NASA Astrophysics Data System (ADS)
Tan, Jun; Song, Peng; Li, Jinshan; Wang, Lei; Zhong, Mengxuan; Zhang, Xiaobo
2017-06-01
The surface-related multiple elimination (SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlangga, Mokhammad Puput
Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, inmore » case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.« less
NASA Astrophysics Data System (ADS)
Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi
2018-07-01
In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.
Cheek, Julianne; Lipschitz, David L; Abrams, Elizabeth M; Vago, David R; Nakamura, Yoshio
2015-06-01
Dynamic reflexivity is central to enabling flexible and emergent qualitatively driven inductive mixed-method and multiple methods research designs. Yet too often, such reflexivity, and how it is used at various points of a study, is absent when we write our research reports. Instead, reports of mixed-method and multiple methods research focus on what was done rather than how it came to be done. This article seeks to redress this absence of emphasis on the reflexive thinking underpinning the way that mixed- and multiple methods, qualitatively driven research approaches are thought about and subsequently used throughout a project. Using Morse's notion of an armchair walkthrough, we excavate and explore the layers of decisions we made about how, and why, to use qualitatively driven mixed-method and multiple methods research in a study of mindfulness training (MT) in schoolchildren. © The Author(s) 2015.
Decreasing Multicollinearity: A Method for Models with Multiplicative Functions.
ERIC Educational Resources Information Center
Smith, Kent W.; Sasaki, M. S.
1979-01-01
A method is proposed for overcoming the problem of multicollinearity in multiple regression equations where multiplicative independent terms are entered. The method is not a ridge regression solution. (JKS)
Multiple testing and power calculations in genetic association studies.
So, Hon-Cheong; Sham, Pak C
2011-01-01
Modern genetic association studies typically involve multiple single-nucleotide polymorphisms (SNPs) and/or multiple genes. With the development of high-throughput genotyping technologies and the reduction in genotyping cost, investigators can now assay up to a million SNPs for direct or indirect association with disease phenotypes. In addition, some studies involve multiple disease or related phenotypes and use multiple methods of statistical analysis. The combination of multiple genetic loci, multiple phenotypes, and multiple methods of evaluating associations between genotype and phenotype means that modern genetic studies often involve the testing of an enormous number of hypotheses. When multiple hypothesis tests are performed in a study, there is a risk of inflation of the type I error rate (i.e., the chance of falsely claiming an association when there is none). Several methods for multiple-testing correction are in popular use, and they all have strengths and weaknesses. Because no single method is universally adopted or always appropriate, it is important to understand the principles, strengths, and weaknesses of the methods so that they can be applied appropriately in practice. In this article, we review the three principle methods for multiple-testing correction and provide guidance for calculating statistical power.
Comparing strategies to assess multiple behavior change in behavioral intervention studies.
Drake, Bettina F; Quintiliani, Lisa M; Sapp, Amy L; Li, Yi; Harley, Amy E; Emmons, Karen M; Sorensen, Glorian
2013-03-01
Alternatives to individual behavior change methods have been proposed, however, little has been done to investigate how these methods compare. To explore four methods that quantify change in multiple risk behaviors targeting four common behaviors. We utilized data from two cluster-randomized, multiple behavior change trials conducted in two settings: small businesses and health centers. Methods used were: (1) summative; (2) z-score; (3) optimal linear combination; and (4) impact score. In the Small Business study, methods 2 and 3 revealed similar outcomes. However, physical activity did not contribute to method 3. In the Health Centers study, similar results were found with each of the methods. Multivitamin intake contributed significantly more to each of the summary measures than other behaviors. Selection of methods to assess multiple behavior change in intervention trials must consider study design, and the targeted population when determining the appropriate method/s to use.
Curvelet-domain multiple matching method combined with cubic B-spline function
NASA Astrophysics Data System (ADS)
Wang, Tong; Wang, Deli; Tian, Mi; Hu, Bin; Liu, Chengming
2018-05-01
Since the large amount of surface-related multiple existed in the marine data would influence the results of data processing and interpretation seriously, many researchers had attempted to develop effective methods to remove them. The most successful surface-related multiple elimination method was proposed based on data-driven theory. However, the elimination effect was unsatisfactory due to the existence of amplitude and phase errors. Although the subsequent curvelet-domain multiple-primary separation method achieved better results, poor computational efficiency prevented its application. In this paper, we adopt the cubic B-spline function to improve the traditional curvelet multiple matching method. First, select a little number of unknowns as the basis points of the matching coefficient; second, apply the cubic B-spline function on these basis points to reconstruct the matching array; third, build constraint solving equation based on the relationships of predicted multiple, matching coefficients, and actual data; finally, use the BFGS algorithm to iterate and realize the fast-solving sparse constraint of multiple matching algorithm. Moreover, the soft-threshold method is used to make the method perform better. With the cubic B-spline function, the differences between predicted multiple and original data diminish, which results in less processing time to obtain optimal solutions and fewer iterative loops in the solving procedure based on the L1 norm constraint. The applications to synthetic and field-derived data both validate the practicability and validity of the method.
An Iterative Solver in the Presence and Absence of Multiplicity for Nonlinear Equations
Özkum, Gülcan
2013-01-01
We develop a high-order fixed point type method to approximate a multiple root. By using three functional evaluations per full cycle, a new class of fourth-order methods for this purpose is suggested and established. The methods from the class require the knowledge of the multiplicity. We also present a method in the absence of multiplicity for nonlinear equations. In order to attest the efficiency of the obtained methods, we employ numerical comparisons alongside obtaining basins of attraction to compare them in the complex plane according to their convergence speed and chaotic behavior. PMID:24453914
The Research of Multiple Attenuation Based on Feedback Iteration and Independent Component Analysis
NASA Astrophysics Data System (ADS)
Xu, X.; Tong, S.; Wang, L.
2017-12-01
How to solve the problem of multiple suppression is a difficult problem in seismic data processing. The traditional technology for multiple attenuation is based on the principle of the minimum output energy of the seismic signal, this criterion is based on the second order statistics, and it can't achieve the multiple attenuation when the primaries and multiples are non-orthogonal. In order to solve the above problems, we combine the feedback iteration method based on the wave equation and the improved independent component analysis (ICA) based on high order statistics to suppress the multiple waves. We first use iterative feedback method to predict the free surface multiples of each order. Then, in order to predict multiples from real multiple in amplitude and phase, we design an expanded pseudo multi-channel matching filtering method to get a more accurate matching multiple result. Finally, we present the improved fast ICA algorithm which is based on the maximum non-Gauss criterion of output signal to the matching multiples and get better separation results of the primaries and the multiples. The advantage of our method is that we don't need any priori information to the prediction of the multiples, and can have a better separation result. The method has been applied to several synthetic data generated by finite-difference model technique and the Sigsbee2B model multiple data, the primaries and multiples are non-orthogonal in these models. The experiments show that after three to four iterations, we can get the perfect multiple results. Using our matching method and Fast ICA adaptive multiple subtraction, we can not only effectively preserve the effective wave energy in seismic records, but also can effectively suppress the free surface multiples, especially the multiples related to the middle and deep areas.
NASA Astrophysics Data System (ADS)
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas
2018-02-01
Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.
On the method of Ermakov and Zolotukhin for multiple integration
NASA Technical Reports Server (NTRS)
Cranley, R.; Patterson, T. N. L.
1971-01-01
By introducing the idea of pseudo-implementation, a practical assessment of the method for multiple integration is made. The performance of the method is found to be unimpressive in comparison with a recent regression method.
NASA Technical Reports Server (NTRS)
Deepak, A.; Fluellen, A.
1978-01-01
An efficient numerical method of multiple quadratures, the Conroy method, is applied to the problem of computing multiple scattering contributions in the radiative transfer through realistic planetary atmospheres. A brief error analysis of the method is given and comparisons are drawn with the more familiar Monte Carlo method. Both methods are stochastic problem-solving models of a physical or mathematical process and utilize the sampling scheme for points distributed over a definite region. In the Monte Carlo scheme the sample points are distributed randomly over the integration region. In the Conroy method, the sample points are distributed systematically, such that the point distribution forms a unique, closed, symmetrical pattern which effectively fills the region of the multidimensional integration. The methods are illustrated by two simple examples: one, of multidimensional integration involving two independent variables, and the other, of computing the second order scattering contribution to the sky radiance.
An Illustration to Assist in Comparing and Remembering Several Multiplicity Adjustment Methods
ERIC Educational Resources Information Center
Hasler, Mario
2017-01-01
There are many well-known or new methods to adjust statistical tests for multiplicity. This article provides an illustration helping lecturers or consultants to remember the differences of three important multiplicity adjustment methods and to explain them to non-statisticians.
Psychological traits underlying different killing methods among Malaysian male murderers.
Kamaluddin, Mohammad Rahim; Shariff, Nadiah Syariani; Nurfarliza, Siti; Othman, Azizah; Ismail, Khaidzir H; Mat Saat, Geshina Ayu
2014-04-01
Murder is the most notorious crime that violates religious, social and cultural norms. Examining the types and number of different killing methods that used are pivotal in a murder case. However, the psychological traits underlying specific and multiple killing methods are still understudied. The present study attempts to fill this gap in knowledge by identifying the underlying psychological traits of different killing methods among Malaysian murderers. The study adapted an observational cross-sectional methodology using a guided self-administered questionnaire for data collection. The sampling frame consisted of 71 Malaysian male murderers from 11 Malaysian prisons who were selected using purposive sampling method. The participants were also asked to provide the types and number of different killing methods used to kill their respective victims. An independent sample t-test was performed to establish the mean score difference of psychological traits between the murderers who used single and multiple types of killing methods. Kruskal-Wallis tests were carried out to ascertain the psychological trait differences between specific types of killing methods. The results suggest that specific psychological traits underlie the type and number of different killing methods used during murder. The majority (88.7%) of murderers used a single method of killing. Multiple methods of killing was evident in 'premeditated' murder compared to 'passion' murder, and revenge was a common motive. Examples of multiple methods are combinations of stabbing and strangulation or slashing and physical force. An exception was premeditated murder committed with shooting, when it was usually a single method, attributed to the high lethality of firearms. Shooting was also notable when the motive was financial gain or related to drug dealing. Murderers who used multiple killing methods were more aggressive and sadistic than those who used a single killing method. Those who used multiple methods or slashing also displayed a higher level of minimisation traits. Despite its limitations, this study has provided some light on the underlying psychological traits of different killing methods which is useful in the field of criminology.
Analysis of Urinary Metabolites of Nerve and Blister Chemical Warfare Agents
2014-08-01
of CWAs. The analysis methods use UHPLC-MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method...Chromatography Mass Spectrometry LOD Limit Of Detection LOQ Limit of Quantitation MRM Multiple Reaction Monitoring MSMS Tandem mass...urine [1]. Those analysis methods use UHPLC- MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method
Multiple methods integration for structural mechanics analysis and design
NASA Technical Reports Server (NTRS)
Housner, J. M.; Aminpour, M. A.
1991-01-01
A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.
NASA Technical Reports Server (NTRS)
Wood, C. A.
1974-01-01
For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.
Sun, Zong-ke; Wu, Rong; Ding, Pei; Xue, Jin-Rong
2006-07-01
To compare between rapid detection method of enzyme substrate technique and multiple-tube fermentation technique in water coliform bacteria detection. Using inoculated and real water samples to compare the equivalence and false positive rate between two methods. Results demonstrate that enzyme substrate technique shows equivalence with multiple-tube fermentation technique (P = 0.059), false positive rate between the two methods has no statistical difference. It is suggested that enzyme substrate technique can be used as a standard method for water microbiological safety evaluation.
ERIC Educational Resources Information Center
Shih, Ching-Lin; Wang, Wen-Chung
2009-01-01
The multiple indicators, multiple causes (MIMIC) method with a pure short anchor was proposed to detect differential item functioning (DIF). A simulation study showed that the MIMIC method with an anchor of 1, 2, 4, or 10 DIF-free items yielded a well-controlled Type I error rate even when such tests contained as many as 40% DIF items. In general,…
Students' Use of "Look Back" Strategies in Multiple Solution Methods
ERIC Educational Resources Information Center
Lee, Shin-Yi
2016-01-01
The purpose of this study was to investigate the relationship between both 9th-grade and 1st-year undergraduate students' use of "look back" strategies and problem solving performance in multiple solution methods, the difference in their use of look back strategies and problem solving performance in multiple solution methods, and the…
Multi-scale occupancy estimation and modelling using multiple detection methods
Nichols, James D.; Bailey, Larissa L.; O'Connell, Allan F.; Talancy, Neil W.; Grant, Evan H. Campbell; Gilbert, Andrew T.; Annand, Elizabeth M.; Husband, Thomas P.; Hines, James E.
2008-01-01
Occupancy estimation and modelling based on detection–nondetection data provide an effective way of exploring change in a species’ distribution across time and space in cases where the species is not always detected with certainty. Today, many monitoring programmes target multiple species, or life stages within a species, requiring the use of multiple detection methods. When multiple methods or devices are used at the same sample sites, animals can be detected by more than one method.We develop occupancy models for multiple detection methods that permit simultaneous use of data from all methods for inference about method-specific detection probabilities. Moreover, the approach permits estimation of occupancy at two spatial scales: the larger scale corresponds to species’ use of a sample unit, whereas the smaller scale corresponds to presence of the species at the local sample station or site.We apply the models to data collected on two different vertebrate species: striped skunks Mephitis mephitis and red salamanders Pseudotriton ruber. For striped skunks, large-scale occupancy estimates were consistent between two sampling seasons. Small-scale occupancy probabilities were slightly lower in the late winter/spring when skunks tend to conserve energy, and movements are limited to males in search of females for breeding. There was strong evidence of method-specific detection probabilities for skunks. As anticipated, large- and small-scale occupancy areas completely overlapped for red salamanders. The analyses provided weak evidence of method-specific detection probabilities for this species.Synthesis and applications. Increasingly, many studies are utilizing multiple detection methods at sampling locations. The modelling approach presented here makes efficient use of detections from multiple methods to estimate occupancy probabilities at two spatial scales and to compare detection probabilities associated with different detection methods. The models can be viewed as another variation of Pollock's robust design and may be applicable to a wide variety of scenarios where species occur in an area but are not always near the sampled locations. The estimation approach is likely to be especially useful in multispecies conservation programmes by providing efficient estimates using multiple detection devices and by providing device-specific detection probability estimates for use in survey design.
MIMIC Methods for Assessing Differential Item Functioning in Polytomous Items
ERIC Educational Resources Information Center
Wang, Wen-Chung; Shih, Ching-Lin
2010-01-01
Three multiple indicators-multiple causes (MIMIC) methods, namely, the standard MIMIC method (M-ST), the MIMIC method with scale purification (M-SP), and the MIMIC method with a pure anchor (M-PA), were developed to assess differential item functioning (DIF) in polytomous items. In a series of simulations, it appeared that all three methods…
A comparison of multiple imputation methods for incomplete longitudinal binary data.
Yamaguchi, Yusuke; Misumi, Toshihiro; Maruo, Kazushi
2018-01-01
Longitudinal binary data are commonly encountered in clinical trials. Multiple imputation is an approach for getting a valid estimation of treatment effects under an assumption of missing at random mechanism. Although there are a variety of multiple imputation methods for the longitudinal binary data, a limited number of researches have reported on relative performances of the methods. Moreover, when focusing on the treatment effect throughout a period that has often been used in clinical evaluations of specific disease areas, no definite investigations comparing the methods have been available. We conducted an extensive simulation study to examine comparative performances of six multiple imputation methods available in the SAS MI procedure for longitudinal binary data, where two endpoints of responder rates at a specified time point and throughout a period were assessed. The simulation study suggested that results from naive approaches of a single imputation with non-responders and a complete case analysis could be very sensitive against missing data. The multiple imputation methods using a monotone method and a full conditional specification with a logistic regression imputation model were recommended for obtaining unbiased and robust estimations of the treatment effect. The methods were illustrated with data from a mental health research.
Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng
2014-08-01
Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.
Two methods for parameter estimation using multiple-trait models and beef cattle field data.
Bertrand, J K; Kriese, L A
1990-08-01
Two methods are presented for estimating variances and covariances from beef cattle field data using multiple-trait sire models. Both methods require that the first trait have no missing records and that the contemporary groups for the second trait be subsets of the contemporary groups for the first trait; however, the second trait may have missing records. One method uses pseudo expectations involving quadratics composed of the solutions and the right-hand sides of the mixed model equations. The other method is an extension of Henderson's Simple Method to the multiple trait case. Neither of these methods requires any inversions of large matrices in the computation of the parameters; therefore, both methods can handle very large sets of data. Four simulated data sets were generated to evaluate the methods. In general, both methods estimated genetic correlations and heritabilities that were close to the Restricted Maximum Likelihood estimates and the true data set values, even when selection within contemporary groups was practiced. The estimates of residual correlations by both methods, however, were biased by selection. These two methods can be useful in estimating variances and covariances from multiple-trait models in large populations that have undergone a minimal amount of selection within contemporary groups.
The Testing Methods and Gender Differences in Multiple-Choice Assessment
NASA Astrophysics Data System (ADS)
Ng, Annie W. Y.; Chan, Alan H. S.
2009-10-01
This paper provides a comprehensive review of the multiple-choice assessment in the past two decades for facilitating people to conduct effective testing in various subject areas. It was revealed that a variety of multiple-choice test methods viz. conventional multiple-choice, liberal multiple-choice, elimination testing, confidence marking, probability testing, and order-of-preference scheme are available for use in assessing subjects' knowledge and decision ability. However, the best multiple-choice test method for use has not yet been identified. The review also indicated that the existence of gender differences in multiple-choice task performance might be due to the test area, instruction/scoring condition, and item difficulty.
The Multiple-Car Method. Exploring Its Use in Driver and Traffic Safety Education. Second Edition.
ERIC Educational Resources Information Center
American Driver and Traffic Safety Education Association, Washington, DC.
Primarily written for school administrators and driver education teachers, this publication presents information on planning and implementing the multiple car method of driver instruction. An introductory section presents a definition of the multiple car method and its history of development. It is defined as an off-street paved area incorporating…
NASA Astrophysics Data System (ADS)
Jaradat, H. M.; Syam, Muhammed; Jaradat, M. M. M.; Mustafa, Zead; Moman, S.
2018-03-01
In this paper, we investigate the multiple soliton solutions and multiple singular soliton solutions of a class of the fifth order nonlinear evolution equation with variable coefficients of t using the simplified bilinear method based on a transformation method combined with the Hirota's bilinear sense. In addition, we present analysis for some parameters such as the soliton amplitude and the characteristic line. Several equation in the literature are special cases of the class which we discuss such as Caudrey-Dodd-Gibbon equation and Sawada-Kotera. Comparison with several methods in the literature, such as Helmholtz solution of the inverse variational problem, rational exponential function method, tanh method, homotopy perturbation method, exp-function method, and coth method, are made. From these comparisons, we conclude that the proposed method is efficient and our solutions are correct. It is worth mention that the proposed solution can solve many physical problems.
Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min
2016-07-22
One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account.
Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min
2016-01-01
One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account. PMID:27445105
Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method.
Taniguchi, Naohiro; Murakami, Hiroshi
2017-01-01
Constructing protein-coding genes with desired mutations is a basic step for protein engineering. Herein, we describe a multiple site-directed and saturation mutagenesis method, termed MUPAC. This method has been used to introduce multiple site-directed mutations in the green fluorescent protein gene and in the moloney murine leukemia virus reverse transcriptase gene. Moreover, this method was also successfully used to introduce randomized codons at five desired positions in the green fluorescent protein gene, and for simple DNA assembly for cloning.
A method for determining the conversion efficiency of multiple-cell photovoltaic devices
NASA Astrophysics Data System (ADS)
Glatfelter, Troy; Burdick, Joseph
A method for accurately determining the conversion efficiency of any multiple-cell photovoltaic device under any arbitrary reference spectrum is presented. This method makes it possible to obtain not only the short-circuit current, but also the fill factor, the open-circuit voltage, and hence the conversion efficiency of a multiple-cell device under any reference spectrum. Results are presented which allow a comparison of the I-V parameters of two-terminal, two- and three-cell tandem devices measured under a multiple-source simulator with the same parameters measured under different reference spectra. It is determined that the uncertainty in the conversion efficiency of a multiple-cell photovoltaic device obtained with this method is less than +/-3 percent.
NASA Astrophysics Data System (ADS)
ZHU, C. S.; ROBB, D. A.; EWINS, D. J.
2002-05-01
The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.
Jiang, Wei; Yu, Weichuan
2017-02-15
In genome-wide association studies (GWASs) of common diseases/traits, we often analyze multiple GWASs with the same phenotype together to discover associated genetic variants with higher power. Since it is difficult to access data with detailed individual measurements, summary-statistics-based meta-analysis methods have become popular to jointly analyze datasets from multiple GWASs. In this paper, we propose a novel summary-statistics-based joint analysis method based on controlling the joint local false discovery rate (Jlfdr). We prove that our method is the most powerful summary-statistics-based joint analysis method when controlling the false discovery rate at a certain level. In particular, the Jlfdr-based method achieves higher power than commonly used meta-analysis methods when analyzing heterogeneous datasets from multiple GWASs. Simulation experiments demonstrate the superior power of our method over meta-analysis methods. Also, our method discovers more associations than meta-analysis methods from empirical datasets of four phenotypes. The R-package is available at: http://bioinformatics.ust.hk/Jlfdr.html . eeyu@ust.hk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
MIMO nonlinear ultrasonic tomography by propagation and backpropagation method.
Dong, Chengdong; Jin, Yuanwei
2013-03-01
This paper develops a fast ultrasonic tomographic imaging method in a multiple-input multiple-output (MIMO) configuration using the propagation and backpropagation (PBP) method. By this method, ultrasonic excitation signals from multiple sources are transmitted simultaneously to probe the objects immersed in the medium. The scattering signals are recorded by multiple receivers. Utilizing the nonlinear ultrasonic wave propagation equation and the received time domain scattered signals, the objects are to be reconstructed iteratively in three steps. First, the propagation step calculates the predicted acoustic potential data at the receivers using an initial guess. Second, the difference signal between the predicted value and the measured data is calculated. Third, the backpropagation step computes updated acoustical potential data by backpropagating the difference signal to the same medium computationally. Unlike the conventional PBP method for tomographic imaging where each source takes turns to excite the acoustical field until all the sources are used, the developed MIMO-PBP method achieves faster image reconstruction by utilizing multiple source simultaneous excitation. Furthermore, we develop an orthogonal waveform signaling method using a waveform delay scheme to reduce the impact of speckle patterns in the reconstructed images. By numerical experiments we demonstrate that the proposed MIMO-PBP tomographic imaging method results in faster convergence and achieves superior imaging quality.
Integrative Analysis of Prognosis Data on Multiple Cancer Subtypes
Liu, Jin; Huang, Jian; Zhang, Yawei; Lan, Qing; Rothman, Nathaniel; Zheng, Tongzhang; Ma, Shuangge
2014-01-01
Summary In cancer research, profiling studies have been extensively conducted, searching for genes/SNPs associated with prognosis. Cancer is diverse. Examining the similarity and difference in the genetic basis of multiple subtypes of the same cancer can lead to a better understanding of their connections and distinctions. Classic meta-analysis methods analyze each subtype separately and then compare analysis results across subtypes. Integrative analysis methods, in contrast, analyze the raw data on multiple subtypes simultaneously and can outperform meta-analysis methods. In this study, prognosis data on multiple subtypes of the same cancer are analyzed. An AFT (accelerated failure time) model is adopted to describe survival. The genetic basis of multiple subtypes is described using the heterogeneity model, which allows a gene/SNP to be associated with prognosis of some subtypes but not others. A compound penalization method is developed to identify genes that contain important SNPs associated with prognosis. The proposed method has an intuitive formulation and is realized using an iterative algorithm. Asymptotic properties are rigorously established. Simulation shows that the proposed method has satisfactory performance and outperforms a penalization-based meta-analysis method and a regularized thresholding method. An NHL (non-Hodgkin lymphoma) prognosis study with SNP measurements is analyzed. Genes associated with the three major subtypes, namely DLBCL, FL, and CLL/SLL, are identified. The proposed method identifies genes that are different from alternatives and have important implications and satisfactory prediction performance. PMID:24766212
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin
2016-08-01
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
Weinberg, W A; McLean, A; Snider, R L; Rintelmann, J W; Brumback, R A
1989-12-01
Eight groups of learning disabled children (N = 100), categorized by the clinical Lexical Paradigm as good readers or poor readers, were individually administered the Gilmore Oral Reading Test, Form D, by one of four input/retrieval methods: (1) the standardized method of administration in which the child reads each paragraph aloud and then answers five questions relating to the paragraph [read/recall method]; (2) the child reads each paragraph aloud and then for each question selects the correct answer from among three choices read by the examiner [read/choice method]; (3) the examiner reads each paragraph aloud and reads each of the five questions to the child to answer [listen/recall method]; and (4) the examiner reads each paragraph aloud and then for each question reads three multiple-choice answers from which the child selects the correct answer [listen/choice method]. The major difference in scores was between the groups tested by the recall versus the orally read multiple-choice methods. This study indicated that poor readers who listened to the material and were tested by orally read multiple-choice format could perform as well as good readers. The performance of good readers was not affected by listening or by the method of testing. The multiple-choice testing improved the performance of poor readers independent of the input method. This supports the arguments made previously that a "bypass approach" to education of poor readers in which testing is accomplished using an orally read multiple-choice format can enhance the child's school performance on reading-related tasks. Using a listening while reading input method may further enhance performance.
Global Search Capabilities of Indirect Methods for Impulsive Transfers
NASA Astrophysics Data System (ADS)
Shen, Hong-Xin; Casalino, Lorenzo; Luo, Ya-Zhong
2015-09-01
An optimization method which combines an indirect method with homotopic approach is proposed and applied to impulsive trajectories. Minimum-fuel, multiple-impulse solutions, with either fixed or open time are obtained. The homotopic approach at hand is relatively straightforward to implement and does not require an initial guess of adjoints, unlike previous adjoints estimation methods. A multiple-revolution Lambert solver is used to find multiple starting solutions for the homotopic procedure; this approach can guarantee to obtain multiple local solutions without relying on the user's intuition, thus efficiently exploring the solution space to find the global optimum. The indirect/homotopic approach proves to be quite effective and efficient in finding optimal solutions, and outperforms the joint use of evolutionary algorithms and deterministic methods in the test cases.
Online two-stage association method for robust multiple people tracking
NASA Astrophysics Data System (ADS)
Lv, Jingqin; Fang, Jiangxiong; Yang, Jie
2011-07-01
Robust multiple people tracking is very important for many applications. It is a challenging problem due to occlusion and interaction in crowded scenarios. This paper proposes an online two-stage association method for robust multiple people tracking. In the first stage, short tracklets generated by linking people detection responses grow longer by particle filter based tracking, with detection confidence embedded into the observation model. And, an examining scheme runs at each frame for the reliability of tracking. In the second stage, multiple people tracking is achieved by linking tracklets to generate trajectories. An online tracklet association method is proposed to solve the linking problem, which allows applications in time-critical scenarios. This method is evaluated on the popular CAVIAR dataset. The experimental results show that our two-stage method is robust.
NASA Astrophysics Data System (ADS)
Li, J.; Song, X.; Wang, P.; Zhu, L.
2017-12-01
The H-κ method (Zhu and Kanamori, 2000) has been widely used to estimate the crustal thickness and Vp/Vs ratio with receiver functions. However, in regions where the crustal structure is complicated, the method may produce uncertain or even unrealistic results, arising particularly from dipping Moho and/or crustal anisotropy. Here, we propose an improved H-κ method, which corrects for these effects first before stacking. The effect of dipping Moho and crustal anisotropy on Ps receiver function has been well studied, but not as much on crustal multiples (PpPs and PpSs+PsPs). Synthetic tests show that the effect of crustal anisotropy on the multiples are similar to Ps, while the effect of dipping Moho on the multiples is 5 times that on Ps (same cosine trend but 5 times in time shift). A Harmonic Analysis (HA) method for dipping/anisotropy was developed by Wang et al. (2017) for crustal Ps receiver functions to extract parameters of dipping Moho and crustal azimuthal anisotropy. In real data, the crustal multiples are much more complicated than the Ps. Therefore, we use the HA method (Wang et al., 2017), but apply separately to Ps and the multiples. It shows that although complicated, the trend of multiples can still be reasonably well represented by the HA. We then perform separate azimuthal corrections for Ps and the multiples and stack to obtain a combined receiver function. Lastly, the traditional H-κ procedure is applied to the stacked receiver function. We apply the improved H-κ method on 40 CNDSN (Chinese National Digital Seismic Network) stations distributed in a variety of geological setting across the Chinese continent. The results show apparent improvement compared to the traditional H-κ method, with clearer traces of multiples and stronger stacking energy in the grid search, as well as more reliable H-κ values.
NASA Astrophysics Data System (ADS)
Ding, Zhe; Li, Li; Hu, Yujin
2018-01-01
Sophisticated engineering systems are usually assembled by subcomponents with significantly different levels of energy dissipation. Therefore, these damping systems often contain multiple damping models and lead to great difficulties in analyzing. This paper aims at developing a time integration method for structural systems with multiple damping models. The dynamical system is first represented by a generally damped model. Based on this, a new extended state-space method for the damped system is derived. A modified precise integration method with Gauss-Legendre quadrature is then proposed. The numerical stability and accuracy of the proposed integration method are discussed in detail. It is verified that the method is conditionally stable and has inherent algorithmic damping, period error and amplitude decay. Numerical examples are provided to assess the performance of the proposed method compared with other methods. It is demonstrated that the method is more accurate than other methods with rather good efficiency and the stable condition is easy to be satisfied in practice.
Amonette, James E.; Autrey, S. Thomas; Foster-Mills, Nancy S.; Green, David
2005-03-29
Methods and apparatus for analysis of multiple samples by photoacoustic spectroscopy are disclosed. Particularly, a photoacoustic spectroscopy sample array vessel including a vessel body having multiple sample cells connected thereto is disclosed. At least one acoustic detector is acoustically coupled with the vessel body. Methods for analyzing the multiple samples in the sample array vessels using photoacoustic spectroscopy are provided.
