Dong, Chongmei; Vincent, Kate; Sharp, Peter
2009-12-04
TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here is a useful alternative to locus-specific based methods for screening mutations in conserved functional domains of homoeologous genes. This method can also be used for SNP (single nucleotide polymorphism) marker development and eco-TILLING in polyploid species.
Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree
2018-03-09
The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.
KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer: a cohort study
Negru, Serban; Papadopoulou, Eirini; Apessos, Angela; Stanculeanu, Dana Lucia; Ciuleanu, Eliade; Volovat, Constantin; Croitoru, Adina; Kakolyris, Stylianos; Aravantinos, Gerasimos; Ziras, Nikolaos; Athanasiadis, Elias; Touroutoglou, Nikolaos; Pavlidis, Nikolaos; Kalofonos, Haralabos P; Nasioulas, George
2014-01-01
Objectives Treatment decision-making in colorectal cancer is often guided by tumour tissue molecular analysis. The aim of this study was the development and validation of a high-resolution melting (HRM) method for the detection of KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer and determination of the frequency of these mutations in the respective populations. Setting Diagnostic molecular laboratory located in Athens, Greece. Participants 2425 patients with colorectal cancer participated in the study. Primary and secondary outcome measures 2071 patients with colorectal cancer (1699 of Greek and 372 of Romanian origin) were analysed for KRAS exon 2 mutations. In addition, 354 tumours from consecutive patients (196 Greek and 161 Romanian) were subjected to full KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4) and BRAF (exon 15) analysis. KRAS, NRAS and BRAF mutation detection was performed by a newly designed HRM analysis protocol, followed by Sanger sequencing. Results KRAS exon 2 mutations (codons 12/13) were detected in 702 of the 1699 Greek patients with colorectal carcinoma analysed (41.3%) and in 39.2% (146/372) of the Romanian patients. Among the 354 patients who were subjected to full KRAS, NRAS and BRAF analysis, 40.96% had KRAS exon 2 mutations (codons 12/13). Among the KRAS exon 2 wild-type patients 15.31% harboured additional RAS mutations and 12.44% BRAF mutations. The newly designed HRM method used showed a higher sensitivity compared with the sequencing method. Conclusions The HRM method developed was shown to be a reliable method for KRAS, NRAS and BRAF mutation detection. Furthermore, no difference in the mutation frequency of KRAS, NRAS and BRAF was observed between Greek and Romanian patients with colorectal cancer. PMID:24859998
Fuster, Oscar; Barragán, Eva; Bolufer, Pascual; Such, Esperanza; Valencia, Ana; Ibáñez, Mariam; Dolz, Sandra; de Juan, Inmaculada; Jiménez, Antonio; Gómez, Maria Teresa; Buño, Ismael; Martínez, Joaquín; Cervera, José; Montesinos, Pau; Moscardó, Federico; Sanz, Miguel Ángel
2012-01-01
During last years, molecular markers have been increased as prognostic factors routinely screened in acute myeloid leukemia (AML). Recently, an increasing interest has been reported in introducing to clinical practice screening for mutations in the CCAAT/enhancer-binding protein α (CEBPA) gene in AML, as it seems to be a good prognostic factor. However, there is no reliable established method for assessing CEBPA mutations during the diagnostic work-up of AMLs. We describe here a straightforward and reliable fragment analysis method based in PCR capillary electrophoresis (PCR-CE) for screening of CEBPA mutations; moreover, we present the results obtained in 151 intermediate-risk karyotype AML patients (aged 16-80 years). The method gave a specificity of 100% and sensitivity of 93% with a lower detection limit of 1-5% for CEBPA mutations. The series found 19 mutations and four polymorphisms in 12 patients, seven of whom (58%) presented two mutations. The overall frequency of CEBPA mutations in AML was 8% (n = 12). CEBPA mutations showed no coincidence with FLT3-ITD or NPM1 mutations. CEBPA mutation predicted better disease-free survival in the group of patients without FLT3-ITD, NPM, or both genes mutated (HR 3.6, IC 95%; 1.0-13.2, p = 0.05) and better overall survival in patients younger than 65 of this group without molecular markers (HR 4.0, IC 95%; 1.0-17.4, p = 0.05). In conclusion, the fragment analysis method based in PCR-CE is a rapid, specific, and sensitive method for CEBPA mutation screening and our results confirm that CEBPA mutations can identify a subgroup of patients with favorable prognosis in AML with intermediate-risk karyotype.
2013-01-01
Background BRAF mutation is an important diagnostic and prognostic marker in patients with papillary thyroid carcinoma (PTC). To be applicable in clinical laboratories with limited equipment, diverse testing methods are required to detect BRAF mutation. Methods A shifted termination assay (STA) fragment analysis was used to detect common V600 BRAF mutations in 159 PTCs with DNAs extracted from formalin-fixed paraffin-embedded tumor tissue. The results of STA fragment analysis were compared to those of direct sequencing. Serial dilutions of BRAF mutant cell line (SNU-790) were used to calculate limit of detection (LOD). Results BRAF mutations were detected in 119 (74.8%) PTCs by STA fragment analysis. In direct sequencing, BRAF mutations were observed in 118 (74.2%) cases. The results of STA fragment analysis had high correlation with those of direct sequencing (p < 0.00001, κ = 0.98). The LOD of STA fragment analysis and direct sequencing was 6% and 12.5%, respectively. In PTCs with pT3/T4 stages, BRAF mutation was observed in 83.8% of cases. In pT1/T2 carcinomas, BRAF mutation was detected in 65.9% and this difference was statistically significant (p = 0.007). Moreover, BRAF mutation was more frequent in PTCs with extrathyroidal invasion than tumors without extrathyroidal invasion (84.7% versus 62.2%, p = 0.001). To prepare and run the reactions, direct sequencing required 450 minutes while STA fragment analysis needed 290 minutes. Conclusions STA fragment analysis is a simple and sensitive method to detect BRAF V600 mutations in formalin-fixed paraffin-embedded clinical samples. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5684057089135749 PMID:23883275
Vavrova, Eva; Kantorova, Barbara; Vonkova, Barbara; Kabathova, Jitka; Skuhrova-Francova, Hana; Diviskova, Eva; Letocha, Ondrej; Kotaskova, Jana; Brychtova, Yvona; Doubek, Michael; Mayer, Jiri; Pospisilova, Sarka
2017-09-01
The hotspot c.7541_7542delCT NOTCH1 mutation has been proven to have a negative clinical impact in chronic lymphocytic leukemia (CLL). However, an optimal method for its detection has not yet been specified. The aim of our study was to examine the presence of the NOTCH1 mutation in CLL using three commonly used molecular methods. Sanger sequencing, fragment analysis and allele-specific PCR were compared in the detection of the c.7541_7542delCT NOTCH1 mutation in 201 CLL patients. In 7 patients with inconclusive mutational analysis results, the presence of the NOTCH1 mutation was also confirmed using ultra-deep next generation sequencing. The NOTCH1 mutation was detected in 15% (30/201) of examined patients. Only fragment analysis was able to identify all 30 NOTCH1-mutated patients. Sanger sequencing and allele-specific PCR showed a lower detection efficiency, determining 93% (28/30) and 80% (24/30) of the present NOTCH1 mutations, respectively. Considering these three most commonly used methodologies for c.7541_7542delCT NOTCH1 mutation screening in CLL, we defined fragment analysis as the most suitable approach for detecting the hotspot NOTCH1 mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming
2011-01-01
JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.
[Mutation analysis for a pedigree affected with keratitis-ichthyosis-deafness syndrome].
Li, Lulu; Li, Yuan; Lin, Wei; Zhao, Xiuli
2017-10-10
To identify mutation of GJB2 gene and provide genetic counseling for a family affected with keratitis-ichthyosis-deafness (KID) syndrome. Genomic DNA was extracted from peripheral blood samples with a standard phenol-chloroform method. PCR and Sanger sequencing were used to analyze potential mutation in the proband. Suspected mutation was verified with a PCR-high-resolution melting (PCR-HRM) method. T-clone sequencing was applied to determine the parental origin of the mutation. A heterozygous mutation, c.148G>A (p.Asp50Asn), which is located in the exon 1 of the GJB2 gene, was found in the proband. The results was confirmed by HRM analysis. Cloning sequencing suggested that the mutation was derived from the father's germline. The hot-spot mutation c.148G>A (p.Asp50Asn) in the GJB2 gene probably underlies the KID syndrome in this Chinese family. A PCR-HRM method has been established to rapidly detect common mutations associated with this disease.
High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand.
Charoenkwan, Pimlak; Sirichotiyakul, Supatra; Phusua, Arunee; Suanta, Sudjai; Fanhchaksai, Kanda; Sae-Tung, Rattika; Sanguansermsri, Torpong
2017-12-01
High-resolution melting (HRM) analysis is a rapid mutation analysis which assesses the pattern of reduction of fluorescence signal after subjecting the amplified PCR product with saturated fluorescence dye to an increasing temperature. We used HRM analysis for prenatal diagnosis of beta-thalassemia disease in northern Thailand. Five PCR-HRM protocols were used to detect point mutations in five different segments of the beta-globin gene, and one protocol to detect the 3.4 kb beta-globin deletion. We sought to characterize the mutations in carriers and to enable prenatal diagnosis in 126 couples at risk of having a fetus with beta-thalassemia disease. The protocols identified 18 common mutations causing beta-thalassemia, including the rare codon 132 (A-T) mutation. Each mutation showed a specific HRM pattern and all results were in concordance with those from direct DNA sequencing or gap-PCR methods. In cases of beta-thalassemia disease resulting from homozygosity for a mutation or compound heterozygosity for two mutations on the same amplified segment, the HRM patterns were different to those of a single mutation and were specific for each combination. HRM analysis is a simple and useful method for mutation identification in beta-thalassemia carriers and prenatal diagnosis of beta-thalassemia in northern Thailand.
Somatic mutation detection in human biomonitoring.
Olsen, L S; Nielsen, L R; Nexø, B A; Wassermann, K
1996-06-01
Somatic cell gene mutation arising in vivo may be considered to be a biomarker for genotoxicity. Assays detecting mutations of the haemoglobin and glycophorin A genes in red blood cells and of the hypoxanthine-guanine phosphoribosyltransferase and human leucocyte antigenes in T-lymphocytes are available in humans. This MiniReview describes these assays and their application to studies of individuals exposed to genotoxic agents. Moreover, with the implementation of techniques of molecular biology mutation spectra can now be defined in addition to the quantitation of in vivo mutant frequencies. We describe current screening methods for unknown mutations, including the denaturing gradient gel electrophoresis, single strand conformation polymorphism analysis, heteroduplex analysis, chemical modification techniques and enzymatic cleavage methods. The advantage of mutation detection as a biomarker is that it integrates exposure and sensitivity in one measurement. With the analysis of mutation spectra it may thus be possible to identify the causative genotoxic agent.
Determining Mutation Rates in Bacterial Populations
Rosche, William A.; Foster, Patricia L.
2010-01-01
When properly determined, spontaneous mutation rates are a more accurate and biologically meaningful reflection of the underlying mutagenic mechanism than are mutation frequencies. Because bacteria grow exponentially and mutations arise stochastically, methods to estimate mutation rates depend on theoretical models that describe the distribution of mutant numbers among parallel cultures, as in the original Luria-Delbrück fluctuation analysis. An accurate determination of mutation rate depends on understanding the strengths and limitations of these methods, and how to design fluctuation assays to optimize a given method. In this paper we describe a number of methods to estimate mutation rates, give brief accounts of their derivations, and discuss how they behave under various experimental conditions. PMID:10610800
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogervorst, F.B.L.; Tuijn, A.C. van der; Ommen, G.J.B. van
Hunter syndrome is an X-linked recessive disorder constituting phenotypes ranging from mild to severe. The gene affected in Hunter syndrome is iduronate-2-sulfatase (IDS). The identification of mutations leading to a defective enzyme could be of benefit for the diagnosis and prognosis of patients. At this moment a variety of mutations have been found, including large deletions and base substitutions. We have previously described a method, designated the protein truncation test (PTT), for the detection of mutations leading to premature translation termination. The method combines reverse transcription and PCR (RT-PCR) with in vitro transcript/translation of the products generated. To facilitate amore » PTT analysis, the forward primer is modified by addition of a T7 promoter sequence and an in-frame protein translation initiation sequence. In our department the method has been successfully applied for DMD and FAP. Here we report on the PTT analysis of 8 Hunter patients, all of them without major gene alterations as determined by Southern analysis. Total RNA was isolated from cultured skin fibroblasts or peripheral blood lymphocytes. PTT analysis revealed 4 novel mutations in the IDS gene: two missense mutations and two frameshift mutations (splice donor site alteration in intron 6 and a 13 bp deletion in exon 9). Furthermore, PTT proved to be a simple method to identify carriers. Currently, we use the generated RT-PCR products of the remaining patients for automated sequence analysis. PTT may be of great value in screening disorders in which affected genes give rise to truncated protein products.« less
MUFFINN: cancer gene discovery via network analysis of somatic mutation data.
Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk
2016-06-23
A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations.
Sarkar, F H; Valdivieso, M; Borders, J; Yao, K L; Raval, M M; Madan, S K; Sreepathi, P; Shimoyama, R; Steiger, Z; Visscher, D W
1995-12-01
The p53 tumor suppressor gene has been found to be altered in almost all human solid tumors, whereas K-ras gene mutations have been observed in a limited number of human cancers (adenocarcinoma of colon, pancreas, and lung). Studies of mutational inactivation for both genes in the same patient's sample on non-small-cell lung cancer have been limited. In an effort to perform such an analysis, we developed and compared methods (for the mutational detection of p53 and K-ras gene) that represent a modified and universal protocol, in terms of DNA extraction, polymerase chain reaction (PCR) amplification, and nonradioisotopic PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, which is readily applicable to either formalin-fixed, paraffin-embedded tissues or frozen tumor specimens. We applied this method to the evaluation of p53 (exons 5-8) and K-ras (codon 12 and 13) gene mutations in 55 cases of non-small-cell lung cancer. The mutational status in the p53 gene was evaluated by radioisotopic PCR-SSCP and compared with PCR-SSCP utilizing our standardized nonradioisotopic detection system using a single 6-microns tissue section. The mutational patterns observed by PCR-SSCP were subsequently confirmed by PCR-DNA sequencing. The mutational status in the K-ras gene was similarly evaluated by PCR-SSCP, and the specific mutation was confirmed by Southern slot-blot hybridization using 32P-labeled sequence-specific oligonucleotide probes for codons 12 and 13. Mutational changes in K-ras (codon 12) were found in 10 of 55 (18%) of non-small-cell lung cancers. Whereas adenocarcinoma showed K-ras mutation in 33% of the cases at codon 12, only one mutation was found at codon 13. As expected, squamous cell carcinoma samples (25 cases) did not show K-ras mutations. Mutations at exons 5-8 of the p53 gene were documented in 19 of 55 (34.5%) cases. Ten of the 19 mutations were single nucleotide point mutations, leading to amino acid substitution. Six showed insertional mutation, and three showed deletion mutations. Only three samples showed mutations of both K-ras and p53 genes. We conclude that although K-ras and p53 gene mutations are frequent in non-small-cell lung cancer, mutations of both genes in the same patient's samples are not common. We also conclude that this universal nonradioisotopic method is superior to other similar methods and is readily applicable to the rapid screening of large numbers of formalin-fixed, paraffin-embedded or frozen samples for the mutational analysis of multiple genes.
Kao, Hua-Lin; Yeh, Yi-Chen; Lin, Chin-Hsuan; Hsu, Wei-Fang; Hsieh, Wen-Yu; Ho, Hsiang-Ling; Chou, Teh-Ying
2016-11-01
Analysis of the targetable driver mutations is now recommended in all patients with advanced lung adenocarcinoma. Molecular-based methods are usually adopted, however, along with the implementation of highly sensitive and/or mutation-specific antibodies, immunohistochemistry (IHC) has been considered an alternative method for identifying driver mutations in lung adenocarcinomas. A total of 205 lung adenocarcinomas were examined for EGFR mutations and ALK and ROS1 rearrangements using real-time PCR, fluorescence in situ hybridization (FISH) and IHC in parallel. The performance of different commercially available IHC antibody clones toward targetable driver mutations was evaluated. The association between these driver mutations and clinicopathological characteristics was also analyzed. In 205 cases we studied, 58.5% were found to harbor EGFR mutations, 6.3% ALK rearrangements and 1.0% ROS1 rearrangements. Compared to molecular-based methods, IHC of EGFR mutations showed an excellent specificity but the sensitivity is suboptimal, while IHC of ALK and ROS1 rearrangements demonstrated high sensitivity and specificity. No significant difference regarding the performance of different antibody clones toward these driver mutations was observed, except that clone SP125 showed a higher sensitivity than 43B2 in the detection of p.L858R of EGFR. In circumstances such as poor quality of nucleic acids or low content of tumor cells, IHC of EGFR mutation-specific antibodies could be used as an alternative method. Patients negative for EGFR mutations are subjected to further analysis on ALK and ROS1 rearrangements using IHC methods. Herein, we proposed a lung adenocarcinoma testing algorithm for the application of IHC in therapeutic diagnosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing
Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.
2015-01-01
As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970
Tai, Chang-Long; Liu, Mei-Ying; Yu, Hsiao-Chi; Chiang, Chiang-Chuan; Chiang, Hung; Suen, Jeng-Hung; Kao, Shu-Min; Huang, Yu-Hsiu; Wu, Tina Jui-Ting; Yang, Chia-Feng; Tsai, Fang-Chih; Lin, Ching-Yuang; Chang, Jan-Gowth; Chen, Hong-Duo; Niu, Dau-Ming
2012-02-18
As an X-linked genetic disorder, Fabry disease was first thought to affect males only, and females were generally considered to be asymptomatic carriers. However, recent research suggests that female carriers of Fabry disease may still develop vital organ damage causing severe morbidity and mortality. In the previous newborn screening, from 299,007 newborns, we identified a total of 20 different Fabry mutations and 121 newborns with Fabry mutations. However, we found that most female carriers are not detected by enzyme assays. A streamlined method for high resolution melting (HRM) analysis was designed to screen for GLA gene mutations using a same PCR and melting program. Primer sets were designed to cover the 7 exons and the Chinese common intronic mutation, IVS4+919G>A of GLA gene. The HRM analysis was successful in identifying heterozygous and hemizygous patients with the 20 surveyed mutations. We were also successful in using this method to test dry blood spots of newborns afflicted with Fabry mutations without having to determine DNA concentration before PCR amplification. The results of this study show that HRM could be a reliable and sensitive method for use in the rapid screening of females for GLA mutations. Copyright © 2011 Elsevier B.V. All rights reserved.
[Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].
Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli
2017-08-10
To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.
Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.
Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin
2018-06-01
The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.
Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka
2017-01-01
Background The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. Methods The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. Results cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. Conclusions We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations. PMID:28881720
Jing, Chang-Wen; Wang, Zhuo; Cao, Hai-Xia; Ma, Rong; Wu, Jian-Zhong
2014-01-01
The aim of the research was to explore a cost effective, fast, easy to perform, and sensitive method for epidermal growth factor receptor (EGFR) mutation testing. High resolution melting analysis (HRM) was introduced to evaluate the efficacy of the analysis for dectecting EGFR mutations in exons 18 to 21 using formalin-fixed paraffin-embedded (FFPE) tissues and plasma free DNA from 120 patients. The total EGFR mutation rate was 37.5% (45/120) detected by direct sequencing. There were 48 mutations in 120 FFPE tissues assessed by HRM. For plasma free DNA, the EGFR mutation rate was 25.8% (31/120). The sensitivity of HRM assays in FFPE samples was 100% by HRM. There was a low false-positive mutation rate but a high false-negative rate in plasma free DNA detected by HRM. Our results show that HRM analysis has the advantage of small tumor sample need. HRM applied with plasma free DNA showed a high false-negative rate but a low false-positive rate. Further research into appropriate methods and analysis needs to be performed before HRM for plasma free DNA could be accepted as an option in diagnostic or screening settings.
Bihl, Michel P; Hoeller, Sylvia; Andreozzi, Maria Carla; Foerster, Anja; Rufle, Alexander; Tornillo, Luigi; Terracciano, Luigi
2012-03-01
Targeting the epidermal growth factor receptor (EGFR) is a new therapeutic option for patients with metastatic colorectal or lung carcinoma. However, the therapy efficiency highly depends on the KRAS mutation status in the given tumour. Therefore a reliable and secure KRAS mutation testing is crucial. Here we investigated 100 colorectal carcinoma samples with known KRAS mutation status (62 mutated cases and 38 wild type cases) in a comparative manner with three different KRAS mutation testing techniques (Pyrosequencing, Dideoxysequencing and INFINITI) in order to test their reliability and sensitivity. For the large majority of samples (96/100, 96%), the KRAS mutation status obtained by all three methods was the same. Only two cases with clear discrepancies were observed. One case was reported as wild type by the INFINITI method while the two other methods detected a G13C mutation. In the second case the mutation could be detected by the Pyrosequencing and INFINITI method (15% and 15%), while no signal for mutation could be observed with the Dideoxysequencing method. Additional two unclear results were due to a detection of a G12V with the INFINITI method, which was below cut-off when repeated and which was not detectable by the other two methods and very weak signals in a G12V mutated case with the Dideoxy- and Pyroseqencing method compared to the INFINITI method, respectively. In summary all three methods are reliable and robust methods in detecting KRAS mutations. INFINITI, however seems to be slightly more sensitive compared to Dideoxy- and Pyrosequencing.
Denisova, Galina F; Denisov, Dimitri A; Yeung, Jeffrey; Loeb, Mark B; Diamond, Michael S; Bramson, Jonathan L
2008-11-01
Understanding antibody function is often enhanced by knowledge of the specific binding epitope. Here, we describe a computer algorithm that permits epitope prediction based on a collection of random peptide epitopes (mimotopes) isolated by antibody affinity purification. We applied this methodology to the prediction of epitopes for five monoclonal antibodies against the West Nile virus (WNV) E protein, two of which exhibit therapeutic activity in vivo. This strategy was validated by comparison of our results with existing F(ab)-E protein crystal structures and mutational analysis by yeast surface display. We demonstrate that by combining the results of the mimotope method with our data from mutational analysis, epitopes could be predicted with greater certainty. The two methods displayed great complementarity as the mutational analysis facilitated epitope prediction when the results with the mimotope method were equivocal and the mimotope method revealed a broader number of residues within the epitope than the mutational analysis. Our results demonstrate that the combination of these two prediction strategies provides a robust platform for epitope characterization.
Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy
2017-01-01
Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations. PMID:28076437
Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina
2011-10-06
Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.
Chen, Neng; Tranebjærg, Lisbeth; Rendtorff, Nanna Dahl; Schrijver, Iris
2011-01-01
Pendred syndrome and DFNB4 (autosomal recessive nonsyndromic congenital deafness, locus 4) are associated with autosomal recessive congenital sensorineural hearing loss and mutations in the SLC26A4 gene. Extensive allelic heterogeneity, however, necessitates analysis of all exons and splice sites to identify mutations for individual patients. Although Sanger sequencing is the gold standard for mutation detection, screening methods supplemented with targeted sequencing can provide a cost-effective alternative. One such method, denaturing high-performance liquid chromatography, was developed for clinical mutation detection in SLC26A4. However, this method inherently cannot distinguish homozygous changes from wild-type sequences. High-resolution melting (HRM), on the other hand, can detect heterozygous and homozygous changes cost-effectively, without any post-PCR modifications. We developed a closed-tube HRM mutation detection method specific for SLC26A4 that can be used in the clinical diagnostic setting. Twenty-eight primer pairs were designed to cover all 21 SLC26A4 exons and splice junction sequences. Using the resulting amplicons, initial HRM analysis detected all 45 variants previously identified by sequencing. Subsequently, a 384-well plate format was designed for up to three patient samples per run. Blinded HRM testing on these plates of patient samples collected over 1 year in a clinical diagnostic laboratory accurately detected all variants identified by sequencing. In conclusion, HRM with targeted sequencing is a reliable, simple, and cost-effective method for SLC26A4 mutation screening and detection. PMID:21704276
Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte
2012-01-01
Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.
Rapid Detection Method for the Four Most Common CHEK2 Mutations Based on Melting Profile Analysis.
Borun, Pawel; Salanowski, Kacper; Godlewski, Dariusz; Walkowiak, Jaroslaw; Plawski, Andrzej
2015-12-01
CHEK2 is a tumor suppressor gene, and the mutations affecting the functionality of the protein product increase cancer risk in various organs. The elevated risk, in a significant percentage of cases, is determined by the occurrence of one of the four most common mutations in the CHEK2 gene, including c.470T>C (p.I157T), c.444+1G>A (IVS2+1G>A), c.1100delC, and c.1037+1538_1224+328del5395 (del5395). We have developed and validated a rapid and effective method for their detection based on high-resolution melting analysis and comparative-high-resolution melting, a novel approach enabling simultaneous detection of copy number variations. The analysis is performed in two polymerase chain reactions followed by melting analysis, without any additional reagents or handling other than that used in standard high-resolution melting. Validation of the method was conducted in a group of 103 patients with diagnosed breast cancer, a group of 240 unrelated patients with familial history of cancer associated with the CHEK2 gene mutations, and a 100-person control group. The results of the analyses for all three groups were fully consistent with the results from other methods. The method we have developed improves the identification of the CHEK2 mutation carriers, reduces the cost of such analyses, as well as facilitates their implementation. Along with the increased efficiency, the method maintains accuracy and reliability comparable to other more labor-consuming techniques.
Thierry, Alain R
2016-01-01
Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex(®) and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex(®) has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex(®) test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex(®) is limited to the mutational status of known hotspot mutation; it is a "targeted approach." However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.
Marquis-Nicholson, Renate; Lai, Daniel; Love, Jennifer M.; Love, Donald R.
2013-01-01
Purpose. The aim of this study was to develop a streamlined mutation screening protocol for the DMD gene in order to confirm a clinical diagnosis of Duchenne or Becker muscular dystrophy in affected males and to clarify the carrier status of female family members. Methods. Sequence analysis and array comparative genomic hybridization (aCGH) were used to identify mutations in the dystrophin DMD gene. We analysed genomic DNA from six individuals with a range of previously characterised mutations and from eight individuals who had not previously undergone any form of molecular analysis. Results. We successfully identified the known mutations in all six patients. A molecular diagnosis was also made in three of the four patients with a clinical diagnosis who had not undergone prior genetic screening, and testing for familial mutations was successfully completed for the remaining four patients. Conclusion. The mutation screening protocol described here meets best practice guidelines for molecular testing of the DMD gene in a diagnostic laboratory. The aCGH method is a superior alternative to more conventional assays such as multiplex ligation-dependent probe amplification (MLPA). The combination of aCGH and sequence analysis will detect mutations in 98% of patients with the Duchenne or Becker muscular dystrophy. PMID:23476807
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
Riahi, Aouatef; Kharrat, Maher; Lariani, Imen; Chaabouni-Bouhamed, Habiba
2014-12-01
Germline deleterious mutations in the BRCA1/BRCA2 genes are associated with an increased risk for the development of breast and ovarian cancer. Given the large size of these genes the detection of such mutations represents a considerable technical challenge. Therefore, the development of cost-effective and rapid methods to identify these mutations became a necessity. High resolution melting analysis (HRM) is a rapid and efficient technique extensively employed as high-throughput mutation scanning method. The purpose of our study was to assess the specificity and sensitivity of HRM for BRCA1 and BRCA2 genes scanning. As a first step we estimate the ability of HRM for detection mutations in a set of 21 heterozygous samples harboring 8 different known BRCA1/BRCA2 variations, all samples had been preliminarily investigated by direct sequencing, and then we performed a blinded analysis by HRM in a set of 68 further sporadic samples of unknown genotype. All tested heterozygous BRCA1/BRCA2 variants were easily identified. However the HRM assay revealed further alteration that we initially had not searched (one unclassified variant). Furthermore, sequencing confirmed all the HRM detected mutations in the set of unknown samples, including homozygous changes, indicating that in this cohort, with the optimized assays, the mutations detections sensitivity and specificity were 100 %. HRM is a simple, rapid and efficient scanning method for known and unknown BRCA1/BRCA2 germline mutations. Consequently the method will allow for the economical screening of recurrent mutations in Tunisian population.
Cytology smears as diagnostic material for EGFR gene testing in non-small cell lung cancer.
Powrózek, Tomasz; Krawczyk, Paweł; Pankowski, Juliusz; Reszka, Katarzyna; Jakubiak, Magdalena; Obrochta, Anna; Wojas-Krawczyk, Kamila; Buczkowski, Jarosław; Milanowski, Janusz
2015-11-14
Cytology smears can be effectively used for EGFR mutation testing in the qualification of NSCLC patients for EGFR tyrosine kinase inhibitor therapy. However, tissue specimens are preferred for EGFR mutation analysis. The aim of this study was to estimate the effectiveness of the real-time PCR method for EGFR testing in histology and cytology materials obtained simultaneously from NSCLC patients. Fourteen adenocarcinoma patients with EGFR-mutation-positive primary tumor tissues were included in the study. Corresponding cytological smears of metastatic lymph nodes obtained by EBUS-TBNA were examined. EGFR Mutation Analysis Kit (EntroGen, USA) and real-time PCR (m2000rt system, Abbott, USA) were used for EGFR mutation analysis in both types of material. In primary tumor tissues, 12 deletions in exon 19 and 2 substitutions in exon 21 (L858R mutation) of the EGFR gene were found. Except for 1 deletion in exon 19, the same EGFR gene mutations were detected in all corresponding cytology samples. The percentage of tumor cells, DNA concentration, percentage of mutated DNA as well as ΔCt values were similar in cytology slides and histology material. In both types of materials, no significant correlations were found between the percentage of tumor cells and the percentage of mutated DNA nor between the DNA concentration and the percentage of mutated DNA. We demonstrated the high effectiveness of a sensitive real-time PCR method in EGFR gene mutation detection in cytology smears.
Hatae, Ryusuke; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O.; Mizoguchi, Masahiro; Iihara, Koji
2016-01-01
High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619
Chang, Ya-Sian; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng Mao; Chang, Jan-Gowth
2016-02-01
There have been many different mutations reported for the large adenomatous polyposis coli (APC) tumor suppressor gene. APC mutations result in inactivation of APC tumor suppressor action, allowing the progression of tumorigenesis. The present study utilized a highly efficient method to identify APC mutations and investigated the association between the APC genetic variants Y486Y, A545A, T1493T, and D1822V and susceptibility to oral squamous cell carcinoma (OSCC). High-resolution melting (HRM) analysis was used to characterize APC mutations. Genomic DNA was extracted from 83 patient specimens of OSCC and 50 blood samples from healthy control subjects. The 14 exons and mutation cluster region of exon 15 were screened by HRM analysis. All mutations were confirmed by direct DNA sequencing. Three mutations and 4 single nucleotide polymorphisms (SNPs) were found in this study. The mutations were c.573T>C (Y191Y) in exon 5, c.1005A>G (L335L) in exon 9, and c.1488A>T (T496T) in exon 11. Two SNPs, c.4479G>A (T1493T) and c.5465A>T (D1822V), were located in exon 15, whereas c.1458T>C (Y486Y) and c.1635G>A (A545A) were located in exon 11 and 13, respectively. There was no observed association between OSCC risk and genotype for any of the 4 APC SNPs. The mutation of APC is rare in Taiwanese patients with OSCC. HRM analysis is a reliable, accurate, and fast screening method for APC mutations.
Molecular methods for the detection of mutations.
Monteiro, C; Marcelino, L A; Conde, A R; Saraiva, C; Giphart-Gassler, M; De Nooij-van Dalen, A G; Van Buuren-van Seggelen, V; Van der Keur, M; May, C A; Cole, J; Lehmann, A R; Steinsgrimsdottir, H; Beare, D; Capulas, E; Armour, J A
2000-01-01
We report the results of a collaborative study aimed at developing reliable, direct assays for mutation in human cells. The project used common lymphoblastoid cell lines, both with and without mutagen treatment, as a shared resource to validate the development of new molecular methods for the detection of low-level mutations in the presence of a large excess of normal alleles. As the "gold standard, " hprt mutation frequencies were also measured on the same samples. The methods under development included i) the restriction site mutation (RSM) assay, in which mutations lead to the destruction of a restriction site; ii) minisatellite length-change mutation, in which mutations lead to alleles containing new numbers of tandem repeat units; iii) loss of heterozygosity for HLA epitopes, in which antibodies can be used to direct selection for mutant cells; iv) multiple fluorescence-based long linker arm nucleotides assay (mf-LLA) technology, for the detection of substitutional mutations; v) detection of alterations in the TP53 locus using a (CA) array as the target for the screening; and vi) PCR analysis of lymphocytes for the presence of the BCL2 t(14:18) translocation. The relative merits of these molecular methods are discussed, and a comparison made with more "traditional" methods.
Tsui, Nancy B Y; Kadir, Rezan A; Chan, K C Allen; Chi, Claudia; Mellars, Gillian; Tuddenham, Edward G; Leung, Tak Y; Lau, Tze K; Chiu, Rossa W K; Lo, Y M Dennis
2011-03-31
Hemophilia is a bleeding disorder with X-linked inheritance. Current prenatal diagnostic methods for hemophilia are invasive and pose a risk to the fetus. Cell-free fetal DNA analysis in maternal plasma provides a noninvasive mean of assessing fetal sex in such pregnancies. However, the disease status of male fetuses remains unknown if mutation-specific confirmatory analysis is not performed. Here we have developed a noninvasive test to diagnose whether the fetus has inherited a causative mutation for hemophilia from its mother. The strategy is based on a relative mutation dosage approach, which we have previously established for determining the mutational status of fetuses for autosomal disease mutations. In this study, the relative mutation dosage method is used to deduce whether a fetus has inherited a hemophilia mutation on chromosome X by detecting whether the concentration of the mutant or wild-type allele is overrepresented in the plasma of heterozygous women carrying male fetuses. We correctly detected fetal genotypes for hemophilia mutations in all of the 12 studied maternal plasma samples obtained from at-risk pregnancies from as early as the 11th week of gestation. This development would make the decision to undertake prenatal testing less traumatic and safer for at-risk families.
Rapid and cost-effective method for the detection of the c.533G>A mutation in the HEXA gene.
Ribeiro, Diogo; Duarte, Ana Joana; Amaral, Olga
2011-03-01
Tay-Sachs disease is a rare autosomal recessive neurodegenerative disorder that results from mutations in the HEXA gene, leading to β-hexosaminidase A (HexA) α subunit deficiency. An unusual variant of Tay-Sachs disease is known as the B1 variant. Previous studies indicated that, in northern Portugal, this is not only the most common variant but also one of the most prevalent lysosomal storage diseases. Additionally, this variant might also show a higher prevalence in populations of Portuguese and Spanish ancestry. A single mutation is invariably present in at least one of the alleles of B1 variant patients, HEXA mutation c.533G >A. To implement a method for c.533G >A testing in individuals and populations, we have optimized two distinct mutation analysis techniques, one based on restriction fragment length polymorphism analysis and the other based on allelic discrimination. We present the comparison of both methods and their advantages. Mutation screening by allelic discrimination proved to be particularly useful for the studying of large samples of individuals. It is time saving and highly reproducible, and under the conditions used, its cost is lower than the cost of polymerase chain reaction-based restriction fragment length polymorphism analysis.
Dias-Santagata, Dora; Wistuba, Ignacio I.; Chen, Heidi; Fujimoto, Junya; Kugler, Kelly; Franklin, Wilbur A.; Iafrate, A. John; Ladanyi, Marc; Kris, Mark G.; Johnson, Bruce E.; Bunn, Paul A.; Minna, John D.; Kwiatkowski, David J.
2015-01-01
Introduction Molecular genetic analyses of lung adenocarcinoma have recently become standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. Technical aspects of testing, and clinicopathologic correlations are presented. Methods Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 14 institutions. Results 1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations were highly associated with female sex, Asian race, and never smoking status; and less strongly associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. ALK rearrangements were strongly associated with never smoking status, and more weakly associated with presence of liver metastases. ERBB2 mutations were strongly associated with Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of which involved one or more of PIK3CA, ALK or MET. Conclusion Multi-institutional molecular analysis across multiple platforms, sample types, and institutions can yield consistent results and novel clinicopathological observations. PMID:25738220
High Resolution Melting Analysis for JAK2 Exon 14 and Exon 12 Mutations
Rapado, Inmaculada; Grande, Silvia; Albizua, Enriqueta; Ayala, Rosa; Hernández, José-Angel; Gallardo, Miguel; Gilsanz, Florinda; Martinez-Lopez, Joaquin
2009-01-01
JAK2 mutations are important criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. We aimed to assess JAK2 exon 14 and exon 12 mutations by high-resolution melting (HRM) analysis, which allows variation screening. The exon 14 analysis included 163 patients with polycythemia vera, secondary erythrocytoses, essential thrombocythemia, or secondary thrombocytoses, and 126 healthy subjects. The study of exon 12 included 40 JAK2 V617F-negative patients (nine of which had polycythemia vera, and 31 with splanchnic vein thrombosis) and 30 healthy subjects. HRM analyses of JAK2 exons 14 and 12 gave analytical sensitivities near 1% and both intra- and interday coefficients of variation of less than 1%. For HRM analysis of JAK2 exon 14 in polycythemia vera and essential thrombocythemia, clinical sensitivities were 93.5% and 67.9%, clinical specificities were 98.8% and 97.0%, positive predictive values were 93.5% and 79.2%, and negative predictive values were 98.8% and 94.6, respectively. Correlations were observed between the results from HRM and three commonly used analytical methods. The JAK2 exon 12 HRM results agreed completely with those from sequencing analysis, and the three mutations in exon 12 were detected by both methods. Hence, HRM analysis of exons 14 and 12 in JAK2 shows better diagnostic values than three other routinely used methods against which it was compared. In addition, HRM analysis has the advantage of detecting unknown mutations. PMID:19225136
[Analysis of gene mutation in a Chinese family with Norrie disease].
Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue
2012-09-01
To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.
KRAS mutation testing in metastatic colorectal cancer
Tan, Cong; Du, Xiang
2012-01-01
The KRAS oncogene is mutated in approximately 35%-45% of colorectal cancers, and KRAS mutational status testing has been highlighted in recent years. The most frequent mutations in this gene, point substitutions in codons 12 and 13, were validated as negative predictors of response to anti-epidermal growth factor receptor antibodies. Therefore, determining the KRAS mutational status of tumor samples has become an essential tool for managing patients with colorectal cancers. Currently, a variety of detection methods have been established to analyze the mutation status in the key regions of the KRAS gene; however, several challenges remain related to standardized and uniform testing, including the selection of tumor samples, tumor sample processing and optimal testing methods. Moreover, new testing strategies, in combination with the mutation analysis of BRAF, PIK3CA and loss of PTEN proposed by many researchers and pathologists, should be promoted. In addition, we recommend that microsatellite instability, a prognostic factor, be added to the abovementioned concomitant analysis. This review provides an overview of KRAS biology and the recent advances in KRAS mutation testing. This review also addresses other aspects of status testing for determining the appropriate treatment and offers insight into the potential drawbacks of mutational testing. PMID:23066310
Zhang, Wanying; Wang, Tao; Huang, Shuaiwu; Zhao, Xiuli
2018-04-10
To detect mutation of HPGD gene among three pedigrees affected with primary hypertrophic osteoarthropathy (PHO) by DNA sequencing and high-resolution melting (HRM) analysis. Genomic DNA was extracted from peripheral blood samples collected from the pedigrees. PCR and direct sequencing were carried out to identify potential mutations of the HPGD gene. Amplicons containing the mutation spot were generated by nested PCR. The products were then subjected to HRM analysis using the HR-1 instrument. Direct sequencing was carried out in family members and healthy individuals to confirm the result of HRM analysis. A homozygous mutation c.310_311delCT was detected in 2 affected probands, while a heterozygous mutation c.310_311delCT was detected in the third proband. HRM analysis of the fragments encompassing HPGD exon 3 showed 3 curve patterns representing three different genotypes, i.e., the wild type, the c.310_311delCT homozygote, and the c.310_311delCT heterozygote. Result of DNA sequencing was consistent with that of the HRM analysis and phenotype of the subjects. The c.310_311delCT mutation may be the most prevalent mutation among Chinese population. HRM analysis has provided an optimized method for genetic testing of HPGD mutation for its simplicity, rapid turnover and high sensitivity.
Okumura, Akiko; Ozaki, Mamoru; Niida, Yo
2015-08-01
Mutation analysis of NF1, the responsible gene for neurofibromatosis type 1 (NF1), is still difficult due to its large size, lack of mutational hotspots, the presence of many pseudogenes, and its wide spectrum of mutations. To develop a simple and inexpensive NF1 genetic testing for clinical use, we analyzed five Japanese families with NF1 as a pilot study. Our original method, CEL endonuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) was optimized for NF1 mutation screening, and reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the effect of transcription. Also, we employed DNA microarray analysis to evaluate the break points of the large deletion. A new nonsense mutation, p.Gln209(∗), was detected in family 1 and the splicing donor site mutation, c.2850+1G>T, was detected in family 2. In family 3, c.4402A>G was detected in exon 34 and the p.Ser1468Gly missense mutation was predicted. However mRNA analysis revealed that this substitution created an aberrant splicing acceptor site, thereby causing the p.Phe1457(∗) nonsense mutation. In the other two families, type-1 and unique NF1 microdeletions were detected by DNA microarray analysis. Our results show that the combination of CHIPS and RT-PCR effectively screen and characterize NF1 point mutations, and both DNA and RNA level analysis are required to understand the nature of the NF1 mutation. Our results also suggest the possibility of a higher incidence and unique profile of NF1 large deletions in the Japanese population as compared to previous studies performed in Europe. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
McInerney-Leo, Aideen M; Marshall, Mhairi S; Gardiner, Brooke; Coucke, Paul J; Van Laer, Lut; Loeys, Bart L; Summers, Kim M; Symoens, Sofie; West, Jennifer A; West, Malcolm J; Paul Wordsworth, B; Zankl, Andreas; Leo, Paul J; Brown, Matthew A; Duncan, Emma L
2013-01-01
Osteogenesis imperfecta (OI) and Marfan syndrome (MFS) are common Mendelian disorders. Both conditions are usually diagnosed clinically, as genetic testing is expensive due to the size and number of potentially causative genes and mutations. However, genetic testing may benefit patients, at-risk family members and individuals with borderline phenotypes, as well as improving genetic counseling and allowing critical differential diagnoses. We assessed whether whole exome sequencing (WES) is a sensitive method for mutation detection in OI and MFS. WES was performed on genomic DNA from 13 participants with OI and 10 participants with MFS who had known mutations, with exome capture followed by massive parallel sequencing of multiplexed samples. Single nucleotide polymorphisms (SNPs) and small indels were called using Genome Analysis Toolkit (GATK) and annotated with ANNOVAR. CREST, exomeCopy and exomeDepth were used for large deletion detection. Results were compared with the previous data. Specificity was calculated by screening WES data from a control population of 487 individuals for mutations in COL1A1, COL1A2 and FBN1. The target capture of five exome capture platforms was compared. All 13 mutations in the OI cohort and 9/10 in the MFS cohort were detected (sensitivity=95.6%) including non-synonymous SNPs, small indels (<10 bp), and a large UTR5/exon 1 deletion. One mutation was not detected by GATK due to strand bias. Specificity was 99.5%. Capture platforms and analysis programs differed considerably in their ability to detect mutations. Consumable costs for WES were low. WES is an efficient, sensitive, specific and cost-effective method for mutation detection in patients with OI and MFS. Careful selection of platform and analysis programs is necessary to maximize success. PMID:24501682
Core Needle Lung Biopsy Specimens: Adequacy for EGFR and KRAS Mutational Analysis
Zakowski, Maureen F.; Pao, William; Thornton, Raymond H.; Ladanyi, Marc; Kris, Mark G.; Rusch, Valerie W.; Rizvi, Naiyer A.
2013-01-01
OBJECTIVE The purpose of this study was to prospectively compare the adequacy of core needle biopsy specimens with the adequacy of specimens from resected tissue, the histologic reference standard, for mutational analysis of malignant tumors of the lung. SUBJECTS AND METHODS The first 18 patients enrolled in a phase 2 study of gefitinib for lung cancer in July 2004 through August 2005 underwent CT- or fluoroscopy-guided lung biopsy before the start of gefitinib therapy. Three weeks after gefitinib therapy, the patients underwent lung tumor resection. The results of EGFR and KRAS mutational analysis of the core needle biopsy specimens were compared with those of EGFR and KRAS mutational analysis of the surgical specimens. RESULTS Two specimens were unsatisfactory for mutational analysis. The results of mutational assay results of the other 16 specimens were the same as those of analysis of the surgical specimens obtained an average of 31 days after biopsy. CONCLUSION Biopsy with small (18- to 20-gauge) core needles can yield sufficient and reliable samples for mutational analysis. This technique is likely to become an important tool with the increasing use of pharmacotherapy based on the genetics of specific tumors in individual patients. PMID:20028932
Kerner, Gerald S. M. A.; Schuuring, Ed; Sietsma, Johanna; Hiltermann, Thijo J. N.; Pieterman, Remge M.; de Leede, Gerard P. J.; van Putten, John W. G.; Liesker, Jeroen; Renkema, Tineke E. J.; van Hengel, Peter; Platteel, Inge; Timens, Wim; Groen, Harry J. M.
2013-01-01
Introduction In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI. Patient and Methods Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis. Results Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively. Conclusion One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival. PMID:23922984
Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)
USDA-ARS?s Scientific Manuscript database
The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...
Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.
Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A
2015-01-01
Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.
A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic
Madsen, Bo Eskerod; Browning, Sharon R.
