Orthogonal sparse linear discriminant analysis
NASA Astrophysics Data System (ADS)
Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun
2018-03-01
Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.
A face and palmprint recognition approach based on discriminant DCT feature extraction.
Jing, Xiao-Yuan; Zhang, David
2004-12-01
In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.
Linear Discriminant Analysis on a Spreadsheet.
ERIC Educational Resources Information Center
Busbey, Arthur Bresnahan III
1989-01-01
Described is a software package, "Trapeze," within which a routine called LinDis can be used. Discussed are teaching methods, the linear discriminant model and equations, the LinDis worksheet, and an example. The set up for this routine is included. (CW)
NASA Astrophysics Data System (ADS)
Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra
2016-06-01
Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.
Zheng, Wenming; Lin, Zhouchen; Wang, Haixian
2014-04-01
A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.
Discriminant forest classification method and system
Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.
2012-11-06
A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.
Analysis of Optimal Sequential State Discrimination for Linearly Independent Pure Quantum States.
Namkung, Min; Kwon, Younghun
2018-04-25
Recently, J. A. Bergou et al. proposed sequential state discrimination as a new quantum state discrimination scheme. In the scheme, by the successful sequential discrimination of a qubit state, receivers Bob and Charlie can share the information of the qubit prepared by a sender Alice. A merit of the scheme is that a quantum channel is established between Bob and Charlie, but a classical communication is not allowed. In this report, we present a method for extending the original sequential state discrimination of two qubit states to a scheme of N linearly independent pure quantum states. Specifically, we obtain the conditions for the sequential state discrimination of N = 3 pure quantum states. We can analytically provide conditions when there is a special symmetry among N = 3 linearly independent pure quantum states. Additionally, we show that the scenario proposed in this study can be applied to quantum key distribution. Furthermore, we show that the sequential state discrimination of three qutrit states performs better than the strategy of probabilistic quantum cloning.
Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification.
Haoliang Yuan; Yuan Yan Tang
2017-04-01
Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.
Liu, Yan; Salvendy, Gavriel
2009-05-01
This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.
Joint recognition and discrimination in nonlinear feature space
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-09-01
A new general method for linear and nonlinear feature extraction is presented. It is novel since it provides both representation and discrimination while most other methods are concerned with only one of these issues. We call this approach the maximum representation and discrimination feature (MRDF) method and show that the Bayes classifier and the Karhunen- Loeve transform are special cases of it. We refer to our nonlinear feature extraction technique as nonlinear eigen- feature extraction. It is new since it has a closed-form solution and produces nonlinear decision surfaces with higher rank than do iterative methods. Results on synthetic databases are shown and compared with results from standard Fukunaga- Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem (discrimination) and to the classification and pose estimation of two similar objects (representation and discrimination).
Pan, Rui; Wang, Hansheng; Li, Runze
2016-01-01
This paper is concerned with the problem of feature screening for multi-class linear discriminant analysis under ultrahigh dimensional setting. We allow the number of classes to be relatively large. As a result, the total number of relevant features is larger than usual. This makes the related classification problem much more challenging than the conventional one, where the number of classes is small (very often two). To solve the problem, we propose a novel pairwise sure independence screening method for linear discriminant analysis with an ultrahigh dimensional predictor. The proposed procedure is directly applicable to the situation with many classes. We further prove that the proposed method is screening consistent. Simulation studies are conducted to assess the finite sample performance of the new procedure. We also demonstrate the proposed methodology via an empirical analysis of a real life example on handwritten Chinese character recognition. PMID:28127109
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
Supervised linear dimensionality reduction with robust margins for object recognition
NASA Astrophysics Data System (ADS)
Dornaika, F.; Assoum, A.
2013-01-01
Linear Dimensionality Reduction (LDR) techniques have been increasingly important in computer vision and pattern recognition since they permit a relatively simple mapping of data onto a lower dimensional subspace, leading to simple and computationally efficient classification strategies. Recently, many linear discriminant methods have been developed in order to reduce the dimensionality of visual data and to enhance the discrimination between different groups or classes. Many existing linear embedding techniques relied on the use of local margins in order to get a good discrimination performance. However, dealing with outliers and within-class diversity has not been addressed by margin-based embedding method. In this paper, we explored the use of different margin-based linear embedding methods. More precisely, we propose to use the concepts of Median miss and Median hit for building robust margin-based criteria. Based on such margins, we seek the projection directions (linear embedding) such that the sum of local margins is maximized. Our proposed approach has been applied to the problem of appearance-based face recognition. Experiments performed on four public face databases show that the proposed approach can give better generalization performance than the classic Average Neighborhood Margin Maximization (ANMM). Moreover, thanks to the use of robust margins, the proposed method down-grades gracefully when label outliers contaminate the training data set. In particular, we show that the concept of Median hit was crucial in order to get robust performance in the presence of outliers.
Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
NASA Astrophysics Data System (ADS)
Li, Quanbao; Wei, Fajie; Zhou, Shenghan
2017-05-01
The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.
Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz
2016-01-01
The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692
Complexity-reduced implementations of complete and null-space-based linear discriminant analysis.
Lu, Gui-Fu; Zheng, Wenming
2013-10-01
Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng
2013-10-01
Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.
Unambiguous discrimination between linearly dependent equidistant states with multiple copies
NASA Astrophysics Data System (ADS)
Zhang, Wen-Hai; Ren, Gang
2018-07-01
Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.
General methodology for simultaneous representation and discrimination of multiple object classes
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
We address a new general method for linear and nonlinear feature extraction for simultaneous representation and classification. We call this approach the maximum representation and discrimination feature (MRDF) method. We develop a novel nonlinear eigenfeature extraction technique to represent data with closed-form solutions and use it to derive a nonlinear MRDF algorithm. Results of the MRDF method on synthetic databases are shown and compared with results from standard Fukunaga-Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem and for classification and pose estimation of two similar objects under 3D aspect angle variations.
Score-moment combined linear discrimination analysis (SMC-LDA) as an improved discrimination method.
Han, Jintae; Chung, Hoeil; Han, Sung-Hwan; Yoon, Moon-Young
2007-01-01
A new discrimination method called the score-moment combined linear discrimination analysis (SMC-LDA) has been developed and its performance has been evaluated using three practical spectroscopic datasets. The key concept of SMC-LDA was to use not only the score from principal component analysis (PCA), but also the moment of the spectrum, as inputs for LDA to improve discrimination. Along with conventional score, moment is used in spectroscopic fields as an effective alternative for spectral feature representation. Three different approaches were considered. Initially, the score generated from PCA was projected onto a two-dimensional feature space by maximizing Fisher's criterion function (conventional PCA-LDA). Next, the same procedure was performed using only moment. Finally, both score and moment were utilized simultaneously for LDA. To evaluate discrimination performances, three different spectroscopic datasets were employed: (1) infrared (IR) spectra of normal and malignant stomach tissue, (2) near-infrared (NIR) spectra of diesel and light gas oil (LGO) and (3) Raman spectra of Chinese and Korean ginseng. For each case, the best discrimination results were achieved when both score and moment were used for LDA (SMC-LDA). Since the spectral representation character of moment was different from that of score, inclusion of both score and moment for LDA provided more diversified and descriptive information.
Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).
Bevilacqua, Marta; Marini, Federico
2014-08-01
The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.
2012-01-01
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.
Research of Face Recognition with Fisher Linear Discriminant
NASA Astrophysics Data System (ADS)
Rahim, R.; Afriliansyah, T.; Winata, H.; Nofriansyah, D.; Ratnadewi; Aryza, S.
2018-01-01
Face identification systems are developing rapidly, and these developments drive the advancement of biometric-based identification systems that have high accuracy. However, to develop a good face recognition system and to have high accuracy is something that’s hard to find. Human faces have diverse expressions and attribute changes such as eyeglasses, mustache, beard and others. Fisher Linear Discriminant (FLD) is a class-specific method that distinguishes facial image images into classes and also creates distance between classes and intra classes so as to produce better classification.
NASA Astrophysics Data System (ADS)
Wihardi, Y.; Setiawan, W.; Nugraha, E.
2018-01-01
On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.
Latent log-linear models for handwritten digit classification.
Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann
2012-06-01
We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L
2004-01-01
This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.
NASA Astrophysics Data System (ADS)
Khansari, Maziyar M.; O'Neill, William; Penn, Richard; Blair, Norman P.; Chau, Felix; Shahidi, Mahnaz
2017-03-01
The conjunctiva is a densely vascularized tissue of the eye that provides an opportunity for imaging of human microcirculation. In the current study, automated fine structure analysis of conjunctival microvasculature images was performed to discriminate stages of diabetic retinopathy (DR). The study population consisted of one group of nondiabetic control subjects (NC) and 3 groups of diabetic subjects, with no clinical DR (NDR), non-proliferative DR (NPDR), or proliferative DR (PDR). Ordinary least square regression and Fisher linear discriminant analyses were performed to automatically discriminate images between group pairs of subjects. Human observers who were masked to the grouping of subjects performed image discrimination between group pairs. Over 80% and 70% of images of subjects with clinical and non-clinical DR were correctly discriminated by the automated method, respectively. The discrimination rates of the automated method were higher than human observers. The fine structure analysis of conjunctival microvasculature images provided discrimination of DR stages and can be potentially useful for DR screening and monitoring.
Feature selection from hyperspectral imaging for guava fruit defects detection
NASA Astrophysics Data System (ADS)
Mat Jafri, Mohd. Zubir; Tan, Sou Ching
2017-06-01
Development of technology makes hyperspectral imaging commonly used for defect detection. In this research, a hyperspectral imaging system was setup in lab to target for guava fruits defect detection. Guava fruit was selected as the object as to our knowledge, there is fewer attempts were made for guava defect detection based on hyperspectral imaging. The common fluorescent light source was used to represent the uncontrolled lighting condition in lab and analysis was carried out in a specific wavelength range due to inefficiency of this particular light source. Based on the data, the reflectance intensity of this specific setup could be categorized in two groups. Sequential feature selection with linear discriminant (LD) and quadratic discriminant (QD) function were used to select features that could potentially be used in defects detection. Besides the ordinary training method, training dataset in discriminant was separated in two to cater for the uncontrolled lighting condition. These two parts were separated based on the brighter and dimmer area. Four evaluation matrixes were evaluated which are LD with common training method, QD with common training method, LD with two part training method and QD with two part training method. These evaluation matrixes were evaluated using F1-score with total 48 defected areas. Experiment shown that F1-score of linear discriminant with the compensated method hitting 0.8 score, which is the highest score among all.
Graphical methods for the sensitivity analysis in discriminant analysis
Kim, Youngil; Anderson-Cook, Christine M.; Dae-Heung, Jang
2015-09-30
Similar to regression, many measures to detect influential data points in discriminant analysis have been developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a data point is omitted. The new method is intuitive and easily interpretative compared to existing methods. We also propose a graphical display to show the individual movement of the posterior probability of other data points when a specific data point is omitted. This enables the summaries to capture the overall pattern ofmore » the change.« less
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
ERIC Educational Resources Information Center
Ng, Kwong Bor; Rieh, Soo Young; Kantor, Paul
2000-01-01
Discussion of natural language processing focuses on experiments using linear discriminant analysis to distinguish "Wall Street Journal" texts from "Federal Register" tests using information about the frequency of occurrence of word boundaries, sentence boundaries, and punctuation marks. Displays and interprets results in terms…
2011-01-01
Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043
NASA Astrophysics Data System (ADS)
Tiira, Timo
1996-10-01
Seismic discrimination capability of artificial neural networks (ANNs) was studied using earthquakes and nuclear explosions from teleseismic distances. The events were selected from two areas, which were analyzed separately. First, 23 nuclear explosions from Semipalatinsk and Lop Nor test sites were compared with 46 earthquakes from adjacent areas. Second, 39 explosions from Nevada test site were compared with 27 earthquakes from close-by areas. The basic discriminants were complexity, spectral ratio and third moment of frequency. The spectral discriminants were computed in five different ways to obtain all the information embedded in the signals, some of which were relatively weak. The discriminants were computed using data from six short period stations in Central and southern Finland. The spectral contents of the signals of both classes varied considerably between the stations. The 66 discriminants were formed into 65 optimum subsets of different sizes by using stepwise linear regression. A type of ANN called multilayer perceptron (MLP) was applied to each of the subsets. As a comparison the classification was repeated using linear discrimination analysis (LDA). Since the number of events was small the testing was made with the leave-one-out method. The ANN gave significantly better results than LDA. As a final tool for discrimination a combination of the ten neural nets with the best performance were used. All events from Central Asia were clearly discriminated and over 90% of the events from Nevada region were confidently discriminated. The better performance of ANNs was attributed to its ability to form complex decision regions between the groups and to its highly non-linear nature.
Chen, Xue; Li, Xiaohui; Yang, Sibo; Yu, Xin; Liu, Aichun
2018-01-01
Lymphoma is a significant cancer that affects the human lymphatic and hematopoietic systems. In this work, discrimination of lymphoma using laser-induced breakdown spectroscopy (LIBS) conducted on whole blood samples is presented. The whole blood samples collected from lymphoma patients and healthy controls are deposited onto standard quantitative filter papers and ablated with a 1064 nm Q-switched Nd:YAG laser. 16 atomic and ionic emission lines of calcium (Ca), iron (Fe), magnesium (Mg), potassium (K) and sodium (Na) are selected to discriminate the cancer disease. Chemometric methods, including principal component analysis (PCA), linear discriminant analysis (LDA) classification, and k nearest neighbor (kNN) classification are used to build the discrimination models. Both LDA and kNN models have achieved very good discrimination performances for lymphoma, with an accuracy of over 99.7%, a sensitivity of over 0.996, and a specificity of over 0.997. These results demonstrate that the whole-blood-based LIBS technique in combination with chemometric methods can serve as a fast, less invasive, and accurate method for detection and discrimination of human malignancies. PMID:29541503
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.
Discriminative analysis of non-linear brain connectivity for leukoaraiosis with resting-state fMRI
NASA Astrophysics Data System (ADS)
Lai, Youzhi; Xu, Lele; Yao, Li; Wu, Xia
2015-03-01
Leukoaraiosis (LA) describes diffuse white matter abnormalities on CT or MR brain scans, often seen in the normal elderly and in association with vascular risk factors such as hypertension, or in the context of cognitive impairment. The mechanism of cognitive dysfunction is still unclear. The recent clinical studies have revealed that the severity of LA was not corresponding to the cognitive level, and functional connectivity analysis is an appropriate method to detect the relation between LA and cognitive decline. However, existing functional connectivity analyses of LA have been mostly limited to linear associations. In this investigation, a novel measure utilizing the extended maximal information coefficient (eMIC) was applied to construct non-linear functional connectivity in 44 LA subjects (9 dementia, 25 mild cognitive impairment (MCI) and 10 cognitively normal (CN)). The strength of non-linear functional connections for the first 1% of discriminative power increased in MCI compared with CN and dementia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. In the multivariate pattern analysis with multiple classifiers, the non-linear functional connectivity mostly identified dementia, MCI and CN from LA with a relatively higher accuracy rate than the linear measure. Our findings revealed the non-linear functional connectivity provided useful discriminative power in classification of LA, and the spatial distributed changes between the non-linear and linear measure may indicate the underlying mechanism of cognitive dysfunction in LA.
Franklin, Daniel; O'Higgins, Paul; Oxnard, Charles E; Dadour, Ian
2006-12-01
The determination of sex is a critical component in forensic anthropological investigation. The literature attests to numerous metrical standards, each utilizing diffetent skeletal elements, for sex determination in South A frican Blacks. Metrical standards are popular because they provide a high degree of expected accuracy and are less error-prone than subjective nonmetric visual techniques. We note, however, that there appears to be no established metric mandible discriminant function standards for sex determination in this population.We report here on a preliminary investigation designed to evaluate whether the mandible is a practical element for sex determination in South African Blacks. The sample analyzed comprises 40 nonpathological Zulu individuals drawn from the R.A. Dart Collection. Ten linear measurements, obtained from mathematically trans-formed three-dimensional landmark data, are analyzed using basic univariate statistics and discriminant function analyses. Seven of the 10 measurements examined are found to be sexually dimorphic; the dimensions of the ramus are most dimorphic. The sex classification accuracy of the discriminant functions ranged from 72.5 to 87.5% for the univariate method, 92.5% for the stepwise method, and 57.5 to 95% for the direct method. We conclude that the mandible is an extremely useful element for sex determination in this population.
Improved neutron-gamma discrimination for a 3He neutron detector using subspace learning methods
Wang, C. L.; Funk, L. L.; Riedel, R. A.; ...
2017-02-10
3He gas based neutron linear-position-sensitive detectors (LPSDs) have been applied for many neutron scattering instruments. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio on the orders of 10 5-10 6. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher linear discriminant analysis (FLDA)more » and three multivariate analyses (MVAs) of the features were performed. The NGD ratios are improved by about 10 2-10 3 times compared with the traditional PHA method. Finally, our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.« less
Ichikawa, Shintaro; Motosugi, Utaroh; Hernando, Diego; Morisaka, Hiroyuki; Enomoto, Nobuyuki; Matsuda, Masanori; Onishi, Hiroshi
2018-04-10
To compare the abilities of three intravoxel incoherent motion (IVIM) imaging approximation methods to discriminate the histological grade of hepatocellular carcinomas (HCCs). Fifty-eight patients (60 HCCs) underwent IVIM imaging with 11 b-values (0-1000 s/mm 2 ). Slow (D) and fast diffusion coefficients (D * ) and the perfusion fraction (f) were calculated for the HCCs using the mean signal intensities in regions of interest drawn by two radiologists. Three approximation methods were used. First, all three parameters were obtained simultaneously using non-linear fitting (method A). Second, D was obtained using linear fitting (b = 500 and 1000), followed by non-linear fitting for D * and f (method B). Third, D was obtained by linear fitting, f was obtained using the regression line intersection and signals at b = 0, and non-linear fitting was used for D * (method C). A receiver operating characteristic analysis was performed to reveal the abilities of these methods to distinguish poorly-differentiated from well-to-moderately-differentiated HCCs. Inter-reader agreements were assessed using intraclass correlation coefficients (ICCs). The measurements of D, D * , and f in methods B and C (Az-value, 0.658-0.881) had better discrimination abilities than did those in method A (Az-value, 0.527-0.607). The ICCs of D and f were good to excellent (0.639-0.835) with all methods. The ICCs of D * were moderate with methods B (0.580) and C (0.463) and good with method A (0.705). The IVIM parameters may vary depending on the fitting methods, and therefore, further technical refinement may be needed.
Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena
2007-11-05
A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.
Warmack, Robert J. Bruce; Wolf, Dennis A; Frank, Steven Shane
2015-04-28
Methods and apparatus for smoke detection are disclosed. In one embodiment, a smoke detector uses linear discriminant analysis (LDA) to determine whether observed conditions indicate that an alarm is warranted.
NASA Astrophysics Data System (ADS)
Huang, Jian; Yuen, Pong C.; Chen, Wen-Sheng; Lai, J. H.
2005-05-01
Many face recognition algorithms/systems have been developed in the last decade and excellent performances have also been reported when there is a sufficient number of representative training samples. In many real-life applications such as passport identification, only one well-controlled frontal sample image is available for training. Under this situation, the performance of existing algorithms will degrade dramatically or may not even be implemented. We propose a component-based linear discriminant analysis (LDA) method to solve the one training sample problem. The basic idea of the proposed method is to construct local facial feature component bunches by moving each local feature region in four directions. In this way, we not only generate more samples with lower dimension than the original image, but also consider the face detection localization error while training. After that, we propose a subspace LDA method, which is tailor-made for a small number of training samples, for the local feature projection to maximize the discrimination power. Theoretical analysis and experiment results show that our proposed subspace LDA is efficient and overcomes the limitations in existing LDA methods. Finally, we combine the contributions of each local component bunch with a weighted combination scheme to draw the recognition decision. A FERET database is used for evaluating the proposed method and results are encouraging.
Zhao, Mingbo; Zhang, Zhao; Chow, Tommy W S; Li, Bing
2014-07-01
Dealing with high-dimensional data has always been a major problem in research of pattern recognition and machine learning, and Linear Discriminant Analysis (LDA) is one of the most popular methods for dimension reduction. However, it only uses labeled samples while neglecting unlabeled samples, which are abundant and can be easily obtained in the real world. In this paper, we propose a new dimension reduction method, called "SL-LDA", by using unlabeled samples to enhance the performance of LDA. The new method first propagates label information from the labeled set to the unlabeled set via a label propagation process, where the predicted labels of unlabeled samples, called "soft labels", can be obtained. It then incorporates the soft labels into the construction of scatter matrixes to find a transformed matrix for dimension reduction. In this way, the proposed method can preserve more discriminative information, which is preferable when solving the classification problem. We further propose an efficient approach for solving SL-LDA under a least squares framework, and a flexible method of SL-LDA (FSL-LDA) to better cope with datasets sampled from a nonlinear manifold. Extensive simulations are carried out on several datasets, and the results show the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimating erosion risk on forest lands using improved methods of discriminant analysis
J. Lewis; R. M. Rice
1990-01-01
A population of 638 timber harvest areas in northwestern California was sampled for data related to the occurrence of critical amounts of erosion (>153 m3 within 0.81 ha). Separate analyses were done for forest roads and logged areas. Linear discriminant functions were computed in each analysis to contrast site conditions at critical plots with randomly selected...
Quantifying and visualizing variations in sets of images using continuous linear optimal transport
NASA Astrophysics Data System (ADS)
Kolouri, Soheil; Rohde, Gustavo K.
2014-03-01
Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.
MATRIX DISCRIMINANT ANALYSIS WITH APPLICATION TO COLORIMETRIC SENSOR ARRAY DATA
Suslick, Kenneth S.
2014-01-01
With the rapid development of nano-technology, a “colorimetric sensor array” (CSA) which is referred to as an optical electronic nose has been developed for the identification of toxicants. Unlike traditional sensors which rely on a single chemical interaction, CSA can measure multiple chemical interactions by using chemo-responsive dyes. The color changes of the chemo-responsive dyes are recorded before and after exposure to toxicants and serve as a template for classification. The color changes are digitalized in the form of a matrix with rows representing dye effects and columns representing the spectrum of colors. Thus, matrix-classification methods are highly desirable. In this article, we develop a novel classification method, matrix discriminant analysis (MDA), which is a generalization of linear discriminant analysis (LDA) for the data in matrix form. By incorporating the intrinsic matrix-structure of the data in discriminant analysis, the proposed method can improve CSA’s sensitivity and more importantly, specificity. A penalized MDA method, PMDA, is also introduced to further incorporate sparsity structure in discriminant function. Numerical studies suggest that the proposed MDA and PMDA methods outperform LDA and other competing discriminant methods for matrix predictors. The asymptotic consistency of MDA is also established. R code and data are available online as supplementary material. PMID:26783371
Linear discriminant analysis based on L1-norm maximization.
Zhong, Fujin; Zhang, Jiashu
2013-08-01
Linear discriminant analysis (LDA) is a well-known dimensionality reduction technique, which is widely used for many purposes. However, conventional LDA is sensitive to outliers because its objective function is based on the distance criterion using L2-norm. This paper proposes a simple but effective robust LDA version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based between-class dispersion and the L1-norm-based within-class dispersion. The proposed method is theoretically proved to be feasible and robust to outliers while overcoming the singular problem of the within-class scatter matrix for conventional LDA. Experiments on artificial datasets, standard classification datasets and three popular image databases demonstrate the efficacy of the proposed method.
Assessment of forward head posture in females: observational and photogrammetry methods.
Salahzadeh, Zahra; Maroufi, Nader; Ahmadi, Amir; Behtash, Hamid; Razmjoo, Arash; Gohari, Mahmoud; Parnianpour, Mohamad
2014-01-01
There are different methods to assess forward head posture (FHP) but the accuracy and discrimination ability of these methods are not clear. Here, we want to compare three postural angles for FHP assessment and also study the discrimination accuracy of three photogrammetric methods to differentiate groups categorized based on observational method. All Seventy-eight healthy female participants (23 ± 2.63 years), were classified into three groups: moderate-severe FHP, slight FHP and non FHP based on observational postural assessment rules. Applying three photogrammetric methods - craniovertebral angle, head title angle and head position angle - to measure FHP objectively. One - way ANOVA test showed a significant difference in three categorized group's craniovertebral angle (P< 0.05, F=83.07). There was no dramatic difference in head tilt angle and head position angle methods in three groups. According to Linear Discriminate Analysis (LDA) results, the canonical discriminant function (Wilks'Lambda) was 0.311 for craniovertebral angle with 79.5% of cross-validated grouped cases correctly classified. Our results showed that, craniovertebral angle method may discriminate the females with moderate-severe and non FHP more accurate than head position angle and head tilt angle. The photogrammetric method had excellent inter and intra rater reliability to assess the head and cervical posture.
Zhang, Xiao-Tai; Wang, Shu; Xing, Guo-Wen
2017-02-01
Ginsenoside is a large family of triterpenoid saponins from Panax ginseng, which possesses various important biological functions. Due to the very similar structures of these complex glycoconjugates, it is crucial to develop a powerful analytic method to identify ginsenosides qualitatively or quantitatively. We herein report an eight-channel fluorescent sensor array as artificial tongue to achieve the discriminative sensing of ginsenosides. The fluorescent cross-responsive array was constructed by four boronlectins bearing flexible boronic acid moieties (FBAs) with multiple reactive sites and two linear poly(phenylene-ethynylene) (PPEs). An "on-off-on" response pattern was afforded on the basis of superquenching of fluorescent indicator PPEs and an analyte-induced allosteric indicator displacement (AID) process. Most importantly, it was found that the canonical distribution of ginsenoside data points analyzed by linear discriminant analysis (LDA) was highly correlated with the inherent molecular structures of the analytes, and the absence of overlaps among the five point groups reflected the effectiveness of the sensor array in the discrimination process. Almost all of the unknown ginsenoside samples at different concentrations were correctly identified on the basis of the established mathematical model. Our current work provided a general and constructive method to improve the quality assessment and control of ginseng and its extracts, which are useful and helpful for further discriminating other complex glycoconjugate families.
ERIC Educational Resources Information Center
Finch, Holmes
2010-01-01
Discriminant Analysis (DA) is a tool commonly used for differentiating among 2 or more groups based on 2 or more predictor variables. DA works by finding 1 or more linear combinations of the predictors that yield maximal difference among the groups. One common goal of researchers using DA is to characterize the nature of group difference by…
A Comparison of Two-Group Classification Methods
ERIC Educational Resources Information Center
Holden, Jocelyn E.; Finch, W. Holmes; Kelley, Ken
2011-01-01
The statistical classification of "N" individuals into "G" mutually exclusive groups when the actual group membership is unknown is common in the social and behavioral sciences. The results of such classification methods often have important consequences. Among the most common methods of statistical classification are linear discriminant analysis,…
Spectral Regression Discriminant Analysis for Hyperspectral Image Classification
NASA Astrophysics Data System (ADS)
Pan, Y.; Wu, J.; Huang, H.; Liu, J.
2012-08-01
Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for Hyperspectral Image Classification. The manifold learning methods are popular for dimensionality reduction, such as Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, a disadvantage of many manifold learning methods is that their computations usually involve eigen-decomposition of dense matrices which is expensive in both time and memory. In this paper, we introduce a new dimensionality reduction method, called Spectral Regression Discriminant Analysis (SRDA). SRDA casts the problem of learning an embedding function into a regression framework, which avoids eigen-decomposition of dense matrices. Also, with the regression based framework, different kinds of regularizes can be naturally incorporated into our algorithm which makes it more flexible. It can make efficient use of data points to discover the intrinsic discriminant structure in the data. Experimental results on Washington DC Mall and AVIRIS Indian Pines hyperspectral data sets demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Kushnir, A. F.; Troitsky, E. V.; Haikin, L. M.; Dainty, A.
1999-06-01
A semi-automatic procedure has been developed to achieve statistically optimum discrimination between earthquakes and explosions at local or regional distances based on a learning set specific to a given region. The method is used for step-by-step testing of candidate discrimination features to find the optimum (combination) subset of features, with the decision taken on a rigorous statistical basis. Linear (LDF) and Quadratic (QDF) Discriminant Functions based on Gaussian distributions of the discrimination features are implemented and statistically grounded; the features may be transformed by the Box-Cox transformation z=(1/ α)( yα-1) to make them more Gaussian. Tests of the method were successfully conducted on seismograms from the Israel Seismic Network using features consisting of spectral ratios between and within phases. Results showed that the QDF was more effective than the LDF and required five features out of 18 candidates for the optimum set. It was found that discrimination improved with increasing distance within the local range, and that eliminating transformation of the features and failing to correct for noise led to degradation of discrimination.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
NASA Astrophysics Data System (ADS)
Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan
2010-12-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
Sex assessment using measurements of the first lumbar vertebra.
Zheng, Wen Xu; Cheng, Fu Bo; Cheng, Kai Liang; Tian, Yong; Lai, Ying; Zhang, Wen Song; Zheng, Ya Juan; Li, You Qiong
2012-06-10
Sex determination is a vital part of the medico-legal system but can be difficult in cases where the integrity of the body has been compromised. The purpose of this study was to develop a technique for sex assessment from measurements of the first lumber vertebrate. Twenty-nine linear measurements and five ratios were collected from 113 Chinese adult males and 97 Chinese adult females using digital three-dimensional anthropometry methods. By using discriminant analysis, we found that 23 linear measurements and two ratios identified sexual dimorphism (P<0.01), with predictive accuracy ranging from 57.1% to 86.6%. Using a stepwise method of discriminant function analysis, we found three dimensions predicted sex with 88.6% accuracy: (a) upper end-plate width (EPWu), (b) left pedicle height (PHl), and (c) middle end-plate depth (EPDm). This study shows that a single first lumber vertebra can be used for this purpose, and that the discriminant equation will help forensic determination of sex in the Chinese population. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
ASTM clustering for improving coal analysis by near-infrared spectroscopy.
Andrés, J M; Bona, M T
2006-11-15
Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
The assessment of biases in the acoustic discrimination of individuals
Šálek, Martin
2017-01-01
Animal vocalizations contain information about individual identity that could potentially be used for the monitoring of individuals. However, the performance of individual discrimination is subjected to many biases depending on factors such as the amount of identity information, or methods used. These factors need to be taken into account when comparing results of different studies or selecting the most cost-effective solution for a particular species. In this study, we evaluate several biases associated with the discrimination of individuals. On a large sample of little owl male individuals, we assess how discrimination performance changes with methods of call description, an increasing number of individuals, and number of calls per male. Also, we test whether the discrimination performance within the whole population can be reliably estimated from a subsample of individuals in a pre-screening study. Assessment of discrimination performance at the level of the individual and at the level of call led to different conclusions. Hence, studies interested in individual discrimination should optimize methods at the level of individuals. The description of calls by their frequency modulation leads to the best discrimination performance. In agreement with our expectations, discrimination performance decreased with population size. Increasing the number of calls per individual linearly increased the discrimination of individuals (but not the discrimination of calls), likely because it allows distinction between individuals with very similar calls. The available pre-screening index does not allow precise estimation of the population size that could be reliably monitored. Overall, projects applying acoustic monitoring at the individual level in population need to consider limitations regarding the population size that can be reliably monitored and fine-tune their methods according to their needs and limitations. PMID:28486488
Jackman, Patrick; Sun, Da-Wen; Allen, Paul; Valous, Nektarios A; Mendoza, Fernando; Ward, Paddy
2010-04-01
A method to discriminate between various grades of pork and turkey ham was developed using colour and wavelet texture features. Image analysis methods originally developed for predicting the palatability of beef were applied to rapidly identify the ham grade. With high quality digital images of 50-94 slices per ham it was possible to identify the greyscale that best expressed the differences between the various ham grades. The best 10 discriminating image features were then found with a genetic algorithm. Using the best 10 image features, simple linear discriminant analysis models produced 100% correct classifications for both pork and turkey on both calibration and validation sets. 2009 Elsevier Ltd. All rights reserved.
Turcot, Katia; Aissaoui, Rachid; Boivin, Karine; Pelletier, Michel; Hagemeister, Nicola; de Guise, Jacques A
2008-04-01
This study presents a new method to estimate 3-D linear accelerations at tibial and femoral functional coordinate systems. The method combines the use of 3-D accelerometers, 3-D gyroscopes and reflective markers rigidly fixed on an exoskeleton and, a functional postural calibration method. Marker positions were tracked by a six-camera optoelectronic system (VICON 460, Oxford Metrics). The purpose of this study was to determine if this method could discriminate between medial osteoarthritic and asymptomatic knees during gait. Nine patients with osteoarthritic knees and nine asymptomatic control subjects were included in this study. Eighteen parameters representing maximal, minimal, and range of acceleration values were extracted during the loading and preswing to mid-swing phase periods, and were compared in both groups. Results show good discriminative capacity of the new method. Eight parameters were significantly different between both groups. The proposed method has the potential to be used in comprehending and monitoring gait strategy in patients with osteoarthritic knee.
Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics
NASA Astrophysics Data System (ADS)
Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.
2018-03-01
A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.
Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics
NASA Astrophysics Data System (ADS)
Manfredi, Marcello; Robotti, Elisa; Quasso, Fabio; Mazzucco, Eleonora; Calabrese, Giorgio; Marengo, Emilio
2018-01-01
The authentication and traceability of hazelnuts is very important for both the consumer and the food industry, to safeguard the protected varieties and the food quality. This study investigates the use of a portable FTIR spectrometer coupled to multivariate statistical analysis for the classification of raw hazelnuts. The method discriminates hazelnuts from different origins/cultivars based on differences of the signal intensities of their IR spectra. The multivariate classification methods, namely principal component analysis (PCA) followed by linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA), with or without variable selection, allowed a very good discrimination among the groups, with PLS-DA coupled to variable selection providing the best results. Due to the fast analysis, high sensitivity, simplicity and no sample preparation, the proposed analytical methodology could be successfully used to verify the cultivar of hazelnuts, and the analysis can be performed quickly and directly on site.
ERIC Educational Resources Information Center
Everson, Howard T.; And Others
This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…
Combining 1D and 2D linear discriminant analysis for palmprint recognition
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ji, Hongbing; Wang, Lei; Lin, Lin
2011-11-01
In this paper, a novel feature extraction method for palmprint recognition termed as Two-dimensional Combined Discriminant Analysis (2DCDA) is proposed. By connecting the adjacent rows of a image sequentially, the obtained new covariance matrices contain the useful information among local geometry structures in the image, which is eliminated by 2DLDA. In this way, 2DCDA combines LDA and 2DLDA for a promising recognition accuracy, but the number of coefficients of its projection matrix is lower than that of other two-dimensional methods. Experimental results on the CASIA palmprint database demonstrate the effectiveness of the proposed method.
Testing for nonlinearity in non-stationary physiological time series.
Guarín, Diego; Delgado, Edilson; Orozco, Álvaro
2011-01-01
Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency domain. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. Applying our methodology to heart rate variability (HRV) records of five healthy patients, we encountered that nonlinear correlations are present in this non-stationary physiological signals.
Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.
Flassig, R J; Sundmacher, K
2012-12-01
Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.
Huikang Wang; Luzheng Bi; Teng Teng
2017-07-01
This paper proposes a novel method of electroencephalography (EEG)-based driver emergency braking intention detection system for brain-controlled driving considering one electrode falling-off. First, whether one electrode falls off is discriminated based on EEG potentials. Then, the missing signals are estimated by using the signals collected from other channels based on multivariate linear regression. Finally, a linear decoder is applied to classify driver intentions. Experimental results show that the falling-off discrimination accuracy is 99.63% on average and the correlation coefficient and root mean squared error (RMSE) between the estimated and experimental data are 0.90 and 11.43 μV, respectively, on average. Given one electrode falls off, the system accuracy of the proposed intention prediction method is significantly higher than that of the original method (95.12% VS 79.11%) and is close to that (95.95%) of the original system under normal situations (i. e., no electrode falling-off).
Qian, Jianjun; Yang, Jian; Xu, Yong
2013-09-01
This paper presents a robust but simple image feature extraction method, called image decomposition based on local structure (IDLS). It is assumed that in the local window of an image, the macro-pixel (patch) of the central pixel, and those of its neighbors, are locally linear. IDLS captures the local structural information by describing the relationship between the central macro-pixel and its neighbors. This relationship is represented with the linear representation coefficients determined using ridge regression. One image is actually decomposed into a series of sub-images (also called structure images) according to a local structure feature vector. All the structure images, after being down-sampled for dimensionality reduction, are concatenated into one super-vector. Fisher linear discriminant analysis is then used to provide a low-dimensional, compact, and discriminative representation for each super-vector. The proposed method is applied to face recognition and examined using our real-world face image database, NUST-RWFR, and five popular, publicly available, benchmark face image databases (AR, Extended Yale B, PIE, FERET, and LFW). Experimental results show the performance advantages of IDLS over state-of-the-art algorithms.
Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis
Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German
2016-01-01
Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing. PMID:27148392
Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A
2016-08-01
The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.
[Discrimination of Red Tide algae by fluorescence spectra and principle component analysis].
Su, Rong-guo; Hu, Xu-peng; Zhang, Chuan-song; Wang, Xiu-lin
2007-07-01
Fluorescence discrimination technology for 11 species of the Red Tide algae at genus level was constructed by principle component analysis and non-negative least squares. Rayleigh and Raman scattering peaks of 3D fluorescence spectra were eliminated by Delaunay triangulation method. According to the results of Fisher linear discrimination, the first principle component score and the second component score of 3D fluorescence spectra were chosen as discriminant feature and the feature base was established. The 11 algae species were tested, and more than 85% samples were accurately determinated, especially for Prorocentrum donghaiense, Skeletonema costatum, Gymnodinium sp., which have frequently brought Red tide in the East China Sea. More than 95% samples were right discriminated. The results showed that the genus discriminant feature of 3D fluorescence spectra of Red Tide algae given by principle component analysis could work well.
Spectral discrimination of serum from liver cancer and liver cirrhosis using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Tianyue; Li, Xiaozhou; Yu, Ting; Sun, Ruomin; Li, Siqi
2011-07-01
In this paper, Raman spectra of human serum were measured using Raman spectroscopy, then the spectra was analyzed by multivariate statistical methods of principal component analysis (PCA). Then linear discriminant analysis (LDA) was utilized to differentiate the loading score of different diseases as the diagnosing algorithm. Artificial neural network (ANN) was used for cross-validation. The diagnosis sensitivity and specificity by PCA-LDA are 88% and 79%, while that of the PCA-ANN are 89% and 95%. It can be seen that modern analyzing method is a useful tool for the analysis of serum spectra for diagnosing diseases.
Using color histograms and SPA-LDA to classify bacteria.
de Almeida, Valber Elias; da Costa, Gean Bezerra; de Sousa Fernandes, David Douglas; Gonçalves Dias Diniz, Paulo Henrique; Brandão, Deysiane; de Medeiros, Ana Claudia Dantas; Véras, Germano
2014-09-01
In this work, a new approach is proposed to verify the differentiating characteristics of five bacteria (Escherichia coli, Enterococcus faecalis, Streptococcus salivarius, Streptococcus oralis, and Staphylococcus aureus) by using digital images obtained with a simple webcam and variable selection by the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). In this sense, color histograms in the red-green-blue (RGB), hue-saturation-value (HSV), and grayscale channels and their combinations were used as input data, and statistically evaluated by using different multivariate classifiers (Soft Independent Modeling by Class Analogy (SIMCA), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA)). The bacteria strains were cultivated in a nutritive blood agar base layer for 24 h by following the Brazilian Pharmacopoeia, maintaining the status of cell growth and the nature of nutrient solutions under the same conditions. The best result in classification was obtained by using RGB and SPA-LDA, which reached 94 and 100 % of classification accuracy in the training and test sets, respectively. This result is extremely positive from the viewpoint of routine clinical analyses, because it avoids bacterial identification based on phenotypic identification of the causative organism using Gram staining, culture, and biochemical proofs. Therefore, the proposed method presents inherent advantages, promoting a simpler, faster, and low-cost alternative for bacterial identification.
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Radchenko, Kostiantyn O.; Karas, Oleksandr V.
2018-01-01
A fibroadenoma diagnosing of breast using statistical analysis (determination and analysis of statistical moments of the 1st-4th order) of the obtained polarization images of Jones matrix imaginary elements of the optically thin (attenuation coefficient τ <= 0,1 ) blood plasma films with further intellectual differentiation based on the method of "fuzzy" logic and discriminant analysis were proposed. The accuracy of the intellectual differentiation of blood plasma samples to the "norm" and "fibroadenoma" of breast was 82.7% by the method of linear discriminant analysis, and by the "fuzzy" logic method is 95.3%. The obtained results allow to confirm the potentially high level of reliability of the method of differentiation by "fuzzy" analysis.
Shelton, Rachel C.; Puleo, Elaine; Bennett, Gary G.; McNeill, Lorna H.; Sorensen, Glorian; Emmons, Karen M.
2010-01-01
Background Research on the association between self-reported racial or gender discrimination and body mass index (BMI) has been limited and inconclusive to date, particularly among lower-income populations. Objectives The aim of the current study was to examine the association between self-reported racial and gender discrimination and BMI among a sample of adult residents living in 12 urban lower-income housing sites in Boston, Masschusetts (USA). Methods Baseline survey data were collected among 1,307 (weighted N=1907) study participants. For analyses, linear regression models with a cluster design were conducted using SUDAAN and SAS statistical software. Results Our sample was predominately Black (weighted n=956) and Hispanic (weighted n=857), and female (weighted n=1420), with a mean age of 49.3 (SE: .40) and mean BMI of 30.2 kg m−2 (SE: .19). Nearly 47% of participants reported ever experiencing racial discrimination, and 24.8% reported ever experiencing gender discrimination. In bivariate and multivariable linear regression models, no main effect association was found between either racial or gender discrimination and BMI. Conclusions While our findings suggest that self-reported discrimination is not a key determinant of BMI among lower-income housing residents, these results should be considered in light of study limitations. Future researchers may want to investigate this association among other relevant samples, and other social contextual and cultural factors should be explored to understand how they contribute to disparities. PMID:19769005
Monakhova, Yulia B; Godelmann, Rolf; Kuballa, Thomas; Mushtakova, Svetlana P; Rutledge, Douglas N
2015-08-15
Discriminant analysis (DA) methods, such as linear discriminant analysis (LDA) or factorial discriminant analysis (FDA), are well-known chemometric approaches for solving classification problems in chemistry. In most applications, principle components analysis (PCA) is used as the first step to generate orthogonal eigenvectors and the corresponding sample scores are utilized to generate discriminant features for the discrimination. Independent components analysis (ICA) based on the minimization of mutual information can be used as an alternative to PCA as a preprocessing tool for LDA and FDA classification. To illustrate the performance of this ICA/DA methodology, four representative nuclear magnetic resonance (NMR) data sets of wine samples were used. The classification was performed regarding grape variety, year of vintage and geographical origin. The average increase for ICA/DA in comparison with PCA/DA in the percentage of correct classification varied between 6±1% and 8±2%. The maximum increase in classification efficiency of 11±2% was observed for discrimination of the year of vintage (ICA/FDA) and geographical origin (ICA/LDA). The procedure to determine the number of extracted features (PCs, ICs) for the optimum DA models was discussed. The use of independent components (ICs) instead of principle components (PCs) resulted in improved classification performance of DA methods. The ICA/LDA method is preferable to ICA/FDA for recognition tasks based on NMR spectroscopic measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Feature extraction with deep neural networks by a generalized discriminant analysis.
Stuhlsatz, André; Lippel, Jens; Zielke, Thomas
2012-04-01
We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.
Testing for nonlinearity in time series: The method of surrogate data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theiler, J.; Galdrikian, B.; Longtin, A.
1991-01-01
We describe a statistical approach for identifying nonlinearity in time series; in particular, we want to avoid claims of chaos when simpler models (such as linearly correlated noise) can explain the data. The method requires a careful statement of the null hypothesis which characterizes a candidate linear process, the generation of an ensemble of surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against themore » null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. We present algorithms for generating surrogate data under various null hypotheses, and we show the results of numerical experiments on artificial data using correlation dimension, Lyapunov exponent, and forecasting error as discriminating statistics. Finally, we consider a number of experimental time series -- including sunspots, electroencephalogram (EEG) signals, and fluid convection -- and evaluate the statistical significance of the evidence for nonlinear structure in each case. 56 refs., 8 figs.« less
Wang, Peng; Zheng, Yefeng; John, Matthias; Comaniciu, Dorin
2012-01-01
Dynamic overlay of 3D models onto 2D X-ray images has important applications in image guided interventions. In this paper, we present a novel catheter tracking for motion compensation in the Transcatheter Aortic Valve Implantation (TAVI). To address such challenges as catheter shape and appearance changes, occlusions, and distractions from cluttered backgrounds, we present an adaptive linear discriminant learning method to build a measurement model online to distinguish catheters from background. An analytic solution is developed to effectively and efficiently update the discriminant model and to minimize the classification errors between the tracking object and backgrounds. The online learned discriminant model is further combined with an offline learned detector and robust template matching in a Bayesian tracking framework. Quantitative evaluations demonstrate the advantages of this method over current state-of-the-art tracking methods in tracking catheters for clinical applications.
