that it inspects ACF bonding using a back propagation trained neural network. The result shows that the miss rate is lower than 0.1%, and the false inspection rate is lower than 0.05%.
Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.
2004-01-01
New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.
Inspection of aging aircraft: A manufacturer's perspective
NASA Technical Reports Server (NTRS)
Hagemaier, Donald J.
1992-01-01
Douglas, in conjunction with operators and regulators, has established interrelated programs to identify and address issues regarding inspection of aging aircraft. These inspection programs consist of the following: Supplemental Inspection Documents; Corrosion Prevention and Control Documents; Repair Assessment Documents; and Service Bulletin Compliance Documents. In addition, airframe manufacturers perform extended airframe fatigue tests to deal with potential problems before they can develop in the fleet. Lastly, nondestructive inspection (NDI) plays a role in all these programs through the detection of cracks, corrosion, and disbonds. However, improved and more cost effective NDI methods are needed. Some methods such as magneto-optic imaging, electronic shearography, Diffractor-Sight, and multi-parameter eddy current testing appear viable for near-term improvements in NDI of aging aircraft.
Steam generator tube inspection in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukui, Shigetaka
1997-02-01
Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbinmore » coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.« less
System and Method for Traversing Pipes
NASA Technical Reports Server (NTRS)
Graf, Jodi (Inventor); Pettinger, Ross (Inventor); Azimi, Shaun (Inventor); Magruder, Darby (Inventor); Ridley, Justin (Inventor); Lapp, Anthony (Inventor)
2017-01-01
A system and method is provided for traversing inside one or more pipes. In an embodiment, a fluid is injected into the one or more pipes thereby promoting a fluid flow. An inspection device is deployed into the one or more pipes at least partially filled with a flowing fluid. The inspection device comprises a housing wherein the housing is designed to exploit the hydrokinetic effects associated with a fluid flow in one or more pipes as well as maneuver past a variety of pipe configurations. The inspection device may contain one or more sensors capable of performing a variety of inspection tasks.
The use of fatigue tests in the manufacture of automotive steel wheels.
NASA Astrophysics Data System (ADS)
Drozyner, P.; Rychlik, A.
2016-08-01
Production for the automotive industry must be particularly sensitive to the aspect of safety and reliability of manufactured components. One of such element is the rim, where durability is a feature which significantly affects the safety of transport. Customer complaints regarding this element are particularly painful for the manufacturer because it is almost always associated with the event of accident or near-accident. Authors propose original comprehensive method of quality control at selected stages of rims production: supply of materials, production and pre-shipment inspections. Tests by the proposed method are carried out on the originally designed inertial fatigue machine The machine allows bending fatigue tests in the frequency range of 0 to 50 Hz at controlled increments of vibration amplitude. The method has been positively verified in one of rims factory in Poland. Implementation resulted in an almost complete elimination of complaints resulting from manufacturing and material errors.
7 CFR 29.110 - Method of sampling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of sampling. 29.110 Section 29.110 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.110 Method of sampling. In sampling tobacco...
7 CFR 29.110 - Method of sampling.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Method of sampling. 29.110 Section 29.110 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.110 Method of sampling. In sampling tobacco...
NASA Astrophysics Data System (ADS)
Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang
2014-08-01
A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deneuville, Francois; Duquennoy, Marc; Ouaftouh, Mohammadi
2009-05-15
A coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations. Thismore » kind of defect is difficult to detect because the C-shaped surface crack is very small and narrow (500x5 {mu}m{sup 2}), and its depth does not exceed 50 {mu}m. The proposed methodology can excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. On the one hand, low frequency resonances are used in order to estimate the elastic coefficients of the balls according to various inspection depths. This method has the advantage of providing highly accurate evaluations of the elastic coefficients over a wide frequency range. On the other hand, high frequency vibrations are considered because they are similar to the surface waves propagating in the surface zone of the ceramic balls and consequently can be used to detect C-crack defects.« less
Sun, Xinlu; Chong, Heap-Yih; Liao, Pin-Chao
2018-06-25
Navigated inspection seeks to improve hazard identification (HI) accuracy. With tight inspection schedule, HI also requires efficiency. However, lacking quantification of HI efficiency, navigated inspection strategies cannot be comprehensively assessed. This work aims to determine inspection efficiency in navigated safety inspection, controlling for the HI accuracy. Based on a cognitive method of the random search model (RSM), an experiment was conducted to observe the HI efficiency in navigation, for a variety of visual clutter (VC) scenarios, while using eye-tracking devices to record the search process and analyze the search performance. The results show that the RSM is an appropriate instrument, and VC serves as a hazard classifier for navigation inspection in improving inspection efficiency. This suggests a new and effective solution for addressing the low accuracy and efficiency of manual inspection through navigated inspection involving VC and the RSM. It also provides insights into the inspectors' safety inspection ability.
NASA Astrophysics Data System (ADS)
Fish, Philip E.
1995-05-01
In 1978, Wisconsin Department of Transportation discovered major cracking on a two-girder, fracture critical structure, just four years after it was constructed. In 1981, on the same structure, now seven years old, major cracking was discovered in the tie girder flange of the tied arch span. This is one example of the type of failures that transportation departments discovered on welded structures in the 1970's and '80's. The failures from welded details and pinned connections lead to much stricter standards for present day designs. All areas were affected: design with identification of fatigue-prone details and classification of fatigue categories; material requirements with emphasis on toughness and weldability; increased welding and fabrication standards with licensure of fabrication shops to minimum quality standards including personnel; and an increased effort on inspection of existing bridges, where critical details were overlooked or missed in the past. FHWA inspection requirements for existing structures increased through this same time period, in reaction to the failures that had occurred. Obviously, many structures in Wisconsin were not built to the standards now required, thus the importance for quality inspection techniques. The new FHWA inspection requirements now being implemented throughout the nation require an in-depth, hands-on type inspection at a specified frequency, on all fracture critical structures. Wisconsin Department of Transportation started an in-depth inspection program in 1985 and made it a full time program in 1987. This program included extensive nondestructive testing. Ultrasonic inspection has played a major role in this type of inspection. All fracture critical structures, pin and hanger systems, and pinned connections are inspected on a five-year cycle now. The program requires an experienced inspection team and a practical inspection approach. Extensive preparation is required with review of all design, construction, and maintenance documents. An inspection plan is developed from the review and downloaded to a laptop computer. Inspection emphasis are on 'hands on' visual and nondestructive evaluation. Report documentation includes all design plans, pictorial documentation of structural deficiencies, nondestructive evaluation reports, conclusions, and recommendations. Planned changes in the program include implementation of an engineering work station as a 'single source' information file and reporting file for the inspection program. This would include scanning all current information into the file such as design, construction, and maintenance history. It would also include all inspection data with pictures. Inspections would be performed by downloading data onto a laptop and then uploading after completion of inspection. Pictures and nondestructive data would be entered by digital disks.
Efficient material decomposition method for dual-energy X-ray cargo inspection system
NASA Astrophysics Data System (ADS)
Lee, Donghyeon; Lee, Jiseoc; Min, Jonghwan; Lee, Byungcheol; Lee, Byeongno; Oh, Kyungmin; Kim, Jaehyun; Cho, Seungryong
2018-03-01
Dual-energy X-ray inspection systems are widely used today for it provides X-ray attenuation contrast of the imaged object and also its material information. Material decomposition capability allows a higher detection sensitivity of potential targets including purposely loaded impurities in agricultural product inspections and threats in security scans for example. Dual-energy X-ray transmission data can be transformed into two basis material thickness data, and its transformation accuracy heavily relies on a calibration of material decomposition process. The calibration process in general can be laborious and time consuming. Moreover, a conventional calibration method is often challenged by the nonuniform spectral characteristics of the X-ray beam in the entire field-of-view (FOV). In this work, we developed an efficient material decomposition calibration process for a linear accelerator (LINAC) based high-energy X-ray cargo inspection system. We also proposed a multi-spot calibration method to improve the decomposition performance throughout the entire FOV. Experimental validation of the proposed method has been demonstrated by use of a cargo inspection system that supports 6 MV and 9 MV dual-energy imaging.
Eddy Current Probe for Surface and Sub-Surface Inspection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2014-01-01
An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.
Rail Inspection Systems Analysis and Technology Survey
DOT National Transportation Integrated Search
1977-09-01
The study was undertaken to identify existing rail inspection system capabilities and methods which might be used to improve these capabilities. Task I was a study to quantify existing inspection parameters and Task II was a cost effectiveness study ...
Safety inspection of plant products
USDA-ARS?s Scientific Manuscript database
Advances in hyperspectral imaging technology have provided enormous opportunity for the food industry and research community to develop rapid and non-invasive inspection methods for food safety inspection. This chapter reviews and discusses different aspects of using this technology in safety inspec...