Odendaal, Willem; Atkins, Salla; Lewin, Simon
2016-12-15
Formative programme evaluations assess intervention implementation processes, and are seen widely as a way of unlocking the 'black box' of any programme in order to explore and understand why a programme functions as it does. However, few critical assessments of the methods used in such evaluations are available, and there are especially few that reflect on how well the evaluation achieved its objectives. This paper describes a formative evaluation of a community-based lay health worker programme for TB and HIV/AIDS clients across three low-income communities in South Africa. It assesses each of the methods used in relation to the evaluation objectives, and offers suggestions on ways of optimising the use of multiple, mixed-methods within formative evaluations of complex health system interventions. The evaluation's qualitative methods comprised interviews, focus groups, observations and diary keeping. Quantitative methods included a time-and-motion study of the lay health workers' scope of practice and a client survey. The authors conceptualised and conducted the evaluation, and through iterative discussions, assessed the methods used and their results. Overall, the evaluation highlighted programme issues and insights beyond the reach of traditional single methods evaluations. The strengths of the multiple, mixed-methods in this evaluation included a detailed description and nuanced understanding of the programme and its implementation, and triangulation of the perspectives and experiences of clients, lay health workers, and programme managers. However, the use of multiple methods needs to be carefully planned and implemented as this approach can overstretch the logistic and analytic resources of an evaluation. For complex interventions, formative evaluation designs including multiple qualitative and quantitative methods hold distinct advantages over single method evaluations. However, their value is not in the number of methods used, but in how each method matches the evaluation questions and the scientific integrity with which the methods are selected and implemented.
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P.
2014-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
NASA Astrophysics Data System (ADS)
Adem, Abdullahi Rashid
2016-05-01
We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.
Methods and devices for determining quality of services of storage systems
Seelam, Seetharami R [Yorktown Heights, NY; Teller, Patricia J [Las Cruces, NM
2012-01-17
Methods and systems for allowing access to computer storage systems. Multiple requests from multiple applications can be received and processed efficiently to allow traffic from multiple customers to access the storage system concurrently.
Maximum margin multiple instance clustering with applications to image and text clustering.
Zhang, Dan; Wang, Fei; Si, Luo; Li, Tao
2011-05-01
In multiple instance learning problems, patterns are often given as bags and each bag consists of some instances. Most of existing research in the area focuses on multiple instance classification and multiple instance regression, while very limited work has been conducted for multiple instance clustering (MIC). This paper formulates a novel framework, maximum margin multiple instance clustering (M(3)IC), for MIC. However, it is impractical to directly solve the optimization problem of M(3)IC. Therefore, M(3)IC is relaxed in this paper to enable an efficient optimization solution with a combination of the constrained concave-convex procedure and the cutting plane method. Furthermore, this paper presents some important properties of the proposed method and discusses the relationship between the proposed method and some other related ones. An extensive set of empirical results are shown to demonstrate the advantages of the proposed method against existing research for both effectiveness and efficiency.
Association analysis of multiple traits by an approach of combining P values.
Chen, Lili; Wang, Yong; Zhou, Yajing
2018-03-01
Increasing evidence shows that one variant can affect multiple traits, which is a widespread phenomenon in complex diseases. Joint analysis of multiple traits can increase statistical power of association analysis and uncover the underlying genetic mechanism. Although there are many statistical methods to analyse multiple traits, most of these methods are usually suitable for detecting common variants associated with multiple traits. However, because of low minor allele frequency of rare variant, these methods are not optimal for rare variant association analysis. In this paper, we extend an adaptive combination of P values method (termed ADA) for single trait to test association between multiple traits and rare variants in the given region. For a given region, we use reverse regression model to test each rare variant associated with multiple traits and obtain the P value of single-variant test. Further, we take the weighted combination of these P values as the test statistic. Extensive simulation studies show that our approach is more powerful than several other comparison methods in most cases and is robust to the inclusion of a high proportion of neutral variants and the different directions of effects of causal variants.
Statistical technique for analysing functional connectivity of multiple spike trains.
Masud, Mohammad Shahed; Borisyuk, Roman
2011-03-15
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains. Copyright © 2011 Elsevier B.V. All rights reserved.
Methods of reconstruction of multi-particle events in the new coordinate-tracking setup
NASA Astrophysics Data System (ADS)
Vorobyev, V. S.; Shutenko, V. V.; Zadeba, E. A.
2018-01-01
At the Unique Scientific Facility NEVOD (MEPhI), a large coordinate-tracking detector based on drift chambers for investigations of muon bundles generated by ultrahigh energy primary cosmic rays is being developed. One of the main characteristics of the bundle is muon multiplicity. Three methods of reconstruction of multiple events were investigated: the sequential search method, method of finding the straight line and method of histograms. The last method determines the number of tracks with the same zenith angle in the event. It is most suitable for the determination of muon multiplicity: because of a large distance to the point of generation of muons, their trajectories are quasiparallel. The paper presents results of application of three reconstruction methods to data from the experiment, and also first results of the detector operation.
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
THE SCREENING AND RANKING ALGORITHM FOR CHANGE-POINTS DETECTION IN MULTIPLE SAMPLES
Song, Chi; Min, Xiaoyi; Zhang, Heping
2016-01-01
The chromosome copy number variation (CNV) is the deviation of genomic regions from their normal copy number states, which may associate with many human diseases. Current genetic studies usually collect hundreds to thousands of samples to study the association between CNV and diseases. CNVs can be called by detecting the change-points in mean for sequences of array-based intensity measurements. Although multiple samples are of interest, the majority of the available CNV calling methods are single sample based. Only a few multiple sample methods have been proposed using scan statistics that are computationally intensive and designed toward either common or rare change-points detection. In this paper, we propose a novel multiple sample method by adaptively combining the scan statistic of the screening and ranking algorithm (SaRa), which is computationally efficient and is able to detect both common and rare change-points. We prove that asymptotically this method can find the true change-points with almost certainty and show in theory that multiple sample methods are superior to single sample methods when shared change-points are of interest. Additionally, we report extensive simulation studies to examine the performance of our proposed method. Finally, using our proposed method as well as two competing approaches, we attempt to detect CNVs in the data from the Primary Open-Angle Glaucoma Genes and Environment study, and conclude that our method is faster and requires less information while our ability to detect the CNVs is comparable or better. PMID:28090239
Quantifying cause-related mortality by weighting multiple causes of death
Moreno-Betancur, Margarita; Lamarche-Vadel, Agathe; Rey, Grégoire
2016-01-01
Abstract Objective To investigate a new approach to calculating cause-related standardized mortality rates that involves assigning weights to each cause of death reported on death certificates. Methods We derived cause-related standardized mortality rates from death certificate data for France in 2010 using: (i) the classic method, which considered only the underlying cause of death; and (ii) three novel multiple-cause-of-death weighting methods, which assigned weights to multiple causes of death mentioned on death certificates: the first two multiple-cause-of-death methods assigned non-zero weights to all causes mentioned and the third assigned non-zero weights to only the underlying cause and other contributing causes that were not part of the main morbid process. As the sum of the weights for each death certificate was 1, each death had an equal influence on mortality estimates and the total number of deaths was unchanged. Mortality rates derived using the different methods were compared. Findings On average, 3.4 causes per death were listed on each certificate. The standardized mortality rate calculated using the third multiple-cause-of-death weighting method was more than 20% higher than that calculated using the classic method for five disease categories: skin diseases, mental disorders, endocrine and nutritional diseases, blood diseases and genitourinary diseases. Moreover, this method highlighted the mortality burden associated with certain diseases in specific age groups. Conclusion A multiple-cause-of-death weighting approach to calculating cause-related standardized mortality rates from death certificate data identified conditions that contributed more to mortality than indicated by the classic method. This new approach holds promise for identifying underrecognized contributors to mortality. PMID:27994280
Amonette, James E.; Autrey, S. Thomas; Foster-Mills, Nancy S.
2006-02-14
Methods and apparatus for simultaneous or sequential, rapid analysis of multiple samples by photoacoustic spectroscopy are disclosed. Particularly, a photoacoustic spectroscopy sample array vessel including a vessel body having multiple sample cells connected thereto is disclosed. At least one acoustic detector is acoustically positioned near the sample cells. Methods for analyzing the multiple samples in the sample array vessels using photoacoustic spectroscopy are provided.
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R.
2017-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
ERIC Educational Resources Information Center
Fish, Laurel J.; Halcoussis, Dennis; Phillips, G. Michael
2017-01-01
The Monte Carlo method and related multiple imputation methods are traditionally used in math, physics and science to estimate and analyze data and are now becoming standard tools in analyzing business and financial problems. However, few sources explain the application of the Monte Carlo method for individuals and business professionals who are…
Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits.
Bernhardt, Paul W; Wang, Huixia J; Zhang, Daowen
2015-05-01
Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.
Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min
2012-11-01
To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.
DNA melting profiles from a matrix method.
Poland, Douglas
2004-02-05
In this article we give a new method for the calculation of DNA melting profiles. Based on the matrix formulation of the DNA partition function, the method relies for its efficiency on the fact that the required matrices are very sparse, essentially reducing matrix multiplication to vector multiplication and thus making the computer time required to treat a DNA molecule containing N base pairs proportional to N(2). A key ingredient in the method is the result that multiplication by the inverse matrix can also be reduced to vector multiplication. The task of calculating the melting profile for the entire genome is further reduced by treating regions of the molecule between helix-plateaus, thus breaking the molecule up into independent parts that can each be treated individually. The method is easily modified to incorporate changes in the assignment of statistical weights to the different structural features of DNA. We illustrate the method using the genome of Haemophilus influenzae. Copyright 2003 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Seo, Junyeong; Sung, Youngchul
2018-06-01
In this paper, an efficient transmit beam design and user scheduling method is proposed for multi-user (MU) multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) downlink, based on Pareto-optimality. The proposed beam design and user scheduling method groups simultaneously-served users into multiple clusters with practical two users in each cluster, and then applies spatical zeroforcing (ZF) across clusters to control inter-cluster interference (ICI) and Pareto-optimal beam design with successive interference cancellation (SIC) to two users in each cluster to remove interference to strong users and leverage signal-to-interference-plus-noise ratios (SINRs) of interference-experiencing weak users. The proposed method has flexibility to control the rates of strong and weak users and numerical results show that the proposed method yields good performance.
Lee, Minjung; Dignam, James J.; Han, Junhee
2014-01-01
We propose a nonparametric approach for cumulative incidence estimation when causes of failure are unknown or missing for some subjects. Under the missing at random assumption, we estimate the cumulative incidence function using multiple imputation methods. We develop asymptotic theory for the cumulative incidence estimators obtained from multiple imputation methods. We also discuss how to construct confidence intervals for the cumulative incidence function and perform a test for comparing the cumulative incidence functions in two samples with missing cause of failure. Through simulation studies, we show that the proposed methods perform well. The methods are illustrated with data from a randomized clinical trial in early stage breast cancer. PMID:25043107
Restricted random search method based on taboo search in the multiple minima problem
NASA Astrophysics Data System (ADS)
Hong, Seung Do; Jhon, Mu Shik
1997-03-01
The restricted random search method is proposed as a simple Monte Carlo sampling method to search minima fast in the multiple minima problem. This method is based on taboo search applied recently to continuous test functions. The concept of the taboo region instead of the taboo list is used and therefore the sampling of a region near an old configuration is restricted in this method. This method is applied to 2-dimensional test functions and the argon clusters. This method is found to be a practical and efficient method to search near-global configurations of test functions and the argon clusters.
Sekihara, K; Poeppel, D; Marantz, A; Koizumi, H; Miyashita, Y
1997-09-01
This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.
Estimating the mass variance in neutron multiplicity counting-A comparison of approaches
NASA Astrophysics Data System (ADS)
Dubi, C.; Croft, S.; Favalli, A.; Ocherashvili, A.; Pedersen, B.
2017-12-01
In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event triggered neutron count distribution are used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α , n) production and the induced fission source responsible for multiplication. This study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra, Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.
Estimating the mass variance in neutron multiplicity counting $-$ A comparison of approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubi, C.; Croft, S.; Favalli, A.
In the standard practice of neutron multiplicity counting, the first three sampled factorial moments of the event triggered neutron count distribution are used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. This study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra, Italy,more » sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
Estimating the mass variance in neutron multiplicity counting $-$ A comparison of approaches
Dubi, C.; Croft, S.; Favalli, A.; ...
2017-09-14
In the standard practice of neutron multiplicity counting, the first three sampled factorial moments of the event triggered neutron count distribution are used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. This study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra, Italy,more » sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
Sornborger, Andrew; Broder, Josef; Majumder, Anirban; Srinivasamoorthy, Ganesh; Porter, Erika; Reagin, Sean S; Keith, Charles; Lauderdale, James D
2008-09-01
Ratiometric fluorescent indicators are used for making quantitative measurements of a variety of physiological variables. Their utility is often limited by noise. This is the second in a series of papers describing statistical methods for denoising ratiometric data with the aim of obtaining improved quantitative estimates of variables of interest. Here, we outline a statistical optimization method that is designed for the analysis of ratiometric imaging data in which multiple measurements have been taken of systems responding to the same stimulation protocol. This method takes advantage of correlated information across multiple datasets for objectively detecting and estimating ratiometric signals. We demonstrate our method by showing results of its application on multiple, ratiometric calcium imaging experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, Yoshihiro
Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.
Tsai, Yu-Shuen; Aguan, Kripamoy; Pal, Nikhil R.; Chung, I-Fang
2011-01-01
Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple diseases. PMID:21909426
Testing Different Model Building Procedures Using Multiple Regression.
ERIC Educational Resources Information Center
Thayer, Jerome D.
The stepwise regression method of selecting predictors for computer assisted multiple regression analysis was compared with forward, backward, and best subsets regression, using 16 data sets. The results indicated the stepwise method was preferred because of its practical nature, when the models chosen by different selection methods were similar…
Meta‐analysis of test accuracy studies using imputation for partial reporting of multiple thresholds
Deeks, J.J.; Martin, E.C.; Riley, R.D.
2017-01-01
Introduction For tests reporting continuous results, primary studies usually provide test performance at multiple but often different thresholds. This creates missing data when performing a meta‐analysis at each threshold. A standard meta‐analysis (no imputation [NI]) ignores such missing data. A single imputation (SI) approach was recently proposed to recover missing threshold results. Here, we propose a new method that performs multiple imputation of the missing threshold results using discrete combinations (MIDC). Methods The new MIDC method imputes missing threshold results by randomly selecting from the set of all possible discrete combinations which lie between the results for 2 known bounding thresholds. Imputed and observed results are then synthesised at each threshold. This is repeated multiple times, and the multiple pooled results at each threshold are combined using Rubin's rules to give final estimates. We compared the NI, SI, and MIDC approaches via simulation. Results Both imputation methods outperform the NI method in simulations. There was generally little difference in the SI and MIDC methods, but the latter was noticeably better in terms of estimating the between‐study variances and generally gave better coverage, due to slightly larger standard errors of pooled estimates. Given selective reporting of thresholds, the imputation methods also reduced bias in the summary receiver operating characteristic curve. Simulations demonstrate the imputation methods rely on an equal threshold spacing assumption. A real example is presented. Conclusions The SI and, in particular, MIDC methods can be used to examine the impact of missing threshold results in meta‐analysis of test accuracy studies. PMID:29052347
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua
2018-03-01
We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).
An Intuitionistic Multiplicative ORESTE Method for Patients’ Prioritization of Hospitalization
Zhang, Cheng; Wu, Xingli; Wu, Di; Luo, Li; Herrera-Viedma, Enrique
2018-01-01
The tension brought about by sickbeds is a common and intractable issue in public hospitals in China due to the large population. Assigning the order of hospitalization of patients is difficult because of complex patient information such as disease type, emergency degree, and severity. It is critical to rank the patients taking full account of various factors. However, most of the evaluation criteria for hospitalization are qualitative, and the classical ranking method cannot derive the detailed relations between patients based on these criteria. Motivated by this, a comprehensive multiple criteria decision making method named the intuitionistic multiplicative ORESTE (organísation, rangement et Synthèse dedonnées relarionnelles, in French) was proposed to handle the problem. The subjective and objective weights of criteria were considered in the proposed method. To do so, first, considering the vagueness of human perceptions towards the alternatives, an intuitionistic multiplicative preference relation model is applied to represent the experts’ preferences over the pairwise alternatives with respect to the predetermined criteria. Then, a correlation coefficient-based weight determining method is developed to derive the objective weights of criteria. This method can overcome the biased results caused by highly-related criteria. Afterwards, we improved the general ranking method, ORESTE, by introducing a new score function which considers both the subjective and objective weights of criteria. An intuitionistic multiplicative ORESTE method was then developed and further highlighted by a case study concerning the patients’ prioritization. PMID:29673212
Clare, John; McKinney, Shawn T.; DePue, John E.; Loftin, Cynthia S.
2017-01-01
It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture–recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters.
Li, Haibin; He, Yun; Nie, Xiaobo
2018-01-01
Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.
A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem
2013-02-01
obtained by using the block Gauss – Seidel iterative meth- od. To show the convergence of the iterative method, we define the error between two...models to the general multiple cavity setting. Numerical examples indicate that the convergence of the Gauss – Seidel iterative method depends on the...variational approach. A block Gauss – Seidel iterative method is introduced to solve the cou- pled system of the multiple cavity scattering problem, where
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Data-optimized source modeling with the Backwards Liouville Test–Kinetic method
Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.; ...
2017-09-14
In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event triggered neutron count distribution were used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. Our study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra,more » Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food.
Chyan, Yieu; Ye, Ruquan; Li, Yilun; Singh, Swatantra Pratap; Arnusch, Christopher J; Tour, James M
2018-03-27
A simple and facile method for obtaining patterned graphene under ambient conditions on the surface of diverse materials ranging from renewable precursors such as food, cloth, paper, and cardboard to high-performance polymers like Kevlar or even on natural coal would be highly desirable. Here, we report a method of using multiple pulsed-laser scribing to convert a wide range of substrates into laser-induced graphene (LIG). With the increased versatility of the multiple lase process, highly conductive patterns can be achieved on the surface of a diverse number of substrates in ambient atmosphere. The use of a defocus method results in multiple lases in a single pass of the laser, further simplifying the procedure. This method can be implemented without increasing processing times when compared with laser induction of graphene on polyimide (Kapton) substrates as previously reported. In fact, any carbon precursor that can be converted into amorphous carbon can be converted into graphene using this multiple lase method. This may be a generally applicable technique for forming graphene on diverse substrates in applications such as flexible or even biodegradable and edible electronics.
Mulsow, Jason; Finneran, James J; Houser, Dorian S
2011-04-01
Although electrophysiological methods of measuring the hearing sensitivity of pinnipeds are not yet as refined as those for dolphins and porpoises, they appear to be a promising supplement to traditional psychophysical procedures. In order to further standardize electrophysiological methods with pinnipeds, a within-subject comparison of psychophysical and auditory steady-state response (ASSR) measures of aerial hearing sensitivity was conducted with a 1.5-yr-old California sea lion. The psychophysical audiogram was similar to those previously reported for otariids, with a U-shape, and thresholds near 10 dB re 20 μPa at 8 and 16 kHz. ASSR thresholds measured using both single and multiple simultaneous amplitude-modulated tones closely reproduced the psychophysical audiogram, although the mean ASSR thresholds were elevated relative to psychophysical thresholds. Differences between psychophysical and ASSR thresholds were greatest at the low- and high-frequency ends of the audiogram. Thresholds measured using the multiple ASSR method were not different from those measured using the single ASSR method. The multiple ASSR method was more rapid than the single ASSR method, and allowed for threshold measurements at seven frequencies in less than 20 min. The multiple ASSR method may be especially advantageous for hearing sensitivity measurements with otariid subjects that are untrained for psychophysical procedures.
Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines
NASA Astrophysics Data System (ADS)
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-04-01
A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.
Mathies, Richard A.; Singhal, Pankaj; Xie, Jin; Glazer, Alexander N.
2002-01-01
This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.
Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing
NASA Technical Reports Server (NTRS)
Rost, Robert W.; Brown, David L.
1988-01-01
An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing.
Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.
Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu
2018-03-10
This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.
Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.
ERIC Educational Resources Information Center
Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido
1997-01-01
Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…
Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens
NASA Technical Reports Server (NTRS)
Liu, H. K.; Liang, Y.-Z.
1984-01-01
A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.
High-quality slab-based intermixing method for fusion rendering of multiple medical objects.
Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil
2016-01-01
The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Statistical Methods in Integrative Genomics
Richardson, Sylvia; Tseng, George C.; Sun, Wei
2016-01-01
Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531
Yeung, Edward S.; Gong, Xiaoyi
2004-09-07
The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.
The multiple imputation method: a case study involving secondary data analysis.
Walani, Salimah R; Cleland, Charles M
2015-05-01
To illustrate with the example of a secondary data analysis study the use of the multiple imputation method to replace missing data. Most large public datasets have missing data, which need to be handled by researchers conducting secondary data analysis studies. Multiple imputation is a technique widely used to replace missing values while preserving the sample size and sampling variability of the data. The 2004 National Sample Survey of Registered Nurses. The authors created a model to impute missing values using the chained equation method. They used imputation diagnostics procedures and conducted regression analysis of imputed data to determine the differences between the log hourly wages of internationally educated and US-educated registered nurses. The authors used multiple imputation procedures to replace missing values in a large dataset with 29,059 observations. Five multiple imputed datasets were created. Imputation diagnostics using time series and density plots showed that imputation was successful. The authors also present an example of the use of multiple imputed datasets to conduct regression analysis to answer a substantive research question. Multiple imputation is a powerful technique for imputing missing values in large datasets while preserving the sample size and variance of the data. Even though the chained equation method involves complex statistical computations, recent innovations in software and computation have made it possible for researchers to conduct this technique on large datasets. The authors recommend nurse researchers use multiple imputation methods for handling missing data to improve the statistical power and external validity of their studies.
Mariel, Petr; Hoyos, David; Artabe, Alaitz; Guevara, C Angelo
2018-08-15
Endogeneity is an often neglected issue in empirical applications of discrete choice modelling despite its severe consequences in terms of inconsistent parameter estimation and biased welfare measures. This article analyses the performance of the multiple indicator solution method to deal with endogeneity arising from omitted explanatory variables in discrete choice models for environmental valuation. We also propose and illustrate a factor analysis procedure for the selection of the indicators in practice. Additionally, the performance of this method is compared with the recently proposed hybrid choice modelling framework. In an empirical application we find that the multiple indicator solution method and the hybrid model approach provide similar results in terms of welfare estimates, although the multiple indicator solution method is more parsimonious and notably easier to implement. The empirical results open a path to explore the performance of this method when endogeneity is thought to have a different cause or under a different set of indicators. Copyright © 2018 Elsevier B.V. All rights reserved.
A cross docking pipeline for improving pose prediction and virtual screening performance
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Zhang, Kam Y. J.
2018-01-01
Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.
ERIC Educational Resources Information Center
Cason, Jennifer
2016-01-01
This action research study is a mixed methods investigation of doctoral students' preparedness for multiple career paths. PhD students face two challenges preparing for multiple career paths: lack of preparation and limited engagement in conversations about the value of their research across multiple audiences. This study focuses on PhD students'…
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-12-26
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.
Smith predictor-based multiple periodic disturbance compensation for long dead-time processes
NASA Astrophysics Data System (ADS)
Tan, Fang; Li, Han-Xiong; Shen, Ping
2018-05-01
Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.
Evaluation of Multiple-Alternative Prompts during Tact Training
ERIC Educational Resources Information Center
Leaf, Justin B.; Townley-Cochran, Donna; Mitchell, Erin; Milne, Christine; Alcalay, Aditt; Leaf, Jeremy; Leaf, Ron; Taubman, Mitch; McEachin, John; Oppenheim-Leaf, Misty L.
2016-01-01
This study compared 2 methods of fading prompts while teaching tacts to 3 individuals who had been diagnosed with autism spectrum disorder (ASD). The 1st method involved use of an echoic prompt and prompt fading. The 2nd method involved providing multiple-alternative answers and fading by increasing the difficulty of the discrimination. An adapted…
ERIC Educational Resources Information Center
Suh, Youngsuk; Talley, Anna E.
2015-01-01
This study compared and illustrated four differential distractor functioning (DDF) detection methods for analyzing multiple-choice items. The log-linear approach, two item response theory-model-based approaches with likelihood ratio tests, and the odds ratio approach were compared to examine the congruence among the four DDF detection methods.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... methods for submitting multiple FFATA subaward reports: A batch upload template using Microsoft Excel, an... three methods for submitting multiple FFATA subaward reports: A batch upload template using Microsoft Excel, an XML report submission template and an XML web service. These methods do take advantage of the...
ERIC Educational Resources Information Center
Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.
2018-01-01
We investigated the classification accuracy of learning disability (LD) identification methods premised on the identification of an intraindividual pattern of processing strengths and weaknesses (PSW) method using multiple indicators for all latent constructs. Known LD status was derived from latent scores; values at the observed level identified…
Method and system of integrating information from multiple sources
Alford, Francine A [Livermore, CA; Brinkerhoff, David L [Antioch, CA
2006-08-15
A system and method of integrating information from multiple sources in a document centric application system. A plurality of application systems are connected through an object request broker to a central repository. The information may then be posted on a webpage. An example of an implementation of the method and system is an online procurement system.
EPA announced the availability of the final report, Concepts, Methods, and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document. This report provides the concepts, methods and data sources needed to assist in...
The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF
ERIC Educational Resources Information Center
Cheng, Ying; Shao, Can; Lathrop, Quinn N.
2016-01-01
Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…
Daniel I. Navon
1971-01-01
Timber RAM (Resource Allocation Method) is a long-range planning method for commercial timber lands under multiple-use management. Timber RAM can produce cutting and reforestation schedules and related harvest and economic reports. Each schedule optimizes an index of performance, subject to periodic constraints on revenues, costs, and, harvest levels. Periodic...
Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392
The Business Policy Course: Multiple Methods for Multiple Goals.
ERIC Educational Resources Information Center
Thomas, Anisya S.
1998-01-01
Outlines the objectives of a capstone business policy and strategy course; the use of case analysis, article critiques, storytelling, and computer simulation; and contextual factors in matching objectives and methods. (SK)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
..., 2004, now expired, entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations..., 2006 entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations of Biomolecules...
Deng, Wenping; Zhang, Kui; Liu, Sanzhen; Zhao, Patrick; Xu, Shizhong; Wei, Hairong
2018-04-30
Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression data from multiple tissues/conditions is very important for understanding common and tissue/condition-specific regulation. However, there are currently no computational models and methods available for directly constructing such multiple GRNs that not only share some common hub genes but also possess tissue/condition-specific regulatory edges. In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method constructs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with other methods, and both common hub genes and some conditions-specific hub genes were identified with higher accuracy and precision. JRmGRN is available as a R program from: https://github.com/wenpingd. hairong@mtu.edu. Proof of theorem, derivation of algorithm and supplementary data are available at Bioinformatics online.
Use of multiple methods to determine factors affecting quality of care of patients with diabetes.
Khunti, K
1999-10-01
The process of care of patients with diabetes is complex; however, GPs are playing a greater role in its management. Despite the research evidence, the quality of care of patients with diabetes is variable. In order to improve care, information is required on the obstacles faced by practices in improving care. Qualitative and quantitative methods can be used for formation of hypotheses and the development of survey procedures. However, to date few examples exist in general practice research on the use of multiple methods using both quantitative and qualitative techniques for hypothesis generation. We aimed to determine information on all factors that may be associated with delivery of care to patients with diabetes. Factors for consideration on delivery of diabetes care were generated by multiple qualitative methods including brainstorming with health professionals and patients, a focus group and interviews with key informants which included GPs and practice nurses. Audit data showing variations in care of patients with diabetes were used to stimulate the brainstorming session. A systematic literature search focusing on quality of care of patients with diabetes in primary care was also conducted. Fifty-four potential factors were identified by multiple methods. Twenty (37.0%) were practice-related factors, 14 (25.9%) were patient-related factors and 20 (37.0%) were organizational factors. A combination of brainstorming and the literature review identified 51 (94.4%) factors. Patients did not identify factors in addition to those identified by other methods. The complexity of delivery of care to patients with diabetes is reflected in the large number of potential factors identified in this study. This study shows the feasibility of using multiple methods for hypothesis generation. Each evaluation method provided unique data which could not otherwise be easily obtained. This study highlights a way of combining various traditional methods in an attempt to overcome the deficiencies and bias that may occur when using a single method. Similar methods can also be used to generate hypotheses for other exploratory research. An important responsibility of health authorities and primary care groups will be to assess the health needs of their local populations. Multiple methods could also be used to identify and commission services to meet these needs.
Mollah, Mohammad Manir Hossain; Jamal, Rahman; Mokhtar, Norfilza Mohd; Harun, Roslan; Mollah, Md. Nurul Haque
2015-01-01
Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression. Results The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0) to outlying expressions and larger weights (≤ 1) to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA. Conclusion Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed) perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large-sample cases in the presence of more than 50% outlying genes. The proposed method also exhibited better performance than the other methods for m > 2 conditions with multiple patterns of expression, where the BetaEB was not extended for this condition. Therefore, the proposed approach would be more suitable and reliable on average for the identification of DE genes between two or more conditions with multiple patterns of expression. PMID:26413858
Large scale study of multiple-molecule queries
2009-01-01
Background In ligand-based screening, as well as in other chemoinformatics applications, one seeks to effectively search large repositories of molecules in order to retrieve molecules that are similar typically to a single molecule lead. However, in some case, multiple molecules from the same family are available to seed the query and search for other members of the same family. Multiple-molecule query methods have been less studied than single-molecule query methods. Furthermore, the previous studies have relied on proprietary data and sometimes have not used proper cross-validation methods to assess the results. In contrast, here we develop and compare multiple-molecule query methods using several large publicly available data sets and background. We also create a framework based on a strict cross-validation protocol to allow unbiased benchmarking for direct comparison in future studies across several performance metrics. Results Fourteen different multiple-molecule query methods were defined and benchmarked using: (1) 41 publicly available data sets of related molecules with similar biological activity; and (2) publicly available background data sets consisting of up to 175,000 molecules randomly extracted from the ChemDB database and other sources. Eight of the fourteen methods were parameter free, and six of them fit one or two free parameters to the data using a careful cross-validation protocol. All the methods were assessed and compared for their ability to retrieve members of the same family against the background data set by using several performance metrics including the Area Under the Accumulation Curve (AUAC), Area Under the Curve (AUC), F1-measure, and BEDROC metrics. Consistent with the previous literature, the best parameter-free methods are the MAX-SIM and MIN-RANK methods, which score a molecule to a family by the maximum similarity, or minimum ranking, obtained across the family. One new parameterized method introduced in this study and two previously defined methods, the Exponential Tanimoto Discriminant (ETD), the Tanimoto Power Discriminant (TPD), and the Binary Kernel Discriminant (BKD), outperform most other methods but are more complex, requiring one or two parameters to be fit to the data. Conclusion Fourteen methods for multiple-molecule querying of chemical databases, including novel methods, (ETD) and (TPD), are validated using publicly available data sets, standard cross-validation protocols, and established metrics. The best results are obtained with ETD, TPD, BKD, MAX-SIM, and MIN-RANK. These results can be replicated and compared with the results of future studies using data freely downloadable from http://cdb.ics.uci.edu/. PMID:20298525
Method and systems for collecting data from multiple fields of view
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K. (Inventor)
2002-01-01
Systems and methods for processing light from multiple fields (48, 54, 55) of view without excessive machinery for scanning optical elements. In an exemplary embodiment of the invention, multiple holographic optical elements (41, 42, 43, 44, 45), integrated on a common film (4), diffract and project light from respective fields of view.