NASA Astrophysics Data System (ADS)
YangDai, Tianyi; Zhang, Li
2016-02-01
Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.
NASA Astrophysics Data System (ADS)
Ding, Hao; Cao, Ming; DuPont, Andrew W.; Scott, Larry D.; Guha, Sushovan; Singhal, Shashideep; Younes, Mamoun; Pence, Isaac; Herline, Alan; Schwartz, David; Xu, Hua; Mahadevan-Jansen, Anita; Bi, Xiaohong
2016-03-01
Inflammatory bowel disease (IBD) is an idiopathic disease that is typically characterized by chronic inflammation of the gastrointestinal tract. Recently much effort has been devoted to the development of novel diagnostic tools that can assist physicians for fast, accurate, and automated diagnosis of the disease. Previous research based on Raman spectroscopy has shown promising results in differentiating IBD patients from normal screening cases. In the current study, we examined IBD patients in vivo through a colonoscope-coupled Raman system. Optical diagnosis for IBD discrimination was conducted based on full-range spectra using multivariate statistical methods. Further, we incorporated several feature selection methods in machine learning into the classification model. The diagnostic performance for disease differentiation was significantly improved after feature selection. Our results showed that improved IBD diagnosis can be achieved using Raman spectroscopy in combination with multivariate analysis and feature selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumway, R.H.; McQuarrie, A.D.
Robust statistical approaches to the problem of discriminating between regional earthquakes and explosions are developed. We compare linear discriminant analysis using descriptive features like amplitude and spectral ratios with signal discrimination techniques using the original signal waveforms and spectral approximations to the log likelihood function. Robust information theoretic techniques are proposed and all methods are applied to 8 earthquakes and 8 mining explosions in Scandinavia and to an event from Novaya Zemlya of unknown origin. It is noted that signal discrimination approaches based on discrimination information and Renyi entropy perform better in the test sample than conventional methods based onmore » spectral ratios involving the P and S phases. Two techniques for identifying the ripple-firing pattern for typical mining explosions are proposed and shown to work well on simulated data and on several Scandinavian earthquakes and explosions. We use both cepstral analysis in the frequency domain and a time domain method based on the autocorrelation and partial autocorrelation functions. The proposed approach strips off underlying smooth spectral and seasonal spectral components corresponding to the echo pattern induced by two simple ripple-fired models. For two mining explosions, a pattern is identified whereas for two earthquakes, no pattern is evident.« less
NASA Astrophysics Data System (ADS)
Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Homayouni, S.
2016-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) imagery is a complex multi-dimensional dataset, which is an important source of information for various natural resources and environmental classification and monitoring applications. PolSAR imagery produces valuable information by observing scattering mechanisms from different natural and man-made objects. Land cover mapping using PolSAR data classification is one of the most important applications of SAR remote sensing earth observations, which have gained increasing attention in the recent years. However, one of the most challenging aspects of classification is selecting features with maximum discrimination capability. To address this challenge, a statistical approach based on the Fisher Linear Discriminant Analysis (FLDA) and the incorporation of physical interpretation of PolSAR data into classification is proposed in this paper. After pre-processing of PolSAR data, including the speckle reduction, the H/α classification is used in order to classify the basic scattering mechanisms. Then, a new method for feature weighting, based on the fusion of FLDA and physical interpretation, is implemented. This method proves to increase the classification accuracy as well as increasing between-class discrimination in the final Wishart classification. The proposed method was applied to a full polarimetric C-band RADARSAT-2 data set from Avalon area, Newfoundland and Labrador, Canada. This imagery has been acquired in June 2015, and covers various types of wetlands including bogs, fens, marshes and shallow water. The results were compared with the standard Wishart classification, and an improvement of about 20% was achieved in the overall accuracy. This method provides an opportunity for operational wetland classification in northern latitude with high accuracy using only SAR polarimetric data.
Michiels, Sarah; De Hertogh, Willem; Truijen, Steven; November, Danny; Wuyts, Floris; Van de Heyning, Paul
2013-05-01
Cervical sensorimotor control (CSMC) becomes increasingly important in the assessment and treatment of patients with neck pain. This review aims to compare commonly used CSMC measuring methods in terms of required tasks, measuring device and clinimetric properties. A systematic review of two databases, followed by methodological quality assessment (CBO guidelines). The methodological quality of 34 included articles was generally good (five to seven out of eight), the inter-rater agreement was excellent (κw=0.966, p<0.01). Following tasks were found: head repositioning accuracy to the neutral head position (HRA-to-NHP) and to a target position (HRA-to-target), a virtual reality test, a continuous linear movement technique (CLMT) and an object following non-linear movement technique (NLMT) (The Fly™). Test-retest reliability was fair to excellent (ICC 0.35-0.87) for the HRA-to-NHP, very bad to excellent (ICC 0.01-0.90) for the HRA-to-target, fair to good (ICC 0.25-0.77) for the virtual reality test and moderate to excellent (ICC: 0.60-0.86) for The Fly™. The reliability of the CLMT was not documented. The HRA-to-NHP, The Fly™ and the CLMT can discriminate between patients with neck complaints and controls (discriminant validity). Currently, only The Fly™ can discriminate between different patient populations (post-traumatic and non-traumatic neck pain). The sensitivity, specificity and responsiveness of the methods have to be assessed in future research. The dynamic method The Fly™ appears to be more reliable than the HRA-to-NHP and is able to discriminate between different patient populations. The diagnostic potential is to be confirmed in future research. Copyright © 2012 Elsevier B.V. All rights reserved.
Abnormality detection of mammograms by discriminative dictionary learning on DSIFT descriptors.
Tavakoli, Nasrin; Karimi, Maryam; Nejati, Mansour; Karimi, Nader; Reza Soroushmehr, S M; Samavi, Shadrokh; Najarian, Kayvan
2017-07-01
Detection and classification of breast lesions using mammographic images are one of the most difficult studies in medical image processing. A number of learning and non-learning methods have been proposed for detecting and classifying these lesions. However, the accuracy of the detection/classification still needs improvement. In this paper we propose a powerful classification method based on sparse learning to diagnose breast cancer in mammograms. For this purpose, a supervised discriminative dictionary learning approach is applied on dense scale invariant feature transform (DSIFT) features. A linear classifier is also simultaneously learned with the dictionary which can effectively classify the sparse representations. Our experimental results show the superior performance of our method compared to existing approaches.
NASA Astrophysics Data System (ADS)
Chen, Xue; Li, Xiaohui; Yu, Xin; Chen, Deying; Liu, Aichun
2018-01-01
Diagnosis of malignancies is a challenging clinical issue. In this work, we present quick and robust diagnosis and discrimination of lymphoma and multiple myeloma (MM) using laser-induced breakdown spectroscopy (LIBS) conducted on human serum samples, in combination with chemometric methods. The serum samples collected from lymphoma and MM cancer patients and healthy controls were deposited on filter papers and ablated with a pulsed 1064 nm Nd:YAG laser. 24 atomic lines of Ca, Na, K, H, O, and N were selected for malignancy diagnosis. Principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k nearest neighbors (kNN) classification were applied to build the malignancy diagnosis and discrimination models. The performances of the models were evaluated using 10-fold cross validation. The discrimination accuracy, confusion matrix and receiver operating characteristic (ROC) curves were obtained. The values of area under the ROC curve (AUC), sensitivity and specificity at the cut-points were determined. The kNN model exhibits the best performances with overall discrimination accuracy of 96.0%. Distinct discrimination between malignancies and healthy controls has been achieved with AUC, sensitivity and specificity for healthy controls all approaching 1. For lymphoma, the best discrimination performance values are AUC = 0.990, sensitivity = 0.970 and specificity = 0.956. For MM, the corresponding values are AUC = 0.986, sensitivity = 0.892 and specificity = 0.994. The results show that the serum-LIBS technique can serve as a quick, less invasive and robust method for diagnosis and discrimination of human malignancies.
Benign-malignant mass classification in mammogram using edge weighted local texture features
NASA Astrophysics Data System (ADS)
Rabidas, Rinku; Midya, Abhishek; Sadhu, Anup; Chakraborty, Jayasree
2016-03-01
This paper introduces novel Discriminative Robust Local Binary Pattern (DRLBP) and Discriminative Robust Local Ternary Pattern (DRLTP) for the classification of mammographic masses as benign or malignant. Mass is one of the common, however, challenging evidence of breast cancer in mammography and diagnosis of masses is a difficult task. Since DRLBP and DRLTP overcome the drawbacks of Local Binary Pattern (LBP) and Local Ternary Pattern (LTP) by discriminating a brighter object against the dark background and vice-versa, in addition to the preservation of the edge information along with the texture information, several edge-preserving texture features are extracted, in this study, from DRLBP and DRLTP. Finally, a Fisher Linear Discriminant Analysis method is incorporated with discriminating features, selected by stepwise logistic regression method, for the classification of benign and malignant masses. The performance characteristics of DRLBP and DRLTP features are evaluated using a ten-fold cross-validation technique with 58 masses from the mini-MIAS database, and the best result is observed with DRLBP having an area under the receiver operating characteristic curve of 0.982.
Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold
NASA Astrophysics Data System (ADS)
Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong
2010-03-01
The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.
Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F
2012-08-15
This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.
Durán-Guerrero, Enrique; Chinnici, Fabio; Natali, Nadia; Riponi, Claudio
2015-09-01
Thirty-six high-quality vinegars with geographical indication belonging to Sherry and Modena areas (vinegars of Jerez, balsamic vinegars of Modena and traditional balsamic vinegars of Modena) with all possible aging periods were analyzed to determine the content of volatile aldehydes. A solid-phase extraction method with in-cartridge derivatization using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine followed by gas chromatography-mass spectrometry was employed. Twenty-two volatile aldehydes were identified and determined in the samples. Analysis of variance provided significant differences among the samples as a function of the type of vinegar, aging time and raw material. Principal component analysis and linear discriminant analysis demonstrated the possibility of discriminating the samples in terms of aging time and raw material. Linear aldehydes and compounds such as furfural, methional, nonenal, hexenal, 2-methylbutanal and i-butyraldehyde were the most significant variables able to discriminate the samples. Aldehyde content of premium quality vinegars is a function of both ageing time and raw material. Their evaluation could be a useful tool with a view to ascertaining vinegar origin and genuineness. © 2014 Society of Chemical Industry.
Angular velocity discrimination
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.
1990-01-01
Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.
NASA Astrophysics Data System (ADS)
Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés
2018-03-01
In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.
Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés
2018-03-01
In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.
Stepanikova, Irena; Kukla, Lubomir
2017-08-01
Objectives The role of perceived discrimination in postpartum depression is largely unknown. We investigate whether perceived discrimination reported in pregnancy contributes to postpartum depression, and whether its impact varies by education level. Methods Prospective data are a part of European Longitudinal Study of Pregnancy and Childhood, the Czech Republic. Surveys were collected in mid-pregnancy and at 6 months after delivery. Depression was measured using Edinburgh Postnatal Depression Scale. Generalized linear models were estimated to test the effects of perceived discrimination on postpartum depression. Results Multivariate models revealed that among women with low education, discrimination in pregnancy was prospectively associated with 2.43 times higher odds of postpartum depression (p < .01), after adjusting for antenatal depression, history of earlier depression, and socio-demographic background. In contrast, perceived discrimination was not linked to postpartum depression among women with high education. Conclusions Perceived discrimination is a risk factor for postpartum depression among women with low education. Screening for discrimination and socio-economic disadvantage during pregnancy could benefit women who are at risk for mental health problems.
Discriminative components of data.
Peltonen, Jaakko; Kaski, Samuel
2005-01-01
A simple probabilistic model is introduced to generalize classical linear discriminant analysis (LDA) in finding components that are informative of or relevant for data classes. The components maximize the predictability of the class distribution which is asymptotically equivalent to 1) maximizing mutual information with the classes, and 2) finding principal components in the so-called learning or Fisher metrics. The Fisher metric measures only distances that are relevant to the classes, that is, distances that cause changes in the class distribution. The components have applications in data exploration, visualization, and dimensionality reduction. In empirical experiments, the method outperformed, in addition to more classical methods, a Renyi entropy-based alternative while having essentially equivalent computational cost.
NASA Astrophysics Data System (ADS)
Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko
2018-04-01
Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.
NASA Astrophysics Data System (ADS)
Vítková, Gabriela; Prokeš, Lubomír; Novotný, Karel; Pořízka, Pavel; Novotný, Jan; Všianský, Dalibor; Čelko, Ladislav; Kaiser, Jozef
2014-11-01
Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups - stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng
An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less
Rinaldi, Maurizio; Gindro, Roberto; Barbeni, Massimo; Allegrone, Gianna
2009-01-01
Orange (Citrus sinensis L.) juice comprises a complex mixture of volatile components that are difficult to identify and quantify. Classification and discrimination of the varieties on the basis of the volatile composition could help to guarantee the quality of a juice and to detect possible adulteration of the product. To provide information on the amounts of volatile constituents in fresh-squeezed juices from four orange cultivars and to establish suitable discrimination rules to differentiate orange juices using new chemometric approaches. Fresh juices of four orange cultivars were analysed by headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Principal component analysis, linear discriminant analysis and heuristic methods, such as neural networks, allowed clustering of the data from HS-SPME analysis while genetic algorithms addressed the problem of data reduction. To check the quality of the results the chemometric techniques were also evaluated on a sample. Thirty volatile compounds were identified by HS-SPME and GC-MS analyses and their relative amounts calculated. Differences in composition of orange juice volatile components were observed. The chosen orange cultivars could be discriminated using neural networks, genetic relocation algorithms and linear discriminant analysis. Genetic algorithms applied to the data were also able to detect the most significant compounds. SPME is a useful technique to investigate orange juice volatile composition and a flexible chemometric approach is able to correctly separate the juices.
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
NASA Astrophysics Data System (ADS)
Zhu, Ying; Tan, Tuck Lee
2016-04-01
An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.
NASA Astrophysics Data System (ADS)
El-Saba, Aed; Sakla, Wesam A.
2010-04-01
Recently, the use of imaging polarimetry has received considerable attention for use in automatic target recognition (ATR) applications. In military remote sensing applications, there is a great demand for sensors that are capable of discriminating between real targets and decoys. Accurate discrimination of decoys from real targets is a challenging task and often requires the fusion of various sensor modalities that operate simultaneously. In this paper, we use a simple linear fusion technique known as the high-boost fusion method for effective discrimination of real targets in the presence of multiple decoys. The HBF assigns more weight to the polarization-based imagery in forming the final fused image that is used for detection. We have captured both intensity and polarization-based imagery from an experimental laboratory arrangement containing a mixture of sand/dirt, rocks, vegetation, and other objects for the purpose of simulating scenery that would be acquired in a remote sensing military application. A target object and three decoys that are identical in physical appearance (shape, surface structure and color) and different in material composition have also been placed in the scene. We use the wavelet-filter joint transform correlation (WFJTC) technique to perform detection between input scenery and the target object. Our results show that use of the HBF method increases the correlation performance metrics associated with the WFJTC-based detection process when compared to using either the traditional intensity or polarization-based images.
Variable Importance in Multivariate Group Comparisons.
ERIC Educational Resources Information Center
Huberty, Carl J.; Wisenbaker, Joseph M.
1992-01-01
Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C. L.; Funk, L. L.; Riedel, R. A.
3He gas based neutron linear-position-sensitive detectors (LPSDs) have been applied for many neutron scattering instruments. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio on the orders of 10 5-10 6. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher linear discriminant analysis (FLDA)more » and three multivariate analyses (MVAs) of the features were performed. The NGD ratios are improved by about 10 2-10 3 times compared with the traditional PHA method. Finally, our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.« less
Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles
Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.
NASA Astrophysics Data System (ADS)
Cheng, Yayun; Qi, Bo; Liu, Siyuan; Hu, Fei; Gui, Liangqi; Peng, Xiaohui
2016-10-01
Polarimetric measurements can provide additional information as compared to unpolarized ones. In this paper, linear polarization ratio (LPR) is created to be a feature discriminator. The LPR properties of several materials are investigated using Fresnel theory. The theoretical results show that LPR is sensitive to the material type (metal or dielectric). Then a linear polarization ratio-based (LPR-based) method is presented to distinguish between metal and dielectric materials. In order to apply this method to practical applications, the optimal range of incident angle have been discussed. The typical outdoor experiments including various objects such as aluminum plate, grass, concrete, soil and wood, have been conducted to validate the presented classification method.
A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.
Suk, Heung-Il; Lee, Seong-Whan
2013-02-01
As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.
Vijay, Aishwarya; Earnshaw, Valerie A.; Tee, Ying Chew; Pillai, Veena; White Hughto, Jaclyn M.; Clark, Kirsty; Kamarulzaman, Adeeba; Altice, Frederick L.
2018-01-01
Abstract Purpose: Transgender people are frequent targets of discrimination. Discrimination against transgender people in the context of healthcare can lead to poor health outcomes and facilitate the growth of health disparities. This study explores factors associated with medical doctors' intentions to discriminate against transgender people in Malaysia. Methods: A total of 436 physicians at two major university medical centers in Kuala Lumpur, Malaysia, completed an online survey. Sociodemographic characteristics, stigma-related constructs, and intentions to discriminate against transgender people were measured. Bivariate and multivariate linear regression were used to evaluate independent covariates of discrimination intent. Results: Medical doctors who felt more fearful of transgender people and more personal shame associated with transgender people expressed greater intention to discriminate against transgender people, whereas doctors who endorsed the belief that transgender people deserve good care reported lower discrimination intent. Stigma-related constructs accounted for 42% of the variance and 8% was accounted for by sociodemographic characteristics. Conclusions: Constructs associated with transgender stigma play an important role in medical doctors' intentions to discriminate against transgender patients. Development of interventions to improve medical doctors' knowledge about and attitudes toward transgender people are necessary to reduce discriminatory intent in healthcare settings. PMID:29227183
Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi
2018-01-01
We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.
Color model and method for video fire flame and smoke detection using Fisher linear discriminant
NASA Astrophysics Data System (ADS)
Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang
2013-02-01
Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.
Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R
2012-10-21
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm(3) phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors.
Roncali, Emilie; Phipps, Jennifer E.; Marcu, Laura; Cherry, Simon R.
2012-01-01
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2 × 2 × 20 mm3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. PMID:23010690
Statistical classification techniques for engineering and climatic data samples
NASA Technical Reports Server (NTRS)
Temple, E. C.; Shipman, J. R.
1981-01-01
Fisher's sample linear discriminant function is modified through an appropriate alteration of the common sample variance-covariance matrix. The alteration consists of adding nonnegative values to the eigenvalues of the sample variance covariance matrix. The desired results of this modification is to increase the number of correct classifications by the new linear discriminant function over Fisher's function. This study is limited to the two-group discriminant problem.
Direct discriminant locality preserving projection with Hammerstein polynomial expansion.
Chen, Xi; Zhang, Jiashu; Li, Defang
2012-12-01
Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.
Dual linear structured support vector machine tracking method via scale correlation filter
NASA Astrophysics Data System (ADS)
Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen
2018-01-01
Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.
NASA Astrophysics Data System (ADS)
Shahrajabian, Maryam; Hormozi-Nezhad, M. Reza
2016-08-01
Array-based sensor is an interesting approach that suggests an alternative to expensive analytical methods. In this work, we introduce a novel, simple, and sensitive nanoparticle-based chemiluminescence (CL) sensor array for discrimination of biothiols (e.g., cysteine, glutathione and glutathione disulfide). The proposed CL sensor array is based on the CL efficiencies of four types of enhanced nanoparticle-based CL systems. The intensity of CL was altered to varying degrees upon interaction with biothiols, producing unique CL response patterns. These distinct CL response patterns were collected as “fingerprints” and were then identified through chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). The developed array was able to successfully differentiate between cysteine, glutathione and glutathione disulfide in a wide concentration range. Moreover, it was applied to distinguish among the above analytes in human plasma.
Kleinhans, Sonja; Herrmann, Eva; Kohnen, Thomas; Bühren, Jens
2017-08-15
Background Iatrogenic keratectasia is one of the most dreaded complications of refractive surgery. In most cases, keratectasia develops after refractive surgery of eyes suffering from subclinical stages of keratoconus with few or no signs. Unfortunately, there has been no reliable procedure for the early detection of keratoconus. In this study, we used binary decision trees (recursive partitioning) to assess their suitability for discrimination between normal eyes and eyes with subclinical keratoconus. Patients and Methods The method of decision tree analysis was compared with discriminant analysis which has shown good results in previous studies. Input data were 32 eyes of 32 patients with newly diagnosed keratoconus in the contralateral eye and preoperative data of 10 eyes of 5 patients with keratectasia after laser in-situ keratomileusis (LASIK). The control group was made up of 245 normal eyes after LASIK and 12-month follow-up without any signs of iatrogenic keratectasia. Results Decision trees gave better accuracy and specificity than did discriminant analysis. The sensitivity of decision trees was lower than the sensitivity of discriminant analysis. Conclusion On the basis of the patient population of this study, decision trees did not prove to be superior to linear discriminant analysis for the detection of subclinical keratoconus. Georg Thieme Verlag KG Stuttgart · New York.
Linear discriminant analysis with misallocation in training samples
NASA Technical Reports Server (NTRS)
Chhikara, R. (Principal Investigator); Mckeon, J.
1982-01-01
Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule.
Optical system for tablet variety discrimination using visible/near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Shao, Yongni; He, Yong; Hu, Xingyue
2007-12-01
An optical system based on visible/near-infrared spectroscopy (Vis/NIRS) for variety discrimination of ginkgo (Ginkgo biloba L.) tablets was developed. This system consisted of a light source, beam splitter system, sample chamber, optical detector (diffuse reflection detector), and data collection. The tablet varieties used in the research include Da na kang, Xin bang, Tian bao ning, Yi kang, Hua na xing, Dou le, Lv yuan, Hai wang, and Ji yao. All samples (n=270) were scanned in the Vis/NIR region between 325 and 1075 nm using a spectrograph. The chemometrics method of principal component artificial neural network (PC-ANN) was used to establish discrimination models of them. In PC-ANN models, the scores of the principal components were chosen as the input nodes for the input layer of ANN, and the best discrimination rate of 91.1% was reached. Principal component analysis was also executed to select several optimal wavelengths based on loading values. Wavelengths at 481, 458, 466, 570, 1000, 662, and 400 nm were then used as the input data of stepwise multiple linear regression, the regression equation of ginkgo tablets was obtained, and the discrimination rate was researched 84.4%. The results indicated that this optical system could be applied to discriminating ginkgo (Ginkgo biloba L.) tablets, and it supplied a new method for fast ginkgo tablet variety discrimination.
Spatial-temporal discriminant analysis for ERP-based brain-computer interface.
Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2013-03-01
Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Macaluso, P J
2011-02-01
Digital photogrammetric methods were used to collect diameter, area, and perimeter data of the acetabulum for a twentieth-century skeletal sample from France (Georges Olivier Collection, Musée de l'Homme, Paris) consisting of 46 males and 36 females. The measurements were then subjected to both discriminant function and logistic regression analyses in order to develop osteometric standards for sex assessment. Univariate discriminant functions and logistic regression equations yielded overall correct classification accuracy rates for both the left and the right acetabula ranging from 84.1% to 89.6%. The multivariate models developed in this study did not provide increased accuracy over those using only a single variable. Classification sex bias ratios ranged between 1.1% and 7.3% for the majority of models. The results of this study, therefore, demonstrate that metric analysis of acetabular size provides a highly accurate, and easily replicable, method of discriminating sex in this documented skeletal collection. The results further suggest that the addition of area and perimeter data derived from digital images may provide a more effective method of sex assessment than that offered by traditional linear measurements alone. Copyright © 2010 Elsevier GmbH. All rights reserved.
Sugden, Nicole A; Marquis, Alexandra R
2017-11-01
Infants show facility for discriminating between individual faces within hours of birth. Over the first year of life, infants' face discrimination shows continued improvement with familiar face types, such as own-race faces, but not with unfamiliar face types, like other-race faces. The goal of this meta-analytic review is to provide an effect size for infants' face discrimination ability overall, with own-race faces, and with other-race faces within the first year of life, how this differs with age, and how it is influenced by task methodology. Inclusion criteria were (a) infant participants aged 0 to 12 months, (b) completing a human own- or other-race face discrimination task, (c) with discrimination being determined by infant looking. Our analysis included 30 works (165 samples, 1,926 participants participated in 2,623 tasks). The effect size for infants' face discrimination was small, 6.53% greater than chance (i.e., equal looking to the novel and familiar). There was a significant difference in discrimination by race, overall (own-race, 8.18%; other-race, 3.18%) and between ages (own-race: 0- to 4.5-month-olds, 7.32%; 5- to 7.5-month-olds, 9.17%; and 8- to 12-month-olds, 7.68%; other-race: 0- to 4.5-month-olds, 6.12%; 5- to 7.5-month-olds, 3.70%; and 8- to 12-month-olds, 2.79%). Multilevel linear (mixed-effects) models were used to predict face discrimination; infants' capacity to discriminate faces is sensitive to face characteristics including race, gender, and emotion as well as the methods used, including task timing, coding method, and visual angle. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Zhu, Ying; Tan, Tuck Lee
2016-04-15
An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose
Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2016-01-01
Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407
NASA Astrophysics Data System (ADS)
O'Keeffe, H. M.; O'Sullivan, E.; Chen, M. C.
2011-06-01
The SNO+ liquid scintillator experiment is under construction in the SNOLAB facility in Canada. The success of this experiment relies upon accurate characterization of the liquid scintillator, linear alkylbenzene (LAB). In this paper, scintillation decay times for alpha and electron excitations in LAB with 2 g/L PPO are presented for both oxygenated and deoxygenated solutions. While deoxygenation is expected to improve pulse shape discrimination in liquid scintillators, it is not commonly demonstrated in the literature. This paper shows that for linear alkylbenzene, deoxygenation improves discrimination between electron and alpha excitations in the scintillator.
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1979-01-01
In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.
Robust infrared target tracking using discriminative and generative approaches
NASA Astrophysics Data System (ADS)
Asha, C. S.; Narasimhadhan, A. V.
2017-09-01
The process of designing an efficient tracker for thermal infrared imagery is one of the most challenging tasks in computer vision. Although a lot of advancement has been achieved in RGB videos over the decades, textureless and colorless properties of objects in thermal imagery pose hard constraints in the design of an efficient tracker. Tracking of an object using a single feature or a technique often fails to achieve greater accuracy. Here, we propose an effective method to track an object in infrared imagery based on a combination of discriminative and generative approaches. The discriminative technique makes use of two complementary methods such as kernelized correlation filter with spatial feature and AdaBoost classifier with pixel intesity features to operate in parallel. After obtaining optimized locations through discriminative approaches, the generative technique is applied to determine the best target location using a linear search method. Unlike the baseline algorithms, the proposed method estimates the scale of the target by Lucas-Kanade homography estimation. To evaluate the proposed method, extensive experiments are conducted on 17 challenging infrared image sequences obtained from LTIR dataset and a significant improvement of mean distance precision and mean overlap precision is accomplished as compared with the existing trackers. Further, a quantitative and qualitative assessment of the proposed approach with the state-of-the-art trackers is illustrated to clearly demonstrate an overall increase in performance.
Multi-class ERP-based BCI data analysis using a discriminant space self-organizing map.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.
Earnshaw, Valerie A.; Lewis, Tené T.; Reid, Allecia E.; Lewis, Jessica B.; Stasko, Emily C.; Tobin, Jonathan N.; Ickovics, Jeannette R.
2015-01-01
Objectives. We aimed to contribute to growing research and theory suggesting the importance of examining patterns of change over time and critical life periods to fully understand the effects of discrimination on health, with a focus on the period of pregnancy and postpartum and mental health outcomes. Methods. We used hierarchical linear modeling to examine changes across pregnancy and postpartum in everyday discrimination and the resulting consequences for mental health among predominantly Black and Latina, socioeconomically disadvantaged young women who were receiving prenatal care in New York City. Results. Patterns of change in experiences with discrimination varied according to age. Among the youngest participants, discrimination increased from the second to third trimesters and then decreased to lower than the baseline level by 1 year postpartum; among the oldest participants, discrimination decreased from the second trimester to 6 months postpartum and then returned to the baseline level by 1 year postpartum. Within-subjects changes in discrimination over time predicted changes in depressive and anxiety symptoms at subsequent points. Discrimination more strongly predicted anxiety symptoms among participants reporting food insecurity. Conclusions. Our results support a life course approach to understanding the impact of experiences with discrimination on health and when to intervene. PMID:24922166
Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn
2012-08-01
Previous work has identified that non-linear variables calculated from respiratory data vary between sleep states, and that variables derived from the non-linear analytical tool recurrence quantification analysis (RQA) are accurate infant sleep state discriminators. This study aims to apply these discriminators to automatically classify 30 s epochs of infant sleep as REM, non-REM and wake. Polysomnograms were obtained from 25 healthy infants at 2 weeks, 3, 6 and 12 months of age, and manually sleep staged as wake, REM and non-REM. Inter-breath interval data were extracted from the respiratory inductive plethysmograph, and RQA applied to calculate radius, determinism and laminarity. Time-series statistic and spectral analysis variables were also calculated. A nested cross-validation method was used to identify the optimal feature subset, and to train and evaluate a linear discriminant analysis-based classifier. The RQA features radius and laminarity and were reliably selected. Mean agreement was 79.7, 84.9, 84.0 and 79.2 % at 2 weeks, 3, 6 and 12 months, and the classifier performed better than a comparison classifier not including RQA variables. The performance of this sleep-staging tool compares favourably with inter-human agreement rates, and improves upon previous systems using only respiratory data. Applications include diagnostic screening and population-based sleep research.
Prediction of aquatic toxicity mode of action using linear discriminant and random forest models.
Martin, Todd M; Grulke, Christopher M; Young, Douglas M; Russom, Christine L; Wang, Nina Y; Jackson, Crystal R; Barron, Mace G
2013-09-23
The ability to determine the mode of action (MOA) for a diverse group of chemicals is a critical part of ecological risk assessment and chemical regulation. However, existing MOA assignment approaches in ecotoxicology have been limited to a relatively few MOAs, have high uncertainty, or rely on professional judgment. In this study, machine based learning algorithms (linear discriminant analysis and random forest) were used to develop models for assigning aquatic toxicity MOA. These methods were selected since they have been shown to be able to correlate diverse data sets and provide an indication of the most important descriptors. A data set of MOA assignments for 924 chemicals was developed using a combination of high confidence assignments, international consensus classifications, ASTER (ASessment Tools for the Evaluation of Risk) predictions, and weight of evidence professional judgment based an assessment of structure and literature information. The overall data set was randomly divided into a training set (75%) and a validation set (25%) and then used to develop linear discriminant analysis (LDA) and random forest (RF) MOA assignment models. The LDA and RF models had high internal concordance and specificity and were able to produce overall prediction accuracies ranging from 84.5 to 87.7% for the validation set. These results demonstrate that computational chemistry approaches can be used to determine the acute toxicity MOAs across a large range of structures and mechanisms.
Third-Degree Price Discrimination Revisited
ERIC Educational Resources Information Center
Kwon, Youngsun
2006-01-01
The author derives the probability that price discrimination improves social welfare, using a simple model of third-degree price discrimination assuming two independent linear demands. The probability that price discrimination raises social welfare increases as the preferences or incomes of consumer groups become more heterogeneous. He derives the…
Predicting landslides in clearcut patches
Raymond M. Rice; Norman H. Pillsbury
1982-01-01
Abstract - Accelerated erosion in the form of landslides can be an undesirable consequence of clearcut logging on steep slopes. Forest managers need a method of predicting the risk of such erosion. Data collected after logging in a granitic area of northwestern California were used to develop a predictive equation. A linear discriminant function was developed that...
Chen, Yun; Yang, Hui
2013-01-01
Heart rate variability (HRV) analysis has emerged as an important research topic to evaluate autonomic cardiac function. However, traditional time and frequency-domain analysis characterizes and quantify only linear and stationary phenomena. In the present investigation, we made a comparative analysis of three alternative approaches (i.e., wavelet multifractal analysis, Lyapunov exponents and multiscale entropy analysis) for quantifying nonlinear dynamics in heart rate time series. Note that these extracted nonlinear features provide information about nonlinear scaling behaviors and the complexity of cardiac systems. To evaluate the performance, we used 24-hour HRV recordings from 54 healthy subjects and 29 heart failure patients, available in PhysioNet. Three nonlinear methods are evaluated not only individually but also in combination using three classification algorithms, i.e., linear discriminate analysis, quadratic discriminate analysis and k-nearest neighbors. Experimental results show that three nonlinear methods capture nonlinear dynamics from different perspectives and the combined feature set achieves the best performance, i.e., sensitivity 97.7% and specificity 91.5%. Collectively, nonlinear HRV features are shown to have the promise to identify the disorders in autonomic cardiovascular function.
Racial Discrimination and HIV-related Risk Behaviors in Southeast Louisiana
Kaplan, Kathryn C.; Hormes, Julia M.; Wallace, Maeve; Rountree, Michele; Theall, Katherine P.
2016-01-01
Objectives We examined the relationship between cumulative experiences of racial discrimination and HIV-related risk taking, and whether these relationships are mediated through alcohol use among African Americans in semi-rural southeast Louisiana. Methods Participants (N = 214) reported on experiences of discrimination, HIV sexual risk-taking, history of sexually transmitted infection (STI), and health behaviors including alcohol use in the previous 90 days. Experiences of discrimination (scaled both by frequency of occurrence and situational counts) as a predictor of a sexual risk composite score as well as a history of STI was assessed using multivariate linear and logistic regression, respectively, including tests for mediation by alcohol use. Results Discrimination was common in this cohort, with respondents confirming their experience on average 7 of the 9 potential situations and on more than 34 separate occasions. After adjustment, discrimination was significantly associated with increasing sexual risk-taking and lifetime history of STI when measured either by frequency of occurrence or number of situations, although there was no evidence that these relationships were mediated through alcohol use. Conclusions Cumulative experiences of discrimination may play a significant role in sexual risk behavior and consequently increase vulnerability to HIV and other STIs. PMID:26685822
NASA Astrophysics Data System (ADS)
Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.
2015-06-01
Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
MR PROSTATE SEGMENTATION VIA DISTRIBUTED DISCRIMINATIVE DICTIONARY (DDD) LEARNING.
Guo, Yanrong; Zhan, Yiqiang; Gao, Yaozong; Jiang, Jianguo; Shen, Dinggang
2013-01-01
Segmenting prostate from MR images is important yet challenging. Due to non-Gaussian distribution of prostate appearances in MR images, the popular active appearance model (AAM) has its limited performance. Although the newly developed sparse dictionary learning method[1, 2] can model the image appearance in a non-parametric fashion, the learned dictionaries still lack the discriminative power between prostate and non-prostate tissues, which is critical for accurate prostate segmentation. In this paper, we propose to integrate deformable model with a novel learning scheme, namely the Distributed Discriminative Dictionary ( DDD ) learning, which can capture image appearance in a non-parametric and discriminative fashion. In particular, three strategies are designed to boost the tissue discriminative power of DDD. First , minimum Redundancy Maximum Relevance (mRMR) feature selection is performed to constrain the dictionary learning in a discriminative feature space. Second , linear discriminant analysis (LDA) is employed to assemble residuals from different dictionaries for optimal separation between prostate and non-prostate tissues. Third , instead of learning the global dictionaries, we learn a set of local dictionaries for the local regions (each with small appearance variations) along prostate boundary, thus achieving better tissue differentiation locally. In the application stage, DDDs will provide the appearance cues to robustly drive the deformable model onto the prostate boundary. Experiments on 50 MR prostate images show that our method can yield a Dice Ratio of 88% compared to the manual segmentations, and have 7% improvement over the conventional AAM.
USDA-ARS?s Scientific Manuscript database
Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Guo, Jing; Yue, Tianli; Yuan, Yahong
2012-10-01
Apple juice is a complex mixture of volatile and nonvolatile components. To develop discrimination models on the basis of the volatile composition for an efficient classification of apple juices according to apple variety and geographical origin, chromatography volatile profiles of 50 apple juice samples belonging to 6 varieties and from 5 counties of Shaanxi (China) were obtained by headspace solid-phase microextraction coupled with gas chromatography. The volatile profiles were processed as continuous and nonspecific signals through multivariate analysis techniques. Different preprocessing methods were applied to raw chromatographic data. The blind chemometric analysis of the preprocessed chromatographic profiles was carried out. Stepwise linear discriminant analysis (SLDA) revealed satisfactory discriminations of apple juices according to variety and geographical origin, provided respectively 100% and 89.8% success rate in terms of prediction ability. Finally, the discriminant volatile compounds selected by SLDA were identified by gas chromatography-mass spectrometry. The proposed strategy was able to verify the variety and geographical origin of apple juices involving only a reduced number of discriminate retention times selected by the stepwise procedure. This result encourages the similar procedures to be considered in quality control of apple juices. This work presented a method for an efficient discrimination of apple juices according to apple variety and geographical origin using HS-SPME-GC-MS together with chemometric tools. Discrimination models developed could help to achieve greater control over the quality of the juice and to detect possible adulteration of the product. © 2012 Institute of Food Technologists®
Thayer, Zaneta M.; Blair, Irene V.; Buchwald, Dedra S.; Manson, Spero M.
2017-01-01
Objectives Hypertension prevalence is high among American Indians (AIs). AIs experience a substantial burden of interpersonal racial discrimination, which in other populations has been associated with higher blood pressure. The purpose of this study is to understand whether racial discrimination experiences are associated with higher blood pressure in AIs. Materials and Methods We used the Everyday Discrimination Scale to evaluate the relationship between discrimination and measured blood pressure among 77 AIs from two reservation communities in the Northern Plains. We used multivariate linear regression to evaluate the association of racial discrimination with systolic and diastolic blood pressure, respectively. Racial discrimination, systolic blood pressure, and diastolic blood pressure were analyzed as continuous variables. All analyses adjusted for sex, waist circumference, age, posttraumatic stress disorder status, and education. Results We found that 61% of participants experienced discrimination that they attributed to their race or ancestry. Racial discrimination was associated with significantly higher diastolic blood pressure (β = 0.22, SE = 0.09, P = 0.02), and with a similar non-significant trend toward higher systolic blood pressure (β = 0.25, SE = 0.15, P = 0.09). Conclusion The results of this analysis suggest that racial discrimination may contribute to higher diastolic blood pressure within Native communities. These findings highlight one pathway through which the social environment can shape patterns of biology and health in AI and other socially and politically marginalized groups. PMID:28198537
Partial Least Squares for Discrimination in fMRI Data
Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.
2011-01-01
Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352
Linear regression models and k-means clustering for statistical analysis of fNIRS data.
Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro
2015-02-01
We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.
Linear regression models and k-means clustering for statistical analysis of fNIRS data
Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro
2015-01-01
We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets. PMID:25780751
Radar image processing for rock-type discrimination
NASA Technical Reports Server (NTRS)
Blom, R. G.; Daily, M.
1982-01-01
Image processing and enhancement techniques for improving the geologic utility of digital satellite radar images are reviewed. Preprocessing techniques such as mean and variance correction on a range or azimuth line by line basis to provide uniformly illuminated swaths, median value filtering for four-look imagery to eliminate speckle, and geometric rectification using a priori elevation data. Examples are presented of application of preprocessing methods to Seasat and Landsat data, and Seasat SAR imagery was coregistered with Landsat imagery to form composite scenes. A polynomial was developed to distort the radar picture to fit the Landsat image of a 90 x 90 km sq grid, using Landsat color ratios with Seasat intensities. Subsequent linear discrimination analysis was employed to discriminate rock types from known areas. Seasat additions to the Landsat data improved rock identification by 7%.
Micro-Raman spectroscopy of natural and synthetic indigo samples.
Vandenabeele, Peter; Moens, Luc
2003-02-01
In this work indigo samples from three different sources are studied by using Raman spectroscopy: the synthetic pigment and pigments from the woad (Isatis tinctoria) and the indigo plant (Indigofera tinctoria). 21 samples were obtained from 8 suppliers; for each sample 5 Raman spectra were recorded and used for further chemometrical analysis. Principal components analysis (PCA) was performed as data reduction method before applying hierarchical cluster analysis. Linear discriminant analysis (LDA) was implemented as a non-hierarchical supervised pattern recognition method to build a classification model. In order to avoid broad-shaped interferences from the fluorescence background, the influence of 1st and 2nd derivatives on the classification was studied by using cross-validation. Although chemically identical, it is shown that Raman spectroscopy in combination with suitable chemometric methods has the potential to discriminate between synthetic and natural indigo samples.
Improved pulse shape discriminator for fast neutron-gamma ray detection system
NASA Technical Reports Server (NTRS)
Lockwood, J. A.; St. Onge, R.
1969-01-01
Discriminator in nuclear particle detection system distinguishes nuclear particle type and energy among many different nuclear particles. Discriminator incorporates passive, linear circuit elements so that it will operate over a wide dynamic range.
Parametric Time-Frequency Analysis and Its Applications in Music Classification
NASA Astrophysics Data System (ADS)
Shen, Ying; Li, Xiaoli; Ma, Ngok-Wah; Krishnan, Sridhar
2010-12-01
Analysis of nonstationary signals, such as music signals, is a challenging task. The purpose of this study is to explore an efficient and powerful technique to analyze and classify music signals in higher frequency range (44.1 kHz). The pursuit methods are good tools for this purpose, but they aimed at representing the signals rather than classifying them as in Y. Paragakin et al., 2009. Among the pursuit methods, matching pursuit (MP), an adaptive true nonstationary time-frequency signal analysis tool, is applied for music classification. First, MP decomposes the sample signals into time-frequency functions or atoms. Atom parameters are then analyzed and manipulated, and discriminant features are extracted from atom parameters. Besides the parameters obtained using MP, an additional feature, central energy, is also derived. Linear discriminant analysis and the leave-one-out method are used to evaluate the classification accuracy rate for different feature sets. The study is one of the very few works that analyze atoms statistically and extract discriminant features directly from the parameters. From our experiments, it is evident that the MP algorithm with the Gabor dictionary decomposes nonstationary signals, such as music signals, into atoms in which the parameters contain strong discriminant information sufficient for accurate and efficient signal classifications.
A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
Ligorio, Gabriele; Sabatini, Angelo M
2015-08-01
Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.
Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints
Ferreiro-González, Marta; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2017-01-01
Characterization of petroleum-derived products is an area of continuing importance in environmental science, mainly related to fuel spills. In this study, a non-separative analytical method based on E-Nose (Electronic Nose) is presented as a rapid alternative for the characterization of several different petroleum-derived products including gasoline, diesel, aromatic solvents, and ethanol samples, which were poured onto different surfaces (wood, cork, and cotton). The working conditions about the headspace generation were 145 °C and 10 min. Mass spectroscopic data (45–200 m/z) combined with chemometric tools such as hierarchical cluster analysis (HCA), later principal component analysis (PCA), and finally linear discriminant analysis (LDA) allowed for a full discrimination of the samples. A characteristic fingerprint for each product can be used for discrimination or identification. The E-Nose can be considered as a green technique, and it is rapid and easy to use in routine analysis, thus providing a good alternative to currently used methods. PMID:29113069
Geometric mean for subspace selection.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2009-02-01
Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.
Ebtia, Mahasti; Murphy, Darra; Gin, Kenneth; Lee, Pui K; Jue, John; Nair, Parvathy; Mayo, John; Barnes, Marion E; Thompson, Darby J S; Tsang, Teresa S M
2015-05-01
Echocardiographic methods for estimating right atrial (RA) volume have not been standardized. Our aim was to evaluate two-dimensional (2D) echocardiographic methods of RA volume assessment, using RA volume by magnetic resonance imaging (MRI) as the reference. Right atrial volume was assessed in 51 patients (mean age 63 ± 14 years, 33 female) who underwent comprehensive 2D echocardiography and cardiac MRI for clinically indicated reasons. Echocardiographic RA volume methods included (1) biplane area length, using four-chamber view twice (biplane 4C-4C); (2) biplane area length, using four-chamber and subcostal views (biplane 4C-subcostal); and (3) single plane Simpson's method of disks (Simpson's). Echocardiographic RA volumes as well as linear RA major and minor dimensions were compared to RA volume by MRI using correlation and Bland-Altman methods, and evaluated for inter-observer reproducibility and accuracy in discriminating RA enlargement. All echocardiography volumetric methods performed well compared to MRI, with Pearson's correlation of 0.98 and concordance correlation ≥0.91 for each. For bias and limits of agreement, biplane 4C-4C (bias -4.81 mL/m(2) , limits of agreement ±9.8 mL/m(2) ) and Simpson's (bias -5.15 mL/m(2) , limits of agreement ±10.1 mL/m(2) ) outperformed biplane 4C-subcostal (bias -8.36 mL/m(2) , limits of agreement ±12.5 mL/m(2) ). Accuracy for discriminating RA enlargement was higher for all volumetric methods than for linear measurements. Inter-observer variability was satisfactory across all methods. Compared to MRI, biplane 4C-4C and single plane Simpson's are highly accurate and reproducible 2D echocardiography methods for estimating RA volume. Linear dimensions are inaccurate and should be abandoned. © 2014, Wiley Periodicals, Inc.
Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang
2014-01-01
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.
Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang
2014-01-01
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966
NASA Astrophysics Data System (ADS)
He, Xin; Frey, Eric C.
2007-03-01
Binary ROC analysis has solid decision-theoretic foundations and a close relationship to linear discriminant analysis (LDA). In particular, for the case of Gaussian equal covariance input data, the area under the ROC curve (AUC) value has a direct relationship to the Hotelling trace. Many attempts have been made to extend binary classification methods to multi-class. For example, Fukunaga extended binary LDA to obtain multi-class LDA, which uses the multi-class Hotelling trace as a figure-of-merit, and we have previously developed a three-class ROC analysis method. This work explores the relationship between conventional multi-class LDA and three-class ROC analysis. First, we developed a linear observer, the three-class Hotelling observer (3-HO). For Gaussian equal covariance data, the 3- HO provides equivalent performance to the three-class ideal observer and, under less strict conditions, maximizes the signal to noise ratio for classification of all pairs of the three classes simultaneously. The 3-HO templates are not the eigenvectors obtained from multi-class LDA. Second, we show that the three-class Hotelling trace, which is the figureof- merit in the conventional three-class extension of LDA, has significant limitations. Third, we demonstrate that, under certain conditions, there is a linear relationship between the eigenvectors obtained from multi-class LDA and 3-HO templates. We conclude that the 3-HO based on decision theory has advantages both in its decision theoretic background and in the usefulness of its figure-of-merit. Additionally, there exists the possibility of interpreting the two linear features extracted by the conventional extension of LDA from a decision theoretic point of view.
Kalcsits, Lee A; Guy, Robert D
2016-02-01
Acquisition of mineral nitrogen by roots from the surrounding environment is often not completely efficient, in which a variable amount of leakage (efflux) relative to gross uptake (influx) occurs. The efflux/influx ratio (E/I) is, therefore, inversely related to the efficiency of nutrient uptake at the root level. Time-integrated estimates of E/I and other nitrogen-use traits may be obtainable from variation in stable isotope ratios or through compartmental analysis of tracer efflux (CATE) using radioactive or stable isotopes. To compare these two methods, Populus balsamifera L. genotypes were selected, a priori, for high or low nitrogen isotope discrimination. Vegetative cuttings were grown hydroponically, and E/I was calculated using an isotope mass balance model (IMB) and compared to E/I calculated using (15) N CATE. Both methods indicated that plants grown with ammonium had greater E/I than nitrate-grown plants. Genotypes with high or low E/I using CATE also had similarly high or low estimates of E/I using IMB, respectively. Genotype-specific means were linearly correlated (r = 0.77; P = 0.0065). Discrepancies in E/I between methods may reflect uncertainties in discrimination factors for the assimilatory enzymes, or temporal differences in uptake patterns. By utilizing genotypes with known variation in nitrogen isotope discrimination, a relationship between nitrogen isotope discrimination and bidirectional nitrogen fluxes at the root level was observed. © 2015 John Wiley & Sons Ltd.
Dantas, Hebertty V; Barbosa, Mayara F; Nascimento, Elaine C L; Moreira, Pablo N T; Galvão, Roberto K H; Araújo, Mário C U
2013-03-15
This paper proposes a NIR spectrometric method for screening analysis of liquefied petroleum gas (LPG) samples. The proposed method is aimed at discriminating samples with low and high propane content, which can be useful for the adjustment of burn settings in industrial applications. A gas flow system was developed to introduce the LPG sample into a NIR flow cell at constant pressure. In addition, a gas chromatographer was employed to determine the propane content of the sample for reference purposes. The results of a principal component analysis, as well as a classification study using SIMCA (soft independent modeling of class analogies), revealed that the samples can be successfully discriminated with respect to propane content by using the NIR spectrum in the range 8100-8800 cm(-1). In addition, by using SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm), it was found that perfect discrimination can also be achieved by using only two wavenumbers (8215 and 8324 cm(-1)). This finding may be of value for the design of a dedicated, low-cost instrument for routine analyses. Copyright © 2012 Elsevier B.V. All rights reserved.
Vanderhaeghe, F; Smolders, A J P; Roelofs, J G M; Hoffmann, M
2012-03-01
Selecting an appropriate variable subset in linear multivariate methods is an important methodological issue for ecologists. Interest often exists in obtaining general predictive capacity or in finding causal inferences from predictor variables. Because of a lack of solid knowledge on a studied phenomenon, scientists explore predictor variables in order to find the most meaningful (i.e. discriminating) ones. As an example, we modelled the response of the amphibious softwater plant Eleocharis multicaulis using canonical discriminant function analysis. We asked how variables can be selected through comparison of several methods: univariate Pearson chi-square screening, principal components analysis (PCA) and step-wise analysis, as well as combinations of some methods. We expected PCA to perform best. The selected methods were evaluated through fit and stability of the resulting discriminant functions and through correlations between these functions and the predictor variables. The chi-square subset, at P < 0.05, followed by a step-wise sub-selection, gave the best results. In contrast to expectations, PCA performed poorly, as so did step-wise analysis. The different chi-square subset methods all yielded ecologically meaningful variables, while probable noise variables were also selected by PCA and step-wise analysis. We advise against the simple use of PCA or step-wise discriminant analysis to obtain an ecologically meaningful variable subset; the former because it does not take into account the response variable, the latter because noise variables are likely to be selected. We suggest that univariate screening techniques are a worthwhile alternative for variable selection in ecology. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
[Determination of somatotype of man in cranio-facial personality identification].
2004-01-01
On the basis of their independent research and through the analysis of published data the authors suggested quantitative criteria for the diagnosis of a somatotype of man by the dimensional features of the face and skull. M. A. Negasheva method, based on the discriminative analysis of 7 measurement features, was used in the individual diagnosis of a somatotype by V. V. Bunaka scheme (somatotypes-pectoral, muscular, abdominal and indefinite). The authors suggest 2 diagnostic models based on the linear and discriminative analysis of 11 and 7 measurement features for the skull. The diagnostic accuracy in case of main male som-atotypes makes 87 and 64.4%, respectively, with the canonic correlations of 0.574 and 0.292. The designed methods can be used in forensic medicine for the cranio-facial and portrait expertise.
NASA Technical Reports Server (NTRS)
Schwaller, Mathew R.
1987-01-01
This paper discusses the application of linear discriminant and profile analyses to detailed investigation of an airborne Thematic Mapper Simulator (TMS) image collected over a geobotanical test site. The test site was located on the Keweenaw Peninsula of Michigan's Upper Peninsula, and remote sensing data collection coincided with the onset of leaf senescence in the regional deciduous flora. Linear discriminant analysis revealed that sites overlying soil geochemical anomalies were distinguishable from background sites by the reflectance and thermal emittance of the tree canopy imaged in the airborne TMS data. The correlation of individual bands with the linear discriminant function suggested that the TMS thermal Channel 7 (10.32-12.33 microns) contributed most, while TMS Bands 2 (0.53-0.60 microns), 3 (0.63-0.69 microns), and 5 (1.53-1.73 microns) contributed somewhat more modestly to the separation of anomalous and background sites imaged by the TMS. The observed changes in canopy reflectance and thermal emittance of the deciduous flora overlying geochemically anomalous areas are consistent with the biophysical changes which are known or presumed to occur as a result of injury induced in metal-stressed vegetation.
Lima, Cassio A; Goulart, Viviane P; Correa, Luciana; Zezell, Denise M
2016-07-01
Vibrational spectroscopic methods associated with multivariate statistical techniques have been succeeded in discriminating skin lesions from normal tissues. However, there is no study exploring the potential of these techniques to assess the alterations promoted by photodynamic effect in tissue. The present study aims to demonstrate the ability of Fourier Transform Infrared (FTIR) spectroscopy on Attenuated total reflection (ATR) sampling mode associated with principal component-linear discriminant analysis (PC-LDA) to evaluate the biochemical changes caused by photodynamic therapy (PDT) in skin neoplastic tissue. Cutaneous neoplastic lesions, precursors of squamous cell carcinoma (SCC), were chemically induced in Swiss mice and submitted to a single session of 5-aminolevulinic acid (ALA)-mediated PDT. Tissue sections with 5 μm thickness were obtained from formalin-fixed paraffin-embedded (FFPE) and processed prior to the histopathological analysis and spectroscopic measurements. Spectra were collected in mid-infrared region using a FTIR spectrometer on ATR sampling mode. Principal Component-Linear Discriminant Analysis (PC-LDA) was applied on preprocessed second derivatives spectra. Biochemical changes were assessed using PCA-loadings and accuracy of classification was obtained from PC-LDA . Sub-bands of Amide I (1,624 and 1,650 cm(-1) ) and Amide II (1,517 cm(-1) ) indicated a protein overexpression in non-treated and post-PDT neoplastic tissue compared with healthy skin, as well as a decrease in collagen fibers (1,204, 1,236, 1,282, and 1,338 cm(-1) ) and glycogen (1,028, 1,082, and 1,151 cm(-1) ) content. Photosensitized neoplastic tissue revealed shifted peak position and decreased β-sheet secondary structure of proteins (1,624 cm(-1) ) amount in comparison to non-treated neoplastic lesions. PC-LDA score plots discriminated non-treated neoplastic skin spectra from post-PDT cutaneous lesions with accuracy of 92.8%, whereas non-treated neoplastic skin was discriminated from healthy tissue with 93.5% accuracy and post-PDT cutaneous lesions was discriminated from healthy tissue with 89.7% accuracy. PC-LDA was able to discriminate ATR-FTIR spectra of non-treated and post-PDT neoplastic lesions, as well as from healthy skin. Thus, the method can be used for early diagnosis of premalignant skin lesions, as well as to evaluate the response to photodynamic treatment. Lasers Surg. Med. 48:538-545, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X
2010-05-01
Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.
NASA Astrophysics Data System (ADS)
Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.
2007-05-01
Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.
Robust L1-norm two-dimensional linear discriminant analysis.
Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang
2015-05-01
In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kao, E.-Fong; Lin, Wei-Chen; Hsu, Jui-Sheng; Chou, Ming-Chung; Jaw, Twei-Shiun; Liu, Gin-Chung
2011-12-01
A computerized scheme was developed for automated identification of erect posteroanterior (PA) and supine anteroposterior (AP) chest radiographs. The method was based on three features, the tilt angle of the scapula superior border, the tilt angle of the clavicle and the extent of radiolucence in lung fields, to identify the view of a chest radiograph. The three indices Ascapula, Aclavicle and Clung were determined from a chest image for the three features. Linear discriminant analysis was used to classify PA and AP chest images based on the three indices. The performance of the method was evaluated by receiver operating characteristic analysis. The proposed method was evaluated using a database of 600 PA and 600 AP chest radiographs. The discriminant performances Az of Ascapula, Aclavicle and Clung were 0.878 ± 0.010, 0.683 ± 0.015 and 0.962 ± 0.006, respectively. The combination of the three indices obtained an Az value of 0.979 ± 0.004. The results indicate that the combination of the three indices could yield high discriminant performance. The proposed method could provide radiologists with information about the view of chest radiographs for interpretation or could be used as a preprocessing step for analyzing chest images.
A novel method for qualitative analysis of edible oil oxidation using an electronic nose.
Xu, Lirong; Yu, Xiuzhu; Liu, Lei; Zhang, Rui
2016-07-01
An electronic nose (E-nose) was used for rapid assessment of the degree of oxidation in edible oils. Peroxide and acid values of edible oil samples were analyzed using data obtained by the American Oil Chemists' Society (AOCS) Official Method for reference. Qualitative discrimination between non-oxidized and oxidized oils was conducted using the E-nose technique developed in combination with cluster analysis (CA), principal component analysis (PCA), and linear discriminant analysis (LDA). The results from CA, PCA and LDA indicated that the E-nose technique could be used for differentiation of non-oxidized and oxidized oils. LDA produced slightly better results than CA and PCA. The proposed approach can be used as an alternative to AOCS Official Method as an innovative tool for rapid detection of edible oil oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hierarchical Feature Extraction With Local Neural Response for Image Recognition.
Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P
2013-04-01
In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.
A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.
Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong
2012-01-01
In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.
Classification of speech dysfluencies using LPC based parameterization techniques.
Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali
2012-06-01
The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
Relative sensitivity of depth discrimination for ankle inversion and plantar flexion movements.
Black, Georgia; Waddington, Gordon; Adams, Roger
2014-02-01
25 participants (20 women, 5 men) were tested for sensitivity in discrimination between sets of six movements centered on 8 degrees, 11 degrees, and 14 degrees, and separated by 0.3 degrees. Both inversion and plantar flexion movements were tested. Discrimination of the extent of inversion movement was observed to decline linearly with increasing depth; however, for plantar flexion, the discrimination function for movement extent was found to be non-linear. The relatively better discrimination of plantar flexion movements than inversion movements at around 11 degrees from horizontal is interpreted as an effect arising from differential amounts of practice through use, because this position is associated with the plantar flexion movement made in normal walking. The fact that plantar flexion movements are discriminated better than inversion at one region but not others argues against accounts of superior proprioceptive sensitivity for plantar flexion compared to inversion that are based on general properties of plantar flexion such as the number of muscle fibres on stretch.
A two-stage linear discriminant analysis via QR-decomposition.
Ye, Jieping; Li, Qi
2005-06-01
Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications involving high-dimensional data, such as image and text classification. An intrinsic limitation of classical LDA is the so-called singularity problems; that is, it fails when all scatter matrices are singular. Many LDA extensions were proposed in the past to overcome the singularity problems. Among these extensions, PCA+LDA, a two-stage method, received relatively more attention. In PCA+LDA, the LDA stage is preceded by an intermediate dimension reduction stage using Principal Component Analysis (PCA). Most previous LDA extensions are computationally expensive, and not scalable, due to the use of Singular Value Decomposition or Generalized Singular Value Decomposition. In this paper, we propose a two-stage LDA method, namely LDA/QR, which aims to overcome the singularity problems of classical LDA, while achieving efficiency and scalability simultaneously. The key difference between LDA/QR and PCA+LDA lies in the first stage, where LDA/QR applies QR decomposition to a small matrix involving the class centroids, while PCA+LDA applies PCA to the total scatter matrix involving all training data points. We further justify the proposed algorithm by showing the relationship among LDA/QR and previous LDA methods. Extensive experiments on face images and text documents are presented to show the effectiveness of the proposed algorithm.
Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy
NASA Technical Reports Server (NTRS)
Ford, G. E.
1986-01-01
To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected.
Multimodal Task-Driven Dictionary Learning for Image Classification
2015-12-18
1 Multimodal Task-Driven Dictionary Learning for Image Classification Soheil Bahrampour, Student Member, IEEE, Nasser M. Nasrabadi, Fellow, IEEE...Asok Ray, Fellow, IEEE, and W. Kenneth Jenkins, Life Fellow, IEEE Abstract— Dictionary learning algorithms have been suc- cessfully used for both...reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are
The composition of M-type asteroids: Synthesis of spectroscopic and radar observations
NASA Astrophysics Data System (ADS)
Neeley, J. R.; Ockert-Bell, M. E.; Clark, B. E.; Shepard, M. K.; Cloutis, E. A.; Fornasier, S.; Bus, S. J.
2011-10-01
This work updates our and expands our long term radar-driven observational campaign of 27 main-belt asteroids (MBAs) focused on Bus-DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). Seventeen of our targets were near-simultaneously observed with radar and those observations are described in companion paper (Shepard et al., 2010). We utilized visible wavelength for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using three different methods: 1) a χ2 search for spectral matches in the RELAB database, 2) parametric comparisons with meteorites and 3) linear discriminant analysis. This paper synthesizes the results of the RELAB search, parametric comparisons, and linear discriminant analysis with compositional suggestions based on radar observations. We find that for six of seventeen targets with radar data, our spectral results are consistent with their radar analog (16 Psyche, 21 Lutetia, 69 Hesperia, 135 Hertha, 216 Kleopatra, and 497 Iva). For twenty out of twenty-seven objects our statistical comparisons with RELAB meteorites result in consistent analog identification, providing a degree of confidence in our parametric methods.
Genetic network inference as a series of discrimination tasks.
Kimura, Shuhei; Nakayama, Satoshi; Hatakeyama, Mariko
2009-04-01
Genetic network inference methods based on sets of differential equations generally require a great deal of time, as the equations must be solved many times. To reduce the computational cost, researchers have proposed other methods for inferring genetic networks by solving sets of differential equations only a few times, or even without solving them at all. When we try to obtain reasonable network models using these methods, however, we must estimate the time derivatives of the gene expression levels with great precision. In this study, we propose a new method to overcome the drawbacks of inference methods based on sets of differential equations. Our method infers genetic networks by obtaining classifiers capable of predicting the signs of the derivatives of the gene expression levels. For this purpose, we defined a genetic network inference problem as a series of discrimination tasks, then solved the defined series of discrimination tasks with a linear programming machine. Our experimental results demonstrated that the proposed method is capable of correctly inferring genetic networks, and doing so more than 500 times faster than the other inference methods based on sets of differential equations. Next, we applied our method to actual expression data of the bacterial SOS DNA repair system. And finally, we demonstrated that our approach relates to the inference method based on the S-system model. Though our method provides no estimation of the kinetic parameters, it should be useful for researchers interested only in the network structure of a target system. Supplementary data are available at Bioinformatics online.
Bermudo, R; Abia, D; Mozos, A; García-Cruz, E; Alcaraz, A; Ortiz, Á R; Thomson, T M; Fernández, P L
2011-01-01
Introduction: Currently, final diagnosis of prostate cancer (PCa) is based on histopathological analysis of needle biopsies, but this process often bears uncertainties due to small sample size, tumour focality and pathologist's subjective assessment. Methods: Prostate cancer diagnostic signatures were generated by applying linear discriminant analysis to microarray and real-time RT–PCR (qRT–PCR) data from normal and tumoural prostate tissue samples. Additionally, after removal of biopsy tissues, material washed off from transrectal biopsy needles was used for molecular profiling and discriminant analysis. Results: Linear discriminant analysis applied to microarray data for a set of 318 genes differentially expressed between non-tumoural and tumoural prostate samples produced 26 gene signatures, which classified the 84 samples used with 100% accuracy. To identify signatures potentially useful for the diagnosis of prostate biopsies, surplus material washed off from routine biopsy needles from 53 patients was used to generate qRT–PCR data for a subset of 11 genes. This analysis identified a six-gene signature that correctly assigned the biopsies as benign or tumoural in 92.6% of the cases, with 88.8% sensitivity and 96.1% specificity. Conclusion: Surplus material from prostate needle biopsies can be used for minimal-size gene signature analysis for sensitive and accurate discrimination between non-tumoural and tumoural prostates, without interference with current diagnostic procedures. This approach could be a useful adjunct to current procedures in PCa diagnosis. PMID:22009027
Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko
2017-12-28
Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.
Robust linear discriminant models to solve financial crisis in banking sectors
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni
2014-12-01
Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
Van Dyke, Miriam E.; Vaccarino, Viola; Quyyumi, Arshed A.; Lewis, Tené T.
2016-01-01
Rationale Research on self-reported experiences of discrimination and health has grown in recent decades, but has largely focused on racial discrimination or overall mistreatment. Less is known about reports of discrimination on the basis of socioeconomic status (SES), despite the fact that SES is one of the most powerful social determinants of health. Objective We sought to examine the cross-sectional association between self-reported SES discrimination and subjective sleep quality, an emerging risk factor for disease. We further examined whether associations differed by race or SES. Methods We used logistic and linear regression to analyze data from a population-based cohort of 425 African-American and White middle-aged adults (67.5% female) in the Southeastern United States. SES discrimination was assessed with a modified Experiences of Discrimination Scale and poor subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index. Results In logistic regression models adjusted for age, gender, and education, reports of SES discrimination were associated with poor sleep quality among African-Americans (OR=2.39, 95% CI =1.35, 4.24), but not Whites (OR=1.03, 95% CI= 0.57, 1.87), and the race × SES discrimination interaction was significant at p=0.04. After additional adjustments for reports of racial and gender discrimination, other psychosocial stressors, body mass index and depressive symptoms, SES discrimination remained a significant predictor of poor sleep among African-Americans, but not Whites. In contrast to findings by race, SES discrimination and sleep associations did not significantly differ by SES. Conclusion Findings suggest that reports of SES discrimination may be an important risk factor for subjective sleep quality among African-Americans and support the need to consider the health impact of SES-related stressors in the context of race. PMID:26896878
Douglas, Alexander D.; Edwards, Nick J.; Duncan, Christopher J. A.; Thompson, Fiona M.; Sheehy, Susanne H.; O'Hara, Geraldine A.; Anagnostou, Nicholas; Walther, Michael; Webster, Daniel P.; Dunachie, Susanna J.; Porter, David W.; Andrews, Laura; Gilbert, Sarah C.; Draper, Simon J.; Hill, Adrian V. S.; Bejon, Philip
2013-01-01
Controlled human malaria infection is used to measure efficacy of candidate malaria vaccines before field studies are undertaken. Mathematical modeling using data from quantitative polymerase chain reaction (qPCR) parasitemia monitoring can discriminate between vaccine effects on the parasite's liver and blood stages. Uncertainty regarding the most appropriate modeling method hinders interpretation of such trials. We used qPCR data from 267 Plasmodium falciparum infections to compare linear, sine-wave, and normal-cumulative-density-function models. We find that the parameters estimated by these models are closely correlated, and their predictive accuracy for omitted data points was similar. We propose that future studies include the linear model. PMID:23570846
NASA Astrophysics Data System (ADS)
Hong, H.; Zhu, A. X.
2017-12-01
Climate change is a common phenomenon and it is very serious all over the world. The intensification of rainfall extremes with climate change is of key importance to society and then it may induce a large impact through landslides. This paper presents GIS-based new ensemble data mining techniques that weight-of-evidence, logistic model tree, linear and quadratic discriminant for landslide spatial modelling. This research was applied in Anfu County, which is a landslide-prone area in Jiangxi Province, China. According to a literature review and research the study area, we select the landslide influencing factor and their maps were digitized in a GIS environment. These landslide influencing factors are the altitude, plan curvature, profile curvature, slope degree, slope aspect, topographic wetness index (TWI), Stream Power Index (SPI), Topographic Wetness Index (SPI), distance to faults, distance to rivers, distance to roads, soil, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the government of Jiangxi Meteorological Bureau of China, 367 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, Pearson's correlation was used for the evaluation of the relationship between the landslides and influencing factors. In the next step, three data mining techniques combined with the weight-of-evidence, logistic model tree, linear and quadratic discriminant, were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.80. At the same time, the highest AUC value was for the linear and quadratic discriminant model (0.864), followed by logistic model tree (0.832), and weight-of-evidence (0.819). In general, the landslide maps can be applied for land use planning and management in the Anfu area.
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
Inci, Ercan; Ekizoglu, Oguzhan; Turkay, Rustu; Aksoy, Sema; Can, Ismail Ozgur; Solmaz, Dilek; Sayin, Ibrahim
2016-10-01
Morphometric analysis of the mandibular ramus (MR) provides highly accurate data to discriminate sex. The objective of this study was to demonstrate the utility and accuracy of MR morphometric analysis for sex identification in a Turkish population.Four hundred fifteen Turkish patients (18-60 y; 201 male and 214 female) who had previously had multidetector computed tomography scans of the cranium were included in the study. Multidetector computed tomography images were obtained using three-dimensional reconstructions and a volume-rendering technique, and 8 linear and 3 angular values were measured. Univariate, bivariate, and multivariate discriminant analyses were performed, and the accuracy rates for determining sex were calculated.Mandibular ramus values produced high accuracy rates of 51% to 95.6%. Upper ramus vertical height had the highest rate at 95.6%, and bivariate analysis showed 89.7% to 98.6% accuracy rates with the highest ratios of mandibular flexure upper border and maximum ramus breadth. Stepwise discrimination analysis gave a 99% accuracy rate for all MR variables.Our study showed that the MR, in particular morphometric measures of the upper part of the ramus, can provide valuable data to determine sex in a Turkish population. The method combines both anthropological and radiologic studies.
Jantzi, Sarah C; Almirall, José R
2011-07-01
A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was <10% for most elements. LIBS limits of detection were <33 ppm and bias <40% for most elements. In a proof of principle study, the LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.
NASA Technical Reports Server (NTRS)
Paradella, W. R. (Principal Investigator); Vitorello, I.; Monteiro, M. D.
1984-01-01
Enhancement techniques and thematic classifications were applied to the metasediments of Bambui Super Group (Upper Proterozoic) in the Region of Serra do Ramalho, SW of the state of Bahia. Linear contrast stretch, band-ratios with contrast stretch, and color-composites allow lithological discriminations. The effects of human activities and of vegetation cover mask and limit, in several ways, the lithological discrimination with digital MSS data. Principal component images and color composite of linear contrast stretch of these products, show lithological discrimination through tonal gradations. This set of products allows the delineations of several metasedimentary sequences to a level superior to reconnaissance mapping. Supervised (maximum likelihood classifier) and nonsupervised (K-Means classifier) classification of the limestone sequence, host to fluorite mineralization show satisfactory results.
Hierarchical ensemble of global and local classifiers for face recognition.
Su, Yu; Shan, Shiguang; Chen, Xilin; Gao, Wen
2009-08-01
In the literature of psychophysics and neurophysiology, many studies have shown that both global and local features are crucial for face representation and recognition. This paper proposes a novel face recognition method which exploits both global and local discriminative features. In this method, global features are extracted from the whole face images by keeping the low-frequency coefficients of Fourier transform, which we believe encodes the holistic facial information, such as facial contour. For local feature extraction, Gabor wavelets are exploited considering their biological relevance. After that, Fisher's linear discriminant (FLD) is separately applied to the global Fourier features and each local patch of Gabor features. Thus, multiple FLD classifiers are obtained, each embodying different facial evidences for face recognition. Finally, all these classifiers are combined to form a hierarchical ensemble classifier. We evaluate the proposed method using two large-scale face databases: FERET and FRGC version 2.0. Experiments show that the results of our method are impressively better than the best known results with the same evaluation protocol.
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics
Belo, David; Gamboa, Hugo
2017-01-01
The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components. PMID:28831239
NASA Astrophysics Data System (ADS)
Rekha, Pachaiappan; Aruna, Prakasa Rao; Ganesan, Singaravelu
2016-03-01
Many research works based on fluorescence spectroscopy have proven its potential in the diagnosis of various diseases using the spectral signatures of the native key fluorophores such as tryptophan, tyrosine, collagen, NADH, FAD and porphyrin. These fluorophores distribution, concentration and their conformation may be changed depending upon the pathological and metabolic conditions of cells and tissues. In this study, we have made an attempt to characterize the blood plasma of normal subject and oral cancer patients by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed by employing the multivariate statistical method - linear discriminant analyses (LDA) using leaves one out cross validation method. The results illustrate the potential of fluorescence spectroscopy technique in the diagnosis of oral cancer using blood plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steudle, Gesine A.; Knauer, Sebastian; Herzog, Ulrike
2011-05-15
We present an experimental implementation of optimum measurements for quantum state discrimination. Optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon polarization states were performed. For the latter the states of rank 2 in a four-dimensional Hilbert space are prepared using both path and polarization encoding. Linear optics and single photons from a true single-photon source based on a semiconductor quantum dot are utilized.
Fu, Haiyan; Fan, Yao; Zhang, Xu; Lan, Hanyue; Yang, Tianming; Shao, Mei; Li, Sihan
2015-01-01
As an effective method, the fingerprint technique, which emphasized the whole compositions of samples, has already been used in various fields, especially in identifying and assessing the quality of herbal medicines. High-performance liquid chromatography (HPLC) and near-infrared (NIR), with their unique characteristics of reliability, versatility, precision, and simple measurement, played an important role among all the fingerprint techniques. In this paper, a supervised pattern recognition method based on PLSDA algorithm by HPLC and NIR has been established to identify the information of Hibiscus mutabilis L. and Berberidis radix, two common kinds of herbal medicines. By comparing component analysis (PCA), linear discriminant analysis (LDA), and particularly partial least squares discriminant analysis (PLSDA) with different fingerprint preprocessing of NIR spectra variables, PLSDA model showed perfect functions on the analysis of samples as well as chromatograms. Most important, this pattern recognition method by HPLC and NIR can be used to identify different collection parts, collection time, and different origins or various species belonging to the same genera of herbal medicines which proved to be a promising approach for the identification of complex information of herbal medicines. PMID:26345990
Qiu, Shanshan; Wang, Jun; Gao, Liping
2014-07-09
An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.
NASA Astrophysics Data System (ADS)
Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin
2013-06-01
The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.
Improving Efficiency in Multi-Strange Baryon Reconstruction in d-Au at STAR
NASA Astrophysics Data System (ADS)
Leight, William
2003-10-01
We report preliminary multi-strange baryon measurements for d-Au collisions recorded at RHIC by the STAR experiment. After using classical topological analysis, in which cuts for each discriminating variable are adjusted by hand, we investigate improvements in signal-to-noise optimization using Linear Discriminant Analysis (LDA). LDA is an algorithm for finding, in the n-dimensional space of the n discriminating variables, the axis on which the signal and noise distributions are most separated. LDA is the first step in moving towards more sophisticated techniques for signal-to-noise optimization, such as Artificial Neural Nets. Due to the relatively low background and sufficiently high yields of d-Au collisions, they form an ideal system to study these possibilities for improving reconstruction methods. Such improvements will be extremely important for forthcoming Au-Au runs in which the size of the combinatoric background is a major problem in reconstruction efforts.
Structural vibration-based damage classification of delaminated smart composite laminates
NASA Astrophysics Data System (ADS)
Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo
2018-03-01
Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.
Asymmetry and irregularity border as discrimination factor between melanocytic lesions
NASA Astrophysics Data System (ADS)
Sbrissa, David; Pratavieira, Sebastião.; Salvio, Ana Gabriela; Kurachi, Cristina; Bagnato, Vanderlei Salvadori; Costa, Luciano Da Fontoura; Travieso, Gonzalo
2015-06-01
Image processing tools have been widely used in systems supporting medical diagnosis. The use of mobile devices for the diagnosis of melanoma can assist doctors and improve their diagnosis of a melanocytic lesion. This study proposes a method of image analysis for melanoma discrimination from other types of melanocytic lesions, such as regular and atypical nevi. The process is based on extracting features related with asymmetry and border irregularity. It were collected 104 images, from medical database of two years. The images were obtained with standard digital cameras without lighting and scale control. Metrics relating to the characteristics of shape, asymmetry and curvature of the contour were extracted from segmented images. Linear Discriminant Analysis was performed for dimensionality reduction and data visualization. Segmentation results showed good efficiency in the process, with approximately 88:5% accuracy. Validation results presents sensibility and specificity 85% and 70% for melanoma detection, respectively.
Magagna, Federico; Guglielmetti, Alessandro; Liberto, Erica; Reichenbach, Stephen E; Allegrucci, Elena; Gobino, Guido; Bicchi, Carlo; Cordero, Chiara
2017-08-02
This study investigates chemical information of volatile fractions of high-quality cocoa (Theobroma cacao L. Malvaceae) from different origins (Mexico, Ecuador, Venezuela, Columbia, Java, Trinidad, and Sao Tomè) produced for fine chocolate. This study explores the evolution of the entire pattern of volatiles in relation to cocoa processing (raw, roasted, steamed, and ground beans). Advanced chemical fingerprinting (e.g., combined untargeted and targeted fingerprinting) with comprehensive two-dimensional gas chromatography coupled with mass spectrometry allows advanced pattern recognition for classification, discrimination, and sensory-quality characterization. The entire data set is analyzed for 595 reliable two-dimensional peak regions, including 130 known analytes and 13 potent odorants. Multivariate analysis with unsupervised exploration (principal component analysis) and simple supervised discrimination methods (Fisher ratios and linear regression trees) reveal informative patterns of similarities and differences and identify characteristic compounds related to sample origin and manufacturing step.
Using digital images to measure and discriminate small particles in cotton
NASA Astrophysics Data System (ADS)
Taylor, Robert A.; Godbey, Luther C.
1991-02-01
Inages from conventional video systems are being digitized in coraputers for the analysis of small trash particles in cotton. The method has been developed to automate particle counting and area measurements for bales of cotton prepared for market. Because the video output is linearly proportional to the amount of light reflected the best spectral band for optimum particle discrimination should be centered at the wavelength of maximum difference between particles and their surroundings. However due to the spectral distribution of the illumination energy and the detector sensitivity peak image performance bands were altered. Reflectance from seven mechanically cleaned cotton lint samples and trash removed were examined for spectral contrast in the wavelength range of camera sensitivity. Pixel intensity histograms from the video systent are reported for simulated trashmeter area reference samples (painted dots on panels) and for cotton containing trash to demonstrate the particle discrimination mechanism. 2.
Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?
Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis
2010-11-01
Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.
Detection of non-milk fat in milk fat by gas chromatography and linear discriminant analysis.
Gutiérrez, R; Vega, S; Díaz, G; Sánchez, J; Coronado, M; Ramírez, A; Pérez, J; González, M; Schettino, B
2009-05-01
Gas chromatography was utilized to determine triacylglycerol profiles in milk and non-milk fat. The values of triacylglycerol were subjected to linear discriminant analysis to detect and quantify non-milk fat in milk fat. Two groups of milk fat were analyzed: A) raw milk fat from the central region of Mexico (n = 216) and B) ultrapasteurized milk fat from 3 industries (n = 36), as well as pork lard (n = 2), bovine tallow (n = 2), fish oil (n = 2), peanut (n = 2), corn (n = 2), olive (n = 2), and soy (n = 2). The samples of raw milk fat were adulterated with non-milk fats in proportions of 0, 5, 10, 15, and 20% to form 5 groups. The first function obtained from the linear discriminant analysis allowed the correct classification of 94.4% of the samples with levels <10% of adulteration. The triacylglycerol values of the ultrapasteurized milk fats were evaluated with the discriminant function, demonstrating that one industry added non-milk fat to its product in 80% of the samples analyzed.
Thermal and Optical Activation Mechanisms of Nanospring-Based Chemiresistors
Dobrokhotov, Vladimir; Oakes, Landon; Sowell, Dewayne; Larin, Alexander; Hall, Jessica; Barzilov, Alexander; Kengne, Alex; Bakharev, Pavel; Corti, Giancarlo; Cantrell, Timothy; Prakash, Tej; Williams, Joseph; Bergman, Leah; Huso, Jesse; McIlroy, David
2012-01-01
Chemiresistors (conductometric sensor) were fabricated on the basis of novel nanomaterials—silica nanosprings ALD coated with ZnO. The effects of high temperature and UV illumination on the electronic and gas sensing properties of chemiresistors are reported. For the thermally activated chemiresistors, a discrimination mechanism was developed and an integrated sensor-array for simultaneous real-time resistance scans was built. The integrated sensor response was tested using linear discriminant analysis (LDA). The distinguished electronic signatures of various chemical vapors were obtained at ppm level. It was found that the recovery rate at high temperature drastically increases upon UV illumination. The feasibility study of the activation method by UV illumination at room temperature was conducted. PMID:22778604
Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian
2017-01-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469
Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen
2017-06-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.
Shan, Ying; Sawhney, Harpreet S; Kumar, Rakesh
2008-04-01
This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.
Gromski, Piotr S; Correa, Elon; Vaughan, Andrew A; Wedge, David C; Turner, Michael L; Goodacre, Royston
2014-11-01
Accurate detection of certain chemical vapours is important, as these may be diagnostic for the presence of weapons, drugs of misuse or disease. In order to achieve this, chemical sensors could be deployed remotely. However, the readout from such sensors is a multivariate pattern, and this needs to be interpreted robustly using powerful supervised learning methods. Therefore, in this study, we compared the classification accuracy of four pattern recognition algorithms which include linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), random forests (RF) and support vector machines (SVM) which employed four different kernels. For this purpose, we have used electronic nose (e-nose) sensor data (Wedge et al., Sensors Actuators B Chem 143:365-372, 2009). In order to allow direct comparison between our four different algorithms, we employed two model validation procedures based on either 10-fold cross-validation or bootstrapping. The results show that LDA (91.56% accuracy) and SVM with a polynomial kernel (91.66% accuracy) were very effective at analysing these e-nose data. These two models gave superior prediction accuracy, sensitivity and specificity in comparison to the other techniques employed. With respect to the e-nose sensor data studied here, our findings recommend that SVM with a polynomial kernel should be favoured as a classification method over the other statistical models that we assessed. SVM with non-linear kernels have the advantage that they can be used for classifying non-linear as well as linear mapping from analytical data space to multi-group classifications and would thus be a suitable algorithm for the analysis of most e-nose sensor data.
Kaimakamis, Evangelos; Tsara, Venetia; Bratsas, Charalambos; Sichletidis, Lazaros; Karvounis, Charalambos; Maglaveras, Nikolaos
2016-01-01
Obstructive Sleep Apnea (OSA) is a common sleep disorder requiring the time/money consuming polysomnography for diagnosis. Alternative methods for initial evaluation are sought. Our aim was the prediction of Apnea-Hypopnea Index (AHI) in patients potentially suffering from OSA based on nonlinear analysis of respiratory biosignals during sleep, a method that is related to the pathophysiology of the disorder. Patients referred to a Sleep Unit (135) underwent full polysomnography. Three nonlinear indices (Largest Lyapunov Exponent, Detrended Fluctuation Analysis and Approximate Entropy) extracted from two biosignals (airflow from a nasal cannula, thoracic movement) and one linear derived from Oxygen saturation provided input to a data mining application with contemporary classification algorithms for the creation of predictive models for AHI. A linear regression model presented a correlation coefficient of 0.77 in predicting AHI. With a cutoff value of AHI = 8, the sensitivity and specificity were 93% and 71.4% in discrimination between patients and normal subjects. The decision tree for the discrimination between patients and normal had sensitivity and specificity of 91% and 60%, respectively. Certain obtained nonlinear values correlated significantly with commonly accepted physiological parameters of people suffering from OSA. We developed a predictive model for the presence/severity of OSA using a simple linear equation and additional decision trees with nonlinear features extracted from 3 respiratory recordings. The accuracy of the methodology is high and the findings provide insight to the underlying pathophysiology of the syndrome. Reliable predictions of OSA are possible using linear and nonlinear indices from only 3 respiratory signals during sleep. The proposed models could lead to a better study of the pathophysiology of OSA and facilitate initial evaluation/follow up of suspected patients OSA utilizing a practical low cost methodology. ClinicalTrials.gov NCT01161381.
Demographic and clinical features related to perceived discrimination in schizophrenia.
Fresán, Ana; Robles-García, Rebeca; Madrigal, Eduardo; Tovilla-Zarate, Carlos-Alfonso; Martínez-López, Nicolás; Arango de Montis, Iván
2018-04-01
Perceived discrimination contributes to the development of internalized stigma among those with schizophrenia. Evidence on demographic and clinical factors related to the perception of discrimination among this population is both contradictory and scarce in low- and middle-income countries. Accordingly, the main purpose of this study is to determine the demographic and clinical factors predicting the perception of discrimination among Mexican patients with schizophrenia. Two hundred and seventeen adults with paranoid schizophrenia completed an interview on their demographic status and clinical characteristics. Symptom severity was assessed using the Positive and Negative Syndrome Scale; and perceived discrimination using 13 items from the King's Internalized Stigma Scale. Bivariate linear associations were determined to identify the variables of interest to be included in a linear regression analysis. Years of education, age of illness onset and length of hospitalization were associated with discrimination. However, only age of illness onset and length of hospitalization emerged as predictors of perceived discrimination in the final regression analysis, with longer length of hospitalization being the independent variable with the greatest contribution. Fortunately, this is a modifiable factor regarding the perception of discrimination and self-stigma. Strategies for achieving this as part of community-based mental health care are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-01-01
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402
Darker Skin Tone Increases Perceived Discrimination among Male but Not Female Caribbean Black Youth
Caldwell, Cleopatra Howard
2017-01-01
Background: Among most minority groups, males seem to report higher levels of exposure and vulnerability to racial discrimination. Although darker skin tone may increase exposure to racial discrimination, it is yet unknown whether skin tone similarly influences perceived discrimination among male and female Caribbean Black youth. Objective: The current cross-sectional study tests the role of gender on the effects of skin tone on perceived discrimination among Caribbean Black youth. Methods: Data came from the National Survey of American Life-Adolescent Supplement (NSAL-A), 2003–2004, which included 360 Caribbean Black youth (ages 13 to 17). Demographic factors (age and gender), socioeconomic status (SES; family income, income to needs ratio, and subjective SES), skin tone, and perceived everyday discrimination were measured. Linear regressions were used for data analysis. Results: In the pooled sample, darker skin tone was associated with higher levels of perceived discrimination among Caribbean Black youth (b = 0.48; 95% Confidence Interval (CI) = 0.07–0.89). A significant interaction was found between gender and skin tone (b = 1.17; 95% CI = 0.49–1.86), suggesting a larger effect of skin tone on perceived discrimination for males than females. In stratified models, darker skin tone was associated with more perceived discrimination for males (b = 1.20; 95% CI = 0.69–0.72) but not females (b = 0.06; 95% CI = −0.42–0.55). Conclusion: Similar to the literature documenting male gender as a vulnerability factor to the effects of racial discrimination, we found that male but not female Caribbean Black youth with darker skin tones perceive more discrimination. PMID:29231903
Linear models to perform treaty verification tasks for enhanced information security
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; ...
2016-11-12
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less
Linear models to perform treaty verification tasks for enhanced information security
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less
Linear models to perform treaty verification tasks for enhanced information security
NASA Astrophysics Data System (ADS)
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; Hilton, Nathan R.; Marleau, Peter A.
2017-02-01
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.
Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ikegaya, Hiroshi; Ozawa, Takeaki
2017-09-19
Often in criminal investigations, discrimination of types of body fluid evidence is crucially important to ascertain how a crime was committed. Compared to current methods using biochemical techniques, vibrational spectroscopic approaches can provide versatile applicability to identify various body fluid types without sample invasion. However, their applicability is limited to pure body fluid samples because important signals from body fluids incorporated in a substrate are affected strongly by interference from substrate signals. Herein, we describe a novel approach to recover body fluid signals that are embedded in strong substrate interferences using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and an innovative multivariate spectral processing. This technique supported detection of covert features of body fluid signals, and then identified origins of body fluid stains on substrates. We discriminated between ATR FT-IR spectra of postmortem blood (PB) and those of antemortem blood (AB) by creating a multivariate statistics model. From ATR FT-IR spectra of PB and AB stains on interfering substrates (polyester, cotton, and denim), blood-originated signals were extracted by a weighted linear regression approach we developed originally using principal components of both blood and substrate spectra. The blood-originated signals were finally classified by the discriminant model, demonstrating high discriminant accuracy. The present method can identify body fluid evidence independently of the substrate type, which is expected to promote the application of vibrational spectroscopic techniques in forensic body fluid analysis.
Andries, Erik; Hagstrom, Thomas; Atlas, Susan R; Willman, Cheryl
2007-02-01
Linear discrimination, from the point of view of numerical linear algebra, can be treated as solving an ill-posed system of linear equations. In order to generate a solution that is robust in the presence of noise, these problems require regularization. Here, we examine the ill-posedness involved in the linear discrimination of cancer gene expression data with respect to outcome and tumor subclasses. We show that a filter factor representation, based upon Singular Value Decomposition, yields insight into the numerical ill-posedness of the hyperplane-based separation when applied to gene expression data. We also show that this representation yields useful diagnostic tools for guiding the selection of classifier parameters, thus leading to improved performance.
Mohammadi Majd, Tahereh; Kalantari, Shiva; Raeisi Shahraki, Hadi; Nafar, Mohsen; Almasi, Afshin; Samavat, Shiva; Parvin, Mahmoud; Hashemian, Amirhossein
2018-03-10
IgA nephropathy (IgAN) is the most common primary glomerulonephritis diagnosed based on renal biopsy. Mesangial IgA deposits along with the proliferation of mesangial cells are the histologic hallmark of IgAN. Non-invasive diagnostic tools may help to prompt diagnosis and therapy. The discovery of potential and reliable urinary biomarkers for diagnosis of IgAN depends on applying robust and suitable models. Applying two multivariate modeling methods on a urine proteomic dataset obtained from IgAN patients, and comparison of the results of these methods were the purpose of this study. Two models were constructed for urinary protein profiles of 13 patients and 8 healthy individuals, based on sparse linear discriminant analysis (SLDA) and elastic net regression methods. A panel of selected biomarkers with the best coefficients were proposed and further analyzed for biological relevance using functional annotation and pathway analysis. Transferrin, α1-antitrypsin, and albumin fragments were the most important up-regulated biomarkers, while fibulin-5, YIP1 family member 3, prasoposin, and osteopontin were the most important down-regulated biomarkers. Pathway analysis revealed that complement and coagulation cascades and extracellular matrix-receptor interaction pathways impaired in the pathogenesis of IgAN. SLDA and elastic net had an equal importance for diagnosis of IgAN and were useful methods for exploring and processing proteomic data. In addition, the suggested biomarkers are reliable candidates for further validation to non-invasive diagnose of IgAN based on urine examination.