14 CFR 23.621 - Casting factors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...
14 CFR 23.621 - Casting factors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...
14 CFR 23.621 - Casting factors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...
14 CFR 23.621 - Casting factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...
Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data
Qin, Xinyan; Wu, Gongping; Fan, Fei
2018-01-01
Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being used to solve these difficulties. Based on precise cable inspection robot (CIR) LiDAR data and the distinctive position and orientation system (POS) data, we propose a novel methodology to detect inspection objects surrounding power lines. The proposed method mainly includes four steps: firstly, the original point cloud is divided into single-span data as a processing unit; secondly, the optimal elevation threshold is constructed to remove ground points without the existing filtering algorithm, improving data processing efficiency and extraction accuracy; thirdly, a single power line and its surrounding data can be respectively extracted by a structured partition based on a POS data (SPPD) algorithm from “layer” to “block” according to power line distribution; finally, a partition recognition method is proposed based on the distribution characteristics of inspection objects, highlighting the feature information and improving the recognition effect. The local neighborhood statistics and the 3D region growing method are used to recognize different inspection objects surrounding power lines in a partition. Three datasets were collected by two CIR LIDAR systems in our study. The experimental results demonstrate that an average 90.6% accuracy and average 98.2% precision at the point cloud level can be achieved. The successful extraction indicates that the proposed method is feasible and promising. Our study can be used to obtain precise dimensions of fittings for modeling, as well as automatic detection and location of security risks, so as to improve the intelligence level of power line inspection. PMID:29690560
Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data.
Qin, Xinyan; Wu, Gongping; Lei, Jin; Fan, Fei; Ye, Xuhui
2018-04-22
Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being used to solve these difficulties. Based on precise cable inspection robot (CIR) LiDAR data and the distinctive position and orientation system (POS) data, we propose a novel methodology to detect inspection objects surrounding power lines. The proposed method mainly includes four steps: firstly, the original point cloud is divided into single-span data as a processing unit; secondly, the optimal elevation threshold is constructed to remove ground points without the existing filtering algorithm, improving data processing efficiency and extraction accuracy; thirdly, a single power line and its surrounding data can be respectively extracted by a structured partition based on a POS data (SPPD) algorithm from "layer" to "block" according to power line distribution; finally, a partition recognition method is proposed based on the distribution characteristics of inspection objects, highlighting the feature information and improving the recognition effect. The local neighborhood statistics and the 3D region growing method are used to recognize different inspection objects surrounding power lines in a partition. Three datasets were collected by two CIR LIDAR systems in our study. The experimental results demonstrate that an average 90.6% accuracy and average 98.2% precision at the point cloud level can be achieved. The successful extraction indicates that the proposed method is feasible and promising. Our study can be used to obtain precise dimensions of fittings for modeling, as well as automatic detection and location of security risks, so as to improve the intelligence level of power line inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or monitoring Method TANKS: 63.1256(b)(3)(i) Inspect fixed roof and all openings for leaks Initially... openings for leaks Initially Semiannually Visual. 63.1256(c)(2) Inspect surface impoundment for control....1256(d)(1)(ii) Inspect cover and all openings for leaks Initially Semiannually Visual. 63.1256(d)(3)(i...
NASA Astrophysics Data System (ADS)
Comot, Pierre
L'industrie aeronautique, cherche a etudier la possibilite d'utiliser de maniere structurelle des joints brases, dans une optique de reduction de poids et de cout. Le developpement d'une methode d'evaluation rapide, fiable et peu couteuse pour evaluer l'integrite structurelle des joints apparait donc indispensable. La resistance mecanique d'un joint brase dependant principalement de la quantite de phase fragile dans sa microstructure. Les ondes guidees ultrasonores permettent de detecter ce type de phase lorsqu'elles sont couplees a une mesure spatio-temporelle. De plus la nature de ce type d'ondes permet l'inspection de joints ayant des formes complexes. Ce memoire se concentre donc sur le developpement d'une technique basee sur l'utilisation d'ondes guidees ultrasonores pour l'inspection de joints brases a recouvrement d'Inconel 625 avec comme metal d'apport du BNi-2. Dans un premiers temps un modele elements finis du joint a ete utilise pour simuler la propagation des ultrasons et optimiser les parametres d'inspection, la simulation a permis egalement de demontrer la faisabilite de la technique pour la detection de la quantite de phase fragile dans ce type de joints. Les parametres optimises sont la forme de signal d'excitation, sa frequence centrale et la direction d'excitation. Les simulations ont montre que l'energie de l'onde ultrasonore transmise a travers le joint aussi bien que celle reflechie, toutes deux extraites des courbes de dispersion, etaient proportionnelles a la quantite de phase fragile presente dans le joint et donc cette methode permet d'identifier la presence ou non d'une phase fragile dans ce type de joint. Ensuite des experimentations ont ete menees sur trois echantillons typiques presentant differentes quantites de phase fragile dans le joint, pour obtenir ce type d'echantillons differents temps de brasage ont ete utilises (1, 60 et 180 min). Pour cela un banc d'essai automatise a ete developpe permettant d'effectuer une analyse similaire a celle utilisee en simulation. Les parametres experimentaux ayant ete choisis en accord avec l'optimisation effectuee lors des simulations et apres une premiere optimisation du procede experimental. Finalement les resultats experimentaux confirment les resultats obtenus en simulation, et demontrent le potentiel de la methode developpee.
NASA Astrophysics Data System (ADS)
Ham, Boo-Hyun; Kim, Il-Hwan; Park, Sung-Sik; Yeo, Sun-Young; Kim, Sang-Jin; Park, Dong-Woon; Park, Joon-Soo; Ryu, Chang-Hoon; Son, Bo-Kyeong; Hwang, Kyung-Bae; Shin, Jae-Min; Shin, Jangho; Park, Ki-Yeop; Park, Sean; Liu, Lei; Tien, Ming-Chun; Nachtwein, Angelique; Jochemsen, Marinus; Yan, Philip; Hu, Vincent; Jones, Christopher
2017-03-01
As critical dimensions for advanced two dimensional (2D) DUV patterning continue to shrink, the exact process window becomes increasingly difficult to determine. The defect size criteria shrink with the patterning critical dimensions and are well below the resolution of current optical inspection tools. As a result, it is more challenging for traditional bright field inspection tools to accurately discover the hotspots that define the process window. In this study, we use a novel computational inspection method to identify the depth-of-focus limiting features of a 10 nm node mask with 2D metal structures (single exposure) and compare the results to those obtained with a traditional process windows qualification (PWQ) method based on utilizing a focus modulated wafer and bright field inspection (BFI) to detect hotspot defects. The method is extended to litho-etch litho-etch (LELE) on a different test vehicle to show that overlay related bridging hotspots also can be identified.
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
Reliability Centred Maintenance (RCM) Analysis of Laser Machine in Filling Lithos at PT X
NASA Astrophysics Data System (ADS)
Suryono, M. A. E.; Rosyidi, C. N.
2018-03-01
PT. X used automated machines which work for sixteen hours per day. Therefore, the machines should be maintained to keep the availability of the machines. The aim of this research is to determine maintenance tasks according to the cause of component’s failure using Reliability Centred Maintenance (RCM) and determine the amount of optimal inspection frequency which must be performed to the machine at filling lithos process. In this research, RCM is used as an analysis tool to determine the critical component and find optimal inspection frequencies to maximize machine’s reliability. From the analysis, we found that the critical machine in filling lithos process is laser machine in Line 2. Then we proceed to determine the cause of machine’s failure. Lastube component has the highest Risk Priority Number (RPN) among other components such as power supply, lens, chiller, laser siren, encoder, conveyor, and mirror galvo. Most of the components have operational consequences and the others have hidden failure consequences and safety consequences. Time-directed life-renewal task, failure finding task, and servicing task can be used to overcome these consequences. The results of data analysis show that the inspection must be performed once a month for laser machine in the form of preventive maintenance to lowering the downtime.
Petrini, Richard R.; Van Lue, Dorin F.
1983-01-01
A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment (12) with a probe coil (11), and associated coaxial coil cable (13), coil energizing means (21), and circuit means (21, 12) responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube 17 of fiberoptic scope 10. The scope 10 is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means (19, 20) for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.
Petrini, R.R.; Van Lue, D.F.
1983-10-25
A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment with a probe coil, and associated coaxial coil cable, coil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signaling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level. 5 figs.
7 CFR 800.83 - Sampling provisions by kind of movement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 800.83 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS Inspection Methods and Procedures § 800.83 Sampling provisions by kind of movement. (a) Export...
7 CFR 800.83 - Sampling provisions by kind of movement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 800.83 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS Inspection Methods and Procedures § 800.83 Sampling provisions by kind of movement. (a) Export...
7 CFR 800.83 - Sampling provisions by kind of movement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 800.83 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS Inspection Methods and Procedures § 800.83 Sampling provisions by kind of movement. (a) Export...
7 CFR 800.83 - Sampling provisions by kind of movement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 800.83 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS Inspection Methods and Procedures § 800.83 Sampling provisions by kind of movement. (a) Export...
7 CFR 800.83 - Sampling provisions by kind of movement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 800.83 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS Inspection Methods and Procedures § 800.83 Sampling provisions by kind of movement. (a) Export...
Ultrasonic Phased Array Inspection Simulations of Welded Components at NASA
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.
2009-01-01
Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increased role in the future for nondestructive evaluation in order to better understand the physics of the inspection process and help explain the experimental results. It will also help to prove or disprove the feasibility for an inspection method or inspection scenario, help optimize inspections, and allow to a first approximation limits of detectability. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles.
System on a Chip (SoC) Overview
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2010-01-01
System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.
Inspection of lithographic mask blanks for defects
Sommargren, Gary E.
2001-01-01
A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.
Finite element analysis simulations for ultrasonic array NDE inspections
NASA Astrophysics Data System (ADS)
Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony
2016-02-01
Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.