2009-01-01
Resequencing is an emerging tool for identification of rare disease-associated mutations. Rare mutations are difficult to tag with SNP genotyping, as genotyping studies are designed to detect common variants. However, studies have shown that genetic heterogeneity is a probable scenario for common diseases, in which multiple rare mutations together explain a large proportion of the genetic basis for the disease. Thus, we propose a weighted-sum method to jointly analyse a group of mutations in order to test for groupwise association with disease status. For example, such a group of mutations may result from resequencing a gene. We compare the proposed weighted-sum method to alternative methods and show that it is powerful for identifying disease-associated genes, both on simulated and Encode data. Using the weighted-sum method, a resequencing study can identify a disease-associated gene with an overall population attributable risk (PAR) of 2%, even when each individual mutation has much lower PAR, using 1,000 to 7,000 affected and unaffected individuals, depending on the underlying genetic model. This study thus demonstrates that resequencing studies can identify important genetic associations, provided that specialised analysis methods, such as the weighted-sum method, are used. PMID:19214210
Peterson, Thomas A; Nehrt, Nathan L; Park, DoHwan
2012-01-01
Background and objective With recent breakthroughs in high-throughput sequencing, identifying deleterious mutations is one of the key challenges for personalized medicine. At the gene and protein level, it has proven difficult to determine the impact of previously unknown variants. A statistical method has been developed to assess the significance of disease mutation clusters on protein domains by incorporating domain functional annotations to assist in the functional characterization of novel variants. Methods Disease mutations aggregated from multiple databases were mapped to domains, and were classified as either cancer- or non-cancer-related. The statistical method for identifying significantly disease-associated domain positions was applied to both sets of mutations and to randomly generated mutation sets for comparison. To leverage the known function of protein domain regions, the method optionally distributes significant scores to associated functional feature positions. Results Most disease mutations are localized within protein domains and display a tendency to cluster at individual domain positions. The method identified significant disease mutation hotspots in both the cancer and non-cancer datasets. The domain significance scores (DS-scores) for cancer form a bimodal distribution with hotspots in oncogenes forming a second peak at higher DS-scores than non-cancer, and hotspots in tumor suppressors have scores more similar to non-cancers. In addition, on an independent mutation benchmarking set, the DS-score method identified mutations known to alter protein function with very high precision. Conclusion By aggregating mutations with known disease association at the domain level, the method was able to discover domain positions enriched with multiple occurrences of deleterious mutations while incorporating relevant functional annotations. The method can be incorporated into translational bioinformatics tools to characterize rare and novel variants within large-scale sequencing studies. PMID:22319177
High Resolution Melt analysis for mutation screening in PKD1 and PKD2
2011-01-01
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder. It is characterized by focal development and progressive enlargement of renal cysts leading to end-stage renal disease. PKD1 and PKD2 have been implicated in ADPKD pathogenesis but genetic features and the size of PKD1 make genetic diagnosis tedious. Methods We aim to prove that high resolution melt analysis (HRM), a recent technique in molecular biology, can facilitate molecular diagnosis of ADPKD. We screened for mutations in PKD1 and PKD2 with HRM in 37 unrelated patients with ADPKD. Results We identified 440 sequence variants in the 37 patients. One hundred and thirty eight were different. We found 28 pathogenic mutations (25 in PKD1 and 3 in PKD2 ) within 28 different patients, which is a diagnosis rate of 75% consistent with literature mean direct sequencing diagnosis rate. We describe 52 new sequence variants in PKD1 and two in PKD2. Conclusion HRM analysis is a sensitive and specific method for molecular diagnosis of ADPKD. HRM analysis is also costless and time sparing. Thus, this method is efficient and might be used for mutation pre-screening in ADPKD genes. PMID:22008521
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F
2017-09-26
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
Jeong, Ji Hun; Park, Soon Ho; Park, Mi Jung; Kim, Moon Jin; Kim, Kyung Hee; Park, Pil Whan; Seo, Yiel Hea; Lee, Jae Hoon; Park, Jinny; Hong, Junshik
2013-01-01
Background N-ras mutations are one of the most commonly detected abnormalities of myeloid origin. N-ras mutations result in a constitutively active N-ras protein that induces uncontrolled cell proliferation and inhibits apoptosis. We analyzed N-ras mutations in adult patients with AML at a particular institution and compared pyrosequencing analysis with a direct sequencing method for the detection of N-ras mutations. Methods We analyzed 90 bone marrow samples from 83 AML patients. We detected N-ras mutations in codons 12, 13, and 61 using the pyrosequencing method and subsequently confirmed all data by direct sequencing. Using these methods, we screened the N-ras mutation quantitatively and determined the incidence and characteristic of N-ras mutation. Results The incidence of N-ras mutation was 7.2% in adult AML patients. The patients with N-ras mutations showed significant higher hemoglobin levels (P=0.022) and an increased incidence of FLT3 mutations (P=0.003). We observed 3 cases with N-ras mutations in codon 12 (3.6%), 2 cases in codon 13 (2.4%), and 1 case in codon 61 (1.2%). All the mutations disappeared during chemotherapy. Conclusions There is a low incidence (7.2%) of N-ras mutations in AML patients compared with other populations. Similar data is obtained by both pyrosequencing and direct sequencing. This study showed the correlation between the N-ras mutation and the therapeutic response. However, pyrosequencing provides quantitative data and is useful for monitoring therapeutic responses. PMID:23667841
Oh, Yejin; Song, Ik-Chan; Kim, Jimyung; Kwon, Gye Cheol; Koo, Sun Hoe; Kim, Seon Young
2018-05-01
We developed a pyrosequencing-based method for the quantification of CALR mutations and compared the results using Sanger sequencing, fragment length analysis (FLA), digital-droplet PCR (ddPCR), and next-generation sequencing (NGS). Method validation studies were performed using cloned plasmid controls. Samples from 24 patients with myeloproliferative neoplasms were evaluated. Among the 24 patients, 15 had CALR mutations (7 type 1, 2 type 2, and 6 other mutations). The type 1 or type 2 mutation-positive results from pyrosequencing exhibited 100% concordance with the Sanger sequencing results. One novel CALR mutation was not detected by pyrosequencing. The CALR mutation allele burdens measured by pyrosequencing were slightly lower than those measured by FLA but slightly higher than the results obtained using ddPCR. Pyrosequencing exhibited high correlations with both methods. The mutation allele burdens estimated by NGS were significantly lower than those measured by pyrosequencing. An increased CALR mutation allele burden was associated with overt primary myelofibrosis. Patients with >70% mutation allele burdens in myeloid cells had a significantly longer time from diagnosis (P = 0.007), more bone marrow fibrosis (P = 0.010), and lower hemoglobin (P = 0.007). Pyrosequencing was a useful rapid sequencing method to determine the burden of CALR mutations. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen
2014-02-01
To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost and equipment. (2) The frequency of the KRAS mutation is correlated with gender. BRAF mutation is correlated with primary tumor site, TNM stage, histological types and histological grades.(3) BRAF gene mutation is an independent prognostic marker for colorectal carcinomas.
Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui
2015-07-01
DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.
Kapoor, Ritika R; Flanagan, Sarah E; Fulton, Piers; Chakrapani, Anupam; Chadefaux, Bernadette; Ben-Omran, Tawfeg; Banerjee, Indraneel; Shield, Julian P; Ellard, Sian; Hussain, Khalid
2009-01-01
Background Activating mutations in the GLUD1 gene (which encodes for the intra-mitochondrial enzyme glutamate dehydrogenase, GDH) cause the hyperinsulinism–hyperammonaemia (HI/HA) syndrome. Patients present with HA and leucine-sensitive hypoglycaemia. GDH is regulated by another intra-mitochondrial enzyme sirtuin 4 (SIRT4). Sirt4 knockout mice demonstrate activation of GDH with increased amino acid-stimulated insulin secretion. Objectives To study the genotype–phenotype correlations in patients with GLUD1 mutations. To report the phenotype and functional analysis of a novel mutation (P436L) in the GLUD1 gene associated with the absence of HA. Patients and methods Twenty patients with HI from 16 families had mutational analysis of the GLUD1 gene in view of HA (n=19) or leucine sensitivity (n=1). Patients negative for a GLUD1 mutation had sequence analysis of the SIRT4 gene. Functional analysis of the novel P436L GLUD1 mutation was performed. Results Heterozygous missense mutations were detected in 15 patients with HI/HA, 2 of which are novel (N410D and D451V). In addition, a patient with a normal serum ammonia concentration (21 μmol/l) was heterozygous for a novel missense mutation P436L. Functional analysis of this mutation confirms that it is associated with a loss of GTP inhibition. Seizure disorder was common (43%) in our cohort of patients with a GLUD1 mutation. No mutations in the SIRT4 gene were identified. Conclusion Patients with HI due to mutations in the GLUD1 gene may have normal serum ammonia concentrations. Hence, GLUD1 mutational analysis may be indicated in patients with leucine sensitivity; even in the absence of HA. A high frequency of epilepsy (43%) was observed in our patients with GLUD1 mutations. PMID:19690084
Droplet Digital PCR-Based Chimerism Analysis for Primary Immunodeficiency Diseases.
Okano, Tsubasa; Tsujita, Yuki; Kanegane, Hirokazu; Mitsui-Sekinaka, Kanako; Tanita, Kay; Miyamoto, Satoshi; Yeh, Tzu-Wen; Yamashita, Motoi; Terada, Naomi; Ogura, Yumi; Takagi, Masatoshi; Imai, Kohsuke; Nonoyama, Shigeaki; Morio, Tomohiro
2018-04-01
In the current study, we aimed to accurately evaluate donor/recipient or male/female chimerism in samples from patients who underwent hematopoietic stem cell transplantation (HSCT). We designed the droplet digital polymerase chain reaction (ddPCR) for SRY and RPP30 to detect the male/female chimerism. We also developed mutation-specific ddPCR for four primary immunodeficiency diseases. The accuracy of the male/female chimerism analysis using ddPCR was confirmed by comparing the results with those of conventional methods (fluorescence in situ hybridization and short tandem repeat-PCR) and evaluating dilution assays. In particular, we found that this method was useful for analyzing small samples. Thus, this method could be used with patient samples, especially to sorted leukocyte subpopulations, during the early post-transplant period. Four mutation-specific ddPCR accurately detected post-transplant chimerism. ddPCR-based male/female chimerism analysis and mutation-specific ddPCR were useful for all HSCT, and these simple methods contribute to following the post-transplant chimerism, especially in disease-specific small leukocyte fractions.
Churkin, Alexander; Barash, Danny
2008-01-01
Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289
The clinical phenotype of Lynch syndrome due to germline PMS2 mutations
Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D.; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N.; Lindor, Noralane M.; Young, Joanne; Winship, Ingrid; Dowty, James G.; White, Darren M.; Hopper, John L.; Baglietto, Laura; Jenkins, Mark A.; de la Chapelle, Albert
2009-01-01
Background and Aims Although the clinical phenotype of Lynch syndrome (also known as Hereditary Nonpolyposis Colorectal Cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. Methods We performed PMS2 mutation analysis using long range PCR and MLPA for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Results Germline PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2 fold higher and the incidence of endometrial cancer was 7.5 fold higher. In North America, this translates to a cumulative cancer risk to age 70 of 15–20% for colorectal cancer, 15% for endometrial cancer, and 25–32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. Conclusions PMS2 mutations contribute significantly to Lynch syndrome but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed. PMID:18602922
John, Anulekha Mary; C, George Priya Doss; Ebenazer, Andrew; Seshadri, Mandalam Subramaniam; Nair, Aravindan; Rajaratnam, Simon; Pai, Rekha
2013-01-01
Various missense mutations in the VHL gene have been reported among patients with familial bilateral pheochromocytoma. However, the p.Arg82Leu mutation in the VHL gene described here among patients with familial bilateral pheochromocytoma, has never been reported previously in a germline configuration. Interestingly, long-term follow-up of these patients indicated that the mutation might have had little impact on the normal function of the VHL gene, since all of them have remained asymptomatic. We further attempted to correlate this information with the results obtained by in silico analysis of this mutation using SIFT, PhD-SNP SVM profile, MutPred, PolyPhen2, and SNPs&GO prediction tools. To gain, new mechanistic insight into the structural effect, we mapped the mutation on to 3D structure (PDB ID 1LM8). Further, we analyzed the structural level changes in time scale level with respect to native and mutant protein complexes by using 12 ns molecular dynamics simulation method. Though these methods predict the mutation to have a pathogenic potential, it remains to be seen if these patients will eventually develop symptomatic disease. PMID:23626751
Liu, Hong-Mei; Cheng, Peng; Huang, Xiaodan; Dai, Yu-Hua; Wang, Hai-Fang; Liu, Li-Juan; Zhao, Yu-Qiang; Wang, Huai-Wei; Gong, Mao-Qing
2013-02-01
The present study aimed to investigate deltamethrin resistance in Culex pipiens pallens (C. pipiens pallens) mosquitoes and its correlation with knockdown resistance (kdr) mutations. In addition, mosquito‑resistance testing methods were analyzed. Using specific primers in polymerase chain reaction (PCR) and allele-specific (AS)-PCR, kdr gene sequences isolated from wild C. pipiens pallens mosquitoes were sequenced. Linear regression analysis was used to determine the correlation between the mutations and deltamethrin resistance. A kdr allelic gene was cloned and sequenced. Analysis of the DNA sequences revealed the presence of two point mutations at the L1014 residue in the IIS6 transmembrane segment of the voltage‑gated sodium channel (VGSC): L1014F, TTA→TTT, replacing a leucine (L) with a phenylalanine (F); L1014S, TTA→TCA, replacing leucine (L) with serine (S). Two alternative kdr-like mutations, L1014F and L1014S, were identified to be positively correlated with the deltamethrin-resistant phenotype. In addition a novel mutation, TCT, was identified in the VGSC of C. pipiens pallens. PCR and AS-PCR yielded consistent results with respect to mosquito resistance. However, the detection rate of PCR was higher than that of AS-PCR. Further studies are required to determine the specific resistance mechanism. PCR and AS-PCR demonstrated suitability for mosquito resistance field tests, however, the former method may be superior to the latter.
A novel COLD-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas.
Pang, Brendan; Durso, Mary B; Hamilton, Ronald L; Nikiforova, Marina N
2013-03-01
Point mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in many gliomas. The detection of IDH1 mutations becomes challenging on suboptimal glioma biopsies when a limited number of tumor cells is available for analysis. Coamplification at lower denaturing-polymerase chain reaction (COLD-PCR) is a PCR technique that deliberately lowers the denaturing cycle temperature to selectively favor amplification of mutant alleles, allowing for the sensitive detection of low-abundance mutations. We developed a novel COLD-PCR assay on the LightCycler platform (Roche, Applied Science, Indianapolis, IN), using post-PCR fluorescent melting curve analysis (FMCA) for the detection of mutant IDH1 with a detection limit of 1%. Thirty-five WHO grade I to IV gliomas and 9 non-neoplastic brain and spinal cord biopsies were analyzed with this technique and the results were compared with the conventional real-time PCR and the Sanger sequencing analysis. COLD-PCR/FMCA was able to detect the most common IDH1 R132H mutation and rare mutation types including R132H, R132C, R132L, R132S, and R132G mutations. Twenty-five glioma cases were positive for IDH1 mutations by COLD-PCR/FMCA, and 23 gliomas were positive by the conventional real-time PCR and Sanger sequencing. A pilocytic astrocytoma (PA I) and a glioblastoma multiforme (GBM IV) showed low-abundance IDH1 mutations detected by COLD-PCR/FMCA. The remaining 10 glioma and 9 non-neoplastic samples were negative by all the 3 methods. In summary, we report a novel COLD-PCR/FMCA method that provides rapid and sensitive detection of IDH1 mutations in formalin-fixed paraffin-embedded tissue and can be used in the clinical setting to assess the small brain biopsies.
Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients
PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE
2015-01-01
It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of EGFR mutations. Furthermore, KRAS mutation analysis in patients with a known smoking history revealed no difference in mutation frequency according to smoking status; however, a different mutation spectrum was observed. PMID:26622815
Chen, Hai-Hua; Yang, Ji-Long; Lu, Hui-Fang; Zhou, Wei-Jun; Yao, Fei; Deng, Lan
2014-02-01
This study was purposed to investigate the feasibility of high resolution melting (HRM) in the detection of JAK2V617F mutation in patients with myeloproliferative neoplasm (MPN). The 29 marrow samples randomly selected from patients with clinically diagnosed MPN from January 2008 to January 2011 were detected by HRM method. The results of HRM analysis were compared with that detected by allele specific polymerase chain reaction (AS-PCR) and DNA direct sequencing. The results showed that the JAK2V617F mutations were detected in 11 (37.9%, 11/29) cases by HRM, and its comparability with the direct sequencing result was 100%. While the consistency of AS-PCR with the direct sequencing was moderate (Kappa = 0.179, P = 0.316). It is concluded that the HRM analysis may be an optimal method for clinical screening of JAK2V617F mutation due to its simplicity and promptness with a high specificity.
Li, Wan-Ming; Hu, Ting-Ting; Zhou, Lin-Lin; Feng, Yi-Ming; Wang, Yun-Yi; Fang, Jin
2016-07-12
The PIK3CA (H1047R) mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA (H1047R) mutation in high effectiveness. A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA (H1047R) was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA (H1047R) mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA (H1047R) mutation and the patients' age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA (H1047R) mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy.
Bozdoğan, Sevcan Tuğ; Kuran, Gökhan; Yüregir, Özge Özalp; Aslan, Hüseyin; Haytoğlu, Süheyl; Ayaz, Akif; Arıkan, Osman Kürşat
2015-08-01
To date, studies in all populations showed that mutations in the gene of Gap junction protein beta 2 (GJB2) play an important role in non-syndromic autosomal recessive congenital hearing loss. The aim of this study was to evaluate GJB2 gene of patients with hearing loss in our region using deoxyribonucleic acid (DNA) sequencing method and to demonstrate region-specific mutation and polymorphism distribution. Patients who had bilateral severe sensorineural non-syndromic hearing loss identified by audiologic evaluation were included. Peripheral blood samples were collected and the GJB2 gene exon1 and exon 2 regions were amplified by polymerase chain reaction (PCR). Obtained PCR products were sequenced by the DNA sequence analysis method (SeqFinder Sequencing System; ABI 3130; Foster City, CA, USA) and analyzed using the SeqScape software. Of the 77 patients, 16 had homozygous or heterozygous mutation. The mutation of 35delG, which is known as the most frequent mutation of GJB2 gene, was also the most frequently seen mutation at a ratio of 5.5% in patients with hearing loss in our region; this was followed by the V27I mutation. As this is the first study conducted by sequence analysis in our region, it was worth to be presented in terms of showing the distribution of mutation.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan
2017-01-01
Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727
Multiplex screening for RB1 germline mutations in 106 patients with hereditary retinoblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohmann, D.R.; Brandt, B.; Passarge, E.
1994-09-01
The identification of germline mutations in the retinoblastoma susceptibility gene (RB1) is important for genetic counseling in hereditary retinoblastoma. Due to the complex genomic organization of this gene and the heterogeneity of mutations, efficient screening procedures are important for rapid mutation detection. We have developed methods based on simultaneous analysis of multiple regions of this gene in an ABI automated DNA fragment analyzer to examine 106 patients with hereditary retinoblastoma in which no alteration was identified by Southern blot hybridization. Primers for the amplification of all 27 exons of the RB1 gene as well as the promoter and poly(A) signalmore » sequences were labelled with distinct fluorescent dyes (FAM, HEX, TAMRA) to enable simultaneous electrophoretic analysis of PCR products with similar mobility. PCR fragments distinguishable by size or color were co-amplified by multiplex PCR and analyzed for length by GENESCAN analysis. Using this approach, small deletions ranging from 1 bp to 22 bp were identified in 24 patients (23%). Short sequence repeats or polypyrimidine runs were present in the vicinity of most of these deletions. In 4 patients (4%), insertions from 1 bp to 4 bp were found. The majority of length mutations resulted in a truncated gene product due to frameshift and premature termination. No mutation was identified in exons 25 to 27 possibly indicating that the encoded protein domains have minor functional importance. In order to screen for base substitutions that are not detectable by fragment length analysis, we adapted heteroduplex analysis for the use in the DNA fragment analyzer. During the optimization of this method we detected 10 single base substitutions most of which generated stop codons. Intriguingly, two identical missense mutations were identified in two unrelated families with a low-penetrance phenotype.« less
COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications.
Mauger, Florence; How-Kit, Alexandre; Tost, Jörg
2017-06-01
Somatic mutations bear great promise for use as biomarkers for personalized medicine, but are often present only in low abundance in biological material and are therefore difficult to detect. Many assays for mutation analysis in cancer-related genes (hotspots) have been developed to improve diagnosis, prognosis, prediction of drug resistance, and monitoring of the response to treatment. Two major approaches have been developed: mutation-specific amplification methods and methods that enrich and detect mutations without prior knowledge on the exact location and identity of the mutation. CO-amplification at Lower Denaturation temperature Polymerase Chain Reaction (COLD-PCR) methods such as full-, fast-, ice- (improved and complete enrichment), enhanced-ice, and temperature-tolerant COLD-PCR make use of a critical temperature in the polymerase chain reaction to selectively denature wild-type-mutant heteroduplexes, allowing the enrichment of rare mutations. Mutations can subsequently be identified using a variety of laboratory technologies such as high-resolution melting, digital polymerase chain reaction, pyrosequencing, Sanger sequencing, or next-generation sequencing. COLD-PCR methods are sensitive, specific, and accurate if appropriately optimized and have a short time to results. A large variety of clinical samples (tumor DNA, circulating cell-free DNA, circulating cell-free fetal DNA, and circulating tumor cells) have been studied using COLD-PCR in many different applications including the detection of genetic changes in cancer and infectious diseases, non-invasive prenatal diagnosis, detection of microorganisms, or DNA methylation analysis. In this review, we describe in detail the different COLD-PCR approaches, highlighting their specificities, advantages, and inconveniences and demonstrating their use in different fields of biological and biomedical research.
Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P
1994-03-01
Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)
[Identification of an ideal noninvasive method to detect A3243G gene mutation in MELAS syndrome].
Ma, Yi-nan; Fang, Fang; Yang, Yan-ling; Zhang, Ying; Wang, Song-tao; Xu, Yu-feng; Pei, Pei; Yuan, Yun; Bu, Ding-fang; Qi, Yu
2008-12-16
To identify a better non-invasive method to detect the carrier of mitochondrial A3243G mutation, a cause of mitochondrial encephalopathy-lactic acidosis-stroke like episode (MELAS) syndrome. DNA was extracted from the peripheral blood, urine, hair follicle, and saliva of 25 MELAS syndrome patients carrying A3243G mutation and their mothers and other maternal relatives, 33 persons in number, and the muscle tissues from 5 patients obtained by biopsy. A3243G mutation was detected by PCR-RFLP method, and the A3243G mutation ratio was identified by measuring the density of each band and calculation with the software AlphaEase 5.0. A3243G mutations were detected in all tissues of the 25 MELAS patients. The A3243G mutation ratio in urine was 62% +/- 9%, significantly higher than that in the blood [(36% +/- 10%), t = -11.13, P < 0.01]. A3243G mutations were detected in at least one tissue of the 28 maternal relatives. The A3243G mutation rates in their urine samples was 33.0% (5.0% - 70.4%), significantly higher than that in their blood samples [8.0% (0 - 33.3%), z = -4.197, P < 0.01]. There was no significant difference in A3243G mutation ratio among the samples of hair follicle, saliva, and blood. The A3243G mutation ratio in urine is significantly higher than those in blood samples of the patients and their maternal relatives. A noninvasive method, A3243G mutation ratio analysis of urine is superior to that in blood.
Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.
Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen
2011-01-17
Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.
Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers
Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen
2011-01-01
Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207
Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka
2017-08-08
The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations.
Li, Xuefei; Zhou, Caicun
2017-01-01
Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024
Urzúa, Blanca; Ortega-Pinto, Ana; Farias, Daniela Adorno; Franco, Eugenia; Morales-Bozo, Irene; Moncada, Gustavo; Escobar-Pezoa, Nicolás; Scholz, Ursula; Cifuentes, Victor
2012-01-01
The purpose of this study was to conduct a multidisciplinary analysis of a specific type of tooth enamel disturbance (amelogenesis imperfecta) affecting two Chilean families to obtain a precise diagnosis and to investigate possible underlying mutations. Two non-related families affected with amelogenesis imperfecta were evaluated with clinical, radiographic and histopathological methods. Furthermore, pedigrees of both families were constructed and the presence of eight mutations in the enamelin gene (ENAM) and three mutations in the enamelysin gene (MMP-20) were investigated by PCR and direct sequencing. In the two affected patients, the dental malformation presented as soft and easily disintegrated enamel and exposed dark dentin. Neither of the affected individuals presented with a dental and skeletal open bite. Histologically, a high level of an organic matrix with prismatic organization was found. Genetic analysis indicated that the condition is autosomal recessive in one family and either autosomal recessive or due to a new mutation in the other family. Molecular mutational analysis revealed that none of the eight mutations previously described in the ENAM gene or the three mutations in the MMP-20 gene were present in the probands. A multidisciplinary analysis allowed for a diagnosis of hypocalcified amelogenesis imperfecta, Witkop type III, which was unrelated to previously described mutations in the ENAM or MMP-20 genes.
Liu, W L; Wang, Z Z; Zhao, J Z; Hou, Y Y; Wu, X X; Li, W; Dong, B; Tong, T T; Guo, Y J
2017-01-25
Objective: To investigate the mutations of BRCA genes in sporadic high grade serous ovarian cancer (HGSOC) and study its clinical significance. Methods: Sixty-eight patients between January 2015 and January 2016 from the Affiliated Cancer Hospital of Zhengzhou University were collected who were based on pathological diagnosis of ovarian cancer and had no reported family history, and all patients firstly hospitalized were untreated in other hospitals before. (1) The BRCA genes were detected by next-generation sequencing (NGS) method. (2) The serum tumor markers included carcinoembryonic antigen (CEA), CA(125), CA(199), and human epididymis protein 4 (HE4) were detected by the chemiluminescence methods, and their correlation was analyzed by Pearson linear correlation. Descriptive statistics and comparisons were performed using two-tailed t -tests, Pearson's chi square test, Fisher's exact tests or logistic regression analysis as appropriate to research the clinicopathologic features associated with BRCA mutations, including age, International Federation of Gynecology and Obstetrics (FIGO) stage, platinum-based chemotherapy sensitivity, distant metastases, serum tumor markers (STM) . Results: (1) Fifteen cases (22%, 15/68) BRCA mutations were identified (BRCA1: 11 cases; BRCA2: 4 cases), and four novel mutations were observed. (2) The levels of CEA, CA(199), and HE4 were lower in BRCA mutations compared to that in control group, while no significant differences were found ( P >0.05), but the level of CA(125) was much higher in BRCA mutation group than that in controls ( t =-3.536, P =0.003). Further linear regression analysis found that there was a significant linear correlation between CA(125) and HE4 group ( r =0.494, P <0.01), and the same correlation as CEA and CA(199) group ( r =0.897, P <0.01). (3) Single factor analysis showed that no significant differences were observed in onset age, FIGO stage, distant metastasis, and STM between BRCA(+) and BRCA(-) group ( P >0.05), while significant differences were found in CA(125) and sensitivity to platinum-based chemotherapy between the patients with BRCA mutation and wild type ( P <0.05). The multiple factors analysis showed that the high level of CA(125) was a independent risk factor of BRCA mutations in sporadic HGSOC ( P =0.007). Conclusion: The combination of CA(125) with BRCA have great clinical significance, the mutation of BRCA gene could guild the clinical chemotherapy regiments.
Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B.; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S. Vasantha; Chandak, Giriraj Ratan
2012-01-01
Purpose Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3. PMID:22876130
Biochemical and genetic diagnosis of the primary hyperoxalurias: a review.
Rumsby, G
2000-01-01
The primary hyperoxalurias are a group of inherited disorders of endogenous oxalate overproduction. Diagnosis of the two best-characterized disorders, primary hyperoxaluria (PH) Types 1 and 2, is achieved by sequential measurement of alanine:glyoxylate aminotransferase and glyoxylate reductase enzyme activity in a single needle liver biopsy. While genetic analysis of PH2 is still at a relatively early stage, the AGXT gene defective in the Type 1 disorder is well characterized, and a number of mutations have been identified. To determine whether mutation analysis could replace enzymatic analysis for the diagnosis of PH1, DNA samples from 127 consecutive unrelated patients in whom there was a high clinical suspicion of primary hyperoxaluria were analyzed for the presence of the G630A and T853C mutations, which together account for approximately 34% of the mutant alleles in our patient cohort. The sensitivity of mutation detection was 47% in those patients with enzymologically confirmed Type 1 disease, showing that mutation analysis cannot effectively replace enzymology at the present time. However, there is little doubt of the value of genetic methods (mutation and linkage analysis) for diagnosing PH1 (and eventually PH2) in other family members and for prenatal diagnosis and carrier testing.
Mutation analysis of the MYO7A and CDH23 genes in Japanese patients with Usher syndrome type 1.
Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Takizawa, Yoshinori; Hosono, Katsuhiro; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei
2010-12-01
Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 1 (USH1), the second common type of USH, is frequently caused by MYO7A and CDH23 mutations, accounting for 70-80% of the cases among various ethnicities, including Caucasians, Africans and Asians. However, there have been no reports of mutation analysis for any responsible genes for USH1 in Japanese patients. This study describes the first mutation analysis of MYO7A and CDH23 in Japanese USH1 patients. Five mutations (three in MYO7A and two in CDH23) were identified in four of five unrelated patients. Of these mutations, two were novel. One of them, p.Tyr1942SerfsX23 in CDH23, was a large deletion causing the loss of 3 exons. This is the first large deletion to be found in CDH23. The incidence of the MYO7A and CDH23 mutations in the study population was 80%, which is consistent with previous findings. Therefore, mutation screening for these genes is expected to be a highly sensitive method for diagnosing USH1 among the Japanese.
Matsumoto, Nariyoshi; Mori, Sayaka; Hasegawa, Hiroo; Sasaki, Daisuke; Mori, Hayato; Tsuruda, Kazuto; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Kaku, Norihito; Kosai, Kousuke; Uno, Naoki; Miyazaki, Yasushi; Yanagihara, Katsunori
2016-11-01
Recently, novel calreticulin (CALR) mutations were discovered in Janus kinase 2 (JAK2) non-mutated myelofibrosis (PMF) and essential thrombocythemia (ET) cases, with a frequency of 60-80%. We examined clinical correlations and CALR mutation frequency in our myeloproliferative neoplasms (MPN) cases, and introduce an effective test method for use in clinical practice. We examined 177 samples previously investigated for the JAK2 mutation for differential diagnosis of MPN. JAK2 and CALR mutations were analyzed using melting curve analysis and microchip electrophoresis, respectively. Next, we constructed a test for simultaneous screening of the JAK2 and CALR mutations utilizing high resolution melting (HRM). Among 99 MPN cases, 60 possessed the JAK2 mutation alone. Of the 39 MPN cases without the JAK2 mutation, 14 were positive for the CALR mutation, all of which were ET. Using our novel screening test for the JAK2 and CALR mutations by HRM, the concordance rate of conventional analysis with HRM was 96% for the JAK2 mutation and 95% for the CALR mutation. Our novel simultaneous screening test for the JAK2 and CALR gene mutations with HRM is useful for diagnosis of MPN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
High-resolution melting analysis for detection of MYH9 mutations.
Provaznikova, Dana; Kumstyrova, Tereza; Kotlin, Roman; Salaj, Peter; Matoska, Vaclav; Hrachovinova, Ingrid; Rittich, Simon
2008-09-01
May-Hegglin anomaly (MHA), Sebastian (SBS), Fechtner (FTNS) and Epstein (EPS) syndromes are rare autosomal dominant disorders with giant platelets and thrombocytopenia. Other manifestations of these disorders are combinations of the presence of granulocyte inclusions and deafness, cataracts and renal failure. Currently, MHA, SBS, FTNS and EPS are considered to be distinct clinical manifestation of a single illness caused by mutations of the MYH9 gene encoding the heavy chain of non-muscle myosin IIA (NMMHC-IIA). As the MYH9 gene has a high number of exons, it takes much time and material to use this method for the detection of MYH9 mutations. Recently, a new method has been introduced for scanning DNA mutations without the need for direct sequencing: high-resolution melting analysis (HRMA). Mutation detection with HRMA relies on the intercalation of the specific dye (LC Green plus) in double-strand DNA and fluorescence monitoring of PCR product melting profiles. In our study, we optimized the conditions and used HRMA for rapid screening of mutations in all MYH9 exons in seven affected individuals from four unrelated families with suspected MYH9 disorders. Samples identified by HRMA as positive for the mutation were analysed by direct sequencing. HRMA saved us over 85% of redundant sequencing.
Illuminator, a desktop program for mutation detection using short-read clonal sequencing.
Carr, Ian M; Morgan, Joanne E; Diggle, Christine P; Sheridan, Eamonn; Markham, Alexander F; Logan, Clare V; Inglehearn, Chris F; Taylor, Graham R; Bonthron, David T
2011-10-01
Current methods for sequencing clonal populations of DNA molecules yield several gigabases of data per day, typically comprising reads of < 100 nt. Such datasets permit widespread genome resequencing and transcriptome analysis or other quantitative tasks. However, this huge capacity can also be harnessed for the resequencing of smaller (gene-sized) target regions, through the simultaneous parallel analysis of multiple subjects, using sample "tagging" or "indexing". These methods promise to have a huge impact on diagnostic mutation analysis and candidate gene testing. Here we describe a software package developed for such studies, offering the ability to resolve pooled samples carrying barcode tags and to align reads to a reference sequence using a mutation-tolerant process. The program, Illuminator, can identify rare sequence variants, including insertions and deletions, and permits interactive data analysis on standard desktop computers. It facilitates the effective analysis of targeted clonal sequencer data without dedicated computational infrastructure or specialized training. Copyright © 2011 Elsevier Inc. All rights reserved.
Pirulli, D; Giordano, M; Lessi, M; Spanò, A; Puzzer, D; Zezlina, S; Boniotto, M; Crovella, S; Florian, F; Marangella, M; Momigliano-Richiardi, P; Savoldi, S; Amoroso, A
2001-06-01
Primary hyperoxaluria type 1 is an autosomal recessive disorder of glyoxylate metabolism, caused by a deficiency of alanine:glyoxylate aminotransferase, which is encoded by a single copy gene (AGXT. The aim of this research was to standardize denaturing high-performance liquid chromatography, a new, sensitive, relatively inexpensive, and automated technique, for the detection of AGXT mutation. Denaturing high-performance liquid chromatography was used to analyze in blind the AGXT gene in 20 unrelated Italian patients with primary hyperoxaluria type I previously studied by other standard methods (single-strand conformation polymorphism analysis and direct sequencing) and 50 controls. Denaturing high-performance liquid chromatography allowed us to identify 13 mutations and the polymorphism at position 154 in exon I of the AGXT gene. Hence the method is more sensitive and less time consuming than single-strand conformation polymorphism analysis for the detection of AGXT mutations, thus representing a useful and reliable tool for detecting the mutations responsible for primary hyperoxaluria type 1. The new technology could also be helpful in the search for healthy carriers of AGXT mutations amongst family members and their partners, and for screening of AGXT polymorphisms in patients with nephrolithiasis and healthy populations.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen
2017-11-01
Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia
LI, CHENGLONG; ZHU, BIAO; CHEN, JIAO; HUANG, XIAOBING
2016-01-01
In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. PMID:27177049
Akahori, Masakazu; Itabashi, Takeshi; Nishino, Jo; Yoshitake, Kazutoshi; Ikeo, Kazuho; Tsuneoka, Hiroshi
2014-01-01
Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO) mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP). Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L) and c.1036G>C (p.A346P)), one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L) might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L) may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling. PMID:25485142
Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki
2016-09-01
Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency
Lee, Jaewoong; Choi, Hayoung; Kim, Jiyeon; Kwon, Ahlm; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Lee, Jae Wook; Chung, Nack-Gyun
2017-01-01
Background We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. Methods In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. Results One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. Conclusions The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability. PMID:28028996
van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J
2016-11-01
Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers. © 2016 WILEY PERIODICALS, INC.
Dunn-Walters, Deborah K.; Belelovsky, Alex; Edelman, Hanna; Banerjee, Monica; Mehr, Ramit
2002-01-01
We have developed a rigorous graph-theoretical algorithm for quantifying the shape properties of mutational lineage trees. We show that information about the dynamics of hypermutation and antigen-driven clonal selection during the humoral immune response is contained in the shape of mutational lineage trees deduced from the responding clones. Age and tissue related differences in the selection process can be studied using this method. Thus, tree shape analysis can be used as a means of elucidating humoral immune response dynamics in various situations. PMID:15144020
Di Fiore, F; Blanchard, F; Charbonnier, F; Le Pessot, F; Lamy, A; Galais, M P; Bastit, L; Killian, A; Sesboüé, R; Tuech, J J; Queuniet, A M; Paillot, B; Sabourin, J C; Michot, F; Michel, P; Frebourg, T
2007-01-01
The predictive value of KRAS mutation in metastatic colorectal cancer (MCRC) patients treated with cetuximab plus chemotherapy has recently been suggested. In our study, 59 patients with a chemotherapy-refractory MCRC treated with cetuximab plus chemotherapy were included and clinical response was evaluated according to response evaluation criteria in solid tumours (RECIST). Tumours were screened for KRAS mutations using first direct sequencing, then two sensitive methods based on SNaPshot and PCR-ligase chain reaction (LCR) assays. Clinical response was evaluated according to gene mutations using the Fisher exact test. Times to progression (TTP) were calculated using the Kaplan–Meier method and compared with log-rank test. A KRAS mutation was detected in 22 out of 59 tumours and, in six cases, was missed by sequencing analysis but detected using the SNaPshot and PCR-LCR assays. Remarkably, no KRAS mutation was found in the 12 patients with clinical response. KRAS mutation was associated with disease progression (P=0.0005) and TTP was significantly decreased in mutated KRAS patients (3 vs 5.5 months, P=0.015). Our study confirms that KRAS mutation is highly predictive of a non-response to cetuximab plus chemotherapy in MCRC and highlights the need to use sensitive molecular methods, such as SNaPshot or PCR-LCR assays, to ensure an efficient mutation detection. PMID:17375050
Kim, Suk Kyeong; Kim, Dong-Lim; Han, Hye Seung; Kim, Wan Seop; Kim, Seung Ja; Moon, Won Jin; Oh, Seo Young; Hwang, Tae Sook
2008-06-01
Fine-needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant and of guiding therapeutic intervention in thyroid nodules. However, 10% to 30% of cases with indeterminate cytology in FNAB need other diagnostic tools to refine diagnosis. We compared the pyrosequencing method with the conventional direct DNA sequencing analysis and investigated the usefulness of preoperative BRAF mutation analysis as an adjunct diagnostic tool with routine FNAB. A total of 103 surgically confirmed patients' FNA slides were recruited and DNA was extracted after atypical cells were scraped from the slides. BRAF mutation was analyzed by pyrosequencing and direct DNA sequencing. Sixty-three (77.8%) of 81 histopathologically diagnosed malignant nodules revealed positive BRAF mutation on pyrosequencing analysis. In detail, 63 (84.0%) of 75 papillary thyroid carcinoma (PTC) samples showed positive BRAF mutation, whereas 3 follicular thyroid carcinomas, 1 anaplastic carcinoma, 1 medullary thyroid carcinoma, and 1 metastatic lung carcinoma did not show BRAF mutation. None of 22 benign nodules had BRAF mutation in both pyrosequencing and direct DNA sequencing. Out of 27 thyroid nodules classified as 'indeterminate' on cytologic examination preoperatively, 21 (77.8%) cases turned out to be malignant: 18 PTCs (including 2 follicular variant types) and 3 follicular thyroid carcinomas. Among these, 13 (61.9%) classic PTCs had BRAF mutation. None of 6 benign nodules, including 3 follicular adenomas and 3 nodular hyperplasias, had BRAF mutation. Among 63 PTCs with positive BRAF mutation detected by pyrosequencing analysis, 3 cases did not show BRAF mutation by direct DNA sequencing. Although it was not statistically significant, pyrosequencing was superior to direct DNA sequencing in detecting the BRAF mutation of thyroid nodules (P=0.25). Detecting BRAF mutation by pyrosequencing is more sensitive, faster, and less expensive than direct DNA sequencing and is proposed as an adjunct diagnostic tool in evaluating thyroid nodules of indeterminate cytology.
Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra
Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.
2017-01-01
Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245
Ellrott, Kyle; Bailey, Matthew H; Saksena, Gordon; Covington, Kyle R; Kandoth, Cyriac; Stewart, Chip; Hess, Julian; Ma, Singer; Chiotti, Kami E; McLellan, Michael; Sofia, Heidi J; Hutter, Carolyn; Getz, Gad; Wheeler, David; Ding, Li
2018-03-28
The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over 10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers project, our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and analysis methods over time. We present best practices for applying an ensemble of seven mutation-calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes 3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been made available to the research community along with the methods used to generate them. This project is the result of collaboration from a number of institutes and demonstrates how team science drives extremely large genomics projects. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Chetta, M.; Drmanac, A.; Santacroce, R.; Grandone, E.; Surrey, S.; Fortina, P.; Margaglione, M.
2008-01-01
BACKGROUND: Standard methods of mutation detection are time consuming in Hemophilia A (HA) rendering their application unavailable in some analysis such as prenatal diagnosis. OBJECTIVES: To evaluate the feasibility of combinatorial sequencing-by-hybridization (cSBH) as an alternative and reliable tool for mutation detection in FVIII gene. PATIENTS/METHODS: We have applied a new method of cSBH that uses two different colors for detection of multiple point mutations in the FVIII gene. The 26 exons encompassing the HA gene were analyzed in 7 newly diagnosed Italian patients and in 19 previously characterized individuals with FVIII deficiency. RESULTS: Data show that, when solution-phase TAMRA and QUASAR labeled 5-mer oligonucleotide sets mixed with unlabeled target PCR templates are co-hybridized in the presence of DNA ligase to universal 6-mer oligonucleotide probe-based arrays, a number of mutations can be successfully detected. The technique was reliable also in identifying a mutant FVIII allele in an obligate heterozygote. A novel missense mutation (Leu1843Thr) in exon 16 and three novel neutral polymorphisms are presented with an updated protocol for 2-color cSBH. CONCLUSIONS: cSBH is a reliable tool for mutation detection in FVIII gene and may represent a complementary method for the genetic screening of HA patients. PMID:20300295
Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine.
Antón-Martín, Pilar; Aparicio López, Cristina; Ramiro-León, Soraya; Santillán Garzón, Sonia; Santos-Simarro, Fernando; Gil-Fournier, Belén
2012-01-01
Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. A new mutation determining a nucleotide change c.3614G > T (p.Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.
Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2013-04-08
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Woolthuis, Carolien M; Mulder, André B; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M; Huls, Gerwin
2013-10-01
Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis.
Woolthuis, Carolien M.; Mulder, André B.; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M.; Huls, Gerwin
2013-01-01
Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis. PMID:23716555
Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue.
Wang, Yong; Tian, Kai; Shi, Ruicheng; Gu, Amy; Pennella, Michael; Alberts, Lindsey; Gates, Kent S; Li, Guangfu; Fan, Hongxin; Wang, Michael X; Gu, Li-Qun
2017-07-28
Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.
Detection of Rare Mutations in EGFR-ARMS-PCR-Negative Lung Adenocarcinoma by Sanger Sequencing.
Liang, Chaoyue; Wu, Zhuolin; Gan, Xiaohong; Liu, Yuanbin; You, You; Liu, Chenxian; Zhou, Chengzhi; Liang, Ying; Mo, Haiyun; Chen, Allen M; Zhang, Jiexia
2018-01-01
This study aimed to identify potential epidermal growth factor receptor (EGFR) gene mutations in non-small cell lung cancer that went undetected by amplification refractory mutation system-Scorpion real-time PCR (ARMS-PCR). A total of 200 specimens were obtained from the First Affiliated Hospital of Guangzhou Medical University from August 2014 to August 2015. In total, 100 ARMS-negative and 100 ARMS-positive specimens were evaluated for EGFR gene mutations by Sanger sequencing. The methodology and sensitivity of each method and the outcomes of EGFR-tyrosine kinase inhibitor (TKI) therapy were analyzed. Among the 100 ARMS-PCR-positive samples, 90 were positive by Sanger sequencing, while 10 cases were considered negative, because the mutation abundance was less than 10%. Among the 100 negative cases, three were positive for a rare EGFR mutation by Sanger sequencing. In the curative effect analysis of EGFR-TKIs, the progression-free survival (PFS) analysis based on ARMS and Sanger sequencing results showed no difference. However, the PFS of patients with a high abundance of EGFR mutation was 12.4 months [95% confidence interval (CI), 11.6-12.4 months], which was significantly higher than that of patients with a low abundance of mutations detected by Sanger sequencing (95% CI, 10.7-11.3 months) (p<0.001). The ARMS method demonstrated higher sensitivity than Sanger sequencing, but was prone to missing mutations due to primer design. Sanger sequencing was able to detect rare EGFR mutations and deemed applicable for confirming EGFR status. A clinical trial evaluating the efficacy of EGFR-TKIs in patients with rare EGFR mutations is needed. © Copyright: Yonsei University College of Medicine 2018
Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens.
Sho, Shonan; Court, Colin M; Kim, Stephen; Braxton, David R; Hou, Shuang; Muthusamy, V Raman; Watson, Rabindra R; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S
2017-01-01
Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity.
Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens
Court, Colin M.; Kim, Stephen; Braxton, David R.; Hou, Shuang; Muthusamy, V. Raman; Watson, Rabindra R.; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S.
2017-01-01
Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity. PMID:28125707
Lamy, Pierre-Jean; Castan, Florence; Lozano, Nicolas; Montélion, Cécile; Audran, Patricia; Bibeau, Frédéric; Roques, Sylvie; Montels, Frédéric; Laberenne, Anne-Claire
2015-07-01
The detection of the BRAF V600E mutation in melanoma samples is used to select patients who should respond to BRAF inhibitors. Different techniques are routinely used to determine BRAF status in clinical samples. However, low tumor cellularity and tumor heterogeneity can affect the sensitivity of somatic mutation detection. Digital PCR (dPCR) is a next-generation genotyping method that clonally amplifies nucleic acids and allows the detection and quantification of rare mutations. Our aim was to evaluate the clinical routine performance of a new dPCR-based test to detect and quantify BRAF mutation load in 47 paraffin-embedded cutaneous melanoma biopsies. We compared the results obtained by dPCR with high-resolution melting curve analysis and pyrosequencing or with one of the allele-specific PCR methods available on the market. dPCR showed the lowest limit of detection. dPCR and allele-specific amplification detected the highest number of mutated samples. For the BRAF mutation load quantification both dPCR and pyrosequencing gave similar results with strong disparities in allele frequencies in the 47 tumor samples under study (from 0.7% to 79% of BRAF V600E mutations/sample). In conclusion, the four methods showed a high degree of concordance. dPCR was the more-sensitive method to reliably and easily detect mutations. Both pyrosequencing and dPCR could quantify the mutation load in heterogeneous tumor samples. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Van den Eynden, Jimmy; Fierro, Ana Carolina; Verbeke, Lieven P C; Marchal, Kathleen
2015-04-23
With the advances in high throughput technologies, increasing amounts of cancer somatic mutation data are being generated and made available. Only a small number of (driver) mutations occur in driver genes and are responsible for carcinogenesis, while the majority of (passenger) mutations do not influence tumour biology. In this study, SomInaClust is introduced, a method that accurately identifies driver genes based on their mutation pattern across tumour samples and then classifies them into oncogenes or tumour suppressor genes respectively. SomInaClust starts from the observation that oncogenes mainly contain mutations that, due to positive selection, cluster at similar positions in a gene across patient samples, whereas tumour suppressor genes contain a high number of protein-truncating mutations throughout the entire gene length. The method was shown to prioritize driver genes in 9 different solid cancers. Furthermore it was found to be complementary to existing similar-purpose methods with the additional advantages that it has a higher sensitivity, also for rare mutations (occurring in less than 1% of all samples), and it accurately classifies candidate driver genes in putative oncogenes and tumour suppressor genes. Pathway enrichment analysis showed that the identified genes belong to known cancer signalling pathways, and that the distinction between oncogenes and tumour suppressor genes is biologically relevant. SomInaClust was shown to detect candidate driver genes based on somatic mutation patterns of inactivation and clustering and to distinguish oncogenes from tumour suppressor genes. The method could be used for the identification of new cancer genes or to filter mutation data for further data-integration purposes.
Yao, Qiu-Mei; Zhou, Jiao; Gale, Robert Peter; Li, Jin-Lan; Li, Ling-Di; Li, Ning; Chen, Shan-Shan; Ruan, Guo-Rui
2015-10-01
Calreticulin (CALR) mutations were recently identified in a substantial proportion of persons with essential thrombocythemia (ET) and with primary myelofibrosis (PMF) without JAK2(V617F). Consequently rapid, sensitive, and specific methods to detect and quantify these mutations are needed. We studied samples from 1088 persons with myeloproliferative neoplasms (MPNs) including 421 JAK2(V617F) negative subjects with ET, PMF, polycythemia vera (PV), chronic myeloid leukemia (CML) and hyper-eosinophilic syndrome (HES). Detection of CALR exon 9 mutations was done by PCR amplification followed by fragment length analysis and direct sequencing. Dilution assays were used to determine CALR mutant allele burden. We detected CALR mutations in blood and bone marrow samples from 152 subjects with ET and with PMF but not in samples from normal or persons with PV, CML, or HES. CALR mutant peaks were distinct from wild-type peaks and dilution experiments indicated a sensitivity level of 0.5-5% for a CALR mutant allele in a wild-type background. Diverse types of mutations were detected including deletions, insertions, and complex indels. All mutations were confirmed by direct sequencing. We also used dilution experiments to quantify mutant allele burden. We were able to reproducibly detect mutant allele levels as low 5% (0.5-5%) in a wild-type background. PCR amplification followed by fragment length analysis is a rapid, sensitive, and specific method for screening persons with MPNs for CALR mutations, especially those with ET and PMF and for estimating mutant allele burden.