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-07-01
Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.
Predictor of increase in caregiver burden for disabled elderly at home.
Okamoto, Kazushi; Harasawa, Yuko
2009-01-01
In order to classify the caregivers at high risk of increase in their burden early, linear discriminant analysis was performed to obtain an effective discriminant model for differentiation of the presence or absence of increase in caregiver burden. The data obtained by self-administered questionnaire from 193 caregivers of frail elderly from January to February of 2005 were used. The discriminant analysis yielded a statistically significant function explaining 35.0% (Rc=0.59; d.f.=6; p=0.0001). The configuration indicated that the psychological predictors of change in caregiver burden with much perceived stress (1.47), high caregiver burden at baseline (1.28), emotional control (0.75), effort to achieve (-0.28), symptomatic depression (0.20) and "ikigai" (purpose in life) (0.18) made statistically significant contributions to the differentiation between no increase and increase in caregiver burden. The discriminant function showed a sensitivity of 86% and specificity of 81%, and successfully classified 83% of the caregivers. The function at baseline is a simple and useful method for screening of an increase in caregiver burden among caregivers for the frail elderly at home.
Longobardi, Francesco; Innamorato, Valentina; Di Gioia, Annalisa; Ventrella, Andrea; Lippolis, Vincenzo; Logrieco, Antonio F; Catucci, Lucia; Agostiano, Angela
2017-12-15
Lentil samples coming from two different countries, i.e. Italy and Canada, were analysed using untargeted 1 H NMR fingerprinting in combination with chemometrics in order to build models able to classify them according to their geographical origin. For such aim, Soft Independent Modelling of Class Analogy (SIMCA), k-Nearest Neighbor (k-NN), Principal Component Analysis followed by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were applied to the NMR data and the results were compared. The best combination of average recognition (100%) and cross-validation prediction abilities (96.7%) was obtained for the PCA-LDA. All the statistical models were validated both by using a test set and by carrying out a Monte Carlo Cross Validation: the obtained performances were found to be satisfying for all the models, with prediction abilities higher than 95% demonstrating the suitability of the developed methods. Finally, the metabolites that mostly contributed to the lentil discrimination were indicated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer
2013-10-01
The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Stable orthogonal local discriminant embedding for linear dimensionality reduction.
Gao, Quanxue; Ma, Jingjie; Zhang, Hailin; Gao, Xinbo; Liu, Yamin
2013-07-01
Manifold learning is widely used in machine learning and pattern recognition. However, manifold learning only considers the similarity of samples belonging to the same class and ignores the within-class variation of data, which will impair the generalization and stableness of the algorithms. For this purpose, we construct an adjacency graph to model the intraclass variation that characterizes the most important properties, such as diversity of patterns, and then incorporate the diversity into the discriminant objective function for linear dimensionality reduction. Finally, we introduce the orthogonal constraint for the basis vectors and propose an orthogonal algorithm called stable orthogonal local discriminate embedding. Experimental results on several standard image databases demonstrate the effectiveness of the proposed dimensionality reduction approach.
Yu, Chunhao; Wang, Chong-Zhi; Zhou, Chun-Jie; Wang, Bin; Han, Lide; Zhang, Chun-Feng; Wu, Xiao-Hui; Yuan, Chun-Su
2014-01-01
American ginseng (Panax quinquefolius) is originally grown in North America. Due to price difference and supply shortage, American ginseng recently has been cultivated in northern China. Further, in the market, some Asian ginsengs are labeled as American ginseng. In this study, forty-three American ginseng samples cultivated in the USA, Canada or China were collected and 14 ginseng saponins were determined using HPLC. HPLC coupled with hierarchical cluster analysis and principal component analysis was developed to identify the species. Subsequently, an HPLC-linear discriminant analysis was established to discriminate cultivation regions of American ginseng. This method was successfully applied to identify the sources of 6 commercial American ginseng samples. Two of them were identified as Asian ginseng, while 4 others were identified as American ginseng, which were cultivated in the USA (3) and China (1). Our newly developed method can be used to identify American ginseng with different cultivation regions. PMID:25044150
Oh, Jooyoung; Cho, Dongrae; Park, Jaesub; Na, Se Hee; Kim, Jongin; Heo, Jaeseok; Shin, Cheung Soo; Kim, Jae-Jin; Park, Jin Young; Lee, Boreom
2018-03-27
Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning. Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients. HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information. Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning.
Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine
NASA Astrophysics Data System (ADS)
Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung
Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.
On Algorithms for Generating Computationally Simple Piecewise Linear Classifiers
1989-05-01
suffers. - Waveform classification, e.g. speech recognition, seismic analysis (i.e. discrimination between earthquakes and nuclear explosions), target...assuming Gaussian distributions (B-G) d) Bayes classifier with probability densities estimated with the k-N-N method (B- kNN ) e) The -arest neighbour...range of classifiers are chosen including a fast, easy computable and often used classifier (B-G), reliable and complex classifiers (B- kNN and NNR
Combining markers with and without the limit of detection
Dong, Ting; Liu, Catherine Chunling; Petricoin, Emanuel F.; Tang, Liansheng Larry
2014-01-01
In this paper, we consider the combination of markers with and without the limit of detection (LOD). LOD is often encountered when measuring proteomic markers. Because of the limited detecting ability of an equipment or instrument, it is difficult to measure markers at a relatively low level. Suppose that after some monotonic transformation, the marker values approximately follow multivariate normal distributions. We propose to estimate distribution parameters while taking the LOD into account, and then combine markers using the results from the linear discriminant analysis. Our simulation results show that the ROC curve parameter estimates generated from the proposed method are much closer to the truth than simply using the linear discriminant analysis to combine markers without considering the LOD. In addition, we propose a procedure to select and combine a subset of markers when many candidate markers are available. The procedure based on the correlation among markers is different from a common understanding that a subset of the most accurate markers should be selected for the combination. The simulation studies show that the accuracy of a combined marker can be largely impacted by the correlation of marker measurements. Our methods are applied to a protein pathway dataset to combine proteomic biomarkers to distinguish cancer patients from non-cancer patients. PMID:24132938
Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.
Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar
2017-01-01
Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Deformation-Aware Log-Linear Models
NASA Astrophysics Data System (ADS)
Gass, Tobias; Deselaers, Thomas; Ney, Hermann
In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.
Brouwers, E P M; Mathijssen, J; Van Bortel, T; Knifton, L; Wahlbeck, K; Van Audenhove, C; Kadri, N; Chang, Ch; Goud, B R; Ballester, D; Tófoli, LF; Bello, R; Jorge-Monteiro, M F; Zäske, H; Milaćić, I; Uçok, A; Bonetto, C; Lasalvia, A; Thornicroft, G; Van Weeghel, J
2016-01-01
Objective Whereas employment has been shown to be beneficial for people with Major Depressive Disorder (MDD) across different cultures, employers’ attitudes have been shown to be negative towards workers with MDD. This may form an important barrier to work participation. Today, little is known about how stigma and discrimination affect work participation of workers with MDD, especially from their own perspective. We aimed to assess, in a working age population including respondents with MDD from 35 countries: (1) if people with MDD anticipate and experience discrimination when trying to find or keep paid employment; (2) if participants in high, middle and lower developed countries differ in these respects; and (3) if discrimination experiences are related to actual employment status (ie, having a paid job or not). Method Participants in this cross-sectional study (N=834) had a diagnosis of MDD in the previous 12 months. They were interviewed using the Discrimination and Stigma Scale (DISC-12). Analysis of variance and generalised linear mixed models were used to analyse the data. Results Overall, 62.5% had anticipated and/or experienced discrimination in the work setting. In very high developed countries, almost 60% of respondents had stopped themselves from applying for work, education or training because of anticipated discrimination. Having experienced workplace discrimination was independently related to unemployment. Conclusions Across different countries and cultures, people with MDD very frequently reported discrimination in the work setting. Effective interventions are needed to enhance work participation in people with MDD, focusing simultaneously on decreasing stigma in the work environment and on decreasing self-discrimination by empowering workers with MDD. PMID:26908523
Peckner, Ryan; Myers, Samuel A; Jacome, Alvaro Sebastian Vaca; Egertson, Jarrett D; Abelin, Jennifer G; MacCoss, Michael J; Carr, Steven A; Jaffe, Jacob D
2018-05-01
Mass spectrometry with data-independent acquisition (DIA) is a promising method to improve the comprehensiveness and reproducibility of targeted and discovery proteomics, in theory by systematically measuring all peptide precursors in a biological sample. However, the analytical challenges involved in discriminating between peptides with similar sequences in convoluted spectra have limited its applicability in important cases, such as the detection of single-nucleotide polymorphisms (SNPs) and alternative site localizations in phosphoproteomics data. We report Specter (https://github.com/rpeckner-broad/Specter), an open-source software tool that uses linear algebra to deconvolute DIA mixture spectra directly through comparison to a spectral library, thus circumventing the problems associated with typical fragment-correlation-based approaches. We validate the sensitivity of Specter and its performance relative to that of other methods, and show that Specter is able to successfully analyze cases involving highly similar peptides that are typically challenging for DIA analysis methods.
Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung
2014-01-01
Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.
A solar cycle dependence of nonlinearity in magnetospheric activity
NASA Astrophysics Data System (ADS)
Johnson, Jay R.; Wing, Simon
2005-04-01
The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.
Hurd, Noelle M; Varner, Fatima A; Caldwell, Cleopatra H; Zimmerman, Marc A
2014-07-01
We assessed whether perceived discrimination predicted changes in psychological distress and substance use over time and whether psychological distress and substance use predicted change in perceived discrimination over time. We also assessed whether associations between these constructs varied by gender. Our sample included 607 Black emerging adults (53% female) followed for 4 years. Participants reported the frequency with which they had experienced racial hassles during the past year, symptoms of anxiety and depression during the past week, and cigarette and alcohol use during the past 30 days. We estimated a series of latent growth models to test our study hypotheses. We found that the intercept of perceived discrimination predicted the linear slopes of anxiety symptoms, depressive symptoms, and alcohol use. We did not find any associations between the intercept factors of our mental health or substance use variables and the perceived discrimination linear slope factor. We found limited differences across paths by gender. Our findings suggest a temporal ordering in the associations among perceived racial discrimination, psychological distress, and alcohol use over time among emerging adults. Further, our findings suggest that perceived racial discrimination may be similarly harmful among men and women. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants.
Manera, Maurizio; Giari, Luisa; De Pasquale, Joseph A; Sayyaf Dezfuli, Bahram
2016-06-01
An operator-neutral method was implemented to objectively assess European seabass, Dicentrarchus labrax (Linnaeus, 1758) gill pathology after experimental exposure to cadmium (Cd) and terbuthylazine (TBA) for 24 and 48h. An algorithm-derived local connected fractal dimension (LCFD) frequency measure was used in this comparative analysis. Canonical variates (CVA) and linear discriminant analysis (LDA) were used to evaluate the discrimination power of the method among exposure classes (unexposed, Cd exposed, TBA exposed). Misclassification, sensitivity and specificity, both with original and cross-validated cases, were determined. LCFDs frequencies enhanced the differences among classes which were visually selected after their means, respective variances and the differences between Cd and TBA exposed means, with respect to unexposed mean, were analyzed by scatter plots. Selected frequencies were then scanned by means of LDA, stepwise analysis, and Mahalanobis distance to detect the most discriminative frequencies out of ten originally selected. Discrimination resulted in 91.7% of cross-validated cases correctly classified (22 out of 24 total cases), with sensitivity and specificity, respectively, of 95.5% (1 false negative with respect to 21 really positive cases) and 75% (1 false positive with respect to 3 really negative cases). CVA with convex hull polygons ensured prompt, visually intuitive discrimination among exposure classes and graphically supported the false positive case. The combined use of semithin sections, which enhanced the visual evaluation of the overall lamellar structure; of LCFD analysis, which objectively detected local variation in complexity, without the possible bias connected to human personnel; and of CVA/LDA, could be an objective, sensitive and specific approach to study fish gill lamellar pathology. Furthermore this approach enabled discrimination with sufficient confidence between exposure classes or pathological states and avoided misdiagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Suprun, Elena V; Saveliev, Anatoly A; Evtugyn, Gennady A; Lisitsa, Alexander V; Bulko, Tatiana V; Shumyantseva, Victoria V; Archakov, Alexander I
2012-03-15
A novel direct antibodies-free electrochemical approach for acute myocardial infarction (AMI) diagnosis has been developed. For this purpose, a combination of the electrochemical assay of plasma samples with chemometrics was proposed. Screen printed carbon electrodes modified with didodecyldimethylammonium bromide were used for plasma charactrerization by cyclic (CV) and square wave voltammetry and square wave (SWV) voltammetry. It was shown that the cathodic peak in voltammograms at about -250 mV vs. Ag/AgCl can be associated with AMI. In parallel tests, cardiac myoglobin and troponin I, the AMI biomarkers, were determined in each sample by RAMP immunoassay. The applicability of the electrochemical testing for AMI diagnostics was confirmed by statistical methods: generalized linear model (GLM), linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), artificial neural net (multi-layer perception, MLP), and support vector machine (SVM), all of which were created to obtain the "True-False" distribution prediction where "True" and "False" are, respectively, positive and negative decision about an illness event. Copyright © 2011 Elsevier B.V. All rights reserved.
EEG-based mild depressive detection using feature selection methods and classifiers.
Li, Xiaowei; Hu, Bin; Sun, Shuting; Cai, Hanshu
2016-11-01
Depression has become a major health burden worldwide, and effectively detection of such disorder is a great challenge which requires latest technological tool, such as Electroencephalography (EEG). This EEG-based research seeks to find prominent frequency band and brain regions that are most related to mild depression, as well as an optimal combination of classification algorithms and feature selection methods which can be used in future mild depression detection. An experiment based on facial expression viewing task (Emo_block and Neu_block) was conducted, and EEG data of 37 university students were collected using a 128 channel HydroCel Geodesic Sensor Net (HCGSN). For discriminating mild depressive patients and normal controls, BayesNet (BN), Support Vector Machine (SVM), Logistic Regression (LR), k-nearest neighbor (KNN) and RandomForest (RF) classifiers were used. And BestFirst (BF), GreedyStepwise (GSW), GeneticSearch (GS), LinearForwordSelection (LFS) and RankSearch (RS) based on Correlation Features Selection (CFS) were applied for linear and non-linear EEG features selection. Independent Samples T-test with Bonferroni correction was used to find the significantly discriminant electrodes and features. Data mining results indicate that optimal performance is achieved using a combination of feature selection method GSW based on CFS and classifier KNN for beta frequency band. Accuracies achieved 92.00% and 98.00%, and AUC achieved 0.957 and 0.997, for Emo_block and Neu_block beta band data respectively. T-test results validate the effectiveness of selected features by search method GSW. Simplified EEG system with only FP1, FP2, F3, O2, T3 electrodes was also explored with linear features, which yielded accuracies of 91.70% and 96.00%, AUC of 0.952 and 0.972, for Emo_block and Neu_block respectively. Classification results obtained by GSW + KNN are encouraging and better than previously published results. In the spatial distribution of features, we find that left parietotemporal lobe in beta EEG frequency band has greater effect on mild depression detection. And fewer EEG channels (FP1, FP2, F3, O2 and T3) combined with linear features may be good candidates for usage in portable systems for mild depression detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lalonde, Kaylah; Holt, Rachael Frush
2017-01-01
Purpose This preliminary investigation explored potential cognitive and linguistic sources of variance in 2-year-olds’ speech-sound discrimination by using the toddler change/no-change procedure and examined whether modifications would result in a procedure that can be used consistently with younger 2-year-olds. Method Twenty typically developing 2-year-olds completed the newly modified toddler change/no-change procedure. Behavioral tests and parent report questionnaires were used to measure several cognitive and linguistic constructs. Stepwise linear regression was used to relate discrimination sensitivity to the cognitive and linguistic measures. In addition, discrimination results from the current experiment were compared with those from 2-year-old children tested in a previous experiment. Results Receptive vocabulary and working memory explained 56.6% of variance in discrimination performance. Performance was not different on the modified toddler change/no-change procedure used in the current experiment from in a previous investigation, which used the original version of the procedure. Conclusions The relationship between speech discrimination and receptive vocabulary and working memory provides further evidence that the procedure is sensitive to the strength of perceptual representations. The role for working memory might also suggest that there are specific subject-related, nonsensory factors limiting the applicability of the procedure to children who have not reached the necessary levels of cognitive and linguistic development. PMID:24023371
Earnshaw, Valerie A.; Jin, Harry; Wickersham, Jeffrey; Kamarulzaman, Adeeba; John, Jacob; Altice, Frederick L.
2015-01-01
OBJECTIVES Stigma towards people living with HIV/AIDS (PLWHA) is strong in Malaysia. Although stigma has been understudied, it may be a barrier to treating the approximately 81 000 Malaysian PLWHA. The current study explores correlates of intentions to discriminate against PLWHA among medical and dental students, the future healthcare providers of Malaysia. METHODS An online, cross-sectional survey of 1296 medical and dental students was conducted in 2012 at seven Malaysian universities; 1165 (89.9%) completed the survey and were analysed. Sociodemographic characteristics, stigma-related constructs and intentions to discriminate against PLWHA were measured. Linear mixed models were conducted, controlling for clustering by university. RESULTS The final multivariate model demonstrated that students who intended to discriminate more against PLWHA were female, less advanced in their training, and studying dentistry. They further endorsed more negative attitudes towards PLWHA, internalised greater HIV-related shame, reported more HIV-related fear and disagreed more strongly that PLWHA deserve good care. The final model accounted for 38% of the variance in discrimination intent, with 10% accounted for by sociodemographic characteristics and 28% accounted for by stigma-related constructs. CONCLUSIONS It is critical to reduce stigma among medical and dental students to eliminate intentions to discriminate and achieve equitable care for Malaysian PLWHA. Stigma-reduction interventions should be multipronged, addressing attitudes, internalised shame, fear and perceptions of deservingness of care. PMID:24666546
NIR spectroscopy as a tool for discriminating between lichens exposed to air pollution.
Casale, Monica; Bagnasco, Lucia; Giordani, Paolo; Mariotti, Mauro Giorgio; Malaspina, Paola
2015-09-01
Lichens are used as biomonitors of air pollution because they are extremely sensitive to the presence of substances that alter atmospheric composition. Fifty-one thalli of two different varieties of Pseudevernia furfuracea (var. furfuracea and var. ceratea) were collected far from local sources of air pollution. Twenty-six of these thalli were then exposed to the air for one month in the industrial port of Genoa, which has high levels of environmental pollution. The possibility of using Near-infrared spectroscopy (NIRS) for generating a 'fingerprint' of lichens was investigated. Chemometric methods were successfully applied to discriminate between samples from polluted and non-polluted areas. In particular, Principal Component Analysis (PCA) was applied as a multivariate display method on the NIR spectra to visualise the data structure. This showed that the difference between samples of different varieties was not significant in comparison to the difference between samples exposed to different levels of environmental pollution. Then Linear Discriminant Analysis (LDA) was carried out to discriminate between lichens based on their exposure to pollutants. The distinction between control samples (not exposed) and samples exposed to the air in the industrial port of Genoa was evaluated. On average, 95.2% of samples were correctly classified, 93.0% of total internal prediction (5 cross-validation groups) and 100.0% of external prediction (on the test set) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-04-15
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.
Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza
2013-03-01
Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
de Rijke, E; Schoorl, J C; Cerli, C; Vonhof, H B; Verdegaal, S J A; Vivó-Truyols, G; Lopatka, M; Dekter, R; Bakker, D; Sjerps, M J; Ebskamp, M; de Koster, C G
2016-08-01
Two approaches were investigated to discriminate between bell peppers of different geographic origins. Firstly, δ(18)O fruit water and corresponding source water were analyzed and correlated to the regional GNIP (Global Network of Isotopes in Precipitation) values. The water and GNIP data showed good correlation with the pepper data, with constant isotope fractionation of about -4. Secondly, compound-specific stable hydrogen isotope data was used for classification. Using n-alkane fingerprinting data, both linear discriminant analysis (LDA) and a likelihood-based classification, using the kernel-density smoothed data, were developed to discriminate between peppers from different origins. Both methods were evaluated using the δ(2)H values and n-alkanes relative composition as variables. Misclassification rates were calculated using a Monte-Carlo 5-fold cross-validation procedure. Comparable overall classification performance was achieved, however, the two methods showed sensitivity to different samples. The combined values of δ(2)H IRMS, and complimentary information regarding the relative abundance of four main alkanes in bell pepper fruit water, has proven effective for geographic origin discrimination. Evaluation of the rarity of observing particular ranges for these characteristics could be used to make quantitative assertions regarding geographic origin of bell peppers and, therefore, have a role in verifying compliance with labeling of geographical origin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-01-01
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505
Xu, Zhe; Li, Weibo; Jiang, Jun; Zhuang, Xiran; Chen, Wei; Peng, Mei; Wang, Jianhua; Lu, Fan; Shen, Meixiao; Wang, Yuanyuan
2017-11-28
The study aimed to characterize the entire corneal topography and tomography for the detection of sub-clinical keratoconus (KC) with a Zernike application method. Normal subjects (n = 147; 147 eyes), sub-clinical KC patients (n = 77; 77 eyes), and KC patients (n = 139; 139 eyes) were imaged with the Pentacam HR system. The entire corneal data of pachymetry and elevation of both the anterior and posterior surfaces were exported from the Pentacam HR software. Zernike polynomials fitting was used to quantify the 3D distribution of the corneal thickness and surface elevation. The root mean square (RMS) values for each order and the total high-order irregularity were calculated. Multimeric discriminant functions combined with individual indices were built using linear step discriminant analysis. Receiver operating characteristic curves determined the diagnostic accuracy (area under the curve, AUC). The 3rd-order RMS of the posterior surface (AUC: 0.928) obtained the highest discriminating capability in sub-clinical KC eyes. The multimeric function, which consisted of the Zernike fitting indices of corneal posterior elevation, showed the highest discriminant ability (AUC: 0.951). Indices generated from the elevation of posterior surface and thickness measurements over the entire cornea using the Zernike method based on the Pentacam HR system were able to identify very early KC.
Maione, Camila; Barbosa, Rommel Melgaço
2018-01-24
Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.
Hartman, Joshua D; Day, Graeme M; Beran, Gregory J O
2016-11-02
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13 C and 15 N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study.
2016-01-01
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13C and 15N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study. PMID:27829821
Pang, Shaoning; Ban, Tao; Kadobayashi, Youki; Kasabov, Nikola K
2012-04-01
To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.
Two-step Raman spectroscopy method for tumor diagnosis
NASA Astrophysics Data System (ADS)
Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.
2014-05-01
Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).
Appearance-based representative samples refining method for palmprint recognition
NASA Astrophysics Data System (ADS)
Wen, Jiajun; Chen, Yan
2012-07-01
The sparse representation can deal with the lack of sample problem due to utilizing of all the training samples. However, the discrimination ability will degrade when more training samples are used for representation. We propose a novel appearance-based palmprint recognition method. We aim to find a compromise between the discrimination ability and the lack of sample problem so as to obtain a proper representation scheme. Under the assumption that the test sample can be well represented by a linear combination of a certain number of training samples, we first select the representative training samples according to the contributions of the samples. Then we further refine the training samples by an iteration procedure, excluding the training sample with the least contribution to the test sample for each time. Experiments on PolyU multispectral palmprint database and two-dimensional and three-dimensional palmprint database show that the proposed method outperforms the conventional appearance-based palmprint recognition methods. Moreover, we also explore and find out the principle of the usage for the key parameters in the proposed algorithm, which facilitates to obtain high-recognition accuracy.
Proposing an adaptive mutation to improve XCSF performance to classify ADHD and BMD patients
NASA Astrophysics Data System (ADS)
Sadatnezhad, Khadijeh; Boostani, Reza; Ghanizadeh, Ahmad
2010-12-01
There is extensive overlap of clinical symptoms observed among children with bipolar mood disorder (BMD) and those with attention deficit hyperactivity disorder (ADHD). Thus, diagnosis according to clinical symptoms cannot be very accurate. It is therefore desirable to develop quantitative criteria for automatic discrimination between these disorders. This study is aimed at designing an efficient decision maker to accurately classify ADHD and BMD patients by analyzing their electroencephalogram (EEG) signals. In this study, 22 channels of EEGs have been recorded from 21 subjects with ADHD and 22 individuals with BMD. Several informative features, such as fractal dimension, band power and autoregressive coefficients, were extracted from the recorded signals. Considering the multimodal overlapping distribution of the obtained features, linear discriminant analysis (LDA) was used to reduce the input dimension in a more separable space to make it more appropriate for the proposed classifier. A piecewise linear classifier based on the extended classifier system for function approximation (XCSF) was modified by developing an adaptive mutation rate, which was proportional to the genotypic content of best individuals and their fitness in each generation. The proposed operator controlled the trade-off between exploration and exploitation while maintaining the diversity in the classifier's population to avoid premature convergence. To assess the effectiveness of the proposed scheme, the extracted features were applied to support vector machine, LDA, nearest neighbor and XCSF classifiers. To evaluate the method, a noisy environment was simulated with different noise amplitudes. It is shown that the results of the proposed technique are more robust as compared to conventional classifiers. Statistical tests demonstrate that the proposed classifier is a promising method for discriminating between ADHD and BMD patients.
Proposing an adaptive mutation to improve XCSF performance to classify ADHD and BMD patients.
Sadatnezhad, Khadijeh; Boostani, Reza; Ghanizadeh, Ahmad
2010-12-01
There is extensive overlap of clinical symptoms observed among children with bipolar mood disorder (BMD) and those with attention deficit hyperactivity disorder (ADHD). Thus, diagnosis according to clinical symptoms cannot be very accurate. It is therefore desirable to develop quantitative criteria for automatic discrimination between these disorders. This study is aimed at designing an efficient decision maker to accurately classify ADHD and BMD patients by analyzing their electroencephalogram (EEG) signals. In this study, 22 channels of EEGs have been recorded from 21 subjects with ADHD and 22 individuals with BMD. Several informative features, such as fractal dimension, band power and autoregressive coefficients, were extracted from the recorded signals. Considering the multimodal overlapping distribution of the obtained features, linear discriminant analysis (LDA) was used to reduce the input dimension in a more separable space to make it more appropriate for the proposed classifier. A piecewise linear classifier based on the extended classifier system for function approximation (XCSF) was modified by developing an adaptive mutation rate, which was proportional to the genotypic content of best individuals and their fitness in each generation. The proposed operator controlled the trade-off between exploration and exploitation while maintaining the diversity in the classifier's population to avoid premature convergence. To assess the effectiveness of the proposed scheme, the extracted features were applied to support vector machine, LDA, nearest neighbor and XCSF classifiers. To evaluate the method, a noisy environment was simulated with different noise amplitudes. It is shown that the results of the proposed technique are more robust as compared to conventional classifiers. Statistical tests demonstrate that the proposed classifier is a promising method for discriminating between ADHD and BMD patients.
Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise
NASA Astrophysics Data System (ADS)
Artyushenko, V. M.; Volovach, V. I.
2018-01-01
We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.
Perez-Rodriguez, M Mercedes; Baca-Garcia, Enrique; Oquendo, Maria A; Wang, Shuai; Wall, Melanie M; Liu, Shang-Min; Blanco, Carlos
2014-04-01
Acculturation is the process by which immigrants acquire the culture of the dominant society. Little is known about the relationship between acculturation and suicidal ideation and attempts among US Hispanics. Our aim was to examine the impact of 5 acculturation measures (age at migration, time in the United States, social network composition, language, race/ethnic orientation) on suicidal ideation and attempts in the largest available nationally representative sample of US Hispanics. Study participants were US Hispanics (N = 6,359) from Wave 2 of the 2004-2005 National Epidemiologic Survey of Alcohol and Related Conditions (N = 34,653). We used linear χ(2) tests and logistic regression models to analyze the association between acculturation and risk of suicidal ideation and attempts. Factors associated with a linear increase in lifetime risk for suicidal ideation and attempts were (1) younger age at migration (linear χ(2)(1) = 57.15; P < .0001), (2) longer time in the United States (linear χ(2)(1)= 36.09; P < .0001), (3) higher degree of English-language orientation (linear χ(2)(1) = 74.08; P <.0001), (4) lower Hispanic composition of social network (linear χ(2)(1) = 36.34; P < .0001), and (5) lower Hispanic racial/ethnic identification (linear χ(2)(1) = 47.77; P <.0001). Higher levels of perceived discrimination were associated with higher lifetime risk for suicidal ideation (β = 0.051; P < .001) and attempts (β = 0.020; P = .003). There was a linear association between multiple dimensions of acculturation and lifetime suicidal ideation and attempts. Discrimination was also associated with lifetime risk for suicidal ideation and attempts. Our results highlight protective aspects of the traditional Hispanic culture, such as high social support, coping strategies, and moral objections to suicide, which are modifiable factors and potential targets for public health interventions aimed at decreasing suicide risk. Culturally sensitive mental health resources need to be made more available to decrease discrimination and stigma. © Copyright 2014 Physicians Postgraduate Press, Inc.
Discrimination and Telomere Length Among Older Adults in the United States
Kawachi, Ichiro
2017-01-01
Objectives: Chronic stress from experiencing discrimination can lead to long-term changes in psychological and physiologic responses, including shorter leukocyte telomere length. We examined the association between leukocyte telomere length and variations in the association by race or type of discrimination. Methods: Our study consisted of 3868 US-born non-Hispanic black (hereinafter, black) and non-Hispanic white (hereinafter, white) adult participants from the 2008 Health and Retirement Study biomarker sample with complete sociodemographic and discrimination information. We examined major lifetime unfair treatment and everyday discrimination. Coarsened exact matching matched exposed and unexposed participants on several sociodemographic factors. Coarsened exact matching creates analytic weights for the matched data sets. We applied weighted linear regression to the matched data sets. We conducted 2 subanalyses in which we matched on potential mediators—physical activity, smoking status, and obesity—and examined if racism was associated with shorter telomere length compared with other attributes. All analyses were stratified by race. Results: We found no difference in telomere length for black and white participants reporting major lifetime unfair treatment (β = 0.09; 95% CI, –0.33 to 0.15) or everyday discrimination (β = 0.04; 95% CI, –0.12 to 0.40). Everyday discrimination was associated with shorter leukocyte telomere length among black people (β = –0.23; 95% CI, –0.44 to –0.01) but not among white people (β = 0.05; 95% CI, –0.01 to 0.10). Matching on potential mediators generally decreased the effect estimate among black people. Conclusions: Experiencing everyday discrimination was associated with shortened telomere length among older black adults. Further research is needed to understand the adverse physiologic effects of discrimination to create effective interventions. PMID:28147207
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yanrong; Shao, Yeqin; Gao, Yaozong
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integratemore » the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.« less
A new comprehensive index for discriminating adulteration in bovine raw milk.
Liu, Jing; Ren, Jing; Liu, Zhen-Min; Guo, Ben-Heng
2015-04-01
This paper proposes a new comprehensive index, called Q, which can effectively discriminate artificial adulterated milk from unadulterated milk. Both normal and adulterated samples of bovine raw milk were analysed by Fourier transform infrared spectroscopic instrument to measure the traditional indices of quality, including fat (FAT), protein (PRO), lactose (LAC), total solids (TS), non-fat solid (NFS), freezing point (FP) and somatic cell counts (SCC). From these traditional indices, this paper elaborates a method to build the index Q. First, correlated analysis and principle component analysis were used to select parameter pairs TS-FAT and FP-LAC as predominant variables. Second, linear-regression analysis and residual analysis are applied to determine the index Q and its discriminating ranges. The verification and two-blind trial results suggested that index Q could accurately detect milk adulteration with maltodextrin and water (as low as 1.0% of adulteration proportions), and with other nine kinds of synthetic adulterants (as low as 0.5% of adulteration proportions). Copyright © 2014 Elsevier Ltd. All rights reserved.
Canizo, Brenda V; Escudero, Leticia B; Pérez, María B; Pellerano, Roberto G; Wuilloud, Rodolfo G
2018-03-01
The feasibility of the application of chemometric techniques associated with multi-element analysis for the classification of grape seeds according to their provenance vineyard soil was investigated. Grape seed samples from different localities of Mendoza province (Argentina) were evaluated. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-nine elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Once the analytical data were collected, supervised pattern recognition techniques such as linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), support vector machine (SVM) and Random Forest (RF) were applied to construct classification/discrimination rules. The results indicated that nonlinear methods, RF and SVM, perform best with up to 98% and 93% accuracy rate, respectively, and therefore are excellent tools for classification of grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monakhova, Yulia B; Diehl, Bernd W K; Fareed, Jawed
2018-02-05
High resolution (600MHz) nuclear magnetic resonance (NMR) spectroscopy is used to distinguish heparin and low-molecular weight heparins (LMWHs) produced from porcine, bovine and ovine mucosal tissues as well as their blends. For multivariate analysis several statistical methods such as principal component analysis (PCA), factor discriminant analysis (FDA), partial least squares - discriminant analysis (PLS-DA), linear discriminant analysis (LDA) were utilized for the modeling of NMR data of more than 100 authentic samples. Heparin and LMWH samples from the independent test set (n=15) were 100% correctly classified according to its animal origin. Moreover, by using 1 H NMR coupled with chemometrics and several batches of bovine heparins from two producers were differentiated. Thus, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of animal origin and process based manufacturing difference in heparin products. Copyright © 2017 Elsevier B.V. All rights reserved.
Yudthavorasit, Soparat; Wongravee, Kanet; Leepipatpiboon, Natchanun
2014-09-01
Chromatographic fingerprints of gingers from five different ginger-producing countries (China, India, Malaysia, Thailand and Vietnam) were newly established to discriminate the origin of ginger. The pungent bioactive principles of ginger, gingerols and six other gingerol-related compounds were determined and identified. Their variations in HPLC profiles create the characteristic pattern of each origin by employing similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and linear discriminant analysis (LDA). As results, the ginger profiles tended to be grouped and separated on the basis of the geographical closeness of the countries of origin. An effective mathematical model with high predictive ability was obtained and chemical markers for each origin were also identified as the characteristic active compounds to differentiate the ginger origin. The proposed method is useful for quality control of ginger in case of origin labelling and to assess food authenticity issues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Testing alternative ground water models using cross-validation and other methods
Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.
2007-01-01
Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.
Factorization-based texture segmentation
Yuan, Jiangye; Wang, Deliang; Cheriyadat, Anil M.
2015-06-17
This study introduces a factorization-based approach that efficiently segments textured images. We use local spectral histograms as features, and construct an M × N feature matrix using M-dimensional feature vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear combination of several representative features, we factor the feature matrix into two matrices-one consisting of the representative features and the other containing the weights of representative features at each pixel used for linear combination. The factorization method is based on singular value decomposition and nonnegative matrix factorization. The method uses local spectral histogramsmore » to discriminate region appearances in a computationally efficient way and at the same time accurately localizes region boundaries. Finally, the experiments conducted on public segmentation data sets show the promise of this simple yet powerful approach.« less
NASA Astrophysics Data System (ADS)
Tibi, R.; Young, C. J.; Koper, K. D.; Pankow, K. L.
2017-12-01
Seismic event discrimination methods exploit the differing characteristics—in terms of amplitude and/or frequency content—of the generated seismic phases among the event types to be classified. Most of the commonly used seismic discrimination methods are designed for regional data recorded at distances of about 200 to 2000 km. Relatively little attention has focused on discriminants for local distances (< 200 km), the range at which the smallest events are recorded. Short-period fundamental mode Rayleigh waves (Rg) are commonly observed on seismograms of man-made seismic events, and shallow, naturally occurring tectonic earthquakes recorded at local distances. We leverage the well-known notion that Rg amplitude decreases dramatically with increasing event depth to propose a new depth discriminant based on Rg-to-Sg spectral amplitude ratios. The approach is successfully used to discriminate shallow events from deeper tectonic earthquakes in the Utah region recorded at local distances (< 150 km) by the University of Utah Seismographic Stations (UUSS) regional seismic network. Using Mood's median test, we obtained probabilities of nearly zero that the median Rg-to-Sg spectral amplitude ratios are the same between shallow events on one side (including both shallow tectonic earthquakes and man-made events), and deeper earthquakes on the other side, suggesting that there is a statistically significant difference in the estimated Rg-to-Sg ratios between the two populations. We also observed consistent disparities between the different types of shallow events (e.g., explosions vs. mining-induced events), implying that it may be possible to separate the sub-populations that make up this group. This suggests that using local distance Rg-to-Sg spectral amplitude ratios one can not only discriminate shallow from deeper events, but may also be able to discriminate different populations of shallow events. We also experimented with Pg-to-Sg amplitude ratios in multi-frequency linear discriminant functions to classify man-made events and tectonic earthquakes in Utah. Initial results are very promising, showing probabilities of misclassification of only 2.4-14.3%.
Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin
2015-01-01
The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.
de Lima Morais da Silva, Patricia; de Lima, Liliane Schier; Caetano, Ísis Kaminski; Torres, Yohandra Reyes
2017-12-01
The volatile composition of honeys produced by eight species of stingless bees collected in three municipalities in the state of Paraná (Brazil) was compared by combining static headspace GC-MS and chemometrics methods. Forty-four compounds were identified using NIST library and linear retention index relative to n-alkanes (C 8 -C 40 ). Linalool derivatives were the most abundant peaks in most honeys regardless geographical or entomological origin. However, Principal Component Analysis discriminated honeys from different geographical origins considering their distinctive minor volatile components. Honey samples from Guaraqueçaba were characterized by the presence of hotrienol while those from Cambará showed epoxylinalol, benzaldehyde and TDN as minor discriminating compounds. Punctual species such as Borá showed similar fingerprints regardless geographical origin, with ethyl octanoate and ethyl decanoate as characteristic intense chromatographic peaks, which may suggest a specialized behavior for nectar collection. Discriminant Analysis allowed correct geographic discrimination of most honeys produced in the three spots tested. We concluded that volatile profile of stingless bee honeys can be used to attest authenticity related to regional origin of honeys. Copyright © 2017. Published by Elsevier Ltd.
Detection and recognition of simple spatial forms
NASA Technical Reports Server (NTRS)
Watson, A. B.
1983-01-01
A model of human visual sensitivity to spatial patterns is constructed. The model predicts the visibility and discriminability of arbitrary two-dimensional monochrome images. The image is analyzed by a large array of linear feature sensors, which differ in spatial frequency, phase, orientation, and position in the visual field. All sensors have one octave frequency bandwidths, and increase in size linearly with eccentricity. Sensor responses are processed by an ideal Bayesian classifier, subject to uncertainty. The performance of the model is compared to that of the human observer in detecting and discriminating some simple images.
Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.
2016-01-01
Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. PMID:27065832
Ordinary chondrites - Multivariate statistical analysis of trace element contents
NASA Technical Reports Server (NTRS)
Lipschutz, Michael E.; Samuels, Stephen M.
1991-01-01
The contents of mobile trace elements (Co, Au, Sb, Ga, Se, Rb, Cs, Te, Bi, Ag, In, Tl, Zn, and Cd) in Antarctic and non-Antarctic populations of H4-6 and L4-6 chondrites, were compared using standard multivariate discriminant functions borrowed from linear discriminant analysis and logistic regression. A nonstandard randomization-simulation method was developed, making it possible to carry out probability assignments on a distribution-free basis. Compositional differences were found both between the Antarctic and non-Antarctic H4-6 chondrite populations and between two L4-6 chondrite populations. It is shown that, for various types of meteorites (in particular, for the H4-6 chondrites), the Antarctic/non-Antarctic compositional difference is due to preterrestrial differences in the genesis of their parent materials.
Hou, Zhifei; Sun, Guoxiang; Guo, Yong
2016-01-01
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard.
Using SVD on Clusters to Improve Precision of Interdocument Similarity Measure.
Zhang, Wen; Xiao, Fan; Li, Bin; Zhang, Siguang
2016-01-01
Recently, LSI (Latent Semantic Indexing) based on SVD (Singular Value Decomposition) is proposed to overcome the problems of polysemy and homonym in traditional lexical matching. However, it is usually criticized as with low discriminative power for representing documents although it has been validated as with good representative quality. In this paper, SVD on clusters is proposed to improve the discriminative power of LSI. The contribution of this paper is three manifolds. Firstly, we make a survey of existing linear algebra methods for LSI, including both SVD based methods and non-SVD based methods. Secondly, we propose SVD on clusters for LSI and theoretically explain that dimension expansion of document vectors and dimension projection using SVD are the two manipulations involved in SVD on clusters. Moreover, we develop updating processes to fold in new documents and terms in a decomposed matrix by SVD on clusters. Thirdly, two corpora, a Chinese corpus and an English corpus, are used to evaluate the performances of the proposed methods. Experiments demonstrate that, to some extent, SVD on clusters can improve the precision of interdocument similarity measure in comparison with other SVD based LSI methods.
Using SVD on Clusters to Improve Precision of Interdocument Similarity Measure
Xiao, Fan; Li, Bin; Zhang, Siguang
2016-01-01
Recently, LSI (Latent Semantic Indexing) based on SVD (Singular Value Decomposition) is proposed to overcome the problems of polysemy and homonym in traditional lexical matching. However, it is usually criticized as with low discriminative power for representing documents although it has been validated as with good representative quality. In this paper, SVD on clusters is proposed to improve the discriminative power of LSI. The contribution of this paper is three manifolds. Firstly, we make a survey of existing linear algebra methods for LSI, including both SVD based methods and non-SVD based methods. Secondly, we propose SVD on clusters for LSI and theoretically explain that dimension expansion of document vectors and dimension projection using SVD are the two manipulations involved in SVD on clusters. Moreover, we develop updating processes to fold in new documents and terms in a decomposed matrix by SVD on clusters. Thirdly, two corpora, a Chinese corpus and an English corpus, are used to evaluate the performances of the proposed methods. Experiments demonstrate that, to some extent, SVD on clusters can improve the precision of interdocument similarity measure in comparison with other SVD based LSI methods. PMID:27579031
Faradji, Farhad; Ward, Rabab K; Birch, Gary E
2009-06-15
The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.
Discrimination and Acculturative Stress among First-Generation Dominicans
ERIC Educational Resources Information Center
Dawson, Beverly Araujo; Panchanadeswaran, Subadra
2010-01-01
The present study examined the relationship between discriminatory experiences and acculturative stress levels among a sample of 283 Dominican immigrants. Findings from a linear regression analysis revealed that experiences of daily racial discrimination and major racist events were significant predictors of acculturative stress after controlling…
Hatamikia, Sepideh; Maghooli, Keivan; Nasrabadi, Ali Motie
2014-01-01
Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from EEG signals. In this research, we introduce an emotion recognition system using autoregressive (AR) model, sequential forward feature selection (SFS) and K-nearest neighbor (KNN) classifier using EEG signals during emotional audio-visual inductions. The main purpose of this paper is to investigate the performance of AR features in the classification of emotional states. To achieve this goal, a distinguished AR method (Burg's method) based on Levinson-Durbin's recursive algorithm is used and AR coefficients are extracted as feature vectors. In the next step, two different feature selection methods based on SFS algorithm and Davies–Bouldin index are used in order to decrease the complexity of computing and redundancy of features; then, three different classifiers include KNN, quadratic discriminant analysis and linear discriminant analysis are used to discriminate two and three different classes of valence and arousal levels. The proposed method is evaluated with EEG signals of available database for emotion analysis using physiological signals, which are recorded from 32 participants during 40 1 min audio visual inductions. According to the results, AR features are efficient to recognize emotional states from EEG signals, and KNN performs better than two other classifiers in discriminating of both two and three valence/arousal classes. The results also show that SFS method improves accuracies by almost 10-15% as compared to Davies–Bouldin based feature selection. The best accuracies are %72.33 and %74.20 for two classes of valence and arousal and %61.10 and %65.16 for three classes, respectively. PMID:25298928
Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces
Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.
2013-01-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657
Toward a model-based predictive controller design in brain-computer interfaces.
Kamrunnahar, M; Dias, N S; Schiff, S J
2011-05-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Investigating the sex-related geometric variation of the human cranium.
Bertsatos, Andreas; Papageorgopoulou, Christina; Valakos, Efstratios; Chovalopoulou, Maria-Eleni
2018-01-29
Accurate sexing methods are of great importance in forensic anthropology since sex assessment is among the principal tasks when examining human skeletal remains. The present study explores a novel approach in assessing the most accurate metric traits of the human cranium for sex estimation based on 80 ectocranial landmarks from 176 modern individuals of known age and sex from the Athens Collection. The purpose of the study is to identify those distance and angle measurements that can be most effectively used in sex assessment. Three-dimensional landmark coordinates were digitized with a Microscribe 3DX and analyzed in GNU Octave. An iterative linear discriminant analysis of all possible combinations of landmarks was performed for each unique set of the 3160 distances and 246,480 angles. Cross-validated correct classification as well as multivariate DFA on top performing variables reported 13 craniometric distances with over 85% classification accuracy, 7 angles over 78%, as well as certain multivariate combinations yielding over 95%. Linear regression of these variables with the centroid size was used to assess their relation to the size of the cranium. In contrast to the use of generalized procrustes analysis (GPA) and principal component analysis (PCA), which constitute the common analytical work flow for such data, our method, although computational intensive, produced easily applicable discriminant functions of high accuracy, while at the same time explored the maximum of cranial variability.