NASA Astrophysics Data System (ADS)
Sun, Qianlai; Wang, Yin; Sun, Zhiyi
2018-05-01
For most surface defect detection methods based on image processing, image segmentation is a prerequisite for determining and locating the defect. In our previous work, a method based on singular value decomposition (SVD) was used to determine and approximately locate surface defects on steel strips without image segmentation. For the SVD-based method, the image to be inspected was projected onto its first left and right singular vectors respectively. If there were defects in the image, there would be sharp changes in the projections. Then the defects may be determined and located according sharp changes in the projections of each image to be inspected. This method was simple and practical but the SVD should be performed for each image to be inspected. Owing to the high time complexity of SVD itself, it did not have a significant advantage in terms of time consumption over image segmentation-based methods. Here, we present an improved SVD-based method. In the improved method, a defect-free image is considered as the reference image which is acquired under the same environment as the image to be inspected. The singular vectors of each image to be inspected are replaced by the singular vectors of the reference image, and SVD is performed only once for the reference image off-line before detecting of the defects, thus greatly reducing the time required. The improved method is more conducive to real-time defect detection. Experimental results confirm its validity.
Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings.
Rosso, O A; Figliola, A; Creso, J; Serrano, E
2004-07-01
EEG signals obtained during tonic-clonic epileptic seizures can be severely contaminated by muscle and physiological noise. Heavily contaminated EEG signals are hard to analyse quantitatively and also are usually rejected for visual inspection by physicians, resulting in a considerable loss of collected information. The aim of this work was to develop a computer-based method of time series analysis for such EEGs. A method is presented for filtering those frequencies associated with muscle activity using a wavelet transform. One of the advantages of this method over traditional filtering is that wavelet filtering of some frequency bands does not modify the pattern of the remaining ones. In consequence, the dynamics associated with them do not change. After generation of a 'noise free' signal by removal of the muscle artifacts using wavelets, a dynamic analysis was performed using non-linear dynamics metric tools. The characteristic parameters evaluated (correlation dimension D2 and largest Lyapunov exponent lambda1) were compatible with those obtained in previous works. The average values obtained were: D2=4.25 and lambda1=3.27 for the pre-ictal stage; D2=4.03 and lambda1=2.68 for the tonic seizure stage; D2=4.11 and lambda1=2.46 for the clonic seizure stage.
Bai, Zhiliang; Chen, Shili; Jia, Lecheng; Zeng, Zhoumo
2018-01-01
Embracing the fact that one can recover certain signals and images from far fewer measurements than traditional methods use, compressive sensing (CS) provides solutions to huge amounts of data collection in phased array-based material characterization. This article describes how a CS framework can be utilized to effectively compress ultrasonic phased array images in time and frequency domains. By projecting the image onto its Discrete Cosine transform domain, a novel scheme was implemented to verify the potentiality of CS for data reduction, as well as to explore its reconstruction accuracy. The results from CIVA simulations indicate that both time and frequency domain CS can accurately reconstruct array images using samples less than the minimum requirements of the Nyquist theorem. For experimental verification of three types of artificial flaws, although a considerable data reduction can be achieved with defects clearly preserved, it is currently impossible to break Nyquist limitation in the time domain. Fortunately, qualified recovery in the frequency domain makes it happen, meaning a real breakthrough for phased array image reconstruction. As a case study, the proposed CS procedure is applied to the inspection of an engine cylinder cavity containing different pit defects and the results show that orthogonal matching pursuit (OMP)-based CS guarantees the performance for real application. PMID:29738452
Measuring stress variation with depth using Barkhausen signals
NASA Astrophysics Data System (ADS)
Kypris, O.; Nlebedim, I. C.; Jiles, D. C.
2016-06-01
Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.
Wireless power transfer electric vehicle supply equipment installation and validation tool
Jones, Perry T.; Miller, John M.
2015-05-19
A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.
Ultrasonic Phased Array Inspection for an Isogrid Structural Element with Cracks
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.
2010-01-01
In this investigation, a T-shaped aluminum alloy isogrid stiffener element used in aerospace applications was inspected with ultrasonic phased array methods. The isogrid stiffener element had various crack configurations emanating from bolt holes. Computational simulation methods were used to mimic the experiments in order to help understand experimental results. The results of this study indicate that it is at least partly feasible to interrogate this type of geometry with the given flaw configurations using phased array ultrasonics. The simulation methods were critical in helping explain the experimental results and, with some limitation, can be used to predict inspection results.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... traditional inspection methods to newly reflagged vessels, while at the same time apply a less stringent level... any one of the following methods: (1) Federal eRulemaking Portal: http://www.regulations.gov . (2) Fax... methods. See the ``Public Participation and Request for Comments'' portion of the SUPPLEMENTARY...
NASA Astrophysics Data System (ADS)
Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt
2018-05-01
Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.
Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng
2013-01-01
To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123
Defining the best quality-control systems by design and inspection.
Hinckley, C M
1997-05-01
Not all of the many approaches to quality control are equally effective. Nonconformities in laboratory testing are caused basically by excessive process variation and mistakes. Statistical quality control can effectively control process variation, but it cannot detect or prevent most mistakes. Because mistakes or blunders are frequently the dominant source of nonconformities, we conclude that statistical quality control by itself is not effective. I explore the 100% inspection methods essential for controlling mistakes. Unlike the inspection techniques that Deming described as ineffective, the new "source" inspection methods can detect mistakes and enable corrections before nonconformities are generated, achieving the highest degree of quality at a fraction of the cost of traditional methods. Key relationships between task complexity and nonconformity rates are also described, along with cultural changes that are essential for implementing the best quality-control practices.
Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid
Byambasuren, Bat-erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar
2016-01-01
Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results. PMID:26907274
Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.
Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar
2016-02-19
Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.
NASA Astrophysics Data System (ADS)
Stefko, Kamil; Bukowski, Tomasz; Urbański, Michał
2012-03-01
A fast method for visual inspection and classification of massive locomotor activity data registered from laboratory rats is presented. Positions in the home cage of one hundred rats have been constantly recorded during 90 day period using photodiodes and beam crossing method with use of custom build system. Direct inspection and comparison of classic form of actograms did not bring information for fast and easy recognition of anomalies in daily behavioural cycle. A method of obtaining fast and easy to compare locomotor activity pattern is presented. The key point of proposed method is exposition of characteristic points in the activity diagram. About 9000 actograms were inspected and classified for investigation with use of ANOVA.
Selection of suitable NDT methods for building inspection
NASA Astrophysics Data System (ADS)
Pauzi Ismail, Mohamad
2017-11-01
Construction of modern structures requires good quality concrete with adequate strength and durability. Several accidents occurred in the civil constructions and were reported in the media. Such accidents were due to poor workmanship and lack of systematic monitoring during the constructions. In addition, water leaking and cracking in residential houses was commonly reported too. Based on these facts, monitoring the quality of concrete in structures is becoming more and more important subject. This paper describes major Non-destructive Testing (NDT) methods for evaluating structural integrity of concrete building. Some interesting findings during actual NDT inspections on site are presented. The NDT methods used are explained, compared and discussed. The suitable methods are suggested as minimum NDT methods to cover parameters required in the inspection.
NASA Astrophysics Data System (ADS)
Sattarpanah Karganroudi, Sasan
The competitive industrial market demands manufacturing companies to provide the markets with a higher quality of production. The quality control department in industrial sectors verifies geometrical requirements of products with consistent tolerances. These requirements are presented in Geometric Dimensioning and Tolerancing (GD&T) standards. However, conventional measuring and dimensioning methods for manufactured parts are time-consuming and costly. Nowadays manual and tactile measuring methods have been replaced by Computer-Aided Inspection (CAI) methods. The CAI methods apply improvements in computational calculations and 3-D data acquisition devices (scanners) to compare the scan mesh of manufactured parts with the Computer-Aided Design (CAD) model. Metrology standards, such as ASME-Y14.5 and ISO-GPS, require implementing the inspection in free-state, wherein the part is only under its weight. Non-rigid parts are exempted from the free-state inspection rule because of their significant geometrical deviation in a free-state with respect to the tolerances. Despite the developments in CAI methods, inspection of non-rigid parts still remains a serious challenge. Conventional inspection methods apply complex fixtures for non-rigid parts to retrieve the functional shape of these parts on physical fixtures; however, the fabrication and setup of these fixtures are sophisticated and expensive. The cost of fixtures has doubled since the client and manufacturing sectors require repetitive and independent inspection fixtures. To eliminate the need for costly and time-consuming inspection fixtures, fixtureless inspection methods of non-rigid parts based on CAI methods have been developed. These methods aim at distinguishing flexible deformations of parts in a free-state from defects. Fixtureless inspection methods are required to be automatic, reliable, reasonably accurate and repeatable for non-rigid parts with complex shapes. The scan model, which is acquired as point clouds, represent the shape of a part in a free-state. Afterward, the inspection of defects is performed by comparing the scan and CAD models, but these models are presented in different coordinate systems. Indeed, the scan model is presented in the measurement coordinate system whereas the CAD model is introduced in the designed coordinate system. To accomplish the inspection and facilitate an accurate comparison between the models, the registration process is required to align the scan and CAD models in a common coordinate system. The registration includes a virtual compensation for the flexible deformation of the parts in a free-state. Then, the inspection is implemented as a geometrical comparison between the CAD and scan models. This thesis focuses on developing automatic and accurate fixtureless CAI methods for non-rigid parts along with assessing the robustness of the methods. To this end, an automatic fixtureless CAI method for non-rigid parts based on filtering registration points is developed to identify and quantify defects more accurately on the surface of scan models. The flexible deformation of parts in a free-state in our developed automatic fixtureless CAI method is compensated by applying FE non-rigid Registration (FENR) to deform the CAD model towards the scan mesh. The displacement boundary conditions (BCs) for FENR are determined based on the corresponding sample points, which are generated by the Generalized Numerical Inspection Fixture (GNIF) method on the CAD and scan models. These corresponding sample points are evenly distributed on the surface of the models. The comparison between this deformed CAD model and the scan mesh intend to evaluate and quantify the defects on the scan model. However, some sample points can be located close or on defect areas which result in an inaccurate estimation of defects. These sample points are automatically filtered out in our CAI method based on curvature and von Mises stress criteria. Once filtered out, the remaining sample points are used in a new FENR, which allows an accurate evaluation of defects with respect to the tolerances. The performance and robustness of all CAI methods are generally required to be assessed with respect to the actual measurements. This thesis also introduces a new validation metric for Verification and Validation (V&V) of CAI methods based on ASME recommendations. The developed V&V approach uses a nonparametric statistical hypothesis test, namely the Kolmogorov-Smirnov (K-S) test. In addition to validating the defects size, the K-S test allows a deeper evaluation based on distance distribution of defects. The robustness of CAI method with respect to uncertainties such as scanning noise is quantitatively assessed using the developed validation metric. Due to the compliance of non-rigid parts, a geometrically deviated part can still be assembled in the assembly-state. This thesis also presents a fixtureless CAI method for geometrically deviated (presenting defects) non-rigid parts to evaluate the feasibility of mounting these parts in the functional assembly-state. Our developed Virtual Mounting Assembly-State Inspection (VMASI) method performs a non-rigid registration to virtually mount the scan mesh in assembly-state. To this end, the point clouds of scan model representing the part in a free-state is deformed to meet the assembly constraints such as fixation position (e.g. mounting holes). In some cases, the functional shape of a deviated part can be retrieved by applying assembly loads, which are limited to permissible loads, on the surface of the part. The required assembly loads are estimated through our developed Restraining Pressures Optimization (RPO) aiming at displacing the deviated scan model to achieve the tolerance for mounting holes. Therefore, the deviated scan model can be assembled if the mounting holes on the predicted functional shape of scan model attain the tolerance range. Different industrial parts are used to evaluate the performance of our developed methods in this thesis. The automatic inspection for identifying different types of small (local) and big (global) defects on the parts results in an accurate evaluation of defects. The robustness of this inspection method is also validated with respect to different levels of scanning noise, which shows promising results. Meanwhile, the VMASI method is performed on various parts with different types of defects, which concludes that in some cases the functional shape of deviated parts can be retrieved by mounting them on a virtual fixture in assembly-state under restraining loads.