VaDiR: an integrated approach to Variant Detection in RNA.
Neums, Lisa; Suenaga, Seiji; Beyerlein, Peter; Anders, Sara; Koestler, Devin; Mariani, Andrea; Chien, Jeremy
2018-02-01
Advances in next-generation DNA sequencing technologies are now enabling detailed characterization of sequence variations in cancer genomes. With whole-genome sequencing, variations in coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its general use in research. Whole-exome sequencing is used to characterize sequence variations in coding regions, but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional limitations include uncertainty in assigning the functional significance of the mutations when these mutations are observed in the non-coding region or in genes that are not expressed in cancer tissue. We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing datasets with a method called Variant Detection in RNA(VaDiR) that integrates 3 variant callers, namely: SNPiR, RVBoost, and MuTect2. The combination of all 3 methods, which we called Tier 1 variants, produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA level. We also found that the integration of Tier 1 variants with those called by MuTect2 and SNPiR produced the highest recall with acceptable precision. Finally, we observed a higher rate of mutation discovery in genes that are expressed at higher levels. Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal validation of DNA-based mutation discovery by providing complementary sequence variation analysis from paired RNA/DNA sequencing datasets.
Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique
2005-06-01
Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.
Fu, Liezhen; Wen, Luan; Luu, Nga; Shi, Yun-Bo
2016-01-01
Genome editing with designer nucleases such as TALEN and CRISPR/Cas enzymes has broad applications. Delivery of these designer nucleases into organisms induces various genetic mutations including deletions, insertions and nucleotide substitutions. Characterizing those mutations is critical for evaluating the efficacy and specificity of targeted genome editing. While a number of methods have been developed to identify the mutations, none other than sequencing allows the identification of the most desired mutations, i.e., out-of-frame insertions/deletions that disrupt genes. Here we report a simple and efficient method to visualize and quantify the efficiency of genomic mutations induced by genome-editing. Our approach is based on the expression of a two-color fusion protein in a vector that allows the insertion of the edited region in the genome in between the two color moieties. We show that our approach not only easily identifies developing animals with desired mutations but also efficiently quantifies the mutation rate in vivo. Furthermore, by using LacZα and GFP as the color moieties, our approach can even eliminate the need for a fluorescent microscope, allowing the analysis with simple bright field visualization. Such an approach will greatly simplify the screen for effective genome-editing enzymes and identify the desired mutant cells/animals. PMID:27748423
KRAS Mutation as a Potential Prognostic Biomarker of Biliary Tract Cancers
Yokoyama, Masaaki; Ohnishi, Hiroaki; Ohtsuka, Kouki; Matsushima, Satsuki; Ohkura, Yasuo; Furuse, Junji; Watanabe, Takashi; Mori, Toshiyuki; Sugiyama, Masanori
2016-01-01
BACKGROUND The aim of this study was to identify the unique molecular characteristics of biliary tract cancer (BTC) for the development of novel molecular-targeted therapies. MATERIALS AND METHODS We performed mutational analysis of KRAS, BRAF, PIK3CA, and FBXW7 and immunohistochemical analysis of EGFR and TP53 in 63 Japanese patients with BTC and retrospectively evaluated the association between the molecular characteristics and clinicopathological features of BTC. RESULTS KRAS mutations were identified in 9 (14%) of the 63 BTC patients; no mutations were detected within the analyzed regions of BRAF, PIK3CA, and FBXW7. EGFR overexpression was observed in 5 (8%) of the 63 tumors, while TP53 overexpression was observed in 48% (30/63) of the patients. Overall survival of patients with KRAS mutation was significantly shorter than that of patients with the wild-type KRAS gene (P = 0.005). By multivariate analysis incorporating molecular and clinicopathological features, KRAS mutations and lymph node metastasis were identified to be independently associated with shorter overall survival (KRAS, P = 0.004; lymph node metastasis, P = 0.015). CONCLUSIONS Our data suggest that KRAS mutation is a poor prognosis predictive biomarker for the survival in BTC patients. PMID:28008299
Richter, Anna; Grieu, Fabienne; Carrello, Amerigo; Amanuel, Benhur; Namdarian, Kateh; Rynska, Aleksandra; Lucas, Amanda; Michael, Victoria; Bell, Anthony; Fox, Stephen B.; Hewitt, Chelsee A.; Do, Hongdo; McArthur, Grant A.; Wong, Stephen Q.; Dobrovic, Alexander; Iacopetta, Barry
2013-01-01
Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3–4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics. PMID:23584600
Vassiliki, Kokkinou; George, Koutsodontis; Polixeni, Stamatiou; Christoforos, Giatzakis; Minas, Aslanides Ioannis; Stavrenia, Koukoula; Ioannis, Datseris
2018-01-01
Aim To evaluate the frequency and pattern of disease-associated mutations of ABCA4 gene among Greek patients with presumed Stargardt disease (STGD1). Materials and Methods A total of 59 patients were analyzed for ABCA4 mutations using the ABCR400 microarray and PCR-based sequencing of all coding exons and flanking intronic regions. MLPA analysis as well as sequencing of two regions in introns 30 and 36 reported earlier to harbor deep intronic disease-associated variants was used in 4 selected cases. Results An overall detection rate of at least one mutant allele was achieved in 52 of the 59 patients (88.1%). Direct sequencing improved significantly the complete characterization rate, that is, identification of two mutations compared to the microarray analysis (93.1% versus 50%). In total, 40 distinct potentially disease-causing variants of the ABCA4 gene were detected, including six previously unreported potentially pathogenic variants. Among the disease-causing variants, in this cohort, the most frequent was c.5714+5G>A representing 16.1%, while p.Gly1961Glu and p.Leu541Pro represented 15.2% and 8.5%, respectively. Conclusions By using a combination of methods, we completely molecularly diagnosed 48 of the 59 patients studied. In addition, we identified six previously unreported, potentially pathogenic ABCA4 mutations. PMID:29854428
A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome.
Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A
2008-06-01
When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (<2% of all identified mutations), yet the immunohistochemical analysis of tumour samples indicates that approximately 5% of Lynch syndrome cases are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency <0.05) at a single nucleotide polymorphism (SNP) in exon 11, and have been shown to possess a short common haplotype, allowing us to calculate that the mutation arose around 1625 years ago (65 generations; 95% confidence interval 22 to 120). Ancestral analysis indicates that this mutation is enriched in individuals with British and Swedish ancestry. We estimate that there are >10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands' families, would suggest that this is a prevalent mutation with reduced penetrance.
Xu, Yaomin; Guo, Xingyi; Sun, Jiayang; Zhao, Zhongming
2015-01-01
Motivation: Large-scale cancer genomic studies, such as The Cancer Genome Atlas (TCGA), have profiled multidimensional genomic data, including mutation and expression profiles on a variety of cancer cell types, to uncover the molecular mechanism of cancerogenesis. More than a hundred driver mutations have been characterized that confer the advantage of cell growth. However, how driver mutations regulate the transcriptome to affect cellular functions remains largely unexplored. Differential analysis of gene expression relative to a driver mutation on patient samples could provide us with new insights in understanding driver mutation dysregulation in tumor genome and developing personalized treatment strategies. Results: Here, we introduce the Snowball approach as a highly sensitive statistical analysis method to identify transcriptional signatures that are affected by a recurrent driver mutation. Snowball utilizes a resampling-based approach and combines a distance-based regression framework to assign a robust ranking index of genes based on their aggregated association with the presence of the mutation, and further selects the top significant genes for downstream data analyses or experiments. In our application of the Snowball approach to both synthesized and TCGA data, we demonstrated that it outperforms the standard methods and provides more accurate inferences to the functional effects and transcriptional dysregulation of driver mutations. Availability and implementation: R package and source code are available from CRAN at http://cran.r-project.org/web/packages/DESnowball, and also available at http://bioinfo.mc.vanderbilt.edu/DESnowball/. Contact: zhongming.zhao@vanderbilt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25192743
Pathway and network analysis of cancer genomes.
Creixell, Pau; Reimand, Jüri; Haider, Syed; Wu, Guanming; Shibata, Tatsuhiro; Vazquez, Miguel; Mustonen, Ville; Gonzalez-Perez, Abel; Pearson, John; Sander, Chris; Raphael, Benjamin J; Marks, Debora S; Ouellette, B F Francis; Valencia, Alfonso; Bader, Gary D; Boutros, Paul C; Stuart, Joshua M; Linding, Rune; Lopez-Bigas, Nuria; Stein, Lincoln D
2015-07-01
Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.
McCourt, Clare M; McArt, Darragh G; Mills, Ken; Catherwood, Mark A; Maxwell, Perry; Waugh, David J; Hamilton, Peter; O'Sullivan, Joe M; Salto-Tellez, Manuel
2013-01-01
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1
Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui
2013-01-01
Purpose To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). Methods An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Results Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. Conclusions In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A. PMID:23559863
Alosi, Daniela; Bisgaard, Marie Luise; Hemmingsen, Sophie Nowak; Krogh, Lotte Nylandsted; Mikkelsen, Hanne Birte; Binderup, Marie Louise Mølgaard
2017-02-01
Evaluation of the pathogenicity of a gene variant of unknown significance (VUS) is crucial for molecular diagnosis and genetic counseling, but can be challenging. This is especially so in phenotypically variable diseases, such as von Hippel-Lindau disease (vHL). vHL is caused by germline mutations in the VHL gene, which predispose to the development of multiple tumors such as central nervous system hemangioblastomas and renal cell carcinoma (RCC). We propose a method for the evaluation of VUS pathogenicity through our experience with the VHL missense mutation c.241C>T (p.P81S). 1) Clinical evaluation of known variant carriers: We evaluated a family of five VHL p.P81S carriers, as well as the clinical characteristics of all the p.P81S carriers reported in the literature; 2) Evaluation of tumor tissue via genetic analysis, histology, and immunohistochemistry (IHC); 3) Assessment of the variant's impact on protein structure and function, using multiple databases, in silico algorithms, and reports of functional studies. Only one family member had clinical signs of vHL with early-onset RCC. IHC analysis showed no VHL protein expressed in the tumor, consistent with biallelic VHL inactivation. The majority of in silico algorithms reported p.P81S as possibly pathogenic in relation to vHL or RCC, but there were discrepancies. Functional studies suggest that p.P81S impairs the VHL protein's function. The VHL p.P81S mutation is most likely a low-penetrant pathogenic variant predisposing to RCC development. We suggest the above-mentioned method for VUS evaluation with use of different methods, especially a variety of in silico methods and tumor tissue analysis.
Denaturing high-performance liquid chromatography for mutation detection and genotyping.
Fackenthal, Donna Lee; Chen, Pei Xian; Howe, Ted; Das, Soma
2013-01-01
Denaturing high-performance liquid chromatography (DHPLC) is an accurate and efficient screening technique used for detecting DNA sequence changes by heteroduplex analysis. It can also be used for genotyping of single nucleotide polymorphisms (SNPs). The high sensitivity of DHPLC has made this technique one of the most reliable approaches to mutation analysis and, therefore, used in various areas of genetics, both in the research and clinical arena. This chapter describes the methods used for mutation detection analysis and the genotyping of SNPs by DHPLC on the WAVE™ system from Transgenomic Inc. ("WAVE" and "DNASep" are registered trademarks, and "Navigator" is a trademark, of Transgenomic, used with permission. All other trademarks are property of the respective owners).
Gürtler, Nicolas; Röthlisberger, Benno; Ludin, Katja; Schlegel, Christoph; Lalwani, Anil K
2017-07-01
Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. Two Swiss families with autosomal-dominant hereditary hearing impairment. Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. Mutation detection in hearing-loss-related genes. The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.
Fang, Wenfeng; Yan, Yue; Hu, Zhihuang; Hong, Shaodong; Wu, Xuan; Qin, Tao; Liang, Wenhua; Zhang, Li
2014-01-01
Backgrounds It has been extensively proved that the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is superior to that of cytotoxic chemotherapy in advanced non-small cell lung cancer (NSCLC) patients harboring sensitive EGFR mutations. However, the question of whether the efficacy of EGFR-TKIs differs between exon 19 deletion and exon 21 L858R mutation has not been yet statistically answered. Methods Subgroup data on hazard ratio (HR) for progression-free survival (PFS) of correlative studies were extracted and synthesized based on random-effect model. Comparison of outcomes between specific mutations was estimated through indirect and direct methods, respectively. Results A total of 13 studies of advanced NSCLC patients with either 19 or 21 exon alteration receiving first-line EGFR-TKIs were included. Based on the data from six clinical trials for indirect meta-analysis, the pooled HRTKI/chemotherapy for PFS were 0.28 (95% CI 0.20–0.38, P<0.001) in patients with 19 exon deletion and 0.47 (95% CI 0.35–0.64, P<0.001) in those with exon 21 L858R mutation. Indirect comparison revealed that the patients with exon 19 deletion had longer PFS than those with exon 21 L858R mutation (HR19 exon deletion/exon 21 L858R mutation = 0.59, 95% CI 0.38–0.92; P = 0.019). Additionally, direct meta-analysis showed similar result (HR19 exon deletion/exon 21 L858R mutation = 0.75, 95% CI 0.65 to 0.85; P<0.001) by incorporating another seven studies. Conclusions For advanced NSCLC patients, exon 19 deletion might be associated with longer PFS compared to L858 mutation at exon 21 after first-line EGFR-TKIs. PMID:25222496
Ming, Dengming; Chen, Rui; Huang, He
2018-05-10
Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k -cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.
Szijan, Irene; Rochefort, Daniel; Bruder, Carl; Surace, Ezequiel; Machiavelli, Gloria; Dalamon, Viviana; Cotignola, Javier; Ferreiro, Veronica; Campero, Alvaro; Basso, Armando; Dumanski, Jan P; Rouleau, Guy A
2003-01-01
The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of multiple tumors of the nervous system, either associated with neurofibromatosis 2 or sporadic ones, mainly schwannomas and meningiomas. In order to evaluate the role of the NF2 gene in sporadic central nervous system (CNS) tumors, we analyzed NF2 mutations in 26 specimens: 14 meningiomas, 4 schwannomas, 4 metastases, and 4 other histopathological types of neoplasms. Denaturing high performance liquid chromatography (denaturing HPLC) and comparative genomic hybridization on a DNA microarray (microarray- CGH) were used as scanning methods for small mutations and gross rearrangements respectively. Small mutations were identified in six out of seventeen meningiomas and schwannomas, one mutation was novel. Large deletions were detected in six meningiomas. All mutations were predicted to result in truncated protein or in the absence of a large protein domain. No NF2 mutations were found in other histopathological types of CNS tumors. These results provide additional evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas and schwannomas. Denaturing HPLC analysis of small mutations and microarray-CGH of large deletions are complementary, fast, and efficient methods for the detection of mutations in tumor tissues.
Jia, Peilin; Zhao, Zhongming
2014-01-01
A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data. PMID:24516372
Jia, Peilin; Zhao, Zhongming
2014-02-01
A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.
Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia.
Li, Chenglong; Zhu, Biao; Chen, Jiao; Huang, Xiaobing
2016-07-01
In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation‑positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the microarray data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML.
Vannucchi, A M; Rotunno, G; Bartalucci, N; Raugei, G; Carrai, V; Balliu, M; Mannarelli, C; Pacilli, A; Calabresi, L; Fjerza, R; Pieri, L; Bosi, A; Manfredini, R; Guglielmelli, P
2014-01-01
Mutations in the gene calreticulin (CALR) occur in the majority of JAK2- and MPL-unmutated patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF); identifying CALR mutations contributes to the diagnostic pathway of ET and PMF. CALR mutations are heterogeneous spanning over the exon 9, but all result in a novel common protein C terminus. We developed a polyclonal antibody against a 17-amino-acid peptide derived from mutated calreticulin that was used for immunostaining of bone marrow biopsies. We show that this antibody specifically recognized patients harboring different types of CALR mutation with no staining in healthy controls and JAK2- or MPL-mutated ET and PMF. The labeling was mostly localized in megakaryocytes, whereas myeloid and erythroid cells showed faint staining, suggesting a preferential expression of calreticulin in megakaryocytes. Megakaryocytic-restricted expression of calreticulin was also demonstrated using an antibody against wild-type calreticulin and by measuring the levels of calreticulin RNA by gene expression analysis. Immunostaining using an antibody specific for mutated calreticulin may become a rapid, simple and cost-effective method for identifying CALR-mutated patients complementing molecular analysis; furthermore, the labeling pattern supports the preferential expansion of megakaryocytic cell lineage as a result of CALR mutation in an immature hematopoietic stem cell. PMID:24618731
pmx: Automated protein structure and topology generation for alchemical perturbations
Gapsys, Vytautas; Michielssens, Servaas; Seeliger, Daniel; de Groot, Bert L
2015-01-01
Computational protein design requires methods to accurately estimate free energy changes in protein stability or binding upon an amino acid mutation. From the different approaches available, molecular dynamics-based alchemical free energy calculations are unique in their accuracy and solid theoretical basis. The challenge in using these methods lies in the need to generate hybrid structures and topologies representing two physical states of a system. A custom made hybrid topology may prove useful for a particular mutation of interest, however, a high throughput mutation analysis calls for a more general approach. In this work, we present an automated procedure to generate hybrid structures and topologies for the amino acid mutations in all commonly used force fields. The described software is compatible with the Gromacs simulation package. The mutation libraries are readily supported for five force fields, namely Amber99SB, Amber99SB*-ILDN, OPLS-AA/L, Charmm22*, and Charmm36. PMID:25487359
NASA Astrophysics Data System (ADS)
Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang
2016-10-01
Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.
Dias, Miguel de Sousa; Hernan, Imma; Pascual, Beatriz; Borràs, Emma; Mañé, Begoña; Gamundi, Maria José
2013-01-01
Purpose To devise an effective method for detecting mutations in 12 genes (CA4, CRX, IMPDH1, NR2E3, RP9, PRPF3, PRPF8, PRPF31, PRPH2, RHO, RP1, and TOPORS) commonly associated with autosomal dominant retinitis pigmentosa (adRP) that account for more than 95% of known mutations. Methods We used long-range PCR (LR-PCR) amplification and next-generation sequencing (NGS) performed in a GS Junior 454 benchtop sequencing platform. Twenty LR-PCR fragments, between 3,000 and 10,000 bp, containing all coding exons and flanking regions of the 12 genes, were obtained from DNA samples of patients with adRP. Sequencing libraries were prepared with an enzymatic (Fragmentase technology) method. Results Complete coverage of the coding and flanking sequences of the 12 genes assayed was obtained with NGS, with an average sequence depth of 380× (ranging from 128× to 1,077×). Five previous known mutations in the adRP genes were detected with a sequence variation percentage between 35% and 65%. We also performed a parallel sequence analysis of four samples, three of them new patients with index adRP, in which two novel mutations were detected in RHO (p.Asn73del) and PRPF31 (p.Ile109del). Conclusions The results demonstrate that genomic LR-PCR amplification together with NGS is an effective method for analyzing individual patient samples for mutations in a monogenic heterogeneous disease such as adRP. This approach proved effective for the parallel analysis of adRP and has been introduced as routine. Additionally, this approach could be extended to other heterogeneous genetic diseases. PMID:23559859
Detection of KRAS G12D in colorectal cancer stool by droplet digital PCR
Olmedillas-López, Susana; Lévano-Linares, Dennis César; Alexandre, Carmen Laura Aúz; Vega-Clemente, Luz; Sánchez, Edurne León; Villagrasa, Alejandro; Ruíz-Tovar, Jaime; García-Arranz, Mariano; García-Olmo, Damián
2017-01-01
AIM To assess KRAS G12D mutation detection by droplet digital PCR (ddPCR) in stool-derived DNA from colorectal cancer (CRC) patients. METHODS In this study, tumor tissue and stool samples were collected from 70 patients with stage I-IV CRC diagnosed by preoperative biopsy. KRAS mutational status was determined by pyrosequencing analysis of DNA obtained from formalin-fixed paraffin-embedded (FFPE) tumor tissues. The KRAS G12D mutation was then analyzed by ddPCR in FFPE tumors and stool-derived DNA from patients with this point mutation. Wild-type (WT) tumors, as determined by pyrosequencing, were included as controls; analysis of FFPE tissue and stool-derived DNA by ddPCR was performed for these patients as well. RESULTS Among the total 70 patients included, KRAS mutations were detected by pyrosequencing in 32 (45.71%), whereas 38 (54.29%) had WT tumors. The frequency of KRAS mutations was higher in left-sided tumors (11 located in the right colon, 15 in the left, and 6 in the rectum). The predominant point mutation was KRAS G12D (14.29%, n = 10), which was more frequent in early-stage tumors (I-IIA, n = 7). In agreement with pyrosequencing results, the KRAS G12D mutation was detected by ddPCR in FFPE tumor-derived DNA, and only a residual number of mutated copies was found in WT controls. The KRAS G12D mutation was also detected in stool-derived DNA in 80% of all fecal samples from CRC patients with this point mutation. CONCLUSION ddPCR is a reliable and sensitive method to analyze KRAS G12D mutation in stool-derived DNA from CRC patients, especially at early stages. This non-invasive approach is potentially applicable to other relevant biomarkers for CRC management. PMID:29093617
Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.
Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei
2009-06-26
Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.
Zafari, Mandana; Gill, Pooria; Kowsaryan, Mehrnoush; Alipour, Abbass; Banihashemi, Ali
2016-10-01
The high-resolution melting (HRM) technique is fast, effective and successful method for mutation detection. The aim of this study was to determine the sensitivity and specificity of the HRM method for detection of a paternally inherited mutation in a fetus as a noninvasive prenatal diagnosis of β-thalassemia. Genomic DNAs were prepared from 50 β-thalassemia minor couples whose pregnancy was at risk for homozygous β-thalassemia. Ten milliliters of the maternal blood from each pregnant woman were collected and after separating plasma stored at -80 °C until analysis. The extracted DNAs were analyzed by HRM real-time PCR for detection of IVS-II-I (G-A) as a paternally inherited mutation. The gold standard was the result of a chorionic villus sampling by a standard reverse dot blotting test. The sensitivity and specificity of HRM real-time PCR were 92.6% and 82.6%, respectively. Also, the positive and negative predictive values were 86.2% and 90.47%, respectively. HRM real-time PCR was a sensitive and specific method for determining the paternally inherited mutation in the fetus at risk with thalassemia major.
Giovanella, L; Campenni, A; Treglia, G; Verburg, F A; Trimboli, P; Ceriani, L; Bongiovanni, M
2016-06-01
To compare mutation analysis of cytology specimens and (99m)Tc-MIBI thyroid scintigraphy for differentiating benign from malignant thyroid nodules in patients with a cytological reading of follicular neoplasm. Patients ≥18 years of age with a solitary hypofunctioning thyroid nodule (≥10 mm), normal thyrotropin and calcitonin levels, and a cytological diagnosis of follicular neoplasm were prospectively enrolled. Mutation analysis and (99m)Tc-MIBI scintigraphy were performed and patients were subsequently operated on to confirm or exclude a malignant lesion. Mutations for KRAS, HRAS and NRAS and for BRAF and translocations of PAX8/PPARγ, RET/PTC1 and RET/PTC3 were investigated. Static thyroid scintigraphic images were acquired 10 and 60 min after intravenous injection of 200 MBq of (99m)Tc-MIBI and visually assessed. Additionally, the MIBI washout index was calculated using a semiquantitative method. In our series, 26 % of nodules with a follicular pattern on cytology were malignant with a prevalence of follicular carcinomas. (99m)Tc-MIBI scintigraphy was found to be significantly more accurate (positive likelihood ratio 4.56 for visual assessment and 12.35 for semiquantitative assessment) than mutation analysis (positive likelihood ratio 1.74). A negative (99m)Tc-MIBI scan reliably excluded malignancy. In patients with a thyroid nodule cytologically diagnosed as a follicular proliferation, semiquantitative analysis of (99m)Tc-MIBI scintigraphy should be the preferred method for differentiating benign from malignant nodules. It is superior to molecular testing for the presence of differentiated thyroid cancer-associated mutations in fine-needle aspiration cytology sample material.
Pitfalls in genetic analysis of pheochromocytomas/paragangliomas-case report.
Canu, Letizia; Rapizzi, Elena; Zampetti, Benedetta; Fucci, Rossella; Nesi, Gabriella; Richter, Susan; Qin, Nan; Giachè, Valentino; Bergamini, Carlo; Parenti, Gabriele; Valeri, Andrea; Ercolino, Tonino; Eisenhofer, Graeme; Mannelli, Massimo
2014-07-01
About 35% of patients with pheochromocytoma/paraganglioma carry a germline mutation in one of the 10 main susceptibility genes. The recent introduction of next-generation sequencing will allow the analysis of all these genes in one run. When positive, the analysis is generally unequivocal due to the association between a germline mutation and a concordant clinical presentation or positive family history. When genetic analysis reveals a novel mutation with no clinical correlates, particularly in the presence of a missense variant, the question arises whether the mutation is pathogenic or a rare polymorphism. We report the case of a 35-year-old patient operated for a pheochromocytoma who turned out to be a carrier of a novel SDHD (succinate dehydrogenase subunit D) missense mutation. With no positive family history or clinical correlates, we decided to perform additional analyses to test the clinical significance of the mutation. We performed in silico analysis, tissue loss of heterozygosity analysis, immunohistochemistry, Western blot analysis, SDH enzymatic assay, and measurement of the succinate/fumarate concentration ratio in the tumor tissue by tandem mass spectrometry. Although the in silico analysis gave contradictory results according to the different methods, all the other tests demonstrated that the SDH complex was conserved and normally active. We therefore came to the conclusion that the variant was a nonpathogenic polymorphism. Advancements in technology facilitate genetic analysis of patients with pheochromocytoma but also offer new challenges to the clinician who, in some cases, needs clinical correlates and/or functional tests to give significance to the results of the genetic assay.
Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.
Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L
2010-11-01
Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy. Copyright © 2010 Elsevier Inc. All rights reserved.
[Value of Immunohistochemical Methods in Detecting EML4-ALK Fusion Mutations: A Meta-analysis].
Liu, Chang; Cai, Lu; Zhong, Diansheng; Wang, Jing
2016-01-01
The fusion between echinoderm microtubule-associated protein 4 (EML4) and anaplastic lymphatic tumor kinase (ALK) rearrangement is present in approximately 5% of non-small cell lung cancer (NSCLC) patients. It has been regarded as another new target gene after epidermal growth factor receptor (EGFR) and K-ras. Figures showed that the disease control rate could reach up to 80% in NSCLC patients with EML4-ALK fusion gene after treated with ALK inhibitors. Thus, exploring an accurate and rapid detecting method is the key in screening NSCLC patients with EML4-ALK expressions. The aim of this study is to analyze the specificity and sensitivity of IHC in detecting EML4-ALK fusion mutations. To evaluate the accuracy and clinical value of this method, and then provide basis for individual molecular therapy of NSCLC patients. Using Pubmed database to search all documents required. The deadline of retrieval was February 25, 2015. Then further screening the articles according to the inclusion and exclusion criteria. Using diagnostic test meta-analysis methods to analyze the sensitivity and specificity of the immunohistochemistry (IHC) method compared with fluorescence in situ hybridization (FISH) method. Eleven literatures were added into the meta analysis, there were 3,234 of total cases. The diagnostic odds ratio (DOR) was 1,135.00 (95%CI: 337.10-3,821.46); the area under curve (AUC) of summary receiver operating characteristic curve (SROC) curve was 0.992,3 (SEAUC=0.003,2), the Q* was 0.964,4 (SEQ*=0.008,7). Immunohistochemical detection of EML4-ALK fusion gene mutation with specific antibody is feasible. It has high sensitivity and specificity. IHC can be a simple and rapid way in screening EML4-ALK fusion gene mutation and exhibits important clinical values.
A Simple Model-Based Approach to Inferring and Visualizing Cancer Mutation Signatures
Shiraishi, Yuichi; Tremmel, Georg; Miyano, Satoru; Stephens, Matthew
2015-01-01
Recent advances in sequencing technologies have enabled the production of massive amounts of data on somatic mutations from cancer genomes. These data have led to the detection of characteristic patterns of somatic mutations or “mutation signatures” at an unprecedented resolution, with the potential for new insights into the causes and mechanisms of tumorigenesis. Here we present new methods for modelling, identifying and visualizing such mutation signatures. Our methods greatly simplify mutation signature models compared with existing approaches, reducing the number of parameters by orders of magnitude even while increasing the contextual factors (e.g. the number of flanking bases) that are accounted for. This improves both sensitivity and robustness of inferred signatures. We also provide a new intuitive way to visualize the signatures, analogous to the use of sequence logos to visualize transcription factor binding sites. We illustrate our new method on somatic mutation data from urothelial carcinoma of the upper urinary tract, and a larger dataset from 30 diverse cancer types. The results illustrate several important features of our methods, including the ability of our new visualization tool to clearly highlight the key features of each signature, the improved robustness of signature inferences from small sample sizes, and more detailed inference of signature characteristics such as strand biases and sequence context effects at the base two positions 5′ to the mutated site. The overall framework of our work is based on probabilistic models that are closely connected with “mixed-membership models” which are widely used in population genetic admixture analysis, and in machine learning for document clustering. We argue that recognizing these relationships should help improve understanding of mutation signature extraction problems, and suggests ways to further improve the statistical methods. Our methods are implemented in an R package pmsignature (https://github.com/friend1ws/pmsignature) and a web application available at https://friend1ws.shinyapps.io/pmsignature_shiny/. PMID:26630308
Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola
2015-01-01
BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267
Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S
2016-01-01
Botrytis cinerea , is a high risk pathogen for fungicide resistance development. Pathogen' resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdh B subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant's DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdh B mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA-PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdh B mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides.
Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S.
2016-01-01
Botrytis cinerea, is a high risk pathogen for fungicide resistance development. Pathogen’ resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdhB subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant’s DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdhB mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA–PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdhB mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides. PMID:27895633
Refinetti, Paulo; Morgenthaler, Stephan; Ekstrøm, Per O
2016-07-01
Cycling temperature capillary electrophoresis has been optimised for mutation detection in 76% of the mitochondrial genome. The method was tested on a mixed sample and compared to mutation detection by next generation sequencing. Out of 152 fragments 90 were concordant, 51 discordant and in 11 were semi-concordant. Dilution experiments show that cycling capillary electrophoresis has a detection limit of 1-3%. The detection limit of routine next generation sequencing was in the ranges of 15 to 30%. Cycling temperature capillary electrophoresis detect and accurate quantify mutations at a fraction of the cost and time required to perform a next generation sequencing analysis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Macher, Hada C; Martinez-Broca, Maria A; Rubio-Calvo, Amalia; Leon-Garcia, Cristina; Conde-Sanchez, Manuel; Costa, Alzenira; Navarro, Elena; Guerrero, Juan M
2012-01-01
The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.
Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms
Ernst, Thomas; Chase, Andrew; Zoi, Katerina; Waghorn, Katherine; Hidalgo-Curtis, Claire; Score, Joannah; Jones, Amy; Grand, Francis; Reiter, Andreas; Hochhaus, Andreas; Cross, Nicholas C.P.
2010-01-01
Background Aberrant activation of tyrosine kinases, caused by either mutation or gene fusion, is of major importance for the development of many hematologic malignancies, particularly myeloproliferative neoplasms. We hypothesized that hitherto unrecognized, cytogenetically cryptic tyrosine kinase fusions may be common in non-classical or atypical myeloproliferative neoplasms and related myelodysplastic/myeloproliferative neoplasms. Design and Methods To detect genomic copy number changes associated with such fusions, we performed a systematic search in 68 patients using custom designed, targeted, high-resolution array comparative genomic hybridization. Arrays contained 44,000 oligonucleotide probes that targeted 500 genes including all 90 tyrosine kinases plus downstream tyrosine kinase signaling components, other translocation targets, transcription factors, and other factors known to be important for myelopoiesis. Results No abnormalities involving tyrosine kinases were detected; however, nine cytogenetically cryptic copy number imbalances were detected in seven patients, including hemizygous deletions of RUNX1 or CEBPA in two cases with atypical chronic myeloid leukemia. Mutation analysis of the remaining alleles revealed non-mutated RUNX1 and a frameshift insertion within CEBPA. A further mutation screen of 187 patients with myelodysplastic/myeloproliferative neoplasms identified RUNX1 mutations in 27 (14%) and CEBPA mutations in seven (4%) patients. Analysis of other transcription factors known to be frequently mutated in acute myeloid leukemia revealed NPM1 mutations in six (3%) and WT1 mutations in two (1%) patients with myelodysplastic/myeloproliferative neoplasms. Univariate analysis indicated that patients with mutations had a shorter overall survival (28 versus 44 months, P=0.019) compared with patients without mutations, with the prognosis for cases with CEBPA, NPM1 or WT1 mutations being particularly poor. Conclusions We conclude that mutations of transcription and other nuclear factors are frequent in myelodysplastic/myeloproliferative neoplasms and are generally mutually exclusive. CEBPA, NPM1 or WT1 mutations may be associated with a poor prognosis, an observation that will need to be confirmed by detailed prospective studies. PMID:20421268
Matsudate, Yoshihiro; Naruto, Takuya; Hayashi, Yumiko; Minami, Mitsuyoshi; Tohyama, Mikiko; Yokota, Kenji; Yamada, Daisuke; Imoto, Issei; Kubo, Yoshiaki
2017-06-01
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder mainly caused by heterozygous mutations of PTCH1. In addition to characteristic clinical features, detection of a mutation in causative genes is reliable for the diagnosis of NBCCS; however, no mutations have been identified in some patients using conventional methods. To improve the method for the molecular diagnosis of NBCCS. We performed targeted exome sequencing (TES) analysis using a multi-gene panel, including PTCH1, PTCH2, SUFU, and other sonic hedgehog signaling pathway-related genes, based on next-generation sequencing (NGS) technology in 8 cases in whom possible causative mutations were not detected by previously performed conventional analysis and 2 recent cases of NBCCS. Subsequent analysis of gross deletion within or around PTCH1 detected by TES was performed using chromosomal microarray (CMA). Through TES analysis, specific single nucleotide variants or small indels of PTCH1 causing inferred amino acid changes were identified in 2 novel cases and 2 undiagnosed cases, whereas gross deletions within or around PTCH1, which are validated by CMA, were found in 3 undiagnosed cases. However, no mutations were detected even by TES in 3 cases. Among 3 cases with gross deletions of PTCH1, deletions containing the entire PTCH1 and additional neighboring genes were detected in 2 cases, one of which exhibited atypical clinical features, such as severe mental retardation, likely associated with genes located within the 4.3Mb deleted region, especially. TES-based simultaneous evaluation of sequences and copy number status in all targeted coding exons by NGS is likely to be more useful for the molecular diagnosis of NBCCS than conventional methods. CMA is recommended as a subsequent analysis for validation and detailed mapping of deleted regions, which may explain the atypical clinical features of NBCCS cases. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Tao, T; Yang, J X; Shen, K; Cao, D Y
2017-01-25
Objective: To compare the clinical and histological features and prognosis of patients with ovarian cancer from different genetic background, and to make further understanding of the genetic model of BRCA genes used pedigree analysis. Methods: There were 71 patients from 67 independent families enrolled in our study from Apr. 2000 to Jun. 2009 in Peking Union Medical College Hospital. All exons of BRCA1/2 genes were analyzed using denaturing high-performance liquid chromatography(DHPLC) followed by direct sequencing, and clinical features of patients were compared by statistical analysis. Pedigree analysis of two families with BRCA genes mutation were performed. Results: The mutation rate of BRCA genes was 28% (20/71). The frequency of BRCA1 and BRCA2 gene mutation was 23% (16/71) and 6% (4/71), respectively ( P= 0.004). Histology types of patients with and without BRCA genes mutation were different. The onset age between patients with and without BRCA genes mutation was similar (52.6 versus 54.6 years old, P= 0.393), and tend to be early-onset breast or ovarian cancer in high-risk group. There was no significant difference of platinum-resistant rate, disease free survival and overall survival rate between patients with and without BRCA genes mutation (all P> 0.05). According to the pedigree analysis, up to 100% of female offspring inherited pathogenic mutations, and male offspring could be a mutation carrier. Conclusions: The genetic screening and clinical intervention should be performed as early as possible for the members from families at risk of hereditary ovarian cancer. Genetic consulting is important for patients with high-grade papillary serous adenocarcinoma of ovary. It is still unknown that whether the patients with BRCA gene mutations have better prognosis than sporadic ones, and further perspective, randomized controlled trial is still needed.
Aibaidula, Abudumijiti; Zhao, Wang; Wu, Jin-Song; Chen, Hong; Shi, Zhi-Feng; Zheng, Lu-Lu; Mao, Ying; Zhou, Liang-Fu; Sui, Guo-Dong
2016-06-01
OBJECT Conventional methods for isocitrate dehydrogenase 1 (IDH1) detection, such as DNA sequencing and immunohistochemistry, are time- and labor-consuming and cannot be applied for intraoperative analysis. To develop a new approach for rapid analysis of IDH1 mutation from tiny tumor samples, this study used microfluidics as a method for IDH1 mutation detection. METHODS Forty-seven glioma tumor samples were used; IDH1 mutation status was investigated by immunohistochemistry and DNA sequencing. The microfluidic device was fabricated from polydimethylsiloxane following standard soft lithography. The immunoanalysis was conducted in the microfluidic chip. Fluorescence images of the on-chip microcolumn taken by the charge-coupled device camera were collected as the analytical results readout. Fluorescence signals were analyzed by NIS-Elements software to gather detailed information about the IDH1 concentration in the tissue samples. RESULTS DNA sequencing identified IDH1 R132H mutation in 33 of 47 tumor samples. The fluorescence signal for IDH1-mutant samples was 5.49 ± 1.87 compared with 3.90 ± 1.33 for wild type (p = 0.005). Thus, microfluidics was capable of distinguishing IDH1-mutant tumor samples from wild-type samples. When the cutoff value was 4.11, the sensitivity of microfluidics was 87.9% and the specificity was 64.3%. CONCLUSIONS This new approach was capable of analyzing IDH1 mutation status of tiny tissue samples within 30 minutes using intraoperative microsampling. This approach might also be applied for rapid pathological diagnosis of diffuse gliomas, thus guiding personalized resection.
Cartwright, Reed A; Hussin, Julie; Keebler, Jonathan E M; Stone, Eric A; Awadalla, Philip
2012-01-06
Recent advances in high-throughput DNA sequencing technologies and associated statistical analyses have enabled in-depth analysis of whole-genome sequences. As this technology is applied to a growing number of individual human genomes, entire families are now being sequenced. Information contained within the pedigree of a sequenced family can be leveraged when inferring the donors' genotypes. The presence of a de novo mutation within the pedigree is indicated by a violation of Mendelian inheritance laws. Here, we present a method for probabilistically inferring genotypes across a pedigree using high-throughput sequencing data and producing the posterior probability of de novo mutation at each genomic site examined. This framework can be used to disentangle the effects of germline and somatic mutational processes and to simultaneously estimate the effect of sequencing error and the initial genetic variation in the population from which the founders of the pedigree arise. This approach is examined in detail through simulations and areas for method improvement are noted. By applying this method to data from members of a well-defined nuclear family with accurate pedigree information, the stage is set to make the most direct estimates of the human mutation rate to date.
Molecular and Clinical Characterization of Albinism in a Large Cohort of Italian Patients
Gargiulo, Annagiusi; Testa, Francesco; Rossi, Settimio; Di Iorio, Valentina; Fecarotta, Simona; de Berardinis, Teresa; Iovine, Antonello; Magli, Adriano; Signorini, Sabrina; Fazzi, Elisa; Galantuomo, Maria Silvana; Fossarello, Maurizio; Montefusco, Sandro; Ciccodicola, Alfredo; Neri, Alberto; Macaluso, Claudio; Simonelli, Francesca; Surace, Enrico Maria
2011-01-01
Purpose. The purpose of this study was to identify the molecular basis of albinism in a large cohort of Italian patients showing typical ocular landmarks of the disease and to provide a full characterization of the clinical ophthalmic manifestations. Methods. DNA samples from 45 patients with ocular manifestations of albinism were analyzed by direct sequencing analysis of five genes responsible for albinism: TYR, P, TYRP1, SLC45A2 (MATP), and OA1. All patients studied showed a variable degree of skin and hair hypopigmentation. Eighteen patients with distinct mutations in each gene associated with OCA were evaluated by detailed ophthalmic analysis, optical coherence tomography (OCT), and fundus autofluorescence. Results. Disease-causing mutations were identified in more than 95% of analyzed patients with OCA (28/45 [62.2%] cases with two or more mutations; 15/45 [33.3%] cases with one mutation). Thirty-five different mutant alleles were identified of which 15 were novel. Mutations in TYR were the most frequent (73.3%), whereas mutations in P occurred more rarely (13.3%) than previously reported. Novel mutations were also identified in rare loci such as TYRP1 and MATP. Mutations in the OA1 gene were not detected. Clinical assessment revealed that patients with iris and macular pigmentation had significantly higher visual acuity than did severe hypopigmented phenotypes. Conclusions. TYR gene mutations represent a relevant cause of oculocutaneous albinism in Italy, whereas mutations in P present a lower frequency than that found in other populations. Clinical analysis revealed that the severity of the ocular manifestations depends on the degree of retinal pigmentation. PMID:20861488
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations
Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel
2018-01-01
Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102
Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.
2015-07-14
Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less
Navascués, Miguel; Hardy, Olivier J; Burgarella, Concetta
2009-03-01
This work extends the methods of demographic inference based on the distribution of pairwise genetic differences between individuals (mismatch distribution) to the case of linked microsatellite data. Population genetics theory describes the distribution of mutations among a sample of genes under different demographic scenarios. However, the actual number of mutations can rarely be deduced from DNA polymorphisms. The inclusion of mutation models in theoretical predictions can improve the performance of statistical methods. We have developed a maximum-pseudolikelihood estimator for the parameters that characterize a demographic expansion for a series of linked loci evolving under a stepwise mutation model. Those loci would correspond to DNA polymorphisms of linked microsatellites (such as those found on the Y chromosome or the chloroplast genome). The proposed method was evaluated with simulated data sets and with a data set of chloroplast microsatellites that showed signal for demographic expansion in a previous study. The results show that inclusion of a mutational model in the analysis improves the estimates of the age of expansion in the case of older expansions.
Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima
2014-01-01
Background Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Methods Whole exome sequencing followed by expanded familial validation by Sanger sequencing. Results We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Conclusion Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes. PMID:25211151
Zaneveld, Jacques; Siddiqui, Sorath; Li, Huajin; Wang, Xia; Wang, Hui; Wang, Keqing; Li, Hui; Ren, Huanan; Lopez, Irma; Dorfman, Allison; Khan, Ayesha; Wang, Feng; Salvo, Jason; Gelowani, Violet; Li, Yumei; Sui, Ruifang; Koenekoop, Robert; Chen, Rui
2014-01-01
Purpose Stargardt macular dystrophy (STGD) results in early central vision loss. We sought to explain the genetic cause of STGD in a cohort of 88 patients from three different cultural backgrounds. Methods Next Generation Sequencing using a novel capture panel was used to search for disease causing mutations. Unsolved patients were clinically re-examined and tested for copy number variations (CNVs) as well as intronic mutations. Results We determined the cause of disease in 67% of our patients. Our analysis identified 35 novel ABCA4 alleles. Eleven patients had mutations in genes not previously reported to cause STGD. Finally, 45% of our unsolved patients had single deleterious mutations in ABCA4, a recessive disease gene. No likely pathogenic CNVs were identified. Conclusions This study expands our knowledge of STGD by identifying dozens of novel STGD causing alleles. The frequency of patients with single mutations in ABCA4 is higher than controls, indicating these mutations contribute to disease. Eleven patients were explained by mutations outside ABCA4 underlining the need to genotype all retinal disease genes to maximize genetic diagnostic rates. Few ABCA4 mutations were observed in our French Canadian patients. This population may contain an unidentified founder mutation. Our results indicate that CNVs are unlikely to be a major cause of STGD. PMID:25474345
Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ
Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats
2015-01-01
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ. PMID:26240388
Baker, Mei W; Atkins, Anne E; Cordovado, Suzanne K; Hendrix, Miyono; Earley, Marie C; Farrell, Philip M
2016-03-01
Many regions have implemented newborn screening (NBS) for cystic fibrosis (CF) using a limited panel of cystic fibrosis transmembrane regulator (CFTR) mutations after immunoreactive trypsinogen (IRT) analysis. We sought to assess the feasibility of further improving the screening using next-generation sequencing (NGS) technology. An NGS assay was used to detect 162 CFTR mutations/variants characterized by the CFTR2 project. We used 67 dried blood spots (DBSs) containing 48 distinct CFTR mutations to validate the assay. NGS assay was retrospectively performed on 165 CF screen-positive samples with one CFTR mutation. The NGS assay was successfully performed using DNA isolated from DBSs, and it correctly detected all CFTR mutations in the validation. Among 165 screen-positive infants with one CFTR mutation, no additional disease-causing mutation was identified in 151 samples consistent with normal sweat tests. Five infants had a CF-causing mutation that was not included in this panel, and nine with two CF-causing mutations were identified. The NGS assay was 100% concordant with traditional methods. Retrospective analysis results indicate an IRT/NGS screening algorithm would enable high sensitivity, better specificity and positive predictive value (PPV). This study lays the foundation for prospective studies and for introducing NGS in NBS laboratories.
New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy
Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M
2007-01-01
Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362
Goodfellow, Paul J.; Billingsley, Caroline C.; Lankes, Heather A.; Ali, Shamshad; Cohn, David E.; Broaddus, Russell J.; Ramirez, Nilsa; Pritchard, Colin C.; Hampel, Heather; Chassen, Alexis S.; Simmons, Luke V.; Schmidt, Amy P.; Gao, Feng; Brinton, Louise A.; Backes, Floor; Landrum, Lisa M.; Geller, Melissa A.; DiSilvestro, Paul A.; Pearl, Michael L.; Lele, Shashikant B.; Powell, Matthew A.; Zaino, Richard J.; Mutch, David
2015-01-01
Purpose The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. Patients and Methods ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Results Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Conclusion Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease. PMID:26552419
Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C
2010-05-01
To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.