Hubless satellite communications networks
NASA Technical Reports Server (NTRS)
Robinson, Peter Alan
1994-01-01
Frequency Comb Multiple Access (FCMA) is a new combined modulation and multiple access method which will allow cheap hubless Very Small Aperture Terminal (VSAT) networks to be constructed. Theoretical results show bandwidth efficiency and power efficiency improvements over other modulation and multiple access methods. Costs of the VSAT network are reduced dramatically since a hub station is not required.
ERIC Educational Resources Information Center
Busse, R. T.; Elliott, Stephen N.; Kratochwill, Thomas R.
2010-01-01
The purpose of this article is to present Convergent Evidence Scaling (CES) as an emergent method for combining data from multiple assessment indicators. The CES method combines single-case assessment data by converging data gathered across multiple persons, settings, or measures, thereby providing an overall criterion-referenced outcome on which…
Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores
ERIC Educational Resources Information Center
Douglas, Karen M.; Mislevy, Robert J.
2010-01-01
Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…
Multiple Representations-Based Face Sketch-Photo Synthesis.
Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie
2016-11-01
Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images
NASA Astrophysics Data System (ADS)
Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua
2018-04-01
Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.
Suppressing multiples using an adaptive multichannel filter based on L1-norm
NASA Astrophysics Data System (ADS)
Shi, Ying; Jing, Hongliang; Zhang, Wenwu; Ning, Dezhi
2017-08-01
Adaptive subtraction is an important link for removing surface-related multiples in the wave equation-based method. In this paper, we propose an adaptive multichannel subtraction method based on the L1-norm. We achieve enhanced compensation for the mismatch between the input seismogram and the predicted multiples in terms of the amplitude, phase, frequency band, and travel time. Unlike the conventional L2-norm, the proposed method does not rely on the assumption that the primary and the multiples are orthogonal, and also takes advantage of the fact that the L1-norm is more robust when dealing with outliers. In addition, we propose a frequency band extension via modulation to reconstruct the high frequencies to compensate for the frequency misalignment. We present a parallel computing scheme to accelerate the subtraction algorithm on graphic processing units (GPUs), which significantly reduces the computational cost. The synthetic and field seismic data tests show that the proposed method effectively suppresses the multiples.
NASA Astrophysics Data System (ADS)
Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.
1988-10-01
A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.
Constrained multiple indicator kriging using sequential quadratic programming
NASA Astrophysics Data System (ADS)
Soltani-Mohammadi, Saeed; Erhan Tercan, A.
2012-11-01
Multiple indicator kriging (MIK) is a nonparametric method used to estimate conditional cumulative distribution functions (CCDF). Indicator estimates produced by MIK may not satisfy the order relations of a valid CCDF which is ordered and bounded between 0 and 1. In this paper a new method has been presented that guarantees the order relations of the cumulative distribution functions estimated by multiple indicator kriging. The method is based on minimizing the sum of kriging variances for each cutoff under unbiasedness and order relations constraints and solving constrained indicator kriging system by sequential quadratic programming. A computer code is written in the Matlab environment to implement the developed algorithm and the method is applied to the thickness data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.
In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event triggered neutron count distribution were used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. Our study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra,more » Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
3D mapping of turbulence: a laboratory experiment
NASA Astrophysics Data System (ADS)
Le Louarn, Miska; Dainty, Christopher; Paterson, Carl; Tallon, Michel
2000-07-01
In this paper, we present the first experimental results of the 3D mapping method. 3D mapping of turbulence is a method to remove the cone effect with multiple laser guide stars and multiple deformable mirrors. A laboratory experiment was realized to verify the theoretical predictions. The setup consisted of two turbulent phase screens (made with liquid crystal devices) and a Shack-Hartmann wavefront sensor. We describe the interaction matrix involved in reconstructing Zernike commands for multiple deformable mirror from the slope measurements made from laser guide stars. It is shown that mirror commands can indeed be reconstructed with the 3D mapping method. Limiting factors of the method, brought to light by this experiment are discussed.
Clare, John; McKinney, Shawn T; DePue, John E; Loftin, Cynthia S
2017-10-01
It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture-recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters. © 2017 by the Ecological Society of America.
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2018-03-24
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method
Juric, Matjaz B.
2018-01-01
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage. PMID:29587352
Non-destructive testing method and apparatus utilizing phase multiplication holography
Collins, H. Dale; Prince, James M.; Davis, Thomas J.
1984-01-01
An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.
Method for measuring multiple scattering corrections between liquid scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.
2016-04-11
In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.
Local discretization method for overdamped Brownian motion on a potential with multiple deep wells.
Nguyen, P T T; Challis, K J; Jack, M W
2016-11-01
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Local discretization method for overdamped Brownian motion on a potential with multiple deep wells
NASA Astrophysics Data System (ADS)
Nguyen, P. T. T.; Challis, K. J.; Jack, M. W.
2016-11-01
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Na, Wongi S.; Baek, Jongdae
2017-01-01
The emergence of composite materials has revolutionized the approach to building engineering structures. With the number of applications for composites increasing every day, maintaining structural integrity is of utmost importance. For composites, adhesive bonding is usually the preferred choice over the mechanical fastening method, and monitoring for delamination is an essential factor in the field of composite materials. In this study, a non-destructive method known as the electromechanical impedance method is used with an approach of monitoring multiple areas by specifying certain frequency ranges to correspond to a certain test specimen. Experiments are conducted using various numbers of stacks created by attaching glass fiber epoxy composite plates onto one another, and two different debonding damage types are introduced to evaluate the performance of the multiple monitoring electromechanical impedance method. PMID:28629194
Distributed magnetic field positioning system using code division multiple access
NASA Technical Reports Server (NTRS)
Prigge, Eric A. (Inventor)
2003-01-01
An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.
ERIC Educational Resources Information Center
Van Dooren, Wim; De Bock, Dirk; Verschaffel, Lieven
2010-01-01
This study builds on two lines of research that have so far developed largely separately: the use of additive methods to solve proportional word problems and the use of proportional methods to solve additive word problems. We investigated the development with age of both kinds of erroneous solution methods. We gave a test containing missing-value…
An analysis of the multiple model adaptive control algorithm. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Greene, C. S.
1978-01-01
Qualitative and quantitative aspects of the multiple model adaptive control method are detailed. The method represents a cascade of something which resembles a maximum a posteriori probability identifier (basically a bank of Kalman filters) and a bank of linear quadratic regulators. Major qualitative properties of the MMAC method are examined and principle reasons for unacceptable behavior are explored.
Acoustic 3D modeling by the method of integral equations
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
26 CFR 1.381(c)(5)-1 - Inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...
26 CFR 1.381(c)(5)-1 - Inventories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...
Standard setting: comparison of two methods.
George, Sanju; Haque, M Sayeed; Oyebode, Femi
2006-09-14
The outcome of assessments is determined by the standard-setting method used. There is a wide range of standard-setting methods and the two used most extensively in undergraduate medical education in the UK are the norm-reference and the criterion-reference methods. The aims of the study were to compare these two standard-setting methods for a multiple-choice question examination and to estimate the test-retest and inter-rater reliability of the modified Angoff method. The norm-reference method of standard-setting (mean minus 1 SD) was applied to the 'raw' scores of 78 4th-year medical students on a multiple-choice examination (MCQ). Two panels of raters also set the standard using the modified Angoff method for the same multiple-choice question paper on two occasions (6 months apart). We compared the pass/fail rates derived from the norm reference and the Angoff methods and also assessed the test-retest and inter-rater reliability of the modified Angoff method. The pass rate with the norm-reference method was 85% (66/78) and that by the Angoff method was 100% (78 out of 78). The percentage agreement between Angoff method and norm-reference was 78% (95% CI 69% - 87%). The modified Angoff method had an inter-rater reliability of 0.81-0.82 and a test-retest reliability of 0.59-0.74. There were significant differences in the outcomes of these two standard-setting methods, as shown by the difference in the proportion of candidates that passed and failed the assessment. The modified Angoff method was found to have good inter-rater reliability and moderate test-retest reliability.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy
2001-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
ERIC Educational Resources Information Center
Brewe, Eric; Bruun, Jesper; Bearden, Ian G.
2016-01-01
We describe "Module Analysis for Multiple Choice Responses" (MAMCR), a new methodology for carrying out network analysis on responses to multiple choice assessments. This method is used to identify modules of non-normative responses which can then be interpreted as an alternative to factor analysis. MAMCR allows us to identify conceptual…
Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan T.
2012-01-01
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
ERIC Educational Resources Information Center
Urdan, Tim; Munoz, Chantico
2012-01-01
Multiple methods were used to examine the academic motivation and cultural identity of a sample of college undergraduates. The children of immigrant parents (CIPs, n = 52) and the children of non-immigrant parents (non-CIPs, n = 42) completed surveys assessing core cultural identity, valuing of cultural accomplishments, academic self-concept,…
Symbolic interactionism as a theoretical perspective for multiple method research.
Benzies, K M; Allen, M N
2001-02-01
Qualitative and quantitative research rely on different epistemological assumptions about the nature of knowledge. However, the majority of nurse researchers who use multiple method designs do not address the problem of differing theoretical perspectives. Traditionally, symbolic interactionism has been viewed as one perspective underpinning qualitative research, but it is also the basis for quantitative studies. Rooted in social psychology, symbolic interactionism has a rich intellectual heritage that spans more than a century. Underlying symbolic interactionism is the major assumption that individuals act on the basis of the meaning that things have for them. The purpose of this paper is to present symbolic interactionism as a theoretical perspective for multiple method designs with the aim of expanding the dialogue about new methodologies. Symbolic interactionism can serve as a theoretical perspective for conceptually clear and soundly implemented multiple method research that will expand the understanding of human health behaviour.
Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization
Liu, Jin; Huang, Jian; Ma, Shuangge
2012-01-01
Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092
MSClique: Multiple Structure Discovery through the Maximum Weighted Clique Problem.
Sanroma, Gerard; Penate-Sanchez, Adrian; Alquézar, René; Serratosa, Francesc; Moreno-Noguer, Francesc; Andrade-Cetto, Juan; González Ballester, Miguel Ángel
2016-01-01
We present a novel approach for feature correspondence and multiple structure discovery in computer vision. In contrast to existing methods, we exploit the fact that point-sets on the same structure usually lie close to each other, thus forming clusters in the image. Given a pair of input images, we initially extract points of interest and extract hierarchical representations by agglomerative clustering. We use the maximum weighted clique problem to find the set of corresponding clusters with maximum number of inliers representing the multiple structures at the correct scales. Our method is parameter-free and only needs two sets of points along with their tentative correspondences, thus being extremely easy to use. We demonstrate the effectiveness of our method in multiple-structure fitting experiments in both publicly available and in-house datasets. As shown in the experiments, our approach finds a higher number of structures containing fewer outliers compared to state-of-the-art methods.
Li, Zhiguang; Kwekel, Joshua C; Chen, Tao
2012-01-01
Functional comparison across microarray platforms is used to assess the comparability or similarity of the biological relevance associated with the gene expression data generated by multiple microarray platforms. Comparisons at the functional level are very important considering that the ultimate purpose of microarray technology is to determine the biological meaning behind the gene expression changes under a specific condition, not just to generate a list of genes. Herein, we present a method named percentage of overlapping functions (POF) and illustrate how it is used to perform the functional comparison of microarray data generated across multiple platforms. This method facilitates the determination of functional differences or similarities in microarray data generated from multiple array platforms across all the functions that are presented on these platforms. This method can also be used to compare the functional differences or similarities between experiments, projects, or laboratories.
Multiple independent identification decisions: a method of calibrating eyewitness identifications.
Pryke, Sean; Lindsay, R C L; Dysart, Jennifer E; Dupuis, Paul
2004-02-01
Two experiments (N = 147 and N = 90) explored the use of multiple independent lineups to identify a target seen live. In Experiment 1, simultaneous face, body, and sequential voice lineups were used. In Experiment 2, sequential face, body, voice, and clothing lineups were used. Both studies demonstrated that multiple identifications (by the same witness) from independent lineups of different features are highly diagnostic of suspect guilt (G. L. Wells & R. C. L. Lindsay, 1980). The number of suspect and foil selections from multiple independent lineups provides a powerful method of calibrating the accuracy of eyewitness identification. Implications for use of current methods are discussed. ((c) 2004 APA, all rights reserved)
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-01-01
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765
Detecting and removing multiplicative spatial bias in high-throughput screening technologies.
Caraus, Iurie; Mazoure, Bogdan; Nadon, Robert; Makarenkov, Vladimir
2017-10-15
Considerable attention has been paid recently to improve data quality in high-throughput screening (HTS) and high-content screening (HCS) technologies widely used in drug development and chemical toxicity research. However, several environmentally- and procedurally-induced spatial biases in experimental HTS and HCS screens decrease measurement accuracy, leading to increased numbers of false positives and false negatives in hit selection. Although effective bias correction methods and software have been developed over the past decades, almost all of these tools have been designed to reduce the effect of additive bias only. Here, we address the case of multiplicative spatial bias. We introduce three new statistical methods meant to reduce multiplicative spatial bias in screening technologies. We assess the performance of the methods with synthetic and real data affected by multiplicative spatial bias, including comparisons with current bias correction methods. We also describe a wider data correction protocol that integrates methods for removing both assay and plate-specific spatial biases, which can be either additive or multiplicative. The methods for removing multiplicative spatial bias and the data correction protocol are effective in detecting and cleaning experimental data generated by screening technologies. As our protocol is of a general nature, it can be used by researchers analyzing current or next-generation high-throughput screens. The AssayCorrector program, implemented in R, is available on CRAN. makarenkov.vladimir@uqam.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar
Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping
2015-01-01
A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385
Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping
2015-12-14
A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.
Meng, Yuguang; Lei, Hao
2010-06-01
An efficient iterative gridding reconstruction method with correction of off-resonance artifacts was developed, which is especially tailored for multiple-shot non-Cartesian imaging. The novelty of the method lies in that the transformation matrix for gridding (T) was constructed as the convolution of two sparse matrices, among which the former is determined by the sampling interval and the spatial distribution of the off-resonance frequencies and the latter by the sampling trajectory and the target grid in the Cartesian space. The resulting T matrix is also sparse and can be solved efficiently with the iterative conjugate gradient algorithm. It was shown that, with the proposed method, the reconstruction speed in multiple-shot non-Cartesian imaging can be improved significantly while retaining high reconstruction fidelity. More important, the method proposed allows tradeoff between the accuracy and the computation time of reconstruction, making customization of the use of such a method in different applications possible. The performance of the proposed method was demonstrated by numerical simulation and multiple-shot spiral imaging on rat brain at 4.7 T. (c) 2010 Wiley-Liss, Inc.
The initial rise method extended to multiple trapping levels in thermoluminescent materials.
Furetta, C; Guzmán, S; Ruiz, B; Cruz-Zaragoza, E
2011-02-01
The well known Initial Rise Method (IR) is commonly used to determine the activation energy when only one glow peak is presented and analysed in the phosphor materials. However, when the glow peak is more complex, a wide peak and some holders appear in the structure. The application of the Initial Rise Method is not valid because multiple trapping levels are considered and then the thermoluminescent analysis becomes difficult to perform. This paper shows the case of a complex glow curve structure as an example and shows that the calculation is also possible using the IR method. The aim of the paper is to extend the well known Initial Rise Method (IR) to the case of multiple trapping levels. The IR method is applied to minerals extracted from Nopal cactus and Oregano spices because the thermoluminescent glow curve's shape suggests a trap distribution instead of a single trapping level. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip
2001-01-01
A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.
Integrative Analysis of “-Omics” Data Using Penalty Functions
Zhao, Qing; Shi, Xingjie; Huang, Jian; Liu, Jin; Li, Yang; Ma, Shuangge
2014-01-01
In the analysis of omics data, integrative analysis provides an effective way of pooling information across multiple datasets or multiple correlated responses, and can be more effective than single-dataset (response) analysis. Multiple families of integrative analysis methods have been proposed in the literature. The current review focuses on the penalization methods. Special attention is paid to sparse meta-analysis methods that pool summary statistics across datasets, and integrative analysis methods that pool raw data across datasets. We discuss their formulation and rationale. Beyond “standard” penalized selection, we also review contrasted penalization and Laplacian penalization which accommodate finer data structures. The computational aspects, including computational algorithms and tuning parameter selection, are examined. This review concludes with possible limitations and extensions. PMID:25691921
Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise
NASA Technical Reports Server (NTRS)
Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)
1997-01-01
A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.
Unciti-Broceta, Juan D; Cano-Cortés, Victoria; Altea-Manzano, Patricia; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Sánchez-Martín, Rosario M
2015-05-15
Engineered nanoparticles (eNPs) for biological and biomedical applications are produced from functionalised nanoparticles (NPs) after undergoing multiple handling steps, giving rise to an inevitable loss of NPs. Herein we present a practical method to quantify nanoparticles (NPs) number per volume in an aqueous suspension using standard spectrophotometers and minute amounts of the suspensions (up to 1 μL). This method allows, for the first time, to analyse cellular uptake by reporting NPs number added per cell, as opposed to current methods which are related to solid content (w/V) of NPs. In analogy to the parameter used in viral infective assays (multiplicity of infection), we propose to name this novel parameter as multiplicity of nanofection.
Simplified computational methods for elastic and elastic-plastic fracture problems
NASA Technical Reports Server (NTRS)
Atluri, Satya N.
1992-01-01
An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.
Method for preparing small volume reaction containers
Retterer, Scott T.; Doktycz, Mitchel J.
2017-04-25
Engineered reaction containers that can be physically and chemically defined to control the flux of molecules of different sizes and charge are disclosed. Methods for constructing small volume reaction containers through a combination of etching and deposition are also disclosed. The methods allow for the fabrication of multiple devices that possess features on multiple length scales, specifically small volume containers with controlled porosity on the nanoscale.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
Using multiple travel paths to estimate daily travel distance in arboreal, group-living primates.
Steel, Ruth Irene
2015-01-01
Primate field studies often estimate daily travel distance (DTD) in order to estimate energy expenditure and/or test foraging hypotheses. In group-living species, the center of mass (CM) method is traditionally used to measure DTD; a point is marked at the group's perceived center of mass at a set time interval or upon each move, and the distance between consecutive points is measured and summed. However, for groups using multiple travel paths, the CM method potentially creates a central path that is shorter than the individual paths and/or traverses unused areas. These problems may compromise tests of foraging hypotheses, since distance and energy expenditure could be underestimated. To better understand the magnitude of these potential biases, I designed and tested the multiple travel paths (MTP) method, in which DTD was calculated by recording all travel paths taken by the group's members, weighting each path's distance based on its proportional use by the group, and summing the weighted distances. To compare the MTP and CM methods, DTD was calculated using both methods in three groups of Udzungwa red colobus monkeys (Procolobus gordonorum; group size 30-43) for a random sample of 30 days between May 2009 and March 2010. Compared to the CM method, the MTP method provided significantly longer estimates of DTD that were more representative of the actual distance traveled and the areas used by a group. The MTP method is more time-intensive and requires multiple observers compared to the CM method. However, it provides greater accuracy for testing ecological and foraging models.
Adhikari, Badri; Hou, Jie; Cheng, Jianlin
2018-03-01
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.
Manifold Regularized Multitask Feature Learning for Multimodality Disease Classification
Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang
2015-01-01
Multimodality based methods have shown great advantages in classification of Alzheimer’s disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605
Wu, Zheng; Zeng, Li-bo; Wu, Qiong-shui
2016-02-01
The conventional cervical cancer screening methods mainly include TBS (the bethesda system) classification method and cellular DNA quantitative analysis, however, by using multiple staining method in one cell slide, which is staining the cytoplasm with Papanicolaou reagent and the nucleus with Feulgen reagent, the study of achieving both two methods in the cervical cancer screening at the same time is still blank. Because the difficulty of this multiple staining method is that the absorbance of the non-DNA material may interfere with the absorbance of DNA, so that this paper has set up a multi-spectral imaging system, and established an absorbance unmixing model by using multiple linear regression method based on absorbance's linear superposition character, and successfully stripped out the absorbance of DNA to run the DNA quantitative analysis, and achieved the perfect combination of those two kinds of conventional screening method. Through a series of experiment we have proved that between the absorbance of DNA which is calculated by the absorbance unmixxing model and the absorbance of DNA which is measured there is no significant difference in statistics when the test level is 1%, also the result of actual application has shown that there is no intersection between the confidence interval of the DNA index of the tetraploid cells which are screened by using this paper's analysis method when the confidence level is 99% and the DNA index's judging interval of cancer cells, so that the accuracy and feasibility of the quantitative DNA analysis with multiple staining method expounded by this paper have been verified, therefore this analytical method has a broad application prospect and considerable market potential in early diagnosis of cervical cancer and other cancers.
Saeed, Faisal; Salim, Naomie; Abdo, Ammar
2013-07-01
Many consensus clustering methods have been applied in different areas such as pattern recognition, machine learning, information theory and bioinformatics. However, few methods have been used for chemical compounds clustering. In this paper, an information theory and voting based algorithm (Adaptive Cumulative Voting-based Aggregation Algorithm A-CVAA) was examined for combining multiple clusterings of chemical structures. The effectiveness of clusterings was evaluated based on the ability of the clustering method to separate active from inactive molecules in each cluster, and the results were compared with Ward's method. The chemical dataset MDL Drug Data Report (MDDR) and the Maximum Unbiased Validation (MUV) dataset were used. Experiments suggest that the adaptive cumulative voting-based consensus method can improve the effectiveness of combining multiple clusterings of chemical structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha
2012-05-01
Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo
2018-02-01
In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.
Measuring the scale dependence of intrinsic alignments using multiple shear estimates
NASA Astrophysics Data System (ADS)
Leonard, C. Danielle; Mandelbaum, Rachel
2018-06-01
We present a new method for measuring the scale dependence of the intrinsic alignment (IA) contamination to the galaxy-galaxy lensing signal, which takes advantage of multiple shear estimation methods applied to the same source galaxy sample. By exploiting the resulting correlation of both shape noise and cosmic variance, our method can provide an increase in the signal-to-noise of the measured IA signal as compared to methods which rely on the difference of the lensing signal from multiple photometric redshift bins. For a galaxy-galaxy lensing measurement which uses LSST sources and DESI lenses, the signal-to-noise on the IA signal from our method is predicted to improve by a factor of ˜2 relative to the method of Blazek et al. (2012), for pairs of shear estimates which yield substantially different measured IA amplitudes and highly correlated shape noise terms. We show that statistical error necessarily dominates the measurement of intrinsic alignments using our method. We also consider a physically motivated extension of the Blazek et al. (2012) method which assumes that all nearby galaxy pairs, rather than only excess pairs, are subject to IA. In this case, the signal-to-noise of the method of Blazek et al. (2012) is improved.
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
A basket two-part model to analyze medical expenditure on interdependent multiple sectors.
Sugawara, Shinya; Wu, Tianyi; Yamanishi, Kenji
2018-05-01
This study proposes a novel statistical methodology to analyze expenditure on multiple medical sectors using consumer data. Conventionally, medical expenditure has been analyzed by two-part models, which separately consider purchase decision and amount of expenditure. We extend the traditional two-part models by adding the step of basket analysis for dimension reduction. This new step enables us to analyze complicated interdependence between multiple sectors without an identification problem. As an empirical application for the proposed method, we analyze data of 13 medical sectors from the Medical Expenditure Panel Survey. In comparison with the results of previous studies that analyzed the multiple sector independently, our method provides more detailed implications of the impacts of individual socioeconomic status on the composition of joint purchases from multiple medical sectors; our method has a better prediction performance.
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-07-01
This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.
Reconfigurable Flight Control Designs With Application to the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zhenglu
1999-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the right body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.
Singh, Parth Raj; Wang, Yide; Chargé, Pascal
2017-03-30
In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.
Homography-based multiple-camera person-tracking
NASA Astrophysics Data System (ADS)
Turk, Matthew R.
2009-01-01
Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.
Contact-free heart rate measurement using multiple video data
NASA Astrophysics Data System (ADS)
Hung, Pang-Chan; Lee, Kual-Zheng; Tsai, Luo-Wei
2013-10-01
In this paper, we propose a contact-free heart rate measurement method by analyzing sequential images of multiple video data. In the proposed method, skin-like pixels are firstly detected from multiple video data for extracting the color features. These color features are synchronized and analyzed by independent component analysis. A representative component is finally selected among these independent component candidates to measure the HR, which achieves under 2% deviation on average compared with a pulse oximeter in the controllable environment. The advantages of the proposed method include: 1) it uses low cost and high accessibility camera device; 2) it eases users' discomfort by utilizing contact-free measurement; and 3) it achieves the low error rate and the high stability by integrating multiple video data.
Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm
NASA Astrophysics Data System (ADS)
Karaca, Yeliz; Cattani, Carlo
Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.
A Review of Methods for Missing Data.
ERIC Educational Resources Information Center
Pigott, Therese D.
2001-01-01
Reviews methods for handling missing data in a research study. Model-based methods, such as maximum likelihood using the EM algorithm and multiple imputation, hold more promise than ad hoc methods. Although model-based methods require more specialized computer programs and assumptions about the nature of missing data, these methods are appropriate…
A multiple-point spatially weighted k-NN method for object-based classification
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.
2016-10-01
Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.
Comparison of two stand-alone CADe systems at multiple operating points
NASA Astrophysics Data System (ADS)
Sahiner, Berkman; Chen, Weijie; Pezeshk, Aria; Petrick, Nicholas
2015-03-01
Computer-aided detection (CADe) systems are typically designed to work at a given operating point: The device displays a mark if and only if the level of suspiciousness of a region of interest is above a fixed threshold. To compare the standalone performances of two systems, one approach is to select the parameters of the systems to yield a target false-positive rate that defines the operating point, and to compare the sensitivities at that operating point. Increasingly, CADe developers offer multiple operating points, which necessitates the comparison of two CADe systems involving multiple comparisons. To control the Type I error, multiple-comparison correction is needed for keeping the family-wise error rate (FWER) less than a given alpha-level. The sensitivities of a single modality at different operating points are correlated. In addition, the sensitivities of the two modalities at the same or different operating points are also likely to be correlated. It has been shown in the literature that when test statistics are correlated, well-known methods for controlling the FWER are conservative. In this study, we compared the FWER and power of three methods, namely the Bonferroni, step-up, and adjusted step-up methods in comparing the sensitivities of two CADe systems at multiple operating points, where the adjusted step-up method uses the estimated correlations. Our results indicate that the adjusted step-up method has a substantial advantage over other the two methods both in terms of the FWER and power.
Statistical methods and neural network approaches for classification of data from multiple sources
NASA Technical Reports Server (NTRS)
Benediktsson, Jon Atli; Swain, Philip H.
1990-01-01
Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.
A method for interactive specification of multiple-block topologies
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen M.
1991-01-01
A method is presented for dealing with the vast amount of topological and other data which must be specified to generate a multiple-block computational grid. Specific uses of the graphical capabilities of a powerful scientific workstation are described which reduce the burden on the user of collecting and formatting such large amounts of data. A program to implement this method, 3DPREP, is described. A plotting transformation algorithm, some useful software tools, notes on programming, and a database organization are also presented. Example grids developed using the method are shown.
Choi, Ted; Eskin, Eleazar
2013-01-01
Gene expression data, in conjunction with information on genetic variants, have enabled studies to identify expression quantitative trait loci (eQTLs) or polymorphic locations in the genome that are associated with expression levels. Moreover, recent technological developments and cost decreases have further enabled studies to collect expression data in multiple tissues. One advantage of multiple tissue datasets is that studies can combine results from different tissues to identify eQTLs more accurately than examining each tissue separately. The idea of aggregating results of multiple tissues is closely related to the idea of meta-analysis which aggregates results of multiple genome-wide association studies to improve the power to detect associations. In principle, meta-analysis methods can be used to combine results from multiple tissues. However, eQTLs may have effects in only a single tissue, in all tissues, or in a subset of tissues with possibly different effect sizes. This heterogeneity in terms of effects across multiple tissues presents a key challenge to detect eQTLs. In this paper, we develop a framework that leverages two popular meta-analysis methods that address effect size heterogeneity to detect eQTLs across multiple tissues. We show by using simulations and multiple tissue data from mouse that our approach detects many eQTLs undetected by traditional eQTL methods. Additionally, our method provides an interpretation framework that accurately predicts whether an eQTL has an effect in a particular tissue. PMID:23785294
Maritime Search and Rescue via Multiple Coordinated UAS
2017-06-12
performed by a set of UAS. Our investigation covers the detection of multiple mobile objects by a heterogeneous collection of UAS. Three methods (two...account for contingencies such as airspace deconfliction. Results are produced using simulation to verify the capability of the proposed method and to...compare the various par- titioning methods . Results from this simulation show that great gains in search efficiency can be made when the search space is
Visualizing Matrix Multiplication
ERIC Educational Resources Information Center
Daugulis, Peteris; Sondore, Anita
2018-01-01
Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…
Consistency of the Performance and Nonperformance Methods in Gifted Identification
ERIC Educational Resources Information Center
Acar, Selcuk; Sen, Sedat; Cayirdag, Nur
2016-01-01
Current approaches to gifted identification suggest collecting multiple sources of evidence. Some gifted identification guidelines allow for the interchangeable use of "performance" and "nonperformance" identification methods. This multiple criteria approach lacks a strong overlap between the assessment tools; however,…
Unplanned Complex Suicide-A Consideration of Multiple Methods.