Use of eddy current mixes to solve a weld examination application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.C.; LaBoissonniere, A.
1995-12-31
The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis.
Rover Low Gain Antenna Qualification for Deep Space Thermal Environments
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert; Prater, Jack L.
2013-01-01
A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed on the RLGA hardware before the start of the qualification test. Functional intermittent RF tests were performed during thermal chamber breaks over the course of the complete qualification test. For the return loss measurements, the RLGA antenna was moved to a test area. A vector network analyzer was calibrated over the operational frequency range of the antenna. For the RLGA, a simple return loss measurement was performed. A total of 2,010 (3 670 or 3 times mission thermal cycles) thermal cycles was performed. Visual inspection of the RLGA hardware did not show any anomalies due to the thermal cycling. The return loss measurement results of the RLGA antenna after the PQV (Package Qualification and Verification) test did not show any anomalies. The antenna pattern data taken before and after the PQV test at the uplink and downlink frequencies were unchanged. Therefore, the developed design of RLGA is qualified for a long-duration MSL mission.
Analysis, inspection, and repair methods for pin connections on Illinois bridges
DOT National Transportation Integrated Search
1992-04-01
This report documents methods used in Illinois for analysis, inspection, and repair of pin connections in bridges. Weldable foil strain gages were used to detect the effects of unknown levels of fixity in pins on cantilever truss bridges. Other metho...
NASA Astrophysics Data System (ADS)
Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin
The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.
Zhang, Chi; Zhang, Deqin; Yang, Jun; Zhou, Jungui; Hu, Qilong; Ling, Rui; Dong, Mingsheng
2012-01-01
Staphylococcal food poisoning is one of the most common foodborne diseases worldwide; it results from the ingestion of staphylococcal enterotoxins (SEs) in food, mainly Staphylococcus aureus. This study investigated the statistical relationships among morphological enumerations of food-derived S. aureus and production of SEs using different methodologies. Food samples naturally contaminated with coagulase-positive S. aureus were submitted for enumeration on Baird-Parker (BP) agar, Rabbit Plasma Fibrinogen agar (RPFA), and Petrifilm Staph Express count system (STX), and the morphologically typical colonies were isolated for VIDAS and real-time (RT) PCR tests. RPFA and STX displayed better performance for the enumeration of SE-positive S. aureus when compared with BP, including higher frequencies of SE-positive isolates and better correlation indices between typical and SE-positive counts. Among all the evaluated culture media, no significant difference (P > 0.05) was shown on the frequencies of typical colonies that carried 11 individual se genes. In addition, results for SE identification between VIDAS and RT-PCR assay were unparalleled. These data will be valuable for the selection of methods for inspection of food-derived S. aureus.
Terahertz wave techniques using a metal mesh for evaluating the components of the stratum corneum.
Mizukoshi, Koji; Yonekura, Kazuki; Ogura, Hidehiro; Guan, Yu; Kawase, Kodo
2013-02-01
Terahertz waves are located in the region of the spectrum between milliwaves and infrared. We analyzed the feasibility of terahertz spectroscopy to inspect the compositional variations of the stratum corneum (SC). We used a terahertz time-domain spectroscopy system with the metal mesh technique. To investigate whether terahertz can inspect compositional variation of SC, we measured the terahertz frequency spectra of the SC sheet that was treated with chloroform-methanol, lipid mixture, a denaturation agent, and heating with hot air. The chloroform-methanol treatment of the SC shifted the dip position, which represents a convex downward shape of the spectra, to a higher frequency. This dip shift was reversed to an untreated position by the dose-dependent application of a lipid mixture. The heating treatment of the SC shifted the dip position to a higher frequency. The same dip shift was also induced by the application of a denaturation agent to the SC. The technique using terahertz waves with a metal mesh is effective because of its simplicity and its high degree of accuracy in detecting the amount of lipid and the protein conformation state. © 2012 John Wiley & Sons A/S.
Nondestructive Evaluation of Foam Insulation on the Space Shuttle External Tank
NASA Technical Reports Server (NTRS)
Richter, Joel; Walker, James L.
2006-01-01
Foam loss on the External Tank (ET) during launch can be caused by a number of factors. Voids are the best understood mechanism of foam loss, although it is known that delaminations, cracks and crushed foam can also lead to liberation of foam. Shortly after the Columbia accident, work began on non-destructive evaluation of foam targeted at finding voids and delaminations. After several months of searching for candidate methods capable of inspecting ET foam, the five most promising techniques were taken through a blind test and narrowed down to two methods to develop and use for inspection of the ET. These methods were backscatter radiography and terahertz imaging. The backscatter radiography system measures a test part by detecting Compton backscattered x-ray energy generated by a collimated beam of x-rays directed at the test subject. This collimated beam is scanned across the subject, recording scatter intensity data one pixel at a time until the area of interest is covered. The resulting data can be used to generate an image similar to a radiograph. Some depth information can be gathered utilizing apertures or collimation on the detectors. The detectors are located around the collimated source, making this a single sided inspection. The void detection limit with the currently utilized system is around 0.5 inches in diameter by 0.2 inches high. The terahertz imaging system inspects a test part by utilizing a transceiver to emit a pulse focused at the aluminum skin of the ET, which reflects it back to the transceiver where it is analyzed. The transceiver is scanned across the area of interest until a measurement has been taken at every location. Amplitude, time delay and frequency content are examined to note any discontinuities which may be the result of a void or other type of defect. The pulse currently utilized is in the millimeter wave regime. The void detection limit with this system is around 0.5 inches in diameter by 0.2 inches high. With increased interest in other causes of foam loss following the flight of Discovery in July 2005, laser shearography was added to the techniques used for inspecting ET foam. The shearography method records a sheared image of a laser speckle pattern projected on a test part before And after some sort of excitation. The resultant fringe pattern allows the slope of the out of plane displacement to be measured. For crushed and delaminated foam applications, a non-contact air coupled acoustic force is used to excite the surface of the foam. Regions without defects tend to respond differently to the sound energy than do regions with defects, generating a map of the foam integrity. Foam crushed to a depth of about 0.1 inches is detectable with shearography even after it has relaxed to its original shape.
Mei, Shuang; Wang, Yudan; Wen, Guojun; Hu, Yang
2018-05-03
Increasing deployment of optical fiber networks and the need for reliable high bandwidth make the task of inspecting optical fiber connector end faces a crucial process that must not be neglected. Traditional end face inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. More seriously, the inspection results cannot be quantified for subsequent analysis. Aiming at the characteristics of typical defects in the inspection process for optical fiber end faces, we propose a novel method, “difference of min-max ranking filtering” (DO2MR), for detection of region-based defects, e.g., dirt, oil, contamination, pits, and chips, and a special model, a “linear enhancement inspector” (LEI), for the detection of scratches. The DO2MR is a morphology method that intends to determine whether a pixel belongs to a defective region by comparing the difference of gray values of pixels in the neighborhood around the pixel. The LEI is also a morphology method that is designed to search for scratches at different orientations with a special linear detector. These two approaches can be easily integrated into optical inspection equipment for automatic quality verification. As far as we know, this is the first time that complete defect detection methods for optical fiber end faces are available in the literature. Experimental results demonstrate that the proposed DO2MR and LEI models yield good comprehensive performance with high precision and accepted recall rates, and the image-level detection accuracies reach 96.0 and 89.3%, respectively.