Vuong, Huy Gia; Altibi, Ahmed M A; Duong, Uyen N P; Ngo, Hanh T T; Pham, Thong Quang; Chan, Aden Ka-Yin; Park, Chul-Kee; Fung, Kar-Ming; Hassell, Lewis
2017-12-01
The clinical significance of telomerase reverse transcriptase (TERT) promoter mutation in glioma remains unclear. The aim of our meta-analysis is to investigate the prognostic impact TERT promoter mutation in glioma patients and its interaction with other molecular markers, particularly Isocitrate Dehydrogenase (IDH) mutation from aggregate level data. Relevant articles were searched in four electronic databases including PubMed, Scopus, Web of Science and Virtual Health Library. Pooled HRs were calculated using random effect model weighted by inverse variance method. From 1010 studies, we finally included 28 studies with 11519 patients for meta-analyses. TERT mutation is significantly associated with compromised overall survival (OS) (HR=1.38; 95% CI=1.15-1.67) and progression-free survival (PFS) (HR=1.31; 95% CI=1.06-1.63) in glioma patients. In studying its reaction with IDH, TERT promoter mutation was associated with reduced OS in both IDH-mutant (IDH-mut) and IDH-wild type (IDH-wt) glioblastomas but shown to have inverse effects on IDH-mut and IDH-wt grade II/III tumors. Our analysis categorized WHO grade II/III glioma patients into four distinct survival subgroups with descending survival as follow: TERT-mut/IDH-mut≫TERT-wt/IDH-mut≫TERT-wt/IDH-wt≫TERT-mut/IDH-wt. Prognostic value of TERT promoter mutations in gliomas is dependent on tumor grade and the IDH mutational status. With the same tumor grade in WHO grade II and III tumors and the same IDH mutation status, TERT-mut is a prognostic factor. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Complementing quantitative methods with sequence data analysis is a major goal of the post-genome era of biology. In this study, we analyzed Illumina HiSeq sequence data derived from 11 US Holstein bulls in order to identify putative causal mutations associated with calving and conformation traits. ...
How mutation affects evolutionary games on graphs
Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.
2011-01-01
Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871
DNA Clutch Probes for Circulating Tumor DNA Analysis.
Das, Jagotamoy; Ivanov, Ivaylo; Sargent, Edward H; Kelley, Shana O
2016-08-31
Progress toward the development of minimally invasive liquid biopsies of disease is being bolstered by breakthroughs in the analysis of circulating tumor DNA (ctDNA): DNA released from cancer cells into the bloodstream. However, robust, sensitive, and specific methods of detecting this emerging analyte are lacking. ctDNA analysis has unique challenges, since it is imperative to distinguish circulating DNA from normal cells vs mutation-bearing sequences originating from tumors. Here we report the electrochemical detection of mutated ctDNA in samples collected from cancer patients. By developing a strategy relying on the use of DNA clutch probes (DCPs) that render specific sequences of ctDNA accessible, we were able to readout the presence of mutated ctDNA. DCPs prevent reassociation of denatured DNA strands: they make one of the two strands of a dsDNA accessible for hybridization to a probe, and they also deactivate other closely related sequences in solution. DCPs ensure thereby that only mutated sequences associate with chip-based sensors detecting hybridization events. The assay exhibits excellent sensitivity and specificity in the detection of mutated ctDNA: it detects 1 fg/μL of a target mutation in the presence of 100 pg/μL of wild-type DNA, corresponding to detecting mutations at a level of 0.01% relative to wild type. This approach allows accurate analysis of samples collected from lung cancer and melanoma patients. This work represents the first detection of ctDNA without enzymatic amplification.
Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao
2011-01-01
Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806
Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry
2013-01-01
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Xiaozhou; Yang, Tianyue; Li, Caesar Siqi; Song, Youtao; Lou, Hong; Guan, Dagang; Jin, Lili
2018-01-01
In this paper, we discuss the use of a procedure based on polymerase chain reaction (PCR) and surface enhanced Raman spectroscopy (SERS) (PCR-SERS) to detect DNA mutations. Methods: This method was implemented by first amplifying DNA-containing target mutations, then by annealing probes, and finally by applying SERS detection. The obtained SERS spectra were from a mixture of fluorescence tags labeled to complementary sequences on the mutant DNA. Then, the SERS spectra of multiple tags were decomposed to component tag spectra by multiple linear regression (MLR). Results: The detection limit was 10-11 M with a coefficient of determination (R2) of 0.88. To demonstrate the applicability of this process on real samples, the PCR-SERS method was applied on blood plasma taken from 49 colorectal cancer patients to detect six mutations located at the BRAF, KRAS, and PIK3CA genes. The mutation rates obtained by the PCR-SERS method were in concordance with previous research. Fisher's exact test showed that only two detected mutations at BRAF (V600E) and PIK3CA (E542K) were significantly positively correlated with right-sided colon cancer. No other clinical feature such as gender, age, cancer stage, or differentiation was correlated with mutation (V600E at BRAF, G12C, G12D, G12V, G13D at KRAS, and E542K at PIK3CA). Visually, a dendrogram drawn through hierarchical clustering analysis (HCA) supported the results of Fisher's exact test. The clusters drawn by all six mutations did not conform to the distributions of cancer stages, differentiation or cancer positions. However, the cluster drawn by the two mutations of V600E and E542K showed that all samples with those mutations belonged to the right-sided colon cancer group. Conclusion: The suggested PCR-SERS method is multiplexed, flexible in probe design, easy to incorporate into existing PCR conditions, and was sensitive enough to detect mutations in blood plasma. PMID:29556349
Oncodomains: A protein domain-centric framework for analyzing rare variants in tumor samples
Peterson, Thomas A.; Park, Junyong
2017-01-01
The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide sequencing studies have shown that individual malignancies contain many mutations that range from those commonly found in tumor genomes to rare somatic variants present only in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic mutations in cancer, yet efforts to correlate somatic mutations found in one or few individuals with functional roles have been largely unsuccessful. Traditional methods for identifying somatic variants that drive cancer are ‘gene-centric’ in that they consider only somatic variants within a particular gene and make no comparison to other similar genes in the same family that may play a similar role in cancer. In this work, we present oncodomain hotspots, a new ‘domain-centric’ method for identifying clusters of somatic mutations across entire gene families using protein domain models. Our analysis confirms that our approach creates a framework for leveraging structural and functional information encapsulated by protein domains into the analysis of somatic variants in cancer, enabling the assessment of even rare somatic variants by comparison to similar genes. Our results reveal a vast landscape of somatic variants that act at the level of domain families altering pathways known to be involved with cancer such as protein phosphorylation, signaling, gene regulation, and cell metabolism. Due to oncodomain hotspots’ unique ability to assess rare variants, we expect our method to become an important tool for the analysis of sequenced tumor genomes, complementing existing methods. PMID:28426665
Johnson, Lucas B; Gintner, Lucas P; Park, Sehoo; Snow, Christopher D
2015-08-01
Accuracy of current computational protein design (CPD) methods is limited by inherent approximations in energy potentials and sampling. These limitations are often used to qualitatively explain design failures; however, relatively few studies provide specific examples or quantitative details that can be used to improve future CPD methods. Expanding the design method to include a library of sequences provides data that is well suited for discriminating between stabilizing and destabilizing design elements. Using thermophilic endoglucanase E1 from Acidothermus cellulolyticus as a model enzyme, we computationally designed a sequence with 60 mutations. The design sequence was rationally divided into structural blocks and recombined with the wild-type sequence. Resulting chimeras were assessed for activity and thermostability. Surprisingly, unlike previous chimera libraries, regression analysis based on one- and two-body effects was not sufficient for predicting chimera stability. Analysis of molecular dynamics simulations proved helpful in distinguishing stabilizing and destabilizing mutations. Reverting to the wild-type amino acid at destabilized sites partially regained design stability, and introducing predicted stabilizing mutations in wild-type E1 significantly enhanced thermostability. The ability to isolate stabilizing and destabilizing elements in computational design offers an opportunity to interpret previous design failures and improve future CPD methods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mutation analysis of GM1 gangliosidosis in a Siamese cat from Japan in the 1960s.
Uddin, Mohammad M; Tanimoto, Takeshi; Yabuki, Akira; Kotani, Takao; Kuwamura, Mitsuru; Chang, Hye-Sook; Yamato, Osamu
2012-12-01
GM1 gangliosidosis is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations of the β-galactosidase (GLB1) gene. In feline GM1 gangliosidosis, a pathogenic mutation (c.1448G>C) of the feline GLB1 gene was identified in Siamese and Korat cats previously diagnosed with the disease in the USA and Italy, respectively. The present study demonstrated the same mutation in a Siamese cat that had been diagnosed with GM1 gangliosidosis in Japan in the 1960s. The mutation was confirmed using DNA extracted from stored paraffin-embedded brain tissue by a direct sequencing method and a polymerase chain reaction-restriction fragment length polymorphism assay. This pathogenic mutation seems to have been distributed around the world.
Oh, Seo Young; Kim, Wook Youn; Hwang, Tae Sook; Han, Hye Seung; Lim, So Dug; Kim, Wan Seop
2013-01-01
DNA extraction from microdissected cells has become essential for handling clinical specimens with advances in molecular pathology. Conventional methods have limitations for extracting amplifiable DNA from specimens containing a small number of cells. We developed an ammonium sulfate DNA extraction method (A) and compared it with two other methods (B and C). DNA quality and quantity, β-globin amplification, and detectability of two cancer associated gene mutations were evaluated. Method A showed the best DNA yield, particularly when the cell number was very low. Amplification of the β-globin gene using DNA from the SNU 790 cell line and papillary thyroid carcinoma (PTC) cells extracted with Method A demonstrated the strongest band. BRAF V600E mutation analysis using ethanol-fixed PTC cells from a patient demonstrated both a “T” peak increase and an adjacent “A” peak decrease when 25 and 50 cells were extracted, whereas mutant peaks were too low to be analyzed using the other two methods. EGFR mutation analysis using formalin-fixed paraffin-embedded lung cancer tissues demonstrated a mutant peak with Method A, whereas the mutant peak was undetectable with Methods B or C. Method A yielded the best DNA quantity and quality with outstanding efficiency, particularly when paucicellular specimens were used. PMID:23691506
Moorchung, Nikhil; Phillip, Joseph; Sarkar, Ravi Shankar; Prasad, Rupesh; Dutta, Vibha
2013-01-01
Hemoglobinopathies constitute entities that are generated by either abnormal hemoglobin or thalassemias. high pressure liquid chromatography (HPLC) is one of the best methods for screening and detection of various hemoglobinopathies but it has intrinsic interpretive problems. The study was designed to evaluate the different mutations seen in cases of hemoglobinopathies and compare the same with screening tests. 68 patients of hemoglobinopathies were screened by HPLC. Mutation studies in the beta globin gene was performed using the polymerase chain reaction (PCR)-based allele-specific Amplification Refractory Mutation System (ARMS). Molecular analysis for the sickle cell mutation was done by standard methods. The IVS 1/5 mutation was the commonest mutation seen and it was seen in 26 (38.23%) of the cases. This was followed by the IVS 1/1, codon 41/42, codon 8/9, del 22 mutation, codon 15 mutation and the -619 bp deletion. No mutation was seen in eight cases. There was a 100% concordance between the sickle cell trait as diagnosed by HPLC and genetic testing. Our study underlies the importance of molecular testing in all cases of hemoglobinopathies. Although HPLC is a useful screening tool, molecular testing is very useful in accurately diagnosing the mutations. Molecular testing is especially applicable in cases with an abnormal hemoglobin (HbD, HbE and HbS) because there may be a concomitant inheritance of a beta thalassemia mutation. Molecular testing is the gold standard when it comes to the diagnosis of hemoglobinopathies.
Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations
Weinkam, Patrick; Sali, Andrej
2014-01-01
Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820
Ho Duy, Binh; Zhytnik, Lidiia; Maasalu, Katre; Kändla, Ivo; Prans, Ele; Reimann, Ene; Märtson, Aare; Kõks, Sulev
2016-08-12
The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI. Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish's osteogenesis imperfecta mutation database. The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G > A (p.Gly821Ser) in four unrelated patients and one, c.2005G > A (p.Ala669Thr), in two unrelated patients. Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.
Manshadi, Masoumeh Dehghan; Kamalidehghan, Behnam; Keshavarzi, Fatemeh; Aryani, Omid; Dadgar, Sepideh; Arastehkani, Ahoora; Tondar, Mahdi; Ahmadipour, Fatemeh; Meng, Goh Yong; Houshmand, Massoud
2015-01-01
Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations. PMID:25811928
The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations.
Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N; Lindor, Noralane M; Young, Joanne; Winship, Ingrid; Dowty, James G; White, Darren M; Hopper, John L; Baglietto, Laura; Jenkins, Mark A; de la Chapelle, Albert
2008-08-01
Although the clinical phenotype of Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. We performed PMS2 mutation analysis using long-range polymerase chain reaction and multiplex ligation-dependent probe amplification for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Germ-line PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2-fold higher, and the incidence of endometrial cancer was 7.5-fold higher. In North America, this translates to a cumulative cancer risk to age 70 years of 15%-20% for colorectal cancer, 15% for endometrial cancer, and 25%-32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. PMS2 mutations contribute significantly to Lynch syndrome, but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed.
Kim, Soo-Yeon; Kim, Eun-Kyung; Kwak, Jin Young; Moon, Hee Jung; Yoon, Jung Hyun
2015-02-01
BRAF(V600E) mutation analysis has been used as a complementary diagnostic tool to ultrasonography-guided, fine-needle aspiration (US-FNA) in the diagnosis of thyroid nodule with high specificity reported up to 100%. When highly sensitive analytic methods are used, however, false-positive results of BRAF(V600E) mutation analysis have been reported. In this study, we investigated the clinical, US features, and outcome of patients with thyroid nodules with benign cytology but positive BRAF(V600E) mutation using highly sensitive analytic methods from US-FNA. This study included 22 nodules in 22 patients (3 men, 19 women; mean age, 53 years) with benign cytology but positive BRAF(V600E) mutation from US-FNA. US features were categorized according to the internal components, echogenicity, margin, calcifications, and shape. Suspicious US features included markedly hypoechogenicity, noncircumscribed margins, micro or mixed calcifications, and nonparallel shape. Nodules were considered to have either concordant or discordant US features to benign cytology. Medical records and imaging studies were reviewed for final cytopathology results and outcomes during follow-up. Among the 22 nodules, 17 nodules were reviewed. Fifteen of 17 nodules were malignant, and 2 were benign. The benign nodules were confirmed as adenomatous hyperplasia with underlying lymphocytic thyroiditis and a fibrotic nodule with dense calcification. Thirteen of the 15 malignant nodules had 2 or more suspicious US features, and all 15 nodules were considered to have discordant cytology considering suspicious US features. Five nodules had been followed with US or US-FNA without resection, and did not show change in size or US features on follow-up US examinations. BRAF(V600E) mutation analysis is a highly sensitive diagnostic tool in the diagnosis of papillary thyroid carcinomas. In the management of thyroid nodules with benign cytology but positive BRAF(V600E) mutation, thyroidectomy should be considered in nodules which have 2 or more suspicious US features and are considered discordant on image-cytology correlation. Copyright © 2015 Elsevier Inc. All rights reserved.
Laleh, Masoud Akbarzadeh; Naseri, Marzieh; Zonouzi, Ali Akbar Poursadegh; Zonouzi, Ahmad Poursadegh; Masoudi, Marjan; Ahangari, Najmeh; Shams, Leila; Nejatizadeh, Azim
2017-01-01
We aimed to determine the contribution of four DFNB loci and mutation analysis of gap junction beta-2 ( GJB2 ) and GJB4 genes in autosomal recessive nonsyndromic hearing loss (ARNSHL) in South of Iran. A total of 36 large ARNSHL pedigrees with at least two affected subjects were enrolled in the current study. The GJB2 and GJB4 genes mutations were screened using direct sequencing method. The GJB2 and GJB4 negative families were analyzed for the linkage to DFNB21, DFNB24, DFNB29, and DFNB42 loci by genotyping the corresponding STR markers using polymerase chain reaction-PAGE method. We found a homozygous nonsense mutation W77X and a homozygous missense mutation C169W in 5.55% of studied families in GJB2 and GJB4 genes, respectively. Five heterozygous mutations including V63G, A78T, and R127H in GJB2 gene, and R103C and R227W in GJB4 gene were detected. We identified two novel variations V63G in GJB2 and R227W in GJB4 . In silico analysis predicted that both novel variations are deleterious mutations. We did not unveil any linkage between DFNB21, DFNB24, DFNB29, and DFNB42 loci and ARNSHL among studied families. This is the first report of GJB2 and GJB4 mutations from Hormozgan population. According to the previous publications regarding GJB2 and GJB4 mutations, the distribution of the mutations is different from other parts of Iran that should be considered in primary health-care programs. Further investigations are needed to evaluate the contribution of other loci in ARNSHL subjects in South of Iran.
Two novel mutations in the BCKDHB gene that cause maple syrup urine disease.
Han, Bingjuan; Han, Bingchao; Guo, Bin; Liu, Yingxia; Cao, Zhiyang
2018-01-06
Maple syrup urine disease (MSUD) is a rare metabolic disorder of autosomal recessive inheritance caused by decreased activity of branched-chain α-ketoacid dehydrogenase complex (BCKD). Mutations in the three genes (BCKDHA, BCKDHB and DBT) are associated with MSUD. Here, we describe the presenting symptoms, clinical course and gene mutation analysis of a Chinese boy with MSUD. Plasma amino acid analysis was performed by tandem mass spectrometry and the levels of organic acids in urine were measured with gas chromatography-mass spectrometry. The BCKDHB gene was sequenced by Sanger method. Furthermore, the significance of the novel mutations was predicted by Polyphen and Mutationtaster. After diagnosis, the patient was fed with protein-restricted diet to reduce intake of BCAA and was treated with l -carnitine. Metabolic parameters, clinical presentation and mental development were followed up. The patient was diagnosed as MSUD. Two novel BCKDHB mutations (c.523 T > C and c.478-25_552del100) were identified. In silico analysis predicted that the two mutations were "disease causing". The boy tolerated the treatment well and had symptomatic improvement. He presented with mild hypotonia and had nearly normal DQ scores at the age of 10 months. The two novel mutations resulted in the clinical manifestations of MSUD. Our results may reflect the heterogeneity of the pathogenic variants found in patients with MSUD. Copyright © 2018. Published by Elsevier B.V.
[The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].
Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi
2014-12-01
To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.
Mutation Analysis of COL1A1 and COL1A2 in Fetuses with Osteogenesis Imperfecta Type II/III.
Wang, Wenbo; Wu, Qichang; Cao, Lin; Sun, Li; Xu, Yasong; Guo, Qiwei
2015-01-27
Aim: To analyze COL1A1/2 mutations in prenatal-onset OI for determine the proportion of mutations in type I collagen genes among prenatal onset OI and to provide additional data for genotype-phenotype analyses. Material and Methods: Ten cases of severe fetal short-limb dwarfism detected by antenatal ultrasonography were referred to our center. Before the termination of pregnancy, cordocentesis was performed for fetal karyotype and COL1A1/2 gene sequencing analysis. Postmortem radiographic examination was performed at all instances for definitive diagnosis. Results: COL1A1 and COL1A2 SNP and mutations were identified in all the cases. Among these, one synonymous SNP and four synonymous SNPs were recognized in COL1A1/2, respectively, seven cases have distinct heterozygous mutations and six new COL1A1/2 gene mutations were identified. Conclusion: There has been substantial progress in the identification of the molecular defects responsible for skeletal dysplasias. With the constant increase in the number of identified mutations in COL1A1 and COL1A2, genotype-phenotype correlation is becoming increasingly pertinent. © 2015 S. Karger AG, Basel.
Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael
2011-01-01
Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404
Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.
Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I
2001-08-01
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.
Le Morvan, Marine; Zinovyev, Andrei; Vert, Jean-Philippe
2017-06-01
Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations.
2017-01-01
Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations. PMID:28650955
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-06-01
Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolodner, R.D.; Lipford, J.; Kane, M.F.
1994-12-01
Hereditary nonpolyposis colorectal carcinoma (HNPCC) is a major cancer susceptibility syndrome known to be caused by inheritance of mutations in genes such as hMSH2 and hMLH1, which encode components of a DNA mismatch repair system. The MSH2 genomic locus has been cloned and shown to cover {approximately}73 kb of genomic DNA and to contain 16 exons. The sequence of all of the intron-exon junctions has been determined and used to develop methods for analyzing each MSH2 exon for mutations. These methods have been used to analyze two large HNPCC kindreds exhibiting features of the Muir-Torre syndrome and demonstrate that cancermore » susceptibility is due to the inheritance of a frameshift mutation in the MSH2 gene in one family and a nonsense mutation in the MSH2 gene in the other family. 59 refs., 5 figs., 1 tab.« less
Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A
2008-01-01
Background Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. Methods The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Results Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. Conclusion We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation. PMID:18518985
Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul
2018-01-01
Background Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients’ families. Material and methods Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients’ F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson’s correlation coefficient and the nonparametric Mann-Whitney test. Results Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Discussion Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity. PMID:27723456
Baltruškevičienė, Edita; Mickys, Ugnius; Žvirblis, Tadas; Stulpinas, Rokas; Pipirienė Želvienė, Teresė; Aleknavičius, Eduardas
2016-01-01
Background. KRAS mutation is an important predictive and prognostic factor for patients receiving anti-EGFR therapy. An expanded KRAS, NRAS, BRAF, PIK3CA mutation analysis provides additional prognostic information, but its role in predicting bevacizumab efficacy is unclear. The aim of our study was to evaluate the incidence of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving first line oxaliplatin based chemotherapy with or without bevacizumab and to evaluate their prognostic and predictive significance. Methods. 55 patients with the first-time diagnosed CRC receiving FOLFOX ± bevacizumab were involved in the study. Tumour blocks were tested for KRAS mutations in exons 2, 3 and 4, NRAS mutations in exons 2, 3 and 4, BRAF mutation in exon 15 and PIK3CA mutations in exons 9 and 20. The association between mutations and clinico-pathological factors, treatment outcomes and survival was analyzed. Results. KRAS mutations were detected in 67.3% of the patients, BRAF in 1.8%, PIK3CA in 5.5% and there were no NRAS mutations. A significant association between the high CA 19–9 level and KRAS mutation was detected (mean CA 19–9 levels were 276 and 87 kIU/l, respectively, p = 0.019). There was a significantly higher response rate in the KRAS, NRAS, BRAF and PIK3CA wild type cohort receiving bevacizumab compared to any gene mutant type (100 and 60%, respectively, p = 0.030). The univariate Cox regression analysis did not confirm KRAS and other tested mutations as prognostic factors for PFS or OS. Conclusions. Our study revealed higher KRAS and lower NRAS, BRAF and PIK3CA mutation rates in the Lithuanian population than those reported in the literature. KRAS mutation was associated with the high CA 19–9 level and mucinous histology type, but did not show any predictive or prognostic significance. The expanded KRAS, NRAS, BRAF and PIK3CA mutation analysis provided additional significant predictive information. PMID:28356789
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-01-01
Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298
The detection of large deletions or duplications in genomic DNA.
Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R
2002-11-01
While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.
Bodie, E A; Armstrong, G L; Dunn-Coleman, N S
1994-05-01
Parasexual recombination was used to obtain improved chymosin-producing strains and to perform genetic analysis on existing strains. Chlorate resistance was used to select for a variety of spontaneous nitrate assimilation pathway mutations in strains previously improved for chymosin production using classical strain improvement methods including mutation and screening, and selection for 2-deoxyglucose resistance (dgr). Diploids of these improved strains were generated via parasexual recombination and were isolated on selective media by complementation of nitrate assimilation mutations. A preliminary genetic analysis of diploid and haploid segregants indicated that the dgr trait, resulting in overexpression of chymosin, was recessive. Also, mutations in two different dgr genes resulted in an increased level of chymosin production. When these mutations were combined via parasexual recombination, the resulting haploid segregants produced about 15% more chymosin than either parental strain. CHEF gel electrophoresis was used to determine the chromosomal location of the integrated chymosin DNA sequences, and to verify diploidy in one case where the chromosome composition of two haploid parents differed.
Wang, Lili; Fan, Jean; Francis, Joshua M.; Georghiou, George; Hergert, Sarah; Li, Shuqiang; Gambe, Rutendo; Zhou, Chensheng W.; Yang, Chunxiao; Xiao, Sheng; Cin, Paola Dal; Bowden, Michaela; Kotliar, Dylan; Shukla, Sachet A.; Brown, Jennifer R.; Neuberg, Donna; Alessi, Dario R.; Zhang, Cheng-Zhong; Kharchenko, Peter V.; Livak, Kenneth J.; Wu, Catherine J.
2017-01-01
Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy. PMID:28679620
GAMES identifies and annotates mutations in next-generation sequencing projects.
Sana, Maria Elena; Iascone, Maria; Marchetti, Daniela; Palatini, Jeff; Galasso, Marco; Volinia, Stefano
2011-01-01
Next-generation sequencing (NGS) methods have the potential for changing the landscape of biomedical science, but at the same time pose several problems in analysis and interpretation. Currently, there are many commercial and public software packages that analyze NGS data. However, the limitations of these applications include output which is insufficiently annotated and of difficult functional comprehension to end users. We developed GAMES (Genomic Analysis of Mutations Extracted by Sequencing), a pipeline aiming to serve as an efficient middleman between data deluge and investigators. GAMES attains multiple levels of filtering and annotation, such as aligning the reads to a reference genome, performing quality control and mutational analysis, integrating results with genome annotations and sorting each mismatch/deletion according to a range of parameters. Variations are matched to known polymorphisms. The prediction of functional mutations is achieved by using different approaches. Overall GAMES enables an effective complexity reduction in large-scale DNA-sequencing projects. GAMES is available free of charge to academic users and may be obtained from http://aqua.unife.it/GAMES.
Wang, Yao; Cui, Yazhou; Zhou, Xiaoyan; Han, Jinxiang
2015-01-01
Objective Osteogenesis imperfecta (OI) is a rare inherited skeletal disease, characterized by bone fragility and low bone density. The mutations in this disorder have been widely reported to be on various exonal hotspots of the candidate genes, including COL1A1, COL1A2, CRTAP, LEPRE1, and FKBP10, thus creating a great demand for precise genetic tests. However, large genome sizes make the process daunting and the analyses, inefficient and expensive. Therefore, we aimed at developing a fast, accurate, efficient, and cheaper sequencing platform for OI diagnosis; and to this end, use of an advanced array-based technique was proposed. Method A CustomSeq Affymetrix Resequencing Array was established for high-throughput sequencing of five genes simultaneously. Genomic DNA extraction from 13 OI patients and 85 normal controls and amplification using long-range PCR (LR-PCR) were followed by DNA fragmentation and chip hybridization, according to standard Affymetrix protocols. Hybridization signals were determined using GeneChip Sequence Analysis Software (GSEQ). To examine the feasibility, the outcome from new resequencing approach was validated by conventional capillary sequencing method. Result Overall call rates using resequencing array was 96–98% and the agreement between microarray and capillary sequencing was 99.99%. 11 out of 13 OI patients with pathogenic mutations were successfully detected by the chip analysis without adjustment, and one mutation could also be identified using manual visual inspection. Conclusion A high-throughput resequencing array was developed that detects the disease-associated mutations in OI, providing a potential tool to facilitate large-scale genetic screening for OI patients. Through this method, a novel mutation was also found. PMID:25742658
Yoshimitsu, Makoto; Higuchi, Koji; Miyata, Masaaki; Devine, Sean; Mattman, Andre; Sirrs, Sandra; Medin, Jeffrey A; Tei, Chuwa; Takenaka, Toshihiro
2011-05-01
Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A (GLA) gene, and the disease is a relatively prevalent cause of left ventricular hypertrophy followed by conduction abnormalities and arrhythmias. Mutation analysis of the GLA gene is a valuable tool for accurate diagnosis of affected families. In this study, we carried out molecular studies of 10 unrelated families diagnosed with Fabry disease. Genetic analysis of the GLA gene using conventional genomic sequencing was performed in 9 hemizygous males and 6 heterozygous females. In patients with no mutations in coding DNA sequence, multiplex ligation-dependent probe amplification (MLPA) and/or cDNA sequencing were performed. We identified a novel exon 2 deletion (IVS1_IVS2) in a heterozygous female by MLPA, which was undetectable by conventional sequencing methods. In addition, the g.9331G>A mutation that has previously been found only in patients with cardiac Fabry disease was found in 3 unrelated, newly-diagnosed, cardiac Fabry patients by sequencing GLA genomic DNA and cDNA. Two other novel mutations, g.8319A>G and 832delA were also found in addition to 4 previously reported mutations (R112C, C142Y, M296I, and G373D) in 6 other families. We could identify GLA gene mutations in all hemizygotes and heterozygotes from 10 families with Fabry disease. Mutations in 4 out of 10 families could not be identified by classical genomic analysis, which focuses on exons and the flanking region. Instead, these data suggest that MLPA analysis and cDNA sequence should be considered in genetic testing surveys of patients with Fabry disease. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis
Wang, Yue; Dai, Bo; Ye, Dingwei
2015-01-01
Background: CHEK2 encodes for a G2 checkpoint kinase which plays a critical role in DNA repair. Its mutation confers an increased risk of breast cancer. It has also been suggested to increase risks of prostate cancer, but its involvement with this type of cancer has not been confirmed. Methods: We performed a systematic review and meta-analysis to clarify the association between CHEK2 1100delC, IVS2+1G>A, I157T mutation and risk of Prostate Cancer. A comprehensive, computerized literature search of PubMed until December 27, 2014 was carried out. Eligible studies were included according to specific inclusion criteria. Pooled hazard ratio was estimated using the fixed effects model or random effects model according to heterogeneity between studies. Results: Eight eligible studies were included in the analysis, all were retrospective studies. The overall meta-analysis demonstrated that the CHEK2 1100delC mutation (OR 3.29; 95% confidence interval: 1.85-5.85; P = 0.00) and I157T missense mutation (OR 1.80; 95% confidence interval: 1.51-2.14; P = 0.00) was associated with higher risk of Prostate Cancer, and CHEK2 1100delC mutation is irrelevant to familial aggregation phenomenon of prostate cancer (OR 1.59; 95% confidence interval: 0.79-3.20; P = 0.20). The IVS2+1G>A mutation is also irrelevant to Prostate Cancer (OR = 1.59, 95% CI = 0.93-2.71, P = 0.09). None of the single studies materially altered the original results and no evidence of publication bias was found. Conclusion: CHEK2 1100delC mutation and I157T missense mutation in males indicates higher risk of Prostate Cancer, but there’s no evidence to prove the CHEK2 1100delC mutation was associated with Familial prostate cancer. PMID:26629066
Haeili, M; Fooladi, A I; Bostanabad, S Z; Sarokhalil, D D; Siavoshi, F; Feizabadi, M M
2014-01-01
Early detection of multidrug-resistant tuberculosis (MDR-TB) is essential to prevent its transmission in the community and initiate effective anti-TB treatment regimen. High-resolution melting curve (HRM) analysis was evaluated for rapid detection of resistance conferring mutations in rpoB and katG genes. We screened 95 Mycobacterium tuberculosis clinical isolates including 20 rifampin resistant (RIF-R), 21 isoniazid resistant (INH-R) and 54 fully susceptible (S) isolates determined by proportion method of drug susceptibility testing. Nineteen M. tuberculosis isolates with known drug susceptibility genotypes were used as references for the assay validation. The nucleotide sequences of the target regions rpoB and katG genes were determined to investigate the frequency and type of mutations and to confirm HRM results. HRM analysis of a 129-bp fragment of rpoB allowed correct identification of 19 of the 20 phenotypically RIF-R and all RIF-S isolates. All INH-S isolates generated wild-type HRM curves and 18 out of 21 INH-R isolates harboured any mutation in 109-bp fragment of katG exhibited mutant type HRM curves. However, 1 RIF-R and 3 INH-R isolates were falsely identified as susceptible which were confirmed for having no mutation in their target regions by sequencing. The main mutations involved in RIF and INH resistance were found at codons rpoB531 (60% of RIF-R isolates) and katG315 (85.7% of INH-R isolates), respectively. HRM was found to be a reliable, rapid and low cost method to characterise drug susceptibility of clinical TB isolates in resource-limited settings.
2012-01-01
Background The frequency of E-cadherin germline mutations in countries with different incidence rates for gastric carcinoma has not been well established. The goal of this study was to assess the worldwide frequency of CDH1 germline mutations in gastric cancers coming from low- and high-risk areas. Methods English articles using MEDLINE access (from 1998 to 2011). Search terms included CDH1, E-cadherin, germline mutation, gastric cancer, hereditary, familial and diffuse histotype. The study included all E-cadherin germline mutations identified in gastric cancer patients; somatic mutations and germline mutations reported in other tumors were excluded. The method of this study was scheduled in accordance with the "PRISMA statement for reporting systematic reviews and meta-analyses". Countries were classified as low- or middle/high risk-areas for gastric carcinoma incidence. Statistical analysis was performed to correlate the CDH1 mutation frequency with gastric cancer incidence areas. Results A total of 122 E-cadherin germline mutations have been identified; the majority (87.5%) occurred in gastric cancers coming from low-risk areas. In high-risk areas, we identified 16 mutations in which missense mutations were predominant. (68.8%). We verified a significant association between the mutation frequency and the gastric cancer risk area (p < 0.001: overall identified mutations in low- vs. middle/high-risk areas). Conclusions E-cadherin genetic screenings performed in low-risk areas for gastric cancer identified a higher frequency of CDH1 germline mutations. This data could open new approaches in the gastric cancer prevention test; before proposing a proband candidate for the CDH1 genetic screening, geographic variability, alongside the family history should be considered. PMID:22225527
Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa
2012-01-01
Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp “hot-spot” region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests. PMID:22170905
Minh, Nghiem Ngoc; Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa
2012-03-01
Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp "hot-spot" region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests.
Association of The IDH1 C.395G>A (R132H) Mutation with Histological Type in Malay Brain Tumors
Mohamed Yusoff, Abdul Aziz; Zulfakhar, Fatin Najwa; Sul’ain, Mohd Dasuki; Idris, Zamzuri; Abdullah, Jafri Malin
2016-12-01
Background: Brain tumors, constituting one of the most deadly forms of cancer worldwide, result from the accumulation of multiple genetic and epigenetic alterations in genes and signaling pathways. Isocitrate dehydrogenase enzyme isoform 1 (IDH1) mutations are frequently identified in primary brain tumors and acute myeloid leukemia. Studies on IDH1 gene mutations have been extensively performed in various populations worldwide but not in Malaysia. This work was conducted to study the prevalence of IDH1 c.395G>A (R132H) hotspot mutations in a group of Malaysian patients with brain tumors in order to gain local data for the IDH1 mutation profile in our population. Methods: Mutation analysis of c.395G>A (R132H) of IDH1 was performed in 40 brain tumor specimens by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) and then verified by direct sequencing. Associations between the IDH1 c.395G>A (R132H) mutation and clinicopathologic characteristics were also analyzed. Results: The IDH1 c.395G>A (R132H) mutation was detected in 14/40 patients (35%). A significant association was found with histological tumor types, but not with age, gender and race. Conclusions: IDH1 is frequently mutated and associated with histological subtypes in Malay brain tumors. Creative Commons Attribution License
Association of The IDH1 C.395G>A (R132H) Mutation with Histological Type in Malay Brain Tumors
Yusoff, Abdul Aziz Mohamed; Zulfakhar, Fatin Najwa; Sul’ain, Mohd Dasuki; Idris, Zamzuri; Abdullah, Jafri Malin
2016-01-01
Background: Brain tumors, constituting one of the most deadly forms of cancer worldwide, result from the accumulation of multiple genetic and epigenetic alterations in genes and signaling pathways. Isocitrate dehydrogenase enzyme isoform 1 (IDH1) mutations are frequently identified in primary brain tumors and acute myeloid leukemia. Studies on IDH1 gene mutations have been extensively performed in various populations worldwide but not in Malaysia. This work was conducted to study the prevalence of IDH1 c.395G>A (R132H) hotspot mutations in a group of Malaysian patients with brain tumors in order to gain local data for the IDH1 mutation profile in our population. Methods: Mutation analysis of c.395G>A (R132H) of IDH1 was performed in 40 brain tumor specimens by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) and then verified by direct sequencing. Associations between the IDH1 c.395G>A (R132H) mutation and clinicopathologic characteristics were also analyzed. Results: The IDH1 c.395G>A (R132H) mutation was detected in 14/40 patients (35%). A significant association was found with histological tumor types, but not with age, gender and race. Conclusions: IDH1 is frequently mutated and associated with histological subtypes in Malay brain tumors. PMID:28125199
Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification
Bunyan, D J; Eccles, D M; Sillibourne, J; Wilkins, E; Thomas, N Simon; Shea-Simonds, J; Duncan, P J; Curtis, C E; Robinson, D O; Harvey, J F; Cross, N C P
2004-01-01
Multiplex ligation-dependent probe amplification (MLPA) is a recently described method for detecting gross deletions or duplications of DNA sequences, aberrations which are commonly overlooked by standard diagnostic analysis. To determine the incidence of copy number variants in cancer predisposition genes from families in the Wessex region, we have analysed the hMLH1 and hMSH2 genes in patients with hereditary nonpolyposis colorectal cancer (HNPCC), BRCA1 and BRCA2 in families with hereditary breast/ovarian cancer (BRCA) and APC in patients with familial adenomatous polyposis coli (FAP). Hereditary nonpolyposis colorectal cancer (n=162) and FAP (n=74) probands were fully screened for small mutations, and cases for which no causative abnormality were found (HNPCC, n=122; FAP, n=24) were screened by MLPA. Complete or partial gene deletions were identified in seven cases for hMSH2 (5.7% of mutation-negative HNPCC; 4.3% of all HNPCC), no cases for hMLH1 and six cases for APC (25% of mutation negative FAP; 8% of all FAP). For BRCA1 and BRCA2, a partial mutation screen was performed and 136 mutation-negative cases were selected for MLPA. Five deletions and one duplication were found for BRCA1 (4.4% of mutation-negative BRCA cases) and one deletion for BRCA2 (0.7% of mutation-negative BRCA cases). Cost analysis indicates it is marginally more cost effective to perform MLPA prior to point mutation screening, but the main advantage gained by prescreening is a greatly reduced reporting time for the patients who are positive. These data demonstrate that dosage analysis is an essential component of genetic screening for cancer predisposition genes. PMID:15475941
Reijnders, Margot R F; Janowski, Robert; Alvi, Mohsan; Self, Jay E; van Essen, Ton J; Vreeburg, Maaike; Rouhl, Rob P W; Stevens, Servi J C; Stegmann, Alexander P A; Schieving, Jolanda; Pfundt, Rolph; van Dijk, Katinke; Smeets, Eric; Stumpel, Connie T R M; Bok, Levinus A; Cobben, Jan Maarten; Engelen, Marc; Mansour, Sahar; Whiteford, Margo; Chandler, Kate E; Douzgou, Sofia; Cooper, Nicola S; Tan, Ene-Choo; Foo, Roger; Lai, Angeline H M; Rankin, Julia; Green, Andrew; Lönnqvist, Tuula; Isohanni, Pirjo; Williams, Shelley; Ruhoy, Ilene; Carvalho, Karen S; Dowling, James J; Lev, Dorit L; Sterbova, Katalin; Lassuthova, Petra; Neupauerová, Jana; Waugh, Jeff L; Keros, Sotirios; Clayton-Smith, Jill; Smithson, Sarah F; Brunner, Han G; van Hoeckel, Ceciel; Anderson, Mel; Clowes, Virginia E; Siu, Victoria Mok; DDD study, The; Selber, Paulo; Leventer, Richard J; Nellaker, Christoffer; Niessing, Dierk; Hunt, David; Baralle, Diana
2018-01-01
Background De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. Objectives To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. Methods Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. Results We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. Conclusion We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity. PMID:29097605
Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa
Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon
2011-01-01
Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794
Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family.
Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han
2017-01-01
Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods.
Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family
Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han
2017-01-01
Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods. PMID:28690861
Nghia, Phan Tuan; Thai, Trinh Hong; Hue, Truong Thi; Van Minh, Nguyen; Khanh, Phung Bao; Hiep, Tran Duc; Anh, Tran Kieu; Loan, Nguyen Thi Hong; Van, Nguyen Thi Hong; Anh, Pham Van; Hung, Cao Vu; Anh, Le Ngoc
2015-01-01
Human mitochondrial genome consists of 16,569 bp, and replicates independently from the nuclear genome. Mutations in mitochondrial genome are usually causative factors of various metabolic disorders, especially those of encephalomyopathy. DNA analysis is the most reliable method for detection of mitochondrial genome mutations, and accordingly an excellent diagnostic tool for mitochondrial mutation-related diseases. In this study, 19 different mitochondrial genome mutations including A3243G, A3251G, T3271C and T3291C (MELAS); A8344G, T8356C and G8363A (MERRF); G3460A, G11778A and T14484C (LHON); T8993G/C and T9176G (Leigh); A1555G (deafness) and A4225G, G4298A, T10010C, T14727C, T14728C, T14709C (encephalomyopathy in general) were analyzed using PCR-RFLP in combination with DNA sequencing. In addition, a real-time PCR method using locked nucleic acid (LNA) Taqman probe was set up for heteroplasmy determination. Screening of 283 tentatively diagnosed encephalomyopathy patients revealed 7 cases of A3243G, 1 case of G11778A, 1 case of A1555G, 1 case of A4225G, 1 case G4298A, and 1 case of 6 bp (ACTCCT/CTCCTA) deletion. Using the LNA Taqman probe real-time PCR, the heteroplasmy of some point mutations was determined and the results support a potential relationship between heteroplasmy level and severity of the disease.
Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay
NASA Astrophysics Data System (ADS)
Zhou, Huijuan; Wu, Baoyan
2008-12-01
The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.
Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi
2017-05-01
Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.
Arriola, E; Paredes-Lario, A; García-Gomez, R; Diz-Tain, P; Constenla, M; García-Girón, C; Márquez, G; Reck, M; López-Vivanco, G
2018-04-05
The analysis of epidermal growth factor receptor (EGFR) mutations in many patients with advanced non-small-cell lung cancer (aNSCLC) has provided the opportunity for successful treatment with specific, targeted EGFR tyrosine kinase inhibitors. However, this therapeutic decision may be challenging when insufficient tumor tissue is available for EGFR mutation testing. Therefore, blood surrogate samples for EGFR mutation analysis have been suggested. Data were collected from the Spanish cohort of patients in the large, non-interventional, diagnostic ASSESS study (NCT01785888) evaluating the utility of circulating free tumor-derived DNA from plasma for EGFR mutation testing. The incidence of EGFR mutation in Spain and the level of concordance between matched tissue/cytology and plasma samples were evaluated. In a cohort of 154 eligible patients, EGFR mutations were identified in 15.1 and 11.0% of tumor and plasma samples, respectively. The most commonly used EGFR mutation testing method for the tumor tissue samples was the QIAGEN Therascreen ® EGFR RGQ PCR kit (52.1%). Fragment Length Analysis + PNA LNA Clamp was used for the plasma samples. The concordance rate for EGFR mutation status between the tissue/cytology and plasma samples was 88.8%; the sensitivity was 45.5%, and the specificity was 96.7%. The high concordance between the different DNA sources for EGFR mutation testing supports the use of plasma samples when tumor tissue is unavailable.
Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei
2016-01-01
Purpose Echinoderm microtubule-associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). Methods We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Results Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ2 test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. Conclusion EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent. PMID:27103824
Halbritter, Jan; Porath, Jonathan D; Diaz, Katrina A; Braun, Daniela A; Kohl, Stefan; Chaki, Moumita; Allen, Susan J; Soliman, Neveen A; Hildebrandt, Friedhelm; Otto, Edgar A
2013-08-01
Nephronophthisis-related ciliopathies (NPHP-RC) are autosomal-recessive cystic kidney diseases. More than 13 genes are implicated in its pathogenesis to date, accounting for only 40 % of all cases. High-throughput mutation screenings of large patient cohorts represent a powerful tool for diagnostics and identification of novel NPHP genes. We here performed a new high-throughput mutation analysis method to study 13 established NPHP genes (NPHP1-NPHP13) in a worldwide cohort of 1,056 patients diagnosed with NPHP-RC. We first applied multiplexed PCR-based amplification using Fluidigm Access-Array™ technology followed by barcoding and next-generation resequencing on an Illumina platform. As a result, we established the molecular diagnosis in 127/1,056 independent individuals (12.0 %) and identified a single heterozygous truncating mutation in an additional 31 individuals (2.9 %). Altogether, we detected 159 different mutations in 11 out of 13 different NPHP genes, 99 of which were novel. Phenotypically most remarkable were two patients with truncating mutations in INVS/NPHP2 who did not present as infants and did not exhibit extrarenal manifestations. In addition, we present the first case of Caroli disease due to mutations in WDR19/NPHP13 and the second case ever with a recessive mutation in GLIS2/NPHP7. This study represents the most comprehensive mutation analysis in NPHP-RC patients, identifying the largest number of novel mutations in a single study worldwide.
Grundberg, Ida; Kiflemariam, Sara; Mignardi, Marco; Imgenberg-Kreuz, Juliana; Edlund, Karolina; Micke, Patrick; Sundström, Magnus; Sjöblom, Tobias
2013-01-01
Current assays for somatic mutation analysis are based on extracts from tissue sections that often contain morphologically heterogeneous neoplastic regions with variable contents of genetically normal stromal and inflammatory cells, obscuring the results of the assays. We have developed an RNA-based in situ mutation assay that targets oncogenic mutations in a multiplex fashion that resolves the heterogeneity of the tissue sample. Activating oncogenic mutations are targets for a new generation of cancer drugs. For anti-EGFR therapy prediction, we demonstrate reliable in situ detection of KRAS mutations in codon 12 and 13 in colon and lung cancers in three different types of routinely processed tissue materials. High-throughput screening of KRAS mutation status was successfully performed on a tissue microarray. Moreover, we show how the patterns of expressed mutated and wild-type alleles can be studied in situ in tumors with complex combinations of mutated EGFR, KRAS and TP53. This in situ method holds great promise as a tool to investigate the role of somatic mutations during tumor progression and for prediction of response to targeted therapy. PMID:24280411
Normanno, Nicola; Pinto, Carmine; Castiglione, Francesca; Bardelli, Alberto; Gambacorta, Marcello; Botti, Gerardo; Nappi, Oscar; Siena, Salvatore; Ciardiello, Fortunato; Taddei, Gianluigi; Marchetti, Antonio
2011-01-01
Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) have been approved for the treatment of patients with metastatic colorectal carcinoma (mCRC) that do not carry KRAS mutations. Therefore, KRAS testing has become mandatory to chose the most appropriate therapy for these patients. In order to guarantee the possibility for mCRC patients to receive an high quality KRAS testing in every Italian region, the Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytopathology -Italian division of the International Academy of Pathology (SIAPEC-IAP) started a program to improve KRAS testing. AIOM and SIAPEC identified a large panel of Italian medical oncologists, pathologists and molecular biologists that outlined guidelines for KRAS testing in mCRC patients. These guidelines include specific information on the target patient population, the biological material for molecular analysis, the extraction of DNA, and the methods for the mutational analysis that are summarized in this paper. Following the publication of the guidelines, the scientific societies started an external quality assessment scheme for KRAS testing. Five CRC specimens with known KRAS mutation status were sent to the 59 centers that participated to the program. The samples were validated by three referral laboratories. The participating laboratories were allowed to use their own preferred method for DNA extraction and mutational analysis and were asked to report the results within 4 weeks. The limit to pass the quality assessment was set at 100% of true responses. In the first round, only two centers did not pass (3%). The two centers were offered to participate to a second round and both centers failed again to pass. The results of this first Italian quality assessment for KRAS testing suggest that KRAS mutational analysis is performed with good quality in the majority of Italian centers. © 2011 Normanno et al.