Ateriya, Navneet; Kanchan, Tanuj; Shekhawat, Raghvendra Singh; Setia, Puneet; Saraf, Ashish
2018-05-01
Detailed death investigations are mandatory to find out the exact cause and manner in non-natural deaths. In this reference, use of multiple methods in suicide poses a challenge for the investigators especially when the choice of methods to cause death is unplanned. There is an increased likelihood that doubts of homicide are raised in cases of unplanned complex suicides. A case of complex suicide is reported where the victim resorted to multiple methods to end his life, and what appeared to be an unplanned variant based on the death scene investigations. A meticulous crime scene examination, interviews of the victim's relatives and other witnesses, and a thorough autopsy are warranted to conclude on the cause and manner of death in all such cases. © 2017 American Academy of Forensic Sciences.
Method and device to synthesize boron nitride nanotubes and related nanoparticles
Zettl, Alexander K.
2016-07-19
Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.
Multiple-image hiding using super resolution reconstruction in high-frequency domains
NASA Astrophysics Data System (ADS)
Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua
2017-12-01
In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
1998-06-26
METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is
Ban, Tomohiro; Ohue, Masahito; Akiyama, Yutaka
2018-04-01
The identification of comprehensive drug-target interactions is important in drug discovery. Although numerous computational methods have been developed over the years, a gold standard technique has not been established. Computational ligand docking and structure-based drug design allow researchers to predict the binding affinity between a compound and a target protein, and thus, they are often used to virtually screen compound libraries. In addition, docking techniques have also been applied to the virtual screening of target proteins (inverse docking) to predict target proteins of a drug candidate. Nevertheless, a more accurate docking method is currently required. In this study, we proposed a method in which a predicted ligand-binding site is covered by multiple grids, termed multiple grid arrangement. Notably, multiple grid arrangement facilitates the conformational search for a grid-based ligand docking software and can be applied to the state-of-the-art commercial docking software Glide (Schrödinger, LLC). We validated the proposed method by re-docking with the Astex diverse benchmark dataset and blind binding site situations, which improved the correct prediction rate of the top scoring docking pose from 27.1% to 34.1%; however, only a slight improvement in target prediction accuracy was observed with inverse docking scenarios. These findings highlight the limitations and challenges of current scoring functions and the need for more accurate docking methods. The proposed multiple grid arrangement method was implemented in Glide by modifying a cross-docking script for Glide, xglide.py. The script of our method is freely available online at http://www.bi.cs.titech.ac.jp/mga_glide/. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Han, Buhm; Kang, Hyun Min; Eskin, Eleazar
2009-01-01
With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE's corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods' corrected p-values, while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN framework to the problem of estimating the statistical power of an association study with correlated markers and propose an efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu. PMID:19381255
Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang
2018-03-27
Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.
Research in Mathematics Education: Multiple Methods for Multiple Uses
ERIC Educational Resources Information Center
Battista, Michael; Smith, Margaret S.; Boerst, Timothy; Sutton, John; Confrey, Jere; White, Dorothy; Knuth, Eric; Quander, Judith
2009-01-01
Recent federal education policies and reports have generated considerable debate about the meaning, methods, and goals of "scientific research" in mathematics education. Concentrating on the critical problem of determining which educational programs and practices reliably improve students' mathematics achievement, these policies and reports focus…
Multiple-block grid adaption for an airplane geometry
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid Samareh; Smith, Robert E.
1988-01-01
Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.
A new method for registration of heterogeneous sensors in a dimensional measurement system
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Zhong; Fu, Luhua; Qu, Xinghua; Zhang, Heng; Liu, Changjie
2017-10-01
Registration of multiple sensors is a basic step in multi-sensor dimensional or coordinate measuring systems before any measurement. In most cases, a common standard is used to be measured by all sensors, and this may work well for general registration of multiple homogeneous sensors. However, when inhomogeneous sensors detect a common standard, it is usually very difficult to obtain the same information, because of the different working principles of the sensors. In this paper, a new method called multiple steps registration is proposed to register two sensors: a video camera sensor (VCS) and a tactile probe sensor (TPS). In this method, the two sensors measure two separated standards: a chrome circle on a reticle and a reference sphere with a constant distance between them, fixed on a steel plate. The VCS captures only the circle and the TPS touches only the sphere. Both simulations and real experiments demonstrate that the proposed method is robust and accurate in the registration of multiple inhomogeneous sensors in a dimensional measurement system.
Multiple Testing of Gene Sets from Gene Ontology: Possibilities and Pitfalls.
Meijer, Rosa J; Goeman, Jelle J
2016-09-01
The use of multiple testing procedures in the context of gene-set testing is an important but relatively underexposed topic. If a multiple testing method is used, this is usually a standard familywise error rate (FWER) or false discovery rate (FDR) controlling procedure in which the logical relationships that exist between the different (self-contained) hypotheses are not taken into account. Taking those relationships into account, however, can lead to more powerful variants of existing multiple testing procedures and can make summarizing and interpreting the final results easier. We will show that, from the perspective of interpretation as well as from the perspective of power improvement, FWER controlling methods are more suitable than FDR controlling methods. As an example of a possible power improvement, we suggest a modified version of the popular method by Holm, which we also implemented in the R package cherry. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Multiple imputation of rainfall missing data in the Iberian Mediterranean context
NASA Astrophysics Data System (ADS)
Miró, Juan Javier; Caselles, Vicente; Estrela, María José
2017-11-01
Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.
A spatial scan statistic for multiple clusters.
Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie
2011-10-01
Spatial scan statistics are commonly used for geographical disease surveillance and cluster detection. While there are multiple clusters coexisting in the study area, they become difficult to detect because of clusters' shadowing effect to each other. The recently proposed sequential method showed its better power for detecting the second weaker cluster, but did not improve the ability of detecting the first stronger cluster which is more important than the second one. We propose a new extension of the spatial scan statistic which could be used to detect multiple clusters. Through constructing two or more clusters in the alternative hypothesis, our proposed method accounts for other coexisting clusters in the detecting and evaluating process. The performance of the proposed method is compared to the sequential method through an intensive simulation study, in which our proposed method shows better power in terms of both rejecting the null hypothesis and accurately detecting the coexisting clusters. In the real study of hand-foot-mouth disease data in Pingdu city, a true cluster town is successfully detected by our proposed method, which cannot be evaluated to be statistically significant by the standard method due to another cluster's shadowing effect. Copyright © 2011 Elsevier Inc. All rights reserved.
1972-01-01
The membrane methods described in Report 71 on the bacteriological examination of water supplies (Report, 1969) for the enumeration of coliform organisms and Escherichia coli in waters, together with a glutamate membrane method, were compared with the glutamate multiple tube method recommended in Report 71 and an incubation procedure similar to that used for membranes with the first 4 hr. at 30° C., and with MacConkey broth in multiple tubes. Although there were some differences between individual laboratories, the combined results from all participating laboratories showed that standard and extended membrane methods gave significantly higher results than the glutamate tube method for coliform organisms in both chlorinated and unchlorinated waters, but significantly lower results for Esch. coli with chlorinated waters and equivocal results with unchlorinated waters. Extended membranes gave higher results than glutamate tubes in larger proportions of samples than did standard membranes. Although transport membranes did not do so well as standard membrane methods, the results were usually in agreement with glutamate tubes except for Esch. coli in chlorinated waters. The glutamate membranes were unsatisfactory. Preliminary incubation of glutamate at 30° C. made little difference to the results. PMID:4567313
Slotnick, Scott D
2017-07-01
Analysis of functional magnetic resonance imaging (fMRI) data typically involves over one hundred thousand independent statistical tests; therefore, it is necessary to correct for multiple comparisons to control familywise error. In a recent paper, Eklund, Nichols, and Knutsson used resting-state fMRI data to evaluate commonly employed methods to correct for multiple comparisons and reported unacceptable rates of familywise error. Eklund et al.'s analysis was based on the assumption that resting-state fMRI data reflect null data; however, their 'null data' actually reflected default network activity that inflated familywise error. As such, Eklund et al.'s results provide no basis to question the validity of the thousands of published fMRI studies that have corrected for multiple comparisons or the commonly employed methods to correct for multiple comparisons.
Bernhardt, Paul W; Wang, Huixia Judy; Zhang, Daowen
2014-01-01
Models for survival data generally assume that covariates are fully observed. However, in medical studies it is not uncommon for biomarkers to be censored at known detection limits. A computationally-efficient multiple imputation procedure for modeling survival data with covariates subject to detection limits is proposed. This procedure is developed in the context of an accelerated failure time model with a flexible seminonparametric error distribution. The consistency and asymptotic normality of the multiple imputation estimator are established and a consistent variance estimator is provided. An iterative version of the proposed multiple imputation algorithm that approximates the EM algorithm for maximum likelihood is also suggested. Simulation studies demonstrate that the proposed multiple imputation methods work well while alternative methods lead to estimates that are either biased or more variable. The proposed methods are applied to analyze the dataset from a recently-conducted GenIMS study.
Identifying multiple influential spreaders based on generalized closeness centrality
NASA Astrophysics Data System (ADS)
Liu, Huan-Li; Ma, Chuang; Xiang, Bing-Bing; Tang, Ming; Zhang, Hai-Feng
2018-02-01
To maximize the spreading influence of multiple spreaders in complex networks, one important fact cannot be ignored: the multiple spreaders should be dispersively distributed in networks, which can effectively reduce the redundance of information spreading. For this purpose, we define a generalized closeness centrality (GCC) index by generalizing the closeness centrality index to a set of nodes. The problem converts to how to identify multiple spreaders such that an objective function has the minimal value. By comparing with the K-means clustering algorithm, we find that the optimization problem is very similar to the problem of minimizing the objective function in the K-means method. Therefore, how to find multiple nodes with the highest GCC value can be approximately solved by the K-means method. Two typical transmission dynamics-epidemic spreading process and rumor spreading process are implemented in real networks to verify the good performance of our proposed method.
Protein function prediction--the power of multiplicity.
Rentzsch, Robert; Orengo, Christine A
2009-04-01
Advances in experimental and computational methods have quietly ushered in a new era in protein function annotation. This 'age of multiplicity' is marked by the notion that only the use of multiple tools, multiple evidence and considering the multiple aspects of function can give us the broad picture that 21st century biology will need to link and alter micro- and macroscopic phenotypes. It might also help us to undo past mistakes by removing errors from our databases and prevent us from producing more. On the downside, multiplicity is often confusing. We therefore systematically review methods and resources for automated protein function prediction, looking at individual (biochemical) and contextual (network) functions, respectively.
Topological charge number multiplexing for JTC multiple-image encryption
NASA Astrophysics Data System (ADS)
Chen, Qi; Shen, Xueju; Dou, Shuaifeng; Lin, Chao; Wang, Long
2018-04-01
We propose a method of topological charge number multiplexing based on the JTC encryption system to achieve multiple-image encryption. Using this method, multi-image can be encrypted into single ciphertext, and the original images can be recovered according to the authority level. The number of encrypted images is increased, moreover, the quality of decrypted images is improved. Results of computer simulation and initial experiment identify the validity of our proposed method.
DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.
Kelly, Steven; Maini, Philip K
2013-01-01
The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.
Multiple-Bit Differential Detection of OQPSK
NASA Technical Reports Server (NTRS)
Simon, Marvin
2005-01-01
A multiple-bit differential-detection method has been proposed for the reception of radio signals modulated with offset quadrature phase-shift keying (offset QPSK or OQPSK). The method is also applicable to other spectrally efficient offset quadrature modulations. This method is based partly on the same principles as those of a multiple-symbol differential-detection method for M-ary QPSK, which includes QPSK (that is, non-offset QPSK) as a special case. That method was introduced more than a decade ago by the author of the present method as a means of improving performance relative to a traditional (two-symbol observation) differential-detection scheme. Instead of symbol-by-symbol detection, both that method and the present one are based on a concept of maximum-likelihood sequence estimation (MLSE). As applied to the modulations in question, MLSE involves consideration of (1) all possible binary data sequences that could have been received during an observation time of some number, N, of symbol periods and (2) selection of the sequence that yields the best match to the noise-corrupted signal received during that time. The performance of the prior method was shown to range from that of traditional differential detection for short observation times (small N) to that of ideal coherent detection (with differential encoding) for long observation times (large N).
Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Robin L.; Rathbone, Bruce A.
2010-08-01
The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41more » standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).« less
Morgenstern, Hai; Rafaely, Boaz
2018-02-01
Spatial analysis of room acoustics is an ongoing research topic. Microphone arrays have been employed for spatial analyses with an important objective being the estimation of the direction-of-arrival (DOA) of direct sound and early room reflections using room impulse responses (RIRs). An optimal method for DOA estimation is the multiple signal classification algorithm. When RIRs are considered, this method typically fails due to the correlation of room reflections, which leads to rank deficiency of the cross-spectrum matrix. Preprocessing methods for rank restoration, which may involve averaging over frequency, for example, have been proposed exclusively for spherical arrays. However, these methods fail in the case of reflections with equal time delays, which may arise in practice and could be of interest. In this paper, a method is proposed for systems that combine a spherical microphone array and a spherical loudspeaker array, referred to as multiple-input multiple-output systems. This method, referred to as modal smoothing, exploits the additional spatial diversity for rank restoration and succeeds where previous methods fail, as demonstrated in a simulation study. Finally, combining modal smoothing with a preprocessing method is proposed in order to increase the number of DOAs that can be estimated using low-order spherical loudspeaker arrays.
Digital processing of array seismic recordings
Ryall, Alan; Birtill, John
1962-01-01
This technical letter contains a brief review of the operations which are involved in digital processing of array seismic recordings by the methods of velocity filtering, summation, cross-multiplication and integration, and by combinations of these operations (the "UK Method" and multiple correlation). Examples are presented of analyses by the several techniques on array recordings which were obtained by the U.S. Geological Survey during chemical and nuclear explosions in the western United States. Seismograms are synthesized using actual noise and Pn-signal recordings, such that the signal-to-noise ratio, onset time and velocity of the signal are predetermined for the synthetic record. These records are then analyzed by summation, cross-multiplication, multiple correlation and the UK technique, and the results are compared. For all of the examples presented, analysis by the non-linear techniques of multiple correlation and cross-multiplication of the traces on an array recording are preferred to analyses by the linear operations involved in summation and the UK Method.
Zhang, L; Liu, X J
2016-06-03
With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.
A new linear least squares method for T1 estimation from SPGR signals with multiple TRs
NASA Astrophysics Data System (ADS)
Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo
2009-02-01
The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.
New approach to CT pixel-based photon dose calculations in heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, J.W.; Henkelman, R.M.
The effects of small cavities on dose in water and the dose in a homogeneous nonunit density medium illustrate that inhomogeneities do not act independently in photon dose perturbation, and serve as two constraints which should be satisfied by approximate methods of computed tomography (CT) pixel-based dose calculations. Current methods at best satisfy only one of the two constraints and show inadequacies in some intermediate geometries. We have developed an approximate method that satisfies both these constraints and treats much of the synergistic effect of multiple inhomogeneities correctly. The method calculates primary and first-scatter doses by first-order ray tracing withmore » the first-scatter contribution augmented by a component of second scatter that behaves like first scatter. Multiple-scatter dose perturbation values extracted from small cavity experiments are used in a function which approximates the small residual multiple-scatter dose. For a wide range of geometries tested, our method agrees very well with measurements. The average deviation is less than 2% with a maximum of 3%. In comparison, calculations based on existing methods can have errors larger than 10%.« less
Monitoring multiple components in vinegar fermentation using Raman spectroscopy.
Uysal, Reyhan Selin; Soykut, Esra Acar; Boyaci, Ismail Hakki; Topcu, Ali
2013-12-15
In this study, the utility of Raman spectroscopy (RS) with chemometric methods for quantification of multiple components in the fermentation process was investigated. Vinegar, the product of a two stage fermentation, was used as a model and glucose and fructose consumption, ethanol production and consumption and acetic acid production were followed using RS and the partial least squares (PLS) method. Calibration of the PLS method was performed using model solutions. The prediction capability of the method was then investigated with both model and real samples. HPLC was used as a reference method. The results from comparing RS-PLS and HPLC with each other showed good correlations were obtained between predicted and actual sample values for glucose (R(2)=0.973), fructose (R(2)=0.988), ethanol (R(2)=0.996) and acetic acid (R(2)=0.983). In conclusion, a combination of RS with chemometric methods can be applied to monitor multiple components of the fermentation process from start to finish with a single measurement in a short time. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raven, Sara
2015-09-01
Background: Studies have shown that students' knowledge of osmosis and diffusion and the concepts associated with these processes is often inaccurate. This is important to address, as these concepts not only provide the foundation for more advanced topics in biology and chemistry, but are also threaded throughout both state and national science standards. Purpose: In this study, designed to determine the completeness and accuracy of three specific students' knowledge of molecule movement, concentration gradients, and equilibrium, I sought to address the following question: Using multiple evaluative methods, how can students' knowledge of molecule movement, concentration gradients, and equilibrium be characterized? Sample: This study focuses on data gathered from three students - Emma, Henry, and Riley - all of whom were gifted/honors ninth-grade biology students at a suburban high school in the southeast United States. Design and Methods: Using various qualitative data analysis techniques, I analyzed multiple sources of data from the three students, including multiple-choice test results, written free-response answers, think-aloud interview responses, and student drawings. Results: Results of the analysis showed that students maintained misconceptions about molecule movement, concentration gradients, and equilibrium. The conceptual knowledge students demonstrated differed depending on the assessment method, with the most distinct differences appearing on the multiple-choice versus the free-response questions, and in verbal versus written formats. Conclusions: Multiple levels of assessment may be required to obtain an accurate picture of content knowledge, as free-response and illustrative tasks made it difficult for students to conceal any misconceptions. Using a variety of assessment methods within a section of the curriculum can arguably help to provide a deeper understanding of student knowledge and learning, as well as illuminate misconceptions that may have remained unknown if only one assessment method was used. Furthermore, beyond simply evaluating past learning, multiple assessment methods may aid in student comprehension of key concepts.
On the method of Ermakov and Zolotukhin for multiple integration
NASA Technical Reports Server (NTRS)
Cranley, R.; Patterson, T. N. L.
1971-01-01
The method of Ermakov and Zolotukhin is discussed along with its later developments. By introducing the idea of pseudo-implementation a practical assessment of the method is made. The performance of the method is found to be unimpressive in comparison with a recent regression method.
NASA Astrophysics Data System (ADS)
Bharti, P. K.; Khan, M. I.; Singh, Harbinder
2010-10-01
Off-line quality control is considered to be an effective approach to improve product quality at a relatively low cost. The Taguchi method is one of the conventional approaches for this purpose. Through this approach, engineers can determine a feasible combination of design parameters such that the variability of a product's response can be reduced and the mean is close to the desired target. The traditional Taguchi method was focused on ensuring good performance at the parameter design stage with one quality characteristic, but most products and processes have multiple quality characteristics. The optimal parameter design minimizes the total quality loss for multiple quality characteristics. Several studies have presented approaches addressing multiple quality characteristics. Most of these papers were concerned with maximizing the parameter combination of signal to noise (SN) ratios. The results reveal the advantages of this approach are that the optimal parameter design is the same as the traditional Taguchi method for the single quality characteristic; the optimal design maximizes the amount of reduction of total quality loss for multiple quality characteristics. This paper presents a literature review on solving multi-response problems in the Taguchi method and its successful implementation in various industries.
Fixed-Base Comb with Window-Non-Adjacent Form (NAF) Method for Scalar Multiplication
Seo, Hwajeong; Kim, Hyunjin; Park, Taehwan; Lee, Yeoncheol; Liu, Zhe; Kim, Howon
2013-01-01
Elliptic curve cryptography (ECC) is one of the most promising public-key techniques in terms of short key size and various crypto protocols. For this reason, many studies on the implementation of ECC on resource-constrained devices within a practical execution time have been conducted. To this end, we must focus on scalar multiplication, which is the most expensive operation in ECC. A number of studies have proposed pre-computation and advanced scalar multiplication using a non-adjacent form (NAF) representation, and more sophisticated approaches have employed a width-w NAF representation and a modified pre-computation table. In this paper, we propose a new pre-computation method in which zero occurrences are much more frequent than in previous methods. This method can be applied to ordinary group scalar multiplication, but it requires large pre-computation table, so we combined the previous method with ours for practical purposes. This novel structure establishes a new feature that adjusts speed performance and table size finely, so we can customize the pre-computation table for our own purposes. Finally, we can establish a customized look-up table for embedded microprocessors. PMID:23881143
The computational complexity of elliptic curve integer sub-decomposition (ISD) method
NASA Astrophysics Data System (ADS)
Ajeena, Ruma Kareem K.; Kamarulhaili, Hailiza
2014-07-01
The idea of the GLV method of Gallant, Lambert and Vanstone (Crypto 2001) is considered a foundation stone to build a new procedure to compute the elliptic curve scalar multiplication. This procedure, that is integer sub-decomposition (ISD), will compute any multiple kP of elliptic curve point P which has a large prime order n with two low-degrees endomorphisms ψ1 and ψ2 of elliptic curve E over prime field Fp. The sub-decomposition of values k1 and k2, not bounded by ±C√n , gives us new integers k11, k12, k21 and k22 which are bounded by ±C√n and can be computed through solving the closest vector problem in lattice. The percentage of a successful computation for the scalar multiplication increases by ISD method, which improved the computational efficiency in comparison with the general method for computing scalar multiplication in elliptic curves over the prime fields. This paper will present the mechanism of ISD method and will shed light mainly on the computation complexity of the ISD approach that will be determined by computing the cost of operations. These operations include elliptic curve operations and finite field operations.
Li, Miao; Li, Jun; Zhou, Yiyu
2015-12-08
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.
Li, Miao; Li, Jun; Zhou, Yiyu
2015-01-01
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234
Fusion of magnetometer and gradiometer sensors of MEG in the presence of multiplicative error.
Mohseni, Hamid R; Woolrich, Mark W; Kringelbach, Morten L; Luckhoo, Henry; Smith, Penny Probert; Aziz, Tipu Z
2012-07-01
Novel neuroimaging techniques have provided unprecedented information on the structure and function of the living human brain. Multimodal fusion of data from different sensors promises to radically improve this understanding, yet optimal methods have not been developed. Here, we demonstrate a novel method for combining multichannel signals. We show how this method can be used to fuse signals from the magnetometer and gradiometer sensors used in magnetoencephalography (MEG), and through extensive experiments using simulation, head phantom and real MEG data, show that it is both robust and accurate. This new approach works by assuming that the lead fields have multiplicative error. The criterion to estimate the error is given within a spatial filter framework such that the estimated power is minimized in the worst case scenario. The method is compared to, and found better than, existing approaches. The closed-form solution and the conditions under which the multiplicative error can be optimally estimated are provided. This novel approach can also be employed for multimodal fusion of other multichannel signals such as MEG and EEG. Although the multiplicative error is estimated based on beamforming, other methods for source analysis can equally be used after the lead-field modification.
Power control apparatus and methods for electric vehicles
Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li
2016-03-22
Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.
Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
NASA Astrophysics Data System (ADS)
Razzak, M. A.; Alam, M. Z.; Sharif, M. N.
2018-03-01
In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.
Lipid Adjustment for Chemical Exposures: Accounting for Concomitant Variables
Li, Daniel; Longnecker, Matthew P.; Dunson, David B.
2013-01-01
Background Some environmental chemical exposures are lipophilic and need to be adjusted by serum lipid levels before data analyses. There are currently various strategies that attempt to account for this problem, but all have their drawbacks. To address such concerns, we propose a new method that uses Box-Cox transformations and a simple Bayesian hierarchical model to adjust for lipophilic chemical exposures. Methods We compared our Box-Cox method to existing methods. We ran simulation studies in which increasing levels of lipid-adjusted chemical exposure did and did not increase the odds of having a disease, and we looked at both single-exposure and multiple-exposures cases. We also analyzed an epidemiology dataset that examined the effects of various chemical exposures on the risk of birth defects. Results Compared with existing methods, our Box-Cox method produced unbiased estimates, good coverage, similar power, and lower type-I error rates. This was the case in both single- and multiple-exposure simulation studies. Results from analysis of the birth-defect data differed from results using existing methods. Conclusion Our Box-Cox method is a novel and intuitive way to account for the lipophilic nature of certain chemical exposures. It addresses some of the problems with existing methods, is easily extendable to multiple exposures, and can be used in any analyses that involve concomitant variables. PMID:24051893
Real-time optical multiple object recognition and tracking system and method
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)
1987-01-01
The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.
Integrated optics to improve resolution on multiple configuration
NASA Astrophysics Data System (ADS)
Liu, Hua; Ding, Quanxin; Guo, Chunjie; Zhou, Liwei
2015-04-01
Inspired to in order to reveal the structure to improve imaging resolution, further technical requirement is proposed in some areas of the function and influence on the development of multiple configuration. To breakthrough diffraction limit, smart structures are recommended as the most efficient and economical method, while by used to improve the system performance, especially on signal to noise ratio and resolution. Integrated optics were considered in the selection, with which typical multiple configuration, by use the method of simulation experiment. Methodology can change traditional design concept and to develop the application space. Our calculations using multiple matrix transfer method, also the correlative algorithm and full calculations, show the expected beam shaping through system and, in particular, the experimental results will support our argument, which will be reported in the presentation.
Linking stressors and ecological responses
Gentile, J.H.; Solomon, K.R.; Butcher, J.B.; Harrass, M.; Landis, W.G.; Power, M.; Rattner, B.A.; Warren-Hicks, W.J.; Wenger, R.; Foran, Jeffery A.; Ferenc, Susan A.
1999-01-01
To characterize risk, it is necessary to quantify the linkages and interactions between chemical, physical and biological stressors and endpoints in the conceptual framework for ecological risk assessment (ERA). This can present challenges in a multiple stressor analysis, and it will not always be possible to develop a quantitative stressor-response profile. This review commences with a conceptual representation of the problem of developing a linkage analysis for multiple stressors and responses. The remainder of the review surveys a variety of mathematical and statistical methods (e.g., ranking methods, matrix models, multivariate dose-response for mixtures, indices, visualization, simulation modeling and decision-oriented methods) for accomplishing the linkage analysis for multiple stressors. Describing the relationships between multiple stressors and ecological effects are critical components of 'effects assessment' in the ecological risk assessment framework.
Levecke, Bruno; Behnke, Jerzy M.; Ajjampur, Sitara S. R.; Albonico, Marco; Ame, Shaali M.; Charlier, Johannes; Geiger, Stefan M.; Hoa, Nguyen T. V.; Kamwa Ngassam, Romuald I.; Kotze, Andrew C.; McCarthy, James S.; Montresor, Antonio; Periago, Maria V.; Roy, Sheela; Tchuem Tchuenté, Louis-Albert; Thach, D. T. C.; Vercruysse, Jozef
2011-01-01
Background The Kato-Katz thick smear (Kato-Katz) is the diagnostic method recommended for monitoring large-scale treatment programs implemented for the control of soil-transmitted helminths (STH) in public health, yet it is difficult to standardize. A promising alternative is the McMaster egg counting method (McMaster), commonly used in veterinary parasitology, but rarely so for the detection of STH in human stool. Methodology/Principal Findings The Kato-Katz and McMaster methods were compared for the detection of STH in 1,543 subjects resident in five countries across Africa, Asia and South America. The consistency of the performance of both methods in different trials, the validity of the fixed multiplication factor employed in the Kato-Katz method and the accuracy of these methods for estimating ‘true’ drug efficacies were assessed. The Kato-Katz method detected significantly more Ascaris lumbricoides infections (88.1% vs. 75.6%, p<0.001), whereas the difference in sensitivity between the two methods was non-significant for hookworm (78.3% vs. 72.4%) and Trichuris trichiura (82.6% vs. 80.3%). The sensitivity of the methods varied significantly across trials and magnitude of fecal egg counts (FEC). Quantitative comparison revealed a significant correlation (Rs >0.32) in FEC between both methods, and indicated no significant difference in FEC, except for A. lumbricoides, where the Kato-Katz resulted in significantly higher FEC (14,197 eggs per gram of stool (EPG) vs. 5,982 EPG). For the Kato-Katz, the fixed multiplication factor resulted in significantly higher FEC than the multiplication factor adjusted for mass of feces examined for A. lumbricoides (16,538 EPG vs. 15,396 EPG) and T. trichiura (1,490 EPG vs. 1,363 EPG), but not for hookworm. The McMaster provided more accurate efficacy results (absolute difference to ‘true’ drug efficacy: 1.7% vs. 4.5%). Conclusions/Significance The McMaster is an alternative method for monitoring large-scale treatment programs. It is a robust (accurate multiplication factor) and accurate (reliable efficacy results) method, which can be easily standardized. PMID:21695104
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Yang, Liumao; Li, Shutao; Rabbani, Hossein; Liu, Zhimin; Peng, Qinghua; Chen, Xiangdong
2017-06-01
Detection and recognition of macular lesions in optical coherence tomography (OCT) are very important for retinal diseases diagnosis and treatment. As one kind of retinal disease (e.g., diabetic retinopathy) may contain multiple lesions (e.g., edema, exudates, and microaneurysms) and eye patients may suffer from multiple retinal diseases, multiple lesions often coexist within one retinal image. Therefore, one single-lesion-based detector may not support the diagnosis of clinical eye diseases. To address this issue, we propose a multi-instance multilabel-based lesions recognition (MIML-LR) method for the simultaneous detection and recognition of multiple lesions. The proposed MIML-LR method consists of the following steps: (1) segment the regions of interest (ROIs) for different lesions, (2) compute descriptive instances (features) for each lesion region, (3) construct multilabel detectors, and (4) recognize each ROI with the detectors. The proposed MIML-LR method was tested on 823 clinically labeled OCT images with normal macular and macular with three common lesions: epiretinal membrane, edema, and drusen. For each input OCT image, our MIML-LR method can automatically identify the number of lesions and assign the class labels, achieving the average accuracy of 88.72% for the cases with multiple lesions, which better assists macular disease diagnosis and treatment.
One of the objectives of the National Human Exposure Assessment Survey (NHEXAS) is to estimate exposures to several pollutants in multiple media and determine their distributions for the population of Arizona. This paper presents modeling methods used to estimate exposure dist...
It's Deja Vu All over Again: Using Multiple-Spell Discrete-Time Survival Analysis.
ERIC Educational Resources Information Center
Willett, John B.; Singer, Judith D.
1995-01-01
The multiple-spell discrete-time survival analysis method is introduced and illustrated using longitudinal data on exit from and reentry into the teaching profession. The method is applicable to many educational problems involving the sequential occurrence of disparate events or episodes. (SLD)
Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng
2018-05-09
Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.
Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc
2013-06-01
An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
2012-01-01
Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.
2011-01-01
Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967
A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.
Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip
2014-11-01
This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
Kim, Eun Sook; Cao, Chunhua
2015-01-01
Considering that group comparisons are common in social science, we examined two latent group mean testing methods when groups of interest were either at the between or within level of multilevel data: multiple-group multilevel confirmatory factor analysis (MG ML CFA) and multilevel multiple-indicators multiple-causes modeling (ML MIMIC). The performance of these methods were investigated through three Monte Carlo studies. In Studies 1 and 2, either factor variances or residual variances were manipulated to be heterogeneous between groups. In Study 3, which focused on within-level multiple-group analysis, six different model specifications were considered depending on how to model the intra-class group correlation (i.e., correlation between random effect factors for groups within cluster). The results of simulations generally supported the adequacy of MG ML CFA and ML MIMIC for multiple-group analysis with multilevel data. The two methods did not show any notable difference in the latent group mean testing across three studies. Finally, a demonstration with real data and guidelines in selecting an appropriate approach to multilevel multiple-group analysis are provided.
NASA Astrophysics Data System (ADS)
Wu, Hao; Shen, Guofeng; Qiao, Shan; Chen, Yazhu
2017-03-01
Sonication with fast scanning method can generate homogeneous lesions without complex planning. But when the target region is large, switching focus too fast will reduce the heat accumulation, the margin of which may not ablated. Furthermore, high blood perfusion rate will reduce this maximum volume that can be ablated. Therefore, fast scanning method may not be applied to large volume tumor. To expand the therapy scope, this study combines the fast scan method with multiple mode strategy. Through simulation and experiment, the feasibility of this new strategy is evaluated and analyzed.
Excited-State Effective Masses in Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Fleming, Saul Cohen, Huey-Wen Lin
2009-10-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
The SAGE Model of Social Psychological Research.
Power, Séamus A; Velez, Gabriel; Qadafi, Ahmad; Tennant, Joseph
2018-05-01
We propose a SAGE model for social psychological research. Encapsulated in our acronym is a proposal to have a synthetic approach to social psychological research, in which qualitative methods are augmentative to quantitative ones, qualitative methods can be generative of new experimental hypotheses, and qualitative methods can capture experiences that evade experimental reductionism. We remind social psychological researchers that psychology was founded in multiple methods of investigation at multiple levels of analysis. We discuss historical examples and our own research as contemporary examples of how a SAGE model can operate in part or as an integrated whole. The implications of our model are discussed.
Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams
NASA Technical Reports Server (NTRS)
Lipatov, Alexander S.
2011-01-01
We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models
NASA Astrophysics Data System (ADS)
Ahmadian, Narjes; Khosravi, Alireza; Sarhadi, Pouria
2017-08-01
In this paper, a multiple model adaptive control (MMAC) method is proposed for a gas turbine engine. The model of a twin spool turbo-shaft engine driving a variable pitch propeller includes various operating points. Variations in fuel flow and propeller pitch inputs produce different operating conditions which force the controller to be adopted rapidly. Important operating points are three idle, cruise and full thrust cases for the entire flight envelope. A multi-input multi-output (MIMO) version of second level adaptation using multiple models is developed. Also, stability analysis using Lyapunov method is presented. The proposed method is compared with two conventional first level adaptation and model reference adaptive control techniques. Simulation results for JetCat SPT5 turbo-shaft engine demonstrate the performance and fidelity of the proposed method.
On simulating flow with multiple time scales using a method of averages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolin, L.G.
1997-12-31
The author presents a new computational method based on averaging to efficiently simulate certain systems with multiple time scales. He first develops the method in a simple one-dimensional setting and employs linear stability analysis to demonstrate numerical stability. He then extends the method to multidimensional fluid flow. His method of averages does not depend on explicit splitting of the equations nor on modal decomposition. Rather he combines low order and high order algorithms in a generalized predictor-corrector framework. He illustrates the methodology in the context of a shallow fluid approximation to an ocean basin circulation. He finds that his newmore » method reproduces the accuracy of a fully explicit second-order accurate scheme, while costing less than a first-order accurate scheme.« less
A Cost Effective Block Framing Scheme for Underwater Communication
Shin, Soo-Young; Park, Soo-Hyun
2011-01-01
In this paper, the Selective Multiple Acknowledgement (SMA) method, based on Multiple Acknowledgement (MA), is proposed to efficiently reduce the amount of data transmission by redesigning the transmission frame structure and taking into consideration underwater transmission characteristics. The method is suited to integrated underwater system models, as the proposed method can handle the same amount of data in a much more compact frame structure without any appreciable loss of reliability. Herein, the performance of the proposed SMA method was analyzed and compared to those of the conventional Automatic Repeat-reQuest (ARQ), Block Acknowledgement (BA), block response, and MA methods. The efficiency of the underwater sensor network, which forms a large cluster and mostly contains uplink data, is expected to be improved by the proposed method. PMID:22247689
Applications of numerical methods to simulate the movement of contaminants in groundwater.
Sun, N Z
1989-01-01
This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John R
R code that performs the analysis of a data set presented in the paper ‘Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications’ by Lewis, J., Zhang, A., Anderson-Cook, C. It provides functions for doing inverse predictions in this setting using several different statistical methods. The data set is a publicly available data set from a historical Plutonium production experiment.
Integrated structural control design of large space structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.J.; Lauffer, J.P.
1995-01-01
Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust controlmore » methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.« less
NASA Astrophysics Data System (ADS)
Drukker, Karen; Hammes-Schiffer, Sharon
1997-07-01
This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.
A Study of Security Awareness Information Delivery within the Defense Intelligence Community
ERIC Educational Resources Information Center
Krasley, Paul F.
2011-01-01
Due to limited resources and inconsistent guidance from the U.S. Federal Government, Department of Defense, and multiple environments within the intelligence community, the defense intelligence agencies each developed their own methods to deliver security awareness information. These multiple delivery methods may be providing different levels of…
DOT National Transportation Integrated Search
2015-04-01
A laboratory study was conducted to develop guidelines for the Multiple Stress Creep Recovery : (MSCR) test method for local conditions prevailing in Oklahoma. The study consisted of : commonly used binders in Oklahoma, namely PG 64-22, PG 70-28, and...
USDA-ARS?s Scientific Manuscript database
This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...
Clustering "N" Objects into "K" Groups under Optimal Scaling of Variables.
ERIC Educational Resources Information Center
van Buuren, Stef; Heiser, Willem J.
1989-01-01
A method based on homogeneity analysis (multiple correspondence analysis or multiple scaling) is proposed to reduce many categorical variables to one variable with "k" categories. The method is a generalization of the sum of squared distances cluster analysis problem to the case of mixed measurement level variables. (SLD)
Building Regression Models: The Importance of Graphics.
ERIC Educational Resources Information Center
Dunn, Richard
1989-01-01
Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)
Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L
2016-02-10
Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.
Joint Concept Correlation and Feature-Concept Relevance Learning for Multilabel Classification.
Zhao, Xiaowei; Ma, Zhigang; Li, Zhi; Li, Zhihui
2018-02-01
In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.
Advancement of Analysis Method for Electromagnetic Screening Effect of Mountain Tunnel
NASA Astrophysics Data System (ADS)
Okutani, Tamio; Nakamura, Nobuyuki; Terada, Natsuki; Fukuda, Mitsuyoshi; Tate, Yutaka; Inada, Satoshi; Itoh, Hidenori; Wakao, Shinji
In this paper we report advancement of an analysis method for electromagnetic screening effect of mountain tunnel with a multiple conductor circuit model. On A.C. electrified railways it is a great issue to manage the influence of electromagnetic induction caused by feeding circuits. Tunnels are said to have a screening effect to reduce the electromagnetic induction because a large amount of steel is used in the tunnels. But recently the screening effect is less expected because New Austrian Tunneling Method (NATM), in which the amount of steel used is less than in conventional methods, is adopted as the standard tunneling method for constructing mountain tunnels. So we measured and analyzed the actual screening effect of mountain tunnels constructed with NATM. In the process of the analysis we have advanced a method to analyze the screening effect more precisely. In this method we can adequately model tunnel structure as a part of multiple conductor circuit.
Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.
Mirzaei, Sajad; Wu, Yufeng
2016-01-01
Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.
Angular width of the Cherenkov radiation with inclusion of multiple scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian, E-mail: jzheng@ustc.edu.cn
2016-06-15
Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.
Yang, Ze-Hui; Zheng, Rui; Gao, Yuan; Zhang, Qiang
2016-09-01
With the widespread application of high-throughput technology, numerous meta-analysis methods have been proposed for differential expression profiling across multiple studies. We identified the suitable differentially expressed (DE) genes that contributed to lung adenocarcinoma (ADC) clustering based on seven popular multiple meta-analysis methods. Seven microarray expression profiles of ADC and normal controls were extracted from the ArrayExpress database. The Bioconductor was used to perform the data preliminary preprocessing. Then, DE genes across multiple studies were identified. Hierarchical clustering was applied to compare the classification performance for microarray data samples. The classification efficiency was compared based on accuracy, sensitivity and specificity. Across seven datasets, 573 ADC cases and 222 normal controls were collected. After filtering out unexpressed and noninformative genes, 3688 genes were remained for further analysis. The classification efficiency analysis showed that DE genes identified by sum of ranks method separated ADC from normal controls with the best accuracy, sensitivity and specificity of 0.953, 0.969 and 0.932, respectively. The gene set with the highest classification accuracy mainly participated in the regulation of response to external stimulus (P = 7.97E-04), cyclic nucleotide-mediated signaling (P = 0.01), regulation of cell morphogenesis (P = 0.01) and regulation of cell proliferation (P = 0.01). Evaluation of DE genes identified by different meta-analysis methods in classification efficiency provided a new perspective to the choice of the suitable method in a given application. Varying meta-analysis methods always present varying abilities, so synthetic consideration should be taken when providing meta-analysis methods for particular research. © 2015 John Wiley & Sons Ltd.
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-05-11
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.
Dolan, James G
2010-01-01
Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).
Dolan, James G.
2010-01-01
Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-01-01
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879
Siddique, Juned; Harel, Ofer; Crespi, Catherine M.; Hedeker, Donald
2014-01-01
The true missing data mechanism is never known in practice. We present a method for generating multiple imputations for binary variables that formally incorporates missing data mechanism uncertainty. Imputations are generated from a distribution of imputation models rather than a single model, with the distribution reflecting subjective notions of missing data mechanism uncertainty. Parameter estimates and standard errors are obtained using rules for nested multiple imputation. Using simulation, we investigate the impact of missing data mechanism uncertainty on post-imputation inferences and show that incorporating this uncertainty can increase the coverage of parameter estimates. We apply our method to a longitudinal smoking cessation trial where nonignorably missing data were a concern. Our method provides a simple approach for formalizing subjective notions regarding nonresponse and can be implemented using existing imputation software. PMID:24634315
Distributed Multihoming Routing Method by Crossing Control MIPv6 with SCTP
NASA Astrophysics Data System (ADS)
Shi, Hongbo; Hamagami, Tomoki
There are various wireless communication technologies, such as 3G, WiFi, used widely in the world. Recently, not only the laptop but also the smart phones can be equipped with multiple wireless devices. The communication terminals which are implemented with multiple interfaces are usually called multi-homed nodes. Meanwhile, a multi-homed node with multiple interfaces can also be regarded as multiple single-homed nodes. For example, when a person who is using smart phone and laptop to connect to the Internet concurrently, we may regard the person as a multi-homed node in the Internet. This paper proposes a new routing method, Multi-homed Mobile Cross-layer Control to handle multi-homed mobile nodes. Our suggestion can provide a distributed end-to-end routing method for handling the communications among multi-homed nodes at the fundamental network layer.
Investigating the Stability of Four Methods for Estimating Item Bias.
ERIC Educational Resources Information Center
Perlman, Carole L.; And Others
The reliability of item bias estimates was studied for four methods: (1) the transformed delta method; (2) Shepard's modified delta method; (3) Rasch's one-parameter residual analysis; and (4) the Mantel-Haenszel procedure. Bias statistics were computed for each sample using all methods. Data were from administration of multiple-choice items from…
NASA Astrophysics Data System (ADS)
Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.
2016-06-01
A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.
NASA Astrophysics Data System (ADS)
Zhao, Weichen; Sun, Zhuo; Kong, Song
2016-10-01
Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.
NASA Astrophysics Data System (ADS)
Imamura, Seigo; Ono, Kenji; Yokokawa, Mitsuo
2016-07-01
Ensemble computing, which is an instance of capacity computing, is an effective computing scenario for exascale parallel supercomputers. In ensemble computing, there are multiple linear systems associated with a common coefficient matrix. We improve the performance of iterative solvers for multiple vectors by solving them at the same time, that is, by solving for the product of the matrices. We implemented several iterative methods and compared their performance. The maximum performance on Sparc VIIIfx was 7.6 times higher than that of a naïve implementation. Finally, to deal with the different convergence processes of linear systems, we introduced a control method to eliminate the calculation of already converged vectors.
Atmospheric turbulence profiling with SLODAR using multiple adaptive optics wavefront sensors.
Wang, Lianqi; Schöck, Matthias; Chanan, Gary
2008-04-10
The slope detection and ranging (SLODAR) method recovers atmospheric turbulence profiles from time averaged spatial cross correlations of wavefront slopes measured by Shack-Hartmann wavefront sensors. The Palomar multiple guide star unit (MGSU) was set up to test tomographic multiple guide star adaptive optics and provided an ideal test bed for SLODAR turbulence altitude profiling. We present the data reduction methods and SLODAR results from MGSU observations made in 2006. Wind profiling is also performed using delayed wavefront cross correlations along with SLODAR analysis. The wind profiling analysis is shown to improve the height resolution of the SLODAR method and in addition gives the wind velocities of the turbulent layers.
An extended sequential goodness-of-fit multiple testing method for discrete data.
Castro-Conde, Irene; Döhler, Sebastian; de Uña-Álvarez, Jacobo
2017-10-01
The sequential goodness-of-fit (SGoF) multiple testing method has recently been proposed as an alternative to the familywise error rate- and the false discovery rate-controlling procedures in high-dimensional problems. For discrete data, the SGoF method may be very conservative. In this paper, we introduce an alternative SGoF-type procedure that takes into account the discreteness of the test statistics. Like the original SGoF, our new method provides weak control of the false discovery rate/familywise error rate but attains false discovery rate levels closer to the desired nominal level, and thus it is more powerful. We study the performance of this method in a simulation study and illustrate its application to a real pharmacovigilance data set.
Comprehensive analysis of helicopters with bearingless rotors
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1988-01-01
A modified Galerkin method is developed to analyze the dynamic problems of multiple-load-path bearingless rotor blades. The development and selection of functions are quite parallel to CAMRAD procedures, greatly facilitating the implementation of the method into the CAMRAD program. A software is developed implementing the modified Galerkin method to determine free vibration characteristics of multiple-load-path rotor blades undergoing coupled flapwise bending, chordwise bending, twisting, and extensional motions. Results are in the process of being obtained by debugging the software.
System and method for image registration of multiple video streams
Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton
2018-02-06
Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.
A Comparison of Cut Scores Using Multiple Standard Setting Methods.
ERIC Educational Resources Information Center
Impara, James C.; Plake, Barbara S.
This paper reports the results of using several alternative methods of setting cut scores. The methods used were: (1) a variation of the Angoff method (1971); (2) a variation of the borderline group method; and (3) an advanced impact method (G. Dillon, 1996). The results discussed are from studies undertaken to set the cut scores for fourth grade…
Detection of Multiple Stationary Humans Using UWB MIMO Radar.
Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi
2016-11-16
Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.
Detection of Multiple Stationary Humans Using UWB MIMO Radar
Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi
2016-01-01
Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls. PMID:27854356
NASA Astrophysics Data System (ADS)
Liu, Xiaodong
2017-08-01
A sampling method by using scattering amplitude is proposed for shape and location reconstruction in inverse acoustic scattering problems. Only matrix multiplication is involved in the computation, thus the novel sampling method is very easy and simple to implement. With the help of the factorization of the far field operator, we establish an inf-criterion for characterization of underlying scatterers. This result is then used to give a lower bound of the proposed indicator functional for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functional decays like the bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functional continuously depends on the scattering amplitude, this further implies that the novel sampling method is extremely stable with respect to errors in the data. Different to the classical sampling method such as the linear sampling method or the factorization method, from the numerical point of view, the novel indicator takes its maximum near the boundary of the underlying target and decays like the bessel functions as the sampling points go away from the boundary. The numerical simulations also show that the proposed sampling method can deal with multiple multiscale case, even the different components are close to each other.
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
Learning to rank atlases for multiple-atlas segmentation.
Sanroma, Gerard; Wu, Guorong; Gao, Yaozong; Shen, Dinggang
2014-10-01
Recently, multiple-atlas segmentation (MAS) has achieved a great success in the medical imaging area. The key assumption is that multiple atlases have greater chances of correctly labeling a target image than a single atlas. However, the problem of atlas selection still remains unexplored. Traditionally, image similarity is used to select a set of atlases. Unfortunately, this heuristic criterion is not necessarily related to the final segmentation performance. To solve this seemingly simple but critical problem, we propose a learning-based atlas selection method to pick up the best atlases that would lead to a more accurate segmentation. Our main idea is to learn the relationship between the pairwise appearance of observed instances (i.e., a pair of atlas and target images) and their final labeling performance (e.g., using the Dice ratio). In this way, we select the best atlases based on their expected labeling accuracy. Our atlas selection method is general enough to be integrated with any existing MAS method. We show the advantages of our atlas selection method in an extensive experimental evaluation in the ADNI, SATA, IXI, and LONI LPBA40 datasets. As shown in the experiments, our method can boost the performance of three widely used MAS methods, outperforming other learning-based and image-similarity-based atlas selection methods.
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk
2017-01-01
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066
A trajectory design method via target practice for air-breathing hypersonic vehicle
NASA Astrophysics Data System (ADS)
Kong, Xue; Yang, Ming; Ning, Guodong; Wang, Songyan; Chao, Tao
2017-11-01
There are strong coupling interactions between aerodynamics and scramjet, this kind of aircraft also has multiple restrictions, such as the range and difference of dynamic pressure, airflow, and fuel. On the one hand, we need balance the requirement between maneuverability of vehicle and stabilization of scramjet. On the other hand, we need harmonize the change of altitude and the velocity. By describing aircraft's index system of climbing capability, acceleration capability, the coupling degree in aerospace, this paper further propose a rapid design method which based on target practice. This method aimed for reducing the coupling degree, it depresses the coupling between aircraft and engine in navigation phase, satisfy multiple restriction conditions to leave some control buffer and create good condition for control implementation. According to the simulation, this method could be used for multiple typical fly commissions such as climbing, acceleration or both.
Multi-chain Markov chain Monte Carlo methods for computationally expensive models
NASA Astrophysics Data System (ADS)
Huang, M.; Ray, J.; Ren, H.; Hou, Z.; Bao, J.
2017-12-01
Markov chain Monte Carlo (MCMC) methods are used to infer model parameters from observational data. The parameters are inferred as probability densities, thus capturing estimation error due to sparsity of the data, and the shortcomings of the model. Multiple communicating chains executing the MCMC method have the potential to explore the parameter space better, and conceivably accelerate the convergence to the final distribution. We present results from tests conducted with the multi-chain method to show how the acceleration occurs i.e., for loose convergence tolerances, the multiple chains do not make much of a difference. The ensemble of chains also seems to have the ability to accelerate the convergence of a few chains that might start from suboptimal starting points. Finally, we show the performance of the chains in the estimation of O(10) parameters using computationally expensive forward models such as the Community Land Model, where the sampling burden is distributed over multiple chains.
Video based object representation and classification using multiple covariance matrices.
Zhang, Yurong; Liu, Quan
2017-01-01
Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.
Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.
Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong
2015-07-01
To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.
Early detection of ecosystem regime shifts: a multiple method evaluation for management application.
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.
Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P.; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A.; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change. PMID:22808007
Sample size determination for logistic regression on a logit-normal distribution.
Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance
2017-06-01
Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.
Detecting submerged objects: the application of side scan sonar to forensic contexts.
Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim
2013-09-10
Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Spatially extended hybrid methods: a review
2018-01-01
Many biological and physical systems exhibit behaviour at multiple spatial, temporal or population scales. Multiscale processes provide challenges when they are to be simulated using numerical techniques. While coarser methods such as partial differential equations are typically fast to simulate, they lack the individual-level detail that may be required in regions of low concentration or small spatial scale. However, to simulate at such an individual level throughout a domain and in regions where concentrations are high can be computationally expensive. Spatially coupled hybrid methods provide a bridge, allowing for multiple representations of the same species in one spatial domain by partitioning space into distinct modelling subdomains. Over the past 20 years, such hybrid methods have risen to prominence, leading to what is now a very active research area across multiple disciplines including chemistry, physics and mathematics. There are three main motivations for undertaking this review. Firstly, we have collated a large number of spatially extended hybrid methods and presented them in a single coherent document, while comparing and contrasting them, so that anyone who requires a multiscale hybrid method will be able to find the most appropriate one for their need. Secondly, we have provided canonical examples with algorithms and accompanying code, serving to demonstrate how these types of methods work in practice. Finally, we have presented papers that employ these methods on real biological and physical problems, demonstrating their utility. We also consider some open research questions in the area of hybrid method development and the future directions for the field. PMID:29491179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin Langhorst; Thomas M Lillo; Henry S Chu
2014-05-01
A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target andmore » its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.« less
Graves, Tabitha A.; Royle, J. Andrew; Kendall, Katherine C.; Beier, Paul; Stetz, Jeffrey B.; Macleod, Amy C.
2012-01-01
Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps (systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model components for each detection method. If both methods sample the same population, the use of either data set alone should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4) improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection. However, the single-method analyses identified different variables and the resulting predicted abundances had different spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of individual heterogeneity between detection methods in N-mixture models, along with consideration of detection probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the population. The benefits of increased precision should be weighed against those risks. The analysis framework presented here will be useful for other species exhibiting heterogeneity by detection method.
ERIC Educational Resources Information Center
Klein, Andreas G.; Muthen, Bengt O.
2007-01-01
In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…
Embellishment of Student Leadership in Learning Multiplication at Primary Level
ERIC Educational Resources Information Center
Singaravelu, G.
2006-01-01
The present study enlightens the efficacy of Student Leadership method in learning Multiplication in Mathematics at primary level. Single group experimental method was adopted for the study. Forty learners studying in Standard III in Panchayat union primary School, Muthupettai in South Tamil Nadu, India have been selected as sample for the study.…
Magic Finger Teaching Method in Learning Multiplication Facts among Deaf Students
ERIC Educational Resources Information Center
Thai, Liong; Yasin, Mohd. Hanafi Mohd
2016-01-01
Deaf students face problems in mastering multiplication facts. This study aims to identify the effectiveness of Magic Finger Teaching Method (MFTM) and students' perception towards MFTM. The research employs a quasi experimental with non-equivalent pre-test and post-test control group design. Pre-test, post-test and questionnaires were used. As…
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
ERIC Educational Resources Information Center
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Generating Multiple Imputations for Matrix Sampling Data Analyzed with Item Response Models.
ERIC Educational Resources Information Center
Thomas, Neal; Gan, Nianci
1997-01-01
Describes and assesses missing data methods currently used to analyze data from matrix sampling designs implemented by the National Assessment of Educational Progress. Several improved methods are developed, and these models are evaluated using an EM algorithm to obtain maximum likelihood estimates followed by multiple imputation of complete data…
Absolute Points for Multiple Assignment Problems
ERIC Educational Resources Information Center
Adlakha, V.; Kowalski, K.
2006-01-01
An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…
Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.
ERIC Educational Resources Information Center
Rowell, R. Kevin
In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…
Comparison of Methods to Trace Multiple Subskills: Is LR-DBN Best?
ERIC Educational Resources Information Center
Xu, Yanbo; Mostow, Jack
2012-01-01
A long-standing challenge for knowledge tracing is how to update estimates of multiple subskills that underlie a single observable step. We characterize approaches to this problem by how they model knowledge tracing, fit its parameters, predict performance, and update subskill estimates. Previous methods allocated blame or credit among subskills…
Predicting MHC-II binding affinity using multiple instance regression
EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2011-01-01
Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923
Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.
Wang, Dang-wei; Ma, Xiao-yan; Su, Yi
2010-05-01
This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.
Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia
2015-08-26
Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.
Multiconstrained gene clustering based on generalized projections
2010-01-01
Background Gene clustering for annotating gene functions is one of the fundamental issues in bioinformatics. The best clustering solution is often regularized by multiple constraints such as gene expressions, Gene Ontology (GO) annotations and gene network structures. How to integrate multiple pieces of constraints for an optimal clustering solution still remains an unsolved problem. Results We propose a novel multiconstrained gene clustering (MGC) method within the generalized projection onto convex sets (POCS) framework used widely in image reconstruction. Each constraint is formulated as a corresponding set. The generalized projector iteratively projects the clustering solution onto these sets in order to find a consistent solution included in the intersection set that satisfies all constraints. Compared with previous MGC methods, POCS can integrate multiple constraints from different nature without distorting the original constraints. To evaluate the clustering solution, we also propose a new performance measure referred to as Gene Log Likelihood (GLL) that considers genes having more than one function and hence in more than one cluster. Comparative experimental results show that our POCS-based gene clustering method outperforms current state-of-the-art MGC methods. Conclusions The POCS-based MGC method can successfully combine multiple constraints from different nature for gene clustering. Also, the proposed GLL is an effective performance measure for the soft clustering solutions. PMID:20356386
A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions
NASA Astrophysics Data System (ADS)
Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya
Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.
Wu, Ci; Chen, Xi; Liu, Jianhui; Zhang, Xiaolin; Xue, Weifeng; Liang, Zhen; Liu, Mengyao; Cui, Yan; Huang, Daliang; Zhang, Lihua
2017-10-08
A novel method of the simultaneous detection of multiple kinds of allergenic proteins in infant food with parallel reaction monitoring (PRM) mode using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established. In this method, unique peptides with good stability and high sensibility were used to quantify the corresponding allergenic proteins. Furthermore, multiple kinds of allergenic proteins are inspected simultaneously with high sensitivity. In addition, such method was successfully used for the detection of multiple allergenic proteins in infant food. As for the sample preparation for infant food, compared with the traditional acetone precipitation strategy, the protein extraction efficiency and capacity of resisting disturbance are both higher with in-situ filter-aided sample pretreatment (i-FASP) method. All allergenic proteins gave a good linear response with the correlation coefficients ( R 2 ) ≥ 0.99, and the largest concentration range of the allergenic proteins could be four orders of magnitude, and the lowest detection limit was 0.028 mg/L, which was better than that reported in references. Finally, the method was conveniently used to detect the allergens from four imported infant food real samples. All the results demonstrate that this novel strategy is of great significance for providing a rapid and reliable analytical technique for allergen proteomics.
The SAGE Model of Social Psychological Research
Power, Séamus A.; Velez, Gabriel; Qadafi, Ahmad; Tennant, Joseph
2018-01-01
We propose a SAGE model for social psychological research. Encapsulated in our acronym is a proposal to have a synthetic approach to social psychological research, in which qualitative methods are augmentative to quantitative ones, qualitative methods can be generative of new experimental hypotheses, and qualitative methods can capture experiences that evade experimental reductionism. We remind social psychological researchers that psychology was founded in multiple methods of investigation at multiple levels of analysis. We discuss historical examples and our own research as contemporary examples of how a SAGE model can operate in part or as an integrated whole. The implications of our model are discussed. PMID:29361241
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2011-01-01
The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.
NASA Astrophysics Data System (ADS)
Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.
2018-04-01
Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.
NASA Technical Reports Server (NTRS)
Banyukevich, A.; Ziolkovski, K.
1975-01-01
A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.
De-noising of 3D multiple-coil MR images using modified LMMSE estimator.
Yaghoobi, Nima; Hasanzadeh, Reza P R
2018-06-20
De-noising is a crucial topic in Magnetic Resonance Imaging (MRI) which focuses on less loss of Magnetic Resonance (MR) image information and details preservation during the noise suppression. Nowadays multiple-coil MRI system is preferred to single one due to its acceleration in the imaging process. Due to the fact that the model of noise in single-coil and multiple-coil MRI systems are different, the de-noising methods that mostly are adapted to single-coil MRI systems, do not work appropriately with multiple-coil one. The model of noise in single-coil MRI systems is Rician while in multiple-coil one (if no subsampling occurs in k-space or GRAPPA reconstruction process is being done in the coils), it obeys noncentral Chi (nc-χ). In this paper, a new filtering method based on the Linear Minimum Mean Square Error (LMMSE) estimator is proposed for multiple-coil MR Images ruined by nc-χ noise. In the presented method, to have an optimum similarity selection of voxels, the Bayesian Mean Square Error (BMSE) criterion is used and proved for nc-χ noise model and also a nonlocal voxel selection methodology is proposed for nc-χ distribution. The results illustrate robust and accurate performance compared to the related state-of-the-art methods, either on ideal nc-χ images or GRAPPA reconstructed ones. Copyright © 2018. Published by Elsevier Inc.
Normal uniform mixture differential gene expression detection for cDNA microarrays
Dean, Nema; Raftery, Adrian E
2005-01-01
Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE) detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002) [1]. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM), and Empirical Bayes for microarrays (EBarrays) with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at . PMID:16011807
GeneNetFinder2: Improved Inference of Dynamic Gene Regulatory Relations with Multiple Regulators.
Han, Kyungsook; Lee, Jeonghoon
2016-01-01
A gene involved in complex regulatory interactions may have multiple regulators since gene expression in such interactions is often controlled by more than one gene. Another thing that makes gene regulatory interactions complicated is that regulatory interactions are not static, but change over time during the cell cycle. Most research so far has focused on identifying gene regulatory relations between individual genes in a particular stage of the cell cycle. In this study we developed a method for identifying dynamic gene regulations of several types from the time-series gene expression data. The method can find gene regulations with multiple regulators that work in combination or individually as well as those with single regulators. The method has been implemented as the second version of GeneNetFinder (hereafter called GeneNetFinder2) and tested on several gene expression datasets. Experimental results with gene expression data revealed the existence of genes that are not regulated by individual genes but rather by a combination of several genes. Such gene regulatory relations cannot be found by conventional methods. Our method finds such regulatory relations as well as those with multiple, independent regulators or single regulators, and represents gene regulatory relations as a dynamic network in which different gene regulatory relations are shown in different stages of the cell cycle. GeneNetFinder2 is available at http://bclab.inha.ac.kr/GeneNetFinder and will be useful for modeling dynamic gene regulations with multiple regulators.