Quasi-Rayleigh waves in butt-welded thick steel plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu
2015-03-31
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less
48 CFR 852.211-70 - Service data manuals.
Code of Federal Regulations, 2011 CFR
2011-10-01
... applicable, flow charts and narrative descriptions of software shall be provided. If programming is either...) Section IV, Principles of Operation. This section shall describe in narrative form the principles of... the recommended frequency of performance shall be included for visual inspection, cleaning...
NASA Astrophysics Data System (ADS)
Hui, Liu; Ding, Liu Wen
Inspection is not only one of the most significant duties, but the important prerequisite for going through Customs. Setting the inspection rate scientifically can not only solve the contradiction between the "check on" and "service" for CIQ (CHINA ENTRY-EXIT INSPECTION AND UARANTINE)site inspection personnel, but can highlight the key of inspection and enhance the ratio of discovering, achieving the optimum allocation of CIQ's limited human and material resources. In this article, from the characteristics of inspection risk evaluation themselves, considering the setting problem of check rate at from the angle of data mining, construct an index system rationally and objectively. On the basis of Fuzzy theory, evaluate the risk of the inward and outward goods with the grey-fuzzy comprehensive evaluation method, and establish the inspection rate scientifically.
7 CFR 51.2947 - Method of inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... internal defects. The nuts must meet the requirements for both external and internal quality in order to... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of inspection. 51.2947 Section 51.2947 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...
Damage estimation of sewer pipe using subtitles of CCTV inspection video
NASA Astrophysics Data System (ADS)
Park, Kitae; Kim, Byeongcheol; Kim, Taeheon; Seo, Dongwoo
2017-04-01
Recent frequent occurrence of urban sinkhole serves as a momentum of the periodic inspection of sewer pipelines. Sewer inspection using a CCTV device needs a lot of time and efforts. Many of previous studies which reduce the laborious tasks are mainly interested in the developments of image processing S/W and exploring H/W. And there has been no attempt to find meaningful information from the existing CCTV images stored by the sewer maintenance manager. This study adopts a cross-correlation based image processing method and extracts sewer inspection device's location data from CCTV images. As a result of the analysis of location-time relation, it show strong correlation between device stand time and the sewer damages. In case of using this method to investigate sewer inspection CCTV images, it will save the investigator's efforts and improve sewer maintenance efficiency and reliability.
Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.
Ciampa, Francesco; Mankar, Akash; Marini, Andrea
2017-11-07
Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.
Construction site Voice Operated Information System (VOIS) test
NASA Astrophysics Data System (ADS)
Lawrence, Debbie J.; Hettchen, William
1991-01-01
The Voice Activated Information System (VAIS), developed by USACERL, allows inspectors to verbally log on-site inspection reports on a hand held tape recorder. The tape is later processed by the VAIS, which enters the information into the system's database and produces a written report. The Voice Operated Information System (VOIS), developed by USACERL and Automated Sciences Group, through a ESACERL cooperative research and development agreement (CRDA), is an improved voice recognition system based on the concepts and function of the VAIS. To determine the applicability of the VOIS to Corps of Engineers construction projects, Technology Transfer Test Bad (T3B) funds were provided to the Corps of Engineers National Security Agency (NSA) Area Office (Fort Meade) to procure and implement the VOIS, and to train personnel in its use. This report summarizes the NSA application of the VOIS to quality assurance inspection of radio frequency shielding and to progress payment logs, and concludes that the VOIS is an easily implemented system that can offer improvements when applied to repetitive inspection procedures. Use of VOIS can save time during inspection, improve documentation storage, and provide flexible retrieval of stored information.
Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal
2018-01-01
The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.
Facilitating normative judgments of conditional probability: frequency or nested sets?
Yamagishi, Kimihiko
2003-01-01
Recent probability judgment research contrasts two opposing views. Some theorists have emphasized the role of frequency representations in facilitating probabilistic correctness; opponents have noted that visualizing the probabilistic structure of the task sufficiently facilitates normative reasoning. In the current experiment, the following conditional probability task, an isomorph of the "Problem of Three Prisoners" was tested. "A factory manufactures artificial gemstones. Each gemstone has a 1/3 chance of being blurred, a 1/3 chance of being cracked, and a 1/3 chance of being clear. An inspection machine removes all cracked gemstones, and retains all clear gemstones. However, the machine removes 1/2 of the blurred gemstones. What is the chance that a gemstone is blurred after the inspection?" A 2 x 2 design was administered. The first variable was the use of frequency instruction. The second manipulation was the use of a roulette-wheel diagram that illustrated a "nested-sets" relationship between the prior and the posterior probabilities. Results from two experiments showed that frequency alone had modest effects, while the nested-sets instruction achieved a superior facilitation of normative reasoning. The third experiment compared the roulette-wheel diagram to tree diagrams that also showed the nested-sets relationship. The roulette-wheel diagram outperformed the tree diagrams in facilitation of probabilistic reasoning. Implications for understanding the nature of intuitive probability judgments are discussed.
Manufacturing Methods & Technology Project Execution Report. First Half CY 80
1980-08-01
1 80 7371 INTEGRATED BLADE INSPECTION SYSTEM (IBIS) INSPECTION OF TURBINE ENGINE BLADES AND VANES NECESSITATES HIGH ACCURACY. THE EFFORT IS TIME...OPTICAL INSP OF PRINTED CIRCUIT BOARDS OPERATOR FATIGUE ALLOWS MANY BAD PCBSS TO PASS VISUAL INSPECTION . 29 PROJECTS ADDED IN 1ST HALF» CY80...2631 TITLED "CRITICAL ELECTROHAGNETIC INSPECTION PROBLEMS WITHIN THE ARMY." FUTURE STATUS WILL BE INCLUDED IN THE PROJECT STATUS FOR M 80 6350
MEMS ultrasonic transducer for monitoring of steel structures
NASA Astrophysics Data System (ADS)
Jain, Akash; Greve, David W.; Oppenheim, Irving J.
2002-06-01
Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.
NASA Astrophysics Data System (ADS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.
2010-02-01
In this investigation, a T-shaped aluminum alloy isogrid stiffener element used in aerospace applications was inspected with ultrasonic phased array methods. The isogrid stiffener element had various crack configurations emanating from bolt holes. Computational simulation methods were used to mimic the experiments in order to help understand experimental results. The results of this study indicate that it is at least partly feasible to interrogate this type of geometry with the given flaw configurations using phased array ultrasonics. The simulation methods were critical in helping explain the experimental results and, with some limitation, can be used to predict inspection results.
Automated inspection of gaps on the free-form shape parts by laser scanning technologies
NASA Astrophysics Data System (ADS)
Zhou, Sen; Xu, Jian; Tao, Lei; An, Lu; Yu, Yan
2018-01-01
In industrial manufacturing processes, the dimensional inspection of the gaps on the free-form shape parts is critical and challenging, and is directly associated with subsequent assembly and terminal product quality. In this paper, a fast measuring method for automated gap inspection based on laser scanning technologies is presented. The proposed measuring method consists of three steps: firstly, the relative position is determined according to the geometric feature of measuring gap, which considers constraints existing in a laser scanning operation. Secondly, in order to acquire a complete gap profile, a fast and effective scanning path is designed. Finally, the range dimension of the gaps on the free-form shape parts including width, depth and flush, correspondingly, is described in a virtual environment. In the future, an appliance machine based on the proposed method will be developed for the on-line dimensional inspection of gaps on the automobile or aerospace production line.
The analysis of the accuracy of the wheel alignment inspection method on the side-slip plate stand
NASA Astrophysics Data System (ADS)
Gajek, A.; Strzępek, P.
2016-09-01
The article presents the theoretical basis and the results of the examination of the wheel alignment inspection method on the slide slip plate stand. It is obligatory test during periodic technical inspection of the vehicle. The measurement is executed in the dynamic conditions. The dependence between the lateral displacement of the plate and toe-in of the tested wheels has been shown. If the diameter of the wheel rim is known then the value of the toe-in can be calculated. The comparison of the toe-in measurements on the plate stand and on the four heads device for the wheel alignment inspection has been carried out. The accuracy of the measurements and the influence of the conditions of the tests on the plate stand (the way of passing through the plate) were estimated. The conclusions about the accuracy of this method are presented.
Thermographic inspection of pipes, tanks, and containment liners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Muthu, Nathan; Lhota, James R.
2015-03-31
Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concretemore » for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.« less
Thermographic inspection of pipes, tanks, and containment liners
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy B.; Lhota, James R.; Muthu, Nathan; Shepard, Steven M.
2015-03-01
Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.
High-Frequency Testing of Composite Fan Vanes With Erosion-Resistant Coating Conducted
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Sutter, James K.; Naik, Subhash; Otten, Kim D.; Perusek, Gail P.