Normanno, Nicola; Pinto, Carmine; Castiglione, Francesca; Bardelli, Alberto; Gambacorta, Marcello; Botti, Gerardo; Nappi, Oscar; Siena, Salvatore; Ciardiello, Fortunato; Taddei, GianLuigi; Marchetti, Antonio
2011-01-01
Background Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) have been approved for the treatment of patients with metastatic colorectal carcinoma (mCRC) that do not carry KRAS mutations. Therefore, KRAS testing has become mandatory to chose the most appropriate therapy for these patients. Methodology/Principal Findings In order to guarantee the possibility for mCRC patients to receive an high quality KRAS testing in every Italian region, the Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytopathology -Italian division of the International Academy of Pathology (SIAPEC-IAP) started a program to improve KRAS testing. AIOM and SIAPEC identified a large panel of Italian medical oncologists, pathologists and molecular biologists that outlined guidelines for KRAS testing in mCRC patients. These guidelines include specific information on the target patient population, the biological material for molecular analysis, the extraction of DNA, and the methods for the mutational analysis that are summarized in this paper. Following the publication of the guidelines, the scientific societies started an external quality assessment scheme for KRAS testing. Five CRC specimens with known KRAS mutation status were sent to the 59 centers that participated to the program. The samples were validated by three referral laboratories. The participating laboratories were allowed to use their own preferred method for DNA extraction and mutational analysis and were asked to report the results within 4 weeks. The limit to pass the quality assessment was set at 100% of true responses. In the first round, only two centers did not pass (3%). The two centers were offered to participate to a second round and both centers failed again to pass. Conclusions The results of this first Italian quality assessment for KRAS testing suggest that KRAS mutational analysis is performed with good quality in the majority of Italian centers. PMID:22216189
Vidal, J; Muinelo, L; Dalmases, A; Jones, F; Edelstein, D; Iglesias, M; Orrillo, M; Abalo, A; Rodríguez, C; Brozos, E; Vidal, Y; Candamio, S; Vázquez, F; Ruiz, J; Guix, M; Visa, L; Sikri, V; Albanell, J; Bellosillo, B; López, R; Montagut, C
2017-01-01
Abstract Background RAS assessment is mandatory for therapy decision in metastatic colorectal cancer (mCRC) patients. This determination is based on tumor tissue, however, genotyping of circulating tumor (ct)DNA offers clear advantages as a minimally invasive method that represents tumor heterogeneity. Our study aims to evaluate the use of ctDNA as an alternative for determining baseline RAS status and subsequent monitoring of RAS mutations during therapy as a component of routine clinical practice. Patients and methods RAS mutational status in plasma was evaluated in mCRC patients by OncoBEAM™ RAS CRC assay. Concordance of results in plasma and tissue was retrospectively evaluated. RAS mutations were also prospectively monitored in longitudinal plasma samples from selected patients. Results Analysis of RAS in tissue and plasma samples from 115 mCRC patients showed a 93% overall agreement. Plasma/tissue RAS discrepancies were mainly explained by spatial and temporal tumor heterogeneity. Analysis of clinico-pathological features showed that the site of metastasis (i.e. peritoneal, lung), the histology of the tumor (i.e. mucinous) and administration of treatment previous to blood collection negatively impacted the detection of RAS in ctDNA. In patients with baseline mutant RAS tumors treated with chemotherapy/antiangiogenic, longitudinal analysis of RAS ctDNA mirrored response to treatment, being an early predictor of response. In patients RAS wt, longitudinal monitoring of RAS ctDNA revealed that OncoBEAM was useful to detect emergence of RAS mutations during anti-EGFR treatment. Conclusion The high overall agreement in RAS mutational assessment between plasma and tissue supports blood-based testing with OncoBEAM™ as a viable alternative for genotyping RAS of mCRC patients in routine clinical practice. Our study describes practical clinico-pathological specifications to optimize RAS ctDNA determination. Moreover, OncoBEAM™ is useful to monitor RAS in patients undergoing systemic therapy to detect resistance and evaluate the efficacy of particular treatments. PMID:28419195
Turner, Andrew; Sasse, Jurgen; Varadi, Aniko
2016-10-19
Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.
Zhao, Xin; Yang, Chaoshan; Tong, Yi; Zhang, Xiaohui; Xu, Liang; Li, Yang
2010-08-25
To describe the clinical and genetic findings in one Chinese family with juvenile-onset open angle glaucoma (JOAG). One family was examined clinically and a follow-up took place 5 years later. After informed consent was obtained, genomic DNA was extracted from the venous blood of all participants. Linkage analysis was performed with three microsatellite markers around the MYOC gene (D1S196, D1S2815, and D1S218) in the family. Mutation screening of all coding exons of MYOC was performed by direct sequencing of PCR-amplified DNA fragments and restriction fragment length polymorphism (RFLP) analysis. Bioinformatics analysis by the Garnier-Osguthorpe-Robson (GOR) method predicted the effects of variants detected on secondary structures of the MYOC protein. Clinical examination and pedigree analysis revealed a three- generation family with seven members diagnosed with JOAG, three with ocular hypertension, and five normal individuals. Through genotyping, the pedigree showed a linkage to the MYOC on chromosome 1q24-25. Mutation screening of MYOC in this family revealed an A-->T transition at position 1348 (p. N450Y) of the cDNA sequence. This missense mutation co-segregated with the disease phenotype of the family, but was not found in 100 normal controls. Secondary structure prediction of the p.N450Y by the GOR method revealed the replacement of a coil with a beta sheet at the amino acid 447. Early onset JOAG, with incomplete penetrance, is consistent with a novel mutation in MYOC. The finding provides pre-symptomatic molecular diagnosis for the members of this family and is useful for further genetic consultation.
Network-based machine learning and graph theory algorithms for precision oncology.
Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui
2017-01-01
Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.
Recurrent and functional regulatory mutations in breast cancer.
Rheinbay, Esther; Parasuraman, Prasanna; Grimsby, Jonna; Tiao, Grace; Engreitz, Jesse M; Kim, Jaegil; Lawrence, Michael S; Taylor-Weiner, Amaro; Rodriguez-Cuevas, Sergio; Rosenberg, Mara; Hess, Julian; Stewart, Chip; Maruvka, Yosef E; Stojanov, Petar; Cortes, Maria L; Seepo, Sara; Cibulskis, Carrie; Tracy, Adam; Pugh, Trevor J; Lee, Jesse; Zheng, Zongli; Ellisen, Leif W; Iafrate, A John; Boehm, Jesse S; Gabriel, Stacey B; Meyerson, Matthew; Golub, Todd R; Baselga, Jose; Hidalgo-Miranda, Alfredo; Shioda, Toshi; Bernards, Andre; Lander, Eric S; Getz, Gad
2017-07-06
Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters. Clear signals are found in the promoters of three genes. FOXA1, a known driver of hormone-receptor positive breast cancer, harbours a mutational hotspot in its promoter leading to overexpression through increased E2F binding. RMRP and NEAT1, two non-coding RNA genes, carry mutations that affect protein binding to their promoters and alter expression levels. Our study shows that promoter regions harbour recurrent mutations in cancer with functional consequences and that the mutations occur at similar frequencies as in coding regions. Power analyses indicate that more such regions remain to be discovered through deep sequencing of adequately sized cohorts of patients.
A Ruby in the Rubbish: Beneficial Mutations, Deleterious Mutations and the Evolution of Sex
Peck, J. R.
1994-01-01
This study presents a mathematical model in which a single beneficial mutation arises in a very large population that is subject to frequent deleterious mutations. The results suggest that, if the population is sexual, then the deleterious mutations will have little effect on the ultimate fate of the beneficial mutation. However, if most offspring are produced asexually, then the probability that the beneficial mutation will be lost from the population may be greatly enhanced by the deleterious mutations. Thus, sexual populations may adapt much more quickly than populations where most reproduction is asexual. Some of the results were produced using computer simulation methods, and a technique was developed that allows treatment of arbitrarily large numbers of individuals in a reasonable amount of computer time. This technique may be of prove useful for the analysis of a wide variety of models, though there are some constraints on its applicability. For example, the technique requires that reproduction can be described by Poisson processes. PMID:8070669
Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations
Laitman, Yael; Feng, Bing-Jian; Zamir, Itay M; Weitzel, Jeffrey N; Duncan, Paul; Port, Danielle; Thirthagiri, Eswary; Teo, Soo-Hwang; Evans, Gareth; Latif, Ayse; Newman, William G; Gershoni-Baruch, Ruth; Zidan, Jamal; Shimon-Paluch, Shani; Goldgar, David; Friedman, Eitan
2013-01-01
The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ∼2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ∼5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750–1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ∼650 years ago, and into the Iraqi–Jewish community ∼450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews. PMID:22763381
Martinuzzi, Claudia; Pastorino, Lorenza; Andreotti, Virginia; Garuti, Anna; Minuto, Michele; Fiocca, Roberto; Bianchi-Scarrà, Giovanna; Ghiorzo, Paola; Grillo, Federica; Mastracci, Luca
2016-09-01
The optimal method for BRAF mutation detection remains to be determined despite advances in molecular detection techniques. The aim of this study was to compare, against classical Sanger sequencing, the diagnostic performance of two of the most recently developed, highly sensitive methods: BRAF V600E immunohistochemistry (IHC) and peptide nucleic-acid (PNA)-clamp qPCR. BRAF exon 15 mutations were searched in formalin-fixed paraffin-embedded tissues from 86 papillary thyroid carcinoma using the three methods. The limits of detection of Sanger sequencing in borderline or discordant cases were quantified by next generation sequencing. BRAF mutations were found in 74.4 % of cases by PNA, in 71 % of cases by IHC, and in 64 % of cases by Sanger sequencing. Complete concordance for the three methods was observed in 80 % of samples. Better concordance was observed with the combination of two methods, particularly PNA and IHC (59/64) (92 %), while the combination of PNA and Sanger was concordant in 55 cases (86 %). Sensitivity of the three methods was 99 % for PNA, 94.2 % for IHC, and 89.5 % for Sanger. Our data show that IHC could be used as a cost-effective, first-line method for BRAF V600E detection in daily practice, followed by PNA analysis in negative or uninterpretable cases, as the most efficient method. PNA-clamp quantitative PCR is highly sensitive and complementary to IHC as it also recognizes other mutations besides V600E and it is suitable for diagnostic purposes.
MADGiC: a model-based approach for identifying driver genes in cancer
Korthauer, Keegan D.; Kendziorski, Christina
2015-01-01
Motivation: Identifying and prioritizing somatic mutations is an important and challenging area of cancer research that can provide new insights into gene function as well as new targets for drug development. Most methods for prioritizing mutations rely primarily on frequency-based criteria, where a gene is identified as having a driver mutation if it is altered in significantly more samples than expected according to a background model. Although useful, frequency-based methods are limited in that all mutations are treated equally. It is well known, however, that some mutations have no functional consequence, while others may have a major deleterious impact. The spatial pattern of mutations within a gene provides further insight into their functional consequence. Properly accounting for these factors improves both the power and accuracy of inference. Also important is an accurate background model. Results: Here, we develop a Model-based Approach for identifying Driver Genes in Cancer (termed MADGiC) that incorporates both frequency and functional impact criteria and accommodates a number of factors to improve the background model. Simulation studies demonstrate advantages of the approach, including a substantial increase in power over competing methods. Further advantages are illustrated in an analysis of ovarian and lung cancer data from The Cancer Genome Atlas (TCGA) project. Availability and implementation: R code to implement this method is available at http://www.biostat.wisc.edu/ kendzior/MADGiC/. Contact: kendzior@biostat.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573922
Coelho Graça, Didia; Hartmer, Ralf; Jabs, Wolfgang; Beris, Photis; Clerici, Lorella; Stoermer, Carsten; Samii, Kaveh; Hochstrasser, Denis; Tsybin, Yury O; Scherl, Alexander; Lescuyer, Pierre
2015-04-01
Hemoglobin disorder diagnosis is a complex procedure combining several analytical steps. Due to the lack of specificity of the currently used protein analysis methods, the identification of uncommon hemoglobin variants (proteoforms) can become a hard task to accomplish. The aim of this work was to develop a mass spectrometry-based approach to quickly identify mutated protein sequences within globin chain variants. To reach this goal, a top-down electron transfer dissociation mass spectrometry method was developed for hemoglobin β chain analysis. A diagnostic product ion list was established with a color code strategy allowing to quickly and specifically localize a mutation in the hemoglobin β chain sequence. The method was applied to the analysis of rare hemoglobin β chain variants and an (A)γ-β fusion protein. The results showed that the developed data analysis process allows fast and reliable interpretation of top-down electron transfer dissociation mass spectra by nonexpert users in the clinical area.
2011-01-01
Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046
Two novel CHN1 mutations in two families with Duane’s retraction syndrome
Chan, Wai-Man; Miyake, Noriko; Zhu-Tam, Lily; Andrews, Caroline; Engle, Elizabeth C.
2012-01-01
Objective To determine the genetic cause of Duane’s retraction syndrome (DRS) in two families segregating DRS as an autosomal dominant trait. Method Members of two unrelated pedigrees were enrolled in an ongoing genetic study. Linkage analysis was performed using fluorescent microsatellite markers flanking the CHN1 locus. Probands and family members were screened for CHN1 mutations. Results Of the six clinically affected individuals in the two pedigrees, three have bilateral and three have unilateral DRS. Both pedigrees are consistent with linkage to the DURS2 locus, one with complete and one with incomplete penetrance. Sequence analysis revealed the pedigrees segregate novel heterozygous missense CHN1 mutations, c.422C>T and c.754C>T, predicted to result in α2-chimaerin amino acid substitutions P141L and P252S, respectively. Conclusion Genetic analysis of two pedigrees segregating nonsyndromic DRS reveals two novel mutations in CHN1, bringing the number of DRS pedigrees know to harbor CHN1 mutations, and the number of unique CHN1 mutations, from seven to nine. Both mutations identified in this study alter residues that participate in intramolecular interactions that stabilize the inactive, closed conformation of α2-chimerin, and thus are predicted to result in its hyper-activation. Moreover, amino acid residue P252 was altered to a different residue in a previously reported DRS pedigree; thus, this is the first report of two CHN1 mutations altering the same residue, further supporting a gain-of-function etiology. Clinical Relevance Members of families segregating DRS as an autosomal dominant trait should be screened for mutations in the CHN1 gene, enhancing genetic counseling and permitting earlier diagnosis. PMID:21555619
Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S Vasantha; Chandak, Giriraj Ratan; Kumar, Arun
2012-01-01
Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.
Park, Joonhong; Song, Minsik; Jang, Woori; Chae, Hyojin; Lee, Gun Dong; Kim, KyungTak; Park, Heekyung; Kim, Myungshin; Kim, Yonggoo
2017-02-01
We developed and evaluated the feasibility of peptide nucleic acid (PNA)-based fluorescence melting curve analysis (FMCA) to detect common mutations in myeloproliferative neoplasms (MPNs). We have set up two separate reactions of PNA-based FMCA: JAK2 V617F &CALR p.Leu367fs*46 (set A) and MPL W515L/K &CALR p.Lys385fs*47 (set B). Clinical usefulness was validated with allele-specific real-time PCR, fragment analysis, Sanger sequencing in 57 BCR-ABL1-negative MPNs. The limit of detection (LOD) of PNA-based FMCA was approximately 10% for each mutation and interference reactions using mixtures of different mutations were not observed. Non-specific amplification was not observed in normal control. PNA-based FMCA was able to detect all JAK2 V617F (n=20), CALR p.Leu367fs*46 (n=10) and p.Lys385fs*47 (n=8). Three of six MPL mutations were detected except three samples with low mutant concentration in out of LOD. JAK2 exon 12 mutations (n=7) were negative without influencing V617F results. Among six variant CALR exon 9 mutations, two were detected by this method owing to invading of probe binding site. PNA-based FMCA for detecting common JAK2, MPL, and CALR mutations is a rapid, simple, and sensitive technique in BCR-ABL1-negative MPNs with >10% mutant allele at the time of initial diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni
2013-01-01
Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653
Douillard, J-Y; Ostoros, G; Cobo, M; Ciuleanu, T; McCormack, R; Webster, A; Milenkova, T
2014-01-01
Background: Phase-IV, open-label, single-arm study (NCT01203917) to assess efficacy and safety/tolerability of first-line gefitinib in Caucasian patients with stage IIIA/B/IV, epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Methods: Treatment: gefitinib 250 mg day−1 until progression. Primary endpoint: objective response rate (ORR). Secondary endpoints: disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety/tolerability. Pre-planned exploratory objective: EGFR mutation analysis in matched tumour and plasma samples. Results: Of 1060 screened patients with NSCLC (859 known mutation status; 118 positive, mutation frequency 14%), 106 with EGFR sensitising mutations were enrolled (female 70.8% adenocarcinoma 97.2% never-smoker 64.2%). At data cutoff: ORR 69.8% (95% confidence interval (CI) 60.5–77.7), DCR 90.6% (95% CI 83.5–94.8), median PFS 9.7 months (95% CI 8.5–11.0), median OS 19.2 months (95% CI 17.0–NC; 27% maturity). Most common adverse events (AEs; any grade): rash (44.9%), diarrhoea (30.8%); CTC (Common Toxicity Criteria) grade 3/4 AEs: 15% SAEs: 19%. Baseline plasma 1 samples were available in 803 patients (784 known mutation status; 82 positive; mutation frequency 10%). Plasma 1 EGFR mutation test sensitivity: 65.7% (95% CI 55.8–74.7). Conclusion: First-line gefitinib was effective and well tolerated in Caucasian patients with EGFR mutation-positive NSCLC. Plasma samples could be considered for mutation analysis if tumour tissue is unavailable. PMID:24263064
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan
2007-01-01
Purpose X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. Methods The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Results Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. Conclusions This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members. PMID:17515881
Dirican, Ebubekir; Kaya, Zehra; Gullu, Gokce; Peker, Irem; Ozmen, Tolga; Gulluoglu, Bahadir M; Kaya, Handan; Ozer, Ayse; Akkiprik, Mustafa
2014-01-01
Breast cancer is the second most common cancer and second leading cause of cancer deaths in women. Phosphatidylinositol-3-kinase (PI3K)/AKT pathway mutations are associated with cancer and phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene mutations have been observed in 25-45% of breast cancer samples. Insulin growth factor binding protein-5 (IGFBP-5) can show different effects on apoptosis, cell motility and survival in breast cancer. We here aimed to determine the association between PIK3CA gene mutations and IGFBP-5 expressions for the first time in breast cancer patients. Frozen tumor samples from 101 Turkish breast cancer patients were analyzed with high resolution melting (HRM) for PIK3CA mutations (exon 9 and exon 20) and 37 HRM positive tumor samples were analyzed by DNA sequencing, mutations being found in 31. PIK3CA exon 9 mutations (Q546R, E542Q, E545K, E542K and E545D) were found in 10 tumor samples, exon 20 mutations (H1047L, H1047R, T1025T and G1049R) in 21, where only 1 tumor sample had two exon 20 mutations (T1025T and H1047R). Moreover, we detected one sample with both exon 9 (E542Q) and exon 20 (H1047R) mutations. 35% of the tumor samples with high IGFBP-5 mRNA expression and 29.4% of the tumor samples with low IGFBP-5 mRNA expression had PIK3CA mutations (p=0.9924). This is the first study of PIK3CA mutation screening results in Turkish breast cancer population using HRM analysis. This approach appears to be a very effective and reliable screening method for the PIK3CA exon 9 and 20 mutation detection. Further analysis with a greater number of samples is needed to clarify association between PIK3CA gene mutations and IGFBP-5 mRNA expression, and also clinical outcome in breast cancer patients.
Evaluating the evaluation of cancer driver genes
Tokheim, Collin J.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Karchin, Rachel
2016-01-01
Sequencing has identified millions of somatic mutations in human cancers, but distinguishing cancer driver genes remains a major challenge. Numerous methods have been developed to identify driver genes, but evaluation of the performance of these methods is hindered by the lack of a gold standard, that is, bona fide driver gene mutations. Here, we establish an evaluation framework that can be applied to driver gene prediction methods. We used this framework to compare the performance of eight such methods. One of these methods, described here, incorporated a machine-learning–based ratiometric approach. We show that the driver genes predicted by each of the eight methods vary widely. Moreover, the P values reported by several of the methods were inconsistent with the uniform values expected, thus calling into question the assumptions that were used to generate them. Finally, we evaluated the potential effects of unexplained variability in mutation rates on false-positive driver gene predictions. Our analysis points to the strengths and weaknesses of each of the currently available methods and offers guidance for improving them in the future. PMID:27911828
Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R
2011-12-08
Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.
2011-01-01
Background Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service. PMID:22152063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Deftereos, Georgios; Finkelstein, Sydney D; Jackson, Sara A; Ellsworth, Eric M G; Krishnamurti, Uma; Liu, Yulin; Silverman, Jan F; Binkert, Candy R; Ujevich, Beth A; Mohanty, Alok
2014-04-01
Fine-needle aspiration (FNA) of pancreatic solid masses can be significantly impacted by sampling variation. Molecular analysis of tumor DNA can be an aid for more definitive diagnosis. The aim of this study was to evaluate how molecular analysis of the cell-free cytocentrifugation supernatant DNA can help reduce sampling variability and increase diagnostic yield. Twenty-three FNA smears from pancreatic solid masses were performed. Remaining aspirates were rinsed for preparation of cytocentrifuged slides or cell blocks. DNA was extracted from supernatant fluid and assessed for DNA quantity spectrophotometrically and for amplifiability by quantitative PCR (qPCR). Supernatants with adequate DNA were analyzed for mutations using PCR/capillary electrophoresis for a broad panel of markers (KRAS point mutation by sequencing, microsatellite fragment analysis for loss of heterozygosity (LOH) of 16 markers at 1p, 3p, 5q, 9p, 10q, 17p, 17q, 21q, and 22q). In selected cases, microdissection of stained cytology smears and/or cytocentrifugation cellular slides were analyzed and compared. In all, 5/23 samples cytologically confirmed as adenocarcinoma showed detectable mutations both in the microdissected slide-based cytology cells and in the cytocentrifugation supernatant. While most mutations detected were present in both microdissected slides and supernatant fluid specimens, the latter showed additional mutations supporting greater sensitivity for detecting relevant DNA damage. Clonality for individual marker mutations was higher in the supernatant fluid than in microdissected cells. Cytocentrifugation supernatant fluid contains levels of amplifiable DNA suitable for mutation detection and characterization. The finding of additional detectable mutations at higher clonality indicates that supernatant fluid may be enriched with tumor DNA. Molecular analysis of the supernatant fluid could serve as an adjunct method to reduce sampling variability and increase diagnostic yield, especially in cases with a high clinical suspicion for malignancy and limited number of atypical cells in the smears.
Callén, E; Tischkowitz, M D; Creus, A; Marcos, R; Bueren, J A; Casado, J A; Mathew, C G; Surrallés, J
2004-01-01
Fanconi anaemia is an autosomal recessive disease characterized by chromosome fragility, multiple congenital abnormalities, progressive bone marrow failure and a high predisposition to develop malignancies. Most of the Fanconi anaemia patients belong to complementation group FA-A due to mutations in the FANCA gene. This gene contains 43 exons along a 4.3-kb coding sequence with a very heterogeneous mutational spectrum that makes the mutation screening of FANCA a difficult task. In addition, as the FANCA gene is rich in Alu sequences, it was reported that Alu-mediated recombination led to large intragenic deletions that cannot be detected in heterozygous state by conventional PCR, SSCP analysis, or DNA sequencing. To overcome this problem, a method based on quantitative fluorescent multiplex PCR was proposed to detect intragenic deletions in FANCA involving the most frequently deleted exons (exons 5, 11, 17, 21 and 31). Here we apply the proposed method to detect intragenic deletions in 25 Spanish FA-A patients previously assigned to complementation group FA-A by FANCA cDNA retroviral transduction. A total of eight heterozygous deletions involving from one to more than 26 exons were detected. Thus, one third of the patients carried a large intragenic deletion that would have not been detected by conventional methods. These results are in agreement with previously published data and indicate that large intragenic deletions are one of the most frequent mutations leading to Fanconi anaemia. Consequently, this technology should be applied in future studies on FANCA to improve the mutation detection rate. Copyright 2003 S. Karger AG, Basel
Detection of novel NF1 mutations and rapid mutation prescreening with Pyrosequencing.
Brinckmann, Anja; Mischung, Claudia; Bässmann, Ingelore; Kühnisch, Jirko; Schuelke, Markus; Tinschert, Sigrid; Nürnberg, Peter
2007-12-01
Neurofibromatosis type 1 (NF1) is caused by mutations in the neurofibromin (NF1) gene. Mutation analysis of NF1 is complicated by its large size, the lack of mutation hotspots, pseudogenes and frequent de novo mutations. Additionally, the search for NF1 mutations on the mRNA level is often hampered by nonsense-mediated mRNA decay (NMD) of the mutant allele. In this study we searched for mutations in a cohort of 38 patients and investigated the relationship between mutation type and allele-specific transcription from the wild-type versus mutant alleles. Quantification of relative mRNA transcript numbers was done by Pyrosequencing, a novel real-time sequencing method whose signals can be quantified very accurately. We identified 21 novel mutations comprising various mutation types. Pyrosequencing detected a definite relationship between allelic NF1 transcript imbalance due to NMD and mutation type in 24 of 29 patients who all carried frame-shift or nonsense mutations. NMD was absent in 5 patients with missense and silent mutations, as well as in 4 patients with splice-site mutations that did not disrupt the reading frame. Pyrosequencing was capable of detecting NMD even when the effects were only moderate. Diagnostic laboratories could thus exploit this effect for rapid prescreening for NF1 mutations as more than 60% of the mutations in this gene disrupt the reading frame and are prone to NMD.
Tong, Xiang; Wang, Ye; Wang, Chengdi; Jin, Jing; Tian, Panwen; Li, Weimin
2018-01-01
Objectives Although different methods have been established to detect epidermal growth factor receptor (EGFR) T790M mutation in circulating tumor DNA (ctDNA), a wide range of diagnostic accuracy values were reported in previous studies. The aim of this meta-analysis was to provide pooled diagnostic accuracy measures for droplet digital PCR (ddPCR) in the diagnosis of EGFR T790M mutation based on ctDNA. Materials and methods A systematic review and meta-analysis were carried out based on resources from Pubmed, Web of Science, Embase and Cochrane Library up to October 11, 2017. Data were extracted to assess the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio (NLR), diagnostic OR (DOR), and areas under the summary receiver-operating characteristic curve (SROC). Results Eleven of 311 studies identified have met the including criteria. The sensitivity and specificity of ddPCR for the detection of T790M mutation in ctDNA ranged from 0.0% to 100.0% and 63.2% to 100.0%, respectively. For the pooled analysis, ddPCR had a performance of 70.1% (95% CI, 62.7%–76.7%) sensitivity, 86.9 % (95% CI, 80.6%–91.7%) specificity, 3.67 (95% CI, 2.33–5.79) PLR, 0.41 (95% CI, 0.32–0.55) NLR, and 10.83 (95% CI, 5.86–20.03) DOR, with the area under the SROC curve being 0.82. Conclusion The ddPCR harbored a good performance for detection of EGFR T790M mutation in ctDNA. PMID:29844700
The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene.
Vaughn, Cecily P; Baker, Christine L; Samowitz, Wade S; Swensen, Jeffrey J
2013-01-01
Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology. Copyright © 2012 Wiley Periodicals, Inc.
Romano, Maria; Di Taranto, Maria Donata; Mirabelli, Peppino; D'Agostino, Maria Nicoletta; Iannuzzi, Arcangelo; Marotta, Gennaro; Gentile, Marco; Raia, Maddalena; Di Noto, Rosa; Del Vecchio, Luigi; Rubba, Paolo; Fortunato, Giuliana
2011-01-01
The main causes of familial hypercholesterolemia (FH) are mutations in LDL receptor (LDLR) gene. Functional studies are necessary to demonstrate the LDLR function impairment caused by mutations and would be useful as a diagnostic tool if they allow discrimination between FH patients and controls. In order to identify the best method to detect LDLR activity, we compared continuous Epstein-Barr virus (EBV)-transformed B-lymphocytes and mitogen stimulated T-lymphocytes. In addition, we characterized both novel and known mutations in the LDLR gene. T-lymphocytes and EBV-transformed B-lymphocytes were obtained from peripheral blood of 24 FH patients and 24 control subjects. Functional assays were performed by incubation with fluorescent LDL followed by flow cytometry analysis. Residual LDLR activity was calculated normalizing fluorescence for the mean fluorescence of controls. With stimulated T-lymphocytes we obtained a better discrimination capacity between controls and FH patients compared with EBV-transformed B-lymphocytes as demonstrated by receiver operating characteristic (ROC) curve analysis (the areas under the curve are 1.000 and 0.984 respectively; P < 0.0001 both). The characterization of LDLR activity through T-lymphocytes is more simple and faster than the use of EBV-transformed B-lymphocytes and allows a complete discrimination between controls and FH patients. Therefore the evaluation of residual LDLR activity could be helpful not only for mutation characterization but also for diagnostic purposes. PMID:21865347
Tafazoli, Alireza; Eshraghi, Peyman; Pantaleoni, Francesca; Vakili, Rahim; Moghaddassian, Morteza; Ghahraman, Martha; Muto, Valentina; Paolacci, Stefano; Golyan, Fatemeh Fardi; Abbaszadegan, Mohammad Reza
2018-03-01
Noonan Syndrome (NS) is an autosomal dominant disorder with many variable and heterogeneous conditions. The genetic basis for 20-30% of cases is still unknown. This study evaluates Iranian Noonan patients both clinically and genetically for the first time. Mutational analysis of PTPN11 gene was performed in 15 Iranian patients, using PCR and Sanger sequencing at phase one. Then, as phase two, Next Generation Sequencing (NGS) in the form of targeted resequencing was utilized for analysis of exons from other related genes. Homology modelling for the novel founded mutations was performed as well. The genotype, phenotype correlation was done according to the molecular findings and clinical features. Previously reported mutation (p.N308D) in some patients and a novel mutation (p.D155N) in one of the patients were identified in phase one. After applying NGS methods, known and new variants were found in four patients in other genes, including: CBL (p. V904I), KRAS (p. L53W), SOS1 (p. I1302V), and SOS1 (p. R552G). Structural studies of two deduced novel mutations in related genes revealed deficiencies in the mutated proteins. Following genotype, phenotype correlation, a new pattern of the presence of intellectual disability in two patients was registered. NS shows strong variable expressivity along the high genetic heterogeneity especially in distinct populations and ethnic groups. Also possibly unknown other causative genes may be exist. Obviously, more comprehensive and new technologies like NGS methods are the best choice for detection of molecular defects in patients for genotype, phenotype correlation and disease management. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.
Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N
2017-12-01
We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.
Zhou, Zhan; Zou, Yangyun; Liu, Gangbiao; Zhou, Jingqi; Wu, Jingcheng; Zhao, Shimin; Su, Zhixi; Gu, Xun
2017-08-29
Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes ( C N / C S ) and normal populations ( p N / p S ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased C N / C S values of human genes in cancer genomes compared with the p N / p S values in human populations. The C N / C S values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.
Liu, X H; Ding, W W; Han, L; Liu, X R; Xiao, Y Y; Yang, J; Mo, Y
2017-10-02
Objective: To analyze the gene mutations and clinical features of patients with Noonan syndrome and hypertrophic cardiomyopathy. Method: Determined the mutation domain in five cases diagnosed with Noonan syndrome and hypertrophic cardiomyopathy and identified the relationship between the mutant domain and hypertrophic cardiomyopathy by searching relevant articles in pubmed database. Result: Three mutant genes (PTPN11 gene in chromosome 12, RIT1 gene in chromosome 1 and RAF1 gene in chromosome 3) in five cases all had been reported to be related to hypertrophic cardiomyopathy. The reported hypertrophic cardiomyopathy relevant genes MYPN, MYH6 and MYBP3 had also been found in case 1 and 2. Patients with same gene mutation had different clinical manifestations. Both case 4 and 5 had RAF1 mutation (c.770C>T). However, case 4 had special face, low IQ, mild pulmonary artery stenosis, and only mild ventricular hypertrophy. Conclusion: Noonan syndrome is a genetic heterogeneity disease. Our study identified specific gene mutations that could result in Noonan syndrome with hypertrophic cardiomyopathy through molecular biology methods. The results emphasize the importance of gene detection in the management of Noonan syndrome.
Cancer-Associated Mutations in Endometriosis without Cancer
Anglesio, M.S.; Papadopoulos, N.; Ayhan, A.; Nazeran, T.M.; Noë, M.; Horlings, H.M.; Lum, A.; Jones, S.; Senz, J.; Seckin, T.; Ho, J.; Wu, R.-C.; Lac, V.; Ogawa, H.; Tessier-Cloutier, B.; Alhassan, R.; Wang, A.; Wang, Y.; Cohen, J.D.; Wong, F.; Hasanovic, A.; Orr, N.; Zhang, M.; Popoli, M.; McMahon, W.; Wood, L.D.; Mattox, A.; Allaire, C.; Segars, J.; Williams, C.; Tomasetti, C.; Boyd, N.; Kinzler, K.W.; Gilks, C.B.; Diaz, L.; Wang, T.-L.; Vogelstein, B.; Yong, P.J.; Huntsman, D.G.; Shih, I.-M.
2017-01-01
BACKGROUND Endometriosis, defined as the presence of ectopic endometrial stroma and epithelium, affects approximately 10% of reproductive-age women and can cause pelvic pain and infertility. Endometriotic lesions are considered to be benign inflammatory lesions but have cancerlike features such as local invasion and resistance to apoptosis. METHODS We analyzed deeply infiltrating endometriotic lesions from 27 patients by means of exomewide sequencing (24 patients) or cancer-driver targeted sequencing (3 patients). Mutations were validated with the use of digital genomic methods in micro-dissected epithelium and stroma. Epithelial and stromal components of lesions from an additional 12 patients were analyzed by means of a droplet digital polymerase-chain-reaction (PCR) assay for recurrent activating KRAS mutations. RESULTS Exome sequencing revealed somatic mutations in 19 of 24 patients (79%). Five patients harbored known cancer driver mutations in ARID1A, PIK3CA, KRAS, or PPP2R1A, which were validated by Safe-Sequencing System or immunohistochemical analysis. The likelihood of driver genes being affected at this rate in the absence of selection was estimated at P = 0.001 (binomial test). Targeted sequencing and a droplet digital PCR assay identified KRAS mutations in 2 of 3 patients and 3 of 12 patients, respectively, with mutations in the epithelium but not the stroma. One patient harbored two different KRAS mutations, c.35G→T and c.35G→C, and another carried identical KRAS c.35G→A mutations in three distinct lesions. CONCLUSIONS We found that lesions in deep infiltrating endometriosis, which are associated with virtually no risk of malignant transformation, harbor somatic cancer driver mutations. Ten of 39 deep infiltrating lesions (26%) carried driver mutations; all the tested somatic mutations appeared to be confined to the epithelial compartment of endometriotic lesions. PMID:28489996
[Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].
Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen
2018-02-10
OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.
Qu, Ling-Hui; Jin, Xin; Xu, Hai-Wei; Li, Shi-Ying; Yin, Zheng-Qin
2015-02-01
Usher syndrome (USH) is the most common cause of combined blindness and deafness inherited in an autosomal recessive mode. Molecular diagnosis is of great significance in revealing the molecular pathogenesis and aiding the clinical diagnosis of this disease. However, molecular diagnosis remains a challenge due to high phenotypic and genetic heterogeneity in USH. This study explored an approach for detecting disease-causing genetic mutations in candidate genes in five index cases from unrelated USH families based on targeted next-generation sequencing (NGS) technology. Through systematic data analysis using an established bioinformatics pipeline and segregation analysis, 10 pathogenic mutations in the USH disease genes were identified in the five USH families. Six of these mutations were novel: c.4398G > A and EX38-49del in MYO7A, c.988_989delAT in USH1C, c.15104_15105delCA and c.6875_6876insG in USH2A. All novel variations segregated with the disease phenotypes in their respective families and were absent from ethnically matched control individuals. This study expanded the mutation spectrum of USH and revealed the genotype-phenotype relationships of the novel USH mutations in Chinese patients. Moreover, this study proved that targeted NGS is an accurate and effective method for detecting genetic mutations related to USH. The identification of pathogenic mutations is of great significance for elucidating the underlying pathophysiology of USH.
Gentilini, Fabio; Turba, Maria E
2014-01-01
A novel technique, called Divergent, for single-tube real-time PCR genotyping of point mutations without the use of fluorescently labeled probes has recently been reported. This novel PCR technique utilizes a set of four primers and a particular denaturation temperature for simultaneously amplifying two different amplicons which extend in opposite directions from the point mutation. The two amplicons can readily be detected using the melt curve analysis downstream to a closed-tube real-time PCR. In the present study, some critical aspects of the original method were specifically addressed to further implement the technique for genotyping the DNM1 c.G767T mutation responsible for exercise-induced collapse in Labrador retriever dogs. The improved Divergent assay was easily set up using a standard two-step real-time PCR protocol. The melting temperature difference between the mutated and the wild-type amplicons was approximately 5°C which could be promptly detected by all the thermal cyclers. The upgraded assay yielded accurate results with 157pg of genomic DNA per reaction. This optimized technique represents a flexible and inexpensive alternative to the minor grove binder fluorescently labeled method and to high resolution melt analysis for high-throughput, robust and cheap genotyping of single nucleotide variations. Copyright © 2014 Elsevier B.V. All rights reserved.
Sahli, Chaima Abdelhafidh; Ben Salem, Ikbel; Jouini, Latifa; Laouini, Naouel; Dabboubi, Rym; Hadj Fredj, Sondes; Siala, Hajer; Othmeni, Rym; Dakhlaoui, Boutheina; Fattoum, Slaheddine; Bibi, Amina; Messaoud, Taieb
2016-09-01
β-Thalassemia is one of the most prevalent worldwide autosomal recessive disorders. It presents a great molecular heterogeneity resulting from more than 200 causative mutations in the β-globin gene. In Tunisia, β-thalassemia represents the most prevalent monogenic hemoglobin disorder with 2.21% of carriers. Efficient and reliable mutation-screening methods are essential in order to establish appropriate prevention programs for at risk couples. The aim of the present study is to develop an efficient method based on the denaturing high-performance liquid chromatography (DHPLC) in which the whole β-globin gene (HBB) is screened for mutations covering about 90% of the spectrum. We have performed the validation of a DHPLC assay for direct genotyping of 11 known β-thalassemia mutations in the Tunisian population. DHPLC assay was established based on the analysis of 62 archival β-thalassemia samples previously genotyped then validated with full concordance on 50 tests with blind randomized samples previously genotyped with DNA sequencing and with 96% of consistency on 40 samples as a prospective study. Compared to other genotyping techniques, the DHPLC method can meet the requirements of direct genotyping of known β-thalassemia mutations in Tunisia and to be applied as a powerful tool for the genetic screening of prenatal and postnatal individuals. © 2016 Wiley Periodicals, Inc.
MELAS syndrome in a patient with a point mutation in MTTS1.
Lindberg, C; Moslemi, A-R; Oldfors, A
2008-02-01
BACKGROUND, OBJECTIVE AND METHODS: We describe a female patient with a mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome. As a child, she developed epilepsy and stroke-like episodes giving cognitive impairment and ataxia but no hearing impairment. At the age of 44 years, she suffered a cerebral sinus thrombosis which was warfarin treated. One month later, she developed an episode of severe acidosis associated with encephalopathy and myelopathy. She was found to harbour a 7512T>C mutation in the mitochondrial encoded tRNA(Ser(UCN)) gene (MTTS1). The mutation load was 91% in muscle and 24% in blood. Enzyme histochemical analysis of the muscle tissue showed numerous cytochrome c oxidase (COX)-negative fibres. Restriction fragment length polymorphism (RFLP) analysis of single muscle fibres showed significantly higher level (median 97%, range: 94-99%) of the mutation in the COX-negative fibres compared with COX-positive fibres (median 36%, range: 12-91%), demonstrating the pathogenic effect of the mutation. Different levels of heteroplasmy (range 34-61%) were detected in hair shafts analysed by RFLP. This case adds to the spectrum of clinical presentations, i.e. sinus thrombosis, in patients having MTTS1 mutations.
Mutational analysis of AGXT in two Chinese families with primary hyperoxaluria type 1
2014-01-01
Background Primary hyperoxaluria type 1 is a rare autosomal recessive disease of glyoxylate metabolism caused by a defect in the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) that leads to hyperoxaluria, recurrent urolithiasis, and nephrocalcinosis. Methods Two unrelated patients with recurrent urolithiasis, along with members of their families, exhibited mutations in the AGXT gene by PCR direct sequencing. Results Two heterozygous mutations that predict truncated proteins, p.S81X and p.S275delinsRAfs, were identified in one patient. The p.S81X mutation is novel. Two heterozygous missense mutations, p.M1T and p.I202N, were detected in another patient but were not identified in her sibling. These four mutations were confirmed to be of paternal and maternal origin. Conclusions These are the first cases of primary hyperoxaluria type 1 to be diagnosed by clinical manifestations and AGXT gene mutations in mainland China. The novel p.S81X and p.I202N mutations detected in our study extend the spectrum of known AGXT gene mutations. PMID:24934730
Zhu, Ye; Gu, Xiang; Xu, Chao
2016-01-01
Background: Cardiovascular diseases, including dilated cardiomyopathy (DCM) and hypertension, are the leading cause of death worldwide. The role of mitochondrial DNA (mtDNA) in the pathogenesis of these diseases has not been completely clarified. In this study, we evaluate whether A8701G mutation is associated with maternally inherited hypertension and DCM in a Chinese pedigree of a consanguineous marriage. Methods: Fourteen subjects in a three-generation Han Chinese family with hypertension and DCM, in which consanguineous marriage was present in the parental generation, were interviewed. We divided all the family members into case (7 maternal members) and control group (7 nonmaternal members) for comparison. Clinical evaluations and sequence analysis of mtDNA were obtained from all participants. Frequency differences between maternal and nonmaternal members were tested to locate the disease-associated mutations. Results: The majority of the family members presented with a maternal inheritance of hypertension and DCM. Sequence analysis of mtDNA in this pedigree identified eight mtDNA mutations. Among the mutations identified, there was only one significant mutation: A8701G (P = 0.005), which is a homoplasmic mitochondrial missense mutation in all the matrilineal relatives. There was no clear evidence for any synergistic effects between A8701G and other mutations. Conclusions: A8701G mutation may act as an inherited risk factor for the matrilineal transmission of hypertension and DCM in conjunction with genetic disorders caused by consanguineous marriage. PMID:26831225
Haraldsdottir, Sigurdis; Hampel, Heather; Tomsic, Jerneja; Frankel, Wendy L.; Pearlman, Rachel; de la Chapelle, Albert; Pritchard, Colin C.
2014-01-01
Background & Aims Patients with Lynch syndrome carry germline mutations in single alleles of genes encoding the MMR proteins MLH1, MSH2, MSH6 and PMS2; when the second allele becomes mutated, cancer can develop. Increased screening for Lynch syndrome has identified patients with tumors that have deficiency in MMR, but no germline mutations in genes encoding MMR proteins. We investigated whether tumors with deficient MMR had acquired somatic mutations in patients without germline mutations in MMR genes using next-generation sequencing. Methods We analyzed blood and tumor samples from 32 patients with colorectal or endometrial cancer who participated in Lynch syndrome screening studies in Ohio and were found to have tumors with MMR deficiency (based on microsatellite instability and/or absence of MMR proteins in immunohistochemical analysis, without hypermethylation of MLH1), but no germline mutations in MMR genes. Tumor DNA was sequenced for MLH1, MSH2, MSH6, PMS2, EPCAM, POLE and POLD1 with ColoSeq and mutation frequencies were established. Results Twenty-two of 32 patients (69%) were found to have two somatic (tumor) mutations in MMR genes encoding proteins that were lost from tumor samples, based on immunohistochemistry. Of the 10 tumors without somatic mutations in MMR genes, 3 had somatic mutations with possible loss of heterozygosity that could lead to MMR deficiency, 6 were found to be false-positive results (19%), and 1 had no mutations known to be associated with MMR deficiency. All of the tumors found to have somatic MMR mutations were of the hypermutated phenotype (>12 mutations/Mb); 6 had mutation frequencies >200 per Mb, and 5 of these had somatic mutations in POLE, which encodes a DNA polymerase. Conclusions Some patients are found to have tumors with MMR deficiency during screening for Lynch syndrome, yet have no identifiable germline mutations in MMR genes. We found that almost 70% of these patients acquire somatic mutations in MMR genes, leading to a hypermutated phenotype of tumor cells. Patients with colon or endometrial cancers with MMR deficiency not explained by germline mutations might undergo analysis for tumor mutations in MMR genes, to guide future surveillance guidelines. PMID:25194673
Zucchetto, Antonella; Bomben, Riccardo; Bo, Michele Dal; Nanni, Paola; Bulian, Pietro; Rossi, Francesca Maria; Del Principe, Maria Ilaria; Santini, Simone; Del Poeta, Giovanni; Degan, Massimo; Gattei, Valter
2006-07-15
Expression of T cell specific zeta-associated protein 70 (ZAP-70) by B-cell chronic lymphocytic leukemia (B-CLL) cells, as investigated by flow cytometry, has both prognostic relevance and predictive power as surrogate for immunoglobulin heavy chain variable region (IgV(H)) mutations, although a standardization of the cytometric protocol is still lacking. Flow cytometric analyses for ZAP-70 were performed in peripheral blood samples from 145 B-CLL (124 with IgV(H) mutations) by a standard three-color protocol. Identification of ZAP-70(+) cell population was based on an external negative control, i.e., the isotypic control (ISO method) or an internal positive control, i.e., the population of residual normal T/NK cells (TNK method). A comparison between these two approaches was performed. While 86/145 cases were concordant as for ZAP-70 expression according to the two methods (ISO(+)TNK(+) or ISO(-)TNK(-)), 59/145 cases had discordant ZAP-70 expression, mainly (56/59) showing a ISO(+)TNK(-) profile. These latter cases express higher levels of ZAP-70 in their normal T cell component. Moreover, discordant ISO(+)TNK(-) cases had a IgV(H) gene mutation profile similar to that of concordantly positive cases and different from ZAP-70 concordantly negative B-CLL. Analysis of ZAP-70 expression by B-CLL cells by using the ISO method allows to overcome the variability in the expression of ZAP-70 by residual T cells and yields a better correlation with IgV(H) gene mutations. A receiver operating characteristic analysis suggests to employ a higher cut-off than the commonly used 20%. A parallel evaluation of the prognostic value of ZAP-70 expression, as determined according to the ISO and TNK methods, is still needed. (c) 2006 International Society for Analytical Cytology.
Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...
2014-09-01
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
A Novel Antibody Humanization Method Based on Epitopes Scanning and Molecular Dynamics Simulation
Zhao, Bin-Bin; Gong, Lu-Lu; Jin, Wen-Jing; Liu, Jing-Jun; Wang, Jing-Fei; Wang, Tian-Tian; Yuan, Xiao-Hui; He, You-Wen
2013-01-01
1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs). The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs) graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs) that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD) simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs) of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR) assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization. PMID:24278299
Single-cell paired-end genome sequencing reveals structural variation per cell cycle
Voet, Thierry; Kumar, Parveen; Van Loo, Peter; Cooke, Susanna L.; Marshall, John; Lin, Meng-Lay; Zamani Esteki, Masoud; Van der Aa, Niels; Mateiu, Ligia; McBride, David J.; Bignell, Graham R.; McLaren, Stuart; Teague, Jon; Butler, Adam; Raine, Keiran; Stebbings, Lucy A.; Quail, Michael A.; D’Hooghe, Thomas; Moreau, Yves; Futreal, P. Andrew; Stratton, Michael R.; Vermeesch, Joris R.; Campbell, Peter J.
2013-01-01
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis. PMID:23630320
Mohammadi, Faezeh; Hashemi, Seyed Jamal; Zoll, Jan; Melchers, Willem J. G.; Rafati, Haleh; Dehghan, Parvin; Rezaie, Sasan; Tolooe, Ali; Tamadon, Yalda; van der Lee, Henrich A.; Verweij, Paul E.