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Liu, Li-Zhi; Wu, Fang-Xiang; Zhang, Wen-Jun
2014-01-01
As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in systems biology. With the development of biological technologies, multiple time-course gene expression datasets might be collected for a specific gene network under different circumstances. The inference of a gene regulatory network can be improved by integrating these multiple datasets. It is also known that gene expression data may be contaminated with large errors or outliers, which may affect the inference results. A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into account. To solve the optimization problem involved in the proposed method, an efficient algorithm which combines the ideas of auxiliary function minimization and block descent is developed. A stability selection method is adapted to our method to find a network topology consisting of edges with scores. The proposed method is applied to both simulation datasets and real experimental datasets. It shows that Huber group LASSO outperforms the group LASSO in terms of both areas under receiver operating characteristic curves and areas under the precision-recall curves. The convergence analysis of the algorithm theoretically shows that the sequence generated from the algorithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and improving the resistance to large errors or outliers.
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
Crowe, Sonya; Brown, Katherine; Tregay, Jenifer; Wray, Jo; Knowles, Rachel; Ridout, Deborah A; Bull, Catherine; Utley, Martin
2017-01-01
Background Improving integration and continuity of care across sectors within resource constraints is a priority in many health systems. Qualitative operational research methods of problem structuring have been used to address quality improvement in services involving multiple sectors but not in combination with quantitative operational research methods that enable targeting of interventions according to patient risk. We aimed to combine these methods to augment and inform an improvement initiative concerning infants with congenital heart disease (CHD) whose complex care pathway spans multiple sectors. Methods Soft systems methodology was used to consider systematically changes to services from the perspectives of community, primary, secondary and tertiary care professionals and a patient group, incorporating relevant evidence. Classification and regression tree (CART) analysis of national audit datasets was conducted along with data visualisation designed to inform service improvement within the context of limited resources. Results A ‘Rich Picture’ was developed capturing the main features of services for infants with CHD pertinent to service improvement. This was used, along with a graphical summary of the CART analysis, to guide discussions about targeting interventions at specific patient risk groups. Agreement was reached across representatives of relevant health professions and patients on a coherent set of targeted recommendations for quality improvement. These fed into national decisions about service provision and commissioning. Conclusions When tackling complex problems in service provision across multiple settings, it is important to acknowledge and work with multiple perspectives systematically and to consider targeting service improvements in response to confined resources. Our research demonstrates that applying a combination of qualitative and quantitative operational research methods is one approach to doing so that warrants further consideration. PMID:28062603
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition
2017-01-01
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user’s location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively. PMID:28817094
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition.
Choi, Hyo-Rim; Kim, TaeYong
2017-08-17
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user's location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2013-05-01
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
Hobart, J; Cano, S
2009-02-01
In this monograph we examine the added value of new psychometric methods (Rasch measurement and Item Response Theory) over traditional psychometric approaches by comparing and contrasting their psychometric evaluations of existing sets of rating scale data. We have concentrated on Rasch measurement rather than Item Response Theory because we believe that it is the more advantageous method for health measurement from a conceptual, theoretical and practical perspective. Our intention is to provide an authoritative document that describes the principles of Rasch measurement and the practice of Rasch analysis in a clear, detailed, non-technical form that is accurate and accessible to clinicians and researchers in health measurement. A comparison was undertaken of traditional and new psychometric methods in five large sets of rating scale data: (1) evaluation of the Rivermead Mobility Index (RMI) in data from 666 participants in the Cannabis in Multiple Sclerosis (CAMS) study; (2) evaluation of the Multiple Sclerosis Impact Scale (MSIS-29) in data from 1725 people with multiple sclerosis; (3) evaluation of test-retest reliability of MSIS-29 in data from 150 people with multiple sclerosis; (4) examination of the use of Rasch analysis to equate scales purporting to measure the same health construct in 585 people with multiple sclerosis; and (5) comparison of relative responsiveness of the Barthel Index and Functional Independence Measure in data from 1400 people undergoing neurorehabilitation. Both Rasch measurement and Item Response Theory are conceptually and theoretically superior to traditional psychometric methods. Findings from each of the five studies show that Rasch analysis is empirically superior to traditional psychometric methods for evaluating rating scales, developing rating scales, analysing rating scale data, understanding and measuring stability and change, and understanding the health constructs we seek to quantify. There is considerable added value in using Rasch analysis rather than traditional psychometric methods in health measurement. Future research directions include the need to reproduce our findings in a range of clinical populations, detailed head-to-head comparisons of Rasch analysis and Item Response Theory, and the application of Rasch analysis to clinical practice.
NASA Astrophysics Data System (ADS)
Cui, Ying; Dy, Jennifer G.; Sharp, Greg C.; Alexander, Brian; Jiang, Steve B.
2007-02-01
For gated lung cancer radiotherapy, it is difficult to generate accurate gating signals due to the large uncertainties when using external surrogates and the risk of pneumothorax when using implanted fiducial markers. We have previously investigated and demonstrated the feasibility of generating gating signals using the correlation scores between the reference template image and the fluoroscopic images acquired during the treatment. In this paper, we present an in-depth study, aiming at the improvement of robustness of the algorithm and its validation using multiple sets of patient data. Three different template generating and matching methods have been developed and evaluated: (1) single template method, (2) multiple template method, and (3) template clustering method. Using the fluoroscopic data acquired during patient setup before each fraction of treatment, reference templates are built that represent the tumour position and shape in the gating window, which is assumed to be at the end-of-exhale phase. For the single template method, all the setup images within the gating window are averaged to generate a composite template. For the multiple template method, each setup image in the gating window is considered as a reference template and used to generate an ensemble of correlation scores. All the scores are then combined to generate the gating signal. For the template clustering method, clustering (grouping of similar objects together) is performed to reduce the large number of reference templates into a few representative ones. Each of these methods has been evaluated against the reference gating signal as manually determined by a radiation oncologist. Five patient datasets were used for evaluation. In each case, gated treatments were simulated at both 35% and 50% duty cycles. False positive, negative and total error rates were computed. Experiments show that the single template method is sensitive to noise; the multiple template and clustering methods are more robust to noise due to the smoothing effect of aggregation of correlation scores; and the clustering method results in the best performance in terms of computational efficiency and accuracy.
Tong, Pan; Coombes, Kevin R
2012-11-15
Identifying genes altered in cancer plays a crucial role in both understanding the mechanism of carcinogenesis and developing novel therapeutics. It is known that there are various mechanisms of regulation that can lead to gene dysfunction, including copy number change, methylation, abnormal expression, mutation and so on. Nowadays, all these types of alterations can be simultaneously interrogated by different types of assays. Although many methods have been proposed to identify altered genes from a single assay, there is no method that can deal with multiple assays accounting for different alteration types systematically. In this article, we propose a novel method, integration using item response theory (integIRTy), to identify altered genes by using item response theory that allows integrated analysis of multiple high-throughput assays. When applied to a single assay, the proposed method is more robust and reliable than conventional methods such as Student's t-test or the Wilcoxon rank-sum test. When used to integrate multiple assays, integIRTy can identify novel-altered genes that cannot be found by looking at individual assay separately. We applied integIRTy to three public cancer datasets (ovarian carcinoma, breast cancer, glioblastoma) for cross-assay type integration which all show encouraging results. The R package integIRTy is available at the web site http://bioinformatics.mdanderson.org/main/OOMPA:Overview. kcoombes@mdanderson.org. Supplementary data are available at Bioinformatics online.
Credit allocation for research institutes
NASA Astrophysics Data System (ADS)
Wang, J.-P.; Guo, Q.; Yang, K.; Han, J.-T.; Liu, J.-G.
2017-05-01
It is a challenging work to assess research performance of multiple institutes. Considering that it is unfair to average the credit to the institutes which is in the different order from a paper, in this paper, we present a credit allocation method (CAM) with a weighted order coefficient for multiple institutes. The results for the APS dataset with 18987 institutes show that top-ranked institutes obtained by the CAM method correspond to well-known universities or research labs with high reputation in physics. Moreover, we evaluate the performance of the CAM method when citation links are added or rewired randomly quantified by the Kendall's Tau and Jaccard index. The experimental results indicate that the CAM method has better performance in robustness compared with the total number of citations (TC) method and Shen's method. Finally, we give the first 20 Chinese universities in physics obtained by the CAM method. However, this method is valid for any other branch of sciences, not just for physics. The proposed method also provides universities and policy makers an effective tool to quantify and balance the academic performance of university.
Multicriteria decision analysis: Overview and implications for environmental decision making
Hermans, Caroline M.; Erickson, Jon D.; Erickson, Jon D.; Messner, Frank; Ring, Irene
2007-01-01
Environmental decision making involving multiple stakeholders can benefit from the use of a formal process to structure stakeholder interactions, leading to more successful outcomes than traditional discursive decision processes. There are many tools available to handle complex decision making. Here we illustrate the use of a multicriteria decision analysis (MCDA) outranking tool (PROMETHEE) to facilitate decision making at the watershed scale, involving multiple stakeholders, multiple criteria, and multiple objectives. We compare various MCDA methods and their theoretical underpinnings, examining methods that most realistically model complex decision problems in ways that are understandable and transparent to stakeholders.
Estimating scaled treatment effects with multiple outcomes.
Kennedy, Edward H; Kangovi, Shreya; Mitra, Nandita
2017-01-01
In classical study designs, the aim is often to learn about the effects of a treatment or intervention on a single outcome; in many modern studies, however, data on multiple outcomes are collected and it is of interest to explore effects on multiple outcomes simultaneously. Such designs can be particularly useful in patient-centered research, where different outcomes might be more or less important to different patients. In this paper, we propose scaled effect measures (via potential outcomes) that translate effects on multiple outcomes to a common scale, using mean-variance and median-interquartile range based standardizations. We present efficient, nonparametric, doubly robust methods for estimating these scaled effects (and weighted average summary measures), and for testing the null hypothesis that treatment affects all outcomes equally. We also discuss methods for exploring how treatment effects depend on covariates (i.e., effect modification). In addition to describing efficiency theory for our estimands and the asymptotic behavior of our estimators, we illustrate the methods in a simulation study and a data analysis. Importantly, and in contrast to much of the literature concerning effects on multiple outcomes, our methods are nonparametric and can be used not only in randomized trials to yield increased efficiency, but also in observational studies with high-dimensional covariates to reduce confounding bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
Characterizing lentic freshwater fish assemblages using multiple sampling methods
Fischer, Jesse R.; Quist, Michael C.
2014-01-01
Characterizing fish assemblages in lentic ecosystems is difficult, and multiple sampling methods are almost always necessary to gain reliable estimates of indices such as species richness. However, most research focused on lentic fish sampling methodology has targeted recreationally important species, and little to no information is available regarding the influence of multiple methods and timing (i.e., temporal variation) on characterizing entire fish assemblages. Therefore, six lakes and impoundments (48–1,557 ha surface area) were sampled seasonally with seven gear types to evaluate the combined influence of sampling methods and timing on the number of species and individuals sampled. Probabilities of detection for species indicated strong selectivities and seasonal trends that provide guidance on optimal seasons to use gears when targeting multiple species. The evaluation of species richness and number of individuals sampled using multiple gear combinations demonstrated that appreciable benefits over relatively few gears (e.g., to four) used in optimal seasons were not present. Specifically, over 90 % of the species encountered with all gear types and season combinations (N = 19) from six lakes and reservoirs were sampled with nighttime boat electrofishing in the fall and benthic trawling, modified-fyke, and mini-fyke netting during the summer. Our results indicated that the characterization of lentic fish assemblages was highly influenced by the selection of sampling gears and seasons, but did not appear to be influenced by waterbody type (i.e., natural lake, impoundment). The standardization of data collected with multiple methods and seasons to account for bias is imperative to monitoring of lentic ecosystems and will provide researchers with increased reliability in their interpretations and decisions made using information on lentic fish assemblages.
Multiple products monitoring as a robust approach for peptide quantification.
Baek, Je-Hyun; Kim, Hokeun; Shin, Byunghee; Yu, Myeong-Hee
2009-07-01
Quantification of target peptides and proteins is crucial for biomarker discovery. Approaches such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) rely on liquid chromatography and mass spectrometric analysis of defined peptide product ions. These methods are not very widespread because the determination of quantifiable product ion using either SRM or MRM is a very time-consuming process. We developed a novel approach for quantifying target peptides without such an arduous process of ion selection. This method is based on monitoring multiple product ions (multiple products monitoring: MpM) from full-range MS2 spectra of a target precursor. The MpM method uses a scoring system that considers both the absolute intensities of product ions and the similarities between the query MS2 spectrum and the reference MS2 spectrum of the target peptide. Compared with conventional approaches, MpM greatly improves sensitivity and selectivity of peptide quantification using an ion-trap mass spectrometer.
Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R
2016-12-01
The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.
Generalization of the Poincare sphere to process 2D displacement signals
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Lamberti, Luciano
2017-06-01
Traditionally the multiple phase method has been considered as an essential tool for phase information recovery. The in-quadrature phase method that theoretically is an alternative pathway to achieve the same goal failed in actual applications. The authors in a previous paper dealing with 1D signals have shown that properly implemented the in-quadrature method yields phase values with the same accuracy than the multiple phase method. The present paper extends the methodology developed in 1D to 2D. This extension is not a straight forward process and requires the introduction of a number of additional concepts and developments. The concept of monogenic function provides the necessary tools required for the extension process. The monogenic function has a graphic representation through the Poincare sphere familiar in the field of Photoelasticity and through the developments introduced in this paper connected to the analysis of displacement fringe patterns. The paper is illustrated with examples of application that show that multiple phases method and the in-quadrature are two aspects of the same basic theoretical model.
Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease
Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka
2012-01-01
In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228
Vail, W.B. III.
1991-12-24
Methods of operation are described for an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. The invention also discloses multiple frequency methods of operation resulting in improved accuracy of measurement while the apparatus is simultaneously moved vertically in the cased well. The multiple frequency methods of operation disclose a first A.C. current having a first frequency that is conducted from the casing into formation and a second A.C. current having a second frequency that is conducted along the casing. The multiple frequency methods of operation simultaneously provide the measurement step and two compensation steps necessary to acquire accurate results while the apparatus is moved vertically in the cased well. 6 figures.
Vail, III, William B.
1991-01-01
Methods of operation of an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. The invention also discloses multiple frequency methods of operation resulting in improved accuracy of measurement while the apparatus is simultaneously moved vertically in the cased well. The multiple frequency methods of operation disclose a first A.C. current having a first frequency that is conducted from the casing into formation and a second A.C. current having a second frequency that is conducted along the casing. The multiple frequency methods of operation simultaneously provide the measurement step and two compensation steps necessary to acquire accurate results while the apparatus is moved vertically in the cased well.
Kim, Sungjin; Jinich, Adrián; Aspuru-Guzik, Alán
2017-04-24
We propose a multiple descriptor multiple kernel (MultiDK) method for efficient molecular discovery using machine learning. We show that the MultiDK method improves both the speed and accuracy of molecular property prediction. We apply the method to the discovery of electrolyte molecules for aqueous redox flow batteries. Using multiple-type-as opposed to single-type-descriptors, we obtain more relevant features for machine learning. Following the principle of "wisdom of the crowds", the combination of multiple-type descriptors significantly boosts prediction performance. Moreover, by employing multiple kernels-more than one kernel function for a set of the input descriptors-MultiDK exploits nonlinear relations between molecular structure and properties better than a linear regression approach. The multiple kernels consist of a Tanimoto similarity kernel and a linear kernel for a set of binary descriptors and a set of nonbinary descriptors, respectively. Using MultiDK, we achieve an average performance of r 2 = 0.92 with a test set of molecules for solubility prediction. We also extend MultiDK to predict pH-dependent solubility and apply it to a set of quinone molecules with different ionizable functional groups to assess their performance as flow battery electrolytes.
Method for generating maximally entangled states of multiple three-level atoms in cavity QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Guangsheng; Li Shushen; Feng Songlin
2004-03-01
We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.
Dynamic modal estimation using instrumental variables
NASA Technical Reports Server (NTRS)
Salzwedel, H.
1980-01-01
A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.
Initial Correction versus Negative Marking in Multiple Choice Examinations
ERIC Educational Resources Information Center
Van Hecke, Tanja
2015-01-01
Optimal assessment tools should measure in a limited time the knowledge of students in a correct and unbiased way. A method for automating the scoring is multiple choice scoring. This article compares scoring methods from a probabilistic point of view by modelling the probability to pass: the number right scoring, the initial correction (IC) and…
Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.
ERIC Educational Resources Information Center
Muraki, Eiji
1999-01-01
Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…
Method and system for vehicle refueling
Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley
2014-06-10
Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.
Methods for the Joint Meta-Analysis of Multiple Tests
ERIC Educational Resources Information Center
Trikalinos, Thomas A.; Hoaglin, David C.; Small, Kevin M.; Terrin, Norma; Schmid, Christopher H.
2014-01-01
Existing methods for meta-analysis of diagnostic test accuracy focus primarily on a single index test. We propose models for the joint meta-analysis of studies comparing multiple index tests on the same participants in paired designs. These models respect the grouping of data by studies, account for the within-study correlation between the tests'…
Two enzyme-linked immunosorbent assay (ELISA) methods were evaluated for the determination of 3,5,6-trichloro-2-pyridinol (3,5,6-TCP) in multiple sample media (dust, soil, food, and urine). The dust and soil samples were analyzed by the RaPID (TM) commercial immunoassay testing ...
Detection of abrupt changes in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1984-01-01
Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed.
ERIC Educational Resources Information Center
Sheffield, Caroline
2011-01-01
This mixed methods multiple case study explored middle school social studies teachers' instructional use of digital technology at three suburban middle schools This mixed methods, multiple-case study explored middle school social studies teachers' instructional use of digital technology at three suburban middle schools in a large Florida school…
Method and system for vehicle refueling
Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley
2012-11-20
Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.
ERIC Educational Resources Information Center
Yilmaz, Yasemin; Durmus, Soner; Yaman, Hakan
2018-01-01
This study investigated the pattern problems posed by middle school mathematics preservice teachers using multiple representations to determine both their pattern knowledge levels and their abilities to transfer this knowledge to students. The design of the study is the survey method, one of the quantitative research methods. The study group was…
ERIC Educational Resources Information Center
Rimpiläinen, Sanna
2015-01-01
What do different research methods and approaches "do" in practice? The article seeks to discuss this point by drawing upon socio-material research approaches and empirical examples taken from the early stages of an extensive case study on an interdisciplinary project between two multidisciplinary fields of study, education and computer…
Multiple object tracking using the shortest path faster association algorithm.
Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322
NASA Astrophysics Data System (ADS)
Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo
This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.
Jang, J; Seo, J K
2015-06-01
This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.
An Integrated Method for Airfoil Optimization
NASA Astrophysics Data System (ADS)
Okrent, Joshua B.
Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal operational conditions from a broad design space with the use of minimal computational resources on both an absolute and relative scale to traditional analysis techniques. Aerodynamicists, program managers, aircraft configuration specialist, and anyone else in charge of aircraft configuration, design studies, and program level decisions might find the evaluation and optimization method proposed of interest.
Musick, Charles R [Castro Valley, CA; Critchlow, Terence [Livermore, CA; Ganesh, Madhaven [San Jose, CA; Slezak, Tom [Livermore, CA; Fidelis, Krzysztof [Brentwood, CA
2006-12-19
A system and method is disclosed for integrating and accessing multiple data sources within a data warehouse architecture. The metadata formed by the present method provide a way to declaratively present domain specific knowledge, obtained by analyzing data sources, in a consistent and useable way. Four types of information are represented by the metadata: abstract concepts, databases, transformations and mappings. A mediator generator automatically generates data management computer code based on the metadata. The resulting code defines a translation library and a mediator class. The translation library provides a data representation for domain specific knowledge represented in a data warehouse, including "get" and "set" methods for attributes that call transformation methods and derive a value of an attribute if it is missing. The mediator class defines methods that take "distinguished" high-level objects as input and traverse their data structures and enter information into the data warehouse.
A level set method for multiple sclerosis lesion segmentation.
Zhao, Yue; Guo, Shuxu; Luo, Min; Shi, Xue; Bilello, Michel; Zhang, Shaoxiang; Li, Chunming
2018-06-01
In this paper, we present a level set method for multiple sclerosis (MS) lesion segmentation from FLAIR images in the presence of intensity inhomogeneities. We use a three-phase level set formulation of segmentation and bias field estimation to segment MS lesions and normal tissue region (including GM and WM) and CSF and the background from FLAIR images. To save computational load, we derive a two-phase formulation from the original multi-phase level set formulation to segment the MS lesions and normal tissue regions. The derived method inherits the desirable ability to precisely locate object boundaries of the original level set method, which simultaneously performs segmentation and estimation of the bias field to deal with intensity inhomogeneity. Experimental results demonstrate the advantages of our method over other state-of-the-art methods in terms of segmentation accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Regression Models for the Analysis of Longitudinal Gaussian Data from Multiple Sources
O’Brien, Liam M.; Fitzmaurice, Garrett M.
2006-01-01
We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. PMID:15726666
Ensemble positive unlabeled learning for disease gene identification.
Yang, Peng; Li, Xiaoli; Chua, Hon-Nian; Kwoh, Chee-Keong; Ng, See-Kiong
2014-01-01
An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.
Methods for simultaneous control of lignin content and composition, and cellulose content in plants
Chiang, Vincent Lee C.; Li, Laigeng
2005-02-15
The present invention relates to a method of concurrently introducing multiple genes into plants and trees is provided. The method includes simultaneous transformation of plants with multiple genes from the phenylpropanoid pathways including 4CL, CAld5H, AldOMT, SAD and CAD genes and combinations thereof to produce various lines of transgenic plants displaying altered agronomic traits. The agronomic traits of the plants are regulated by the orientation of the specific genes and the selected gene combinations, which are incorporated into the plant genome.
Noise reduction methods for nucleic acid and macromolecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander
Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.
Improved Statistical Methods Enable Greater Sensitivity in Rhythm Detection for Genome-Wide Data
Hutchison, Alan L.; Maienschein-Cline, Mark; Chiang, Andrew H.; Tabei, S. M. Ali; Gudjonson, Herman; Bahroos, Neil; Allada, Ravi; Dinner, Aaron R.
2015-01-01
Robust methods for identifying patterns of expression in genome-wide data are important for generating hypotheses regarding gene function. To this end, several analytic methods have been developed for detecting periodic patterns. We improve one such method, JTK_CYCLE, by explicitly calculating the null distribution such that it accounts for multiple hypothesis testing and by including non-sinusoidal reference waveforms. We term this method empirical JTK_CYCLE with asymmetry search, and we compare its performance to JTK_CYCLE with Bonferroni and Benjamini-Hochberg multiple hypothesis testing correction, as well as to five other methods: cyclohedron test, address reduction, stable persistence, ANOVA, and F24. We find that ANOVA, F24, and JTK_CYCLE consistently outperform the other three methods when data are limited and noisy; empirical JTK_CYCLE with asymmetry search gives the greatest sensitivity while controlling for the false discovery rate. Our analysis also provides insight into experimental design and we find that, for a fixed number of samples, better sensitivity and specificity are achieved with higher numbers of replicates than with higher sampling density. Application of the methods to detecting circadian rhythms in a metadataset of microarrays that quantify time-dependent gene expression in whole heads of Drosophila melanogaster reveals annotations that are enriched among genes with highly asymmetric waveforms. These include a wide range of oxidation reduction and metabolic genes, as well as genes with transcripts that have multiple splice forms. PMID:25793520
New methods for indexing multi-lattice diffraction data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gildea, Richard J.; Waterman, David G.; CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA
2014-10-01
A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of data. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from microcrystals of ∼1 µm in size. A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-latticemore » data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling.« less
Criteria for quantitative and qualitative data integration: mixed-methods research methodology.
Lee, Seonah; Smith, Carrol A M
2012-05-01
Many studies have emphasized the need and importance of a mixed-methods approach for evaluation of clinical information systems. However, those studies had no criteria to guide integration of multiple data sets. Integrating different data sets serves to actualize the paradigm that a mixed-methods approach argues; thus, we require criteria that provide the right direction to integrate quantitative and qualitative data. The first author used a set of criteria organized from a literature search for integration of multiple data sets from mixed-methods research. The purpose of this article was to reorganize the identified criteria. Through critical appraisal of the reasons for designing mixed-methods research, three criteria resulted: validation, complementarity, and discrepancy. In applying the criteria to empirical data of a previous mixed methods study, integration of quantitative and qualitative data was achieved in a systematic manner. It helped us obtain a better organized understanding of the results. The criteria of this article offer the potential to produce insightful analyses of mixed-methods evaluations of health information systems.
Case-control analysis in highway safety: Accounting for sites with multiple crashes.
Gross, Frank
2013-12-01
There is an increased interest in the use of epidemiological methods in highway safety analysis. The case-control and cohort methods are commonly used in the epidemiological field to identify risk factors and quantify the risk or odds of disease given certain characteristics and factors related to an individual. This same concept can be applied to highway safety where the entity of interest is a roadway segment or intersection (rather than a person) and the risk factors of interest are the operational and geometric characteristics of a given roadway. One criticism of the use of these methods in highway safety is that they have not accounted for the difference between sites with single and multiple crashes. In the medical field, a disease either occurs or it does not; multiple occurrences are generally not an issue. In the highway safety field, it is necessary to evaluate the safety of a given site while accounting for multiple crashes. Otherwise, the analysis may underestimate the safety effects of a given factor. This paper explores the use of the case-control method in highway safety and two variations to account for sites with multiple crashes. Specifically, the paper presents two alternative methods for defining cases in a case-control study and compares the results in a case study. The first alternative defines a separate case for each crash in a given study period, thereby increasing the weight of the associated roadway characteristics in the analysis. The second alternative defines entire crash categories as cases (sites with one crash, sites with two crashes, etc.) and analyzes each group separately in comparison to sites with no crashes. The results are also compared to a "typical" case-control application, where the cases are simply defined as any entity that experiences at least one crash and controls are those entities without a crash in a given period. In a "typical" case-control design, the attributes associated with single-crash segments are weighted the same as the attributes of segments with multiple crashes. The results support the hypothesis that the "typical" case-control design may underestimate the safety effects of a given factor compared to methods that account for sites with multiple crashes. Compared to the first alternative case definition (where multiple crash segments represent multiple cases) the results from the "typical" case-control design are less pronounced (i.e., closer to unity). The second alternative (where case definitions are constructed for various crash categories and analyzed separately) provides further evidence that sites with single and multiple crashes should not be grouped together in a case-control analysis. This paper indicates a clear need to differentiate sites with single and multiple crashes in a case-control analysis. While the results suggest that sites with multiple crashes can be accounted for using a case-control design, further research is needed to determine the optimal method for addressing this issue. This paper provides a starting point for that research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.
Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen
2017-11-01
A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
Method for the fabrication of three-dimensional microstructures by deep X-ray lithography
Sweatt, William C.; Christenson, Todd R.
2005-04-05
A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.
Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle
Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou
2012-01-01
This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.
Monte Carlo based statistical power analysis for mediation models: methods and software.
Zhang, Zhiyong
2014-12-01
The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.
Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar
Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing
2015-01-01
In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241
Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.
Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing
2015-11-10
In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.
On Max-Plus Algebra and Its Application on Image Steganography
Santoso, Kiswara Agung
2018-01-01
We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems. PMID:29887761
On Max-Plus Algebra and Its Application on Image Steganography.
Santoso, Kiswara Agung; Fatmawati; Suprajitno, Herry
2018-01-01
We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems.
Robust phase retrieval of complex-valued object in phase modulation by hybrid Wirtinger flow method
NASA Astrophysics Data System (ADS)
Wei, Zhun; Chen, Wen; Yin, Tiantian; Chen, Xudong
2017-09-01
This paper presents a robust iterative algorithm, known as hybrid Wirtinger flow (HWF), for phase retrieval (PR) of complex objects from noisy diffraction intensities. Numerical simulations indicate that the HWF method consistently outperforms conventional PR methods in terms of both accuracy and convergence rate in multiple phase modulations. The proposed algorithm is also more robust to low oversampling ratios, loose constraints, and noisy environments. Furthermore, compared with traditional Wirtinger flow, sample complexity is largely reduced. It is expected that the proposed HWF method will find applications in the rapidly growing coherent diffractive imaging field for high-quality image reconstruction with multiple modulations, as well as other disciplines where PR is needed.
Research on polarization imaging information parsing method
NASA Astrophysics Data System (ADS)
Yuan, Hongwu; Zhou, Pucheng; Wang, Xiaolong
2016-11-01
Polarization information parsing plays an important role in polarization imaging detection. This paper focus on the polarization information parsing method: Firstly, the general process of polarization information parsing is given, mainly including polarization image preprocessing, multiple polarization parameters calculation, polarization image fusion and polarization image tracking, etc.; And then the research achievements of the polarization information parsing method are presented, in terms of polarization image preprocessing, the polarization image registration method based on the maximum mutual information is designed. The experiment shows that this method can improve the precision of registration and be satisfied the need of polarization information parsing; In terms of multiple polarization parameters calculation, based on the omnidirectional polarization inversion model is built, a variety of polarization parameter images are obtained and the precision of inversion is to be improve obviously; In terms of polarization image fusion , using fuzzy integral and sparse representation, the multiple polarization parameters adaptive optimal fusion method is given, and the targets detection in complex scene is completed by using the clustering image segmentation algorithm based on fractal characters; In polarization image tracking, the average displacement polarization image characteristics of auxiliary particle filtering fusion tracking algorithm is put forward to achieve the smooth tracking of moving targets. Finally, the polarization information parsing method is applied to the polarization imaging detection of typical targets such as the camouflage target, the fog and latent fingerprints.
Tsili, Athina C; Ntorkou, Alexandra; Astrakas, Loukas; Xydis, Vasilis; Tsampalas, Stavros; Sofikitis, Nikolaos; Argyropoulou, Maria I
2017-04-01
To evaluate the difference in apparent diffusion coefficient (ADC) measurements at diffusion-weighted (DW) magnetic resonance imaging of differently shaped regions-of-interest (ROIs) in testicular germ cell neoplasms (TGCNS), the diagnostic ability of differently shaped ROIs in differentiating seminomas from nonseminomatous germ cell neoplasms (NSGCNs) and the interobserver variability. Thirty-three TGCNs were retrospectively evaluated. Patients underwent MR examinations, including DWI on a 1.5-T MR system. Two observers measured mean tumor ADCs using four distinct ROI methods: round, square, freehand and multiple small, round ROIs. The interclass correlation coefficient was analyzed to assess interobserver variability. Statistical analysis was used to compare mean ADC measurements among observers, methods and histologic types. All ROI methods showed excellent interobserver agreement, with excellent correlation (P<0.001). Multiple, small ROIs provided the lower mean ADC in TGCNs. Seminomas had lower mean ADC compared to NSGCNs for each ROI method (P<0.001). Round ROI proved the most accurate method in characterizing TGCNS. Interobserver variability in ADC measurement is excellent, irrespective of the ROI shape. Multiple, small round ROIs and round ROI proved the more accurate methods for ADC measurement in the characterization of TGCNs and in the differentiation between seminomas and NSGCNs, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Real-time inextensible surgical thread simulation.