2003-01-01
The mechanical integrity of hard, erosion-resistant coatings were tested using the Structural Dynamics Laboratory at the NASA Glenn Research Center. Under the guidance of Structural Mechanics and Dynamics Branch personnel, fixturing and test procedures were developed at Glenn to simulate engine vibratory conditions on coated polymer-matrix- composite bypass vanes using a slip table in the Structural Dynamics Laboratory. Results from the high-frequency mechanical bench testing, along with concurrent erosion testing of coupons and vanes, provided sufficient confidence to engine-endurance test similarly coated vane segments. The knowledge gained from this program will be applied to the development of oxidation- and erosion-resistant coatings for polymer matrix composite blades and vanes in future advanced turbine engines. Fan bypass vanes from the AE3007 (Rolls Royce America, Indianapolis, IN) gas turbine engine were coated by Engelhard (Windsor, CT) with compliant bond coatings and hard ceramic coatings. The coatings were developed collaboratively by Glenn and Allison Advanced Development Corporation (AADC)/Rolls Royce America through research sponsored by the High-Temperature Engine Materials Technology Project (HITEMP) and the Higher Operating Temperature Propulsion Components (HOTPC) project. High-cycle fatigue was performed through high-frequency vibratory testing on a shaker table. Vane resonant frequency modes were surveyed from 50 to 3000 Hz at input loads from 1g to 55g on both uncoated production vanes and vanes with the erosion-resistant coating. Vanes were instrumented with both lightweight accelerometers and strain gauges to establish resonance, mode shape, and strain amplitudes. Two high-frequency dwell conditions were chosen to excite two strain levels: one approaching the vane's maximum allowable design strain and another near the expected maximum strain during engine operation. Six specimens were tested per dwell condition. Pretest and posttest inspections were performed optically at up to 60 magnification and using a fluorescent-dye penetrant. Accumulation of 10 million cycles at a strain amplitude of two to three times that expected in the engine (approximately 670 Hz and 20g) led to the development of multiple cracks in the coating that were only detectable using fluorescent-dye penetrant inspection. Cracks were prevalent on the trailing edge and on the convex side of the midsection. No cracking or spalling was evident using standard optical inspection at up to 60 magnification. Further inspection may reveal whether these fine cracks penetrated the coating or were strictly on the surface. The dwell condition that simulated actual engine conditions produced no obvious surface flaws even after up to 80 million cycles had been accumulated at strain amplitudes produced at approximately 1500 Hz and 45g.
Ultrasonic Phased Array Simulations of Welded Components at NASA
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.
2009-01-01
Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increasing role in the future for nondestructive evaluation in order to better understand the physics of the inspection process, to prove or disprove the feasibility for an inspection method or inspection scenario, for inspection optimization, for better understanding of experimental results, and for assessment of probability of detection. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles. Keywords: nondestructive evaluation, computational simulation, ultrasonics, weld, modeling, phased array
Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.
2016-02-01
Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.
47 CFR 95.1223 - Registration and frequency coordination in the 2360-2390 MHz Band.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 2360-2390 MHz band is permanently taken out of service, unless it is replaced with transmitter(s) using..., Switzerland, or online at http://www.itu.int/en/publications/Pages/default.aspx. You may inspect a copy at the...
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...
Aviation safety : undeclared air shipments of dangerous goods and DOT's enforcement approach
DOT National Transportation Integrated Search
2003-01-01
Little is known about the nature and frequency of undeclared shipments of dangerous goods. While major carriers and the Postal Service believe such shipments are rare, their belief is based mainly on inspections of problem shipments, such as those th...
NASA Technical Reports Server (NTRS)
Eller, H. H.; Sugg, F. E.
1970-01-01
The methods and procedures used to perform nondestructive testing inspections of the Saturn S-2 liquid hydrogen and liquid oxygen tank weldments during fabrication and after proof testing are described to document special skills developed during the program. All post-test inspection requirements are outlined including radiographic inspections procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... assigned to the Postal Inspection Service, student interns, contractors and employees of contractors who... or testimony fails to cooperate in good faith, preventing Inspection Service legal counsel from... disruptive methods to the employee's official duties. Testimony may, for example, be provided by affidavits...
7 CFR 800.85 - Inspection of grain in combined lots.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS Inspection Methods and Procedures § 800.85 Inspection of grain in combined lots. (a) General. The...) Weighted or mathematical average. Official factor and official criteria information shown on a certificate... section, be based on the weighted or mathematical averages of the analysis of the sublots in the lot and...
Method for refurbishing and processing parachutes
NASA Technical Reports Server (NTRS)
Crowell, R. T. (Inventor)
1982-01-01
A system and method for refurbishing and processing parachutes is discussed including an overhead monorail conveyor system on which the parachute is suspended for horizontal conveyance. The parachute is first suspended in partially open tented configuration wherein open inspection of the canopy is permitted to remove debris and inspect all areas. Following inspection, the parachute is transported by the monorail conveyor to a washing and drying station with the parachute canopy mounted on the conveyor ina systematic arrangement which permits water and air to pass through the ribbonlike material of the canopy. Following drying of the parachute, the parachute is conveyed into an interior space where it is finally inspected and removed from the monorail conveyor and laid upon a table for folding.
Masonry building envelope analysis
NASA Astrophysics Data System (ADS)
McMullan, Phillip C.
1993-04-01
Over the past five years, infrared thermography has proven an effective tool to assist in required inspections on new masonry construction. However, with more thermographers providing this inspection service, establishing a standard for conducting these inspections is imperative. To attempt to standardize these inspections, it is important to understand the nature of the inspection as well as the context in which the inspection is typically conducted. The inspection focuses on evaluating masonry construction for compliance with the design specifications with regard to structural components and thermal performance of the building envelope. The thermal performance of the building includes both the thermal resistance of the material as well as infiltration/exfiltration characteristics. Given that the inspections occur in the 'field' rather than the controlled environment of a laboratory, there are numerous variables to be considered when undertaking this type of inspection. Both weather and site conditions at the time of the inspection can vary greatly. In this paper we will look at the variables encountered during recent inspections. Additionally, the author will present the standard which was employed in collecting this field data. This method is being incorporated into a new standard to be included in the revised version of 'Guidelines for Specifying and Performing Infrared Inspections' developed by the Infraspection Institute.
ERIC Educational Resources Information Center
Carlson, Aaron M.; McPhail, Ellen D.; Rodriguez, Vilmarie; Schroeder, Georgene; Wolanskyj, Alexandra P.
2014-01-01
Instruction in hematopathology at Mayo Medical School has evolved from instructor-guided direct inspection under the light microscope (laboratory method), to photomicrographs of glass slides with classroom projection (projection method). These methods have not been compared directly to date. Forty-one second-year medical students participated in…
Time Reversal Method for Pipe Inspection with Guided Wave
NASA Astrophysics Data System (ADS)
Deng, Fei; He, Cunfu; Wu, Bin
2008-02-01
The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.
Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method
NASA Astrophysics Data System (ADS)
Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao
2016-09-01
To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.
NASA Astrophysics Data System (ADS)
Peng, Zhang
2018-03-01
the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.
Development of testing machine for tunnel inspection using multi-rotor UAV
NASA Astrophysics Data System (ADS)
Iwamoto, Tatsuya; Enaka, Tomoya; Tada, Keijirou
2017-05-01
Many concrete structures are deteriorating to dangerous levels throughout Japan. These concrete structures need to be inspected regularly to be sure that they are safe enough to be used. The inspection method for these concrete structures is typically the impact acoustic method. In the impact acoustic method, the worker taps the surface of the concrete with a hammer. Thus, it is necessary to set up scaffolding to access tunnel walls for inspection. Alternatively, aerial work platforms can be used. However, setting up scaffolding and aerial work platforms is not economical with regard to time or money. Therefore, we developed a testing machine using a multirotor UAV for tunnel inspection. This test machine flies by a plurality of rotors, and it is pushed along a concrete wall and moved by using rubber crawlers. The impact acoustic method is used in this testing machine. This testing machine has a hammer to make an impact, and a microphone to acquire the impact sound. The impact sound is converted into an electrical signal and is wirelessly transmitted to the computer. At the same time, the position of the testing machine is measured by image processing using a camera. The weight and dimensions of the testing machine are approximately 1.25 kg and 500 mm by 500 mm by 250 mm, respectively.
MTO-like reference mask modeling for advanced inverse lithography technology patterns
NASA Astrophysics Data System (ADS)
Park, Jongju; Moon, Jongin; Son, Suein; Chung, Donghoon; Kim, Byung-Gook; Jeon, Chan-Uk; LoPresti, Patrick; Xue, Shan; Wang, Sonny; Broadbent, Bill; Kim, Soonho; Hur, Jiuk; Choo, Min
2017-07-01
Advanced Inverse Lithography Technology (ILT) can result in mask post-OPC databases with very small address units, all-angle figures, and very high vertex counts. This creates mask inspection issues for existing mask inspection database rendering. These issues include: large data volumes, low transfer rate, long data preparation times, slow inspection throughput, and marginal rendering accuracy leading to high false detections. This paper demonstrates the application of a new rendering method including a new OASIS-like mask inspection format, new high-speed rendering algorithms, and related hardware to meet the inspection challenges posed by Advanced ILT masks.