Yuan, Shasha; Zhou, Weidong; Chen, Liyan
2018-02-01
Epilepsy is a chronic neurological disorder characterized by sudden and apparently unpredictable seizures. A system capable of forecasting the occurrence of seizures is crucial and could open new therapeutic possibilities for human health. This paper addresses an algorithm for seizure prediction using a novel feature - diffusion distance (DD) in intracranial Electroencephalograph (iEEG) recordings. Wavelet decomposition is conducted on segmented electroencephalograph (EEG) epochs and subband signals at scales 3, 4 and 5 are utilized to extract the diffusion distance. The features of all channels composing a feature vector are then fed into a Bayesian Linear Discriminant Analysis (BLDA) classifier. Finally, postprocessing procedure is applied to reduce false prediction alarms. The prediction method is evaluated on the public intracranial EEG dataset, which consists of 577.67[Formula: see text]h of intracranial EEG recordings from 21 patients with 87 seizures. We achieved a sensitivity of 85.11% for a seizure occurrence period of 30[Formula: see text]min and a sensitivity of 93.62% for a seizure occurrence period of 50[Formula: see text]min, both with the seizure prediction horizon of 10[Formula: see text]s. Our false prediction rate was 0.08/h. The proposed method yields a high sensitivity as well as a low false prediction rate, which demonstrates its potential for real-time prediction of seizures.
Currie, Cheryl; Wild, T Cameron; Schopflocher, Donald; Laing, Lory
2015-06-24
1) To examine associations between racial discrimination and drug problems among urban-based Aboriginal adults; and 2) to determine whether these associations are best explained by symptoms of psychological stress, distress or post-traumatic stress disorder (PTSD). Data were collected through in-person surveys with a community-based sample of Aboriginal adults (N = 372) living in a mid-sized city in western Canada in 2010. Associations were examined using bootstrapped linear regression models adjusted for confounders, with continuous prescription and illicit drug problem scores as outcomes. Mediation was examined using the cross-products of coefficients method. More than 80% of Aboriginal adults had experienced racial discrimination in the past year, with the majority reporting high levels in that period. Past-year discrimination was a risk factor for PTSD symptoms and prescription drug problems in models adjusted for confounders and other forms of psychological trauma. In mediation models, PTSD symptoms explained the association between discrimination and prescription drug problems; psychological stress and distress did not. PTSD symptoms also explained this association when the covariance between mediators was controlled. The results also indicate that participation in Aboriginal cultural traditions was associated with increased discrimination. Most efforts to address Aboriginal health inequities in Canada have focused on the role Aboriginal people play in these disparities. The current findings combine with others to call for an expanded focus. Non-Aboriginal Canadians may also play a role in the health inequities observed. The findings of this study suggest efforts to reduce discrimination experienced by Aboriginal adults in cities may reduce PTSD symptomology and prescription drug problems in these populations.
Dulin-Keita, A.; Salas, C.; Kanaya, A. M.; Kandula, Namratha R.
2016-01-01
Asian Indians (AI) have a high risk of atherosclerotic cardiovascular disease. The study investigated associations between discrimination and (1) cardiovascular risk and (2) self-rated health among AI. Higher discrimination scores were hypothesized to relate to a higher cardiovascular risk score (CRS) and poorer self-rated health. Asian Indians (n = 757) recruited between 2010 and 2013 answered discrimination and self-reported health questions. The CRS (0–8 points) included body-mass index, systolic blood pressure, total cholesterol, and fasting blood glucose levels of AI. Multiple linear regression analyses were conducted to evaluate relationships between discrimination and the CRS and discrimination and self-rated health, adjusting for psychosocial and clinical factors. There were no significant relationships between discrimination and the CRS (p ≥ .05). Discrimination was related to poorer self-reported health, B = −.41 (SE = .17), p = .02. Findings suggest perhaps there are important levels at which discrimination may harm health. PMID:27039100
NASA Astrophysics Data System (ADS)
Xin, Ni; Gu, Xiao-Feng; Wu, Hao; Hu, Yu-Zhu; Yang, Zhong-Lin
2012-04-01
Most herbal medicines could be processed to fulfill the different requirements of therapy. The purpose of this study was to discriminate between raw and processed Dipsacus asperoides, a common traditional Chinese medicine, based on their near infrared (NIR) spectra. Least squares-support vector machine (LS-SVM) and random forests (RF) were employed for full-spectrum classification. Three types of kernels, including linear kernel, polynomial kernel and radial basis function kernel (RBF), were checked for optimization of LS-SVM model. For comparison, a linear discriminant analysis (LDA) model was performed for classification, and the successive projections algorithm (SPA) was executed prior to building an LDA model to choose an appropriate subset of wavelengths. The three methods were applied to a dataset containing 40 raw herbs and 40 corresponding processed herbs. We ran 50 runs of 10-fold cross validation to evaluate the model's efficiency. The performance of the LS-SVM with RBF kernel (RBF LS-SVM) was better than the other two kernels. The RF, RBF LS-SVM and SPA-LDA successfully classified all test samples. The mean error rates for the 50 runs of 10-fold cross validation were 1.35% for RBF LS-SVM, 2.87% for RF, and 2.50% for SPA-LDA. The best classification results were obtained by using LS-SVM with RBF kernel, while RF was fast in the training and making predictions.
A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay R; Wing, Simon
2005-03-08
The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solarmore » minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.« less
Rafi, Mohamad; Lim, Lee Wah; Takeuchi, Toyohide; Darusman, Latifah Kosim
2013-01-15
A new method using reversed phase capillary liquid chromatography was developed for simultaneous determination of four bioactive compounds found in ginger (Zingiber officinale) namely, 6-, 8-, 10-gingerol, and 6-shogaol. The separation of these four compounds was performed using C30 as the stationary phase and 60% acetonitrile as the mobile phase in isocratic elution mode with a flow rate of 5 μL/min. All four compounds were separated within 25 min with good resolution. As the evaluation of method validation, a linear regression of the four compounds was obtained within the tested range with correlation coefficients ≥ 0.9995. The limits of detection and quantitation were between 0.034-0.039 μg/mL and 0.112-0.129 μg/mL, respectively. Intra- and inter-day precision expressed as relative standard deviations (RSD) were less than 3.1%, and the accuracy based on recovery test was ranging from 97% to 105%. Stability of the analytes within 1 day was found in the range between 1.34% and 2.93% (RSD). In addition, based on the amount of these four compounds combining with the discriminant analysis, a reliable and accurate method was developed for discrimination of three ginger varieties found in Indonesia. The results indicated that the developed method could be used as quality control for ginger raw material and its related products. Copyright © 2012 Elsevier B.V. All rights reserved.
Spinnato, J; Roubaud, M-C; Burle, B; Torrésani, B
2015-06-01
The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.
NASA Astrophysics Data System (ADS)
Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.
2018-03-01
Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.
Discriminant analysis in wildlife research: Theory and applications
Williams, B.K.; Capen, D.E.
1981-01-01
Discriminant analysis, a method of analyzing grouped multivariate data, is often used in ecological investigations. It has both a predictive and an explanatory function, the former aiming at classification of individuals of unknown group membership. The goal of the latter function is to exhibit group separation by means of linear transforms, and the corresponding method is called canonical analysis. This discussion focuses on the application of canonical analysis in ecology. In order to clarify its meaning, a parametric approach is taken instead of the usual data-based formulation. For certain assumptions the data-based canonical variates are shown to result from maximum likelihood estimation, thus insuring consistency and asymptotic efficiency. The distorting effects of covariance heterogeneity are examined, as are certain difficulties which arise in interpreting the canonical functions. A 'distortion metric' is defined, by means of which distortions resulting from the canonical transformation can be assessed. Several sampling problems which arise in ecological applications are considered. It is concluded that the method may prove valuable for data exploration, but is of limited value as an inferential procedure.
[Quality evaluation of American ginseng using UPLC coupled with multivariate analysis].
Tang, Yan; Yan, Shu-Mo; Wang, Jing-Jing; Yuan, Yuan; Yang, Bin
2016-05-01
An ultra performance liquid chromatography (UPLC)method combined with multivariate data analysis was developed to evaluate the quality of American ginseng by simultaneously determining the concentrations of six ginsenosides (Rg₁, Re, Rb₁, Rc, Ro and Rd)in the samples. For UPLC, acetonitrile with 0.01% formic acid and water with 0.01% formic acid were used as the mobile phase with gradient elution. Under the established chromatographic conditions, the six ginsenosides could be well separated and the results of linearity, stability, precision, repeatability, and recovery rate all reached the requirement of quantification analysis, respectively. The total contents of Rg₁, Re, and Rb₁ in 57 samples all reached the requirement of the 2015 edition of Chinese Pharmacopoeia. At the same time, the experimental data were analyzed by principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The crude drugs and the decoction pieces can be discriminated by a PCA method and the samples with different age can be distinguished by a PLS-DA method. Copyright© by the Chinese Pharmaceutical Association.
Technical parameters for specifying imagery requirements
NASA Technical Reports Server (NTRS)
Coan, Paul P.; Dunnette, Sheri J.
1994-01-01
Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.
Ziółkowska, Angelika; Wąsowicz, Erwin; Jeleń, Henryk H
2016-12-15
Among methods to detect wine adulteration, profiling volatiles is one with a great potential regarding robustness, analysis time and abundance of information for subsequent data treatment. Volatile fraction fingerprinting by solid-phase microextraction with direct analysis by mass spectrometry without compounds separation (SPME-MS) was used for differentiation of white as well as red wines. The aim was to differentiate between varieties used for wine production and to also differentiate wines by country of origin. The results obtained were compared to SPME-GC/MS analysis in which compounds were resolved by gas chromatography. For both approaches the same type of statistical procedure was used to compare samples: principal component analysis (PCA) followed by linear discriminant analysis (LDA). White wines (38) and red wines (41) representing different grape varieties and various regions of origin were analysed. SPME-MS proved to be advantageous in use due to better discrimination and higher sample throughput. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Jian; Zhang, David; Yang, Jing-Yu; Niu, Ben
2007-04-01
This paper develops an unsupervised discriminant projection (UDP) technique for dimensionality reduction of high-dimensional data in small sample size cases. UDP can be seen as a linear approximation of a multimanifolds-based learning framework which takes into account both the local and nonlocal quantities. UDP characterizes the local scatter as well as the nonlocal scatter, seeking to find a projection that simultaneously maximizes the nonlocal scatter and minimizes the local scatter. This characteristic makes UDP more intuitive and more powerful than the most up-to-date method, Locality Preserving Projection (LPP), which considers only the local scatter for clustering or classification tasks. The proposed method is applied to face and palm biometrics and is examined using the Yale, FERET, and AR face image databases and the PolyU palmprint database. The experimental results show that UDP consistently outperforms LPP and PCA and outperforms LDA when the training sample size per class is small. This demonstrates that UDP is a good choice for real-world biometrics applications.
Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús
2017-04-01
Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
A boosted optimal linear learner for retinal vessel segmentation
NASA Astrophysics Data System (ADS)
Poletti, E.; Grisan, E.
2014-03-01
Ocular fundus images provide important information about retinal degeneration, which may be related to acute pathologies or to early signs of systemic diseases. An automatic and quantitative assessment of vessel morphological features, such as diameters and tortuosity, can improve clinical diagnosis and evaluation of retinopathy. At variance with available methods, we propose a data-driven approach, in which the system learns a set of optimal discriminative convolution kernels (linear learner). The set is progressively built based on an ADA-boost sample weighting scheme, providing seamless integration between linear learner estimation and classification. In order to capture the vessel appearance changes at different scales, the kernels are estimated on a pyramidal decomposition of the training samples. The set is employed as a rotating bank of matched filters, whose response is used by the boosted linear classifier to provide a classification of each image pixel into the two classes of interest (vessel/background). We tested the approach fundus images available from the DRIVE dataset. We show that the segmentation performance yields an accuracy of 0.94.
Miao, Xinyang; Li, Hao; Bao, Rima; Feng, Chengjing; Wu, Hang; Zhan, Honglei; Li, Yizhang; Zhao, Kun
2017-02-01
Understanding the geological units of a reservoir is essential to the development and management of the resource. In this paper, drill cuttings from several depths from an oilfield were studied using terahertz time domain spectroscopy (THz-TDS). Cluster analysis (CA) and principal component analysis (PCA) were employed to classify and analyze the cuttings. The cuttings were clearly classified based on CA and PCA methods, and the results were in agreement with the lithology. Moreover, calcite and dolomite have stronger absorption of a THz pulse than any other minerals, based on an analysis of the PC1 scores. Quantitative analyses of minor minerals were also realized by building a series of linear and non-linear models between contents and PC2 scores. The results prove THz technology to be a promising means for determining reservoir lithology as well as other properties, which will be a significant supplementary method in oil fields.
Aircraft MSS data registration and vegetation classification of wetland change detection
Christensen, E.J.; Jensen, J.R.; Ramsey, Elijah W.; Mackey, H.E.
1988-01-01
Portions of the Savannah River floodplain swamp were evaluated for vegetation change using high resolution (5a??6 m) aircraft multispectral scanner (MSS) data. Image distortion from aircraft movement prevented precise image-to-image registration in some areas. However, when small scenes were used (200-250 ha), a first-order linear transformation provided registration accuracies of less than or equal to one pixel. A larger area was registered using a piecewise linear method. Five major wetland classes were identified and evaluated for change. Phenological differences and the variable distribution of vegetation limited wetland type discrimination. Using unsupervised methods and ground-collected vegetation data, overall classification accuracies ranged from 84 per cent to 87 per cent for each scene. Results suggest that high-resolution aircraft MSS data can be precisely registered, if small areas are used, and that wetland vegetation change can be accurately detected and monitored.
Discrimination and mental health problems among homeless minority young people.
Milburn, Norweeta G; Batterham, Philip; Ayala, George; Rice, Eric; Solorio, Rosa; Desmond, Kate; Lord, Lynwood; Iribarren, Javier; Rotheram-Borus, Mary Jane
2010-01-01
We examined the associations among perceived discrimination, racial/ethnic identification, and emotional distress in newly homeless adolescents. We assessed a sample of newly homeless adolescents (n=254) in Los Angeles, California, with measures of perceived discrimination and racial/ethnic identification. We assessed emotional distress using the Brief Symptom Inventory and used multivariate linear regression modeling to gauge the impact of discrimination and racial identity on emotional distress. Controlling for race and immigration status, gender, and age, young people with a greater sense of ethnic identification experienced less emotional distress. Young people with a history of racial/ethnic discrimination experienced more emotional distress. Intervention programs that contextualize discrimination and enhance racial/ethnic identification and pride among homeless young people are needed.
Liu, Cui-Ting; Zhang, Min; Yan, Ping; Liu, Hai-Chan; Liu, Xing-Yun; Zhan, Ruo-Ting
2016-01-01
Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R (2) ≥ 0.9992), precision (RSD < 3%), accuracy (100.68-102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs.
Beneito-Cambra, Miriam; Herrero-Martínez, José Manuel; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo
2008-11-01
A method for the rapid classification of proteases, lipases, amylases and cellulases used as enhancers in cleaning products, based on precipitation with acetone, hydrolysis with HCl, dilution of the hydrolysates with ethanol, and direct infusion into the electrospray ion source of an ion-trap mass spectrometer, has been developed. The abundances of the ([M+H]+ ions of the amino acids, from the hydrolysates of both the enzyme industrial concentrates and the detergent bases spiked with them, were used to construct linear discriminant analysis models, capable of distinguishing between the enzyme classes. For this purpose, the variables were normalized as follows: (A) the ion abundance of each amino acid was divided by the sum of the ion abundances of all the amino acids in the corresponding mass spectrum; (B) the ratios of pairs of ion abundances were obtained by dividing the ion abundance of each amino acid by each one of the ion abundances of the other 17 amino acids in the corresponding mass spectrum. Using normalization procedure B, excellent class-resolution between proteases, lipases, amylases and cellulases was achieved. In all cases, enzymes in industrial concentrates and manufactured cleaning products were correctly classified with >98% assignment probability.
Triacylglycerol stereospecific analysis and linear discriminant analysis for milk speciation.
Blasi, Francesca; Lombardi, Germana; Damiani, Pietro; Simonetti, Maria Stella; Giua, Laura; Cossignani, Lina
2013-05-01
Product authenticity is an important topic in dairy sector. Dairy products sold for public consumption must be accurately labelled in accordance with the contained milk species. Linear discriminant analysis (LDA), a common chemometric procedure, has been applied to fatty acid% composition to classify pure milk samples (cow, ewe, buffalo, donkey, goat). All original grouped cases were correctly classified, while 90% of cross-validated grouped cases were correctly classified. Another objective of this research was the characterisation of cow-ewe milk mixtures in order to reveal a common fraud in dairy field, that is the addition of cow to ewe milk. Stereospecific analysis of triacylglycerols (TAG), a method based on chemical-enzymatic procedures coupled with chromatographic techniques, has been carried out to detect fraudulent milk additions, in particular 1, 3, 5% cow milk added to ewe milk. When only TAG composition data were used for the elaboration, 75% of original grouped cases were correctly classified, while totally correct classified samples were obtained when both total and intrapositional TAG data were used. Also the results of cross validation were better when TAG stereospecific analysis data were considered as LDA variables. In particular, 100% of cross-validated grouped cases were obtained when 5% cow milk mixtures were considered.
Cyran, Krzysztof A.
2018-01-01
This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety. Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear Discriminant Analysis, k-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random Forests, and Artificial Neural Networks. PMID:29849544
NASA Astrophysics Data System (ADS)
Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua
2017-03-01
A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.
Comparative decision models for anticipating shortage of food grain production in India
NASA Astrophysics Data System (ADS)
Chattopadhyay, Manojit; Mitra, Subrata Kumar
2018-01-01
This paper attempts to predict food shortages in advance from the analysis of rainfall during the monsoon months along with other inputs used for crop production, such as land used for cereal production, percentage of area covered under irrigation and fertiliser use. We used six binary classification data mining models viz., logistic regression, Multilayer Perceptron, kernel lab-Support Vector Machines, linear discriminant analysis, quadratic discriminant analysis and k-Nearest Neighbors Network, and found that linear discriminant analysis and kernel lab-Support Vector Machines are equally suitable for predicting per capita food shortage with 89.69 % accuracy in overall prediction and 92.06 % accuracy in predicting food shortage ( true negative rate). Advance information of food shortage can help policy makers to take remedial measures in order to prevent devastating consequences arising out of food non-availability.
Multiple degree of freedom object recognition using optical relational graph decision nets
NASA Technical Reports Server (NTRS)
Casasent, David P.; Lee, Andrew J.
1988-01-01
Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.
Chandra, Preeti; Kannujia, Rekha; Saxena, Ankita; Srivastava, Mukesh; Bahadur, Lal; Pal, Mahesh; Singh, Bhim Pratap; Kumar Ojha, Sanjeev; Kumar, Brijesh
2016-09-10
An ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry method has been developed and validated for simultaneous quantification of six major bioactive compounds in five varieties of Withania somnifera in various plant parts (leaf, stem and root). The analysis was accomplished on Waters ACQUITY UPLC BEH C18 column with linear gradient elution of water/formic acid (0.1%) and acetonitrile at a flow rate of 0.3mLmin(-1). The proposed method was validated with acceptable linearity (r(2), 0.9989-0.9998), precision (RSD, 0.16-2.01%), stability (RSD, 1.04-1.62%) and recovery (RSD ≤2.45%), under optimum conditions. The method was also successfully applied for the simultaneous determination of six marker compounds in twenty-six marketed formulations. Hierarchical cluster analysis and principal component analysis were applied to discriminate these twenty-six batches based on characteristics of the bioactive compounds. The results indicated that this method is advance, rapid, sensitive and suitable to reveal the quality of Withania somnifera and also capable of performing quality evaluation of polyherbal formulations having similar markers/raw herbs. Copyright © 2016 Elsevier B.V. All rights reserved.
Shelton, Rachel C; Puleo, Elaine; Bennett, Gary G; McNeill, Lorna H; Sorensen, Glorian; Emmons, Karen M
2009-01-01
Research on the association between self-reported racial or gender discrimination and body mass index (BMI) has been limited and inconclusive to date, particularly among lower-income populations. The aim of the current study was to examine the association between self-reported racial and gender discrimination and BMI among a sample of adult residents living in 12 urban lower-income housing sites in Boston, Masschusetts (USA). Baseline survey data were collected among 1,307 (weighted N = 1907) study participants. For analyses, linear regression models with a cluster design were conducted using SUDAAN and SAS statistical software. Our sample was predominately Black (weighted n = 956) and Hispanic (weighted n = 857), and female (weighted n = 1420), with a mean age of 49.3 (SE: .40) and mean BMI of 30.2 kg m(-2) (SE: .19). Nearly 47% of participants reported ever experiencing racial discrimination, and 24.8% reported ever experiencing gender discrimination. In bivariate and multivariable linear regression models, no main effect association was found between either racial or gender discrimination and BMI. While our findings suggest that self-reported discrimination is not a key determinant of BMI among lower-income housing residents, these results should be considered in light of study limitations. Future researchers may want to investigate this association among other relevant samples, and other social contextual and cultural factors should be explored to understand how they contribute to disparities.
Shape classification of wear particles by image boundary analysis using machine learning algorithms
NASA Astrophysics Data System (ADS)
Yuan, Wei; Chin, K. S.; Hua, Meng; Dong, Guangneng; Wang, Chunhui
2016-05-01
The shape features of wear particles generated from wear track usually contain plenty of information about the wear states of a machinery operational condition. Techniques to quickly identify types of wear particles quickly to respond to the machine operation and prolong the machine's life appear to be lacking and are yet to be established. To bridge rapid off-line feature recognition with on-line wear mode identification, this paper presents a new radial concave deviation (RCD) method that mainly involves the use of the particle boundary signal to analyze wear particle features. Signal output from the RCDs subsequently facilitates the determination of several other feature parameters, typically relevant to the shape and size of the wear particle. Debris feature and type are identified through the use of various classification methods, such as linear discriminant analysis, quadratic discriminant analysis, naïve Bayesian method, and classification and regression tree method (CART). The average errors of the training and test via ten-fold cross validation suggest CART is a highly suitable approach for classifying and analyzing particle features. Furthermore, the results of the wear debris analysis enable the maintenance team to diagnose faults appropriately.
Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques
NASA Astrophysics Data System (ADS)
Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos
2013-02-01
Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.
Taverna, Domenico; Di Donna, Leonardo; Mazzotti, Fabio; Tagarelli, Antonio; Napoli, Anna; Furia, Emilia; Sindona, Giovanni
2016-09-01
A novel approach for the rapid discrimination of bergamot essential oil from other citrus fruits oils is presented. The method was developed using paper spray mass spectrometry (PS-MS) allowing for a rapid molecular profiling coupled with a statistic tool for a precise and reliable discrimination between the bergamot complex matrix and other similar matrices, commonly used for its reconstitution. Ambient mass spectrometry possesses the ability to record mass spectra of ordinary samples, in their native environment, without sample preparation or pre-separation by creating ions outside the instrument. The present study reports a PS-MS method for the determination of oxygen heterocyclic compounds such as furocoumarins, psoralens and flavonoids present in the non-volatile fraction of citrus fruits essential oils followed by chemometric analysis. The volatile fraction of Bergamot is one of the most known and fashionable natural products, which found applications in flavoring industry as ingredient in beverages and flavored foodstuff. The development of the presented method employed bergamot, sweet orange, orange, cedar, grapefruit and mandarin essential oils. PS-MS measurements were carried out in full scan mode for a total run time of 2 min. The capability of PS-MS profiling to act as marker for the classification of bergamot essential oils was evaluated by using multivariate statistical analysis. Two pattern recognition techniques, linear discriminant analysis and soft independent modeling of class analogy, were applied to MS data. The cross-validation procedure has shown excellent results in terms of the prediction ability because both models have correctly classified all samples for each category. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; Kittle, David S.; Nie, Zhaojun; Falcone, Christina; Patil, Chirag G.; Chu, Ray M.; Mamelak, Adam N.; Black, Keith L.; Butte, Pramod V.
2016-04-01
We have developed and tested a system for real-time intra-operative optical identification and classification of brain tissues using time-resolved fluorescence spectroscopy (TRFS). A supervised learning algorithm using linear discriminant analysis (LDA) employing selected intrinsic fluorescence decay temporal points in 6 spectral bands was employed to maximize statistical significance difference between training groups. The linear discriminant analysis on in vivo human tissues obtained by TRFS measurements (N = 35) were validated by histopathologic analysis and neuronavigation correlation to pre-operative MRI images. These results demonstrate that TRFS can differentiate between normal cortex, white matter and glioma.
Objective assessment of image quality. IV. Application to adaptive optics
Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher
2008-01-01
The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464
Optical diagnosis of cervical cancer by higher order spectra and boosting
NASA Astrophysics Data System (ADS)
Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Barman, Ritwik; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2017-03-01
In this contribution, we report the application of higher order statistical moments using decision tree and ensemble based learning methodology for the development of diagnostic algorithms for optical diagnosis of cancer. The classification results were compared to those obtained with an independent feature extractors like linear discriminant analysis (LDA). The performance and efficacy of these methodology using higher order statistics as a classifier using boosting has higher specificity and sensitivity while being much faster as compared to other time-frequency domain based methods.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
Quantification of plasma myo-inositol using gas chromatography-mass spectrometry.
Guo, Jin; Shi, Yingfei; Xu, Chengbao; Zhong, Rugang; Zhang, Feng; Zhang, Ting; Niu, Bo; Wang, Jianhua
2016-09-01
Myo-inositol (MI) deficiency is associated with an increased risk for neural tube defects (NTDs), mental disorders and metabolic diseases. We developed a gas chromatography-mass spectrometry (GC-MS) method to detect MI in human plasma, which was accurate, relatively efficient and convenient for clinical application. An external standard method was used for determination of plasma MI. Samples were analyzed by GC-MS after derivatization. The stable-isotope labeled internal standard approach was used to validate the method's accuracy. Alpha fetal protein (AFP) was detected by chemiluminescence immunoassay. The method was validated by determining the linearity, sensitivity and recovery rate. There was a good agreement between the internal standard approach and the present method. The NTD-affected pregnancies showed lower plasma MI (P=0.024) and higher AFP levels (P=0.001) than control. Maternal MI level showed a better discrimination in spina bifida subgroup, while AFP level showed a better discrimination in anencephaly subgroup after stratification analysis. We developed a sensitive and reliable method for the detection of clinical plasma MI, which might be a marker for NTDs screening, and established fundamental knowledge for clinical diagnosis and prevention for the diseases related to disturbed MI metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.
Song, Weiran; Wang, Hui; Maguire, Paul; Nibouche, Omar
2018-06-07
Partial Least Squares Discriminant Analysis (PLS-DA) is one of the most effective multivariate analysis methods for spectral data analysis, which extracts latent variables and uses them to predict responses. In particular, it is an effective method for handling high-dimensional and collinear spectral data. However, PLS-DA does not explicitly address data multimodality, i.e., within-class multimodal distribution of data. In this paper, we present a novel method termed nearest clusters based PLS-DA (NCPLS-DA) for addressing the multimodality and nonlinearity issues explicitly and improving the performance of PLS-DA on spectral data classification. The new method applies hierarchical clustering to divide samples into clusters and calculates the corresponding centre of every cluster. For a given query point, only clusters whose centres are nearest to such a query point are used for PLS-DA. Such a method can provide a simple and effective tool for separating multimodal and nonlinear classes into clusters which are locally linear and unimodal. Experimental results on 17 datasets, including 12 UCI and 5 spectral datasets, show that NCPLS-DA can outperform 4 baseline methods, namely, PLS-DA, kernel PLS-DA, local PLS-DA and k-NN, achieving the highest classification accuracy most of the time. Copyright © 2018 Elsevier B.V. All rights reserved.
Assessment of sexual orientation using the hemodynamic brain response to visual sexual stimuli.
Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Mehdorn, Hubertus; Bosinski, Hartmut; Siebner, Hartwig
2009-06-01
The assessment of sexual orientation is of importance to the diagnosis and treatment of sex offenders and paraphilic disorders. Phallometry is considered gold standard in objectifying sexual orientation, yet this measurement has been criticized because of its intrusiveness and limited reliability. To evaluate whether the spatial response pattern to sexual stimuli as revealed by a change in blood oxygen level-dependent (BOLD) signal can be used for individual classification of sexual orientation. We used a preexisting functional MRI (fMRI) data set that had been acquired in a nonclinical sample of 12 heterosexual men and 14 homosexual men. During fMRI, participants were briefly exposed to pictures of same-sex and opposite-sex genitals. Data analysis involved four steps: (i) differences in the BOLD response to female and male sexual stimuli were calculated for each subject; (ii) these contrast images were entered into a group analysis to calculate whole-brain difference maps between homosexual and heterosexual participants; (iii) a single expression value was computed for each subject expressing its correspondence to the group result; and (iv) based on these expression values, Fisher's linear discriminant analysis and the kappa-nearest neighbor classification method were used to predict the sexual orientation of each subject. Sensitivity and specificity of the two classification methods in predicting individual sexual orientation. Both classification methods performed well in predicting individual sexual orientation with a mean accuracy of >85% (Fisher's linear discriminant analysis: 92% sensitivity, 85% specificity; kappa-nearest neighbor classification: 88% sensitivity, 92% specificity). Despite the small sample size, the functional response patterns of the brain to sexual stimuli contained sufficient information to predict individual sexual orientation with high accuracy. These results suggest that fMRI-based classification methods hold promise for the diagnosis of paraphilic disorders (e.g., pedophilia).
Santos, Frédéric; Guyomarc'h, Pierre; Bruzek, Jaroslav
2014-12-01
Accuracy of identification tools in forensic anthropology primarily rely upon the variations inherent in the data upon which they are built. Sex determination methods based on craniometrics are widely used and known to be specific to several factors (e.g. sample distribution, population, age, secular trends, measurement technique, etc.). The goal of this study is to discuss the potential variations linked to the statistical treatment of the data. Traditional craniometrics of four samples extracted from documented osteological collections (from Portugal, France, the U.S.A., and Thailand) were used to test three different classification methods: linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVM). The Portuguese sample was set as a training model on which the other samples were applied in order to assess the validity and reliability of the different models. The tests were performed using different parameters: some included the selection of the best predictors; some included a strict decision threshold (sex assessed only if the related posterior probability was high, including the notion of indeterminate result); and some used an unbalanced sex-ratio. Results indicated that LR tends to perform slightly better than the other techniques and offers a better selection of predictors. Also, the use of a decision threshold (i.e. p>0.95) is essential to ensure an acceptable reliability of sex determination methods based on craniometrics. Although the Portuguese, French, and American samples share a similar sexual dimorphism, application of Western models on the Thai sample (that displayed a lower degree of dimorphism) was unsuccessful. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Spencer; Cohen, Timothy; Ostdiek, Bryan
2018-03-01
Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for identifying combinations of variables—aided by physical intuition—that can discriminate signal from background. Weights are introduced to smooth away the features in a given variable(s). New networks are then trained on this modified data. Observed decreases in sensitivity diagnose the variable's discriminating power. Planing also allows the investigation of the linear versus nonlinear nature of the boundaries between signal and background. We demonstrate the efficacy of this approach using a toy example, followed by an application to an idealized heavy resonance scenario at the Large Hadron Collider. By unpacking the information being utilized by these algorithms, this method puts in context what it means for a machine to learn.
Authentication of the botanical origin of honey by near-infrared spectroscopy.
Ruoff, Kaspar; Luginbühl, Werner; Bogdanov, Stefan; Bosset, Jacques Olivier; Estermann, Barbara; Ziolko, Thomas; Amado, Renato
2006-09-06
Fourier transform near-infrared spectroscopy (FT-NIR) was evaluated for the authentication of eight unifloral and polyfloral honey types (n = 364 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis. The corresponding error rates were calculated according to Bayes' theorem. NIR spectroscopy enabled a reliable discrimination of acacia, chestnut, and fir honeydew honey from the other unifloral and polyfloral honey types studied. The error rates ranged from <0.1 to 6.3% depending on the honey type. NIR proved also to be useful for the classification of blossom and honeydew honeys. The results demonstrate that near-infrared spectrometry is a valuable, rapid, and nondestructive tool for the authentication of the above-mentioned honeys, but not for all varieties studied.
Temporal discrimination threshold with healthy aging.
Ramos, Vesper Fe Marie Llaneza; Esquenazi, Alina; Villegas, Monica Anne Faye; Wu, Tianxia; Hallett, Mark
2016-07-01
The temporal discrimination threshold (TDT) is the shortest interstimulus interval at which a subject can perceive successive stimuli as separate. To investigate the effects of aging on TDT, we studied tactile TDT using the method of limits with 120% of sensory threshold in each hand for each of 100 healthy volunteers, equally divided among men and women, across 10 age groups, from 18 to 79 years. Linear regression analysis showed that age was significantly related to left-hand mean, right-hand mean, and mean of 2 hands with R-square equal to 0.08, 0.164, and 0.132, respectively. Reliability analysis indicated that the 3 measures had fair-to-good reliability (intraclass correlation coefficient: 0.4-0.8). We conclude that TDT is affected by age and has fair-to-good reproducibility using our technique. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Aytaç Korkmaz, Sevcan; Binol, Hamidullah
2018-03-01
Patients who die from stomach cancer are still present. Early diagnosis is crucial in reducing the mortality rate of cancer patients. Therefore, computer aided methods have been developed for early detection in this article. Stomach cancer images were obtained from Fırat University Medical Faculty Pathology Department. The Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) features of these images are calculated. At the same time, Sammon mapping, Stochastic Neighbor Embedding (SNE), Isomap, Classical multidimensional scaling (MDS), Local Linear Embedding (LLE), Linear Discriminant Analysis (LDA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Laplacian Eigenmaps methods are used for dimensional the reduction of the features. The high dimension of these features has been reduced to lower dimensions using dimensional reduction methods. Artificial neural networks (ANN) and Random Forest (RF) classifiers were used to classify stomach cancer images with these new lower feature sizes. New medical systems have developed to measure the effects of these dimensions by obtaining features in different dimensional with dimensional reduction methods. When all the methods developed are compared, it has been found that the best accuracy results are obtained with LBP_MDS_ANN and LBP_LLE_ANN methods.
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.
Stigma and discrimination against people living with HIV by healthcare providers, Southwest Ethiopia
2012-01-01
Background Stigma and discrimination against people living with human immunodeficiency virus (HIV) are obstacles in the way of effective responses to HIV. Understanding the extent of stigma / discrimination and the underlying causes is necessary for developing strategies to reduce them. This study was conducted to explore stigma and discrimination against PLHIV amongst healthcare providers in Jimma zone, Southwest Ethiopia. Methods A cross-sectional study, employing quantitative and qualitative methods, was conducted in 18 healthcare institutions of Jimma zone, during March 14 to April 14, 2011. A total of 255 healthcare providers responded to questionnaires asking about sociodemographic characteristics, HIV knowledge, perceived institutional support and HIV-related stigma and discrimination. Factor analysis was employed to create measurement scales for stigma and factor scores were used in one way analysis of variance (ANOVA), T-tests, Pearson’s correlation and multiple linear regression analyses. Qualitative data collected using key-informant interviews and Focus Group Discussions (FGDs) were employed to triangulate with the findings from the quantitative survey. Results Mean stigma scores (as the percentages of maximum scale scores) were: 66.4 for the extra precaution scale, 52.3 for the fear of work-related HIV transmission, 49.4 for the lack of feelings of safety, 39.0 for the value-driven stigma, 37.4 for unethical treatment of PLHIV, 34.4 for discomfort around PLHIV and 31.1 for unofficial disclosure. Testing and disclosing test results without consent, designating HIV clients and unnecessary referral to other healthcare institutions and refusal to treat clients were identified. Having in-depth HIV knowledge, the perception of institutional support, attending training on stigma and discrimination, educational level of degree or higher, high HIV case loads, the presence of ART service in the healthcare facility and claiming to be non-religious were negative predictors of stigma and discrimination as measured by the seven latent factors. Conclusions Higher levels of stigma and discrimination against PLHIV were associated with lack of in-depth knowledge on HIV and orientation about policies against stigma and discrimination. Hence, we recommend health managers to ensure institutional support through availing of clear policies and guidelines and the provision of appropriate training on the management of HIV/AIDS. PMID:22794201
Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Baker, J Dennis; Dorafshar, Amir H; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C; Freischlag, Julie A; Marcu, Laura
2006-01-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L
2005-01-01
This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.
NASA Astrophysics Data System (ADS)
Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir; Reil, Todd; Qiao, Jianhua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2006-03-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.
Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir H.; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2007-01-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability. PMID:16674179
TACD: a transportable ant colony discrimination model for corporate bankruptcy prediction
NASA Astrophysics Data System (ADS)
Lalbakhsh, Pooia; Chen, Yi-Ping Phoebe
2017-05-01
This paper presents a transportable ant colony discrimination strategy (TACD) to predict corporate bankruptcy, a topic of vital importance that is attracting increasing interest in the field of economics. The proposed algorithm uses financial ratios to build a binary prediction model for companies with the two statuses of bankrupt and non-bankrupt. The algorithm takes advantage of an improved version of continuous ant colony optimisation (CACO) at the core, which is used to create an accurate, simple and understandable linear model for discrimination. This also enables the algorithm to work with continuous values, leading to more efficient learning and adaption by avoiding data discretisation. We conduct a comprehensive performance evaluation on three real-world data sets under a stratified cross-validation strategy. In three different scenarios, TACD is compared with 11 other bankruptcy prediction strategies. We also discuss the efficiency of the attribute selection methods used in the experiments. In addition to its simplicity and understandability, statistical significance tests prove the efficiency of TACD against the other prediction algorithms in both measures of AUC and accuracy.
Defeyt, C; Van Pevenage, J; Moens, L; Strivay, D; Vandenabeele, P
2013-11-01
In art analysis, copper phthalocyanine (CuPc) is often identified as an important pigment (PB15) in 20th century artworks. Raman spectroscopy is a very valuable technique for the detection of this pigment in paint systems. However, PB15 is used in different polymorphic forms and identification of the polymorph could retrieve information on the production process of the pigment at the moment. Raman spectroscopy, being a molecular spectroscopic method of analysis, is able to discriminate between polymorphs of crystals. However, in the case of PB15, spectral interpretation is not straightforward, and Raman data treatment requires some improvements concerning the PB15 polymorphic discrimination in paints. Here, Raman spectroscopy is combined with chemometrical analysis in order to develop a procedure allowing us to identify the PB15 crystalline structure in painted layers and in artworks. The results obtained by Linear Discriminant Analysis (LDA), using intensity ratios as variables, demonstrate the ability of this procedure to predict the crystalline structure of a PB15 pigment in unknown paint samples. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-04-01
An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.
Nadimpalli, S B; Dulin-Keita, A; Salas, C; Kanaya, A M; Kandula, Namratha R
2016-12-01
Asian Indians (AI) have a high risk of atherosclerotic cardiovascular disease. The study investigated associations between discrimination and (1) cardiovascular risk and (2) self-rated health among AI. Higher discrimination scores were hypothesized to relate to a higher cardiovascular risk score (CRS) and poorer self-rated health. Asian Indians (n = 757) recruited between 2010 and 2013 answered discrimination and self-reported health questions. The CRS (0-8 points) included body-mass index, systolic blood pressure, total cholesterol, and fasting blood glucose levels of AI. Multiple linear regression analyses were conducted to evaluate relationships between discrimination and the CRS and discrimination and self-rated health, adjusting for psychosocial and clinical factors. There were no significant relationships between discrimination and the CRS (p ≥ .05). Discrimination was related to poorer self-reported health, B = -.41 (SE = .17), p = .02. Findings suggest perhaps there are important levels at which discrimination may harm health.
Evaluating the Discriminant Accuracy of a Grammatical Measure With Spanish-Speaking Children
Gutiérrez-Clellen, Vera F.; Restrepo, M. Adelaida; Simón-Cereijido, Gabriela
2012-01-01
Purpose The purpose of this study was to evaluate the discriminant accuracy of a grammatical measure for the identification of language impairment in Latino Spanish-speaking children. The authors hypothesized that if exposure to and use of English as a second language have an effect on the first language, bilingual children might exhibit lower rates of grammatical accuracy than their peers and be more likely to be misclassified. Method Eighty children with typical language development and 80 with language impairment were sampled from 4 different geographical regions and compared using linear discriminant function analysis. Results Results indicated fair-to-good sensitivity from 4;0 to 5;1 years, good sensitivity from 5;2 to 5;11 years, and poor sensitivity above age 6 years. The discriminant functions derived from the exploratory studies were able to predict group membership in confirmatory analyses with fair-to-excellent sensitivity up to age 6 years. Children who were bilingual did not show lower scores and were not more likely to be misclassified compared with their Spanish-only peers. Conclusions The measure seems to be appropriate for identifying language impairment in either Spanish-dominant or Spanish-only speakers between 4 and 6 years of age. However, for older children, supplemental testing is necessary. PMID:17197491
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E
2016-07-15
Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Hou, Zhifei; Sun, Guoxiang; Guo, Yong
2016-01-01
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard. PMID:27529425
Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening
2006-01-01
In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.
Tracing the Geographical Origin of Onions by Strontium Isotope Ratio and Strontium Content.
Hiraoka, Hisaaki; Morita, Sakie; Izawa, Atsunobu; Aoyama, Keisuke; Shin, Ki-Cheol; Nakano, Takanori
2016-01-01
The strontium (Sr) isotope ratio ((87)Sr/(86)Sr) and Sr content were used to trace the geographical origin of onions from Japan and other countries, including China, the United States of America, New Zealand, Australia, and Thailand. The mean (87)Sr/(86)Sr ratio and Sr content (dry weight basis) for onions from Japan were 0.70751 and 4.6 mg kg(-1), respectively, and the values for onions from the other countries were 0.71199 and 12.4 mg kg(-1), respectively. Linear discriminant analysis was performed to classify onions produced in Japan from those produced in the other countries based on the Sr data. The discriminant equation derived from linear discriminant analysis was evaluated by 10-fold cross validation. As a result, the origins of 92% of onions were correctly classified between Japan and the other countries.
Agnihotri, Deepak; Verma, Kesari; Tripathi, Priyanka
2016-01-01
The contiguous sequences of the terms (N-grams) in the documents are symmetrically distributed among different classes. The symmetrical distribution of the N-Grams raises uncertainty in the belongings of the N-Grams towards the class. In this paper, we focused on the selection of most discriminating N-Grams by reducing the effects of symmetrical distribution. In this context, a new text feature selection method named as the symmetrical strength of the N-Grams (SSNG) is proposed using a two pass filtering based feature selection (TPF) approach. Initially, in the first pass of the TPF, the SSNG method chooses various informative N-Grams from the entire extracted N-Grams of the corpus. Subsequently, in the second pass the well-known Chi Square (χ(2)) method is being used to select few most informative N-Grams. Further, to classify the documents the two standard classifiers Multinomial Naive Bayes and Linear Support Vector Machine have been applied on the ten standard text data sets. In most of the datasets, the experimental results state the performance and success rate of SSNG method using TPF approach is superior to the state-of-the-art methods viz. Mutual Information, Information Gain, Odds Ratio, Discriminating Feature Selection and χ(2).
Hong's grading for evaluating anterior chamber angle width.
Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul
2012-11-01
To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.
Li, Hang; Wang, Maolin; Gong, Ya-Nan; Yan, Aixia
2016-01-01
β-secretase (BACE1) is an aspartyl protease, which is considered as a novel vital target in Alzheimer`s disease therapy. We collected a data set of 294 BACE1 inhibitors, and built six classification models to discriminate active and weakly active inhibitors using Kohonen's Self-Organizing Map (SOM) method and Support Vector Machine (SVM) method. Each molecular descriptor was calculated using the program ADRIANA.Code. We adopted two different methods: random method and Self-Organizing Map method, for training/test set split. The descriptors were selected by F-score and stepwise linear regression analysis. The best SVM model Model2C has a good prediction performance on test set with prediction accuracy, sensitivity (SE), specificity (SP) and Matthews correlation coefficient (MCC) of 89.02%, 90%, 88%, 0.78, respectively. Model 1A is the best SOM model, whose accuracy and MCC of the test set were 94.57% and 0.98, respectively. The lone pair electronegativity and polarizability related descriptors importantly contributed to bioactivity of BACE1 inhibitor. The Extended-Connectivity Finger-Prints_4 (ECFP_4) analysis found some vitally key substructural features, which could be helpful for further drug design research. The SOM and SVM models built in this study can be obtained from the authors by email or other contacts.
Simple method to distinguish between primary and secondary C3 deficiencies.