2015-01-01
We employed an endpoint genotyping method to update the prevalence rate of positivity for the TR34/L98H mutation (a 34-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination with a substitution at codon L98) and the TR46/Y121F/T289A mutation (a 46-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination with substitutions at codons Y121 and T289) among clinical Aspergillus fumigatus isolates obtained from different regions of Iran over a recent 5-year period (2010 to 2014). The antifungal activities of itraconazole, voriconazole, and posaconazole against 172 clinical A. fumigatus isolates were investigated using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. For the isolates with an azole resistance phenotype, the cyp51A gene and its promoter were amplified and sequenced. In addition, using a LightCycler 480 real-time PCR system, a novel endpoint genotyping analysis method targeting single-nucleotide polymorphisms was evaluated to detect the L98H and Y121F mutations in the cyp51A gene of all isolates. Of the 172 A. fumigatus isolates tested, the MIC values of itraconazole (≥16 mg/liter) and voriconazole (>4 mg/liter) were high for 6 (3.5%). Quantitative analysis of single-nucleotide polymorphisms showed the TR34/L98H mutation in the cyp51A genes of six isolates. No isolates harboring the TR46/Y121F/T289A mutation were detected. DNA sequencing of the cyp51A gene confirmed the results of the novel endpoint genotyping method. By microsatellite typing, all of the azole-resistant isolates had genotypes different from those previously recovered from Iran and from the Dutch TR34/L98H controls. In conclusion, there was not a significant increase in the prevalence of azole-resistant A. fumigatus isolates harboring the TR34/L98H resistance mechanism among isolates recovered over a recent 5-year period (2010 to 2014) in Iran. A quantitative assay detecting a single-nucleotide polymorphism in the cyp51A gene of A. fumigatus is a reliable tool for the rapid screening and monitoring of TR34/L98H- and TR46/Y121F/T289A-positive isolates and can easily be incorporated into clinical mycology algorithms. PMID:26525787
A Novel Assay for the Identification of NOTCH1 PEST Domain Mutations in Chronic Lymphocytic Leukemia
Petroni, Roberta Cardoso; Muto, Nair Hideko; Sitnik, Roberta; de Carvalho, Flavia Pereira; Bacal, Nydia Strachman; Velloso, Elvira Deolinda Rodrigues Pereira; Oliveira, Gislaine Borba; Pinho, João Renato Rebello; Torres, Davi Coe; Mansur, Marcela Braga; Hassan, Rocio; Lorand-Metze, Irene Gyongyvér Heidemarie; Chiattone, Carlos Sérgio; Hamerschlak, Nelson; Mangueira, Cristovão Luis Pitangueira
2016-01-01
Aims. To develop a fast and robust DNA-based assay to detect insertions and deletions mutations in exon 34 that encodes the PEST domain of NOTCH1 in order to evaluate patients with chronic lymphocytic leukemia (CLL). Methods. We designed a multiplexed allele-specific polymerase chain reaction (PCR) combined with a fragment analysis assay to detect specifically the mutation c.7544_7545delCT and possibly other insertions and deletions in exon 34 of NOTCH1. Results. We evaluated our assay in peripheral blood samples from two cohorts of patients with CLL. The frequency of NOTCH1 mutations was 8.4% in the first cohort of 71 unselected CLL patients. We then evaluated a second cohort of 26 CLL patients with known cytogenetic abnormalities that were enriched for patients with trisomy 12. NOTCH1 mutations were detected in 43.7% of the patients with trisomy 12. Conclusions. We have developed a fast and robust assay combining allele-specific PCR and fragment analysis able to detect NOTCH1 PEST domain insertions and deletions. PMID:28074183
Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla
2018-05-31
Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.
2013-01-01
Background Less than 20% of Pakistani women with early-onset or familial breast/ovarian cancer harbor germ line mutations in the high-penetrance genes BRCA1, BRCA2 and TP53. Thus, mutations in other genes confer genetic susceptibility to breast cancer, of which CHEK2 is a plausible candidate. CHEK2 encodes a checkpoint kinase, involved in response to DNA damage. Methods In the present study we assessed the prevalence of CHEK2 germ line mutations in 145 BRCA1/2-negative early-onset and familial breast/ovarian cancer patients from Pakistan (Group 1). Mutation analysis of the complete CHEK2 coding region was performed using denaturing high-performance liquid chromatography analysis, followed by DNA sequencing of variant fragments. Results Two potentially deleterious missense mutations, c.275C>G (p.P92R) and c.1216C>T, (p.R406C), were identified (1.4%). The c.275C>G mutation is novel and has not been described in other populations. It was detected in a 30-year-old breast cancer patient with a family history of breast and multiple other cancers. The c.1216C>T mutation was found in a 34-year-old ovarian cancer patient from a family with two breast cancer cases. Both mutations were not detected in 229 recently recruited BRCA1/2-negative high risk patients (Group 2). Conclusion Our findings suggest that CHEK2 mutations may not contribute significantly to breast/ovarian cancer risk in Pakistani women. PMID:23806170
[Analysis of MAT1A gene mutations in a child affected with simple hypermethioninemia].
Sun, Yun; Ma, Dingyuan; Wang, Yanyun; Yang, Bin; Jiang, Tao
2017-02-10
To detect potential mutations of MAT1A gene in a child suspected with simple hypermethioninemia by MS/MS neonatal screening. Clinical data of the child was collected. Genomic DNA was extracted by a standard method and subjected to targeted sequencing using an Ion Ampliseq TM Inherited Disease Panel. Detected mutations were verified by Sanger sequencing. The child showed no clinical features except evaluated methionine. A novel compound mutation of the MAT1A gene, i.e., c.345delA and c.529C>T, was identified in the child. His father and mother were found to be heterozygous for the c.345delA mutation and c.529C>T mutation, respectively. The compound mutation c.345delA and c.529C>T of the MAT1A gene probably underlie the disease in the child. The semi-conductor sequencing has provided an important means for the diagnosis of hereditary diseases.
Shukla, Rohit; Shukla, Harish; Tripathi, Timir
2018-01-01
Mycobacterium tuberculosis isocitrate lyase (MtbICL) is a crucial enzyme of the glyoxylate cycle and is a validated anti-tuberculosis drug target. Structurally distant, non-active site mutation (H46A) in MtbICL has been found to cause loss of enzyme activity. The aim of the present work was to explore the structural alterations induced by H46A mutation that caused the loss of enzyme activity. The structural and dynamic consequences of H46A mutation were studied using multiple computational methods such as docking, molecular dynamics simulation and residue interaction network analysis (RIN). Principal component analysis and cross correlation analysis revealed the difference in conformational flexibility and collective modes of motions between the wild-type and mutant enzyme, particularly in the active site region. RIN analysis revealed that the active site geometry was disturbed in the mutant enzyme. Thus, the dynamic perturbation of the active site led to enzyme transition from its active form to inactive form upon mutation. The computational analyses elucidated the mutant-specific conformational alterations, differential dominant motions, and anomalous residue level interactions that contributed to the abrogated function of mutant MtbICL. An understanding of interactions of mutant enzymes may help in modifying the existing drugs and designing improved drugs for successful control of tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
De Francesco, Vincenzo; Zullo, Angelo; Giorgio, Floriana; Saracino, Ilaria; Zaccaro, Cristina; Hassan, Cesare; Ierardi, Enzo; Di Leo, Alfredo; Fiorini, Giulia; Castelli, Valentina; Lo Re, Giovanna; Vaira, Dino
2014-03-01
Primary clarithromycin resistance is the main factor affecting the efficacy of Helicobacter pylori therapy. This study aimed: (i) to assess the concordance between phenotypic (culture) and genotypic (real-time PCR) tests in resistant strains; (ii) to search, in the case of disagreement between the methods, for point mutations other than those reported as the most frequent in Europe; and (iii) to compare the MICs associated with the single point mutations. In order to perform real-time PCR, we retrieved biopsies from patients in whom H. pylori infection was successful diagnosed by bacterial culture and clarithromycin resistance was assessed using the Etest. Only patients who had never been previously treated, and with H. pylori strains that were either resistant exclusively to clarithromycin or without any resistance, were included. Biopsies from 82 infected patients were analysed, including 42 strains that were clarithromycin resistant and 40 that were clarithromycin susceptible on culture. On genotypic analysis, at least one of the three most frequently reported point mutations (A2142C, A2142G and A2143G) was detected in only 23 cases (54.8%), with a concordance between the two methods of 0.67. Novel point mutations (A2115G, G2141A and A2144T) were detected in a further 14 out of 19 discordant cases, increasing the resistance detection rate of PCR to 88% (P<0.001; odds ratio 6.1, 95% confidence interval 2-18.6) and the concordance to 0.81. No significant differences in MIC values among different point mutations were observed. This study suggests that: (i) the prevalence of the usually reported point mutations may be decreasing, with a concomitant emergence of new mutations; (ii) PCR-based methods should search for at least six point mutations to achieve good accuracy in detecting clarithromycin resistance; and (iii) none of the tested point mutations is associated with significantly higher MIC values than the others.
NASA Technical Reports Server (NTRS)
Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.
1995-01-01
A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.
Reck, Martin; Hagiwara, Koichi; Han, Baohui; Tjulandin, Sergei; Grohé, Christian; Yokoi, Takashi; Morabito, Alessandro; Novello, Silvia; Arriola, Edurne; Molinier, Olivier; McCormack, Rose; Ratcliffe, Marianne; Normanno, Nicola
2016-10-01
To offer patients with EGFR mutation-positive advanced NSCLC appropriate EGFR tyrosine kinase inhibitor treatment, mutation testing of tumor samples is required. However, tissue/cytologic samples are not always available or evaluable. The large, noninterventional diagnostic ASSESS study (NCT01785888) evaluated the utility of circulating free tumor-derived DNA (ctDNA) from plasma for EGFR mutation testing. ASSESS was conducted in 56 centers (in Europe and Japan). Eligible patients (with newly diagnosed locally advanced/metastatic treatment-naive advanced NSCLC) provided diagnostic tissue/cytologic and plasma samples. DNA extracted from tissue/cytologic samples was subjected to EGFR mutation testing using local practices; designated laboratories performed DNA extraction/mutation testing of blood samples. The primary end point was level of concordance of EGFR mutation status between matched tissue/cytologic and plasma samples. Of 1311 patients enrolled, 1288 were eligible. Concordance of mutation status in 1162 matched samples was 89% (sensitivity 46%, specificity 97%, positive predictive value 78%, and negative predictive value 90%). A group of 25 patients with apparent false-positive plasma results was overrepresented for cytologic samples, use of less sensitive tissue testing methodologies, and smoking habits associated with high EGFR mutation frequency, indicative of false-negative tumor results. In cases in which plasma and tumor samples were tested with identical highly sensitive methods, positive predictive value/sensitivity were generally improved. These real-world data suggest that ctDNA is a feasible sample for EGFR mutation analysis. It is important to conduct mutation testing of both tumor and plasma samples in specialized laboratories, using robust/sensitive methods to ensure that patients receive appropriate treatments that target the molecular features of their disease. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou
2017-01-01
Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259
Phuah, Sze Yee; Lee, Sheau Yee; Kang, Peter; Kang, In Nee; Yoon, Sook-Yee; Thong, Meow Keong; Hartman, Mikael; Sng, Jen-Hwei; Yip, Cheng Har; Taib, Nur Aishah Mohd; Teo, Soo-Hwang
2013-01-01
Background The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations. Methods We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women. Results By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations. PMID:23977390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choy, F.Y.M.; Wei, C.; Applegarth, D.A.
1994-06-01
Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. Thismore » missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.« less
van den Oever, Jessica M E; van Minderhout, Ivonne J H M; Harteveld, Cornelis L; den Hollander, Nicolette S; Bakker, Egbert; van der Stoep, Nienke; Boon, Elles M J
2015-09-01
The challenge in noninvasive prenatal diagnosis for monogenic disorders lies in the detection of low levels of fetal variants in the excess of maternal cell-free plasma DNA. Next-generation sequencing, which is the main method used for noninvasive prenatal testing and diagnosis, can overcome this challenge. However, this method may not be accessible to all genetic laboratories. Moreover, shotgun next-generation sequencing as, for instance, currently applied for noninvasive fetal trisomy screening may not be suitable for the detection of inherited mutations. We have developed a sensitive, mutation-specific, and fast alternative for next-generation sequencing-mediated noninvasive prenatal diagnosis using a PCR-based method. For this proof-of-principle study, noninvasive fetal paternally inherited mutation detection was performed using cell-free DNA from maternal plasma. Preferential amplification of the paternally inherited allele was accomplished through a personalized approach using a blocking probe against maternal sequences in a high-resolution melting curve analysis-based assay. Enhanced detection of the fetal paternally inherited mutation was obtained for both an autosomal dominant and a recessive monogenic disorder by blocking the amplification of maternal sequences in maternal plasma. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain
Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare
2011-01-01
Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876
Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients
Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian
2016-01-01
AIM: To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. METHODS: In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. RESULTS: Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). CONCLUSION: Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients. PMID:26900293
The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.
Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena
2015-11-01
Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.
A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger
2018-04-19
Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.
Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina; Jonas, Kim C.; Peltoketo, Hellevi; Christiansen, Ole B.; Kairys, Visvaldas; Kivi, Gaily; Steffensen, Rudi; Huhtaniemi, Ilpo T.; Laan, Maris
2012-01-01
Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ∼50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8. PMID:22554618
Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma.
Song, Zhengbo; Yu, Xinmin; Zhang, Yiping
2016-10-01
PIK3CA mutation represents a clinical subset of diverse carcinomas. We explored the status of PIK3CA mutation and evaluated its genetic variability, treatment, and prognosis in patients with lung adenocarcinoma. A total of 810 patients with completely resected lung adenocarcinoma were recruited between 2008 and 2013. The status of PIK3CA mutation and other three genes, that is, EGFR mutation, KRAS mutation and ALK fusion were examined by reverse transcription-polymerase chain reaction (RT-PCR). Survival curves were plotted with the Kaplan-Meier method and log-rank for comparison. Cox proportional hazard model was performed for multivariate analysis. Among the 810 patients, 23 cases of PIK3CA mutation were identified with a frequency of 2.8%. There were 14 men and 9 women with a median age of 61 years. Seventeen tumors revealed concurrent gene abnormalities of EGFR mutation (n = 12), KRAS mutation (n = 3), and ALK fusion (n = 2). Seven patients with EGFR & PIK3CA mutations recurred and administrated of EGFR-TKIs yielded a median progression free-survival of 6.0 months. Among four eviromous-treated patients, stable disease was observed in three patients with a median Progression-free survival (PFS) of 3.5 months. Patients with and without PIK3CA mutation had different overall survivals (32.2 vs. 49.6 months, P = 0.003). Multivariate analysis revealed that PIK3CA mutation was an independent predictor of poor overall survival (HR = 2.37, P = 0.017). The frequency of PIK3CA mutation was around 2.8% in the Chinese patients of lung adenocarcinoma. PIK3CA mutation was associated with reduced PFS of EGFR-TKIs treatment and shorter overall survival. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Holocarboxylase synthetase deficiency: novel clinical and molecular findings.
Tammachote, R; Janklat, S; Tongkobpetch, S; Suphapeetiporn, K; Shotelersuk, V
2010-07-01
Multiple carboxylase deficiency (MCD) is an autosomal recessive metabolic disorder caused by defective activity of biotinidase or holocarboxylase synthetase (HLCS) in the biotin cycle. Clinical symptoms include skin lesions and severe metabolic acidosis. Here, we reported four unrelated Thai patients with MCD, diagnosed by urine organic acid analysis. Unlike Caucasians, which biotinidase deficiency has been found to be more common, all of our four Thai patients were affected by HLCS deficiency. Instead of the generally recommended high dose of biotin, our patients were given biotin at 1.2 mg/day. This low-dose biotin significantly improved their clinical symptoms and stabilized the metabolic state on long-term follow-up. Mutation analysis by polymerase chain reaction-sequencing of the entire coding region of the HLCS gene revealed the c.1522C>T (p.R508W) mutation in six of the eight mutant alleles. This suggests it as the most common mutation in the Thai population, which paves the way for a rapid and unsophisticated diagnostic method for the ethnic Thai. Haplotype analysis revealed that the c.1522C>T was on three different haplotypes suggesting that it was recurrent, not caused by a founder effect. In addition, a novel mutation, c.1513G>C (p.G505R), was identified, expanding the mutational spectrum of this gene.
A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract
Yang, Juhua; Zhu, Yihua; Gu, Feng; He, Xiang; Cao, Zongfu; Li, Xuexi; Tong, Yi
2008-01-01
Purpose To identify the molecular defect underlying an autosomal dominant congenital nuclear cataract in a Chinese family. Methods Twenty-two members of a three-generation pedigree were recruited, clinical examinations were performed, and genomic DNA was extracted from peripheral blood leukocytes. All members were genotyped with polymorphic microsatellite markers adjacent to each of the known cataract-related genes. Linkage analysis was performed after genotyping. Candidate genes were screened for mutation using direct sequencing. Individuals were screened for presence of a mutation by restriction fragment length polymorphism (RFLP) analysis. Results Linkage analysis identified a maximum LOD score of 3.31 (recombination fraction [θ]=0.0) with marker D22S1167 on chromosome 22, which flanks the β-crystallin gene cluster (CRYBB3, CRYBB2, CRYBB1, and CRYBA4). Sequencing the coding regions and the flanking intronic sequences of these four candidate genes identified a novel, heterozygous C→T transition in exon 6 of CRYBB1 in the affected individuals of the family. This single nucleotide change introduced a novel BfaI site and was predicted to result in a nonsense mutation at codon 223 that changed a phylogenetically conserved amino acid to a stop codon (p.Q223X). RFLP analysis confirmed that this mutation co-segregated with the disease phenotype in all available family members and was not found in 100 normal unrelated individuals from the same ethnic background. Conclusions This study has identified a novel nonsense mutation in CRYBB1 (p.Q223X) associated with autosomal dominant congenital nuclear cataract. PMID:18432316
Two novel disease-causing mutations in the CLRN1 gene in patients with Usher syndrome type 3
García-García, Gema; Aparisi, María J.; Rodrigo, Regina; Sequedo, María D.; Espinós, Carmen; Rosell, Jordi; Olea, José L.; Mendívil, M. Paz; Ramos-Arroyo, María A; Ayuso, Carmen; Jaijo, Teresa; Aller, Elena
2012-01-01
Purpose To identify the genetic defect in Spanish families with Usher syndrome (USH) and probable involvement of the CLRN1 gene. Methods DNA samples of the affected members of our cohort of USH families were tested using an USH genotyping array, and/or genotyped with polymorphic markers specific for the USH3A locus. Based on these previous analyses and clinical findings, CLRN1 was directly sequenced in 17 patients susceptible to carrying mutations in this gene. Results Microarray analysis revealed the previously reported mutation p.Y63X in two unrelated patients, one of them homozygous for the mutation. After CLRN1 sequencing, we found two novel mutations, p.R207X and p.I168N. Both novel mutations segregated with the phenotype. Conclusions To date, 18 mutations in CLRN1 have been reported. In this work, we report two novel mutations and a third one previously identified in the Spanish USH sample. The prevalence of CLRN1 among our patients with USH is low. PMID:23304067
Statistical Coupling Analysis-Guided Library Design for the Discovery of Mutant Luciferases.
Liu, Mira D; Warner, Elliot A; Morrissey, Charlotte E; Fick, Caitlyn W; Wu, Taia S; Ornelas, Marya Y; Ochoa, Gabriela V; Zhang, Brendan S; Rathbun, Colin M; Porterfield, William B; Prescher, Jennifer A; Leconte, Aaron M
2018-02-06
Directed evolution has proven to be an invaluable tool for protein engineering; however, there is still a need for developing new approaches to continue to improve the efficiency and efficacy of these methods. Here, we demonstrate a new method for library design that applies a previously developed bioinformatic method, Statistical Coupling Analysis (SCA). SCA uses homologous enzymes to identify amino acid positions that are mutable and functionally important and engage in synergistic interactions between amino acids. We use SCA to guide a library of the protein luciferase and demonstrate that, in a single round of selection, we can identify luciferase mutants with several valuable properties. Specifically, we identify luciferase mutants that possess both red-shifted emission spectra and improved stability relative to those of the wild-type enzyme. We also identify luciferase mutants that possess a >50-fold change in specificity for modified luciferins. To understand the mutational origin of these improved mutants, we demonstrate the role of mutations at N229, S239, and G246 in altered function. These studies show that SCA can be used to guide library design and rapidly identify synergistic amino acid mutations from a small library.
Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.
2014-01-01
We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270
DNA melting analysis: application of the "open tube" format for detection of mutant KRAS.
Botezatu, Irina V; Kondratova, Valentina N; Shelepov, Valery P; Lichtenstein, Anatoly V
2011-12-15
High-resolution melting (HRM) analysis is a very effective method for genotyping and mutation scanning that is usually performed just after PCR amplification (the "closed tube" format). Though simple and convenient, the closed tube format makes the HRM dependent on the PCR mix, not generally optimal for DNA melting analysis. Here, the "open tube" format, namely the post-PCR optimization procedure (amplicon shortening and solution chemistry modification), is proposed. As a result, mutation scanning of short amplicons becomes feasible on a standard real-time PCR instrument (not primarily designed for HRM) using SYBR Green I. This approach has allowed us to considerably enhance the sensitivity of detecting mutant KRAS using both low- and high-resolution systems (the Bio-Rad iQ5-SYBR Green I and Bio-Rad CFX96-EvaGreen, respectively). The open tube format, though more laborious than the closed tube one, can be used in situations when maximal sensitivity of the method is needed. It also permits standardization of DNA melting experiments and the introduction of instruments of a "lower level" into the range of those suitable for mutation scanning. Copyright © 2011 Elsevier Inc. All rights reserved.
The contribution of GPR98 and DFNB31 genes to a Spanish Usher syndrome type 2 cohort
García-García, Gema; Besnard, Thomas; Baux, David; Vaché, Christel; Aller, Elena; Malcolm, Sue; Claustres, Mireille; Millan, Jose M.
2013-01-01
Background Usher syndrome type 2 (USH2) is an autosomal recessive disease characterized by moderate to severe hearing loss and retinitis pigmentosa. To date, three disease-causing genes have been identified, USH2A, GPR98, and DFNB31, of which USH2A is clearly the major contributor. The aim of this work was to determine the contribution of GPR98 and DFNB31 genes in a Spanish cohort of USH2A negative patients using exhaustive molecular analysis, including sequencing, dosage, and splicing analysis. Methods Linkage analysis was performed to prioritize the gene to study, followed by sequencing of exons and intron-exon boundaries of the selected gene, GPR98 (90 exons) or DFNB31 (12 exons). Functional splicing analyses and comparative genomic hybridization array to detect large rearrangements were performed when appropriate. Results We confirmed that mutations in GPR98 contribute a significant but minor role to Usher syndrome type 2. In a group of patients referred for molecular diagnosis, 43 had been found to be positive for USH2A mutations, the remaining 19 without USH2A alterations were screened, and seven different mutations were identified in the GPR98 gene in seven patients (five in the homozygous state), of which six were novel. All detected mutations result in a truncated protein; deleterious missense mutations were not found. No pathological mutations were identified in the DFNB31 gene. Conclusions In Spain, USH2A and GPR98 are responsible for 95.8% and 5.2% of USH2 mutated cases, respectively. DFNB31 plays a minor role in the Spanish population. There was a group of patients in whom no mutation was found. These findings confirm the importance of including at least GPR98 analysis for comprehensive USH2 molecular diagnosis. PMID:23441107
The mouse lymphoma assay detects recombination, deletion, and aneuploidy.
Wang, Jianyong; Sawyer, Jeffrey R; Chen, Ling; Chen, Tao; Honma, Masamitsu; Mei, Nan; Moore, Martha M
2009-05-01
The mouse lymphoma assay (MLA) uses the thymidine kinase (Tk) gene of the L5178Y/Tk(+/-)-3.7.2C mouse lymphoma cell line as a reporter gene to evaluate the mutagenicity of chemical and physical agents. The MLA is recommended by both the United States Food and Drug Administration and the United States Environmental Protection Agency as the preferred in vitro mammalian cell mutation assay for genetic toxicology screening because it detects a wide range of genetic alterations, including both point mutations and chromosomal mutations. However, the specific types of chromosomal mutations that can be detected by the MLA need further clarification. For this purpose, three chemicals, including two clastogens and an aneugen (3'-azido-3'-deoxythymidine, mitomycin C, and taxol), were used to induce Tk mutants. Loss of heterozygosity (LOH) analysis was used to select mutants that could be informative as to whether they resulted from deletion, mitotic recombination, or aneuploidy. A combination of additional methods, G-banding analysis, chromosome painting, and a real-time PCR method to detect the copy number (CN) of the Tk gene was then used to provide a detailed analysis. LOH involving at least 25% of chromosome 11, a normal karyotype, and a Tk CN of 2 would indicate that the mutant resulted from recombination, whereas LOH combined with a karyotypically visible deletion of chromosome 11 and a Tk CN of 1 would indicate a deletion. Aneuploidy was confirmed using G-banding combined with chromosome painting analysis for mutants showing LOH at every microsatellite marker on chromosome 11. From this analysis, it is clear that mouse lymphoma Tk mutants can result from recombination, deletion, and aneuploidy.
Incorporating Truncating Variants in PALB2, CHEK2 and ATM into the BOADICEA Breast Cancer Risk Model
Lee, Andrew J.; Cunningham, Alex P.; Tischkowitz, Marc; Simard, Jacques; Pharoah, Paul D.; Easton, Douglas F.; Antoniou, Antonis C.
2016-01-01
Purpose The proliferation of gene-panel testing precipitates the need for a breast cancer (BC) risk model that incorporates the effects of mutations in several genes and family history (FH). We extended the BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2 and ATM. Methods The BC incidence was modelled via the explicit effects of truncating variants in BRCA1/2, PALB2, CHEK2 and ATM and other unobserved genetic effects using segregation analysis methods. Results The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for PALB2, 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH-burden. In families with mutations, predicted risks for mutation-negative members depend on both FH and the specific mutation. The reduction in BC risk after negative predictive-testing is greatest when a BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM mutation, the risks decrease slightly. Conclusions The model may be a valuable tool for counselling women who have undergone gene-panel testing for providing consistent risks and harmonizing their clinical management. A web-application can be used to obtain BC- risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/). PMID:27464310
Xu, Gaolian; You, Qimin; Pickerill, Sam; Zhong, Huayan; Wang, Hongying; Shi, Jian; Luo, Ying; You, Paul; Kong, Huimin; Lu, Fengmin; Hu, Lin
2010-07-01
Chronic hepatitis B virus (CHBV) infection causes cirrhosis and hepatocellular carcinoma. Lamivudine (LAM) has been successfully used to treat CHBV infections but prolonged use leads to the emergence of drug-resistant variants. This is primarily linked to a mutation in the tyrosine-methionine-aspartate-aspartate (YMDD) motif of the HBV polymerase gene at position 204. Rapid diagnosis of drug-resistant HBV is necessary for a prompt treatment response. Common diagnostic methods such as sequencing and restriction fragment length polymorphism (RFLP) analysis lack sensitivity and require significant processing. The aim of this study was to demonstrate the usefulness of a novel diagnostic method that combines polymerase chain reaction (PCR), ligase detection reaction (LDR) and a nucleic acid detection strip (NADS) in detecting site-specific mutations related to HBV LAM resistance. We compared this method (PLNA) to direct sequencing and RFLP analysis in 50 clinical samples from HBV infected patients. There was 90% concordance between all three results. PLNA detected more samples containing mutant variants than both sequencing and RFLP analysis and was more sensitive in detecting mixed variant populations. Plasmid standards indicated that the sensitivity of PLNA is at or below 3,000 copies per ml and that it can detect a minor variant at 5% of the total viral population. This warrants its further development and suggests that the PLNA method could be a useful tool in detecting LAM resistance. (c) 2010 Wiley-Liss, Inc.
Lei, Ke-Jian; Chen, Yuan-Tsong; Chen, Hungwen; Wong, Lee-Jun C.; Liu, Ji-Lan; McConkie-Rosell, Allyn; Van Hove, Johan L. K.; Ou, Henry C.-Y.; Yeh, Nan Jung; Pan, Lorraine Y.; Chou, Janice Yang
1995-01-01
Diagnosis of glycogen storage disease (GSD) type 1a currently is established by demonstrating the lack of glucose-6-phosphatase (G6Pase) activity in the patient's biopsied liver specimen. Recent cloning of the G6Pase gene and identification of mutations within the gene that causes GSD type 1a allow for the development of a DNA-based diagnostic method. Using SSCP analysis and DNA sequencing, we characterized the G6Pase gene of 70 unrelated patients with enzymatically confirmed diagnosis of GSD type 1a and detected mutations in all except 17 alleles (88%). Sixteen mutations were uncovered that were shown by expression to abolish or greatly reduce G6Pase activity and that therefore are responsible for the GSD type 1a disorder. R83C and Q347X are the most prevalent mutations found in Caucasians, 130X and R83C are most prevalent in Hispanics, and R83H is most prevalent in Chinese. The Q347X mutation has thus far been identified only in Caucasian patients, and the 130X mutation has been identified only in Hispanic patients. Our results demonstrate that the DNA-based analysis can accurately, rapidly, and noninvasively detect the majority of mutations in GSD type 1a. This DNA-based diagnosis now permits prenatal diagnosis among at-risk patients and serves as a database in screening and counseling patients clinically suspected of having this disease. ImagesFigure 1Figure 2 PMID:7573034
Noller, Anna C; McEllistrem, M Catherine; Shutt, Kathleen A; Harrison, Lee H
2006-02-01
Multilocus variable-number tandem repeat analysis (MLVA) is a validated molecular subtyping method for detecting and evaluating Escherichia coli O157:H7 outbreaks. In a previous study, five outbreaks with a total of 21 isolates were examined by MLVA. Nearly 20% of the epidemiologically linked strains were single-locus variants (SLV) of their respective predominant outbreak clone. This result prompted an investigation into the mutation rates of the seven MLVA loci (TR1 to TR7). With an outbreak strain that was an SLV at the TR1 locus of the predominant clone, parallel and serial batch culture experiments were performed. In a parallel experiment, none (0/384) of the strains analyzed had mutations at the seven MLVA loci. In contrast, in the two 5-day serial experiments, 4.3% (41/960) of the strains analyzed had a significant variation in at least one of these loci (P < 0.001). The TR2 locus accounted for 85.3% (35/41) of the mutations, with an average mutation rate of 3.5 x 10(-3); the mutations rates for TR1 and TR5 were 10-fold lower. Single additions accounted for 77.1% (27/35) of the mutation events in TR2 and all (6/6) of the additions in TR1 and TR5. The remaining four loci had no slippage events detected. The mutation rates were locus specific and may impact the interpretation of MLVA data for epidemiologic investigations.
Extent of field change in colorectal cancers with BRAF mutation
Poh, Aaron; Chang, Heidi Sian Ying; Tan, Kok Yang; Sam, Xin Xiu; Khoo, Avery; Choo, Shoa Nian; Nga, Min En; Wan, Wei Keat
2018-01-01
INTRODUCTION Sporadic colorectal cancers with BRAF mutations constitute two distinct subgroups of colorectal cancers. Recent studies have linked the presence of the BRAF mutation to a familial inheritance pattern. This was a proof-of-concept study that aimed to examine: (a) the extent of field change in sporadic colorectal cancers with BRAF mutation; and (b) the extent of resection margins required and the pattern of DNA mismatch repair protein loss in these tumours. METHODS Eight microsatellite instability-high tumours with positive BRAF mutation from an existing histopathological database were selected for BRAF mutation and mismatch repair protein analysis. RESULTS All the resection margins were negative for BRAF mutation. Three tumours had loss of MLH1 and PMS2 expressions, and five tumours had no protein loss. Six peritumoral tissues were negative and one was positive for BRAF mutation. CONCLUSION The results suggest that any early field change effect is restricted to the immediate vicinity of the tumour and is not a pan-colonic phenomenon. Current guidelines on resection margins are adequate for BRAF mutation-positive colorectal cancers. Any suggestion of a hereditary link to these tumours is likely not related to germline BRAF gene mutations. The pattern of protein loss reinforces previous findings for the two subgroups of BRAF mutation-positive colorectal cancers. PMID:28210747
Li, Deng-Feng; Lan, Dan; Zhong, Jing-Zi; Dewan, Roma Kajal; Xie, Yan-Shu; Yang, Ying
2017-05-01
This article reported the clinical features of one child with infantile hypophosphatasia (HPP) and his pedigree information. The proband was a 5-month-old boy with multiple skeletal dysplasia (koilosternia, bending deformity of both radii, and knock-knee deformity of both knees), feeding difficulty, reduction in body weight, developmental delay, recurrent pneumonia and respiratory failure, and a significant reduction in blood alkaline phosphatase. Among his parents, sister, uncle, and aunt (other family members did not cooperate with us in the examination), his parents and aunt had a slight reduction in alkaline phosphatase and his aunt had scoliosis; there were no other clinical phenotypes or abnormal laboratory testing results. His ALPL gene mutation came from c.228delG mutation in his mother and c.407G>A compound heterozygous mutation in his father. His aunt carried c.228delG mutation. The c.407G>A mutation had been reported as the pathogenic mutation of HPP, and c.228delG mutation was a novel pathogenic mutation. Hypophosphatasia is caused by ALPL gene mutation, and ALPL gene detection is an effective diagnostic method. This study expands the mutation spectrum of ALPL gene and provides a theoretical basis for genetic diagnosis of this disease.
Koochak, Aghigh; Rakhshani, Nasser; Karbalaie Niya, Mohammad Hadi; Tameshkel, Fahimeh Safarnezhad; Sohrabi, Masoud Reza; Babaee, Mohammad Reza; Rezvani, Hamid; Bahar, Babak; Imanzade, Farid; Zamani, Farhad; Khonsari, Mohammad Reza; Ajdarkosh, Hossein; Hemmasi, Gholamreza
2016-01-01
The investigation of mutation patterns in oncogenes potentially can make available a reliable mechanism for management and treatment decisions for patients with colorectal cancer (CRC). This study concerns the rate of KRAS and BRAF genes mutations in Iranian metastatic colorectal cancer (mCRC) patients, as well as associations of genotypes with clinicopathological features. A total of 1,000 mCRC specimens collected from 2008 to 2012 that referred to the Mehr Hospital and Partolab center, Tehran, Iran enrolled in this cross sectional study. Using HRM, Dxs Therascreen and Pyrosequencing methods, we analyzed the mutational status of KRAS and BRAF genes in these. KRAS mutations were present in 33.6% cases (n=336). Of KRAS mutation positive cases, 85.1% were in codon 12 and 14.9% were in codon 13. The most frequent mutation at KRAS codon 12 was Gly12Asp; BRAF mutations were not found in any mCRC patients (n=242). In addition, we observed a strong correlation of KRAS mutations with some clinicopathological characteristics. KRAS mutations are frequent in mCRCs while presence of BRAF mutations in these patients is rare. Moreover, associations of KRAS genotypes with non-mucinous adenocarcinoma and depth of invasion (pT3) were remarkable.
Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.
Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H
2015-04-01
Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family
He, Xiang; Gu, Feng; Wang, Yujing; Yan, Jinting; Zhang, Meng; Huang, Shangzhi
2008-01-01
Purpose To identify the gene responsible for causing an X-linked idiopathic congenital nystagmus (XLICN) in a six-generation Chinese family. Methods Forty-nine members of an XLICN family were recruited and examined after obtaining informed consent. Affected male individuals were genotyped with microsatellite markers around the FRMD7 locus. Mutations were comprehensively screened by direct sequencing using gene specific primers. An X-inactivation pattern was investigated by X chromosome methylation analysis. Results The patients showed phenotypes consistent with XLICN. Genotype analysis showed that male affected individuals in the family shared a common haplotype with the selected markers. Sequencing FRMD7 revealed a G>T transversion (c.812G>T) in exon 9, which caused a conservative substitution of Cys to Phe at codon 271 (p.C271F). This mutation co-segregated with all affected individuals and was present in the obligate, non-penetrant female carriers. However, the mutation was not observed in unaffected familial males or 400 control males. Females with the mutant gene could be affected or carrier and they shared the same inactivated X chromosome harboring the mutation in blood cells, which showed there is no clear causal link between X-inactivation pattern and phenotype. Conclusions We identified a novel mutation in FRMD7 and confirmed the role of this mutation in the pathogenesis of X-linked congenital nystagmus. PMID:18246032
Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes.
Vaughn, Cecily P; Robles, Jorge; Swensen, Jeffrey J; Miller, Christine E; Lyon, Elaine; Mao, Rong; Bayrak-Toydemir, Pinar; Samowitz, Wade S
2010-05-01
Germline mutation detection in PMS2, one of four mismatch repair genes associated with Lynch syndrome, is greatly complicated by the presence of numerous pseudogenes. We used a modification of a long-range PCR method to evaluate PMS2 in 145 clinical samples. This modification avoids potential interference from the pseudogene PMS2CL by utilizing a long-range product spanning exons 11-15, with the forward primer anchored in exon 10, an exon not shared by PMS2CL. Large deletions were identified by MLPA. Pathogenic PMS2 mutations were identified in 22 of 59 patients whose tumors showed isolated loss of PMS2 by immunohistochemistry (IHC), the IHC profile most commonly associated with a germline PMS2 mutation. Three additional patients with pathogenic mutations were identified from 53 samples without IHC data. Thirty-seven percent of the identified mutations were large deletions encompassing one or more exons. In 27 patients whose tumors showed absence of either another protein or combination of proteins, no pathogenic mutations were identified. We conclude that modified long-range PCR can be used to preferentially amplify the PMS2 gene and avoid pseudogene interference, thus providing a clinically useful germline analysis of PMS2. Our data also support the use of IHC screening to direct germline testing of PMS2. (c) 2010 Wiley-Liss, Inc.
Automatic extraction of protein point mutations using a graph bigram association.
Lee, Lawrence C; Horn, Florence; Cohen, Fred E
2007-02-02
Protein point mutations are an essential component of the evolutionary and experimental analysis of protein structure and function. While many manually curated databases attempt to index point mutations, most experimentally generated point mutations and the biological impacts of the changes are described in the peer-reviewed published literature. We describe an application, Mutation GraB (Graph Bigram), that identifies, extracts, and verifies point mutations from biomedical literature. The principal problem of point mutation extraction is to link the point mutation with its associated protein and organism of origin. Our algorithm uses a graph-based bigram traversal to identify these relevant associations and exploits the Swiss-Prot protein database to verify this information. The graph bigram method is different from other models for point mutation extraction in that it incorporates frequency and positional data of all terms in an article to drive the point mutation-protein association. Our method was tested on 589 articles describing point mutations from the G protein-coupled receptor (GPCR), tyrosine kinase, and ion channel protein families. We evaluated our graph bigram metric against a word-proximity metric for term association on datasets of full-text literature in these three different protein families. Our testing shows that the graph bigram metric achieves a higher F-measure for the GPCRs (0.79 versus 0.76), protein tyrosine kinases (0.72 versus 0.69), and ion channel transporters (0.76 versus 0.74). Importantly, in situations where more than one protein can be assigned to a point mutation and disambiguation is required, the graph bigram metric achieves a precision of 0.84 compared with the word distance metric precision of 0.73. We believe the graph bigram search metric to be a significant improvement over previous search metrics for point mutation extraction and to be applicable to text-mining application requiring the association of words.
Fan, Xiangshan; Liu, Biao; Xu, Haodong; Yu, Bo; Shi, Shanshan; Zhang, Jin; Wang, Xuan; Wang, Jiandong; Lu, Zhenfeng; Ma, Henghui; Zhou, Xiaojun
2013-08-01
Mutation analysis of epidermal growth factor receptor (EGFR) is essential in determining the therapeutic strategy for lung adenocarcinoma. Immunohistochemical (IHC) staining with EGFR mutation-specific antibodies of del E746-A750 in exon 19 and L858R in exon 21 has been evaluated in resection specimens in a few studies but rarely in biopsy samples. A total of 169 cases (78 biopsies and 91 resected specimens) of lung adenocarcinoma with EGFR mutation status predefined by direct DNA sequencing were histologically examined, and IHC was performed using EGFR mutation-specific antibodies of del E746-A750 and L858R. The cases with positive results by IHC but negative results by direct DNA sequencing were examined by amplified refractory mutation system. Our results showed that the frequency of EGFR mutations for both E746-A750 deletion and L858R mutation was 38.5% (65/169) by DNA sequencing or amplified refractory mutation system and 34.3% (58/169) by IHC in lung adenocarcinomas. Based on molecular test results, the overall sensitivity, specificity, positive predictive value, and negative predictive value of IHC using these 2 antibodies in all (biopsy/resection) cases were 87.7% (80%/94.3%), 99.0% (97.9%/100%), 98.3% (96%/100%), and 92.8% (88.7%/96.6%), respectively. Lung adenocarcinomas with a predominant acinar, papillary, lepidic, or solid growth pattern more often harbor EGFR mutation of del E746-A750 or L858R. In conclusion, the immunostaining with EGFR del E746-A750 and L858R mutation antibodies is a reliable screening method with high specificity and sensitivity for identifying the EGFR mutation in both resected and biopsied lung adenocarcinomas. Copyright © 2013 Elsevier Inc. All rights reserved.
Triques, Karine; Piednoir, Elodie; Dalmais, Marion; Schmidt, Julien; Le Signor, Christine; Sharkey, Mark; Caboche, Michel; Sturbois, Bénédicte; Bendahmane, Abdelhafid
2008-04-23
Most enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA by a mismatch-specific endonuclease at mismatch sites and the analysis of the digestion product on a DNA sequencer. Important limitations of these methods are the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in pool of DNA, the cost of the analysis and the ease by which the technique could be implemented in a standard molecular biology laboratory. The co-agroinfiltration of ENDO1 and p19 constructs into N. benthamiana leaves allowed high level of transient expression of a mismatch-specific and sensitive endonuclease, ENDO1 from Arabidopsis thaliana. We demonstrate the broad range of uses of the produced enzyme in detection of mutations. In human, we report the diagnosis of the G1691A mutation in Leiden factor-V gene associated with venous thrombosis and the fingerprinting of HIV-1 quasispecies in patients subjected to antiretroviral treatments. In plants, we report the use of ENDO1 system for detection of mutant alleles of Retinoblastoma-related gene by TILLING in Pisum sativum and discovery of natural sequence variations by Eco-TILLING in Arabidopsis thaliana. We introduce a cost-effective tool based on a simplified purification protocol of a mismatch-specific and sensitive endonuclease, ENDO1. Especially, we report the successful applications of ENDO1 in mutation diagnostics in humans, fingerprinting of complex population of viruses, and in TILLING and Eco-TILLING in plants.
Frappier, Vincent; Najmanovich, Rafael J.
2014-01-01
Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα−only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations. PMID:24762569
2011-01-01
Background Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Methods Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Results Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Conclusion Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals. PMID:21612638
Dysfibrinogenemia in childhood: two cases of congenital dysfibrinogens.
Kotlín, Roman; Blažek, Bohumír; Suttnar, Jiří; Malý, Martin; Kvasnička, Jan; Dyr, Jan E
2010-10-01
A 2-year-old asymptomatic boy and his relatives were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level (family A). Eight-year-old and 1-year-old asymptomatic brothers were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level and prolonged thrombin time (family B). To identify whether genetic mutations were responsible for these dysfibrinogens, DNA extracted from the blood was analyzed. Fibrin polymerization and fibrinolysis were measured by a turbidimetric method at 450 nm. DNA analysis was performed by the Sanger method. Mass spectroscopy was performed on a Biflex IV mass spectrometer. DNA sequencing showed the heterozygous point mutation Aα Arg16His in the fibrinogen of family A and the heterozygous point mutation Aα Arg16Cys in the fibrinogen of family B. Kinetics of fibrinopeptide release, fibrinolysis, and fibrin polymerization were impaired in the carriers of the mutations in both families. Mass spectroscopy showed the presence of mutant fibrinogen chains in circulation. Scanning electron microscopy revealed thicker fibrin fibers, differing significantly from the normal control in both cases. Two cases of asymptomatic dysfibrinogenemias, found by routine coagulation testing, were genetically identified as new cases of fibrinogen variants Aα Arg16His and Aα Arg16Cys.
Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Inao, Toko; Sueta, Aiko; Fujiwara, Saori; Omoto, Yoko; Iwase, Hirotaka
2016-01-01
Background The measurement of circulating cell-free DNA (cfDNA) may transform the management of breast cancer patients. We aimed to investigate the clinical significance of sequential measurements of ESR1 mutations in primary breast cancer (PBC) and metastatic breast cancer (MBC) patients. Results ESR1 mutations ratio in the PBC groups was used as the minimum cutoff for determining increases in cfDNA ESR1 mutation ratio. An increase in cfDNA ESR1 mutations was found in 13 samples of cfDNA from 12 (28.6%) out of 42 MBC patients. A total of 10 (83.3%) out of 12 MBC patients with increase cfDNA ESR1 mutations showed a poor response to treatment. In survival analysis, increase cfDNA ESR1 mutations may predict a shorter duration of post-endocrine-therapy effectiveness (P = 0.0033). Methods A total of 119 patients (253 plasma samples) with breast carcinoma were enrolled in this study. Cases were selected if archival plasma samples were available from PBC before and after treatment and from MBC gathered more than twice at the time of progression. cfDNA was isolated from the 77 PBC patients (154 plasma samples) and from the 42 MBC patients (99 plasma samples). To investigate any changes in each cfDNA ESR1 mutation before and after treatment, we analyzed the difference with cfDNA ESR1 mutations ratio in the first blood sample using droplet digital polymerase chain reaction (ddPCR). Conclusions We demonstrate that ddPCR monitoring of the recurrent ESR1 mutation in cfDNA of MBC patients is a feasible and useful method of providing relevant predictive information. PMID:27102299
Guo, Lei; Liang, Pei; Zhou, Xuguo; Gao, Xiwu
2014-01-01
A previous study documented a glycine to glutamic acid mutation (G4946E) in ryanodine receptor (RyR) was highly correlated to diamide insecticide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae). In this study, a field population collected in Yunnan province, China, exhibited a 2128-fold resistance to chlorantraniliprole. Sequence comparison between resistant and susceptible P. xylostella revealed three novel mutations including a glutamic acid to valine substitution (E1338D), a glutamine to leucine substitution (Q4594L) and an isoleucine to methionine substitution (I4790M) in highly conserved regions of RyR. Frequency analysis of all four mutations in this field population showed that the three new mutations showed a high frequency of 100%, while the G4946E had a frequency of 20%. Furthermore, the florescent ligand binding assay revealed that the RyR containing multiple mutations displayed a significantly lower affinity to the chlorantraniliprole. The combined results suggested that the co-existence of different combinations of the four mutations was involved in the chlorantraniliprole resistance. An allele-specific PCR based method was developed for the diagnosis of the four mutations in the field populations of P. xylostella. PMID:25377064
A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.
Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C
2015-09-01
Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Rennert, Hanna; Eng, Kenneth; Zhang, Tuo; Tan, Adrian; Xiang, Jenny; Romanel, Alessandro; Kim, Robert; Tam, Wayne; Liu, Yen-Chun; Bhinder, Bhavneet; Cyrta, Joanna; Beltran, Himisha; Robinson, Brian; Mosquera, Juan Miguel; Fernandes, Helen; Demichelis, Francesca; Sboner, Andrea; Kluk, Michael; Rubin, Mark A; Elemento, Olivier
2016-01-01
We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care. PMID:28781886
Wu, I-Chin; Liu, Wen-Chun; Chang, Ting-Tsung
2018-06-02
Next-generation sequencing (NGS) is a powerful and high-throughput method for the detection of viral mutations. This article provides a brief overview about optimization of NGS analysis for hepatocellular carcinoma (HCC)-associated hepatitis B virus (HBV) mutations, and hepatocarcinogenesis of relevant mutations. For the application of NGS analysis in the genome of HBV, four noteworthy steps were discovered in testing. First, a sample-specific reference sequence was the most effective mapping reference for NGS. Second, elongating the end of reference sequence improved mapping performance at the end of the genome. Third, resetting the origin of mapping reference sequence could probed deletion mutations and variants at a certain location with common mutations. Fourth, using a platform-specific cut-off value to distinguish authentic minority variants from technical artifacts was found to be highly effective. One hundred and sixty-seven HBV single nucleotide variants (SNVs) were found to be studied previously through a systematic literature review, and 12 SNVs were determined to be associated with HCC by meta-analysis. From comprehensive research using a HBV genome-wide NGS analysis, 60 NGS-defined HCC-associated SNVs with their pathogenic frequencies were identified, with 19 reported previously. All the 12 HCC-associated SNVs proved by meta-analysis were confirmed by NGS analysis, except for C1766T and T1768A which were mainly expressed in genotypes A and D, but including the subgroup analysis of A1762T. In the 41 novel NGS-defined HCC-associated SNVs, 31.7% (13/41) had cut-off values of SNV frequency lower than 20%. This showed that NGS could be used to detect HCC-associated SNVs with low SNV frequency. Most SNV II (the minor strains in the majority of non-HCC patients) had either low (< 20%) or high (> 80%) SNV frequencies in HCC patients, a characteristic U-shaped distribution pattern. The cut-off values of SNV frequency for HCC-associated SNVs represent their pathogenic frequencies. The pathogenic frequencies of HCC-associated SNV II also showed a U-shaped distribution. Hepatocarcinogenesis induced by HBV mutated proteins through cellular pathways was reviewed. NGS analysis is useful to discover novel HCC-associated HBV SNVs, especially those with low SNV frequency. The hepatocarcinogenetic mechanisms of novel HCC-associated HBV SNVs defined by NGS analysis deserve further investigation.
2013-01-01
Background The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. Results We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. Conclusion We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic. PMID:23642077
Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W
2013-05-04
The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.
The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy
Liu, Zhong; Song, Yanrui; Li, Dan; He, Xiangyu; Li, Shishi; Wu, Bifeng; Wang, Wei; Gu, Shulian; Zhu, Xiaoyu; Wang, Xuexiang; Zhou, Qiyin; Dai, Yu; Yan, Qingfeng
2014-01-01
Background Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population. Objective To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM. Methods and results All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem–loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells. Conclusions It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM. PMID:24367055
Kim, Tae Won; Peeters, Marc; Thomas, Anne L; Gibbs, Peter; Hool, Kristina; Zhang, Jianqi; Ang, Agnes; Bach, Bruce Allen; Price, Timothy
2018-06-13
The accumulation of emergent RAS mutations during anti-epidermal growth factor receptor (EGFR) therapy is of interest as a mechanism for acquired resistance to anti-EGFR treatment. Plasma analysis of circulating tumor (ct) DNA is a minimally invasive and highly sensitive method to determine RAS mutational status. This biomarker analysis of the global phase III ASPECCT study used next-generation sequencing to detect expanded RAS ctDNA mutations in panitumumab-treated patients. Plasma samples collected at baseline and posttreatment were analyzed categorically for the presence of RAS mutations by the Plasma Select -R™ 64-gene panel at 0.1% sensitivity. Among panitumumab-treated patients with evaluable plasma samples at baseline (n = 238), 188 (79%) were wild-type (WT) RAS, and 50 (21%) were mutant RAS Of the 188 patients with baseline ctDNA WT RAS status, 164 had evaluable posttreatment results with a 32% rate of emergent RAS mutations. The median overall survival (OS) for WT and RAS mutant status by ctDNA at baseline was 13.7 (95% confidence interval: 11.5-15.4) and 7.9 months (6.4-9.6), respectively ( P < 0.0001). Clinical outcomes were not significantly different between patients with and without emergent ctDNA RAS mutations. Although patients with baseline ctDNA RAS mutations had worse outcomes than patients who were WT RAS before initiating treatment, emergent ctDNA RAS mutations were not associated with less favorable patient outcomes in panitumumab-treated patients. Further research is needed to determine a clinically relevant threshold for baseline and emergent ctDNA RAS mutations. Copyright ©2018, American Association for Cancer Research.
Ma, Keze; Li, Wenrui; Ma, Qiang; He, Xiaoguang; He, Yuejing; He, Ting; Lu, Xiaomei
2015-01-01
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China. Method The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis. Results The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote. Conclusion The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency. PMID:25775246
Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer
Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria
2015-01-01
Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-01-01
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions. PMID:25199907
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye
NASA Astrophysics Data System (ADS)
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-09-01
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye.
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-09-09
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.
Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S
2017-01-01
Abstract Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher’s exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. PMID:27687306
Yoon, Grace; Visser, Theo J.
2015-01-01
Background Mutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization. Methods Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter. Results The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells. Conclusions We describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction. PMID:26426690
Genetic variants of TREML2 are associated with HLA-B27-positive ankylosing spondylitis.
Feng, Yuan; Hong, Yaqiang; Zhang, Xin; Cao, Chunwei; Yang, Xichao; Lai, Shujuan; Fan, Chunmei; Cheng, Feng; Yan, Mei; Li, Chaohua; Huang, Wan; Chen, Wei; Zhu, Ping; Zeng, Changqing
2018-08-20
Although ankylosing spondylitis (AS) is a common, highly heritable arthropathy, the precise genetic mechanism underlying the disease remains elusive. Here, we investigate the disease-causing mutations in a large AS family with distinguished complexity, consisting of 23 patients covering four generations and exhibiting a mixed HLA-B27 (+) and (-) status. Linkage analysis with 32 members using three methods and whole-exome sequencing analysis with three HLA-B27 (+) patients, one HLA-B27 (-) patient, and one healthy individual did not identify a mutation common to all of the patients, strongly suggesting the existence of genetic heterogeneity in this large pedigree. However, if only B27-positive patients were analyzed, the linkage analysis located a 22-Mb region harboring the HLA gene cluster in chromosome 6 (LOD = 4.2), and the subsequent exome analysis identified two non-synonymous mutations in the TREML2 and IP6K3 genes. These genes were resequenced among 370 sporadic AS patients and 487 healthy individuals. A significantly higher mutation frequency of TREML2 was observed in AS patients (1.51% versus 0.21%). The results obtained for the AS pedigree and sporadic patients suggest that mutation of TREML2 is a major factor leading to AS for HLA-B27 (+) members in this large family and that TREML2 is also a susceptibility gene promoting the development of ankylosing spondylitis in HLA-B27 (+) individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
Gültas, Mehmet; Düzgün, Güncel; Herzog, Sebastian; Jäger, Sven Joachim; Meckbach, Cornelia; Wingender, Edgar; Waack, Stephan
2014-04-03
The identification of functionally or structurally important non-conserved residue sites in protein MSAs is an important challenge for understanding the structural basis and molecular mechanism of protein functions. Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of those important residues, previous methods often rely on classical information-theoretic measures. However, these measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites. The result of this study is twofold. First, using the essential sites of two human proteins, namely epidermal growth factor receptor (EGFR) and glucokinase (GCK), we tested the QCMF-method. The QCMF includes two metrics based on quantum Jensen-Shannon divergence to measure both sequence conservation and compensatory mutations. We found that the QCMF reaches an improved performance in identifying essential sites from MSAs of both proteins with a significantly higher Matthews correlation coefficient (MCC) value in comparison to previous methods. Second, using a data set of 153 proteins, we made a pairwise comparison between QCMF and three conventional methods. This comparison study strongly suggests that QCMF complements the conventional methods for the identification of correlated mutations in MSAs. QCMF utilizes the notion of entanglement, which is a major resource of quantum information, to model significant dissimilar and similar amino acid pair signals in the detection of functionally or structurally important sites. Our results suggest that on the one hand QCMF significantly outperforms the previous method, which mainly focuses on dissimilar amino acid signals, to detect essential sites in proteins. On the other hand, it is complementary to the existing methods for the identification of correlated mutations. The method of QCMF is computationally intensive. To ensure a feasible computation time of the QCMF's algorithm, we leveraged Compute Unified Device Architecture (CUDA).The QCMF server is freely accessible at http://qcmf.informatik.uni-goettingen.de/.
Madeira, Joao Lo; Nishi, Mirian Y; Nakaguma, Marilena; Benedetti, Anna F; Biscotto, Isabela Peixoto; Fernandes, Thamiris; Pequeno, Thiago; Figueiredo, Thalita; Franca, Marcela M; Correa, Fernanda A; Otto, Aline P; Abrão, Milena; Miras, Mirta B; Santos, Silvana; Jorge, Alexander Al; Costalonga, Everlayny F; Mendonca, Berenice B; Arnhold, Ivo Jp; Carvalho, Luciani R
2017-12-01
Mutations in PROP1, HESX1 and LHX3 are associated with combined pituitary hormone deficiency (CPHD) and orthotopic posterior pituitary lobe (OPP). To identify mutations in PROP1, HESX1 and LHX3 in a large cohort of patients with CPHD and OPP (35 Brazilian, two Argentinian). We studied 23 index patients with CPHD and OPP (six familial and 17 sporadic) as well as 14 relatives. PROP1 was sequenced by the Sanger method in all except one sporadic case studied using a candidate gene panel. Multiplex ligation-dependent probe amplification (MLPA) was applied to one familial case in whom PROP1 failed to amplify by PCR. In the 13 patients without PROP1 mutations, HESX1 and LHX3 were sequenced by the Sanger method. We identified PROP1 mutations in 10 index cases. Three mutations were novel: one affecting the initiation codon (c.1A>G) and two affecting splicing sites, c.109+1G>A and c.342+1G>C. The known mutations, c.150delA (p.Arg53Aspfs*112), c.218G>A (p.Arg73His), c.263T>C (p.Phe88Ser) and c.301_302delAG (p.Leu102Cysfs*8), were also detected. MLPA confirmed complete PROP1 deletion in one family. We did not identify HESX1 and LHX3 mutations by Sanger. PROP1 mutations are a prevalent cause of congenital CPHD with OPP, and therefore, PROP1 sequencing must be the first step of molecular investigation in patients with CPHD and OPP, especially in populations with a high frequency of PROP1 mutations. In the absence of mutations, massively parallel sequencing is a promising approach. The high prevalence and diversity of PROP1 mutations is associated with the ethnic background of this cohort. © 2017 John Wiley & Sons Ltd.
Chávez-Saldaña, Margarita; Yokoyama, Emiy; Lezana, José Luis; Carnevale, Alessandra; Macías, Miguel; Vigueras, Rosa M; López, Marisol; Orozco, Lorena
2010-01-01
Cystic fibrosis, the most common autosomal recessive disorder, is caused by defects in the CF transmembrane conductance regulator gene (CFTR) that encodes a chloride channel. To date, over 1,800 mutations have been described related to the causative gene of CF, showing a variable frequency among populations. In a previous extensive analysis of the CFTR locus in 97 Mexican patients, 34 different mutations (75% of CF alleles) were found using several strategies for mutation screening; however, 63% had at least an uncharacterized allele. Despite the combined technologies used, there are still a great number of unknown mutations in the Mexican population. Screening of the CFTR gene to provide additional evidence of the mutational wide spectrum responsible for CF in Mexican patients. In this study, the number of unrelated CF patients was increased to 230, 133 new cases and the 97 previously reported to include 63% with at least an uncharacterized allele. Additional tools were used to improve the detection rate of CF mutations, such as a commercial kit for 36 mutations plus a single chain conformational polymorphism method and DNA sequencing. By using a combination of these strategies we characterized 77.7% of all the CF alleles, resulting in a total of 46 different mutations detected, including the identification of 12 additional mutations (p.R334W, p.A455E, c.3120+1G > A, c.3272-26A > G, c.711+1G > T, p.Q552X, p.W1282X, c.IVS8-5T, p.R1162X and p.R347P, p.D1152H and p.T1036N). Although these 12 mutations have been reported in other populations, they have not yet been reported in Mexican patients. This report shows that Mexico has one of the widest spectra of CFTR mutations worldwide. The knowledge of the ethnic and geographic distribution of CFTR mutations in this population will allow the development of more effective methods for diagnosis and treatment.
A strategy for molecular diagnostics of Fanconi anemia in Brazilian patients.
Pilonetto, Daniela V; Pereira, Noemi F; Bonfim, Carmem M S; Ribeiro, Lisandro L; Bitencourt, Marco A; Kerkhoven, Lianne; Floor, Karijn; Ameziane, Najim; Joenje, Hans; Gille, Johan J P; Pasquini, Ricardo
2017-07-01
Fanconi anemia (FA) is a predominantly autosomal recessive disease with wide genetic heterogeneity resulting from mutations in several DNA repair pathway genes. To date, 21 genetic subtypes have been identified. We aimed to identify the FA genetic subtypes in the Brazilian population and to develop a strategy for molecular diagnosis applicable to routine clinical use. We screened 255 patients from Hospital de Clínicas, Universidade Federal do Paraná for 11 common FA gene mutations. Further analysis by multiplex ligation-dependent probe amplification (MLPA) for FANCA and Sanger sequencing of all coding exons of FANCA , -C , and - G was performed in cases who harbored a single gene mutation. We identified biallelic mutations in 128/255 patients (50.2%): 89, 11, and 28 carried FANCA , FANCC , and FANCG mutations, respectively. Of these, 71 harbored homozygous mutations, whereas 57 had compound heterozygous mutations. In 4/57 heterozygous patients, both mutations were identified by the initial screening, in 51/57 additional analyses was required for classification, and in 2/57 the second mutation remained unidentified. We found 52 different mutations of which 22 were novel. The proposed method allowed genetic subtyping of 126/255 (49.4%) patients at a significantly reduced time and cost, which makes molecular diagnosis of FA Brazilian patients feasible.
Mohd-Yusoff, Nur Fatihah; Ruperao, Pradeep; Tomoyoshi, Nurain Emylia; Edwards, David; Gresshoff, Peter M.; Biswas, Bandana; Batley, Jacqueline
2015-01-01
Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm. PMID:25660167
Mutation analysis in the long isoform of USH2A in American patients with Usher Syndrome type II.
Yan, Denise; Ouyang, Xiaomei; Patterson, D Michael; Du, Li Lin; Jacobson, Samuel G; Liu, Xue-Zhong
2009-12-01
Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa (RP). To identify novel mutations and determine the frequency of USH2A mutations as a cause of USH2, we have carried out mutation screening of all 72 coding exons and exon-intron splice sites of the USH2A gene. A total of 20 USH2 American probands of European descent were analyzed using single strand conformational polymorphism (SSCP) and direct sequencing methods. Ten different USH2A mutations were identified in 55% of the probands, five of which were novel mutations. The detected mutations include three missense, three frameshifts and four nonsense mutations, with c.2299delG/p.E767fs mutation, accounting for 38.9% of the pathological alleles. Two cases were homozygotes, two cases were compound heterozygotes and one case had complex allele with three variants. In seven probands, only one USH2A mutation was detected and no pathological mutation was found in the remaining eight individuals. Altogether, our data support the fact that c.2299delG/p.E767fs is indeed the most common USH2A mutation found in USH2 patients of European Caucasian background. Thus, if screening for mutations in USH2A is considered, it is reasonable to screen for the c.2299delG mutation first.
Fayaz, Shima; Fard-Esfahani, Pezhman; Fard-Esfahani, Armaghan; Mostafavi, Ehsan; Meshkani, Reza; Mirmiranpour, Hossein; Khaghani, Shahnaz
2012-01-01
Homologous recombination (HR) is the major pathway for repairing double strand breaks (DSBs) in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC) we used high resolution melting (HRM) analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg188His polymorphism (rs3218536) was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432–4.969; p = 0.38) compared with the normal melting curve. We also found a new Ser150Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion. PMID:22481871
Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee
2011-11-01
Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.
The molecular genetic analysis of the expanding pachyonychia congenita case collection
Wilson, NJ; O'Toole, EA; Milstone, LM; Hansen, CD; Shepherd, AA; Al-Asadi, E; Schwartz, ME; McLean, WHI; Sprecher, E; Smith, FJD
2014-01-01
Background Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. Objectives To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. Methods Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. Results Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. Conclusions By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families. PMID:24611874
Absence of PITX3 mutation in a Tunisian family with congenital cataract and mental retardation
Chograni, Manèl; Chaabouni, Myriam; Chelly, Imen; Helayem, Mohamed Bechir
2010-01-01
Purpose The PITX3 (pituitary homeobox 3) gene encodes for a homeobox bicoid-like transcription factor. When one allele is mutated, it leads to dominant cataract and anterior segment mesenchymal dysgenesis in humans. When both copies are mutated, homozygous mutation contributes to microphtalmia with brain malformations. In the current study, a family with autosomal recessive congenital cataract (ARCC) associated with mental retardation (MR) was examined to identify PITX3 mutations. Methods Sequencing of the PITX3 gene was performed on two affected and three unaffected members of the studied Tunisian family. The results were analyzed with Sequencing Analysis 5.2 and SeqScape. Results No mutation in the four exons of PITX3 was revealed. Two substitution polymorphisms, c.439C>T and c.930C>A, were detected in exons 3 and 4, respectively. These alterations did not segregate with the disease. Conclusions Although PITX3 was shown to be essential to normal embryonic eye and brain development in vertebrates, we report the absence of PITX3 mutations in a family presenting congenital cataract and mental retardation. PMID:20376326
Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families
Ullah, Asmat; Umair, Muhammad; Yousaf, Maryam; Khan, Sher Alam; Nazim-ud-din, Muhammad; Shah, Khadim; Ahmad, Farooq; Azeem, Zahid; Ali, Ghazanfar; Alhaddad, Bader; Rafique, Afzal; Jan, Abid; Haack, Tobias B.; Strom, Tim M.; Meitinger, Thomas; Ghous, Tahseen
2017-01-01
Purpose To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin. Methods Linkage in two families (A and B) was established to BBS7 on chromosome 4q27, in family C to BBS8 on chromosome 14q32.1, and in family D to BBS10 on chromosome 12q21.2. Family E was investigated directly with exome sequence analysis. Results Sanger sequencing revealed two novel mutations and three previously reported mutations in the BBS genes. These mutations include two deletions (c.580_582delGCA, c.1592_1597delTTCCAG) in the BBS7 gene, a missense mutation (p.Gln449His) in the BBS8 gene, a frameshift mutation (c.271_272insT) in the BBS10 gene, and a nonsense mutation (p.Ser40*) in the MKKS (BBS6) gene. Conclusions Two novel mutations and three previously reported variants, identified in the present study, further extend the body of evidence implicating BBS6, BBS7, BBS8, and BBS10 in causing BBS. PMID:28761321
Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.
Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris
2015-09-23
In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.
Burdon, Kathryn P.; Dave, Alpana; Jamieson, Robyn V.; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E.
2008-01-01
Purpose Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-A protein. Methods All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing. PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and localization of the mutant proteins was determined in mammalian epithelial cells. Results Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein. All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the cytoplasm. Conclusions This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also shed light on the significance of NHS-A regions for its localization and, hence, its function at epithelial cell junctions. PMID:18949062
PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference.
Wimmer, Katharina; Wernstedt, Annekatrin
2014-01-01
The presence of highly homologous pseudocopies can compromise the mutation analysis of a gene of interest. In particular, when using PCR-based strategies, pseudogene co-amplification has to be effectively prevented. This is often achieved by using primers designed to be parental gene specific according to the reference sequence and by applying stringent PCR conditions. However, there are cases in which this approach is of limited utility. For example, it has been shown that the PMS2 gene exchanges sequences with one of its pseudogenes, named PMS2CL. This results in functional PMS2 alleles containing pseudogene-derived sequences at their 3'-end and in nonfunctional PMS2CL pseudogene alleles that contain gene-derived sequences. Hence, the paralogues cannot be distinguished according to the reference sequence. This shortcoming can be effectively circumvented by using direct cDNA sequencing. This approach is based on the selective amplification of PMS2 transcripts in two overlapping 1.6-kb RT-PCR products. In addition to avoiding pseudogene co-amplification and allele dropout, this method has also the advantage that it allows to effectively identify deletions, splice mutations, and de novo retrotransposon insertions that escape the detection of most DNA-based mutation analysis protocols.
Zhao, M; Chen, M; Tan, A S C; Cheah, F S H; Mathew, J; Wong, P C; Chong, S S
2017-07-01
Essentials Preimplantation genetic diagnosis (PGD) of severe hemophilia A relies on linkage analysis. Simultaneous multi-marker screening can simplify selection of informative markers in a couple. We developed a single-tube tetradecaplex panel of polymorphic markers for hemophilia A PGD use. Informative markers can be used for linkage analysis alone or combined with mutation detection. Background It is currently not possible to perform single-cell preimplantation genetic diagnosis (PGD) to directly detect the common inversion mutations of the factor VIII (F8) gene responsible for severe hemophilia A (HEMA). As such, PGD for such inversion carriers relies on indirect analysis of linked polymorphic markers. Objectives To simplify linkage-based PGD of HEMA, we aimed to develop a panel of highly polymorphic microsatellite markers located near the F8 gene that could be simultaneously genotyped in a multiplex-PCR reaction. Methods We assessed the polymorphism of various microsatellite markers located ≤ 1 Mb from F8 in 177 female subjects. Highly polymorphic markers were selected for co-amplification with the AMELX/Y indel dimorphism in a single-tube reaction. Results Thirteen microsatellite markers located within 0.6 Mb of F8 were successfully co-amplified with AMELX/Y in a single-tube reaction. Observed heterozygosities of component markers ranged from 0.43 to 0.84, and ∼70-80% of individuals were heterozygous for ≥ 5 markers. The tetradecaplex panel successfully identified fully informative markers in a couple interested in PGD for HEMA because of an intragenic F8 point mutation, with haplotype phasing established through a carrier daughter. In-vitro fertilization (IVF)-PGD involved single-tube co-amplification of fully informative markers with AMELX/Y and the mutation-containing F8 amplicon, followed by microsatellite analysis and amplicon mutation-site minisequencing analysis. Conclusions The single-tube multiplex-PCR format of this highly polymorphic microsatellite marker panel simplifies identification and selection of informative markers for linkage-based PGD of HEMA. Informative markers can also be easily co-amplified with mutation-containing F8 amplicons for combined mutation detection and linkage analysis. © 2017 International Society on Thrombosis and Haemostasis.
Lee, Eunyoung; Lee, Kyoung Joo; Park, Hyein; Chung, Jin Young; Lee, Mi-Na; Chang, Myung Hee; Yoo, Jongha; Lee, Hyewon
2018-01-01
Background JAK2 V617F is the most common mutation in myeloproliferative neoplasms (MPNs) and is a major diagnostic criterion. Mutation quantification is useful for classifying patients with MPN into subgroups and for prognostic prediction. Droplet digital PCR (ddPCR) can provide accurate and reproducible quantitative analysis of DNA. This study was designed to verify the correlation of ddPCR with pyrosequencing results in the diagnosis of MPN and to investigate clinical implications of the mutational burden. Methods Peripheral blood or bone marrow samples were obtained from 56 patients newly diagnosed with MPN or previously diagnosed with MPN but not yet indicated for JAK2 inhibitor treatment between 2012 and 2016. The JAK2 V617F mutation was detected by pyrosequencing as a diagnostic work-up. The same samples were used for ddPCR to determine the correlation between assays and establish a detection sensitivity cut-off. Clinical and hematologic aspects were reviewed. Results Forty-two (75%) and 46 (82.1%) patients were positive for JAK2 V617F by pyrosequencing and ddPCR, respectively. The mean mutated allele frequency at diagnosis was 37.5±30.1% and was 40.7±31.2% with ddPCR, representing a strong correlation (r=0.9712, P<0.001). Follow-up samples were available for 12 patients, including eight that were JAK2 V617F-positive. Of these, mutational burden reduction after treatment was observed in six patients (75%), consistent with trends of hematologic improvement. Conclusions Quantitative analysis of the JAK2 V617F mutation using ddPCR was highly correlated with pyrosequencing data and may reflect the clinical response to treatment. PMID:29214759
Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali
2016-04-18
The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.
2014-01-01
Background Using immunohistochemistry (IHC) to select cases for mismatch repair (MMR) genetic testing, we failed to identify a large kindred with the deleterious PMS2 mutation c.989-1G > T. The purpose of the study was to examine the sensitivity of IHC and microsatellite instability-analysis (MSI) to identify carriers of the mutation, and to estimate its penetrance and expressions. Methods All carriers and obligate carriers of the mutation were identified. All cancer diagnoses were confirmed. IHC and MSI-analysis were performed on available tumours. Penetrances of cancers included in the Amsterdam and the Bethesda Criteria, for MSI-high tumours and MSI-high and low tumours were calculated by the Kaplan-Meier algorithm. Results Probability for co-segregation of the mutation and cancers by chance was 0.000004. Fifty-six carriers or obligate carriers were identified. There was normal staining for PMS2 in 15/18 (83.3%) of tumours included in the AMS1/AMS2/Bethesda criteria. MSI-analysis showed that 15/21 (71.4%) of tumours were MSI-high and 4/21 (19.0%) were MSI-low. Penetrance at 70 years was 30.6% for AMS1 cancers (colorectal cancers), 42.8% for AMS2 cancers, 47.2% for Bethesda cancers, 55.6% for MSI-high and MSI-low cancers and 52.2% for MSI-high cancers. Conclusions The mutation met class 5 criteria for pathogenicity. IHC was insensitive in detecting tumours caused by the mutation. Penetrance of cancers that displayed MSI was 56% at 70 years. Besides colorectal cancers, the most frequent expressions were carcinoma of the endometrium and breast in females and stomach and prostate in males. PMID:24790682
Pérez-Báez, Wendy; García-Latorre, Ethel A; Maldonado-Martínez, Héctor Aquiles; Coronado-Martínez, Iris; Flores-García, Leonardo; Taja-Chayeb, Lucía
2017-10-01
Treatment in metastatic colorectal cancer (mCRC) has expanded with monoclonal antibodies targeting epidermal growth factor receptor, but is restricted to patients with a wild-type (WT) KRAS mutational status. The most sensitive assays for KRAS mutation detection in formalin-fixed paraffin embedded (FFPE) tissues are based on real-time PCR. Among them, high resolution melting analysis (HRMA), is a simple, fast, highly sensitive, specific and cost-effective method, proposed as adjunct for KRAS mutation detection. However the method to categorize WT vs mutant sequences in HRMA is not clearly specified in available studies, besides the impact of FFPE artifacts on HRMA performance hasn't been addressed either. Avowedly adequate samples from 104 consecutive mCRC patients were tested for KRAS mutations by Therascreen™ (FDA Validated test), HRMA, and HRMA with UDG pre-treatment to reverse FFPE fixation artifacts. Comparisons of KRAS status allocation among the three methods were done. Focusing on HRMA as screening test, ROC curve analyses were performed for HRMA and HMRA-UDG against Therascreen™, in order to evaluate their discriminative power and to determine the threshold of profile concordance between WT control and sample for KRAS status determination. Comparing HRMA and HRMA-UDG against Therascreen™ as surrogate gold standard, sensitivity was 1 for both HRMA and HRMA-UDG; and specificity and positive predictive values were respectively 0.838 and 0.939; and 0.777 and 0.913. As evaluated by the McNemar test, HRMA-UDG allocated samples to a WT/mutated genotype in a significatively different way from HRMA (p > 0.001). On the other hand HRMA-UDG did not differ from Therascreen™ (p = 0.125). ROC-curve analysis showed a significant discriminative power for both HRMA and HRMA-UDG against Therascreen™ (respectively, AUC of 0.978, p > 0.0001, CI 95% 0.957-0.999; and AUC of 0.98, p > 0.0001, CI 95% 0.000-1.0). For HRMA as a screening tool, the best threshold (degree of concordance between sample curves and WT control) was attained at 92.14% for HRMA (specificity of 0.887), and at 92.55% for HRMA-UDG (specificity of 0.952). HRMA is a highly sensitive method for KRAS mutation detection, with apparently adequate and statistically significant discriminative power. FFPE sample fixation artifacts have an impact on HRMA results, so for HRMA on FFPE samples pre-treatment with UDG should be strongly suggested. The choice of the threshold for melting curve concordance has also great impact on HRMA performance. A threshold of 93% or greater might be adequate if using HRMA as a screening tool. Further validation of this threshold is required. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martell, Henry J; Wong, Kathie A; Martin, Juan F; Kassam, Ziyan; Thomas, Kay; Wass, Mark N
2017-08-11
Cystinuria is an inherited disease that results in the formation of cystine stones in the kidney, which can have serious health complications. Two genes (SLC7A9 and SLC3A1) that form an amino acid transporter are known to be responsible for the disease. Variants that cause the disease disrupt amino acid transport across the cell membrane, leading to the build-up of relatively insoluble cystine, resulting in formation of stones. Assessing the effects of each mutation is critical in order to provide tailored treatment options for patients. We used various computational methods to assess the effects of cystinuria associated mutations, utilising information on protein function, evolutionary conservation and natural population variation of the two genes. We also analysed the ability of some methods to predict the phenotypes of individuals with cystinuria, based on their genotypes, and compared this to clinical data. Using a literature search, we collated a set of 94 SLC3A1 and 58 SLC7A9 point mutations known to be associated with cystinuria. There are differences in sequence location, evolutionary conservation, allele frequency, and predicted effect on protein function between these mutations and other genetic variants of the same genes that occur in a large population. Structural analysis considered how these mutations might lead to cystinuria. For SLC7A9, many mutations swap hydrophobic amino acids for charged amino acids or vice versa, while others affect known functional sites. For SLC3A1, functional information is currently insufficient to make confident predictions but mutations often result in the loss of hydrogen bonds and largely appear to affect protein stability. Finally, we showed that computational predictions of mutation severity were significantly correlated with the disease phenotypes of patients from a clinical study, despite different methods disagreeing for some of their predictions. The results of this study are promising and highlight the areas of research which must now be pursued to better understand how mutations in SLC3A1 and SLC7A9 cause cystinuria. The application of our approach to a larger data set is essential, but we have shown that computational methods could play an important role in designing more effective personalised treatment options for patients with cystinuria.
Use of mutation spectra analysis software.
Rogozin, I; Kondrashov, F; Glazko, G
2001-02-01
The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.
Correlation between PET/CT parameters and KRAS expression in colorectal cancer.
Chen, Shang-Wen; Chiang, Hua-Che; Chen, William Tzu-Liang; Hsieh, Te-Chun; Yen, Kuo-Yang; Chiang, Shu-Fen; Kao, Chia-Hung
2014-08-01
The objective of this study was to correlate the association between mutated KRAS and wild-type colorectal cancer (CRC) by using various F-FDG PET-related parameters. One hundred twenty-one CRC patients who had undergone preoperative PET/CT were included in this study. Several PET/CT-related parameters, including SUVmax and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width, were measured. Tumor- and PET/CT-related parameters were correlated with genomic expression between KRAS mutant and wild-type groups, using a Mann-Whitney U test and logistic regression analysis. Colorectal cancer tumors with a mutated KRAS exhibited higher SUVmax and an increased accumulation of FDG among several threshold methods. Multivariate analysis showed that SUVmax and using a 40% threshold level for maximal uptake of TW (TW40%) were the 2 predictors of KRAS mutations. The odds ratio was 1.23 for SUVmax (P = 0.02; 95% confidence interval, 1.01-1.52) and 1.15 for TW40% (P = 0.02; 95% confidence interval, 1.02-1.30). The accuracy of SUVmax for predicting mutated KRAS was higher in patients with colon or sigmoid colon cancers, whereas it was TW40% in those with rectal cancers. SUVmax and TW40% were associated in CRC with KRAS mutations. PET/CT parameters can supplement genomic analysis to determine KRAS expression in CRC.
Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P
2015-01-01
Background: Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Methods: Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. Results: In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Conclusion: Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity. PMID:26125448
[Analysis of gene mutation of early onset epileptic spasm with unknown reason].
Yang, X; Pan, G; Li, W H; Zhang, L M; Wu, B B; Wang, H J; Zhang, P; Zhou, S Z
2017-11-02
Objective: To summarize the gene mutation of early onset epileptic spasm with unknown reason. Method: In this prospective study, data of patients with early onset epileptic spasm with unknown reason were collected from neurological department of Children's Hospital of Fudan University between March 2016 and December 2016. Patients with known disorders such as infection, metabolic, structural, immunological problems and known genetic mutations were excluded. Patients with genetic disease that can be diagnosed by clinical manifestations and phenotypic characteristics were also excluded. Genetic research methods included nervous system panel containing 1 427 epilepsy genes, whole exome sequencing (WES), analysis of copy number variation (CNV) and karyotype analysis of chromosome. The basic information, phenotypes, genetic results and the antiepileptic treatment of patients were analyzed. Result: Nine of the 17 cases with early onset epileptic spasm were boys and eight were girls. Patients' age at first seizure onset ranged from 1 day after birth to 8 months (median age of 3 months). The first hospital visit age ranged from 1 month to 2 years (median age of 4.5 months). The time of following-up ranged from 8 months to 3 years and 10 months. All the 17 patients had early onset epileptic spasm. Video electroencephalogram was used to monitor the spasm seizure. Five patients had Ohtahara syndrome, 10 had West syndrome, two had unclear classification. In 17 cases, 10 of them had detected pathogenic genes. Nine cases had point mutations, involving SCN2A, ARX, UNC80, KCNQ2, and GABRB3. Except one case of mutations in GABRB3 gene have been reported, all the other cases had new mutations. One patient had deletion mutation in CDKL5 gene. One CNV case had 6q 22.31 5.5MB repeats. Ten cases out of 17 were using 2-3 antiepileptic drugs (AEDs) and the drugs had no effect. Seven cases used adrenocorticotropic hormone (ACTH) and prednisone besides AEDs (a total course for 8 weeks). Among them, five cases had no effect and two cases were seizure free recently. A case with GABRB3 (C.905A>G) had seizure controlled for 3 mouths. A case with ARX (C.700G>A) had seizure controlled for 6 mouths. Conclusion: The early onset epileptic spasm with unknown reason is highly related to genetic disorders. A variety of genetic mutations, especially new mutations were found. Genetic heterogeneity of epileptic spasm is obvious.
Andersson, Mariette; Turesson, Helle; Nicolia, Alessandro; Fält, Ann-Sofie; Samuelsson, Mathias; Hofvander, Per
2017-01-01
Altered starch quality with full knockout of GBSS gene function in potato was achieved using CRISPR-Cas9 technology, through transient transfection and regeneration from isolated protoplasts. Site-directed mutagenesis (SDM) has shown great progress in introducing precisely targeted mutations. Engineered CRISPR-Cas9 has received increased focus compared to other SDM techniques, since the method is easily adapted to different targets. Here, we demonstrate that transient application of CRISPR-Cas9-mediated genome editing in protoplasts of tetraploid potato (Solanum tuberosum) yielded mutations in all four alleles in a single transfection, in up to 2 % of regenerated lines. Three different regions of the gene encoding granule-bound starch synthase (GBSS) were targeted under different experimental setups, resulting in mutations in at least one allele in 2-12 % of regenerated shoots, with multiple alleles mutated in up to 67 % of confirmed mutated lines. Most mutations resulted in small indels of 1-10 bp, but also vector DNA inserts of 34-236 bp were found in 10 % of analysed lines. No mutations were found in an allele diverging one bp from a used guide sequence, verifying similar results found in other plants that high homology between guide sequence and target region near the protospacer adjacent motif (PAM) site is essential. To meet the challenge of screening large numbers of lines, a PCR-based high-resolution fragment analysis method (HRFA) was used, enabling identification of multiple mutated alleles with a resolution limit of 1 bp. Full knockout of GBSS enzyme activity was confirmed in four-allele mutated lines by phenotypic studies of starch. One remaining wild-type (WT) allele was shown sufficient to maintain enough GBSS enzyme activity to produce significant amounts of amylose.
Brotto, Ksenija; Malisic, Emina; Cavic, Milena; Krivokuca, Ana; Jankovic, Radmila
2013-04-01
Colorectal cancers (CRCs) with wild-type KRAS respond to EGFR-targeted antibody treatment. Analysis of the hotspot clustered mutations in codons 12 and 13 is compulsory before therapy and no standardized methodology for that purpose has been established so far. Since these mutations may have different biological effects and clinical outcome, reliable frequency and types of KRAS mutations need to be determined for individual therapy. The purpose of this study was to describe the KRAS mutation spectrum in a group of 481 Serbian mCRC patients and to compare the general performances of allele-specific PCR and reverse-hybridization assays. KRAS testing was performed with two diagnostic analyses, DxS TheraScreen K-RAS PCR Kit and KRAS StripAssay™. KRAS mutations in codons 12 and 13 were present in 37.6 % of analyzed formalin-fixed paraffin-embedded (FFPE) DNA samples. The seven most frequent mutation types were observed with both assays: p.G12D 34.6 %, p.G12V 24.9 %, p.G12A 10.3 %, p.G12C 8.1 %, p.G12S 5.4 %, p.G12R 1.6 %, and p.G13D 15.1 %. Regarding double mutants, 0.8 % of them were present among all tested samples and 2.2 % among KRAS mutated ones. Two screening approaches that were used in this study have been shown as suitable tests for detecting KRAS mutations in diagnostic settings. In addition, they appear to be good alternatives to methods presently in use. In our experience, both methods showed capacity to detect and identify double mutations which may be important for potential further subgrouping of CRC patients.
NASA Astrophysics Data System (ADS)
Lily; Siregar, Y.; Ilyas, S.
2018-03-01
This study purposed to describe the product Polymerase Chain Reaction (PCR) and sequencing of DNA Mycobacterium (M.) tuberculosis from sputum of tuberculosis (TB) patients in Medan. Sputum was collected from patients that diagnosed with pulmonary TB by a physician. Specimen processed by PCR method of Li et al. and sequencing at Macrogen Laboratory. All of 12 product PCR were showed brightness bands at 126 base pair (bp). These results indicated similarity to the study of Li et al. Sequencing analysis showed the presence of a mutation and non-mutation groups of M. tuberculosis. The reference and outcome berange of the mutation and non-mutation of M. tuberculosis were 56-107, 59-85, 60-120 and 63-94, respectively. The percentage bp difference between the outcome and references for mutation and non-mutation were 3.448-6.569and 3.278-7.428%, respectively. In conclusion, the successful amplification of PCR products in a 1.5% agarose gel electrophoresis where all 12 sputa contained rpoB-positive M. tuberculosis and 0.644% difference was found between the outcome with reference bp of the mutation and non-mutation M. tuberculosis groups.
Prevalence of EGFR Mutations in Lung Cancer in Uruguayan Population
Touya, Diego; Bertoni, Bernardo; Osinaga, Eduardo; Varangot, Mario
2017-01-01
Background Incorporation of molecular analysis of the epidermal growth factor receptor (EGFR) gene into routine clinical practice represents a milestone for personalized therapy of the non-small-cell lung cancer (NSCLC). However, the genetic testing of EGFR mutations has not yet become a routine clinical practice in developing countries. In view of different prevalence of such mutations among different ethnicities and geographic regions, as well as the limited existing data from Latin America, our aim was to study the frequency of major types of activating mutations of the EGFR gene in NSCLC patients from Uruguay. Methods We examined EGFR mutations in exons 18 through 21 in 289 NSCLC Uruguayan patients by PCR-direct sequencing. Results EGFR mutations were detected in 53 of the 289 (18.3%) patients, more frequently in women (23.4%) than in men (14.5%). The distribution by exon was similar to that generally reported in the literature. Conclusions This first epidemiological study of EGFR mutations in Uruguay reveals a wide spectrum of mutations and an overall prevalence of 18.3%. The background ethnic structure of the Uruguayan population could play an important role in explaining our findings. PMID:28744312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke-Jian Lei; Hungwen Chen; Ji-Lan Liu
Diagnosis of glycogen storage disease (GSD) type 1a currently is established by demonstrating the lack of glucose-6-phosphatase (G6Pase) activity in the patient`s biopsied liver specimen. Recent cloning of the G6Pase gene and identification of mutations within the gene that causes GSD type 1a allow for the development of a DNA-based diagnostic method. Using SSCP analysis and DNA sequencing, we characterized the G6Pase gene of 70 unrelated patients with enzymatically confirmed diagnosis of GSD type 1a and detected mutations in all except 17 alleles (88%). Sixteen mutations were uncovered that were shown by expression to abolish or greatly reduce G6Pase activitymore » and that therefore are responsible for the GSD type la disorder. R83C and Q347X are the most prevalent mutations found in Caucasians, 130X and R83C are most prevalent in Hispanics, and R83H is most prevalent in Chinese. The Q347X mutation has thus far been identified only in Caucasian patients, and the 130X mutation has been identified only in Hispanic patients. Our results demonstrate that the DNA-based analysis can accurately, rapidly, and noninvasively detect the majority of mutations in GSD type 1a. This DNA-based diagnosis now permits prenatal diagnosis among at-risk patients and serves as a database in screening and counseling patients clinically suspected of having this disease. 22 refs., 2 figs., 4 tabs.« less
Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M
2008-09-01
Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy.
He, Yayi; Li, Shuai; Ren, Shengxiang; Cai, Weijing; Li, Xuefei; Zhao, Chao; Li, Jiayu; Chen, Xiaoxia; Gao, Guanghui; Li, Wei; Zhou, Fei; Zhou, Caicun
2013-08-01
Epidermal growth factor receptor (EGFR) activating mutation is an important predictive biomarker of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), while family history of cancer also plays an important role in the neoplasia of lung cancer. This study aimed to investigate the association between family history of cancer and EGFR mutation status in NSCLC population. From February 2008 to May 2012, 538 consecutive NSCLC patients with known EGFR mutation status were included into this study. Amplification refractory mutation system (ARMS) method was used to detect EGFR mutation. The associations between EGFR mutation and family history of cancer were evaluated using logistic regression models. EGFR activating mutation was found in 220 patients and 117 patients had family cancer histories among first-degree relatives. EGFR mutation was more frequently detected in adenocarcinoma patients (p < 0.001), never-smoker (p < 0.001) and with family history of cancer (p = 0.031), especially who had family history of lung cancer (p = 0.008). In multivariate analysis, the association of EGFR mutation with family history of cancer also existed (p = 0.027). NSCLC patients with family history of cancer, especially family history of lung cancer, might have a significantly higher incidence of EGFR activating mutation. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Milne, Roger L; Osorio, Ana; Cajal, Teresa Ramón Y; Vega, Ana; Llort, Gemma; de la Hoya, Miguel; Díez, Orland; Alonso, M Carmen; Lazaro, Conxi; Blanco, Ignacio; Sánchez-de-Abajo, Ana; Caldés, Trinidad; Blanco, Ana; Graña, Begoña; Durán, Mercedes; Velasco, Eladio; Chirivella, Isabel; Cardeñosa, Eva Esteban; Tejada, María-Isabel; Beristain, Elena; Miramar, María-Dolores; Calvo, María-Teresa; Martínez, Eduardo; Guillén, Carmen; Salazar, Raquel; San Román, Carlos; Antoniou, Antonis C; Urioste, Miguel; Benítez, Javier
2008-05-01
It is not clear that the published estimates of the breast and ovarian cancer penetrances of mutations in BRCA1 and BRCA2 can be used in genetic counseling in countries such as Spain, where the incidence of breast cancer in the general population is considerably lower, the prevalence of BRCA2 mutations seems to be higher, and a distinct spectrum of recurrent mutations exists for both genes. We aimed to estimate these penetrances for women attending genetic counseling units in Spain. We collected phenotype and genotype data on 155 BRCA1 and 164 BRCA2 mutation carrier families from 12 centers across the country. Average age-specific cumulative risks of breast cancer and ovarian cancer were estimated using a modified segregation analysis method. The estimated average cumulative risk of breast cancer to age 70 years was estimated to be 52% [95% confidence interval (95% CI), 26-69%] for BRCA1 mutation carriers and 47% (95% CI, 29-60%) for BRCA2 mutation carriers. The corresponding estimates for ovarian cancer were 22% (95% CI, 0-40%) and 18% (95% CI, 0-35%), respectively. There was some evidence (two-sided P = 0.09) that 330A>G (R71G) in BRCA1 may have lower breast cancer penetrance. These results are consistent with those from a recent meta-analysis of practically all previous penetrance studies, suggesting that women with BRCA1 and BRCA2 mutations attending genetic counseling services in Spain have similar risks of breast and ovarian cancer to those published for other Caucasian populations. Carriers should be fully informed of their mutation- and age-specific risks to make appropriate decisions regarding prophylactic interventions such as oophorectomy.
Ma, Li; Sheng, Xun-Lun; Li, Hui-Ping; Zhang, Fang-Xia; Liu, Ya-Ni; Rong, Wei-Ning; Zhang, Jian-Ling
2013-01-01
AIM To screen mutations in the retinitis pigmentosa 1 (RP1) gene and the rhodopsin (RHO) gene in Chinese patients with retinitis pigmentosa sine pigmento (RPSP) and describe the genotype-phenotype relationship of the mutations. METHODS Twenty affected, unrelated Chinese individuals with RPSP (4 autosomal dominant RPSP, 12 autosomal recessive RPSP and 4 unknown inheritance pattern) were recruited between 2009 and 2012. The clinical features were determined by complete ophthalmologic examinations. Polymerase chain reaction (PCR) and direct DNA sequencing were used to screen the entire coding region and splice junctions of the RP1 gene and the RHO gene. The cosegregation analysis and population frequency studies were performed for patients with identified mutations. RESULTS Five variants in the RP1 gene and one in the RHO gene were detected in 20 probands. Four missense changes (rs444772, rs446227, rs414352, rs441800) and one non-coding variant (rs56340615) were common SNPs and none of them showed a significant relationship with RPSP. A missense mutation p.R1443W was identified in the RP1 gene in three affected individuals from a family with autosomal dominant RPSP and was found to cosegregate with the phenotype in this family, suggestive of pathogenic. In addition, population frequency analysis showed the p.R1443W mutation was absent in 300 healthy controls. CONCLUSION The identification of p.R1443W mutation cosegregating in a family with autosomal dominant RPSP highlights an atypical phenotype of the RP1 gene mutation, while RHO gene is not associated with the pathogenesis of RPSP in this study. To our knowledge, this is the fist mutation identified to associate with RPSP. PMID:23991373
2012-01-01
Background Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) located in the Xp22 region have been shown to cause a subset of atypical Rett syndrome with infantile spasms or early seizures starting in the first postnatal months. Methods We performed mutation screening of CDKL5 in 60 female patients who had been identified as negative for the methyl CpG-binding protein 2 gene (MECP2) mutations, but who had current or past epilepsy, regardless of the age of onset, type, and severity. All the exons in the CDKL5 gene and their neighbouring sequences were examined, and CDKL5 rearrangements were studied by multiplex ligation-dependent probe amplification (MLPA). Results Six previously unidentified DNA changes were detected, two of which were disease-causing mutations in the catalytic domain: a frameshift mutation (c.509_510insGT; p.Glu170GlyfsX36) and a complete deletion of exon 10. Both were found in patients with seizures that started in the first month of life. Conclusions This study demonstrated the importance of CDKL5 mutations as etiological factors in neurodevelopmental disorders, and indicated that a thorough analysis of the CDKL5 gene sequence and its rearrangements should be considered in females with Rett syndrome-like phenotypes, severe encephalopathy and epilepsy with onset before 5 months of age. This study also confirmed the usefulness of MLPA as a diagnostic screening method for use in clinical practice. PMID:22867051
Triques, Karine; Sturbois, Bénédicte; Gallais, Stéphane; Dalmais, Marion; Chauvin, Stéphanie; Clepet, Christian; Aubourg, Sébastien; Rameau, Catherine; Caboche, Michel; Bendahmane, Abdelhafid
2007-09-01
Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.