Serebrianyĭ, A M; Akleev, A V; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O V; Riabchenko, N I; Semenova, L P; Pelevina, I I
2011-01-01
By micronucleus (MN) assay with cytokinetic cytochalasin B block, the mean frequency of blood lymphocytes with MN has been determined in 76 Moscow inhabitants, 35 people from Obninsk and 122 from Chelyabinsk region. In contrast to the distribution of individuals on spontaneous frequency of cells with aberrations, which was shown to be binomial (Kusnetzov et al., 1980), the distribution of individuals on the spontaneous frequency of cells with MN in all three massif can be acknowledged as log-normal (chi2 test). Distribution of individuals in the joined massifs (Moscow and Obninsk inhabitants) and in the unique massif of all inspected with great reliability must be acknowledged as log-normal (0.70 and 0.86 correspondingly), but it cannot be regarded as Poisson, binomial or normal. Taking into account that log-normal distribution of children by spontaneous frequency of lymphocytes with MN has been observed by the inspection of 473 children from different kindergartens in Moscow we can make the conclusion that log-normal is regularity inherent in this type of damage of lymphocytes genome. On the contrary the distribution of individuals on induced by irradiation in vitro lymphocytes with MN frequency in most cases must be acknowledged as normal. This distribution character points out that damage appearance in the individual (genomic instability) in a single lymphocytes increases the probability of the damage appearance in another lymphocytes. We can propose that damaged stem cells lymphocyte progenitor's exchange by information with undamaged cells--the type of the bystander effect process. It can also be supposed that transmission of damage to daughter cells occurs in the time of stem cells division.
46 CFR 160.133-9 - Preapproval review.
Code of Federal Regulations, 2012 CFR
2012-10-01
... manual as described in §§ 160.133-19 and 160.133-21 of this subpart; (7) A description of the quality... suppliers; (ii) The method for controlling the inventory of materials; (iii) The method for checking quality of fabrication and joints, including welding inspection procedures; and (iv) The inspection...
46 CFR 160.133-9 - Preapproval review.
Code of Federal Regulations, 2013 CFR
2013-10-01
... manual as described in §§ 160.133-19 and 160.133-21 of this subpart; (7) A description of the quality... suppliers; (ii) The method for controlling the inventory of materials; (iii) The method for checking quality of fabrication and joints, including welding inspection procedures; and (iv) The inspection...
46 CFR 160.170-9 - Preapproval review.
Code of Federal Regulations, 2014 CFR
2014-10-01
... manual as described in §§ 160.170-19 and 160.170-21 of this subpart; (7) A description of the quality... suppliers; (ii) The method for controlling the inventory of materials; (iii) The method for checking quality of fabrication and joints, including welding inspection procedures; and (iv) The inspection...
46 CFR 160.170-9 - Preapproval review.
Code of Federal Regulations, 2013 CFR
2013-10-01
... manual as described in §§ 160.170-19 and 160.170-21 of this subpart; (7) A description of the quality... suppliers; (ii) The method for controlling the inventory of materials; (iii) The method for checking quality of fabrication and joints, including welding inspection procedures; and (iv) The inspection...
46 CFR 160.133-9 - Preapproval review.
Code of Federal Regulations, 2014 CFR
2014-10-01
... manual as described in §§ 160.133-19 and 160.133-21 of this subpart; (7) A description of the quality... suppliers; (ii) The method for controlling the inventory of materials; (iii) The method for checking quality of fabrication and joints, including welding inspection procedures; and (iv) The inspection...
46 CFR 160.170-9 - Preapproval review.
Code of Federal Regulations, 2012 CFR
2012-10-01
... manual as described in §§ 160.170-19 and 160.170-21 of this subpart; (7) A description of the quality... suppliers; (ii) The method for controlling the inventory of materials; (iii) The method for checking quality of fabrication and joints, including welding inspection procedures; and (iv) The inspection...
77 FR 2669 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... methods and would inspect additional areas, and corrective actions if necessary. This proposed AD would... and 11.45, by any of the following methods: Federal eRulemaking Portal: Go to http://www.regulations...-mill cracking in the shear wrinkle areas Inspecting for vertical chem-mill cracking at specified...
9 CFR 381.211 - Method of detention; form of detention tag.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Method of detention; form of detention tag. 381.211 Section 381.211 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION...
Method of radiographic inspection of wooden members
NASA Technical Reports Server (NTRS)
Berry, Maggie L. (Inventor); Berry, Robert F., Jr. (Inventor)
1990-01-01
The invention is a method to be used for radiographic inspection of a wooden specimen for internal defects which includes the steps of introducing a radiopaque penetrant into any internal defects in the specimen through surface openings; passing a beam of radiation through a portion of the specimen to be inspected; and making a radiographic film image of the radiation passing through the specimen, with the radiopaque penetrant in the specimen absorbing the radiation passing through it, thereby enhancing the resulting image of the internal defects in the specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knaab, H.; Knecht, K.
The need for pool-site inspection and examination of fuel assemblies was recognized by Kraftwerk Union Aktiengesellschaft with the commissioning of the first nuclear power stations. A wet sipping method has demonstrated high reliability in detection of leaking fuel assemblies. The visual inspection system is a versatile tool. It can be supplemented by attaching devices for oxide thickness measurement or surface replication. Repair of leaking pressurized water reactor fuel assemblies has improved fuel utilization. Applied methods and typical results are described.
INFIBRA: machine vision inspection of acrylic fiber production
NASA Astrophysics Data System (ADS)
Davies, Roger; Correia, Bento A. B.; Contreiras, Jose; Carvalho, Fernando D.
1998-10-01
This paper describes the implementation of INFIBRA, a machine vision system for the inspection of acrylic fiber production lines. The system was developed by INETI under a contract from Fisipe, Fibras Sinteticas de Portugal, S.A. At Fisipe there are ten production lines in continuous operation, each approximately 40 m in length. A team of operators used to perform periodic manual visual inspection of each line in conditions of high ambient temperature and humidity. It is not surprising that failures in the manual inspection process occurred with some frequency, with consequences that ranged from reduced fiber quality to production stoppages. The INFIBRA system architecture is a specialization of a generic, modular machine vision architecture based on a network of Personal Computers (PCs), each equipped with a low cost frame grabber. Each production line has a dedicated PC that performs automatic inspection, using specially designed metrology algorithms, via four video cameras located at key positions on the line. The cameras are mounted inside custom-built, hermetically sealed water-cooled housings to protect them from the unfriendly environment. The ten PCs, one for each production line, communicate with a central PC via a standard Ethernet connection. The operator controls all aspects of the inspection process, from configuration through to handling alarms, via a simple graphical interface on the central PC. At any time the operator can also view on the central PC's screen the live image from any one of the 40 cameras employed by the system.
Physics-based process model approach for detecting discontinuity during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Pfefferkorn, Frank E.; Duffie, Neil A.
2015-02-12
The goal of this work is to develop a method for detecting the creation of discontinuities during friction stir welding. This in situ weld monitoring method could significantly reduce the need for post-process inspection. A process force model and a discontinuity force model were created based on the state-of-the-art understanding of flow around an friction stir welding (FSW) tool. These models are used to predict the FSW forces and size of discontinuities formed in the weld. Friction stir welds with discontinuities and welds without discontinuities were created, and the differences in force dynamics were observed. In this paper, discontinuities weremore » generated by reducing the tool rotation frequency and increasing the tool traverse speed in order to create "cold" welds. Experimental force data for welds with discontinuities and welds without discontinuities compared favorably with the predicted forces. The model currently overpredicts the discontinuity size.« less
NASA Astrophysics Data System (ADS)
Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.
2017-04-01
High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.
Lead Apron Inspection Using Infrared Light: A Model Validation Study.
McKenney, Sarah E; Otero, Hansel J; Fricke, Stanley T
2018-02-01
To evaluate defect detection in radiation protective apparel, typically called lead aprons, using infrared (IR) thermal imaging. The use of IR lighting eliminates the need for access to x-ray-emitting equipment and radiation dose to the inspector. The performance of radiation workers was prospectively assessed using both a tactile inspection and the IR inspection with a lead apron phantom over a 2-month period. The phantom was a modified lead apron with a series of nine holes of increasing diameter ranging from 2 to 35 mm in accordance with typical rejection criteria. Using the tactile method, a radiation worker would feel for the defects in the lead apron. For the IR inspection, a 250-W IR light source was used to illuminate the lead apron phantom; an IR camera detected the transmitted radiation. The radiation workers evaluated two stills from the IR camera. From the 31 participants inspecting the lead apron phantom with the tactile method, only 2 participants (6%) correctly discovered all 9 holes and 1 participant reported a defect that was not there; 10 of the 20 participants (50%) correctly identified all 9 holes using the IR method. Using a weighted average, 5.4 defects were detected with the tactile method and 7.5 defects were detected with the IR method. IR light can penetrate an apron's protective outer fabric and illuminate defects below the current standard rejection size criteria. The IR method improves defect detectability as compared with the tactile method. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
One-year audiologic monitoring of individuals exposed to the 1995 Oklahoma City bombing.
Van Campen, L E; Dennis, J M; Hanlin, R C; King, S B; Velderman, A M
1999-05-01
This longitudinal study evaluated subjective, behavioral, and objective auditory function in 83 explosion survivors. Subjects were evaluated quarterly for 1 year with conventional pure-tone and extended high-frequencies audiometry, otoscopic inspections, immittance and speech audiometry, and questionnaires. There was no obvious relationship between subject location and symptoms or test results. Tinnitus, distorted hearing, loudness sensitivity, and otalgia were common symptoms. On average, 76 percent of subjects had predominantly sensorineural hearing loss at one or more frequencies. Twenty-four percent of subjects required amplification. Extended high frequencies showed evidence of acoustic trauma even when conventional frequencies fell within the normal range. Males had significantly poorer responses than females across frequencies. Auditory status of the group was significantly compromised and unchanged at the end of 1-year postblast.
Waldman, Zachary J.; Shimamoto, Shoichi; Song, Inkyung; Orosz, Iren; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard; Sperling, Michael R.; Weiss, Shennan A.