Pereira de Carvalho Florido, Marlene; Ferreira de Paula, Patrícia; Isaac, Lourdes
2003-03-01
Due to the increasing numbers of reported clinical cases of complement deficiency in medical centers, clinicians are now more aware of the role of the complement system in the protection against infections caused by microorganisms. Therefore, clinical laboratories are now prepared to perform a number of diagnostic tests of the complement system other than the standard 50% hemolytic component assay. Deficiencies of alternative complement pathway proteins are related to severe and recurrent infections; and the application of easy, reliable, and low-cost methods for their detection and distinction are always welcome, notably in developing countries. When activation of the alternative complement pathway is evaluated in hemolytic agarose plates, some but not all human sera cross-react to form a late linear lysis. Since the formation of this linear lysis is dependent on C3 and factor B, it is possible to use late linear lysis to routinely screen for the presence of deficiencies of alternative human complement pathway proteins such as factor B. Furthermore, since linear lysis is observed between normal human serum and primary C3-deficient serum but not between normal human serum and secondary C3-deficient serum caused by the lack of factor H or factor I, this assay may also be used to discriminate between primary and secondary C3 deficiencies.
Snow mapping and land use studies in Switzerland
NASA Technical Reports Server (NTRS)
Haefner, H. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A system was developed for operational snow and land use mapping, based on a supervised classification method using various classification algorithms and representation of the results in maplike form on color film with a photomation system. Land use mapping, under European conditions, was achieved with a stepwise linear discriminant analysis by using additional ratio variables. On fall images, signatures of built-up areas were often not separable from wetlands. Two different methods were tested to correlate the size of settlements and the population with an accuracy for the densely populated Swiss Plateau between +2 or -12%.
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
Besga, Ariadna; Gonzalez, Itxaso; Echeburua, Enrique; Savio, Alexandre; Ayerdi, Borja; Chyzhyk, Darya; Madrigal, Jose L M; Leza, Juan C; Graña, Manuel; Gonzalez-Pinto, Ana Maria
2015-01-01
Late onset bipolar disorder (LOBD) is often difficult to distinguish from degenerative dementias, such as Alzheimer disease (AD), due to comorbidities and common cognitive symptoms. Moreover, LOBD prevalence in the elder population is not negligible and it is increasing. Both pathologies share pathophysiological neuroinflammation features. Improvements in differential diagnosis of LOBD and AD will help to select the best personalized treatment. The aim of this study is to assess the relative significance of clinical observations, neuropsychological tests, and specific blood plasma biomarkers (inflammatory and neurotrophic), separately and combined, in the differential diagnosis of LOBD versus AD. It was carried out evaluating the accuracy achieved by classification-based computer-aided diagnosis (CAD) systems based on these variables. A sample of healthy controls (HC) (n = 26), AD patients (n = 37), and LOBD patients (n = 32) was recruited at the Alava University Hospital. Clinical observations, neuropsychological tests, and plasma biomarkers were measured at recruitment time. We applied multivariate machine learning classification methods to discriminate subjects from HC, AD, and LOBD populations in the study. We analyzed, for each classification contrast, feature sets combining clinical observations, neuropsychological measures, and biological markers, including inflammation biomarkers. Furthermore, we analyzed reduced feature sets containing variables with significative differences determined by a Welch's t-test. Furthermore, a battery of classifier architectures were applied, encompassing linear and non-linear Support Vector Machines (SVM), Random Forests (RF), Classification and regression trees (CART), and their performance was evaluated in a leave-one-out (LOO) cross-validation scheme. Post hoc analysis of Gini index in CART classifiers provided a measure of each variable importance. Welch's t-test found one biomarker (Malondialdehyde) with significative differences (p < 0.001) in LOBD vs. AD contrast. Classification results with the best features are as follows: discrimination of HC vs. AD patients reaches accuracy 97.21% and AUC 98.17%. Discrimination of LOBD vs. AD patients reaches accuracy 90.26% and AUC 89.57%. Discrimination of HC vs LOBD patients achieves accuracy 95.76% and AUC 88.46%. It is feasible to build CAD systems for differential diagnosis of LOBD and AD on the basis of a reduced set of clinical variables. Clinical observations provide the greatest discrimination. Neuropsychological tests are improved by the addition of biomarkers, and both contribute significantly to improve the overall predictive performance.
General tensor discriminant analysis and gabor features for gait recognition.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2007-10-01
The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine state of the art classification methods in gait recognition.
NASA Astrophysics Data System (ADS)
Szuflitowska, B.; Orlowski, P.
2017-08-01
Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.
ERIC Educational Resources Information Center
Fan, Xitao; Wang, Lin
The Monte Carlo study compared the performance of predictive discriminant analysis (PDA) and that of logistic regression (LR) for the two-group classification problem. Prior probabilities were used for classification, but the cost of misclassification was assumed to be equal. The study used a fully crossed three-factor experimental design (with…
Fortier, Sylvie; Basset, Fabien A.; Mbourou, Ginette A.; Favérial, Jérôme; Teasdale, Normand
2005-01-01
The purpose of this study was twofold: (a) to examine if kinetic and kinematic parameters of the sprint start could differentiate elite from sub-elite sprinters and, (b) to investigate whether providing feedback (FB) about selected parameters could improve starting block performance of intermediate sprinters over a 6-week training period. Twelve male sprinters, assigned to an elite or a sub-elite group, participated in Experiment 1. Eight intermediate sprinters participated in Experiment 2. All athletes were required to perform three sprint starts at maximum intensity followed by a 10-m run. To detect differences between elite and sub-elite groups, comparisons were made using t-tests for independent samples. Parameters reaching a significant group difference were retained for the linear discriminant analysis (LDA). The LDA yielded four discriminative kinetic parameters. Feedback about these selected parameters was given to sprinters in Experiment 2. For this experiment, data acquisition was divided into three periods. The first six sessions were without specific FB, whereas the following six sessions were enriched by kinetic FB. Finally, athletes underwent a retention session (without FB) 4 weeks after the twelfth session. Even though differences were found in the time to front peak force, the time to rear peak force, and the front peak force in the retention session, the results of the present study showed that providing FB about selected kinetic parameters differentiating elite from sub-elite sprinters did not improve the starting block performance of intermediate sprinters. Key Points The linear discriminative analysis allows the identification of starting block parameters differentiating elite from sub-elite athletes. 6-week of feedback does not alter starting block performance in training context. The present results failed to confirm previous studies since feedback did not improve targeted kinetic parameters of the complex motor task in real-world context. PMID:24431969
Fortier, Sylvie; Basset, Fabien A; Mbourou, Ginette A; Favérial, Jérôme; Teasdale, Normand
2005-06-01
(a) to examine if kinetic and kinematic parameters of the sprint start could differentiate elite from sub-elite sprinters and, (b) to investigate whether providing feedback (FB) about selected parameters could improve starting block performance of intermediate sprinters over a 6-week training period. Twelve male sprinters, assigned to an elite or a sub-elite group, participated in Experiment 1. Eight intermediate sprinters participated in Experiment 2. All athletes were required to perform three sprint starts at maximum intensity followed by a 10-m run. To detect differences between elite and sub-elite groups, comparisons were made using t-tests for independent samples. Parameters reaching a significant group difference were retained for the linear discriminant analysis (LDA). The LDA yielded four discriminative kinetic parameters. Feedback about these selected parameters was given to sprinters in Experiment 2. For this experiment, data acquisition was divided into three periods. The first six sessions were without specific FB, whereas the following six sessions were enriched by kinetic FB. Finally, athletes underwent a retention session (without FB) 4 weeks after the twelfth session. Even though differences were found in the time to front peak force, the time to rear peak force, and the front peak force in the retention session, the results of the present study showed that providing FB about selected kinetic parameters differentiating elite from sub-elite sprinters did not improve the starting block performance of intermediate sprinters. Key PointsThe linear discriminative analysis allows the identification of starting block parameters differentiating elite from sub-elite athletes.6-week of feedback does not alter starting block performance in training context.The present results failed to confirm previous studies since feedback did not improve targeted kinetic parameters of the complex motor task in real-world context.
Valerio, Melissa A.; Kieffer, Edith; Sinco, Brandy; Rosland, Ann-Marie; Hawkins, Jaclynn; Espitia, Nicolaus; Palmisano, Gloria; Spencer, Michael
2013-01-01
It is not known how discrimination might affect diabetes-related distress (DRD), an important correlate of diabetes outcomes. We examined correlates of discrimination and the influence of discrimination on DRD and depressive symptoms (DS) for African Americans and Latinos with type 2 diabetes. We analyzed survey data (n = 157) collected at enrollment into a diabetes management intervention. Using multiple linear regression, we examined correlates of discrimination and the association between discrimination and DRD and DS. Discrimination was significantly associated with higher DRD for Latinos (b 1.58, 95 % CI 1.08, 2.31, p < 0.05), but not significant for African Americans (b 0.96, 95 % CI 0.59, 1.57). Discrimination was marginally significantly associated with more DS for Latinos (b 1.43, 95 % CI 0.97, 2.12, p < 0.10), but not significant for African Americans (b 1.21, 95 % CI 0.87, 1.70). These findings suggest the need to address stressors unique to racial/ethnic minorities to improve diabetes-related outcomes. PMID:23689972
Metric Learning for Hyperspectral Image Segmentation
NASA Technical Reports Server (NTRS)
Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca
2011-01-01
We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.
Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency
Druzhkov, Pavel; Zolotykh, Nikolay; Meyerov, Iosif; Alsaedi, Ahmed; Shutova, Maria; Ivanchenko, Mikhail; Zaikin, Alexey
2015-01-01
We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate the further research on the functional consequences of these differences in methylation patterns. The presented approach can be broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of genes constituting multifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest. PMID:26618180
GPU implementation of the simplex identification via split augmented Lagrangian
NASA Astrophysics Data System (ADS)
Sevilla, Jorge; Nascimento, José M. P.
2015-10-01
Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.
Karabagias, Ioannis K; Karabournioti, Sofia
2018-05-03
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014⁻2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin ( p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone.
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended. PMID:26793655
Karabournioti, Sofia
2018-01-01
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014–2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin (p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone. PMID:29751543
Hohmann, Monika; Monakhova, Yulia; Erich, Sarah; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike
2015-11-04
Because the basic suitability of proton nuclear magnetic resonance spectroscopy ((1)H NMR) to differentiate organic versus conventional tomatoes was recently proven, the approach to optimize (1)H NMR classification models (comprising overall 205 authentic tomato samples) by including additional data of isotope ratio mass spectrometry (IRMS, δ(13)C, δ(15)N, and δ(18)O) and mid-infrared (MIR) spectroscopy was assessed. Both individual and combined analytical methods ((1)H NMR + MIR, (1)H NMR + IRMS, MIR + IRMS, and (1)H NMR + MIR + IRMS) were examined using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and common components and specific weight analysis (ComDim). With regard to classification abilities, fused data of (1)H NMR + MIR + IRMS yielded better validation results (ranging between 95.0 and 100.0%) than individual methods ((1)H NMR, 91.3-100%; MIR, 75.6-91.7%), suggesting that the combined examination of analytical profiles enhances authentication of organically produced tomatoes.
Towards exaggerated emphysema stereotypes
NASA Astrophysics Data System (ADS)
Chen, C.; Sørensen, L.; Lauze, F.; Igel, C.; Loog, M.; Feragen, A.; de Bruijne, M.; Nielsen, M.
2012-03-01
Classification is widely used in the context of medical image analysis and in order to illustrate the mechanism of a classifier, we introduce the notion of an exaggerated image stereotype based on training data and trained classifier. The stereotype of some image class of interest should emphasize/exaggerate the characteristic patterns in an image class and visualize the information the employed classifier relies on. This is useful for gaining insight into the classification and serves for comparison with the biological models of disease. In this work, we build exaggerated image stereotypes by optimizing an objective function which consists of a discriminative term based on the classification accuracy, and a generative term based on the class distributions. A gradient descent method based on iterated conditional modes (ICM) is employed for optimization. We use this idea with Fisher's linear discriminant rule and assume a multivariate normal distribution for samples within a class. The proposed framework is applied to computed tomography (CT) images of lung tissue with emphysema. The synthesized stereotypes illustrate the exaggerated patterns of lung tissue with emphysema, which is underpinned by three different quantitative evaluation methods.
Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A
2005-04-15
A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the TOMOCOMD-CAMPS method produced a linear piecewise regression (R=0.97) between protein backbone descriptors and tm values for alanine mutants of the Arc repressor. A break-point value of 51.87 degrees C characterized two mutant clusters and coincided perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutant Arc homodimers. These models also permitted the interpretation of the driving forces of such folding process, indicating that topologic/topographic protein backbone interactions control the stability profile of wild-type Arc and its alanine mutants.
Generalized t-statistic for two-group classification.
Komori, Osamu; Eguchi, Shinto; Copas, John B
2015-06-01
In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.
Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.
Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin
2011-05-01
The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.
Beam tracking phase tomography with laboratory sources
NASA Astrophysics Data System (ADS)
Vittoria, F. A.; Endrizzi, M.; Kallon, G. K. N.; Hagen, C. K.; Diemoz, P. C.; Zamir, A.; Olivo, A.
2018-04-01
An X-ray phase-contrast laboratory system is presented, based on the beam-tracking method. Beam-tracking relies on creating micro-beamlets of radiation by placing a structured mask before the sample, and analysing them by using a detector with sufficient resolution. The system is used in tomographic configuration to measure the three dimensional distribution of the linear attenuation coefficient, difference from unity of the real part of the refractive index, and of the local scattering power of specimens. The complementarity of the three signals is investigated, together with their potential use for material discrimination.
Multiple directed graph large-class multi-spectral processor
NASA Technical Reports Server (NTRS)
Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki
1988-01-01
Numerical analysis techniques for the interpretation of high-resolution imaging-spectrometer data are described and demonstrated. The method proposed involves the use of (1) a hierarchical classifier with a tree structure generated automatically by a Fisher linear-discriminant-function algorithm and (2) a novel multiple-directed-graph scheme which reduces the local maxima and the number of perturbations required. Results for a 500-class test problem involving simulated imaging-spectrometer data are presented in tables and graphs; 100-percent-correct classification is achieved with an improvement factor of 5.
Nanopores and nucleic acids: prospects for ultrarapid sequencing
NASA Technical Reports Server (NTRS)
Deamer, D. W.; Akeson, M.
2000-01-01
DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1988-01-01
Stratocumulus, cumulus, and cirrus clouds were identified on the basis of cloud textural features which were derived from a single high-resolution Landsat MSS NIR channel using a stepwise linear discriminant analysis. It is shown that, using this method, it is possible to distinguish high cirrus clouds from low clouds with high accuracy on the basis of spatial brightness patterns. The largest probability of misclassification is associated with confusion between the stratocumulus breakup regions and the fair-weather cumulus.
Discrimination and Depressive Symptoms Among Latina/o Adolescents of Immigrant Parents.
Lopez, William D; LeBrón, Alana M W; Graham, Louis F; Grogan-Kaylor, Andrew
2016-01-01
Discrimination is associated with negative mental health outcomes for Latina/o adolescents. While Latino/a adolescents experience discrimination from a number of sources and across contexts, little research considers how the source of discrimination and the context in which it occurs affect mental health outcomes among Latina/o children of immigrants. We examined the association between source-specific discrimination, racial or ethnic background of the source, and school ethnic context with depressive symptoms for Latina/o adolescents of immigrant parents. Using multilevel linear regression with time-varying covariates, we regressed depressive symptoms on source-specific discrimination, racial or ethnic background of the source of discrimination, and school percent Latina/o. Discrimination from teachers (β = 0.06, p < .05), students (β = 0.05, p < .05), Cubans (β = 0.19, p < .001), and Latinas/os (β = 0.19, p < .001) were positively associated with depressive symptoms. These associations were not moderated by school percent Latina/o. The findings indicate a need to reduce discrimination to improve Latina/o adolescents' mental health. © The Author(s) 2016.
Predictive inference for best linear combination of biomarkers subject to limits of detection.
Coolen-Maturi, Tahani
2017-08-15
Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning and credit scoring. The receiver operating characteristic (ROC) curve is a useful tool to assess the ability of a diagnostic test to discriminate between two classes or groups. In practice, multiple diagnostic tests or biomarkers are combined to improve diagnostic accuracy. Often, biomarker measurements are undetectable either below or above the so-called limits of detection (LoD). In this paper, nonparametric predictive inference (NPI) for best linear combination of two or more biomarkers subject to limits of detection is presented. NPI is a frequentist statistical method that is explicitly aimed at using few modelling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. The NPI lower and upper bounds for the ROC curve subject to limits of detection are derived, where the objective function to maximize is the area under the ROC curve. In addition, the paper discusses the effect of restriction on the linear combination's coefficients on the analysis. Examples are provided to illustrate the proposed method. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Liu, Fei; Feng, Lei; Lou, Bing-gan; Sun, Guang-ming; Wang, Lian-ping; He, Yong
2010-07-01
The combinational-stimulated bands were used to develop linear and nonlinear calibrations for the early detection of sclerotinia of oilseed rape (Brassica napus L.). Eighty healthy and 100 Sclerotinia leaf samples were scanned, and different preprocessing methods combined with successive projections algorithm (SPA) were applied to develop partial least squares (PLS) discriminant models, multiple linear regression (MLR) and least squares-support vector machine (LS-SVM) models. The results indicated that the optimal full-spectrum PLS model was achieved by direct orthogonal signal correction (DOSC), then De-trending and Raw spectra with correct recognition ratio of 100%, 95.7% and 95.7%, respectively. When using combinational-stimulated bands, the optimal linear models were SPA-MLR (DOSC) and SPA-PLS (DOSC) with correct recognition ratio of 100%. All SPA-LSSVM models using DOSC, De-trending and Raw spectra achieved perfect results with recognition of 100%. The overall results demonstrated that it was feasible to use combinational-stimulated bands for the early detection of Sclerotinia of oilseed rape, and DOSC-SPA was a powerful way for informative wavelength selection. This method supplied a new approach to the early detection and portable monitoring instrument of sclerotinia.
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Discrimination of coherent features in turbulent boundary layers by the entropy method
NASA Technical Reports Server (NTRS)
Corke, T. C.; Guezennec, Y. G.
1984-01-01
Entropy in information theory is defined as the expected or mean value of the measure of the amount of self-information contained in the ith point of a distribution series x sub i, based on its probability of occurrence p(x sub i). If p(x sub i) is the probability of the ith state of the system in probability space, then the entropy, E(X) = - sigma p(x sub i) logp (x sub i), is a measure of the disorder in the system. Based on this concept, a method was devised which sought to minimize the entropy in a time series in order to construct the signature of the most coherent motions. The constrained minimization was performed using a Lagrange multiplier approach which resulted in the solution of a simultaneous set of non-linear coupled equations to obtain the coherent time series. The application of the method to space-time data taken by a rake of sensors in the near-wall region of a turbulent boundary layer was presented. The results yielded coherent velocity motions made up of locally decelerated or accelerated fluid having a streamwise scale of approximately 100 nu/u(tau), which is in qualitative agreement with the results from other less objective discrimination methods.
Caprihan, A; Pearlson, G D; Calhoun, V D
2008-08-15
Principal component analysis (PCA) is often used to reduce the dimension of data before applying more sophisticated data analysis methods such as non-linear classification algorithms or independent component analysis. This practice is based on selecting components corresponding to the largest eigenvalues. If the ultimate goal is separation of data in two groups, then these set of components need not have the most discriminatory power. We measured the distance between two such populations using Mahalanobis distance and chose the eigenvectors to maximize it, a modified PCA method, which we call the discriminant PCA (DPCA). DPCA was applied to diffusion tensor-based fractional anisotropy images to distinguish age-matched schizophrenia subjects from healthy controls. The performance of the proposed method was evaluated by the one-leave-out method. We show that for this fractional anisotropy data set, the classification error with 60 components was close to the minimum error and that the Mahalanobis distance was twice as large with DPCA, than with PCA. Finally, by masking the discriminant function with the white matter tracts of the Johns Hopkins University atlas, we identified left superior longitudinal fasciculus as the tract which gave the least classification error. In addition, with six optimally chosen tracts the classification error was zero.
SVM-based automatic diagnosis method for keratoconus
NASA Astrophysics Data System (ADS)
Gao, Yuhong; Wu, Qiang; Li, Jing; Sun, Jiande; Wan, Wenbo
2017-06-01
Keratoconus is a progressive cornea disease that can lead to serious myopia and astigmatism, or even to corneal transplantation, if it becomes worse. The early detection of keratoconus is extremely important to know and control its condition. In this paper, we propose an automatic diagnosis algorithm for keratoconus to discriminate the normal eyes and keratoconus ones. We select the parameters obtained by Oculyzer as the feature of cornea, which characterize the cornea both directly and indirectly. In our experiment, 289 normal cases and 128 keratoconus cases are divided into training and test sets respectively. Far better than other kernels, the linear kernel of SVM has sensitivity of 94.94% and specificity of 97.87% with all the parameters training in the model. In single parameter experiment of linear kernel, elevation with 92.03% sensitivity and 98.61% specificity and thickness with 97.28% sensitivity and 97.82% specificity showed their good classification abilities. Combining elevation and thickness of the cornea, the proposed method can reach 97.43% sensitivity and 99.19% specificity. The experiments demonstrate that the proposed automatic diagnosis method is feasible and reliable.
A regularized approach for geodesic-based semisupervised multimanifold learning.
Fan, Mingyu; Zhang, Xiaoqin; Lin, Zhouchen; Zhang, Zhongfei; Bao, Hujun
2014-05-01
Geodesic distance, as an essential measurement for data dissimilarity, has been successfully used in manifold learning. However, most geodesic distance-based manifold learning algorithms have two limitations when applied to classification: 1) class information is rarely used in computing the geodesic distances between data points on manifolds and 2) little attention has been paid to building an explicit dimension reduction mapping for extracting the discriminative information hidden in the geodesic distances. In this paper, we regard geodesic distance as a kind of kernel, which maps data from linearly inseparable space to linear separable distance space. In doing this, a new semisupervised manifold learning algorithm, namely regularized geodesic feature learning algorithm, is proposed. The method consists of three techniques: a semisupervised graph construction method, replacement of original data points with feature vectors which are built by geodesic distances, and a new semisupervised dimension reduction method for feature vectors. Experiments on the MNIST, USPS handwritten digit data sets, MIT CBCL face versus nonface data set, and an intelligent traffic data set show the effectiveness of the proposed algorithm.
Evaluation of airborne lidar data to predict vegetation Presence/Absence
Palaseanu-Lovejoy, M.; Nayegandhi, A.; Brock, J.; Woodman, R.; Wright, C.W.
2009-01-01
This study evaluates the capabilities of the Experimental Advanced Airborne Research Lidar (EAARL) in delineating vegetation assemblages in Jean Lafitte National Park, Louisiana. Five-meter-resolution grids of bare earth, canopy height, canopy-reflection ratio, and height of median energy were derived from EAARL data acquired in September 2006. Ground-truth data were collected along transects to assess species composition, canopy cover, and ground cover. To decide which model is more accurate, comparisons of general linear models and generalized additive models were conducted using conventional evaluation methods (i.e., sensitivity, specificity, Kappa statistics, and area under the curve) and two new indexes, net reclassification improvement and integrated discrimination improvement. Generalized additive models were superior to general linear models in modeling presence/absence in training vegetation categories, but no statistically significant differences between the two models were achieved in determining the classification accuracy at validation locations using conventional evaluation methods, although statistically significant improvements in net reclassifications were observed. ?? 2009 Coastal Education and Research Foundation.
Li, Jie; Huang, Yuan-Guang; Ran, Mao-Sheng; Fan, Yu; Chen, Wen; Evans-Lacko, Sara; Thornicroft, Graham
2018-04-01
Comprehensive interventions including components of stigma and discrimination reduction in schizophrenia in low- and middle-income countries (LMICs) are lacking. We developed a community-based comprehensive intervention to evaluate its effects on clinical symptoms, social functioning, internalized stigma and discrimination among patients with schizophrenia. A randomized controlled trial including an intervention group (n = 169) and a control group (n = 158) was performed. The intervention group received comprehensive intervention (strategies against stigma and discrimination, psycho-education, social skills training and cognitive behavioral therapy) and the control group received face to face interview. Both lasted for nine months. Participants were measured at baseline, 6 months and 9 months using the Internalized Stigma of Mental Illness scale (ISMI), Discrimination and Stigma Scale (DISC-12), Global Assessment of Functioning (GAF), Schizophrenia Quality of Life Scale (SQLS), Self-Esteem Scale (SES), Brief Psychiatric Rating Scale (BPRS) and PANSS negative scale (PANSS-N). Insight and medication compliance were evaluated by senior psychiatrists. Data were analyzed by descriptive statistics, t-test, chi-square test or Fisher's exact test. Linear Mixed Models were used to show intervention effectiveness on scales. General Linear Mixed Models with multinomial logistic link function were used to assess the effectiveness on medication compliance and insight. We found a significant reduction on anticipated discrimination, BPRS and PANSS-N total scores, and an elevation on overcoming stigma and GAF in the intervention group after 9 months. These suggested the intervention may be effective in reducing anticipated discrimination, increasing skills overcoming stigma as well as improving clinical symptoms and social functioning in Chinese patients with schizophrenia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Discrimination, acculturation and other predictors of depression among pregnant Hispanic women.
Walker, Janiece L; Ruiz, R Jeanne; Chinn, Juanita J; Marti, Nathan; Ricks, Tiffany N
2012-01-01
The purpose of our study was to examine the effects of socioeconomic status, acculturative stress, discrimination, and marginalization as predictors of depression in pregnant Hispanic women. A prospective observational design was used. Central and Gulf coast areas of Texas in obstetrical offices. A convenience sample of 515 pregnant, low income, low medical risk, and self-identified Hispanic women who were between 22-24 weeks gestation was used to collect data. The predictor variables were socioeconomic status, discrimination, acculturative stress, and marginalization. The outcome variable was depression. Education, frequency of discrimination, age, and Anglo marginality were significant predictors of depressive symptoms in a linear regression model, F (6, 458) = 8.36, P<.0001. Greater frequency of discrimination was the strongest positive predictor of increased depressive symptoms. It is important that health care providers further understand the impact that age and experiences of discrimination throughout the life course have on depressive symptoms during pregnancy.
Jantzi, Sarah C; Almirall, José R
2014-01-01
Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.
Amanat, B; Kardan, M R; Faghihi, R; Hosseini Pooya, S M
2013-01-01
Background: Radon and its daughters are amongst the most important sources of natural exposure in the world. Soil is one of the significant sources of radon/thoron due to both radium and thorium so that the emanated thoron from it may cause increased uncertainties in radon measurements. Recently, a diffusion chamber has been designed and optimized for passive discriminative measurements of radon/thoron concentrations in soil. Objective: In order to evaluate the capability of the passive method, some comparative measurements (with active methods) have been performed. Method: The method is based upon measurements by a diffusion chamber, including two Lexan polycarbonate SSNTDs, which can discriminate the emanated radon/thorn from the soil by delay method. The comparative measurements have been done in ten selected points of HLNRA of Ramsar in Iran. The linear regression and correlation between the results of two methods have been studied. Results: The results show that the radon concentrations are within the range of 12.1 to 165 kBq/m3 values. The correlation between the results of active and passive methods was measured by 0.99 value. As well, the thoron concentrations have been measured between 1.9 to 29.5 kBq/m3 values at the points. Conclusion: The sensitivity as well as the strong correlation with active measurements shows that the new low-cost passive method is appropriate for accurate seasonal measurements of radon and thoron concentration in soil. PMID:25505760
Characterizing entanglement with global and marginal entropic measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio
2003-12-01
We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such statesmore » cannot be discriminated by the majorization criterion.« less
Veronese, Guido; Pepe, Alessandro
2017-07-01
The aim of this work was to discriminate between healthy children and children at risk of developing mental impairments by evaluating the impact on contextual and individual factors of a context characterized by war. We tested the hypothesis that a linear discriminant function composed of trauma, life satisfaction, and affect balance has the power to classify the children as community or clinical referred. Membership of the clinical-referred group was associated with poorer life satisfaction and higher levels of trauma. Community-referred profiles were associated with lesser trauma. Perceived life satisfaction regarding family and school was the main contributor to the discriminant function.
Galvan, Frank H; Bogart, Laura M; Klein, David J; Wagner, Glenn J; Chen, Ying-Tung
2017-10-01
Discrimination has been found to have deleterious effects on physical health. The goal of the present study was to examine the association between perceived discrimination and adherence to antiretroviral therapy (ART) among HIV-positive Latino men and the extent to which medical mistrust serves as a mediator of that association. A series of linear and logistic regression models was used to test for mediation for three types of perceived discrimination (related to being Latino, being perceived as gay and being HIV-positive). Medical mistrust was found to be significantly associated with perceived discrimination based on Latino ethnicity and HIV serostatus. Medical mistrust was found to mediate the associations between two types of perceived discrimination (related to being Latino and being HIV-positive) and ART adherence. Given these findings, interventions should be developed that increase the skills of HIV-positive Latino men to address both perceived discrimination and medical mistrust.
Bécares, Laia; Zhang, Nan
2018-01-01
Abstract Experiencing discrimination is associated with poor mental health, but how cumulative experiences of perceived interpersonal discrimination across attributes, domains, and time are associated with mental disorders is still unknown. Using data from the Study of Women’s Health Across the Nation (1996–2008), we applied latent class analysis and generalized linear models to estimate the association between cumulative exposure to perceived interpersonal discrimination and older women’s mental health. We found 4 classes of perceived interpersonal discrimination, ranging from cumulative exposure to discrimination over attributes, domains, and time to none or minimal reports of discrimination. Women who experienced cumulative perceived interpersonal discrimination over time and across attributes and domains had the highest risk of depression (Center for Epidemiologic Studies Depression Scale score ≥16) compared with women in all other classes. This was true for all women regardless of race/ethnicity, although the type and severity of perceived discrimination differed across racial/ethnic groups. Cumulative exposure to perceived interpersonal discrimination across attributes, domains, and time has an incremental negative long-term association with mental health. Studies that examine exposure to perceived discrimination due to a single attribute in 1 domain or at 1 point in time underestimate the magnitude and complexity of discrimination and its association with health. PMID:29036550
An algal model for predicting attainment of tiered biological criteria of Maine's streams and rivers
Danielson, Thomas J.; Loftin, Cyndy; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth; Courtemanch, David L.; Drummond, Francis; Davies, Susan
2012-01-01
State water-quality professionals developing new biological assessment methods often have difficulty relating assessment results to narrative criteria in water-quality standards. An alternative to selecting index thresholds arbitrarily is to include the Biological Condition Gradient (BCG) in the development of the assessment method. The BCG describes tiers of biological community condition to help identify and communicate the position of a water body along a gradient of water quality ranging from natural to degraded. Although originally developed for fish and macroinvertebrate communities of streams and rivers, the BCG is easily adapted to other habitats and taxonomic groups. We developed a discriminant analysis model with stream algal data to predict attainment of tiered aquatic-life uses in Maine's water-quality standards. We modified the BCG framework for Maine stream algae, related the BCG tiers to Maine's tiered aquatic-life uses, and identified appropriate algal metrics for describing BCG tiers. Using a modified Delphi method, 5 aquatic biologists independently evaluated algal community metrics for 230 samples from streams and rivers across the state and assigned a BCG tier (1–6) and Maine water quality class (AA/A, B, C, nonattainment of any class) to each sample. We used minimally disturbed reference sites to approximate natural conditions (Tier 1). Biologist class assignments were unanimous for 53% of samples, and 42% of samples differed by 1 class. The biologists debated and developed consensus class assignments. A linear discriminant model built to replicate a priori class assignments correctly classified 95% of 150 samples in the model training set and 91% of 80 samples in the model validation set. Locally derived metrics based on BCG taxon tolerance groupings (e.g., sensitive, intermediate, tolerant) were more effective than were metrics developed in other regions. Adding the algal discriminant model to Maine's existing macroinvertebrate discriminant model will broaden detection of biological impairment and further diagnose sources of impairment. The algal discriminant model is specific to Maine, but our approach of explicitly tying an assessment tool to tiered aquatic-life goals is widely transferrable to other regions, taxonomic groups, and waterbody types.
Clery, Stephane; Cumming, Bruce G.
2017-01-01
Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal “noise” correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. SIGNIFICANCE STATEMENT Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work developed simple predictions to differentiate decoding schemes, and found support for optimal linear readout of early sensory populations with information-limiting correlations. Here, we observed decision-related activity for neurons in visual area V2 of macaques performing fine disparity discrimination, as yet the earliest site for this task. These findings, and previously reported results from V2 in a different task, deviated from the predictions for optimal linear readout of a population with information-limiting correlations. Our results suggest that optimal linear decoding of early sensory information is not a general decoding strategy used by the brain. PMID:28100751
Linear operating region in the ozone dial photon counting system
NASA Technical Reports Server (NTRS)
Andrawis, Madeleine
1995-01-01
Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the photocathode, however, at higher rates the limitations of the discrimination/counting system will cause the observed count rate to be non-linear with respect to the true count rate. Depending on the pulse height distribution and the discriminator level, the overlapping of pulses (pulse pile-up) can cause count loss or even an additional apparent count gain as the signal levels increase. Characterization of the system, including the pulse height distribution, the signal to noise ratio, and the effect of the discriminator threshold level, is critical in maximizing the linear operating region of the system, thus greatly increasing the useful dynamic range of the system.
Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
Presnyakova, Darya; Archer, Will; Braun, David R; Flear, Wesley
2015-01-01
This study investigates morphological differences between flakes produced via "core and flake" technologies and those resulting from bifacial shaping strategies. We investigate systematic variation between two technological groups of flakes using experimentally produced assemblages, and then apply the experimental model to the Cutting 10 Mid -Pleistocene archaeological collection from Elandsfontein, South Africa. We argue that a specific set of independent variables--and their interactions--including external platform angle, platform depth, measures of thickness variance and flake curvature should distinguish between these two technological groups. The role of these variables in technological group separation was further investigated using the Generalized Linear Model as well as Linear Discriminant Analysis. The Discriminant model was used to classify archaeological flakes from the Cutting 10 locality in terms of their probability of association, within either experimentally developed technological group. The results indicate that the selected independent variables play a central role in separating core and flake from bifacial technologies. Thickness evenness and curvature had the greatest effect sizes in both the Generalized Linear and Discriminant models. Interestingly the interaction between thickness evenness and platform depth was significant and played an important role in influencing technological group membership. The identified interaction emphasizes the complexity in attempting to distinguish flake production strategies based on flake morphological attributes. The results of the discriminant function analysis demonstrate that the majority of flakes at the Cutting 10 locality were not associated with the production of the numerous Large Cutting Tools found at the site, which corresponds with previous suggestions regarding technological behaviors reflected in this assemblage.
Presnyakova, Darya; Archer, Will; Braun, David R.; Flear, Wesley
2015-01-01
This study investigates morphological differences between flakes produced via “core and flake” technologies and those resulting from bifacial shaping strategies. We investigate systematic variation between two technological groups of flakes using experimentally produced assemblages, and then apply the experimental model to the Cutting 10 Mid -Pleistocene archaeological collection from Elandsfontein, South Africa. We argue that a specific set of independent variables—and their interactions—including external platform angle, platform depth, measures of thickness variance and flake curvature should distinguish between these two technological groups. The role of these variables in technological group separation was further investigated using the Generalized Linear Model as well as Linear Discriminant Analysis. The Discriminant model was used to classify archaeological flakes from the Cutting 10 locality in terms of their probability of association, within either experimentally developed technological group. The results indicate that the selected independent variables play a central role in separating core and flake from bifacial technologies. Thickness evenness and curvature had the greatest effect sizes in both the Generalized Linear and Discriminant models. Interestingly the interaction between thickness evenness and platform depth was significant and played an important role in influencing technological group membership. The identified interaction emphasizes the complexity in attempting to distinguish flake production strategies based on flake morphological attributes. The results of the discriminant function analysis demonstrate that the majority of flakes at the Cutting 10 locality were not associated with the production of the numerous Large Cutting Tools found at the site, which corresponds with previous suggestions regarding technological behaviors reflected in this assemblage. PMID:26111251
Ballabio, Davide; Consonni, Viviana; Mauri, Andrea; Todeschini, Roberto
2010-01-11
In multivariate regression and classification issues variable selection is an important procedure used to select an optimal subset of variables with the aim of producing more parsimonious and eventually more predictive models. Variable selection is often necessary when dealing with methodologies that produce thousands of variables, such as Quantitative Structure-Activity Relationships (QSARs) and highly dimensional analytical procedures. In this paper a novel method for variable selection for classification purposes is introduced. This method exploits the recently proposed Canonical Measure of Correlation between two sets of variables (CMC index). The CMC index is in this case calculated for two specific sets of variables, the former being comprised of the independent variables and the latter of the unfolded class matrix. The CMC values, calculated by considering one variable at a time, can be sorted and a ranking of the variables on the basis of their class discrimination capabilities results. Alternatively, CMC index can be calculated for all the possible combinations of variables and the variable subset with the maximal CMC can be selected, but this procedure is computationally more demanding and classification performance of the selected subset is not always the best one. The effectiveness of the CMC index in selecting variables with discriminative ability was compared with that of other well-known strategies for variable selection, such as the Wilks' Lambda, the VIP index based on the Partial Least Squares-Discriminant Analysis, and the selection provided by classification trees. A variable Forward Selection based on the CMC index was finally used in conjunction of Linear Discriminant Analysis. This approach was tested on several chemical data sets. Obtained results were encouraging.
Zhang, Jian; Li, Li; Gao, Nianfa; Wang, Depei; Gao, Qiang; Jiang, Shengping
2010-03-10
This work was undertaken to evaluate whether it is possible to determine the variety of a Chinese wine on the basis of its volatile compounds, and to investigate if discrimination models could be developed with the experimental wines that could be used for the commercial ones. A headspace solid-phase microextraction gas chromatographic (HS-SPME-GC) procedure was used to determine the volatile compounds and a blind analysis based on Ac/Ais (peak area of volatile compound/peak area of internal standard) was carried out for statistical purposes. One way analysis of variance (ANOVA), principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were used to process data and to develop discriminant models. Only 11 peaks enabled to differentiate and classify the experimental wines. SLDA allowed 100% recognition ability for three grape varieties, 100% prediction ability for Cabernet Sauvignon and Cabernet Gernischt wines, but only 92.31% for Merlot wines. A more valid and robust way was to use the PCA scores to do the discriminant analysis. When we performed SLDA this way, 100% recognition ability and 100% prediction ability were obtained. At last, 11 peaks which selected by SLDA from raw analysis set had been identified. When we demonstrated the models using commercial wines, the models showed 100% recognition ability for the wines collected directly from winery and without ageing, but only 65% for the others. Therefore, the varietal factor was currently discredited as a differentiating parameter for commercial wines in China. Nevertheless, this method could be applied as a screening tool and as a complement to other methods for grape base liquors which do not need ageing and blending procedures. 2010 Elsevier B.V. All rights reserved.
Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence
Raghava, Gajendra P. S.
2013-01-01
One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell’s response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We achieved accuracy from ∼54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid pair) profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-cell epitopes (http://crdd.osdd.net/raghava/lbtope/). PMID:23667458
Raymond M. Rice; Norman H. Pillsbury; Kurt W. Schmidt
1985-01-01
Abstract - A linear discriminant function, developed to predict debris avalanches after clearcut logging on a granitic batholith in northwestern California, was tested on data from two batholiths. The equation was inaccurate in predicting slope stability on one of them. A new equation based on slope, crown cover, and distance from a stream (retained from the original...
Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis.
Castaldo, R; Xu, W; Melillo, P; Pecchia, L; Santamaria, L; James, C
2016-08-01
Mental stress may cause cognitive dysfunctions, cardiovascular disorders and depression. Mental stress detection via short-term Heart Rate Variability (HRV) analysis has been widely explored in the last years, while ultra-short term (less than 5 minutes) HRV has been not. This study aims to detect mental stress using linear and non-linear HRV features extracted from 3 minutes ECG excerpts recorded from 42 university students, during oral examination (stress) and at rest after a vacation. HRV features were then extracted and analyzed according to the literature using validated software tools. Statistical and data mining analysis were then performed on the extracted HRV features. The best performing machine learning method was the C4.5 tree algorithm, which discriminated between stress and rest with sensitivity, specificity and accuracy rate of 78%, 80% and 79% respectively.
Fiskum, Charlotte; Andersen, Tonje G.; Bornas, Xavier; Aslaksen, Per M.; Flaten, Magne A.; Jacobsen, Karl
2018-01-01
Background: Internalizing psychopathology and dysregulated negative affect are characterized by dysregulation in the autonomic nervous system and reduced heart rate variability (HRV) due to increases in sympathetic activity alongside reduced vagal tone. The neurovisceral system is however, a complex nonlinear system, and nonlinear indices related to psychopathology are so far less studied in children. Essential nonlinear properties of a system can be found in two main domains: the informational domain and the invariant domain. sample entropy (SampEn) is a much-used method from the informational domain, while detrended fluctuation analysis (DFA) represents a widely-used method from the invariant domain. To see if nonlinear HRV can provide information beyond linear indices of autonomic activation, this study investigated SampEn and DFA as discriminators of internalizing psychopathology and negative affect alongside measures of vagally-mediated HRV and sympathetic activation. Material and Methods: Thirty-Two children with internalizing difficulties and 25 healthy controls (aged 9–13) were assessed with the Child Behavior Checklist and the Early Adolescent Temperament Questionnaire, Revised, giving an estimate of internalizing psychopathology, negative affect and effortful control, a protective factor against psychopathology. Five minute electrocardiogram and impedance cardiography recordings were collected during a resting baseline, giving estimates of SampEn, DFA short-term scaling exponent α1, root mean square of successive differences (RMSSD), and pre-ejection period (PEP). Between-group differences and correlations were assessed with parametric and non-parametric tests, and the relationships between cardiac variables, psychopathology and negative affect were assessed using generalized linear modeling. Results: SampEn and DFA were not significantly different between the groups. SampEn was weakly negatively related to heart rate (HR) in the controls, while DFA was moderately negatively related to RMSSD in both groups, and moderately positively related to HR in the clinical sample. SampEn was significantly associated with internalizing psychopathology and negative affect. DFA was significantly related to internalizing psychopathology. Conclusions: Higher invariant self-similarity was linked to less psychopathology. Higher informational entropy was related to less psychopathology and less negative affect, and may provide an index of the organizational flexibility of the neurovisceral system. PMID:29875679
Fiskum, Charlotte; Andersen, Tonje G; Bornas, Xavier; Aslaksen, Per M; Flaten, Magne A; Jacobsen, Karl
2018-01-01
Background: Internalizing psychopathology and dysregulated negative affect are characterized by dysregulation in the autonomic nervous system and reduced heart rate variability (HRV) due to increases in sympathetic activity alongside reduced vagal tone. The neurovisceral system is however, a complex nonlinear system, and nonlinear indices related to psychopathology are so far less studied in children. Essential nonlinear properties of a system can be found in two main domains: the informational domain and the invariant domain. sample entropy (SampEn) is a much-used method from the informational domain, while detrended fluctuation analysis (DFA) represents a widely-used method from the invariant domain. To see if nonlinear HRV can provide information beyond linear indices of autonomic activation, this study investigated SampEn and DFA as discriminators of internalizing psychopathology and negative affect alongside measures of vagally-mediated HRV and sympathetic activation. Material and Methods: Thirty-Two children with internalizing difficulties and 25 healthy controls (aged 9-13) were assessed with the Child Behavior Checklist and the Early Adolescent Temperament Questionnaire, Revised, giving an estimate of internalizing psychopathology, negative affect and effortful control, a protective factor against psychopathology. Five minute electrocardiogram and impedance cardiography recordings were collected during a resting baseline, giving estimates of SampEn, DFA short-term scaling exponent α 1 , root mean square of successive differences (RMSSD), and pre-ejection period (PEP). Between-group differences and correlations were assessed with parametric and non-parametric tests, and the relationships between cardiac variables, psychopathology and negative affect were assessed using generalized linear modeling. Results: SampEn and DFA were not significantly different between the groups. SampEn was weakly negatively related to heart rate (HR) in the controls, while DFA was moderately negatively related to RMSSD in both groups, and moderately positively related to HR in the clinical sample. SampEn was significantly associated with internalizing psychopathology and negative affect. DFA was significantly related to internalizing psychopathology. Conclusions: Higher invariant self-similarity was linked to less psychopathology. Higher informational entropy was related to less psychopathology and less negative affect, and may provide an index of the organizational flexibility of the neurovisceral system.
Discriminating the reaction types of plant type III polyketide synthases
Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu
2017-01-01
Abstract Motivation: Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. Results: We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. Availability and Implementation: pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/ Contact: goto@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334262
Brown-Johnson, Cati G.; Cataldo PhD, Janine K.; Orozco, Nicholas; Lisha, Nadra E.; Hickman, Norval; Prochaska, Judith J.