Xu, Lang; Liu, Qian
2018-03-27
This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.
Comparing Performances of Multiple Comparison Methods in Commonly Used 2 × C Contingency Tables.
Cangur, Sengul; Ankarali, Handan; Pasin, Ozge
2016-12-01
This study aims at mentioning briefly multiple comparison methods such as Bonferroni, Holm-Bonferroni, Hochberg, Hommel, Marascuilo, Tukey, Benjamini-Hochberg and Gavrilov-Benjamini-Sarkar for contingency tables, through the data obtained from a medical research and examining their performances by simulation study which was constructed as the total 36 scenarios to 2 × 4 contingency table. As results of simulation, it was observed that when the sample size is more than 100, the methods which can preserve the nominal alpha level are Gavrilov-Benjamini-Sarkar, Holm-Bonferroni and Bonferroni. Marascuilo method was found to be a more conservative than Bonferroni. It was found that Type I error rate for Hommel method is around 2 % in all scenarios. Moreover, when the proportions of the three populations are equal and the proportion value of the fourth population is far at a level of ±3 standard deviation from the other populations, the power value for Unadjusted All-Pairwise Comparison approach is at least a bit higher than the ones obtained by Gavrilov-Benjamini-Sarkar, Holm-Bonferroni and Bonferroni. Consequently, Gavrilov-Benjamini-Sarkar and Holm-Bonferroni methods have the best performance according to simulation. Hommel and Marascuilo methods are not recommended to be used because they have medium or lower performance. In addition, we have written a Minitab macro about multiple comparisons for use in scientific research.
Yang, James J; Li, Jia; Williams, L Keoki; Buu, Anne
2016-01-05
In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search and thus is a practically important area that requires methodology work. This study provides a comprehensive review of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE), the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher combination test and is computationally efficient. To demonstrate applications of the proposed method, we also present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data. Our simulation study shows that the proposed method has higher power than existing methods while controlling for the type I error rate. The GEE and the classical Fisher combination test, on the other hand, do not control the type I error rate and thus are not recommended. In general, the power of the competing methods decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are specific to a particular phenotype or contribute to the common construct. The proposed method outperforms existing methods in most settings and also has great applications in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.
Adaptive Discontinuous Galerkin Methods in Multiwavelets Bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archibald, Richard K; Fann, George I; Shelton Jr, William Allison
2011-01-01
We use a multiwavelet basis with the Discontinuous Galerkin (DG) method to produce a multi-scale DG method. We apply this Multiwavelet DG method to convection and convection-diffusion problems in multiple dimensions. Merging the DG method with multiwavelets allows the adaptivity in the DG method to be resolved through manipulation of multiwavelet coefficients rather than grid manipulation. Additionally, the Multiwavelet DG method is tested on non-linear equations in one dimension and on the cubed sphere.
Karasawa, N; Mitsutake, A; Takano, H
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
NASA Astrophysics Data System (ADS)
Karasawa, N.; Mitsutake, A.; Takano, H.
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
Moments, Mixed Methods, and Paradigm Dialogs
ERIC Educational Resources Information Center
Denzin, Norman K.
2010-01-01
I reread the 50-year-old history of the qualitative inquiry that calls for triangulation and mixed methods. I briefly visit the disputes within the mixed methods community asking how did we get to where we are today, the period of mixed-multiple-methods advocacy, and Teddlie and Tashakkori's third methodological moment. (Contains 10 notes.)
USDA-ARS?s Scientific Manuscript database
This study compared the utility of three sampling methods for ecological monitoring based on: interchangeability of data (rank correlations), precision (coefficient of variation), cost (minutes/transect), and potential of each method to generate multiple indicators. Species richness and foliar cover...
NASA Astrophysics Data System (ADS)
Rahman, Abdul; Saleh Ahmar, Ansari; Arifin, A. Nurani M.; Upu, Hamzah; Mulbar, Usman; Alimuddin; Arsyad, Nurdin; Ruslan; Rusli; Djadir; Sutamrin; Hamda; Minggi, Ilham; Awi; Zaki, Ahmad; Ahmad, Asdar; Ihsan, Hisyam
2018-01-01
One of causal factors for uninterested feeling of the students in learning mathematics is a monotonous learning method, like in traditional learning method. One of the ways for motivating students to learn mathematics is by implementing APIQ (Aritmetika Plus Intelegensi Quantum) creative mathematics game method. The purposes of this research are (1) to describe students’ responses toward the implementation of APIQ creative mathematics game method on the subject matter of Greatest Common Factor (GCF) and Least Common Multiple (LCM) and (2) to find out whether by implementing this method, the student’s learning completeness will improve or not. Based on the results of this research, it is shown that the responses of the students toward the implementation of APIQ creative mathematics game method in the subject matters of GCF and LCM were good. It is seen in the percentage of the responses were between 76-100%. (2) The implementation of APIQ creative mathematics game method on the subject matters of GCF and LCM improved the students’ learning.
NASA Astrophysics Data System (ADS)
Yin, Yanshu; Feng, Wenjie
2017-12-01
In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.
Automatic prediction of protein domains from sequence information using a hybrid learning system.
Nagarajan, Niranjan; Yona, Golan
2004-06-12
We describe a novel method for detecting the domain structure of a protein from sequence information alone. The method is based on analyzing multiple sequence alignments that are derived from a database search. Multiple measures are defined to quantify the domain information content of each position along the sequence and are combined into a single predictor using a neural network. The output is further smoothed and post-processed using a probabilistic model to predict the most likely transition positions between domains. The method was assessed using the domain definitions in SCOP and CATH for proteins of known structure and was compared with several other existing methods. Our method performs well both in terms of accuracy and sensitivity. It improves significantly over the best methods available, even some of the semi-manual ones, while being fully automatic. Our method can also be used to suggest and verify domain partitions based on structural data. A few examples of predicted domain definitions and alternative partitions, as suggested by our method, are also discussed. An online domain-prediction server is available at http://biozon.org/tools/domains/
Successive equimarginal approach for optimal design of a pump and treat system
NASA Astrophysics Data System (ADS)
Guo, Xiaoniu; Zhang, Chuan-Mian; Borthwick, John C.
2007-08-01
An economic concept-based optimization method is developed for groundwater remediation design. Design of a pump and treat (P&T) system is viewed as a resource allocation problem constrained by specified cleanup criteria. An optimal allocation of resources requires that the equimarginal principle, a fundamental economic principle, must hold. The proposed method is named successive equimarginal approach (SEA), which continuously shifts a pumping rate from a less effective well to a more effective one until equal marginal productivity for all units is reached. Through the successive process, the solution evenly approaches the multiple inequality constraints that represent the specified cleanup criteria in space and in time. The goal is to design an equal protection system so that the distributed contaminant plumes can be equally contained without bypass and overprotection is minimized. SEA is a hybrid of the gradient-based method and the deterministic heuristics-based method, which allows flexibility in dealing with multiple inequality constraints without using a penalty function and in balancing computational efficiency with robustness. This method was applied to design a large-scale P&T system for containment of multiple plumes at the former Blaine Naval Ammunition Depot (NAD) site, near Hastings, Nebraska. To evaluate this method, the SEA results were also compared with those using genetic algorithms.
GeneSilico protein structure prediction meta-server.
Kurowski, Michal A; Bujnicki, Janusz M
2003-07-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.
GeneSilico protein structure prediction meta-server
Kurowski, Michal A.; Bujnicki, Janusz M.
2003-01-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313
Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu
2016-06-23
Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.
Xue, Xiaonan; Kim, Mimi Y; Castle, Philip E; Strickler, Howard D
2014-03-01
Studies to evaluate clinical screening tests often face the problem that the "gold standard" diagnostic approach is costly and/or invasive. It is therefore common to verify only a subset of negative screening tests using the gold standard method. However, undersampling the screen negatives can lead to substantial overestimation of the sensitivity and underestimation of the specificity of the diagnostic test. Our objective was to develop a simple and accurate statistical method to address this "verification bias." We developed a weighted generalized estimating equation approach to estimate, in a single model, the accuracy (eg, sensitivity/specificity) of multiple assays and simultaneously compare results between assays while addressing verification bias. This approach can be implemented using standard statistical software. Simulations were conducted to assess the proposed method. An example is provided using a cervical cancer screening trial that compared the accuracy of human papillomavirus and Pap tests, with histologic data as the gold standard. The proposed approach performed well in estimating and comparing the accuracy of multiple assays in the presence of verification bias. The proposed approach is an easy to apply and accurate method for addressing verification bias in studies of multiple screening methods. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of Multiple Intelligences Activities on Writing Skill Development in an EFL Context
ERIC Educational Resources Information Center
Gündüz, Zennure Elgün; Ünal, Ismail Dogan
2016-01-01
This study aims at exploring the effects of multiple intelligences activities versus traditional method on English writing development of the sixth grade students in Turkey. A quasi-experimental research method with a pre-test post-test design was applied. The participants were 50 sixth grade students at a state school in Ardahan in Turkey. The…
M.E. Fenn; J.O. Sickman; A. Bytnerowicz; D.W. Clow; N.P. Molotch; J.E. Pleim; G.S. Tonnesen; K.C. Weathers; P.E. Padgett; D.H. Campbell.
2009-01-01
Measuring atmospheric deposition in arid and snow-dominated regions presents unique challenges. Throughfall, the flux of nutrients transported in solution to the forest floor, is generally the most practical method of estimating below-canopy deposition, particularly when monitoring multiple forest sites or over multiple years. However, more studies are needed to relate...
Two enzyme-linked immunosorbent assay (ELISA) methods were evaluated for the determination of 3,5,6-trichloro-2-pyridinol (3,5,6-TCP) in multiple sample media (dust, soil, food, and urine). The dust and soil samples were analyzed by a commercial RaPID immunoassay testing kit. ...
A Method for Imputing Response Options for Missing Data on Multiple-Choice Assessments
ERIC Educational Resources Information Center
Wolkowitz, Amanda A.; Skorupski, William P.
2013-01-01
When missing values are present in item response data, there are a number of ways one might impute a correct or incorrect response to a multiple-choice item. There are significantly fewer methods for imputing the actual response option an examinee may have provided if he or she had not omitted the item either purposely or accidentally. This…
A method for integrating multiple components in a decision support system
Donald Nute; Walter D. Potter; Zhiyuan Cheng; Mayukh Dass; Astrid Glende; Frederick Maierv; Cy Routh; Hajime Uchiyama; Jin Wang; Sarah Witzig; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher
2005-01-01
We present a flexible, extensible method for integrating multiple tools into a single large decision support system (DSS) using a forest ecosystem management DSS (NED-2) as an example. In our approach, a rich ontology for the target domain is developed and implemented in the internal data model for the DSS. Semi-autonomous agents control external components and...
ERIC Educational Resources Information Center
Axelsson, Anna Karin
2015-01-01
Background: Children with profound intellectual and multiple disabilities need support to function in an optimal way. However, there is a limited knowledge about the role of external personal assistants working in the children's home. Materials and Methods: A mixed method study was performed including qualitative data from interviews with 11…
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2011 CFR
2011-07-01
... insulation. The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2012 CFR
2012-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
Phase matrix induced symmetrics for multiple scattering using the matrix operator method
NASA Technical Reports Server (NTRS)
Hitzfelder, S. J.; Kattawar, G. W.
1973-01-01
Entirely rigorous proofs of the symmetries induced by the phase matrix into the reflection and transmission operators used in the matrix operator theory are given. Results are obtained for multiple scattering in both homogeneous and inhomogeneous atmospheres. These results will be useful to researchers using the method since large savings in computer time and storage are obtainable.
Shi, Xingjie; Zhao, Qing; Huang, Jian; Xie, Yang; Ma, Shuangge
2015-01-01
Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have important biological implications. GEs are partly regulated by CNAs, and much effort has been devoted to understanding their relations. The regulation analysis is challenging with one gene expression possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of multiple genes. The correlations among GEs and among CNAs make the analysis even more complicated. The existing methods have limitations and cannot comprehensively describe the regulation. Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regulation relationships. Network adjacency is computed to describe the interconnections among GEs and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network adjacency measures. Simulation shows that the proposed method outperforms the competing alternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed to further demonstrate advantages of the proposed method. Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/ Contact: shuangge.ma@yale.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26342102
Fuzzy neural network technique for system state forecasting.
Li, Dezhi; Wang, Wilson; Ismail, Fathy
2013-10-01
In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.
LARGE RIVER ASSESSMENT METHODS FOR BENTHIC MACROINVERTEBRATES AND FISH
Multiple projects are currently underway to increase our understanding of the varying results of different sampling methods and designs used for the biological assessment and monitoring of large (boatable) rivers. Studies include methods used to assess fish, benthic macroinverte...
Conservative Overset Grids for Overflow For The Sonic Wave Atmospheric Propagation Project
NASA Technical Reports Server (NTRS)
Onufer, Jeff T.; Cummings, Russell M.
1999-01-01
Methods are presented that can be used to make multiple, overset grids communicate in a conservative manner. The methods are developed for use with the Chimera overset method using the PEGSUS code and the OVERFLOW solver.
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.
Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.
Liu, Jinliang; Li, Keyao; Ju, Zhenlong; Bai, Yan
2011-03-01
To study the indications, methods and experience of absorbable rib-connecting-pins fixation in the treatment of multiple rib fractures. 52 cases with multiple rib fractures were performed internal fixation with absorbable rib-connecting-pins under epidural anesthesia. All cases were followed up for 1 to 12 months, with an average of 5 months. All fractures were achieved healing in 3 to 6 months after the operation and were not found chest wall deformity. Absorbable rib-connecting-pins fixation is a simple and effective method and worthies recommending to perform operation for the appropriate cases with multiple rib fractures.
Taylor, Sandra L; Ruhaak, L Renee; Kelly, Karen; Weiss, Robert H; Kim, Kyoungmi
2017-03-01
With expanded access to, and decreased costs of, mass spectrometry, investigators are collecting and analyzing multiple biological matrices from the same subject such as serum, plasma, tissue and urine to enhance biomarker discoveries, understanding of disease processes and identification of therapeutic targets. Commonly, each biological matrix is analyzed separately, but multivariate methods such as MANOVAs that combine information from multiple biological matrices are potentially more powerful. However, mass spectrometric data typically contain large amounts of missing values, and imputation is often used to create complete data sets for analysis. The effects of imputation on multiple biological matrix analyses have not been studied. We investigated the effects of seven imputation methods (half minimum substitution, mean substitution, k-nearest neighbors, local least squares regression, Bayesian principal components analysis, singular value decomposition and random forest), on the within-subject correlation of compounds between biological matrices and its consequences on MANOVA results. Through analysis of three real omics data sets and simulation studies, we found the amount of missing data and imputation method to substantially change the between-matrix correlation structure. The magnitude of the correlations was generally reduced in imputed data sets, and this effect increased with the amount of missing data. Significant results from MANOVA testing also were substantially affected. In particular, the number of false positives increased with the level of missing data for all imputation methods. No one imputation method was universally the best, but the simple substitution methods (Half Minimum and Mean) consistently performed poorly. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.
1983-01-01
An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.
Induced subgraph searching for geometric model fitting
NASA Astrophysics Data System (ADS)
Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi
2017-11-01
In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbamalu, G.A.N.; El-Hawary, M.E.
The authors propose suboptimal least squares or IRWLS procedures for estimating the parameters of a seasonal multiplicative AR model encountered during power system load forecasting. The proposed method involves using an interactive computer environment to estimate the parameters of a seasonal multiplicative AR process. The method comprises five major computational steps. The first determines the order of the seasonal multiplicative AR process, and the second uses the least squares or the IRWLS to estimate the optimal nonseasonal AR model parameters. In the third step one obtains the intermediate series by back forecast, which is followed by using the least squaresmore » or the IRWLS to estimate the optimal season AR parameters. The final step uses the estimated parameters to forecast future load. The method is applied to predict the Nova Scotia Power Corporation's 168 lead time hourly load. The results obtained are documented and compared with results based on the Box and Jenkins method.« less
Boo, Chelsea C; Parker, Christine H; Jackson, Lauren S
2018-01-01
Food allergy is a growing public health concern, with many individuals reporting allergies to multiple food sources. Compliance with food labeling regulations and prevention of inadvertent cross-contact in manufacturing requires the use of reliable methods for the detection and quantitation of allergens in processed foods. In this work, a novel liquid chromatography-tandem mass spectrometry multiple-reaction monitoring method for multiallergen detection and quantitation of egg, milk, and peanut was developed and evaluated in an allergen-incurred baked sugar cookie matrix. A systematic evaluation of method parameters, including sample extraction, concentration, and digestion, were optimized for candidate allergen peptide markers. The optimized method enabled the reliable detection and quantitation of egg, milk, and peanut allergens in sugar cookies, with allergen concentrations as low as 5 ppm allergen-incurred ingredient.
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.; Halford, Carl
2007-01-01
In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.
Dynamic Network Selection for Multicast Services in Wireless Cooperative Networks
NASA Astrophysics Data System (ADS)
Chen, Liang; Jin, Le; He, Feng; Cheng, Hanwen; Wu, Lenan
In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.
Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David
2014-04-15
An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.
Preacher, Kristopher J; Hayes, Andrew F
2008-08-01
Hypotheses involving mediation are common in the behavioral sciences. Mediation exists when a predictor affects a dependent variable indirectly through at least one intervening variable, or mediator. Methods to assess mediation involving multiple simultaneous mediators have received little attention in the methodological literature despite a clear need. We provide an overview of simple and multiple mediation and explore three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model. We present an illustrative example, assessing and contrasting potential mediators of the relationship between the helpfulness of socialization agents and job satisfaction. We also provide SAS and SPSS macros, as well as Mplus and LISREL syntax, to facilitate the use of these methods in applications.
NASA Astrophysics Data System (ADS)
Fetsco, Sara Elizabeth
There are several topics that introductory physics students typically have difficulty understanding. The purpose of this thesis is to investigate if multiple instructional techniques will help students to better understand and retain the material. The three units analyzed in this study are graphing motion, projectile motion, and conservation of momentum. For each unit students were taught using new or altered instructional methods including online laboratory simulations, inquiry labs, and interactive demonstrations. Additionally, traditional instructional methods such as lecture and problem sets were retained. Effectiveness was measured through pre- and post-tests and student opinion surveys. Results suggest that incorporating multiple instructional techniques into teaching will improve student understanding and retention. Students stated that they learned well from all of the instructional methods used except the online simulations.
A data-driven multiplicative fault diagnosis approach for automation processes.
Hao, Haiyang; Zhang, Kai; Ding, Steven X; Chen, Zhiwen; Lei, Yaguo
2014-09-01
This paper presents a new data-driven method for diagnosing multiplicative key performance degradation in automation processes. Different from the well-established additive fault diagnosis approaches, the proposed method aims at identifying those low-level components which increase the variability of process variables and cause performance degradation. Based on process data, features of multiplicative fault are extracted. To identify the root cause, the impact of fault on each process variable is evaluated in the sense of contribution to performance degradation. Then, a numerical example is used to illustrate the functionalities of the method and Monte-Carlo simulation is performed to demonstrate the effectiveness from the statistical viewpoint. Finally, to show the practical applicability, a case study on the Tennessee Eastman process is presented. Copyright © 2013. Published by Elsevier Ltd.
Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions
Chen, Shengyong; Xiao, Gang; Li, Xiaoli
2014-01-01
This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954
Multiple-3D-object secure information system based on phase shifting method and single interference.
Li, Wei-Na; Shi, Chen-Xiao; Piao, Mei-Lan; Kim, Nam
2016-05-20
We propose a multiple-3D-object secure information system for encrypting multiple three-dimensional (3D) objects based on the three-step phase shifting method. During the decryption procedure, five phase functions (PFs) are decreased to three PFs, in comparison with our previous method, which implies that one cross beam splitter is utilized to implement the single decryption interference. Moreover, the advantages of the proposed scheme also include: each 3D object can be decrypted discretionarily without decrypting a series of other objects earlier; the quality of the decrypted slice image of each object is high according to the correlation coefficient values, none of which is lower than 0.95; no iterative algorithm is involved. The feasibility of the proposed scheme is demonstrated by computer simulation results.
Principal axis-based correspondence between multiple cameras for people tracking.
Hu, Weiming; Hu, Min; Zhou, Xue; Tan, Tieniu; Lou, Jianguang; Maybank, Steve
2006-04-01
Visual surveillance using multiple cameras has attracted increasing interest in recent years. Correspondence between multiple cameras is one of the most important and basic problems which visual surveillance using multiple cameras brings. In this paper, we propose a simple and robust method, based on principal axes of people, to match people across multiple cameras. The correspondence likelihood reflecting the similarity of pairs of principal axes of people is constructed according to the relationship between "ground-points" of people detected in each camera view and the intersections of principal axes detected in different camera views and transformed to the same view. Our method has the following desirable properties: 1) Camera calibration is not needed. 2) Accurate motion detection and segmentation are less critical due to the robustness of the principal axis-based feature to noise. 3) Based on the fused data derived from correspondence results, positions of people in each camera view can be accurately located even when the people are partially occluded in all views. The experimental results on several real video sequences from outdoor environments have demonstrated the effectiveness, efficiency, and robustness of our method.
Compositional mining of multiple object API protocols through state abstraction.
Dai, Ziying; Mao, Xiaoguang; Lei, Yan; Qi, Yuhua; Wang, Rui; Gu, Bin
2013-01-01
API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments.
Compositional Mining of Multiple Object API Protocols through State Abstraction
Mao, Xiaoguang; Qi, Yuhua; Wang, Rui; Gu, Bin
2013-01-01
API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments. PMID:23844378
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.
Jiao, S; Tiezzi, F; Huang, Y; Gray, K A; Maltecca, C
2016-02-01
Obtaining accurate individual feed intake records is the key first step in achieving genetic progress toward more efficient nutrient utilization in pigs. Feed intake records collected by electronic feeding systems contain errors (erroneous and abnormal values exceeding certain cutoff criteria), which are due to feeder malfunction or animal-feeder interaction. In this study, we examined the use of a novel data-editing strategy involving multiple imputation to minimize the impact of errors and missing values on the quality of feed intake data collected by an electronic feeding system. Accuracy of feed intake data adjustment obtained from the conventional linear mixed model (LMM) approach was compared with 2 alternative implementations of multiple imputation by chained equation, denoted as MI (multiple imputation) and MICE (multiple imputation by chained equation). The 3 methods were compared under 3 scenarios, where 5, 10, and 20% feed intake error rates were simulated. Each of the scenarios was replicated 5 times. Accuracy of the alternative error adjustment was measured as the correlation between the true daily feed intake (DFI; daily feed intake in the testing period) or true ADFI (the mean DFI across testing period) and the adjusted DFI or adjusted ADFI. In the editing process, error cutoff criteria are used to define if a feed intake visit contains errors. To investigate the possibility that the error cutoff criteria may affect any of the 3 methods, the simulation was repeated with 2 alternative error cutoff values. Multiple imputation methods outperformed the LMM approach in all scenarios with mean accuracies of 96.7, 93.5, and 90.2% obtained with MI and 96.8, 94.4, and 90.1% obtained with MICE compared with 91.0, 82.6, and 68.7% using LMM for DFI. Similar results were obtained for ADFI. Furthermore, multiple imputation methods consistently performed better than LMM regardless of the cutoff criteria applied to define errors. In conclusion, multiple imputation is proposed as a more accurate and flexible method for error adjustments in feed intake data collected by electronic feeders.
Method of forming a multiple layer dielectric and a hot film sensor therewith
NASA Technical Reports Server (NTRS)
Hopson, Purnell, Jr. (Inventor); Tran, Sang Q. (Inventor)
1990-01-01
The invention is a method of forming a multiple layer dielectric for use in a hot-film laminar separation sensor. The multiple layer dielectric substrate is formed by depositing a first layer of a thermoelastic polymer such as on an electrically conductive substrate such as the metal surface of a model to be tested under cryogenic conditions and high Reynolds numbers. Next, a second dielectric layer of fused silica is formed on the first dielectric layer of thermoplastic polymer. A resistive metal film is deposited on selected areas of the multiple layer dielectric substrate to form one or more hot-film sensor elements to which aluminum electrical circuits deposited upon the multiple layered dielectric substrate are connected.
Merits and limitations of optimality criteria method for structural optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Guptill, James D.; Berke, Laszlo
1993-01-01
The merits and limitations of the optimality criteria (OC) method for the minimum weight design of structures subjected to multiple load conditions under stress, displacement, and frequency constraints were investigated by examining several numerical examples. The examples were solved utilizing the Optimality Criteria Design Code that was developed for this purpose at NASA Lewis Research Center. This OC code incorporates OC methods available in the literature with generalizations for stress constraints, fully utilized design concepts, and hybrid methods that combine both techniques. Salient features of the code include multiple choices for Lagrange multiplier and design variable update methods, design strategies for several constraint types, variable linking, displacement and integrated force method analyzers, and analytical and numerical sensitivities. The performance of the OC method, on the basis of the examples solved, was found to be satisfactory for problems with few active constraints or with small numbers of design variables. For problems with large numbers of behavior constraints and design variables, the OC method appears to follow a subset of active constraints that can result in a heavier design. The computational efficiency of OC methods appears to be similar to some mathematical programming techniques.
Qin, Zifei; Lin, Pei; Dai, Yi; Yao, Zhihong; Wang, Li; Yao, Xinsheng; Liu, Liyin; Chen, Haifeng
2016-05-01
Allii Macrostemonis Bulbus (named Xiebai in China) is a folk medicine with medicinal values for the treatment of thoracic obstruction and cardialgia, and a food additive as well. However, there is even no quantitative standard for Allii Macrostemonis Bulbus recorded in the current edition of the Chinese Pharmacopeia. Hence, simultaneous assay of multiple components is urgent. In this study, chemometric methods were firstly applied to discover the components with significant fluctuation among multiple Allii Macrostemonis Bulbus samples based on optimized fingerprints. Meanwhile, the major components and main absorbed components in rats were all selected as its representative components. Subsequently, a sensitive method was established for the simultaneous determination of 54 components (15 components for quantification and 39 components for semiquantification) by ultra high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Moreover, the validated method was successfully applied to evaluate the quality of multiple samples on the market. It became known that multiple Allii Macrostemonis Bulbus samples varied significantly and showed poor consistency. This work illustrated that the proposed approach could improve the quality of Allii Macrostemonis Bulbus, and it also provided a feasible method for quality evaluation of other traditional Chinese medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lindenmeyer, C.W.
1993-01-26
An apparatus and method to automate the handling of multiple digital tape cassettes for processing by commercially available cassette tape readers and recorders. A removable magazine rack stores a plurality of tape cassettes, and cooperates with a shuttle device that automatically inserts and removes cassettes from the magazine to the reader and vice-versa. Photocells are used to identify and index to the desired tape cassette. The apparatus allows digital information stored on multiple cassettes to be processed without significant operator intervention.
NASA Astrophysics Data System (ADS)
Plotnikova, L. V.; Polyanichko, A. M.; Kobeleva, M. O.; Nikekhin, A. A.; Uspenskaya, M. V.; Kayava, A. V.; Garifullin, A. D.; Voloshin, S. V.
2018-01-01
The serum of patients with multiple myeloma was examined by refractometric methods before and after the course of antitumor therapy. It was found that the amount of protein in the serum of patients with multiple myeloma, determined by the value of the serum refractive index, tended to decrease after the course of treatment. The value of the refractive index of blood serum can be used as an additional criterion for assessing the dynamics of changes in blood-serum properties during antitumor therapy.
Lindenmeyer, Carl W.
1993-01-01
An apparatus and method to automate the handling of multiple digital tape cassettes for processing by commercially available cassette tape readers and recorders. A removable magazine rack stores a plurality of tape cassettes, and cooperates with a shuttle device that automatically inserts and removes cassettes from the magazine to the reader and vice-versa. Photocells are used to identify and index to the desired tape cassette. The apparatus allows digital information stored on multiple cassettes to be processed without significant operator intervention.
Cleanthous, Sophie; Strzok, Sara; Pompilus, Farrah; Cano, Stefan; Marquis, Patrick; Cohan, Stanley; Goldman, Myla D; Kresa-Reahl, Kiren; Petrillo, Jennifer; Castrillo-Viguera, Carmen; Cadavid, Diego; Chen, Shih-Yin
2018-01-01
ABILHAND, a manual ability patient-reported outcome instrument originally developed for stroke patients, has been used in multiple sclerosis clinical trials; however, psychometric analyses indicated the measure's limited measurement range and precision in higher-functioning multiple sclerosis patients. The purpose of this study was to identify candidate items to expand the measurement range of the ABILHAND-56, thus improving its ability to detect differences in manual ability in higher-functioning multiple sclerosis patients. A step-wise mixed methods design strategy was used, comprising two waves of patient interviews, a combination of qualitative (concept elicitation and cognitive debriefing) and quantitative (Rasch measurement theory) analytic techniques, and consultation interviews with three clinical neurologists specializing in multiple sclerosis. Original ABILHAND was well understood in this context of use. Eighty-two new manual ability concepts were identified. Draft supplementary items were generated and refined with patient and neurologist input. Rasch measurement theory psychometric analysis indicated supplementary items improved targeting to higher-functioning multiple sclerosis patients and measurement precision. The final pool of Early Multiple Sclerosis Manual Ability items comprises 20 items. The synthesis of qualitative and quantitative methods used in this study improves the ABILHAND content validity to more effectively identify manual ability changes in early multiple sclerosis and potentially help determine treatment effect in higher-functioning patients in clinical trials.
Novel Multistatic Adaptive Microwave Imaging Methods for Early Breast Cancer Detection
NASA Astrophysics Data System (ADS)
Xie, Yao; Guo, Bin; Li, Jian; Stoica, Petre
2006-12-01
Multistatic adaptive microwave imaging (MAMI) methods are presented and compared for early breast cancer detection. Due to the significant contrast between the dielectric properties of normal and malignant breast tissues, developing microwave imaging techniques for early breast cancer detection has attracted much interest lately. MAMI is one of the microwave imaging modalities and employs multiple antennas that take turns to transmit ultra-wideband (UWB) pulses while all antennas are used to receive the reflected signals. MAMI can be considered as a special case of the multi-input multi-output (MIMO) radar with the multiple transmitted waveforms being either UWB pulses or zeros. Since the UWB pulses transmitted by different antennas are displaced in time, the multiple transmitted waveforms are orthogonal to each other. The challenge to microwave imaging is to improve resolution and suppress strong interferences caused by the breast skin, nipple, and so forth. The MAMI methods we investigate herein utilize the data-adaptive robust Capon beamformer (RCB) to achieve high resolution and interference suppression. We will demonstrate the effectiveness of our proposed methods for breast cancer detection via numerical examples with data simulated using the finite-difference time-domain method based on a 3D realistic breast model.