2018-01-01
Objective To develop a reliable software method using a topographic analysis of time-frequency plots to distinguish ripple (80–200 Hz) oscillations that are often associated with EEG sharp waves or spikes (RonS) from sinusoid-like waveforms that appear as ripples but correspond with digital filtering of sharp transients contained in the wide bandwidth EEG. Methods A custom algorithm distinguished true from false ripples in one second intracranial EEG (iEEG) recordings using wavelet convolution, identifying contours of isopower, and categorizing these contours into sets of open or closed loop groups. The spectral and temporal features of candidate groups were used to classify the ripple, and determine its duration, frequency, and power. Verification of detector accuracy was performed on the basis of simulations, and visual inspection of the original and band-pass filtered signals. Results The detector could distinguish simulated true from false ripple on spikes (RonS). Among 2934 visually verified trials of iEEG recordings and spectrograms exhibiting RonS the accuracy of the detector was 88.5% with a sensitivity of 81.8% and a specificity of 95.2%. The precision was 94.5% and the negative predictive value was 84.0% (N = 12). Among, 1,370 trials of iEEG recording exhibiting RonS that were reviewed blindly without spectrograms the accuracy of the detector was 68.0%, with kappa equal to 0.01 ± 0.03. The detector successfully distinguished ripple from high spectral frequency ‘fast ripple’ oscillations (200–600 Hz), and characterize ripple duration and spectral frequency and power. The detector was confounded by brief bursts of gamma (30–80 Hz) activity in 7.31 ± 6.09% of trials, and in 30.2 ± 14.4% of the true RonS detections ripple duration was underestimated. Conclusions Characterizing the topographic features of a time-frequency plot generated by wavelet convolution is useful for distinguishing true oscillations from false oscillations generated by filter ringing. Significance Categorizing ripple oscillations and characterizing their properties can improve the clinical utility of the biomarker. PMID:29122445
Airborne ultrasonic inspection in carbon/carbon composite materials
NASA Astrophysics Data System (ADS)
Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee
2007-07-01
In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.
Latent component-based gear tooth fault detection filter using advanced parametric modeling
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.
2009-10-01
In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.
Nonlinear Acoustic and Ultrasonic NDT of Aeronautical Components
NASA Astrophysics Data System (ADS)
Van Den Abeele, Koen; Katkowski, Tomasz; Mattei, Christophe
2006-05-01
In response to the demand for innovative microdamage inspection systems, with high sensitivity and undoubted accuracy, we are currently investigating the use and robustness of several acoustic and ultrasonic NDT techniques based on Nonlinear Elastic Wave Spectroscopy (NEWS) for the characterization of microdamage in aeronautical components. In this report, we illustrate the results of an amplitude dependent analysis of the resonance behaviour, both in time (signal reverberation) and in frequency (sweep) domain. The technique is applied to intact and damaged samples of Carbon Fiber Reinforced Plastics (CFRP) composites after thermal loading or mechanical fatigue. The method shows a considerable gain in sensitivity and an incontestable interpretation of the results for nonlinear signatures in comparison with the linear characteristics. For highly fatigued samples, slow dynamical effects are observed.
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel
2009-01-01
The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.
Rapid non-contact inspection of composite ailerons using air-coupled ultrasound
NASA Astrophysics Data System (ADS)
Panda, Rabi Sankar; Karpenko, Oleksii; Udpa, Lalita; Haq, Mahmoodul; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2016-02-01
This paper demonstrates an approach for rapid non-contact air-coupled ultrasonic inspection of composite ailerons with complex cross-sectional profile including thickness changes, curvature and the presence of a number of stiffeners. Low-frequency plate guided ultrasonic modes are used in B-scan mode for the measurements in pitch-catch mode. Appropriate probe holder angles suitable for generating and receiving lower order guided wave modes are discussed. Different embodiments of the pitch-catch tandem positions along and across stiffener and curved regions of the test sample enable a rapid test campaign capturing the feature-rich sample profile. Techniques to distinguish special features in the stiffener are presented.
A novel method for surface defect inspection of optic cable with short-wave infrared illuminance
NASA Astrophysics Data System (ADS)
Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin
2016-07-01
Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame image is 2.39 ms. All the improvements have been verified in the paper to show the ability of our inspection method for optic cable.
Sigoillot, Frederic D; Huckins, Jeremy F; Li, Fuhai; Zhou, Xiaobo; Wong, Stephen T C; King, Randall W
2011-01-01
Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.
Protocols for Image Processing based Underwater Inspection of Infrastructure Elements
NASA Astrophysics Data System (ADS)
O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; Pakrashi, Vikram
2015-07-01
Image processing can be an important tool for inspecting underwater infrastructure elements like bridge piers and pile wharves. Underwater inspection often relies on visual descriptions of divers who are not necessarily trained in specifics of structural degradation and the information may often be vague, prone to error or open to significant variation of interpretation. Underwater vehicles, on the other hand can be quite expensive to deal with for such inspections. Additionally, there is now significant encouragement globally towards the deployment of more offshore renewable wind turbines and wave devices and the requirement for underwater inspection can be expected to increase significantly in the coming years. While the merit of image processing based assessment of the condition of underwater structures is understood to a certain degree, there is no existing protocol on such image based methods. This paper discusses and describes an image processing protocol for underwater inspection of structures. A stereo imaging image processing method is considered in this regard and protocols are suggested for image storage, imaging, diving, and inspection. A combined underwater imaging protocol is finally presented which can be used for a variety of situations within a range of image scenes and environmental conditions affecting the imaging conditions. An example of detecting marine growth is presented of a structure in Cork Harbour, Ireland.
Code of Federal Regulations, 2012 CFR
2012-07-01
... approach; (2) Decreased frequency for non-continuous parameter monitoring or physical inspections; (3... stream components, not carbon equivalents. Car-seal means a seal that is placed on a device that is used..., flow inducing devices that transport gas or vapor from an emission point to a control device. A closed...
ERIC Educational Resources Information Center
Clegg, J.
2008-01-01
Background: Recently, the frequency of audit inspections of health services for people with intellectual disability (ID) in the UK has increased, from occasional inquiries to a systematic audit of all services. From 2008, a process of continuous audit "surveillance" of specialist health services is to be introduced. Similar regimes of…
7 CFR 58.246 - Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG... and the frequency of cleaning shall be based upon observation of actual operating results and...
15 CFR 716.5 - Notification, duration and frequency of inspections.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS... and purpose of the Convention posed by the quantities of chemicals produced, the characteristics of... Convention posed by the quantities of chemicals produced, the characteristics of the facility and the nature...
Broad-area detection of structural irregularities in composites using fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Davis, Claire E.; Norman, Patrick; Moss, Scott; Ratcliffe, Colin; Crane, Roger
2010-04-01
The Structural Irregularity and Damage Evaluation Routine (SIDER) is a broadband vibration-based technique that uses features in complex curvature operating shapes to locate damage and other areas with structural stiffness variations. It is designed for the inspection of large-scale composite structures not amenable to more conventional inspection methods. The current SIDER methodology relies on impact excitation at a series of grid points on the structure and records the response using a small number of accelerometers to determine the operational curvature shapes. This paper reports on a modification to the SIDER technique whereby the acceleration measurements are replaced with in-plane strain measurements using Fibre Bragg Gratings (FBGs). One of the major challenges associated with using Bragg gratings for this type of response measurement is that the strains induced by structural vibrations tend to be low, particularly at higher frequencies. This paper also reports on the development of an intensity-based, swept wavelength interrogation system to facilitate these measurements. The modified SIDER system was evaluated on an E-glass/vinyl ester composite test beam containing a machined notch. The measurements accurately detected the presence and location of the notch. The distributive capacity of FBGs means that these sensors have the potential to replace the excitation grid with a measurement grid, allowing for single point or environmental excitation. The spatially separated measurements of strain can be used to provide the curvature shapes directly. This change in approach could potentially transition SIDER from an interval-based, broad-area inspection tool to an in-service structural health monitoring system.
Kumar, Vineet
2011-12-01
The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.
46 CFR 160.047-5 - Inspections and tests. 1
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Inspections and tests. 1 160.047-5 Section 160.047-5... and Child § 160.047-5 Inspections and tests. 1 1 The manufacturer of a personal flotation device must... labeled buoyant vests shall— (1) Maintain quality control of the materials used, the manufacturing methods...
46 CFR 160.047-5 - Inspections and tests. 1
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Inspections and tests. 1 160.047-5 Section 160.047-5... and Child § 160.047-5 Inspections and tests. 1 1 The manufacturer of a personal flotation device must... labeled buoyant vests shall— (1) Maintain quality control of the materials used, the manufacturing methods...
150-nm DR contact holes die-to-database inspection
NASA Astrophysics Data System (ADS)
Kuo, Shen C.; Wu, Clare; Eran, Yair; Staud, Wolfgang; Hemar, Shirley; Lindman, Ofer
2000-07-01
Using a failure analysis-driven yield enhancements concept, based on an optimization of the mask manufacturing process and UV reticle inspection is studied and shown to improve the contact layer quality. This is achieved by relating various manufacturing processes to very fine tuned contact defect detection. In this way, selecting an optimized manufacturing process with fine-tuned inspection setup is achieved in a controlled manner. This paper presents a study, performed on a specially designed test reticle, which simulates production contact layers of design rule 250nm, 180nm and 150nm. This paper focuses on the use of advanced UV reticle inspection techniques as part of the process optimization cycle. Current inspection equipment uses traditional and insufficient methods of small contact-hole inspection and review.