2015-01-01
Background and Objectives De-normalization of smoking as a public health strategy may create shame and isolation in vulnerable groups unable to quit. To examine the nature and impact of smoking stigma, we developed the Internalized Stigma of Smoking Inventory (ISSI), tested its validity and reliability, and explored factors that may contribute to smoking stigma. Methods We evaluated the ISSI in a sample of smokers with mental health diagnoses (N=956), using exploratory and confirmatory factor analysis, and assessed construct validity. Results Results reduced the ISSI to 8 items with three subscales: smoking self-stigma related to shame, felt stigma related to social isolation, and discrimination experiences. Discrimination was the most commonly endorsed of the three subscales. A multivariate generalized linear model predicted 21-30% of the variance in the smoking stigma subscales. Self-stigma was greatest among those intending to quit; felt stigma was highest among those experiencing stigma in other domains, namely ethnicity and mental illness-based; and smoking-related discrimination was highest among women, Caucasians, and those with more education. Discussion and Conclusion Smoking stigma may compound stigma experiences in other areas. Aspects of smoking stigma in the domains of shame, isolation, and discrimination related to modeled stigma responses, particularly readiness to quit and cigarette addiction and was found to be more salient for groups where tobacco use is least prevalent. Scientific Significance The ISSI measure is useful for quantifying smoking-related stigma in multiple domains. PMID:25930661
Development of a universal water signature for the LANDSAT-3 Multispectral Scanner, part 1
NASA Technical Reports Server (NTRS)
Schlosser, E. H.
1980-01-01
A generalized four channel hyperplane to discriminate water from nonwater was developed using LANDSAT-3 multispectral scaner (MSS) scenes and matching same/next day color infrared aerial photography. The MSS scenes varied in sun elevation angle from 40 to 58 deg. The 28 matching air photo frames contained over 1400 water bodies larger than one surface acre. A preliminary water discriminant, was used to screen the data and eliminate from further consideration all pixels distant from water in MSS spectral space. A linear discriminant was iteratively fitted to the labelled pixels. This discriminant correctly classified 98.7% of the water pixels and 98.6% of the nonwater pixels. The discriminant detected 91.3% of the 414 water bodies over 10 acres in surface area, and misclassified as water 36 groups of contiguous nonwater pixels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyev, V.V.; Salamov, A.A.; Lawrence, C.B.
1994-12-31
Discriminant analysis is applied to the problem of recognition 5`-, internal and 3`-exons in human DNA sequences. Specific recognition functions were developed for revealing exons of particular types. The method based on a splice site prediction algorithm that uses the linear Fisher discriminant to combine the information about significant triplet frequencies of various functional parts of splice site regions and preferences of oligonucleotide in protein coding and nation regions. The accuracy of our splice site recognition function is about 97%. A discriminant function for 5`-exon prediction includes hexanucleotide composition of upstream region, triplet composition around the ATG codon, ORF codingmore » potential, donor splice site potential and composition of downstream introit region. For internal exon prediction, we combine in a discriminant function the characteristics describing the 5`- intron region, donor splice site, coding region, acceptor splice site and Y-intron region for each open reading frame flanked by GT and AG base pairs. The accuracy of precise internal exon recognition on a test set of 451 exon and 246693 pseudoexon sequences is 77% with a specificity of 79% and a level of pseudoexon ORF prediction of 99.96%. The recognition quality computed at the level of individual nucleotides is 89%, for exon sequences and 98% for intron sequences. A discriminant function for 3`-exon prediction includes octanucleolide composition of upstream nation region, triplet composition around the stop codon, ORF coding potential, acceptor splice site potential and hexanucleotide composition of downstream region. We unite these three discriminant functions in exon predicting program FEX (find exons). FEX exactly predicts 70% of 1016 exons from the test of 181 complete genes with specificity 73%, and 89% exons are exactly or partially predicted. On the average, 85% of nucleotides were predicted accurately with specificity 91%.« less
Vijay, Aishwarya; Earnshaw, Valerie A; Tee, Ying Chew; Pillai, Veena; White Hughto, Jaclyn M; Clark, Kirsty; Kamarulzaman, Adeeba; Altice, Frederick L; Wickersham, Jeffrey A
2018-01-01
Transgender people are frequent targets of discrimination. Discrimination against transgender people in the context of healthcare can lead to poor health outcomes and facilitate the growth of health disparities. This study explores factors associated with medical doctors' intentions to discriminate against transgender people in Malaysia. A total of 436 physicians at two major university medical centers in Kuala Lumpur, Malaysia, completed an online survey. Sociodemographic characteristics, stigma-related constructs, and intentions to discriminate against transgender people were measured. Bivariate and multivariate linear regression were used to evaluate independent covariates of discrimination intent. Medical doctors who felt more fearful of transgender people and more personal shame associated with transgender people expressed greater intention to discriminate against transgender people, whereas doctors who endorsed the belief that transgender people deserve good care reported lower discrimination intent. Stigma-related constructs accounted for 42% of the variance and 8% was accounted for by sociodemographic characteristics. Constructs associated with transgender stigma play an important role in medical doctors' intentions to discriminate against transgender patients. Development of interventions to improve medical doctors' knowledge about and attitudes toward transgender people are necessary to reduce discriminatory intent in healthcare settings.
Rosenthal, Lisa; Earnshaw, Valerie A; Lewis, Tené T; Reid, Allecia E; Lewis, Jessica B; Stasko, Emily C; Tobin, Jonathan N; Ickovics, Jeannette R
2015-04-01
We aimed to contribute to growing research and theory suggesting the importance of examining patterns of change over time and critical life periods to fully understand the effects of discrimination on health, with a focus on the period of pregnancy and postpartum and mental health outcomes. We used hierarchical linear modeling to examine changes across pregnancy and postpartum in everyday discrimination and the resulting consequences for mental health among predominantly Black and Latina, socioeconomically disadvantaged young women who were receiving prenatal care in New York City. Patterns of change in experiences with discrimination varied according to age. Among the youngest participants, discrimination increased from the second to third trimesters and then decreased to lower than the baseline level by 1 year postpartum; among the oldest participants, discrimination decreased from the second trimester to 6 months postpartum and then returned to the baseline level by 1 year postpartum. Within-subjects changes in discrimination over time predicted changes in depressive and anxiety symptoms at subsequent points. Discrimination more strongly predicted anxiety symptoms among participants reporting food insecurity. Our results support a life course approach to understanding the impact of experiences with discrimination on health and when to intervene.
Personality and affect characteristics of outpatients with depression.
Petrocelli, J V; Glaser, B A; Calhoun, G B; Campbell, L F
2001-08-01
This investigation was designed to examine the relationship between depression severity and personality disorders measured by the Millon Clinical Multiaxial Inventory-II (Millon, 1987) and affectivity measured by the Positive Affectivity/Negative Affectivity Schedule (Watson, Clark, & Tellegen, 1988). Discriminant analyses were employed to identify the personality and affective dimensions that maximally discriminate between 4 different levels of depressive severity. Differences between the 4 levels of depressive severity are suggestive of unique patterns of personality characteristics. Discriminant analysis showed that 74.8% of the cases were correctly classified by a single linear discriminant function, and that 61% of the variance in depression severity was accounted for by selected personality and affect variables. Results extend current conceptualizations of comorbidity and are discussed with respect to depression severity.
Forest discrimination with multipolarization imaging radar
NASA Technical Reports Server (NTRS)
Ford, J. P.; Wickland, D. E.
1985-01-01
The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.
A comprehensive simulation study on classification of RNA-Seq data.
Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet
2017-01-01
RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.
Classification of burst and suppression in the neonatal electroencephalogram
NASA Astrophysics Data System (ADS)
Löfhede, J.; Löfgren, N.; Thordstein, M.; Flisberg, A.; Kjellmer, I.; Lindecrantz, K.
2008-12-01
Fisher's linear discriminant (FLD), a feed-forward artificial neural network (ANN) and a support vector machine (SVM) were compared with respect to their ability to distinguish bursts from suppressions in electroencephalograms (EEG) displaying a burst-suppression pattern. Five features extracted from the EEG were used as inputs. The study was based on EEG signals from six full-term infants who had suffered from perinatal asphyxia, and the methods have been trained with reference data classified by an experienced electroencephalographer. The results are summarized as the area under the curve (AUC), derived from receiver operating characteristic (ROC) curves for the three methods. Based on this, the SVM performs slightly better than the others. Testing the three methods with combinations of increasing numbers of the five features shows that the SVM handles the increasing amount of information better than the other methods.
Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine
NASA Astrophysics Data System (ADS)
Santoso, Noviyanti; Wibowo, Wahyu
2018-03-01
A financial difficulty is the early stages before the bankruptcy. Bankruptcies caused by the financial distress can be seen from the financial statements of the company. The ability to predict financial distress became an important research topic because it can provide early warning for the company. In addition, predicting financial distress is also beneficial for investors and creditors. This research will be made the prediction model of financial distress at industrial companies in Indonesia by comparing the performance of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) combined with variable selection technique. The result of this research is prediction model based on hybrid Stepwise-SVM obtains better balance among fitting ability, generalization ability and model stability than the other models.
Perceptual asymmetry in texture perception.
Williams, D; Julesz, B
1992-07-15
A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.
Socioeconomic status discrimination and C-reactive protein in African-American and White adults.
Van Dyke, Miriam E; Vaccarino, Viola; Dunbar, Sandra B; Pemu, Priscilla; Gibbons, Gary H; Quyyumi, Arshed A; Lewis, Tené T
2017-08-01
We examined the association between socioeconomic status (SES) discrimination and C-reactive protein (CRP) in a biracial cohort of middle-aged adults using an intersectionality framework. Participants were 401 African-American and White adults from a population-based cohort in the Southeastern United States. SES discrimination was self-reported with a modified Experiences of Discrimination Scale, and CRP levels were assayed from blood samples. Linear regression analyses were used to examine the associations among SES discrimination, race, education, and CRP after controlling for age, gender, racial and gender discrimination, financial and general stress, body mass index, smoking, sleep quality, and depressive symptoms. Intersectional effects were tested using race×SES discrimination, education×SES discrimination and race×education×SES discrimination interactions. Adjusting for sociodemographics, racial discrimination, gender discrimination, and all relevant two-way interaction terms, we observed a significant race×education×SES discrimination interaction (p=0.019). In adjusted models stratified by race and education, SES discrimination was associated with elevated CRP among higher educated African-Americans (β=0.29, p=0.018), but not lower educated African-Americans (β=-0.13, p=0.32); or lower educated (β=-0.02, p=0.92) or higher educated (β=-0.01, p=0.90) Whites. Findings support the relevance of SES discrimination as an important discriminatory stressor for CRP specifically among higher educated African-Americans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantum teleportation via quantum channels with non-maximal Schmidt rank
NASA Astrophysics Data System (ADS)
Solís-Prosser, M. A.; Jiménez, O.; Neves, L.; Delgado, A.
2013-03-01
We study the problem of teleporting unknown pure states of a single qudit via a pure quantum channel with non-maximal Schmidt rank. We relate this process to the discrimination of linearly dependent symmetric states with the help of the maximum-confidence discrimination strategy. We show that with a certain probability, it is possible to teleport with a fidelity larger than the fidelity optimal deterministic teleportation.
Yamakado, Minoru; Tanaka, Takayuki; Nagao, Kenji; Imaizumi, Akira; Komatsu, Michiharu; Daimon, Takashi; Miyano, Hiroshi; Tani, Mizuki; Toda, Akiko; Yamamoto, Hiroshi; Horimoto, Katsuhisa; Ishizaka, Yuko
2017-11-03
Fatty liver disease (FLD) increases the risk of diabetes, cardiovascular disease, and steatohepatitis, which leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, the early detection of FLD is necessary. We aimed to find a quantitative and feasible model for discriminating the FLD, based on plasma free amino acid (PFAA) profiles. We constructed models of the relationship between PFAA levels in 2,000 generally healthy Japanese subjects and the diagnosis of FLD by abdominal ultrasound scan by multiple logistic regression analysis with variable selection. The performance of these models for FLD discrimination was validated using an independent data set of 2,160 subjects. The generated PFAA-based model was able to identify FLD patients. The area under the receiver operating characteristic curve for the model was 0.83, which was higher than those of other existing liver function-associated markers ranging from 0.53 to 0.80. The value of the linear discriminant in the model yielded the adjusted odds ratio (with 95% confidence intervals) for a 1 standard deviation increase of 2.63 (2.14-3.25) in the multiple logistic regression analysis with known liver function-associated covariates. Interestingly, the linear discriminant values were significantly associated with the progression of FLD, and patients with nonalcoholic steatohepatitis also exhibited higher values.
Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing
NASA Astrophysics Data System (ADS)
Tian, Q.; Fainman, Y.; Lee, Sing H.
1989-02-01
The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.
NASA Astrophysics Data System (ADS)
Rabidas, Rinku; Midya, Abhishek; Chakraborty, Jayasree; Sadhu, Anup; Arif, Wasim
2018-02-01
In this paper, Curvelet based local attributes, Curvelet-Local configuration pattern (C-LCP), is introduced for the characterization of mammographic masses as benign or malignant. Amid different anomalies such as micro- calcification, bilateral asymmetry, architectural distortion, and masses, the reason for targeting the mass lesions is due to their variation in shape, size, and margin which makes the diagnosis a challenging task. Being efficient in classification, multi-resolution property of the Curvelet transform is exploited and local information is extracted from the coefficients of each subband using Local configuration pattern (LCP). The microscopic measures in concatenation with the local textural information provide more discriminating capability than individual. The measures embody the magnitude information along with the pixel-wise relationships among the neighboring pixels. The performance analysis is conducted with 200 mammograms of the DDSM database containing 100 mass cases of each benign and malignant. The optimal set of features is acquired via stepwise logistic regression method and the classification is carried out with Fisher linear discriminant analysis. The best area under the receiver operating characteristic curve and accuracy of 0.95 and 87.55% are achieved with the proposed method, which is further compared with some of the state-of-the-art competing methods.
Liu, Xuemei; Gu, Zhixin; Guo, Yuan; Liu, Jingjing; Ma, Ming; Chen, Bo; Wang, Liping
2017-04-15
Paper spray-mass spectrometry (PS-MS) is a rapid, solvent-efficient, and high-throughput analytical method for analyzing complex samples. In this study, a PS-MS method was developed to obtain MS profiles of Aurantii Fructus Immaturus (aka Zhishi in Chinese) in positive and negative ion modes. In combination with multivariate analyses, including principal component analysis and cluster analysis, the PS-MS profiles of 25 batches of Zhishi were discriminated in 25 batches of Citri Reticulatae Pericarpium Viride (aka Qingpi in Chinese; an adulterant of Zhishi). Moreover, a rapid quantitative analysis of synephrine, a prescriptive quality control component of Zhishi listed in the Chinese Pharmacopoeia, was conducted with PS-MS using synephrine-d2 as an internal standard (IS). The linearity range was 1.68-16.8μg/mL (R 2 =0.9985), the limit of quantitation was 0.5μg/mL. Relative standard deviations in the intra- and inter-day precision of the MS were 4.87 and 4.90%, respectively. Compared with HPLC results, there was no significant difference in the quantitation of synephrine. This study demonstrated that the PS-MS method is useful for the rapid discrimination and quality control of Zhishi samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Self-Reported Experiences of Discrimination and Depression in Native Hawaiians.
Antonio, Mapuana Ck; Ahn, Hyeong Jun; Ing, Claire Townsend; Dillard, Adrienne; Cassel, Kevin; Kekauoha, B Puni; Kaholokula, Joseph Keawe'aimoku
2016-09-01
Discrimination is an acute and chronic stressor that negatively impacts the health of many ethnic groups in the United States. Individuals who perceive increased levels of discrimination are at risk of experiencing psychological distress and symptoms of depression. No study to date has examined the relationship between perceived discrimination and mental health in Native Hawaiians. The purpose of this study is to explore the relationship between perceived discrimination and depression based on the Homestead Health Survey mailed to Native Hawaiian residents of Hawaiian Home Lands. This study also explores the role of cultural identity and how it may impact experiences of discrimination and symptoms of depression. Based on cross-sectional data obtained from 104 Native Hawaiian residents, a significant positive correlation was found between perceived discrimination and symptoms of depression (r= 0.32, P<.001). Cultural identity did not significantly correlate with discrimination or depression. Multiple linear regression analyses indicate that the relationship between depression and discrimination remained statistically significant (coefficient estimate of 0.18; P<.01), after accounting for differences in socio-demographics and degree of identification with the Native Hawaiian and American cultures. These findings are consistent with other studies that have focused on the effects of discrimination on psychological wellbeing for other ethnic minority populations.
Self-Reported Experiences of Discrimination and Depression in Native Hawaiians
Ahn, Hyeong Jun; Ing, Claire Townsend; Dillard, Adrienne; Cassel, Kevin; Kekauoha, B Puni; Kaholokula, Joseph Keawe‘aimoku
2016-01-01
Discrimination is an acute and chronic stressor that negatively impacts the health of many ethnic groups in the United States. Individuals who perceive increased levels of discrimination are at risk of experiencing psychological distress and symptoms of depression. No study to date has examined the relationship between perceived discrimination and mental health in Native Hawaiians. The purpose of this study is to explore the relationship between perceived discrimination and depression based on the Homestead Health Survey mailed to Native Hawaiian residents of Hawaiian Home Lands. This study also explores the role of cultural identity and how it may impact experiences of discrimination and symptoms of depression. Based on cross-sectional data obtained from 104 Native Hawaiian residents, a significant positive correlation was found between perceived discrimination and symptoms of depression (r= 0.32, P<.001). Cultural identity did not significantly correlate with discrimination or depression. Multiple linear regression analyses indicate that the relationship between depression and discrimination remained statistically significant (coefficient estimate of 0.18; P<.01), after accounting for differences in socio-demographics and degree of identification with the Native Hawaiian and American cultures. These findings are consistent with other studies that have focused on the effects of discrimination on psychological wellbeing for other ethnic minority populations. PMID:27688952
Racial Discrimination and Alcohol Use: The Moderating Role of Religious Orientation.
Parenteau, Stacy C; Waters, Kristen; Cox, Brittany; Patterson, Tarsha; Carr, Richard
2017-01-02
An outgrowth of research has established a relationship between racial discrimination and alcohol use, as well as factors that moderate this association. The main objective of this study was to determine if religious orientation moderates the relationship between perceived racial discrimination and alcohol use. This study utilized a cross-sectional data collection strategy to examine the relationship among discrimination, religious orientation, and alcohol use among undergraduate students (N = 349) at a midsize southeastern university. Data was collected in 2014. Participants completed a demographic questionnaire, the General Ethnic Discrimination Scale, the Extrinsic/Intrinsic Religious Orientation Scale-Revised and the Drinking and Drug Habits Questionnaire. Analyses using hierarchical linear regression indicate a significant interaction effect (lifetime discrimination × extrinsic religious orientation) on problem drinking. Additional moderation analyses reveal a significant interaction effect between lifetime discrimination and the extrinsic-personal religious orientation on problem drinking. Results suggest that an extrinsic religious orientation, and particularly, an extrinsic-personal religious orientation, moderates the relationship between lifetime discrimination and problem drinking, suggesting that turning to religion for comfort and protection, rather than for the superficial purpose of seeing/making friends at church, may buffer against the deleterious effects of discrimination-specifically, engaging in problem drinking to cope with the stress of discrimination. Limitations, directions for future research, and clinical implications are discussed.
Contrast effects on speed perception for linear and radial motion.
Champion, Rebecca A; Warren, Paul A
2017-11-01
Speed perception is vital for safe activity in the environment. However, considerable evidence suggests that perceived speed changes as a function of stimulus contrast, with some investigators suggesting that this might have meaningful real-world consequences (e.g. driving in fog). In the present study we investigate whether the neural effects of contrast on speed perception occur at the level of local or global motion processing. To do this we examine both speed discrimination thresholds and contrast-dependent speed perception for two global motion configurations that have matched local spatio-temporal structure. Specifically we compare linear and radial configurations, the latter of which arises very commonly due to self-movement. In experiment 1 the stimuli comprised circular grating patches. In experiment 2, to match stimuli even more closely, motion was presented in multiple local Gabor patches equidistant from central fixation. Each patch contained identical linear motion but the global configuration was either consistent with linear or radial motion. In both experiments 1 and 2, discrimination thresholds and contrast-induced speed biases were similar in linear and radial conditions. These results suggest that contrast-based speed effects occur only at the level of local motion processing, irrespective of global structure. This result is interpreted in the context of previous models of speed perception and evidence suggesting differences in perceived speed of locally matched linear and radial stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oka, Hiroshi; Tanaka, Masaru; Kobayashi, Seiichiro; Argenziano, Giuseppe; Soyer, H Peter; Nishikawa, Takeji
2004-04-01
As a first step to develop a screening system for pigmented skin lesions, we performed digital discriminant analyses between early melanomas and Clark naevi. A total of 59 cases of melanoma, including 23 melanoma in situ and 36 thin invasive melanomas (Breslow thickness < or =0.75 mm), and 188 clinically equivocal, histopathologically diagnosed Clark naevi were used in our study. After calculating 62 mathematical variables related to the colour, texture, asymmetry and circularity based on the dermoscopic findings of the pigmented skin lesions, we performed multivariate stepwise discriminant analysis using these variables to differentiate melanomas from naevi. The sensitivities and specificities of our model were 94.4 and 98.4%, respectively, for discriminating between melanomas (Breslow thickness < or =0.75 mm) and Clark naevi, and 73.9 and 85.6%, respectively, for discriminating between melanoma in situ and Clark naevi. Our algorithm accurately discriminated invasive melanomas from Clark naevi, but not melanomas in situ from Clark naevi.
Discrimination, Acculturation and Other Predictors of Depression among Pregnant Hispanic Women
Walker, Janiece L.; Ruiz, R. Jeanne; Chinn, Juanita J.; Marti, Nathan; Ricks, Tiffany N.
2012-01-01
Objective The purpose of our study was to examine the effects of socioeconomic status, acculturative stress, discrimination, and marginalization as predictors of depression in pregnant Hispanic women. Design A prospective observational design was used. Setting Central and Gulf coast areas of Texas in obstetrical offices. Participants A convenience sample of 515 pregnant, low income, low medical risk, and self-identified Hispanic women who were between 22–24 weeks gestation was used to collect data. Measures The predictor variables were socioeconomic status, discrimination, acculturative stress, and marginalization. The outcome variable was depression. Results Education, frequency of discrimination, age, and Anglo marginality were significant predictors of depressive symptoms in a linear regression model, F (6, 458) = 8.36, P<.0001. Greater frequency of discrimination was the strongest positive predictor of increased depressive symptoms. Conclusions It is important that health care providers further understand the impact that age and experiences of discrimination throughout the life course have on depressive symptoms during pregnancy. PMID:23140083
Vavougios, George D; Doskas, Triantafyllos; Konstantopoulos, Kostas
2018-05-01
Dysarthrophonia is a predominant symptom in many neurological diseases, affecting the quality of life of the patients. In this study, we produced a discriminant function equation that can differentiate MS patients from healthy controls, using electroglottographic variables not analyzed in a previous study. We applied stepwise linear discriminant function analysis in order to produce a function and score derived from electroglottographic variables extracted from a previous study. The derived discriminant function's statistical significance was determined via Wilk's λ test (and the associated p value). Finally, a 2 × 2 confusion matrix was used to determine the function's predictive accuracy, whereas the cross-validated predictive accuracy is estimated via the "leave-one-out" classification process. Discriminant function analysis (DFA) was used to create a linear function of continuous predictors. DFA produced the following model (Wilk's λ = 0.043, χ2 = 388.588, p < 0.0001, Tables 3 and 4): D (MS vs controls) = 0.728*DQx1 mean monologue + 0.325*CQx monologue + 0.298*DFx1 90% range monologue + 0.443*DQx1 90% range reading - 1.490*DQx1 90% range monologue. The derived discriminant score (S1) was used subsequently in order to form the coordinates of a ROC curve. Thus, a cutoff score of - 0.788 for S1 corresponded to a perfect classification (100% sensitivity and 100% specificity, p = 1.67e -22 ). Consistent with previous findings, electroglottographic evaluation represents an easy to implement and potentially important assessment in MS patients, achieving adequate classification accuracy. Further evaluation is needed to determine its use as a biomarker.
Discriminating Among Probability Weighting Functions Using Adaptive Design Optimization
Cavagnaro, Daniel R.; Pitt, Mark A.; Gonzalez, Richard; Myung, Jay I.
2014-01-01
Probability weighting functions relate objective probabilities and their subjective weights, and play a central role in modeling choices under risk within cumulative prospect theory. While several different parametric forms have been proposed, their qualitative similarities make it challenging to discriminate among them empirically. In this paper, we use both simulation and choice experiments to investigate the extent to which different parametric forms of the probability weighting function can be discriminated using adaptive design optimization, a computer-based methodology that identifies and exploits model differences for the purpose of model discrimination. The simulation experiments show that the correct (data-generating) form can be conclusively discriminated from its competitors. The results of an empirical experiment reveal heterogeneity between participants in terms of the functional form, with two models (Prelec-2, Linear in Log Odds) emerging as the most common best-fitting models. The findings shed light on assumptions underlying these models. PMID:24453406
Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray
Sysoev, Victor V.; Kiselev, Ilya; Frietsch, Markus; Goschnick, Joachim
2004-01-01
The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 °C/mm and 6.7 °C/mm, applied across the sensor elements (segments) of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis) coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.
Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-07-01
An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.
Fasmer, Ole Bernt; Mjeldheim, Kristin; Førland, Wenche; Hansen, Anita L; Syrstad, Vigdis Elin Giæver; Oedegaard, Ketil J; Berle, Jan Øystein
2016-08-11
Attention Deficit Hyperactivity Disorder (ADHD) is a heterogeneous disorder. Therefore it is important to look for factors that can contribute to better diagnosis and classification of these patients. The aims of the study were to characterize adult psychiatric out-patients with a mixture of mood, anxiety and attentional problems using an objective neuropsychological test of attention combined with an assessment of mood instability. Newly referred patients (n = 99; aged 18-65 years) requiring diagnostic evaluation of ADHD, mood or anxiety disorders were recruited, and were given a comprehensive diagnostic evaluation including the self-report form of the cyclothymic temperament scale and Conner's Continuous Performance Test II (CPT-II). In addition to the traditional measures from this test we have extracted raw data and analysed time series using linear and non-linear mathematical methods. Fifty patients fulfilled criteria for ADHD, while 49 did not, and were given other psychiatric diagnoses (clinical controls). When compared to the clinical controls the ADHD patients had more omission and commission errors, and higher reaction time variability. Analyses of response times showed higher values for skewness in the ADHD patients, and lower values for sample entropy and symbolic dynamics. Among the ADHD patients 59 % fulfilled criteria for a cyclothymic temperament, and this group had higher reaction time variability and lower scores on complexity than the group without this temperament. The CPT-II is a useful instrument in the assessment of ADHD in adult patients. Additional information from this test was obtained by analyzing response times using linear and non-linear methods, and this showed that ADHD patients with a cyclothymic temperament were different from those without this temperament.
Gender classification of running subjects using full-body kinematics
NASA Astrophysics Data System (ADS)
Williams, Christina M.; Flora, Jeffrey B.; Iftekharuddin, Khan M.
2016-05-01
This paper proposes novel automated gender classification of subjects while engaged in running activity. The machine learning techniques include preprocessing steps using principal component analysis followed by classification with linear discriminant analysis, and nonlinear support vector machines, and decision-stump with AdaBoost. The dataset consists of 49 subjects (25 males, 24 females, 2 trials each) all equipped with approximately 80 retroreflective markers. The trials are reflective of the subject's entire body moving unrestrained through a capture volume at a self-selected running speed, thus producing highly realistic data. The classification accuracy using leave-one-out cross validation for the 49 subjects is improved from 66.33% using linear discriminant analysis to 86.74% using the nonlinear support vector machine. Results are further improved to 87.76% by means of implementing a nonlinear decision stump with AdaBoost classifier. The experimental findings suggest that the linear classification approaches are inadequate in classifying gender for a large dataset with subjects running in a moderately uninhibited environment.
Ficko, Bradley W; NDong, Christian; Giacometti, Paolo; Griswold, Karl E; Diamond, Solomon G
2017-05-01
Magnetic nanoparticles (MNPs) are an emerging platform for targeted diagnostics in cancer. An important component needed for translation of MNPs is the detection and quantification of targeted MNPs bound to tumor cells. This study explores the feasibility of a multifrequency nonlinear magnetic spectroscopic method that uses excitation and pickup coils and is capable of discriminating between quantities of bound and unbound MNPs in 0.5 ml samples of KB and Igrov human cancer cell lines. The method is tested over a range of five concentrations of MNPs from 0 to 80 μg/ml and five concentrations of cells from 50 to 400 000 count per ml. A linear model applied to the magnetic spectroscopy data was able to simultaneously measure bound and unbound MNPs with agreement between the model-fit and lab assay measurements (p < 0.001). The detectable iron of the presented method to bound and unbound MNPs was < 2 μg in a 0.5 ml sample. The linear model parameters used to determine the quantities of bound and unbound nanoparticles in KB cells were also used to measure the bound and unbound MNP in the Igrov cell line and vice versa. Nonlinear spectroscopic measurement of MNPs may be a useful method for studying targeted MNPs in oncology. Determining the quantity of bound and unbound MNP in an unknown sample using a linear model represents an exciting opportunity to translate multifrequency nonlinear spectroscopy methods to in vivo applications where MNPs could be targeted to cancer cells.
Global estimation of long-term persistence in annual river runoff
NASA Astrophysics Data System (ADS)
Markonis, Y.; Moustakis, Y.; Nasika, C.; Sychova, P.; Dimitriadis, P.; Hanel, M.; Máca, P.; Papalexiou, S. M.
2018-03-01
Long-term persistence (LTP) of annual river runoff is a topic of ongoing hydrological research, due to its implications to water resources management. Here, we estimate its strength, measured by the Hurst coefficient H, in 696 annual, globally distributed, streamflow records with at least 80 years of data. We use three estimation methods (maximum likelihood estimator, Whittle estimator and least squares variance) resulting in similar mean values of H close to 0.65. Subsequently, we explore potential factors influencing H by two linear (Spearman's rank correlation, multiple linear regression) and two non-linear (self-organizing maps, random forests) techniques. Catchment area is found to be crucial for medium to larger watersheds, while climatic controls, such as aridity index, have higher impact to smaller ones. Our findings indicate that long-term persistence is weaker than found in other studies, suggesting that enhanced LTP is encountered in large-catchment rivers, were the effect of spatial aggregation is more intense. However, we also show that the estimated values of H can be reproduced by a short-term persistence stochastic model such as an auto-regressive AR(1) process. A direct consequence is that some of the most common methods for the estimation of H coefficient, might not be suitable for discriminating short- and long-term persistence even in long observational records.
Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R
2010-01-01
The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.
Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma
NASA Astrophysics Data System (ADS)
Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan
2009-09-01
We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.
Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko
2017-01-01
Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas. PMID:28369067
Reisner, Sari L.; White Hughto, Jaclyn M.; Gamarel, Kristi E.; Keuroghlian, Alex S.; Mizock, Lauren; Pachankis, John
2016-01-01
Discrimination has been shown to disproportionately burden transgender people; however, there has been a lack of clinical attention to the mental health sequelae of discrimination, including posttraumatic stress disorder (PTSD) symptoms. Additionally, few studies contextualize discrimination alongside other traumatic stressors in predicting PTSD symptomatology. The current study sought to fill these gaps. A community-based sample of 412 transgender adults (mean age 33, SD=13; 63% female-to-male spectrum; 19% people of color; 88% sampled online) completed a cross-sectional self-report survey of everyday discrimination experiences and PTSD symptoms. Multivariable linear regression models examined the association between self-reported everyday discrimination experiences, number of attributed domains of discrimination, and PTSD symptoms, adjusting for prior trauma, sociodemographics, and psychosocial co-morbidity. The mean number of discrimination attributions endorsed was 4.8 (SD=2.4) and the five most frequently reported reasons for discrimination were: gender identity and/or expression (83%), masculine and feminine appearance (79%), sexual orientation (68%), sex (57%), and age (44%). Higher everyday discrimination scores (β=0.25; 95% CL=0.21–0.30) and greater number of attributed reasons for discrimination experiences (β=0.05; 95% CL=0.01–0.10) were independently associated with PTSD symptoms, even after adjusting for prior trauma experiences. Everyday discrimination experiences from multiple sources necessitate clinical consideration in treatment for PTSD symptoms in transgender people. PMID:26866637
Reisner, Sari L; White Hughto, Jaclyn M; Gamarel, Kristi E; Keuroghlian, Alex S; Mizock, Lauren; Pachankis, John E
2016-10-01
Discrimination has been shown to disproportionately burden transgender people; however, there has been a lack of clinical attention to the mental health sequelae of discrimination, including posttraumatic stress disorder (PTSD) symptoms. Additionally, few studies contextualize discrimination alongside other traumatic stressors in predicting PTSD symptomatology. The current study sought to fill these gaps. A community-based sample of 412 transgender adults (mean age 33, SD = 13; 63% female-to-male spectrum; 19% people of color; 88% sampled online) completed a cross-sectional self-report survey of everyday discrimination experiences and PTSD symptoms. Multivariable linear regression models examined the association between self-reported everyday discrimination experiences, number of attributed domains of discrimination, and PTSD symptoms, adjusting for prior trauma, sociodemographics, and psychosocial comorbidity. The mean number of discrimination attributions endorsed was 4.8 (SD = 2.4) and the 5 most frequently reported reasons for discrimination were: gender identity and/or expression (83%), masculine and feminine appearance (79%), sexual orientation (68%), sex (57%), and age (44%). Higher everyday discrimination scores (β = 0.25; 95% CL [0.21, 0.30]) and greater number of attributed reasons for discrimination experiences (β = 0.05; 95% CL [0.01, 0.10]) were independently associated with PTSD symptoms, even after adjusting for prior trauma experiences. Everyday discrimination experiences from multiple sources necessitate clinical consideration in treatment for PTSD symptoms in transgender people. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Kmeans-ICA based automatic method for ocular artifacts removal in a motorimagery classification.
Bou Assi, Elie; Rihana, Sandy; Sawan, Mohamad
2014-01-01
Electroencephalogram (EEG) recordings aroused as inputs of a motor imagery based BCI system. Eye blinks contaminate the spectral frequency of the EEG signals. Independent Component Analysis (ICA) has been already proved for removing these artifacts whose frequency band overlap with the EEG of interest. However, already ICA developed methods, use a reference lead such as the ElectroOculoGram (EOG) to identify the ocular artifact components. In this study, artifactual components were identified using an adaptive thresholding by means of Kmeans clustering. The denoised EEG signals have been fed into a feature extraction algorithm extracting the band power, the coherence and the phase locking value and inserted into a linear discriminant analysis classifier for a motor imagery classification.
NASA Astrophysics Data System (ADS)
Daniel, Amuthachelvi; Prakasarao, Aruna; Ganesan, Singaravelu
2018-02-01
The molecular level changes associated with oncogenesis precede the morphological changes in cells and tissues. Hence molecular level diagnosis would promote early diagnosis of the disease. Raman spectroscopy is capable of providing specific spectral signature of various biomolecules present in the cells and tissues under various pathological conditions. The aim of this work is to develop a non-linear multi-class statistical methodology for discrimination of normal, neoplastic and malignant cells/tissues. The tissues were classified as normal, pre-malignant and malignant by employing Principal Component Analysis followed by Artificial Neural Network (PC-ANN). The overall accuracy achieved was 99%. Further, to get an insight into the quantitative biochemical composition of the normal, neoplastic and malignant tissues, a linear combination of the major biochemicals by non-negative least squares technique was fit to the measured Raman spectra of the tissues. This technique confirms the changes in the major biomolecules such as lipids, nucleic acids, actin, glycogen and collagen associated with the different pathological conditions. To study the efficacy of this technique in comparison with histopathology, we have utilized Principal Component followed by Linear Discriminant Analysis (PC-LDA) to discriminate the well differentiated, moderately differentiated and poorly differentiated squamous cell carcinoma with an accuracy of 94.0%. And the results demonstrated that Raman spectroscopy has the potential to complement the good old technique of histopathology.
NASA Astrophysics Data System (ADS)
Hutchings, Joanne; Kendall, Catherine; Shepherd, Neil; Barr, Hugh; Stone, Nicholas
2010-11-01
Rapid Raman mapping has the potential to be used for automated histopathology diagnosis, providing an adjunct technique to histology diagnosis. The aim of this work is to evaluate the feasibility of automated and objective pathology classification of Raman maps using linear discriminant analysis. Raman maps of esophageal tissue sections are acquired. Principal component (PC)-fed linear discriminant analysis (LDA) is carried out using subsets of the Raman map data (6483 spectra). An overall (validated) training classification model performance of 97.7% (sensitivity 95.0 to 100% and specificity 98.6 to 100%) is obtained. The remainder of the map spectra (131,672 spectra) are projected onto the classification model resulting in Raman images, demonstrating good correlation with contiguous hematoxylin and eosin (HE) sections. Initial results suggest that LDA has the potential to automate pathology diagnosis of esophageal Raman images, but since the classification of test spectra is forced into existing training groups, further work is required to optimize the training model. A small pixel size is advantageous for developing the training datasets using mapping data, despite lengthy mapping times, due to additional morphological information gained, and could facilitate differentiation of further tissue groups, such as the basal cells/lamina propria, in the future, but larger pixels sizes (and faster mapping) may be more feasible for clinical application.
Ogrinc, N; Kosir, I J; Kocjancic, M; Kidric, J
2001-03-01
The authenticity and geographical origin of wines produced in Slovenia were investigated by a combination of IRMS and SNIF-NMR methods. A total of 102 grape samples of selected wines were carefully collected in three different wine-growing regions of Slovenia in 1996, 1997, and 1998. The stable isotope data were evaluated using principal component analysis (PCA) and linear discriminant analysis (LDA). The isotopic ratios to discriminate between coastal and continental regions are the deuterium/hydrogen isotopic ratio of the methylene site in the ethanol molecule (D/H)(II) and delta(13)C values; including also delta(18)O values in the PCA and LDA made possible separation between the two continental regions Drava and Sava. It was found that delta(18)O values are modified by the meteorological events during grape ripening and harvest. The usefulness of isotopic parameters for detecting adulteration or watering and to assess the geographical origin of wines is improved only when they are used concurrently.
Valdés, Arantzazu; Vidal, Lorena; Beltrán, Ana; Canals, Antonio; Garrigós, María Carmen
2015-06-10
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box-Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.
High wavenumber Raman spectroscopic characterization of normal and oral cancer using blood plasma
NASA Astrophysics Data System (ADS)
Pachaiappan, Rekha; Prakasarao, Aruna; Suresh Kumar, Murugesan; Singaravelu, Ganesan
2017-02-01
Blood plasma possesses the biomolecules released from cells/tissues after metabolism and reflects the pathological conditions of the subjects. The analysis of biofluids for disease diagnosis becomes very attractive in the diagnosis of cancers due to the ease in the collection of samples, easy to transport, multiple sampling for regular screening of the disease and being less invasive to the patients. Hence, the intention of this study was to apply near-infrared (NIR) Raman spectroscopy in the high wavenumber (HW) region (2500-3400 cm-1) for the diagnosis of oral malignancy using blood plasma. From the Raman spectra it is observed that the biomolecules protein and lipid played a major role in the discrimination between groups. The diagnostic algorithms based on principal components analysis coupled with linear discriminant analysis (PCA-LDA) with the leave-one-patient-out cross-validation method on HW Raman spectra yielded a promising results in the identification of oral malignancy. The details of results will be discussed.
Detection of Leukemia with Blood Samples Using Raman Spectroscopy and Multivariate Analysis
NASA Astrophysics Data System (ADS)
Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.
2009-06-01
The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. Blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteers. The imprint was put under the microscope and several points were chosen for Raman measurement. All the spectra were collected by a confocal Raman micro-spectroscopy (Renishaw) with a NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) are applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman Spectroscopy could be a new technique to study the degree of damage to the bone marrow using just blood samples instead of biopsies, treatment very painful for patients.
Discrimination of serum Raman spectroscopy between normal and colorectal cancer
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi
2011-07-01
Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.
Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy.
Ruoff, Kaspar; Luginbühl, Werner; Künzli, Raphael; Iglesias, María Teresa; Bogdanov, Stefan; Bosset, Jacques Olivier; von der Ohe, Katharina; von der Ohe, Werner; Amado, Renato
2006-09-06
The potential of Fourier transform mid-infrared spectroscopy (FT-MIR) using an attenuated total reflectance (ATR) cell was evaluated for the authentication of 11 unifloral (acacia, alpine rose, chestnut, dandelion, heather, lime, rape, fir honeydew, metcalfa honeydew, oak honeydew) and polyfloral honey types (n = 411 samples) previously classified with traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis, the error rates of the discriminant models being calculated by using Bayes' theorem. The error rates ranged from <0.1% (polyfloral and heather honeys as well as honeydew honeys from metcalfa, oak, and fir) to 8.3% (alpine rose honey) in both jackknife classification and validation, depending on the honey type considered. This study indicates that ATR-MIR spectroscopy is a valuable tool for the authentication of the botanical origin and quality control and may also be useful for the determination of the geographical origin of honey.
Progress toward the determination of correct classification rates in fire debris analysis.
Waddell, Erin E; Song, Emma T; Rinke, Caitlin N; Williams, Mary R; Sigman, Michael E
2013-07-01
Principal components analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to develop a multistep classification procedure for determining the presence of ignitable liquid residue in fire debris and assigning any ignitable liquid residue present into the classes defined under the American Society for Testing and Materials (ASTM) E 1618-10 standard method. A multistep classification procedure was tested by cross-validation based on model data sets comprised of the time-averaged mass spectra (also referred to as total ion spectra) of commercial ignitable liquids and pyrolysis products from common building materials and household furnishings (referred to simply as substrates). Fire debris samples from laboratory-scale and field test burns were also used to test the model. The optimal model's true-positive rate was 81.3% for cross-validation samples and 70.9% for fire debris samples. The false-positive rate was 9.9% for cross-validation samples and 8.9% for fire debris samples. © 2013 American Academy of Forensic Sciences.
Al JABBARI, Youssef S.; TSAKIRIDIS, Peter; ELIADES, George; AL-HADLAQ, Solaiman M.; ZINELIS, Spiros
2012-01-01
Objective The aim of this study was to quantify the surface area, volume and specific surface area of endodontic files employing quantitative X-ray micro computed tomography (mXCT). Material and Methods Three sets (six files each) of the Flex-Master Ni-Ti system (Nº 20, 25 and 30, taper .04) were utilized in this study. The files were scanned by mXCT. The surface area and volume of all files were determined from the cutting tip up to 16 mm. The data from the surface area, volume and specific area were statistically evaluated using the one-way ANOVA and SNK multiple comparison tests at α=0.05, employing the file size as a discriminating variable. The correlation between the surface area and volume with nominal ISO sizes were tested employing linear regression analysis. Results The surface area and volume of Nº 30 files showed the highest value followed by Nº 25 and Nº 20 and the differences were statistically significant. The Nº 20 files showed a significantly higher specific surface area compared to Nº 25 and Nº 30. The increase in surface and volume towards higher file sizes follows a linear relationship with the nominal ISO sizes (r2=0.930 for surface area and r2=0.974 for volume respectively). Results indicated that the surface area and volume demonstrated an almost linear increase while the specific surface area exhibited an abrupt decrease towards higher sizes. Conclusions This study demonstrates that mXCT can be effectively applied to discriminate very small differences in the geometrical features of endodontic micro-instruments, while providing quantitative information for their geometrical properties. PMID:23329248
Roine, Antti; Saviauk, Taavi; Kumpulainen, Pekka; Karjalainen, Markus; Tuokko, Antti; Aittoniemi, Janne; Vuento, Risto; Lekkala, Jukka; Lehtimäki, Terho; Tammela, Teuvo L; Oksala, Niku K J
2014-01-01
Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) -based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.
Devang Divakar, Darshan; John, Jacob; Al Kheraif, Abdulaziz Abdullah; Mavinapalla, Seema; Ramakrishnaiah, Ravikumar; Vellappally, Sajith; Hashem, Mohamed Ibrahim; Dalati, M H N; Durgesh, B H; Safadi, Rima A; Anil, Sukumaran
2016-11-01
Aim: To test the validity of sex discrimination using lateral cephalometric radiograph and discriminant function analysis in Indigenous (Kuruba) children and adolescents of Coorg, Karnataka, India. Methods and materials: Six hundred and sixteen lateral cephalograms of 380 male and 236 females of age ranging from 6.5 to 18 years of Indigenous population of Coorg, Karnataka, India called Kurubas having a normal occlusion were included in the study. Lateral cephalograms were obtained in a standard position with teeth in centric occlusion and lips relaxed. Each radiograph was traced and cephalometric landmarks were measured using digital calliper. Calculations of 24 cephalometric measurements were performed. Results: Males exhibited significantly greater mean angular and linear cephalometric measurements as compared to females ( p < 0.05) (Table 5). Also, significant differences ( p < 0.05) were observed in all the variables according to age (Table 6). Out of 24 variables, only ULTc predicts the gender. The reliability of the derived discriminant function was assessed among study subjects; 100% of males and females were recognized correctly. Conclusion: The final outcome of this study validates the existence of sexual dimorphism in the skeleton as early as 6.5 years of age. There is a need for further research to determine other landmarks that can help in sex determination and norms for Indigenous (Kuruba) population and also other Indigenous population of Coorg, Karnataka, India.