NASA Astrophysics Data System (ADS)
Bezan, Scott; Shirani, Shahram
2006-12-01
To reliably transmit video over error-prone channels, the data should be both source and channel coded. When multiple channels are available for transmission, the problem extends to that of partitioning the data across these channels. The condition of transmission channels, however, varies with time. Therefore, the error protection added to the data at one instant of time may not be optimal at the next. In this paper, we propose a method for adaptively adding error correction code in a rate-distortion (RD) optimized manner using rate-compatible punctured convolutional codes to an MJPEG2000 constant rate-coded frame of video. We perform an analysis on the rate-distortion tradeoff of each of the coding units (tiles and packets) in each frame and adapt the error correction code assigned to the unit taking into account the bandwidth and error characteristics of the channels. This method is applied to both single and multiple time-varying channel environments. We compare our method with a basic protection method in which data is either not transmitted, transmitted with no protection, or transmitted with a fixed amount of protection. Simulation results show promising performance for our proposed method.
Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.
Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M
2011-07-01
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.
Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I.; Marcotte, Edward M.
2011-01-01
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for all possible PSMs and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for all detected proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses. PMID:21488652
Gheit, Tarik; Tommasino, Massimo
2011-01-01
Epidemiological and functional studies have clearly demonstrated that certain types of human papillomavirus (HPV) from the genus alpha of the HPV phylogenetic tree, referred to as high-risk (HR) types, are the etiological cause of cervical cancer. Several methods for HPV detection and typing have been developed, and their importance in clinical and epidemiological studies has been well demonstrated. However, comparative studies have shown that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections. In this chapter, we describe a novel one-shot method for the detection and typing of 19 mucosal HR HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). The assay combines the advantages of the multiplex PCR methods, i.e., high sensitivity and the possibility to perform multiple amplifications in a single reaction, with an array primer extension (APEX) assay. The latter method offers the benefits of Sanger dideoxy sequencing with the high-throughput potential of the microarray. Initial studies have revealed that the assay is very sensitive in detecting multiple HPV infections.
NASA Astrophysics Data System (ADS)
Tang, Gao; Jiang, FanHuag; Li, JunFeng
2015-11-01
Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.
Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian
2016-01-01
Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959
Huang, Shi; MacKinnon, David P.; Perrino, Tatiana; Gallo, Carlos; Cruden, Gracelyn; Brown, C Hendricks
2016-01-01
Mediation analysis often requires larger sample sizes than main effect analysis to achieve the same statistical power. Combining results across similar trials may be the only practical option for increasing statistical power for mediation analysis in some situations. In this paper, we propose a method to estimate: 1) marginal means for mediation path a, the relation of the independent variable to the mediator; 2) marginal means for path b, the relation of the mediator to the outcome, across multiple trials; and 3) the between-trial level variance-covariance matrix based on a bivariate normal distribution. We present the statistical theory and an R computer program to combine regression coefficients from multiple trials to estimate a combined mediated effect and confidence interval under a random effects model. Values of coefficients a and b, along with their standard errors from each trial are the input for the method. This marginal likelihood based approach with Monte Carlo confidence intervals provides more accurate inference than the standard meta-analytic approach. We discuss computational issues, apply the method to two real-data examples and make recommendations for the use of the method in different settings. PMID:28239330
Szatkiewicz, Jin P; Wang, WeiBo; Sullivan, Patrick F; Wang, Wei; Sun, Wei
2013-02-01
Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods are needed for more accurate CNV detection. We observed that various sources of experimental biases in HTS confound read-depth estimation, and note that bias correction has not been adequately addressed by existing methods. We present a novel read-depth-based method, GENSENG, which uses a hidden Markov model and negative binomial regression framework to identify regions of discrete copy-number changes while simultaneously accounting for the effects of multiple confounders. Based on extensive calibration using multiple HTS data sets, we conclude that our method outperforms existing read-depth-based CNV detection algorithms. The concept of simultaneous bias correction and CNV detection can serve as a basis for combining read-depth with other types of information such as read-pair or split-read in a single analysis. A user-friendly and computationally efficient implementation of our method is freely available.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
A simulation-based evaluation of methods for inferring linear barriers to gene flow
Christopher Blair; Dana E. Weigel; Matthew Balazik; Annika T. H. Keeley; Faith M. Walker; Erin Landguth; Sam Cushman; Melanie Murphy; Lisette Waits; Niko Balkenhol
2012-01-01
Different analytical techniques used on the same data set may lead to different conclusions about the existence and strength of genetic structure. Therefore, reliable interpretation of the results from different methods depends on the efficacy and reliability of different statistical methods. In this paper, we evaluated the performance of multiple analytical methods to...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... research methods along with programmatic specialists and be reviewed by the Panel prior to data collection... one of three methods-- Internet, fax or mail. Do not submit the same comments multiple times or by more than one method. Regardless of which method you choose, please state that your comments refer to...
Screening for Multiple Genes Influencing Dyslexia.
ERIC Educational Resources Information Center
Smith, Shelley D.; And Others
1991-01-01
Examines the "sib pair" method of linkage analysis designed to locate genes influencing dyslexia, which has several advantages over the "LOD" score method. Notes that the sib pair analysis was able to detect the same linkages as the LOD method, plus a possible third region. Confirms that the sib pair method is an effective means of screening. (RS)
78 FR 69324 - Revised Medical Criteria for Evaluating Hematological Disorders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
.... ADDRESSES: You may submit comments by one of three methods--Internet, fax, or mail. Do not submit the same comments multiple times or by more than one method. Regardless of which method you choose, please state... hematological disorder. In proposed sections 7.00B1 and B2, we provide two methods for establishing the...
Mixing Qualitative and Quantitative Methods: Insights into Design and Analysis Issues
ERIC Educational Resources Information Center
Lieber, Eli
2009-01-01
This article describes and discusses issues related to research design and data analysis in the mixing of qualitative and quantitative methods. It is increasingly desirable to use multiple methods in research, but questions arise as to how best to design and analyze the data generated by mixed methods projects. I offer a conceptualization for such…
Passive synthetic aperture radar imaging of ground moving targets
NASA Astrophysics Data System (ADS)
Wacks, Steven; Yazici, Birsen
2012-05-01
In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.
Radiation pattern synthesis of planar antennas using the iterative sampling method
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Coffey, E. L.
1975-01-01
A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.
NASA Astrophysics Data System (ADS)
Yannopapas, Vassilios; Paspalakis, Emmanuel
2018-07-01
We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.
NASA Astrophysics Data System (ADS)
Liu, Ke; Wang, Jiannian; Wang, Hai; Li, Yanqiu
2018-07-01
For the multi-lateral shearing interferometers (multi-LSIs), the measurement accuracy can be enhanced by estimating the wavefront under test with the multidirectional phase information encoded in the shearing interferogram. Usually the multi-LSIs reconstruct the test wavefront from the phase derivatives in multiple directions using the discrete Fourier transforms (DFT) method, which is only suitable to small shear ratios and relatively sensitive to noise. To improve the accuracy of multi-LSIs, wavefront reconstruction from the multidirectional phase differences using the difference Zernike polynomials fitting (DZPF) method is proposed in this paper. For the DZPF method applied in the quadriwave LSI, difference Zernike polynomials in only two orthogonal shear directions are required to represent the phase differences in multiple shear directions. In this way, the test wavefront can be reconstructed from the phase differences in multiple shear directions using a noise-variance weighted least-squares method with almost no extra computational burden, compared with the usual recovery from the phase differences in two orthogonal directions. Numerical simulation results show that the DZPF method can maintain high reconstruction accuracy in a wider range of shear ratios and has much better anti-noise performance than the DFT method. A null test experiment of the quadriwave LSI has been conducted and the experimental results show that the measurement accuracy of the quadriwave LSI can be improved from 0.0054 λ rms to 0.0029 λ rms (λ = 632.8 nm) by substituting the DFT method with the proposed DZPF method in the wavefront reconstruction process.
Simulating propagation of coherent light in random media using the Fredholm type integral equation
NASA Astrophysics Data System (ADS)
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
NASA Astrophysics Data System (ADS)
Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.
2017-12-01
We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.
Uddin, M B; Chow, C M; Su, S W
2018-03-26
Sleep apnea (SA), a common sleep disorder, can significantly decrease the quality of life, and is closely associated with major health risks such as cardiovascular disease, sudden death, depression, and hypertension. The normal diagnostic process of SA using polysomnography is costly and time consuming. In addition, the accuracy of different classification methods to detect SA varies with the use of different physiological signals. If an effective, reliable, and accurate classification method is developed, then the diagnosis of SA and its associated treatment will be time-efficient and economical. This study aims to systematically review the literature and present an overview of classification methods to detect SA using respiratory and oximetry signals and address the automated detection approach. Sixty-two included studies revealed the application of single and multiple signals (respiratory and oximetry) for the diagnosis of SA. Both airflow and oxygen saturation signals alone were effective in detecting SA in the case of binary decision-making, whereas multiple signals were good for multi-class detection. In addition, some machine learning methods were superior to the other classification methods for SA detection using respiratory and oximetry signals. To deal with the respiratory and oximetry signals, a good choice of classification method as well as the consideration of associated factors would result in high accuracy in the detection of SA. An accurate classification method should provide a high detection rate with an automated (independent of human action) analysis of respiratory and oximetry signals. Future high-quality automated studies using large samples of data from multiple patient groups or record batches are recommended.
Scheduler for multiprocessor system switch with selective pairing
Gara, Alan; Gschwind, Michael Karl; Salapura, Valentina
2015-01-06
System, method and computer program product for scheduling threads in a multiprocessing system with selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). The method configures the selective pairing facility to use checking provide one highly reliable thread for high-reliability and allocate threads to corresponding processor cores indicating need for hardware checking. The method configures the selective pairing facility to provide multiple independent cores and allocate threads to corresponding processor cores indicating inherent resilience.
Simple method for assembly of CRISPR synergistic activation mediator gRNA expression array.
Vad-Nielsen, Johan; Nielsen, Anders Lade; Luo, Yonglun
2018-05-20
When studying complex interconnected regulatory networks, effective methods for simultaneously manipulating multiple genes expression are paramount. Previously, we have developed a simple method for generation of an all-in-one CRISPR gRNA expression array. We here present a Golden Gate Assembly-based system of synergistic activation mediator (SAM) compatible CRISPR/dCas9 gRNA expression array for the simultaneous activation of multiple genes. Using this system, we demonstrated the simultaneous activation of the transcription factors, TWIST, SNAIL, SLUG, and ZEB1 a human breast cancer cell line. Copyright © 2018 Elsevier B.V. All rights reserved.
Multiple targets detection method in detection of UWB through-wall radar
NASA Astrophysics Data System (ADS)
Yang, Xiuwei; Yang, Chuanfa; Zhao, Xingwen; Tian, Xianzhong
2017-11-01
In this paper, the problems and difficulties encountered in the detection of multiple moving targets by UWB radar are analyzed. The experimental environment and the penetrating radar system are established. An adaptive threshold method based on local area is proposed to effectively filter out clutter interference The objective of the moving target is analyzed, and the false target is further filtered out by extracting the target feature. Based on the correlation between the targets, the target matching algorithm is proposed to improve the detection accuracy. Finally, the effectiveness of the above method is verified by practical experiment.
Taboo Search: An Approach to the Multiple Minima Problem
NASA Astrophysics Data System (ADS)
Cvijovic, Djurdje; Klinowski, Jacek
1995-02-01
Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.
Enhanced Decision Analysis Support System.
1981-03-01
autorrares "i., the method for determining preferences when multiple and competing attributes are involved. Worth assessment is used as the model which...1967 as a method for determining preferenoe when multiple and competing attributes are involved (Rf 10). The tern worth can be - equated to other... competing objectives. After some discussion, the group decided that the problem could best be decided using the worth assessment procedure. They
[Ego-state Therapy: Psychotherapy for Multiple Personality Disorders].
Sugiyama, Toshiro
2018-01-01
The author describes ego-state therapy. This psychotherapy is used for treating multiple personality disorders. The author mentions the theoretical background of this method, and practical points. Initially, ego-state therapy was developed as a type of hypnotherapy, but it evolved as a safe therapeutic method in combination with trauma processing therapies. The author presents a case study, and discusses the clinical significance of this treatment.
Lamp method and apparatus using multiple reflections
MacLennan, Donald A.; Turner, Brian; Kipling, Kent
1999-01-01
A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.
Asymptotic-induced numerical methods for conservation laws
NASA Technical Reports Server (NTRS)
Garbey, Marc; Scroggs, Jeffrey S.
1990-01-01
Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.
Narayanaswamy, Rohini; Iyer, Vignesh; Khare, Prachi; Bodziak, Mary Lou; Badgett, Darlene; Zivadinov, Robert; Weinstock-Guttman, Bianca; Rideout, Todd C.; Ramanathan, Murali; Browne, Richard W.
2015-01-01
Background Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers. Methods A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated. Results Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S)-, 25-, 27-, 7α-hydroxycholesterol (HC) and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis. Conclusion The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and may serve as potential biomarkers of disease. PMID:25875771
Multiplicity counting from fission detector signals with time delay effects
NASA Astrophysics Data System (ADS)
Nagy, L.; Pázsit, I.; Pál, L.
2018-03-01
In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).
Comparing the index-flood and multiple-regression methods using L-moments
NASA Astrophysics Data System (ADS)
Malekinezhad, H.; Nachtnebel, H. P.; Klik, A.
In arid and semi-arid regions, the length of records is usually too short to ensure reliable quantile estimates. Comparing index-flood and multiple-regression analyses based on L-moments was the main objective of this study. Factor analysis was applied to determine main influencing variables on flood magnitude. Ward’s cluster and L-moments approaches were applied to several sites in the Namak-Lake basin in central Iran to delineate homogeneous regions based on site characteristics. Homogeneity test was done using L-moments-based measures. Several distributions were fitted to the regional flood data and index-flood and multiple-regression methods as two regional flood frequency methods were compared. The results of factor analysis showed that length of main waterway, compactness coefficient, mean annual precipitation, and mean annual temperature were the main variables affecting flood magnitude. The study area was divided into three regions based on the Ward’s method of clustering approach. The homogeneity test based on L-moments showed that all three regions were acceptably homogeneous. Five distributions were fitted to the annual peak flood data of three homogeneous regions. Using the L-moment ratios and the Z-statistic criteria, GEV distribution was identified as the most robust distribution among five candidate distributions for all the proposed sub-regions of the study area, and in general, it was concluded that the generalised extreme value distribution was the best-fit distribution for every three regions. The relative root mean square error (RRMSE) measure was applied for evaluating the performance of the index-flood and multiple-regression methods in comparison with the curve fitting (plotting position) method. In general, index-flood method gives more reliable estimations for various flood magnitudes of different recurrence intervals. Therefore, this method should be adopted as regional flood frequency method for the study area and the Namak-Lake basin in central Iran. To estimate floods of various return periods for gauged catchments in the study area, the mean annual peak flood of the catchments may be multiplied by corresponding values of the growth factors, and computed using the GEV distribution.
Chen, Jin; Venugopal, Vivek; Intes, Xavier
2011-01-01
Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Rational reduction of periodic propagators for off-period observations.
Blanton, Wyndham B; Logan, John W; Pines, Alexander
2004-02-01
Many common solid-state nuclear magnetic resonance problems take advantage of the periodicity of the underlying Hamiltonian to simplify the computation of an observation. Most of the time-domain methods used, however, require the time step between observations to be some integer or reciprocal-integer multiple of the period, thereby restricting the observation bandwidth. Calculations of off-period observations are usually reduced to brute force direct methods resulting in many demanding matrix multiplications. For large spin systems, the matrix multiplication becomes the limiting step. A simple method that can dramatically reduce the number of matrix multiplications required to calculate the time evolution when the observation time step is some rational fraction of the period of the Hamiltonian is presented. The algorithm implements two different optimization routines. One uses pattern matching and additional memory storage, while the other recursively generates the propagators via time shifting. The net result is a significant speed improvement for some types of time-domain calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.
Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less
Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.
2017-04-06
Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less
D. V. Shaw; R. W. Allard
1981-01-01
Two methods of estimating the proportion of self-fertilization as opposed to outcrossing in plant populations are described. The first method makes use of marker loci one at a time; the second method makes use of multiple marker loci simultaneously. Comparisons of the estimates of proportions of selfing and outcrossing obtained using the two methods are shown to yield...
ERIC Educational Resources Information Center
Stuive, Ilse; Kiers, Henk A. L.; Timmerman, Marieke E.; ten Berge, Jos M. F.
2008-01-01
This study compares two confirmatory factor analysis methods on their ability to verify whether correct assignments of items to subtests are supported by the data. The confirmatory common factor (CCF) method is used most often and defines nonzero loadings so that they correspond to the assignment of items to subtests. Another method is the oblique…
A new fast method for inferring multiple consensus trees using k-medoids.
Tahiri, Nadia; Willems, Matthieu; Makarenkov, Vladimir
2018-04-05
Gene trees carry important information about specific evolutionary patterns which characterize the evolution of the corresponding gene families. However, a reliable species consensus tree cannot be inferred from a multiple sequence alignment of a single gene family or from the concatenation of alignments corresponding to gene families having different evolutionary histories. These evolutionary histories can be quite different due to horizontal transfer events or to ancient gene duplications which cause the emergence of paralogs within a genome. Many methods have been proposed to infer a single consensus tree from a collection of gene trees. Still, the application of these tree merging methods can lead to the loss of specific evolutionary patterns which characterize some gene families or some groups of gene families. Thus, the problem of inferring multiple consensus trees from a given set of gene trees becomes relevant. We describe a new fast method for inferring multiple consensus trees from a given set of phylogenetic trees (i.e. additive trees or X-trees) defined on the same set of species (i.e. objects or taxa). The traditional consensus approach yields a single consensus tree. We use the popular k-medoids partitioning algorithm to divide a given set of trees into several clusters of trees. We propose novel versions of the well-known Silhouette and Caliński-Harabasz cluster validity indices that are adapted for tree clustering with k-medoids. The efficiency of the new method was assessed using both synthetic and real data, such as a well-known phylogenetic dataset consisting of 47 gene trees inferred for 14 archaeal organisms. The method described here allows inference of multiple consensus trees from a given set of gene trees. It can be used to identify groups of gene trees having similar intragroup and different intergroup evolutionary histories. The main advantage of our method is that it is much faster than the existing tree clustering approaches, while providing similar or better clustering results in most cases. This makes it particularly well suited for the analysis of large genomic and phylogenetic datasets.
Application of machine learning on brain cancer multiclass classification
NASA Astrophysics Data System (ADS)
Panca, V.; Rustam, Z.
2017-07-01
Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.
Yuan, Tao; Zhao, Weigang; Wang, Lianglu; Dong, Yingyue; Li, Naishi
2016-11-01
This article summarizes our experiences in the application of continuous subcutaneous insulin infusion (CSII) as a method of rapid desensitization therapy for diabetic patients with insulin allergy that was subsequently switched to a regimen of multiple-dose injections for long-term insulin therapy. The clinical data of 11 diabetic patients with insulin allergy in Peking Union Medical College Hospital from April 1, 2008, through December 31, 2011, were retrospectively analyzed. All 11 conditions were diagnosed by case history, skin testing, determination of serum specific anti-insulin IgE, and reaction to withdrawal of insulin. Seven patients accepted the traditional injection method of desensitization, and 5 patients accepted CSII with the protocol designed for this study (1 patient accepted CSII after failure by the formal method). Six of the 7 patients who accepted the traditional method and all 5 patients who accepted CSII had successful results. All 5 patients in the CSII group switched to a regimen of multiple dosage injections. In a survey of 28 nurses, both experienced nurses and practical nurses preferred to use CSII as the method of desensitization. It is feasible and effective for diabetic patients with insulin allergy to use CSII as a method of rapid desensitization with subsequent switching to a regimen of multiple-dose injections for long-term insulin therapy. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Evaluation and selection of decision-making methods to assess landfill mining projects.
Hermann, Robert; Baumgartner, Rupert J; Vorbach, Stefan; Ragossnig, Arne; Pomberger, Roland
2015-09-01
For the first time in Austria, fundamental technological and economic studies on recovering secondary raw materials from large landfills have been carried out, based on the 'LAMIS - Landfill Mining Austria' pilot project. A main focus of the research - and the subject of this article - was to develop an assessment or decision-making procedure that allows landfill owners to thoroughly examine the feasibility of a landfill mining project in advance. Currently there are no standard procedures that would sufficiently cover all the multiple-criteria requirements. The basic structure of the multiple attribute decision making process was used to narrow down on selection, conceptual design and assessment of suitable procedures. Along with a breakdown into preliminary and main assessment, the entire foundation required was created, such as definitions of requirements to an assessment method, selection and accurate description of the various assessment criteria and classification of the target system for the present 'landfill mining' vs. 'retaining the landfill in after-care' decision-making problem. Based on these studies, cost-utility analysis and the analytical-hierarchy process were selected from the range of multiple attribute decision-making procedures and examined in detail. Overall, both methods have their pros and cons with regard to their use for assessing landfill mining projects. Merging these methods or connecting them with single-criteria decision-making methods (like the net present value method) may turn out to be reasonable and constitute an appropriate assessment method. © The Author(s) 2015.
Multiple Contact Dates and SARS Incubation Periods
2004-01-01
Many severe acute respiratory syndrome (SARS) patients have multiple possible incubation periods due to multiple contact dates. Multiple contact dates cannot be used in standard statistical analytic techniques, however. I present a simple spreadsheet-based method that uses multiple contact dates to calculate the possible incubation periods of SARS. PMID:15030684
Is multiple-sequence alignment required for accurate inference of phylogeny?
Höhl, Michael; Ragan, Mark A
2007-04-01
The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.
Will the "Real" Proficiency Standard Please Stand Up?
ERIC Educational Resources Information Center
Baron, Joan Boykoff; And Others
Connecticut's experience with four different standard-setting methods regarding multiple choice proficiency tests is described. The methods include Angoff, Nedelsky, Borderline Group, and Contrasting Groups Methods. All Connecticut ninth graders were administered proficiency tests in reading, language arts, and mathematics. As soon as final test…
The purpose of this workshop was to gather a small group of economists, regulatory experts, and EJ community leaders to discuss methods for incorporating EJ analyses into EPA’s regulatory process. Sessions addressed multiple EPA programs and EJ methods.
The Voronoi Implicit Interface Method for computing multiphase physics.
Saye, Robert I; Sethian, James A
2011-12-06
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.
Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.
Rajan, Jeny; Veraart, Jelle; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan
2012-12-01
Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. Copyright © 2012 Elsevier Inc. All rights reserved.
“I see it now”: Using photo elicitation to understand chronic illness self-management
Fritz, Heather; Lysack, Cathy
2018-01-01
Background How people integrate self-management into daily life remains underexamined, and such processes are difficult to elicit through traditional approaches used to understand human occupation. Purpose This paper will provide a brief overview of one visual research method, photo elicitation, that holds promise for studying self-management of health behaviours and will present findings from an analysis of how the use of photo elicitation interviews contributed additional insights into self-management beyond those generated from the data collected through the other methods used in the study. Method A qualitative, multiple-methods, multiple-case study was conducted with a purposive sample of 10 low-income women ages 40 to 64 with type 2 diabetes. Findings The photo elicitation interviews contributed insights beyond those generated from other study methods about how individuals viewed their self-management behaviours and how occupations changed across time. Implications Photo elicitation is a valuable research method for better understanding clients' chronic illness self-management practices. PMID:29898501
MGUPGMA: A Fast UPGMA Algorithm With Multiple Graphics Processing Units Using NCCL
Hua, Guan-Jie; Hung, Che-Lun; Lin, Chun-Yuan; Wu, Fu-Che; Chan, Yu-Wei; Tang, Chuan Yi
2017-01-01
A phylogenetic tree is a visual diagram of the relationship between a set of biological species. The scientists usually use it to analyze many characteristics of the species. The distance-matrix methods, such as Unweighted Pair Group Method with Arithmetic Mean and Neighbor Joining, construct a phylogenetic tree by calculating pairwise genetic distances between taxa. These methods have the computational performance issue. Although several new methods with high-performance hardware and frameworks have been proposed, the issue still exists. In this work, a novel parallel Unweighted Pair Group Method with Arithmetic Mean approach on multiple Graphics Processing Units is proposed to construct a phylogenetic tree from extremely large set of sequences. The experimental results present that the proposed approach on a DGX-1 server with 8 NVIDIA P100 graphic cards achieves approximately 3-fold to 7-fold speedup over the implementation of Unweighted Pair Group Method with Arithmetic Mean on a modern CPU and a single GPU, respectively. PMID:29051701
MGUPGMA: A Fast UPGMA Algorithm With Multiple Graphics Processing Units Using NCCL.
Hua, Guan-Jie; Hung, Che-Lun; Lin, Chun-Yuan; Wu, Fu-Che; Chan, Yu-Wei; Tang, Chuan Yi
2017-01-01
A phylogenetic tree is a visual diagram of the relationship between a set of biological species. The scientists usually use it to analyze many characteristics of the species. The distance-matrix methods, such as Unweighted Pair Group Method with Arithmetic Mean and Neighbor Joining, construct a phylogenetic tree by calculating pairwise genetic distances between taxa. These methods have the computational performance issue. Although several new methods with high-performance hardware and frameworks have been proposed, the issue still exists. In this work, a novel parallel Unweighted Pair Group Method with Arithmetic Mean approach on multiple Graphics Processing Units is proposed to construct a phylogenetic tree from extremely large set of sequences. The experimental results present that the proposed approach on a DGX-1 server with 8 NVIDIA P100 graphic cards achieves approximately 3-fold to 7-fold speedup over the implementation of Unweighted Pair Group Method with Arithmetic Mean on a modern CPU and a single GPU, respectively.
A visual tracking method based on improved online multiple instance learning
NASA Astrophysics Data System (ADS)
He, Xianhui; Wei, Yuxing
2016-09-01
Visual tracking is an active research topic in the field of computer vision and has been well studied in the last decades. The method based on multiple instance learning (MIL) was recently introduced into the tracking task, which can solve the problem that template drift well. However, MIL method has relatively poor performance in running efficiency and accuracy, due to its strong classifiers updating strategy is complicated, and the speed of the classifiers update is not always same with the change of the targets' appearance. In this paper, we present a novel online effective MIL (EMIL) tracker. A new update strategy for strong classifier was proposed to improve the running efficiency of MIL method. In addition, to improve the t racking accuracy and stability of the MIL method, a new dynamic mechanism for learning rate renewal of the classifier and variable search window were proposed. Experimental results show that our method performs good performance under the complex scenes, with strong stability and high efficiency.
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
Li, Wei; Zhang, Min; Wang, Mingyu; Han, Zhantao; Liu, Jiankai; Chen, Zhezhou; Liu, Bo; Yan, Yan; Liu, Zhu
2018-06-01
Brownfield sites pollution and remediation is an urgent environmental issue worldwide. The screening and assessment of remedial alternatives is especially complex owing to its multiple criteria that involves technique, economy, and policy. To help the decision-makers selecting the remedial alternatives efficiently, the criteria framework conducted by the U.S. EPA is improved and a comprehensive method that integrates multiple criteria decision analysis (MCDA) with numerical simulation is conducted in this paper. The criteria framework is modified and classified into three categories: qualitative, semi-quantitative, and quantitative criteria, MCDA method, AHP-PROMETHEE (analytical hierarchy process-preference ranking organization method for enrichment evaluation) is used to determine the priority ranking of the remedial alternatives and the solute transport simulation is conducted to assess the remedial efficiency. A case study was present to demonstrate the screening method in a brownfield site in Cangzhou, northern China. The results show that the systematic method provides a reliable way to quantify the priority of the remedial alternatives.
Bergmann, Helmar; Minear, Gregory; Raith, Maria; Schaffarich, Peter M
2008-12-09
The accuracy of multiple window spatial resolution characterises the performance of a gamma camera for dual isotope imaging. In the present study we investigate an alternative method to the standard NEMA procedure for measuring this performance parameter. A long-lived 133Ba point source with gamma energies close to 67Ga and a single bore lead collimator were used to measure the multiple window spatial registration error. Calculation of the positions of the point source in the images used the NEMA algorithm. The results were validated against the values obtained by the standard NEMA procedure which uses a liquid 67Ga source with collimation. Of the source-collimator configurations under investigation an optimum collimator geometry, consisting of a 5 mm thick lead disk with a diameter of 46 mm and a 5 mm central bore, was selected. The multiple window spatial registration errors obtained by the 133Ba method showed excellent reproducibility (standard deviation < 0.07 mm). The values were compared with the results from the NEMA procedure obtained at the same locations and showed small differences with a correlation coefficient of 0.51 (p < 0.05). In addition, the 133Ba point source method proved to be much easier to use. A Bland-Altman analysis showed that the 133Ba and the 67Ga Method can be used interchangeably. The 133Ba point source method measures the multiple window spatial registration error with essentially the same accuracy as the NEMA-recommended procedure, but is easier and safer to use and has the potential to replace the current standard procedure.
Detecting text in natural scenes with multi-level MSER and SWT
NASA Astrophysics Data System (ADS)
Lu, Tongwei; Liu, Renjun
2018-04-01
The detection of the characters in the natural scene is susceptible to factors such as complex background, variable viewing angle and diverse forms of language, which leads to poor detection results. Aiming at these problems, a new text detection method was proposed, which consisted of two main stages, candidate region extraction and text region detection. At first stage, the method used multiple scale transformations of original image and multiple thresholds of maximally stable extremal regions (MSER) to detect the text regions which could detect character regions comprehensively. At second stage, obtained SWT maps by using the stroke width transform (SWT) algorithm to compute the candidate regions, then using cascaded classifiers to propose non-text regions. The proposed method was evaluated on the standard benchmark datasets of ICDAR2011 and the datasets that we made our own data sets. The experiment results showed that the proposed method have greatly improved that compared to other text detection methods.
Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Hasegawa, Shin-ya; Hirata, Ryo
2018-04-01
The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.