Lê, Laetitia Minh Mai; Eveleigh, Luc; Hasnaoui, Ikram; Prognon, Patrice; Baillet-Guffroy, Arlette; Caudron, Eric
2017-05-10
The aim of this study was to investigate near infrared spectroscopy (NIRS) combined to chemometric analysis to discriminate and quantify three antibiotics by direct measurement in plastic syringes.Solutions of benzylpenicillin (PENI), amoxicillin (AMOX) and amoxicillin/clavulanic acid (AMOX/CLAV) were analyzed at therapeutic concentrations in glass vials and plastic syringes with NIR spectrometer by direct measurement. Chemometric analysis using partial least squares regression and discriminative analysis was conducted to develop qualitative and quantitative calibration models. Discrimination of the three antibiotics was optimal for concentrated solutions with 100% of accuracy. For quantitative analysis, the three antibiotics furnished a linear response (R²>0.9994) for concentrations ranging from 0.05 to 0.2 g/mL for AMOX, 0.1 to 1.0 MUI/mL for PENI and 0.005 to 0.05 g/mL for AMOX/CLAV with excellent repeatability (maximum 1.3%) and intermediate precision (maximum of 3.2%). Based on proposed models, 94.4% of analyzed AMOX syringes, 80.0% of AMOX/CLAV syringes and 85.7% of PENI syringes were compliant with a relative error including the limit of ± 15%.NIRS as rapid, non-invasive and non-destructive analytical method represents a potentially powerful tool to further develop for securing the drug administration circuit of healthcare institutions to ensure that patients receive the correct product at the right dose. Copyright © 2017 Elsevier B.V. All rights reserved.
Ishino, Takashi; Ragaee, Mahmoud Ali; Maruhashi, Tatsuya; Kajikawa, Masato; Higashi, Yukihito; Sonoyama, Toru; Takeno, Sachio; Hirakawa, Katsuhiro
Cochlear implantation (CI) has been the most successful procedure for restoring hearing in a patient with severe and profound hearing loss. However, possibly owing to the variable brain functions of each patient, its performance and the associated patient satisfaction are widely variable. The authors hypothesize that peripheral and cerebral circulation can be assessed by noninvasive and globally available methods, yielding superior presurgical predictive factors of the performance of CI in adult patients with postlingual hearing loss who are scheduled to undergo CI. Twenty-two adult patients with cochlear implants for postlingual hearing loss were evaluated using Doppler sonography measurement of the cervical arteries (reflecting cerebral blood flow), flow-mediated dilation (FMD; reflecting the condition of cerebral arteries), and their pre-/post-CI best score on a monosyllabic discrimination test (pre-/post-CI best monosyllabic discrimination [BMD] score). Correlations between post-CI BMD score and the other factors were examined using univariate analysis and stepwise multiple linear regression analysis. The prediction factors were calculated by examining the receiver-operating characteristic curve between post-CI BMD score and the significantly positively correlated factors. Age and duration of deafness had a moderately negative correlation. The mean velocity of the internal carotid arteries and FMD had a moderate-to-strong positive correlation with the post-CI BMD score in univariate analysis. Stepwise multiple linear regression analysis revealed that only FMD was significantly positively correlated with post-CI BMD score. Analysis of the receiver-operating characteristic curve showed that a FMD cutoff score of 1.8 significantly predicted post-CI BMD score. These data suggest that FMD is a convenient, noninvasive, and widely available tool for predicting the efficacy of cochlear implants. An FMD cutoff score of 1.8 could be a good index for determining whether patients will hear well with cochlear implants. It could also be used to predict whether cochlear implants will provide good speech recognition benefits to candidates, even if their speech discrimination is poor. This FMD index could become a useful predictive tool for candidates with poor speech discrimination to determine the efficacy of CI before surgery.
Discrimination of curvature from motion during smooth pursuit eye movements and fixation.
Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R
2017-09-01
Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found in perceptual discrimination of curvature. Copyright © 2017 the American Physiological Society.
Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi
2016-01-01
The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361
Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi
2016-01-01
The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.
Wold, Jens Petter; Veiseth-Kent, Eva; Høst, Vibeke; Løvland, Atle
2017-01-01
The main objective of this work was to develop a method for rapid and non-destructive detection and grading of wooden breast (WB) syndrome in chicken breast fillets. Near-infrared (NIR) spectroscopy was chosen as detection method, and an industrial NIR scanner was applied and tested for large scale on-line detection of the syndrome. Two approaches were evaluated for discrimination of WB fillets: 1) Linear discriminant analysis based on NIR spectra only, and 2) a regression model for protein was made based on NIR spectra and the estimated concentrations of protein were used for discrimination. A sample set of 197 fillets was used for training and calibration. A test set was recorded under industrial conditions and contained spectra from 79 fillets. The classification methods obtained 99.5-100% correct classification of the calibration set and 100% correct classification of the test set. The NIR scanner was then installed in a commercial chicken processing plant and could detect incidence rates of WB in large batches of fillets. Examples of incidence are shown for three broiler flocks where a high number of fillets (9063, 6330 and 10483) were effectively measured. Prevalence of WB of 0.1%, 6.6% and 8.5% were estimated for these flocks based on the complete sample volumes. Such an on-line system can be used to alleviate the challenges WB represents to the poultry meat industry. It enables automatic quality sorting of chicken fillets to different product categories. Manual laborious grading can be avoided. Incidences of WB from different farms and flocks can be tracked and information can be used to understand and point out main causes for WB in the chicken production. This knowledge can be used to improve the production procedures and reduce today's extensive occurrence of WB.
Combustion monitoring of a water tube boiler using a discriminant radial basis network.
Sujatha, K; Pappa, N
2011-01-01
This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U.
Ishii, K; Shinohara, K; Ishikawa, M; Baba, M; Isobe, M; Okamoto, A; Kitajima, S; Sasao, M
2010-10-01
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-γ pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and γ-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the γ-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, K.; Okamoto, A.; Kitajima, S.
2010-10-15
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-{gamma} pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and {gamma}-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the {gamma}-ray contamination in most of themore » beam heating phase was negligible compared with the statistical error with 10 ms time resolution.« less
Clery, Stephane; Cumming, Bruce G; Nienborg, Hendrikje
2017-01-18
Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal "noise" correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work developed simple predictions to differentiate decoding schemes, and found support for optimal linear readout of early sensory populations with information-limiting correlations. Here, we observed decision-related activity for neurons in visual area V2 of macaques performing fine disparity discrimination, as yet the earliest site for this task. These findings, and previously reported results from V2 in a different task, deviated from the predictions for optimal linear readout of a population with information-limiting correlations. Our results suggest that optimal linear decoding of early sensory information is not a general decoding strategy used by the brain. Copyright © 2017 the authors 0270-6474/17/370715-11$15.00/0.
A photonic chip based frequency discriminator for a high performance microwave photonic link.
Marpaung, David; Roeloffzen, Chris; Leinse, Arne; Hoekman, Marcel
2010-12-20
We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.
Linear photonic frequency discriminator on As₂S₃-ring-on-Ti:LiNbO₃ hybrid platform.
Kim, Jaehyun; Sung, Won Ju; Eknoyan, Ohannes; Madsen, Christi K
2013-10-21
We report a photonic frequency discriminator built on the vertically integrated As₂S₃-ring-on-Ti:LiNbO₃ hybrid platform. The discriminator consists of a Mach Zehnder interferometer (MZI) formed by the optical path length difference (OPD) between polarization modes of Ti-diffused waveguide on LiNbO₃ substrate and a vertically integrated As₂S₃ race-track ring resonator on top of the substrate. The figures of merit of the device, enhancement of the signal-to-3rd order intermodulation distortion (IMD3) power ratio and corresponding 3rd order intercept point (IP3) over a traditional MZI, are demonstrated through device characterization.
NASA Astrophysics Data System (ADS)
Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-03-01
A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.
Stereoscopic processing of crossed and uncrossed disparities in the human visual cortex.
Li, Yuan; Zhang, Chuncheng; Hou, Chunping; Yao, Li; Zhang, Jiacai; Long, Zhiying
2017-12-21
Binocular disparity provides a powerful cue for depth perception in a stereoscopic environment. Despite increasing knowledge of the cortical areas that process disparity from neuroimaging studies, the neural mechanism underlying disparity sign processing [crossed disparity (CD)/uncrossed disparity (UD)] is still poorly understood. In the present study, functional magnetic resonance imaging (fMRI) was used to explore different neural features that are relevant to disparity-sign processing. We performed an fMRI experiment on 27 right-handed healthy human volunteers by using both general linear model (GLM) and multi-voxel pattern analysis (MVPA) methods. First, GLM was used to determine the cortical areas that displayed different responses to different disparity signs. Second, MVPA was used to determine how the cortical areas discriminate different disparity signs. The GLM analysis results indicated that shapes with UD induced significantly stronger activity in the sub-region (LO) of the lateral occipital cortex (LOC) than those with CD. The results of MVPA based on region of interest indicated that areas V3d and V3A displayed higher accuracy in the discrimination of crossed and uncrossed disparities than LOC. The results of searchlight-based MVPA indicated that the dorsal visual cortex showed significantly higher prediction accuracy than the ventral visual cortex and the sub-region LO of LOC showed high accuracy in the discrimination of crossed and uncrossed disparities. The results may suggest the dorsal visual areas are more discriminative to the disparity signs than the ventral visual areas although they are not sensitive to the disparity sign processing. Moreover, the LO in the ventral visual cortex is relevant to the recognition of shapes with different disparity signs and discriminative to the disparity sign.
NASA Technical Reports Server (NTRS)
Parada, N. D. J.; Almeido, R., Jr.
1982-01-01
The applicability of LANDSAT MSS imagery for discriminating geobotanical associations observed in zones of cassiterite-rich metasomatic alterations in the granitic body of Serra da Pedra Branca was investigated. Computer compatible tapes of dry and rainy season imagery were analyzed. Image enlargement, corrections, linear contrast stretch, and ratioing of noncorrelated spectral bands were performed using the Image 100 with a grey scale of 256 levels between zero and 255. Only bands 5 and 7 were considered. Band ratioing of noncorrelated channels (5 and 7) of rainy season imagery permits distinction of areas with different vegetation coverage percentage, which corresponds to geobotanial associations in the area studied. The linear contrast stretch of channel 5, especially of the dry season image is very unsatisfactory in this area.
Analysis of ultrasound pulse-echo images for characterization of muscle disease
NASA Astrophysics Data System (ADS)
Leeman, Sidney; Heckmatt, John Z.
1996-04-01
This study aims to extract quantifiable indices characterizing ultrasound propagation and scattering in skeletal muscle, from data acquired using a real-time linear array scanner in a paediatric muscle clinic, in order to establish early diagnosis of Duchenne muscular dystrophy in young children, as well as to chart the progressive severity of the disease. Approximately 40 patients with gait disorders, aged between 1 and 11 years, were scanned with a real-time linear array ultrasound scanner, at 5 MHz. A control group consisted of approximately 50 boys, in the same age range, with no evidence or history of muscle disease. Results show that ultrasound quantitative methods can provide a tight clustering of normal data, and also provide a basis for charting the degree of change in diseased muscle. The most significant (quantitative) parameters derive from the frequency of the attenuation and the muscle echogenicity. The approach provides a discrimination method that is more sensitive than visual assessment of the corresponding image by even an experienced observer. There are also indications that the need for traumatic muscle biopsy may be obviated in some cases.
Muthusamy, Hariharan; Polat, Kemal; Yaacob, Sazali
2015-01-01
In the recent years, many research works have been published using speech related features for speech emotion recognition, however, recent studies show that there is a strong correlation between emotional states and glottal features. In this work, Mel-frequency cepstralcoefficients (MFCCs), linear predictive cepstral coefficients (LPCCs), perceptual linear predictive (PLP) features, gammatone filter outputs, timbral texture features, stationary wavelet transform based timbral texture features and relative wavelet packet energy and entropy features were extracted from the emotional speech (ES) signals and its glottal waveforms(GW). Particle swarm optimization based clustering (PSOC) and wrapper based particle swarm optimization (WPSO) were proposed to enhance the discerning ability of the features and to select the discriminating features respectively. Three different emotional speech databases were utilized to gauge the proposed method. Extreme learning machine (ELM) was employed to classify the different types of emotions. Different experiments were conducted and the results show that the proposed method significantly improves the speech emotion recognition performance compared to previous works published in the literature. PMID:25799141
Halanych, Jewell H; Safford, Monika M; Shikany, James M; Cuffee, Yendelela; Person, Sharina D; Scarinci, Isabel C; Kiefe, Catarina I; Allison, Jeroan J
2011-01-01
Racial/ethnic discrimination has adverse effects on health outcomes, as does low income and education, but the relationship between discrimination, income, and education is not well characterized. In this study, we describe the associations of discrimination with income and education in elderly African Americans (AA) and European Americans (EA). Cross-sectional observational study involving computer-assisted telephone survey. Southeastern United States. AA and EA Medicare managed care enrollees. Discrimination was measured with the Experience of Discrimination (EOD) scale (range 0-35). We used zero-inflated negative binomial models to determine the association between self-reported income and education and 1) presence of any discrimination and 2) intensity of discrimination. Among 1,800 participants (45% AA, 56% female, and mean age 73 years), EA reported less discrimination than AA (4% vs. 47%; P < .001). AA men reported more discrimination and more intense discrimination than AA women (EOD scores 4.35 vs. 2.50; P < .001). Both income and education were directly and linearly associated with both presence of discrimination and intensity of discrimination in AA, so that people with higher incomes and education experienced more discrimination. In adjusted models, predicted EOD scores among AA decreased with increasing age categories (3.42, 3.21, 2.99, 2.53; P < .01) and increased with increasing income (2.36, 3.44, 4.17; P < .001) and education categories (2.31, 3.09, 5.12; P < .001). This study suggests future research should focus less on differences between racial/ethnic groups and more on factors within minority populations that may contribute to healthcare disparities.
Response Classification Images in Vernier Acuity
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, B. L.; Ellis, Stephen R. (Technical Monitor)
1997-01-01
Orientation selective and local sign mechanisms have been proposed as the basis for vernier acuity judgments. Linear image features contributing to discrimination can be determined for a two choice task by adding external noise to the images and then averaging the noises separately for the four types of stimulus/response trials. This method is applied to a vernier acuity task with different spatial separations to compare the predictions of the two theories. Three well-practiced observers were presented around 5000 trials of a vernier stimulus consisting of two dark horizontal lines (5 min by 0.3 min) within additive low-contrast white noise. Two spatial separations were tested, abutting and a 10 min horizontal separation. The task was to determine whether the target lines were aligned or vertically offset. The noises were averaged separately for the four stimulus/response trial types (e.g., stimulus = offset, response = aligned). The sum of the two 'not aligned' images was then subtracted from the sum of the 'aligned' images to obtain an overall image. Spatially smoothed images were quantized according to expected variability in the smoothed images to allow estimation of the statistical significance of image features. The response images from the 10 min separation condition are consistent with the local sign theory, having the appearance of two linear operators measuring vertical position with opposite sign. The images from the abutting stimulus have the same appearance with the two operators closer together. The image predicted by an oriented filter model is similar, but has its greatest weight in the abutting region, while the response images fall to nonsignificance there. The response correlation image method, previously demonstrated for letter discrimination, clarifies the features used in vernier acuity.
Pavlovich, Matthew J; Dunn, Emily E; Hall, Adam B
2016-05-15
Commercial spices represent an emerging class of fuels for improvised explosives. Being able to classify such spices not only by type but also by brand would represent an important step in developing methods to analytically investigate these explosive compositions. Therefore, a combined ambient mass spectrometric/chemometric approach was developed to quickly and accurately classify commercial spices by brand. Direct analysis in real time mass spectrometry (DART-MS) was used to generate mass spectra for samples of black pepper, cayenne pepper, and turmeric, along with four different brands of cinnamon, all dissolved in methanol. Unsupervised learning techniques showed that the cinnamon samples clustered according to brand. Then, we used supervised machine learning algorithms to build chemometric models with a known training set and classified the brands of an unknown testing set of cinnamon samples. Ten independent runs of five-fold cross-validation showed that the training set error for the best-performing models (i.e., the linear discriminant and neural network models) was lower than 2%. The false-positive percentages for these models were 3% or lower, and the false-negative percentages were lower than 10%. In particular, the linear discriminant model perfectly classified the testing set with 0% error. Repeated iterations of training and testing gave similar results, demonstrating the reproducibility of these models. Chemometric models were able to classify the DART mass spectra of commercial cinnamon samples according to brand, with high specificity and low classification error. This method could easily be generalized to other classes of spices, and it could be applied to authenticating questioned commercial samples of spices or to examining evidence from improvised explosives. Copyright © 2016 John Wiley & Sons, Ltd.
Adaptive fusion of infrared and visible images in dynamic scene
NASA Astrophysics Data System (ADS)
Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi
2011-11-01
Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.
Assessment of pedophilia using hemodynamic brain response to sexual stimuli.
Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Beier, Klaus; Neutze, Janina; Deuschl, Günther; Mehdorn, Hubertus; Siebner, Hartwig; Bosinski, Hartmut
2012-02-01
Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability. To evaluate whether spatial response pattern to sexual stimuli as revealed by a change in the blood oxygen level-dependent signal facilitates the identification of pedophiles. During functional magnetic resonance imaging, pedophilic and nonpedophilic participants were briefly exposed to same- and opposite-sex images of nude children and adults. We calculated differences in blood oxygen level-dependent signals to child and adult sexual stimuli for each participant. The corresponding contrast images were entered into a group analysis to calculate whole-brain difference maps between groups. We calculated an expression value that corresponded to the group result for each participant. These expression values were submitted to 2 different classification algorithms: Fisher linear discriminant analysis and κ -nearest neighbor analysis. This classification procedure was cross-validated using the leave-one-out method. Section of Sexual Medicine, Medical School, Christian Albrechts University of Kiel, Kiel, Germany. We recruited 24 participants with pedophilia who were sexually attracted to either prepubescent girls (n = 11) or prepubescent boys (n = 13) and 32 healthy male controls who were sexually attracted to either adult women (n = 18) or adult men (n = 14). Sensitivity and specificity scores of the 2 classification algorithms. The highest classification accuracy was achieved by Fisher linear discriminant analysis, which showed a mean accuracy of 95% (100% specificity, 88% sensitivity). Functional brain response patterns to sexual stimuli contain sufficient information to identify pedophiles with high accuracy. The automatic classification of these patterns is a promising objective tool to clinically diagnose pedophilia.
General subspace learning with corrupted training data via graph embedding.
Bao, Bing-Kun; Liu, Guangcan; Hong, Richang; Yan, Shuicheng; Xu, Changsheng
2013-11-01
We address the following subspace learning problem: supposing we are given a set of labeled, corrupted training data points, how to learn the underlying subspace, which contains three components: an intrinsic subspace that captures certain desired properties of a data set, a penalty subspace that fits the undesired properties of the data, and an error container that models the gross corruptions possibly existing in the data. Given a set of data points, these three components can be learned by solving a nuclear norm regularized optimization problem, which is convex and can be efficiently solved in polynomial time. Using the method as a tool, we propose a new discriminant analysis (i.e., supervised subspace learning) algorithm called Corruptions Tolerant Discriminant Analysis (CTDA), in which the intrinsic subspace is used to capture the features with high within-class similarity, the penalty subspace takes the role of modeling the undesired features with high between-class similarity, and the error container takes charge of fitting the possible corruptions in the data. We show that CTDA can well handle the gross corruptions possibly existing in the training data, whereas previous linear discriminant analysis algorithms arguably fail in such a setting. Extensive experiments conducted on two benchmark human face data sets and one object recognition data set show that CTDA outperforms the related algorithms.
RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma
NASA Astrophysics Data System (ADS)
Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna
2016-10-01
Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.
2012-01-01
Objectives. I examined the association between everyday racial discrimination and depressive symptoms and explored the moderating role of 2 dimensions of masculine role norms, restrictive emotionality and self-reliance. Methods. Cross-sectional survey data from 674 African American men aged 18 years and older recruited primarily from barbershops in 4 US regions (2003–2010) were used. Direct and moderated associations were assessed with multivariate linear regression analyses for the overall sample and different age groups. Models were adjusted for recruitment site, sociodemographics, masculine role norms salience, and general social stress. Results. Everyday racial discrimination was associated with more depressive symptoms across all age groups. Higher restrictive emotionality was associated with more depressive symptoms among men aged 18 to 29 and 30 to 39 years. Self-reliance was associated with fewer depressive symptoms among men aged 18 to 29 years and 40 years and older. The positive association between everyday racial discrimination and depressive symptoms was stronger among men with high restrictive emotionality, but this moderated effect was limited to men older than 30 years. Conclusions. Interventions designed to reduce African American men’s depression instigated by racism should be life-course specific and address masculine role norms that encourage emotion restriction. PMID:22401515
A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem
2016-01-01
The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088
LCFIPlus: A framework for jet analysis in linear collider studies
NASA Astrophysics Data System (ADS)
Suehara, Taikan; Tanabe, Tomohiko
2016-02-01
We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.
Musci, Marilena; Yao, Shicong
2017-12-01
Pu-erh tea is a post-fermented tea that has recently gained popularity worldwide, due to potential health benefits related to the antioxidant activity resulting from its high polyphenolic content. The Folin-Ciocalteu method is a simple, rapid, and inexpensive assay widely applied for the determination of total polyphenol content. Over the past years, it has been subjected to many modifications, often without any systematic optimization or validation. In our study, we sought to optimize the Folin-Ciocalteu method, evaluate quality parameters including linearity, precision and stability, and then apply the optimized model to determine the total polyphenol content of 57 Chinese teas, including green tea, aged and ripened Pu-erh tea. Our optimized Folin-Ciocalteu method reduced analysis time, allowed for the analysis of a large number of samples, to discriminate among the different teas, and to assess the effect of the post-fermentation process on polyphenol content.
Spotting the difference in molecular dynamics simulations of biomolecules
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Kono, Hidetoshi
2016-08-01
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
Zhao, Xin; Cheung, Leo Wang-Kit
2007-01-01
Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that, even without any knowledge of the underlying generative model, the KIGP performed very close to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to microarray data analysis problems, especially to those that linear methods work awkwardly. The KIGP was also applied to four published microarray datasets, and the results showed that the KIGP performed better than or at least as well as any of the referred state-of-the-art methods did in all of these cases. Conclusion Mathematically built on the kernel-induced feature space concept under a Bayesian framework, the KIGP method presented in this paper provides a unified machine learning approach to explore both the linear and the possibly non-linear underlying relationship between the target features of a given binary disease classification problem and the related explanatory gene expression data. More importantly, it incorporates the model parameter tuning into the framework. The model selection problem is addressed in the form of selecting a proper kernel type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These properties and features are beneficial to most real-world applications. The algorithm is naturally robust in numerical computation. The simulation studies and the published data studies demonstrated that the proposed KIGP performs satisfactorily and consistently. PMID:17328811
Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
Efremov, Yuri M; Wang, Wen-Horng; Hardy, Shana D; Geahlen, Robert L; Raman, Arvind
2017-05-08
Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.
A long-term target detection approach in infrared image sequence
NASA Astrophysics Data System (ADS)
Li, Hang; Zhang, Qi; Li, Yuanyuan; Wang, Liqiang
2015-12-01
An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on non-linear histogram equalization, target candidates are coarse-to-fine segmented by using two self-adapt thresholds generated in the intensity space. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to iteratively estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.
Perceived racial, socioeconomic and gender discrimination and its impact on contraceptive choice
Kossler, Karla; Kuroki, Lindsay M.; Allsworth, Jenifer E.; Secura, Gina M.; Roehl, Kimberly A.; Peipert, Jeffrey F.
2012-01-01
Background The study was conducted to determine whether perceived racial, economic, and gender discrimination has an impact on contraception use and choice of method. Methods We analyzed the first 2,500 women, aged 14–45 years enrolled in the Contraceptive CHOICE Project, a prospective cohort study aimed to reduce barriers to long-acting reversible contraception. Items from the “Experiences of Discrimination” (EOD) scale measured experienced race-, gender-, and economic-based discrimination. Results Overall, 57% of women reported a history of discrimination. Thirty-three percent reported gender- or race-based discrimination and 24% reported discrimination attributed to socioeconomic status (SES). Prior to study enrollment, women reporting discrimination were more likely to report any contraception use (61% vs. 51%, p<0.001), but were more likely to use less effective methods (e.g., barrier methods, natural family planning or withdrawal; 41% vs. 32%, p<0.001). In adjusted analyses, gender-, race- or SES-based discrimination were associated with increased current use of less effective methods (adjusted risk ratio (aRR) 1.22, CI 1.06–1.41; aRR 1.25, CI 1.08–1.45; aRR 1.23, CI 1.06–1.43, respectively). After enrollment, 67% of women with history of experience of discrimination chose a long-acting reversible contraceptive method (intrauterine device or implantable) and 33% chose a depo-medroxyprogesterone acetate or contraceptive pill, patch or ring. Conclusions Discrimination negatively impacts a woman’s use of contraception. However, after financial and structural barriers to contraceptive use were eliminated, women with EOD overwhelmingly selected effective methods of contraception. Future interventions to improve access and utilization of contraception should focus on eliminating barriers and targeting interventions that encompass race-, gender-, and economic-based discrimination. PMID:21843693
Multifactorial discrimination as a fundamental cause of mental health inequities.
Khan, Mariam; Ilcisin, Misja; Saxton, Katherine
2017-03-04
The theory of fundamental causes explains why health disparities persist over time, even as risk factors, mechanisms, and diseases change. Using an intersectional framework, we evaluated multifactorial discrimination as a fundamental cause of mental health disparities. Using baseline data from the Project STRIDE: Stress, Identity, and Mental Health study, we examined the health effects of discrimination among individuals who self-identified as lesbian, gay, or bisexual. We used logistic and linear regression to assess whether multifactorial discrimination met the four criteria designating a fundamental cause, namely that the cause: 1) influences multiple health outcomes, 2) affects multiple risk factors, 3) involves access to resources that can be leveraged to reduce consequences of disease, and 4) reproduces itself in varied contexts through changing mechanisms. Multifactorial discrimination predicted high depression scores, psychological well-being, and substance use disorder diagnosis. Discrimination was positively associated with risk factors for high depression scores: chronic strain and total number of stressful life events. Discrimination was associated with significantly lower levels of mastery and self-esteem, protective factors for depressive symptomatology. Even after controlling for risk factors, discrimination remained a significant predictor for high depression scores. Among subjects with low depression scores, multifactorial discrimination also predicted anxiety and aggregate mental health scores. Multifactorial discrimination should be considered a fundamental cause of mental health inequities and may be an important cause of broad health disparities among populations with intersecting social identities.
Perceived racial, socioeconomic and gender discrimination and its impact on contraceptive choice.
Kossler, Karla; Kuroki, Lindsay M; Allsworth, Jenifer E; Secura, Gina M; Roehl, Kimberly A; Peipert, Jeffrey F
2011-09-01
The study was conducted to determine whether perceived racial, economic and gender discrimination has an impact on contraception use and choice of method. We analyzed the first 2,500 women aged 14-45 years enrolled in the Contraceptive CHOICE Project, a prospective cohort study aimed to reduce barriers to obtaining long-acting reversible contraception. Items from the "Experiences of Discrimination" (EOD) scale measured experienced race-, gender- and economic-based discrimination. Overall, 57% of women reported a history of discrimination. Thirty-three percent reported gender- or race-based discrimination, and 24% reported discrimination attributed to socioeconomic status (SES). Prior to study enrollment, women reporting discrimination were more likely to report any contraception use (61% vs. 52%, p<.001) but were more likely to use less effective methods (e.g., barrier methods, natural family planning or withdrawal; 41% vs. 32%, p<.001). In adjusted analyses, gender-, race- or SES-based discrimination were associated with increased current use of less effective methods [adjusted risk ratio (aRR) 1.22, 95% confidence interval (CI) 1.06-1.41; aRR 1.25, CI 1.08-1.45; aRR 1.23, CI 1.06-1.43, respectively]. After enrollment, 66% of women with a history of experience of discrimination chose a long-acting reversible contraceptive method (intrauterine device or implantable) and 35% chose a depo-medroxyprogesterone acetate or contraceptive pill, patch or ring. Discrimination negatively impacts a woman's use of contraception. However, after financial and structural barriers to contraceptive use were eliminated, women with EOD overwhelmingly selected effective methods of contraception. Future interventions to improve access and utilization of contraception should focus on eliminating barriers and targeting interventions that encompass race-, gender- and economic-based discrimination. Copyright © 2011 Elsevier Inc. All rights reserved.
Methods for the scientific study of discrimination and health: an ecosocial approach.
Krieger, Nancy
2012-05-01
The scientific study of how discrimination harms health requires theoretically grounded methods. At issue is how discrimination, as one form of societal injustice, becomes embodied inequality and is manifested as health inequities. As clarified by ecosocial theory, methods must address the lived realities of discrimination as an exploitative and oppressive societal phenomenon operating at multiple levels and involving myriad pathways across both the life course and historical generations. An integrated embodied research approach hence must consider (1) the structural level-past and present de jure and de facto discrimination; (2) the individual level-issues of domains, nativity, and use of both explicit and implicit discrimination measures; and (3) how current research methods likely underestimate the impact of racism on health.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin
2018-01-01
Noncontact discriminating human blood is significantly crucial for import-export ports and inspection and quarantine departments. We had already demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize noncontact human blood discrimination. However, the circulated blood vessels may be produced with different materials. The use of various kinds of blood tubes may have a negative effect on the discrimination, based on ;M+N; theory (Li et al., 2016). In this research, we explored the impact of different material of blood vessels, such as glass tube and plastic tube, on the prediction ability of the discrimination model. Furthermore, we searched for the modification method to reduce the influence from the blood tubes. Our work indicated that generalized diffuse reflectance method can greatly improve the discrimination accuracy. This research can greatly facilitate the application of noncontact discrimination method based on visible and near-infrared diffuse reflectance spectroscopy.
Psychometric functions for pure-tone frequency discrimination.
Dai, Huanping; Micheyl, Christophe
2011-07-01
The form of the psychometric function (PF) for auditory frequency discrimination is of theoretical interest and practical importance. In this study, PFs for pure-tone frequency discrimination were measured for several standard frequencies (200-8000 Hz) and levels [35-85 dB sound pressure level (SPL)] in normal-hearing listeners. The proportion-correct data were fitted using a cumulative-Gaussian function of the sensitivity index, d', computed as a power transformation of the frequency difference, Δf. The exponent of the power function corresponded to the slope of the PF on log(d')-log(Δf) coordinates. The influence of attentional lapses on PF-slope estimates was investigated. When attentional lapses were not taken into account, the estimated PF slopes on log(d')-log(Δf) coordinates were found to be significantly lower than 1, suggesting a nonlinear relationship between d' and Δf. However, when lapse rate was included as a free parameter in the fits, PF slopes were found not to differ significantly from 1, consistent with a linear relationship between d' and Δf. This was the case across the wide ranges of frequencies and levels tested in this study. Therefore, spectral and temporal models of frequency discrimination must account for a linear relationship between d' and Δf across a wide range of frequencies and levels. © 2011 Acoustical Society of America
Predicting implementation from organizational readiness for change: a study protocol
2011-01-01
Background There is widespread interest in measuring organizational readiness to implement evidence-based practices in clinical care. However, there are a number of challenges to validating organizational measures, including inferential bias arising from the halo effect and method bias - two threats to validity that, while well-documented by organizational scholars, are often ignored in health services research. We describe a protocol to comprehensively assess the psychometric properties of a previously developed survey, the Organizational Readiness to Change Assessment. Objectives Our objective is to conduct a comprehensive assessment of the psychometric properties of the Organizational Readiness to Change Assessment incorporating methods specifically to address threats from halo effect and method bias. Methods and Design We will conduct three sets of analyses using longitudinal, secondary data from four partner projects, each testing interventions to improve the implementation of an evidence-based clinical practice. Partner projects field the Organizational Readiness to Change Assessment at baseline (n = 208 respondents; 53 facilities), and prospectively assesses the degree to which the evidence-based practice is implemented. We will conduct predictive and concurrent validities using hierarchical linear modeling and multivariate regression, respectively. For predictive validity, the outcome is the change from baseline to follow-up in the use of the evidence-based practice. We will use intra-class correlations derived from hierarchical linear models to assess inter-rater reliability. Two partner projects will also field measures of job satisfaction for convergent and discriminant validity analyses, and will field Organizational Readiness to Change Assessment measures at follow-up for concurrent validity (n = 158 respondents; 33 facilities). Convergent and discriminant validities will test associations between organizational readiness and different aspects of job satisfaction: satisfaction with leadership, which should be highly correlated with readiness, versus satisfaction with salary, which should be less correlated with readiness. Content validity will be assessed using an expert panel and modified Delphi technique. Discussion We propose a comprehensive protocol for validating a survey instrument for assessing organizational readiness to change that specifically addresses key threats of bias related to halo effect, method bias and questions of construct validity that often go unexplored in research using measures of organizational constructs. PMID:21777479
Cykert, David M; Williams, Joni S; Walker, Rebekah J; Davis, Kimberly S; Egede, Leonard E
2017-01-01
Discrimination is linked to negative health outcomes, but little research has investigated how the cumulative effect of discrimination impacts perceptions of care. This study investigated the influence of cumulative perceived discrimination on quality of care, patient-centeredness, and dissatisfaction with care in adults with type 2 diabetes. Six hundred two patients from two primary care clinics in Charleston, SC. Linear regression models assessed associations between perceived discrimination and quality of care, patient-centered care, and dissatisfaction with care. The models control for race, site, age, gender, marital status, duration of diabetes, education, hours worked weekly, income, and health status. The mean age was 61.5years, with 66.3% non-Hispanic blacks, and 41.9% earning less than $20,000 annually. In final adjusted analyses, lower patient-centered care was associated with a higher discrimination score (β=-0.28; p=0.006), reporting at least 1 category of discrimination (β=-1.47; p=0.002), and reporting at least 2 categories of discrimination (β=-1.34; p=0.004). Dissatisfaction with care was associated with at least 2 categories of discrimination (β=0.45; p=0.002). No significant associations were seen with quality of care indicators. Increased cumulative discrimination was associated with decreased feeling of patient-centeredness and increased dissatisfaction with care. However, these perceptions of discrimination were not significantly associated with quality indicators. Copyright © 2017 Elsevier Inc. All rights reserved.
Anglin, Deidre M; Lui, Florence; Espinosa, Adriana; Tikhonov, Aleksandr; Ellman, Lauren
2018-06-01
Studies suggest strong ethnic identity generally protects against negative mental health outcomes associated with racial discrimination. In light of evidence suggesting racial discrimination may enhance psychosis risk in racial and ethnic minority (REM) populations, the present study explored the relationship between ethnic identity and attenuated positive psychotic symptoms (APPS) and whether ethnic identity moderates the association between racial discrimination and these symptoms. A sample of 644 non-help-seeking REM emerging adults was administered self-report inventories for psychosis risk, experiences of discrimination and ethnic identity. Latent class analysis was applied to determine the nature and number of ethnic identity types in this population. The direct association between ethnic identity and APPS and the interaction between ethnic identity and racial discrimination on APPS were determined in linear regression analyses. Results indicated three ethnic identity classes (very low, moderate to high and very high). Ethnic identity was not directly related to APPS; however, it was related to APPS under racially discriminating conditions. Specifically, participants who experienced discrimination in the moderate to high or very high ethnic identity classes reported fewer symptoms than participants who experienced discrimination in the very low ethnic identity class. Strong ethnic group affiliation and connection may serve a protective function for psychosis risk in racially discriminating environments and contexts among REM young adults. The possible social benefits of strong ethnic identification among REM youth who face racial discrimination should be explored further in clinical high-risk studies. © 2016 John Wiley & Sons Australia, Ltd.
Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.
Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine
2016-05-01
Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis progression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Partially supervised speaker clustering.
Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S
2012-05-01
Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical model-based distance metrics, 2) our advocated use of the cosine distance metric yields consistent increases in the speaker clustering performance as compared to the commonly used euclidean distance metric, 3) our partially supervised speaker clustering concept and strategies significantly improve the speaker clustering performance over the baselines, and 4) our proposed LSDA algorithm further leads to state-of-the-art speaker clustering performance.
Yen, I H; Ragland, D R; Greiner, B A; Fisher, J M
1999-01-01
There is evidence of an association between occupational stress and alcohol consumption. This study investigates the association between workplace racial discrimination and alcohol consumption in a sample of urban transit operators. During 1993-1995, after undergoing a medical exam, 1,542 transit operators completed an interview. Depending on the outcome, we used logistic or linear regression models to examine the cross-sectional relationship between discrimination experience and alcohol consumption. Operators who reported discrimination in at least one situation, out of a possible four, were more likely to have had negative life consequences as a result of drinking (adjusted OR = 1.97; 95% CI, 1.20-3.83) and were more likely to be classified as having an alcohol disorder (OR = 1.56 [0.96-2.54]), compared to those who reported no instances of workplace discrimination. Results adjusted simultaneously for age, sex, race/ethnicity, education, income, marital status, and seniority. There was no association between workplace discrimination and heavy drinking or drinks per month. Cross-sectional data from a sample of urban transit operators indicates an association between workplace racial discrimination and some measures of alcohol consumption.
Fluorescent polymer sensor array for detection and discrimination of explosives in water.
Woodka, Marc D; Schnee, Vincent P; Polcha, Michael P
2010-12-01
A fluorescent polymer sensor array (FPSA) was made from commercially available fluorescent polymers coated onto glass beads and was tested to assess the ability of the array to discriminate between different analytes in aqueous solution. The array was challenged with exposures to 17 different analytes, including the explosives trinitrotoluene (TNT), tetryl, and RDX, various explosive-related compounds (ERCs), and nonexplosive electron-withdrawing compounds (EWCs). The array exhibited a natural selectivity toward EWCs, while the non-electron-withdrawing explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) produced no response. Response signatures were visualized by principal component analysis (PCA), and classified by linear discriminant analysis (LDA). RDX produced the same response signature as the sampled blanks and was classified accordingly. The array exhibited excellent discrimination toward all other compounds, with the exception of the isomers of nitrotoluene and aminodinitrotoluene. Of particular note was the ability of the array to discriminate between the three isomers of dinitrobenzene. The natural selectivity of the FPSA toward EWCs, plus the ability of the FPSA to discriminate between different EWCs, could be used to design a sensor with a low false alarm rate and an excellent ability to discriminate between explosives and explosive-related compounds.
Discrimination Enhancement with Transient Feature Analysis of a Graphene Chemical Sensor.
Nallon, Eric C; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Li, Qiliang
2016-01-19
A graphene chemical sensor is subjected to a set of structurally and chemically similar hydrocarbon compounds consisting of toluene, o-xylene, p-xylene, and mesitylene. The fractional change in resistance of the sensor upon exposure to these compounds exhibits a similar response magnitude among compounds, whereas large variation is observed within repetitions for each compound, causing a response overlap. Therefore, traditional features depending on maximum response change will cause confusion during further discrimination and classification analysis. More robust features that are less sensitive to concentration, sampling, and drift variability would provide higher quality information. In this work, we have explored the advantage of using transient-based exponential fitting coefficients to enhance the discrimination of similar compounds. The advantages of such feature analysis to discriminate each compound is evaluated using principle component analysis (PCA). In addition, machine learning-based classification algorithms were used to compare the prediction accuracies when using fitting coefficients as features. The additional features greatly enhanced the discrimination between compounds while performing PCA and also improved the prediction accuracy by 34% when using linear discrimination analysis.
Almeida, Tiago P; Chu, Gavin S; Li, Xin; Dastagir, Nawshin; Tuan, Jiun H; Stafford, Peter J; Schlindwein, Fernando S; Ng, G André
2017-01-01
Purpose: Complex fractionated atrial electrograms (CFAE)-guided ablation after pulmonary vein isolation (PVI) has been used for persistent atrial fibrillation (persAF) therapy. This strategy has shown suboptimal outcomes due to, among other factors, undetected changes in the atrial tissue following PVI. In the present work, we investigate CFAE distribution before and after PVI in patients with persAF using a multivariate statistical model. Methods: 207 pairs of atrial electrograms (AEGs) were collected before and after PVI respectively, from corresponding LA regions in 18 persAF patients. Twelve attributes were measured from the AEGs, before and after PVI. Statistical models based on multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) have been used to characterize the atrial regions and AEGs. Results: PVI significantly reduced CFAEs in the LA (70 vs. 40%; P < 0.0001). Four types of LA regions were identified, based on the AEGs characteristics: (i) fractionated before PVI that remained fractionated after PVI (31% of the collected points); (ii) fractionated that converted to normal (39%); (iii) normal prior to PVI that became fractionated (9%) and; (iv) normal that remained normal (21%). Individually, the attributes failed to distinguish these LA regions, but multivariate statistical models were effective in their discrimination ( P < 0.0001). Conclusion: Our results have unveiled that there are LA regions resistant to PVI, while others are affected by it. Although, traditional methods were unable to identify these different regions, the proposed multivariate statistical model discriminated LA regions resistant to PVI from those affected by it without prior ablation information.
Methods for the Scientific Study of Discrimination and Health: An Ecosocial Approach
2012-01-01
The scientific study of how discrimination harms health requires theoretically grounded methods. At issue is how discrimination, as one form of societal injustice, becomes embodied inequality and is manifested as health inequities. As clarified by ecosocial theory, methods must address the lived realities of discrimination as an exploitative and oppressive societal phenomenon operating at multiple levels and involving myriad pathways across both the life course and historical generations. An integrated embodied research approach hence must consider (1) the structural level—past and present de jure and de facto discrimination; (2) the individual level—issues of domains, nativity, and use of both explicit and implicit discrimination measures; and (3) how current research methods likely underestimate the impact of racism on health. PMID:22420803
Aided diagnosis methods of breast cancer based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Yue; Wang, Nian; Cui, Xiaoyu
2017-08-01
In the field of medicine, quickly and accurately determining whether the patient is malignant or benign is the key to treatment. In this paper, K-Nearest Neighbor, Linear Discriminant Analysis, Logistic Regression were applied to predict the classification of thyroid,Her-2,PR,ER,Ki67,metastasis and lymph nodes in breast cancer, in order to recognize the benign and malignant breast tumors and achieve the purpose of aided diagnosis of breast cancer. The results showed that the highest classification accuracy of LDA was 88.56%, while the classification effect of KNN and Logistic Regression were better than that of LDA, the best accuracy reached 96.30%.
Multanen, J.; Heinonen, A.; Häkkinen, A.; Kautiainen, H.; Kujala, U.M.; Lammentausta, E.; Jämsä, T.; Kiviranta, I.; Nieminen, M.T.
2015-01-01
Objectives: To evaluate the association between radiographically-assessed knee osteoarthritis and femoral neck bone characteristics in women with mild knee radiographic osteoarthritis and those without radiographic osteoarthritis. Methods: Ninety postmenopausal women (mean age [SD], 58 [4] years; height, 163 [6] cm; weight, 71 [11] kg) participated in this cross-sectional study. The severity of radiographic knee osteoarthritis was defined using Kellgren-Lawrence grades 0=normal (n=12), 1=doubtful (n=25) or 2=minimal (n=53). Femoral neck bone mineral content (BMC), section modulus (Z), and cross-sectional area (CSA) were measured with DXA. The biochemical composition of ipsilateral knee cartilage was estimated using quantitative MRI measures, T2 mapping and dGEMRIC. The associations between radiographic knee osteoarthritis grades and bone and cartilage characteristics were analyzed using generalized linear models. Results: Age-, height-, and weight-adjusted femoral neck BMC (p for linearity=0.019), Z (p for linearity=0.033), and CSA (p for linearity=0.019) increased significantly with higher knee osteoarthritis grades. There was no linear relationship between osteoarthritis grades and knee cartilage indices. Conclusions: Increased DXA assessed hip bone strength is related to knee osteoarthritis severity. These results are hypothesis driven that there is an inverse relationship between osteoarthritis and osteoporosis. However, MRI assessed measures of cartilage do not discriminate mild radiographic osteoarthritis severity. PMID:25730654
NASA Astrophysics Data System (ADS)
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2011-12-01
Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This representative string ought to be discriminative, informative, and privacy protective when it is employed as a cryptographic key in various security applications upon error correction. However, it is commonly believed that satisfying the first and the second criteria simultaneously is not feasible, and a tradeoff between them is always definite. In this article, we propose an effective fixed bit allocation-based discretization approach which involves discriminative feature extraction, discriminative feature selection, unsupervised quantization (quantization that does not utilize class information), and linearly separable subcode (LSSC)-based encoding to fulfill all the ideal properties of a binary representation extracted for cryptographic applications. In addition, we examine a number of discriminative feature-selection measures for discretization and identify the proper way of setting an important feature-selection parameter. Encouraging experimental results vindicate the feasibility of our approach.