Felício, V; Ramalho, A S; Igreja, S; Amaral, M D
2017-03-01
Even with advent of next generation sequencing complete sequencing of large disease-associated genes and intronic regions is economically not feasible. This is the case of cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible for cystic fibrosis (CF). Yet, to confirm a CF diagnosis, proof of CFTR dysfunction needs to be obtained, namely by the identification of two disease-causing mutations. Moreover, with the advent of mutation-based therapies, genotyping is an essential tool for CF disease management. There is, however, still an unmet need to genotype CF patients by fast, comprehensive and cost-effective approaches, especially in populations with high genetic heterogeneity (and low p.F508del incidence), where CF is now emerging with new diagnosis dilemmas (Brazil, Asia, etc). Herein, we report an innovative mRNA-based approach to identify CFTR mutations in the complete coding and intronic regions. We applied this protocol to genotype individuals with a suspicion of CF and only one or no CFTR mutations identified by routine methods. It successfully detected multiple intronic mutations unlikely to be detected by CFTR exon sequencing. We conclude that this is a rapid, robust and inexpensive method to detect any CFTR coding/intronic mutation (including rare ones) that can be easily used either as primary approach or after routine DNA analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kim, Cinoo; Kim, Kwang Joong; Bok, Jeong; Lee, Eun-Ju; Kim, Dong-Joon; Oh, Ji Hee; Park, Sung Pyo; Shin, Joo Young; Lee, Jong-Young
2012-01-01
Purpose To evaluate microarray-based genotyping technology for the detection of mutations responsible for retinitis pigmentosa (RP) and to perform phenotypic characterization of patients with pathogenic mutations. Methods DNA from 336 patients with RP and 360 controls was analyzed using the GoldenGate assay with microbeads containing 95 previously reported disease-associated mutations from 28 RP genes. Mutations identified by microarray-based genotyping were confirmed by direct sequencing. Segregation analysis and phenotypic characterization were performed in patients with mutations. The disease severity was assessed by visual acuity, electroretinography, optical coherence tomography, and kinetic perimetry. Results Ten RP-related mutations of five RP genes (PRP3 pre-mRNA processing factor 3 homolog [PRPF3], rhodopsin [RHO], phosphodiesterase 6B [PDE6B], peripherin 2 [PRPH2], and retinitis pigmentosa 1 [RP1]) were identified in 26 of the 336 patients (7.7%) and in six of the 360 controls (1.7%). The p.H557Y mutation in PDE6B, which was homozygous in four patients and heterozygous in nine patients, was the most frequent mutation (2.5%). Mutation segregation was assessed in four families. Among the patients with missense mutations, the most severe phenotype occurred in patients with p.D984G in RP1; less severe phenotypes occurred in patients with p.R135W in RHO; a relatively moderate phenotype occurred in patients with p.T494M in PRPF3, p.H557Y in PDE6B, or p.W316G in PRPH2; and a mild phenotype was seen in a patient with p.D190N in RHO. Conclusions The results reveal that the GoldenGate assay may not be an efficient method for molecular diagnosis in RP patients with rare mutations, although it has proven to be reliable and efficient for high-throughput genotyping of single-nucleotide polymorphisms. The clinical features varied according to the mutations. Continuous effort to identify novel RP genes and mutations in a population is needed to improve the efficiency and accuracy of the genetic diagnosis of RP. PMID:23049240
Analysis of the Fluoroquinolone Antibiotic Resistance Mechanism of Salmonella enterica Isolates.
Kim, Soo-Young; Lee, Si-Kyung; Park, Myeong-Soo; Na, Hun-Taek
2016-09-28
Quinolone-resistant Salmonella strains were isolated from patient samples, and several quinolone-sensitive strains were used to analyze mutations in the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE and to screen for plasmid-mediated quinolone resistance. Among the 21 strains that showed resistance to nalidixic acid and ciprofloxacin (MIC 0.125-2.0 μg/ml), 17 strains had a mutation in QRDR codon 87 of gyrA, and 3 strains had a single mutation (Ser83 → Phe). Another cause of resistance, efflux pump regulation, was studied by examining the expression of acrB, ramA, marA, and soxS. Five strains, including Sal-KH1 and Sal-KH2, showed no increase in relative expression in an analysis using the qRT-PCR method (p < 0.05). In order to determine the genes involved in the resistance, the Sal-9 isolate that showed decreased susceptibility and did not contain a mutation in the gyrA QRDR was used to make the STM (MIC 8 μg/ml) and STH (MIC 16 μg/ml) ciprofloxacin-resistant mutants. The gyrA QRDR Asp87 → Gly mutation was identified in both the STM and STH mutants by mutation analysis. qRT-PCR analysis of the efflux transporter acrB of the AcrAB-TolC efflux system showed increased expression levels in both the STM (1.79-fold) and STH (2.0-fold) mutants. In addition, the expression of the transcriptional regulator marA was increased in both the STM (6.35-fold) and STH (21.73-fold) mutants. Moreover, the expression of soxS was increased in the STM (3.41-fold) and STH (10.05-fold) mutants (p < 0.05). Therefore, these results indicate that AcrAB-TolC efflux pump activity and the target site mutation in gyrA are involved in quinolone resistance.
Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro
2016-01-01
Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing. PMID:26848797
Kato, Aya; Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro
2016-06-01
Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing.
Wang, Xia; Wang, Hui; Sun, Vincent; Tuan, Han-Fang; Keser, Vafa; Wang, Keqing; Ren, Huanan; Lopez, Irma; Zaneveld, Jacques E; Siddiqui, Sorath; Bowles, Stephanie; Khan, Ayesha; Salvo, Jason; Jacobson, Samuel G; Iannaccone, Alessandro; Wang, Feng; Birch, David; Heckenlively, John R; Fishman, Gerald A; Traboulsi, Elias I; Li, Yumei; Wheaton, Dianna; Koenekoop, Robert K; Chen, Rui
2014-01-01
Background Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are inherited retinal diseases that cause early onset severe visual impairment. An accurate molecular diagnosis can refine the clinical diagnosis and allow gene specific treatments. Methods We developed a capture panel that enriches the exonic DNA of 163 known retinal disease genes. Using this panel, we performed targeted next generation sequencing (NGS) for a large cohort of 179 unrelated and prescreened patients with the clinical diagnosis of LCA or juvenile RP. Systematic NGS data analysis, Sanger sequencing validation, and segregation analysis were utilised to identify the pathogenic mutations. Patients were revisited to examine the potential phenotypic ambiguity at the time of initial diagnosis. Results Pathogenic mutations for 72 patients (40%) were identified, including 45 novel mutations. Of these 72 patients, 58 carried mutations in known LCA or juvenile RP genes and exhibited corresponding phenotypes, while 14 carried mutations in retinal disease genes that were not consistent with their initial clinical diagnosis. We revisited patients in the latter case and found that homozygous mutations in PRPH2 can cause LCA/juvenile RP. Guided by the molecular diagnosis, we reclassified the clinical diagnosis in two patients. Conclusions We have identified a novel gene and a large number of novel mutations that are associated with LCA/juvenile RP. Our results highlight the importance of molecular diagnosis as an integral part of clinical diagnosis. PMID:23847139
Li, Wenbin; Zhang, Zhihui; Guo, Lei; Qiu, Tian; Ling, Yun; Cao, Jian; Guo, Huiqin; Zhao, Huan; Li, Lin; Ying, Jianming
2016-02-16
To investigate the use of molecular testing on cytological specimens in selecting advanced non-small cell lung cancer (NSCLC) patients who are adequate for targeted treatment, a total of 137 NSCLC cases were analyzed by fluorescence in situ hybridization (FISH) for anaplastic lymphoma kinase (ALK) rearrangements, and Epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were evaluated by quantitative real-time PCR (qRT-PCR) platform combining amplification refractory mutation system (ARMS) primers and TaqMan probes. Cytological specimens included 91 fine-needle aspirates, 5 fibreoptic bronchoscopic derived samples and 41 pleural effusions. Among 137 NSCLCs analyzed for ALK FISH, 16 (11.7%, of 137) were detected to harbor ALK rearrangement. FISH positive cases were all defined as adenocarcinoma (ADC) histologic subtype and the FNA samples showed the highest ALK positive rate (13.2%, 12/91). Of the 9 ALK FISH positive patients who received crizotinib treatment, 8 (88.9%) patients exhibited tumor regression. In addition, 60 (44.8%, of 134) cases were found to harbor EGFR mutations and 22 patients with EGFR sensitive mutations who received gefitinib or erlotinib treatment showed a median PFS of 16.0 months. Mutations of KRAS occurred in 8 (6.0%, of 134) cases and this was mutually exclusive from EGFR mutation. Our results demonstrated that ALK FISH and EGFR, KRAS mutational analysis on cytological specimens are sensitive methods for screening advanced stage NSCLC patients who are adequate for targeted treatment.
Eshleman, James R.; Norris, Alexis L.; Sadakari, Yoshihiko; Debeljak, Marija; Borges, Michael; Harrington, Colleen; Lin, Elaine; Brant, Aaron; Barkley, Thomas; Almario, J. Alejandro; Topazian, Mark; Farrell, James; Syngal, Sapna; Lee, Jeffrey H.; Yu, Jun; Hruban, Ralph H.; Kanda, Mitsuro; Canto, Marcia Irene; Goggins, Michael
2014-01-01
BACKGROUND & AIMS Pancreatic imaging can identify neoplastic cysts but not microscopic neoplasms. Mutation analysis of pancreatic fluid following secretin stimulation might identify microscopic neoplasias in the pancreatic duct system. We determined the prevalence of mutations in KRAS and GNAS genes in pancreatic juice from subjects undergoing endoscopic ultrasound for suspected pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms, or pancreatic adenocarcinoma. METHODS Secretin-stimulated juice samples were collected from the duodenum of 272 subjects enrolled in Cancer of the Pancreas Screening studies; 194 subjects were screened because of a family history of, or genetic predisposition to, pancreatic cancer and 78 were evaluated for pancreatic cancer (n=30) or other disorders (controls: pancreatic cysts, pancreatitis, or normal pancreata, n=48). Mutations were detected by digital high-resolution melt-curve analysis and pyrosequencing. The number of replicates containing a mutation determined the mutation score. RESULTS KRAS mutations were detected in pancreatic juice from larger percentages of subjects with pancreatic cancer (73%) or undergoing cancer screening (50%) than controls (19%) (P=.0005). A greater proportion of patients with pancreatic cancer had at least 1 KRAS mutation detected 3 or more times (47%) than screened subjects (21%) or controls (6%, P=.002). Among screened subjects, mutations in KRAS (but not GNAS) were found in similar percentages of patients with or without pancreatic cysts. However, a greater proportion of patients over 50 ys old had KRAS mutations (54.6%) than younger patients (36.3%) (P=.032); the older subjects also more mutations in KRAS (P=.02). CONCLUSIONS Mutations in KRAS are detected in pancreatic juice from the duodenum of 73% of patients with pancreatic cancer, and 50% of asymptomatic individuals with a high risk for pancreatic cancer. However, KRAS mutations are detected in pancreatic juice from 19% of controls. Mutations detected in individuals without pancreatic abnormalities, based on imaging analyses, likely arise from small PanIN lesions. ClinicalTrials.gov no: NCT00438906 and NCT00714701 PMID:25481712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, D.J.; Snow, K.; Yuan, Z.
1994-09-01
For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditionsmore » which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.« less
Amemiya, Kenji; Hirotsu, Yosuke; Goto, Taichiro; Nakagomi, Hiroshi; Mochizuki, Hitoshi; Oyama, Toshio; Omata, Masao
2016-12-01
Identifying genetic alterations in tumors is critical for molecular targeting of therapy. In the clinical setting, formalin-fixed paraffin-embedded (FFPE) tissue is usually employed for genetic analysis. However, DNA extracted from FFPE tissue is often not suitable for analysis because of its low levels and poor quality. Additionally, FFPE sample preparation is time-consuming. To provide early treatment for cancer patients, a more rapid and robust method is required for precision medicine. We present a simple method for genetic analysis, called touch imprint cytology combined with massively paralleled sequencing (touch imprint cytology [TIC]-seq), to detect somatic mutations in tumors. We prepared FFPE tissues and TIC specimens from tumors in nine lung cancer patients and one patient with breast cancer. We found that the quality and quantity of TIC DNA was higher than that of FFPE DNA, which requires microdissection to enrich DNA from target tissues. Targeted sequencing using a next-generation sequencer obtained sufficient sequence data using TIC DNA. Most (92%) somatic mutations in lung primary tumors were found to be consistent between TIC and FFPE DNA. We also applied TIC DNA to primary and metastatic tumor tissues to analyze tumor heterogeneity in a breast cancer patient, and showed that common and distinct mutations among primary and metastatic sites could be classified into two distinct histological subtypes. TIC-seq is an alternative and feasible method to analyze genomic alterations in tumors by simply touching the cut surface of specimens to slides. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Ojosnegros, Samuel; Agudo, Rubén; Sierra, Macarena; Briones, Carlos; Sierra, Saleta; González-López, Claudia; Domingo, Esteban; Cristina, Juan
2008-07-17
The molecular events and evolutionary forces underlying lethal mutagenesis of virus (or virus extinction through an excess of mutations) are not well understood. Here we apply for the first time phylogenetic methods and Partition Analysis of Quasispecies (PAQ) to monitor genetic distances and intra-population structures of mutant spectra of foot-and-mouth disease virus (FMDV) quasispecies subjected to mutagenesis by base and nucleoside analogues. Phylogenetic and PAQ analyses have revealed a highly dynamic variation of intrapopulation diversity of FMDV quasispecies. The population diversity first suffers striking expansions in the presence of mutagens and then compressions either when the presence of the mutagenic analogue was discontinued or when a mutation that decreased sensitivity to a mutagen was selected. The pattern of mutations found in the populations was in agreement with the behavior of the corresponding nucleotide analogues with FMDV in vitro. Mutations accumulated at preferred genomic sites, and dn/ds ratios indicate the operation of negative (or purifying) selection in populations subjected to mutagenesis. No evidence of unusually elevated genetic distances has been obtained for FMDV populations approaching extinction. Phylogenetic and PAQ analysis provide adequate procedures to describe the evolution of viral sequences subjected to lethal mutagenesis. These methods define the changes of intra-population structure more precisely than mutation frequencies and Shannon entropies. PAQ is very sensitive to variations of intrapopulation genetic distances. Strong negative (or purifying) selection operates in FMDV populations subjected to enhanced mutagenesis. The quantifications provide evidence that extinction does not imply unusual increases of intrapopulation complexity, in support of the lethal defection model of virus extinction.
Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases.
Zuckerman, Neta S; Hazanov, Helena; Barak, Michal; Edelman, Hanna; Hess, Shira; Shcolnik, Hadas; Dunn-Walters, Deborah; Mehr, Ramit
2010-12-01
B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.
Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer.
Kinugasa, Hideaki; Nouso, Kazuhiro; Miyahara, Koji; Morimoto, Yuki; Dohi, Chihiro; Tsutsumi, Koichiro; Kato, Hironari; Matsubara, Takehiro; Okada, Hiroyuki; Yamamoto, Kazuhide
2015-07-01
Cell-free circulating tumor DNA (ctDNA) in serum has been considered to be a useful candidate for noninvasive cancer diagnosis. The current study was designed to estimate the clinical usefulness of genetic analysis for ctDNA by digital polymerase chain reaction in patients with pancreatic cancer. The authors compared K-ras mutations detected in endoscopic ultrasound-guided fine-needle aspiration biopsy tissue DNA and in ctDNA from 75 patients with pancreatic cancer. K-ras mutations in the serum of 66 independent, consecutive patients with pancreatic cancer were also analyzed and the authors compared the results with survival rates. The frequencies of the mutations in tissue samples at G12V, G12D, and G12R in codon 12 were 28 of 75 samples (37.3%), 22 of 75 samples (29.3%), and 6 of 75 samples (8.0%), respectively. Conversely, the rates of the mutations in ctDNA were 26 of 75 samples (34.6%), 29 of 75 samples (38.6%), and 4 of 75 samples (5.3%), respectively. Overall, the K-ras mutation rates in tissue and ctDNA were 74.7% and 62.6%, respectively, and the concordance rate between them was 58 of 75 samples (77.3%). Survival did not appear to differ by the presence of K-ras mutations in tissue DNA, but the survival of patients with K-ras mutations in ctDNA was significantly shorter than that of patients without mutations in both a development set (P = .006) and an independent validation set (P = .002). The difference was especially evident in cases with a G12V mutation. Analysis of ctDNA is a new useful procedure for detecting mutations in patients with pancreatic cancer. This noninvasive method may have great potential as a new strategy for the diagnosis of pancreatic cancer as well as for predicting survival. © 2015 American Cancer Society.
Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa
Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying
2014-01-01
Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031
Effect of BRCA germline mutations on breast cancer prognosis
Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng
2016-01-01
Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552
Myers, Andrea P.; Filiaci, Virginia L.; Zhang, Yuping; Pearl, Michael; Behbakht, Kian; Makker, Vicky; Hanjani, Parviz; Zweizig, Susan; Burke, James J.; Downey, Gordon; Leslie, Kimberly K.; Van Hummelen, Paul; Birrer, Michael J.; Fleming, Gini F.
2016-01-01
Objective Rapamycin analogs have reproducible but modest efficacy in endometrial cancer (EC). Identification of molecular biomarkers that predict benefit could guide clinical development. Methods Fixed primary tissue and whole blood were collected prospectively from patients enrolled on GOG 248. DNA was isolated from macro-dissected tumors and blood; next–generation sequence analysis was performed on a panel of cancer related genes. Associations between clinical outcomes [response rate (RR) 20%; progression-free survival (PFS) median 4.9 months] and mutations (PTEN, PIK3CA, PIK3R1, KRAS, CTNNB1, AKT1, TSC1, TSC2, NF1, FBXW7) were explored. Results Sequencing data was obtained from tumors of 55 of the 73 enrolled pts. Mutation rates were consistent with published reports: mutations in PTEN (45%), PIK3CA (29%), PIK3R1 (24%), K-RAS (16%), CTNNB1 (18%) were common and mutations in AKT1 (4%), TSC1 (2%), TSC2 (2%), NF1 (9%) and FBXW7 (4%) were less common. Increased PFS (HR 0.16; 95% CI 0.01–0.78) and RR (response difference 0.83; 95% CI 0.03–0.99) were noted for AKT1 mutation. An increase in PFS (HR 0.46; 95% CI 0.20–0.97) but not RR (response difference 0.00, 95% CI −0.34–0.34) was identified for CTNNB1 mutation. Both patients with TSC mutations had an objective response. There were no statistically significant associations between mutations in PIK3CA, PTEN, PIK3R1, or KRAS and PFS or RR. Conclusions Mutations in AKT1, TSC1 and TSC2 are rare, but may predict clinical benefit from temsirolimus. CTNNB1 mutations were associated with longer PFS on temsirolimus. PMID:27016228
Winn-Deen
1998-12-01
Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.
Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis
Smith, Miriam J.; Isidor, Bertand; Beetz, Christian; Williams, Simon G.; Bhaskar, Sanjeev S.; Richer, Wilfrid; O'Sullivan, James; Anderson, Beverly; Daly, Sarah B.; Urquhart, Jill E.; Fryer, Alan; Rustad, Cecilie F.; Mills, Samantha J.; Samii, Amir; du Plessis, Daniel; Halliday, Dorothy; Barbarot, Sebastien; Bourdeaut, Franck
2015-01-01
Objectives: We aimed to determine the proportion of individuals in our schwannomatosis cohort whose disease is associated with an LZTR1 mutation. Methods: We used exome sequencing, Sanger sequencing, and copy number analysis to screen 65 unrelated individuals with schwannomatosis who were negative for a germline NF2 or SMARCB1 mutation. We also screened samples from 39 patients with a unilateral vestibular schwannoma (UVS), plus at least one other schwannoma, but who did not have an identifiable germline or mosaic NF2 mutation. Results: We identified germline LZTR1 mutations in 6 of 16 patients (37.5%) with schwannomatosis who had at least one affected relative, 11 of 49 (22%) sporadic patients, and 2 of 39 patients with UVS in our cohort. Three germline mutation–positive patients in total had developed a UVS. Mosaicism was excluded in 3 patients without germline mutation in NF2, SMARCB1, or LZTR1 by mutation screening in 2 tumors from each. Conclusions: Our data confirm the relationship between mutations in LZTR1 and schwannomatosis. They indicate that germline mutations in LZTR1 confer an increased risk of vestibular schwannoma, providing further overlap with NF2, and that further causative genes for schwannomatosis remain to be identified. PMID:25480913
Zhou, Cheng; Wen, Guang-Dong; Soe, Lwin Myint; Xu, Hong-Jun; Du, Juan; Zhang, Jian-Zhong
2016-01-01
Background: Acne inversa (AI), also called hidradenitis suppurativa, is a chronic, inflammatory, recurrent skin disease of the hair follicle. Familial AI shows autosomal-dominant inheritance caused by mutations in the γ-secretase genes. This study was aimed to identify the specific mutations in the γ-secretase genes in two Chinese families with AI. Methods: In this study, two Chinese families with AI were investigated. All the affected individuals in the two families mainly manifested with multiple comedones, pitted scars, and a few inflammatory nodules on their face, neck, trunk, axilla, buttocks, upper arms, and thighs. Reticulate pigmentation in the flexures areas resembled Dowling-Degos disease clinically and pathologically. In addition, one of the affected individuals developed anal canal squamous cell carcinoma. Molecular mutation analysis of γ-secretase genes including PSENEN, PSEN1, and NCSTN was performed by polymerase chain reaction and direct DNA sequencing. Results: Two novel mutations of PSENEN gene were identified, including a heterozygous missense mutation c.194T>G (p.L65R) and a splice site mutation c.167-2A>G. Conclusions: The identification of the two mutations could expand the spectrum of mutations in the γ-secretase genes underlying AI and provide valuable information for further study of genotype-phenotype correlations. PMID:27900998
Li, S; Li, L; Zhu, Y; Huang, C; Qin, Y; Liu, H; Ren-Heidenreich, L; Shi, B; Ren, H; Chu, X; Kang, J; Wang, W; Xu, J; Tang, K; Yang, H; Zheng, Y; He, J; Yu, G; Liang, N
2014-01-01
Background: Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study. Methods: Five thousand one hundred and twenty-five NSCLC patients' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis. Results: EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments. Conclusions: EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment. PMID:24743704
Chougule, A; Basak, S
2017-12-01
Lung cancer is one of the major causes of mortality worldwide and is on the rise in India. The identification of epidermal growth factor receptor (EGFR) mutations in nonsmall cell lung cancer (NSCLC) has paved the way for personalized therapy in lung cancer with EGFR-tyrosine kinase inhibitors (TKIs). Despite the proven efficacy of EGFR-TKIs in patients harboring EGFR mutations, their clinical utility is limited by the development of acquired resistance mechanisms by the tumor cells. T790M mutation accounts for 60% of all resistance mechanisms to EGFR TKIs and is responsible for treatment failure with first- and second-generation TKIs. With the development of novel therapeutic agents such as osimertinib to overcome this resistance mechanism, it is essential to detect patients harboring T790M mutation. There are several limitations with the use of tissue biopsy specimens for molecular testing such as poor quality and quantity of sample, tumor heterogeneity, occurrence of complications, and issues with repeat biopsy. Liquid biopsy offers a noninvasive approach that can be used for diagnostic purposes as well as for monitoring treatment response and evaluation of resistance mechanisms. This review focuses on the methods for molecular testing of tissue and liquid biopsy specimens for EGFR mutations, particularly EGFR T790M mutation.
Role of CFTR mutation analysis in the diagnostic algorithm for cystic fibrosis.
Ratkiewicz, Michelle; Pastore, Matthew; McCoy, Karen Sharrock; Thompson, Rohan; Hayes, Don; Sheikh, Shahid Ijaz
2017-04-01
The cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation identification is being used with increased frequency to aid in the diagnosis of cystic fibrosis (CF) in those suspected with CF. Aim of this study was to identify diagnostic outcomes when CFTR mutational analysis was used in CF diagnosis. CFTR mutational analysis results were also compared with sweat chloride results. This study was done on all patients at our institution who had CFTR mutation analysis over a sevenyear period since August 2006. A total of 315 patients underwent CFTR mutational analysis. Fifty-one (16.2%) patients had two mutations identified. Among them 32 had positive sweat chloride levels (≥60 mmol/L), while seven had borderline sweat chloride levels (40-59 mmol/L). An additional 70 patients (22.3%) had only one mutation identified. Among them eight had positive sweat chloride levels, and 17 had borderline sweat chloride levels. Fifty-five patients (17.5%) without CFTR mutations had either borderline (n=45) or positive (n=10) sweat chloride results. Three patients with a CF phenotype had negative CFTR analysis but elevated sweat chloride levels. In eighty-three patients (26.4%) CFTR mutational analysis was done without corresponding sweat chloride testing. Although CFTR mutation analysis has improved the diagnostic capability for CF, its use either as the first step or the only test to diagnose CFTR dysfunction should be discouraged and CF diagnostic guidelines need to be followed.
Jenkins, Suzanne; Chih-Hsin Yang, James; Jänne, Pasi A; Thress, Kenneth S; Yu, Karen; Hodge, Rachel; Weston, Susie; Dearden, Simon; Patel, Sabina; Cantarini, Mireille; Shepherd, Frances A
2017-08-01
Osimertinib is an oral, central nervous system-active, EGFR tyrosine kinase inhibitor (TKI) for the treatment of EGFR T790M-positive advanced NSCLC. Here we have evaluated EGFR mutation frequencies in two phase II studies of osimertinib (AURA extension and AURA2). After progression while receiving their latest line of therapy, patients with EGFR mutation-positive advanced NSCLC provided tumor samples for mandatory central T790M testing for the study selection criteria. Tumor tissue mutation analysis for patient selection was performed with the Roche cobas EGFR Mutation Test (European Conformity-in vitro diagnostic, labeled investigational use only) (Roche Molecular Systems, Pleasanton, CA). Patients should not have been prescreened for T790M mutation status. The cobas test results were compared with those of the MiSeq next-generation sequencing system (Illumina, San Diego, CA), which was used as a reference method. Samples from 324 and 373 patients screened for AURA extension and AURA2, respectively, produced valid cobas test results. The T790M detection rates were similar between AURA extension and AURA2 (64% and 63%, respectively). The pooled T790M rate was 63%, with no difference by ethnicity (63% for Asian and non-Asian patients alike) or immediately prior treatment with an EGFR TKI (afatinib, 69%; erlotinib, 69%; and gefitinib, 63%). A higher proportion of patients had T790M detected against a background of exon 19 deletions versus L858R mutation (73% versus 58% [p = 0.0002]). In both trials the cobas test demonstrated high sensitivity (positive percent agreement) and specificity (negative percent agreement) for T790M detection when compared with the next-generation sequencing reference method: positive percent agreement of 91% versus 89% and negative percent agreement of 97% versus 98%. In both trials, the rate of detection of T790M mutation in patients with advanced NSCLC was approximately 63% and was unaffected by immediately prior treatment with an EGFR TKI or ethnicity. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Er, Tze-Kiong; Kan, Tzu-Min; Su, Yu-Fa; Liu, Ta-Chih; Chang, Jan-Gowth; Hung, Shih-Ya; Jong, Yuh-Jyh
2012-11-12
Spinal muscular atrophy (SMA) is a neurodegenerative disease with the leading genetic cause of infant mortality. More than 95% of patients with SMA have a homozygous disruption in the survival motor neuron1 (SMN1) gene, caused by mutation, deletion, or rearrangement. Recently, treatment in humans in the immediate postnatal period, prior to the development of weakness or very early in the course of the disease, may be effective. Therefore, our objective was to establish a feasible method for SMA screening. High-resolution melting (HRM) analysis is rapidly becoming the most important mutation-scanning methodology that allows mutation scanning and genotyping without the need for costly labeled oligonucleotides. In the current study, we aim to develop a method for identifying the substitution of single nucleotide in SMN1 exon 7 (c.840C>T) by HRM analysis. Genomic DNA was extracted from peripheral blood samples and dried blood spots obtained from 30 patients with SMA and 30 normal individuals. All results were previously confirmed by denaturing high-performance liquid chromatography (DHPLC). In order to identify the substitution of single nucleotide in SMN1 exon 7 (c.840C>T) by HRM analysis, a primer set was used in HRM analysis. At first, we failed to identify the substitution of single nucleotide in SMN1 exon 7 (c.840C>T) by HRM analysis because the homozygous CC and homozygous TT cannot be distinguished by HRM analysis. Therefore, all samples were mixed with a known SMN1/SMN2 copy number (SMN1/SMN2=0:3), which we may call driver. This strategy is used to differentiate between homozygous CC and homozygous TT. After mixing with driver, the melting profile of homozygous CC becomes heteroduplex; however, the homozygous TT remains the same in the normalized and temperature-shifted difference plots. HRM analysis can be successfully applied to screen SMA via DNA obtained from whole blood and dried blood spots. We strongly believe that HRM analysis, a high-throughput method, could be used for identifying affected infants prior to the presentation of clinical symptoms in future. Copyright © 2012 Elsevier B.V. All rights reserved.
Analysis of APC mutation in human ameloblastoma and clinical significance.
Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong
2016-01-01
As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype.
Clinicopathologic and molecular spectrum of RNASEH1-related mitochondrial disease
Bugiardini, Enrico; Poole, Olivia V.; Manole, Andreea; Pittman, Alan M.; Horga, Alejandro; Hargreaves, Iain; Woodward, Cathy E.; Sweeney, Mary G.; Holton, Janice L.; Taanman, Jan-Willem; Plant, Gordon T.; Poulton, Joanna; Zeviani, Massimo; Ghezzi, Daniele; Taylor, John; Smith, Conrad; Fratter, Carl; Kanikannan, Meena A.; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Spinazzola, Antonella; Holt, Ian J.; Houlden, Henry; Hanna, Michael G.
2017-01-01
Objective: Pathologic ribonuclease H1 (RNase H1) causes aberrant mitochondrial DNA (mtDNA) segregation and is associated with multiple mtDNA deletions. We aimed to determine the prevalence of RNase H1 gene (RNASEH1) mutations among patients with mitochondrial disease and establish clinically meaningful genotype-phenotype correlations. Methods: RNASEH1 was analyzed in patients with (1) multiple deletions/depletion of muscle mtDNA and (2) mendelian progressive external ophthalmoplegia (PEO) with neuropathologic evidence of mitochondrial dysfunction, but no detectable multiple deletions/depletion of muscle mtDNA. Clinicopathologic and molecular evaluation of the newly identified and previously reported patients harboring RNASEH1 mutations was subsequently undertaken. Results: Pathogenic c.424G>A p.Val142Ile RNASEH1 mutations were detected in 3 pedigrees among the 74 probands screened. Given that all 3 families had Indian ancestry, RNASEH1 genetic analysis was undertaken in 50 additional Indian probands with variable clinical presentations associated with multiple mtDNA deletions, but no further RNASEH1 mutations were confirmed. RNASEH1-related mitochondrial disease was characterized by PEO (100%), cerebellar ataxia (57%), and dysphagia (50%). The ataxia neuropathy spectrum phenotype was observed in 1 patient. Although the c.424G>A p.Val142Ile mutation underpins all reported RNASEH1-related mitochondrial disease, haplotype analysis suggested an independent origin, rather than a founder event, for the variant in our families. Conclusions: In our cohort, RNASEH1 mutations represent the fourth most common cause of adult mendelian PEO associated with multiple mtDNA deletions, following mutations in POLG, RRM2B, and TWNK. RNASEH1 genetic analysis should also be considered in all patients with POLG-negative ataxia neuropathy spectrum. The pathophysiologic mechanisms by which the c.424G>A p.Val142Ile mutation impairs human RNase H1 warrant further investigation. PMID:28508084
Structure-functional prediction and analysis of cancer mutation effects in protein kinases.
Dixit, Anshuman; Verkhivker, Gennady M
2014-01-01
A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal "low" activity state to the "active" state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.
Molecular studies of achondroplasia
Nahar, Risha; Saxena, Renu; Kohli, Sudha; Puri, Ratna; Verma, Ishwar Chandra
2009-01-01
Background: Achondroplasia (ACH) is the most frequent form of short-limbed dwarfism, caused by mutations in the FGFR3 gene. It follows an autosomal dominant inheritance, though most cases are sporadic. The molecular techniques are the only available methods to confirm the diagnosis of a skeletal dysplasia. Clinical and radiological features are only suggestive and not confirmatory. The present study was conducted to find out how often the clinical diagnosis of achondroplasia is verified on molecular studies. Materials and Methods: From 1998 through 2007, we carried out molecular analysis for the two common mutations in the FGFR3 gene in 130 cases clinically suspected to have ACH. Results: A diagnostic mutation was identified in 53 (40.8%) cases. The common mutation (1138G>A) was present in 50 (94.7%) of the positive cases, while the rare 1138 G>C substitution was found in three (5.3%). Conclusion: This study shows that confirmation of clinical diagnosis of ACH by molecular genetic testing is essential to distinguish it from other skeletal dysplasias, to plan therapeutic options, and to offer genetic counseling. Management (medical and surgical) in patients confirmed to have ACH, is briefly discussed. PMID:19838370
Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema
2005-10-01
Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.
Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro
2017-07-01
Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kuroyanagi, Miwa; Katayama, Takashi; Imai, Tadashi; Yamamoto, Yoshihisa; Chisada, Shin-ichi; Yoshiura, Yasutoshi; Ushijima, Tomokazu; Matsushita, Tomonao; Fujita, Masashi; Nozawa, Aoi; Suzuki, Yuzuru; Kikuchi, Kiyoshi; Okamoto, Hiroyuki
2013-11-13
In fish breeding, it is essential to discover and generate fish exhibiting an effective phenotype for the aquaculture industry, but screening for natural mutants by only depending on natural spontaneous mutations is limited. Presently, reverse genetics has become an important tool to generate mutants, which exhibit the phenotype caused by inactivation of a gene. TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetics strategy that combines random chemical mutagenesis with high-throughput discovery technologies for screening the induced mutations in target genes. Although the chemical mutagenesis has been used widely in a variety of model species and also genetic breeding of microorganisms and crops, the application of the mutagenesis in fish breeding has been only rarely reported. In this study, we developed the TILLING method in fugu with ENU mutagenesis and high-resolution melting (HRM) analysis to detect base pair changes in target sequences. Fugu males were treated 3 times at weekly intervals with various ENU concentrations, and then the collected sperm after the treatment was used to fertilize normal female for generating the mutagenized population (F1). The fertilization and the hatching ratios were similar to those of the control and did not reveal a dose dependency of ENU. Genomic DNA from the harvested F1 offspring was used for the HRM analysis. To obtain a fish exhibiting a useful phenotype (e.g. high meat production and rapid growth), fugu myostatin (Mstn) gene was examined as a target gene, because it has been clarified that the mstn deficient medaka exhibited double-muscle phenotype in common with MSTN knockout mice and bovine MSTN mutant. As a result, ten types of ENU-induced mutations were identified including a nonsense mutation in the investigated region with HRM analysis. In addition, the average mutation frequency in fugu Mstn gene was 1 mutant per 297 kb, which is similar to values calculated for zebrafish and medaka TILLING libraries. These results demonstrate that the TILLING method in fugu was established. We anticipate that this TILLING approach can be used to generate a wide range of mutant alleles, and be applicable to many farmed fish that can be chemically mutagenized.
p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma.
Ribeiro, U; Finkelstein, S D; Safatle-Ribeiro, A V; Landreneau, R J; Clarke, M R; Bakker, A; Swalsky, P A; Gooding, W E; Posner, M C
1998-07-01
The ability to predict biologic behavior and treatment responsiveness would be a valuable asset in the multimodality approach to esophageal carcinoma. The authors examined whether alterations of the p53 gene correlate with clinicopathologic parameters, response to preoperative chemotherapy/radiotherapy, and outcome in patients with esophageal carcinoma. METHODS. Histopathologic/genetic analysis of p53 was performed on formalin fixed, paraffin embedded tissues. Tissue sections were stained immunohistochemically for p53 protein followed by topographic genotyping comprised of polymerase chain reaction amplification and direct sequencing of p53 exons 5-8. All patients received induction chemotherapy (5-fluorouracil, cisplatin, and alpha-interferon) and concurrent external beam radiotherapy (4500 centigrays) followed by resection. p53 analysis performed on 42 tumors from patients with potentially resectable esophageal carcinoma revealed 25 of the 42 tumors (59.5%) to be p53 immunopositive; however, only 17 of the 42 tumors (40.5%) were proven to contain p53 point mutational damage in exons 8 (n=5), 5 (n=5), 7 (n=4), and 6 (n=3). Eight cases were weakly immunopositive and had no genotype mutation suggesting hyperexpression of normal wild-type p53. Genotyping also identified two immunonegative cases with deletion-type mutations (exons 5 and 6). Tissue samples collected before and after chemotherapy/radiotherapy exhibited fidelity in p53 mutational genotype in all cases. The presence of a p53 point mutation positively correlated with pTNM stage (P=0.003) and residual disease in the resected specimen (P=0.01). Moreover, survival of patients with p53 mutations was significantly lower than that of patients without mutations (overall survival of 21.6 months vs. 40 months; P=0.0038; and disease free survival of 14.1 months vs. 38 months; P=0.0004). Histopathologic/genetic analysis is a better determinant of p53 mutational damage than immunohistochemistry alone and can be used as a prognostic marker for esophageal carcinoma. p53 genotyping may define a subset of patients who respond to chemotherapy/radiotherapy and may predict who potentially benefits from multimodality therapy.
Hestekin, Christa N.; Lin, Jennifer S.; Senderowicz, Lionel; Jakupciak, John P.; O’Connell, Catherine; Rademaker, Alfred; Barron, Annelise E.
2012-01-01
Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here we demonstrate the first blinded study using microchip electrophoresis-SSCP/HA. We demonstrate the ability of microchip electrophoresis-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5–9 in a blinded study in an analysis time of less than 10 minutes. PMID:22002021
Dal'Maso, Vinícius Buaes; Mallmann, Lucas; Siebert, Marina; Simon, Laura; Saraiva-Pereira, Maria Luiza; Dalcin, Paulo de Tarso Roth
2013-01-01
OBJECTIVE: To evaluate the diagnostic contribution of molecular analysis of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in patients suspected of having mild or atypical cystic fibrosis (CF). METHODS: This was a cross-sectional study involving adolescents and adults aged ≥ 14 years. Volunteers underwent clinical, laboratory, and radiological evaluation, as well as spirometry, sputum microbiology, liver ultrasound, sweat tests, and molecular analysis of the CFTR gene. We then divided the patients into three groups by the number of mutations identified (none, one, and two or more) and compared those groups in terms of their characteristics. RESULTS: We evaluated 37 patients with phenotypic findings of CF, with or without sweat test confirmation. The mean age of the patients was 32.5 ± 13.6 years, and females predominated (75.7%). The molecular analysis contributed to the definitive diagnosis of CF in 3 patients (8.1%), all of whom had at least two mutations. There were 7 patients (18.9%) with only one mutation and 26 patients (70.3%) with no mutations. None of the clinical characteristics evaluated was found to be associated with the genetic diagnosis. The most common mutation was p.F508del, which was found in 5 patients. The combination of p.V232D and p.F508del was found in 2 patients. Other mutations identified were p.A559T, p.D1152H, p.T1057A, p.I148T, p.V754M, p.P1290P, p.R1066H, and p.T351S. CONCLUSIONS: The molecular analysis of the CFTR gene coding region showed a limited contribution to the diagnostic investigation of patients suspected of having mild or atypical CF. In addition, there were no associations between the clinical characteristics and the genetic diagnosis. PMID:23670503
A cis-Regulatory Mutation of PDSS2 Causes Silky-Feather in Chickens
Feng, Chungang; Gao, Yu; Dorshorst, Ben; Song, Chi; Gu, Xiaorong; Li, Qingyuan; Li, Jinxiu; Liu, Tongxin; Rubin, Carl-Johan; Zhao, Yiqiang; Wang, Yanqiang; Fei, Jing; Li, Huifang; Chen, Kuanwei; Qu, Hao; Shu, Dingming; Ashwell, Chris; Da, Yang; Andersson, Leif; Hu, Xiaoxiang; Li, Ning
2014-01-01
Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function. PMID:25166907
Rosero Lasso, Yuliet Liliana; Arévalo-Jaimes, Betsy Verónica; Delgado, María de Pilar; Vera-Chamorro, José Fernando; García, Daniella; Ramírez, Andrea; Rodríguez-Urrego, Paula A; Álvarez, Johanna; Jaramillo, Carlos Alberto
2018-04-27
To determine the current prevalence of Helicobacter pylori in symptomatic Colombian children and evaluate the presence of mutations associated with clarithromycin resistance. Biopsies from 133 children were analyzed. The gastric fragment was used for urease test and reused for PCR-sequencing of the 23SrDNA gene. Mutations were detected by bioinformatic analysis. PCR-sequencing established that H. pylori infection was present in 47% of patients. Bioinformatics analysis of the 62 positive sequences for 23SrDNA revealed that 92% exhibited a genotype susceptible to clarithromycin, whereas remain strains (8%) showed mutations associated with clarithromycin resistance. The low rate of resistance to clarithromycin (8%) suggests that conventional treatment methods are an appropriate choice for children. Recycling a biopsy that is normally discarded reduces the risks associated with the procedure. The 23SrDNA gene amplification could be used for a dual purpose: detection of H. pylori and determination of susceptibility to clarithromycin.
Assaf, Zoe June; Tilk, Susanne; Park, Jane; Siegal, Mark L; Petrov, Dmitri A
2017-12-01
Mutations provide the raw material of evolution, and thus our ability to study evolution depends fundamentally on having precise measurements of mutational rates and patterns. We generate a data set for this purpose using (1) de novo mutations from mutation accumulation experiments and (2) extremely rare polymorphisms from natural populations. The first, mutation accumulation (MA) lines are the product of maintaining flies in tiny populations for many generations, therefore rendering natural selection ineffective and allowing new mutations to accrue in the genome. The second, rare genetic variation from natural populations allows the study of mutation because extremely rare polymorphisms are relatively unaffected by the filter of natural selection. We use both methods in Drosophila melanogaster , first generating our own novel data set of sequenced MA lines and performing a meta-analysis of all published MA mutations (∼2000 events) and then identifying a high quality set of ∼70,000 extremely rare (≤0.1%) polymorphisms that are fully validated with resequencing. We use these data sets to precisely measure mutational rates and patterns. Highlights of our results include: a high rate of multinucleotide mutation events at both short (∼5 bp) and long (∼1 kb) genomic distances, showing that mutation drives GC content lower in already GC-poor regions, and using our precise context-dependent mutation rates to predict long-term evolutionary patterns at synonymous sites. We also show that de novo mutations from independent MA experiments display similar patterns of single nucleotide mutation and well match the patterns of mutation found in natural populations. © 2017 Assaf et al.; Published by Cold Spring Harbor Laboratory Press.
Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel
2007-01-01
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.
The SNPforID Assay as a Supplementary Method in Kinship and Trace Analysis
Schwark, Thorsten; Meyer, Patrick; Harder, Melanie; Modrow, Jan-Hendrick; von Wurmb-Schwark, Nicole
2012-01-01
Objective Short tandem repeat (STR) analysis using commercial multiplex PCR kits is the method of choice for kinship testing and trace analysis. However, under certain circumstances (deficiency testing, mutations, minute DNA amounts), STRs alone may not suffice. Methods We present a 50-plex single nucleotide polymorphism (SNP) assay based on the SNPs chosen by the SNPforID consortium as an additional method for paternity and for trace analysis. The new assay was applied to selected routine paternity and trace cases from our laboratory. Results and Conclusions Our investigation shows that the new SNP multiplex assay is a valuable method to supplement STR analysis, and is a powerful means to solve complicated genetic analyses. PMID:22851934
Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H
2016-08-01
Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing an 11 bp deletion into the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. © 2016 International Society on Thrombosis and Haemostasis.
Methods for Determining Spontaneous Mutation Rates
Foster, Patricia L.
2007-01-01
Spontaneous mutations arise as a result of cellular processes that act upon or damage DNA. Accurate determination of spontaneous mutation rates can contribute to our understanding of these processes and the enzymatic pathways that deal with them. The methods that are used to calculate mutation rates are based on the model for the expansion of mutant clones originally described by Luria and Delbrück and extended by Lea and Coulson. The accurate determination of mutation rates depends on understanding the strengths and limitations of these methods and how to optimize a fluctuation assay for a given method. This chapter describes the proper design of a fluctuation assay, several of the methods used to calculate mutation rates, and ways to evaluate the results statistically. PMID:16793403
Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B
2017-02-01
Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.
Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations
Jaureguiberry, Graciana; De la Dure-Molla, Muriel; Parry, David; Quentric, Mickael; Himmerkus, Nina; Koike, Toshiyasu; Poulter, James; Klootwijk, Enriko; Robinette, Steven L.; Howie, Alexander J.; Patel, Vaksha; Figueres, Marie-Lucile; Stanescu, Horia C.; Issler, Naomi; Nicholson, Jeremy K.; Bockenhauer, Detlef; Laing, Christopher; Walsh, Stephen B.; McCredie, David A.; Povey, Sue; Asselin, Audrey; Picard, Arnaud; Coulomb, Aurore; Medlar, Alan J.; Bailleul-Forestier, Isabelle; Verloes, Alain; Le Caignec, Cedric; Roussey, Gwenaelle; Guiol, Julien; Isidor, Bertrand; Logan, Clare; Shore, Roger; Johnson, Colin; Inglehearn, Christopher; Al-Bahlani, Suhaila; Schmittbuhl, Matthieu; Clauss, François; Huckert, Mathilde; Laugel, Virginie; Ginglinger, Emmanuelle; Pajarola, Sandra; Spartà, Giuseppina; Bartholdi, Deborah; Rauch, Anita; Addor, Marie-Claude; Yamaguti, Paulo M.; Safatle, Heloisa P.; Acevedo, Ana Carolina; Martelli-Júnior, Hercílio; dos Santos Netos, Pedro E.; Coletta, Ricardo D.; Gruessel, Sandra; Sandmann, Carolin; Ruehmann, Denise; Langman, Craig B.; Scheinman, Steven J.; Ozdemir-Ozenen, Didem; Hart, Thomas C.; Hart, P. Suzanne; Neugebauer, Ute; Schlatter, Eberhard; Houillier, Pascal; Gahl, William A.; Vikkula, Miikka; Bloch-Zupan, Agnès; Bleich, Markus; Kitagawa, Hiroshi; Unwin, Robert J.; Mighell, Alan; Berdal, Ariane; Kleta, Robert
2013-01-01
Background/Aims Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. Methods We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. Results All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. Conclusions This au-tosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis. PMID:23434854
High throughput protein production screening
Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA
2009-09-08
Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.
Przytycki, Pawel F; Singh, Mona
2017-08-25
A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which compares the mutational profiles of genes across cancer genomes with their natural germline variation across healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches. We conclude that germline variation across healthy human genomes provides a powerful means for characterizing somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-Lab/Differential-Mutation-Analysis .
Villarroel, Camilo E.; Villanueva-Mendoza, Cristina; Orozco, Lorena; Alcántara-Ortigoza, Miguel Angel; Jiménez, Diana F.; Ordaz, Juan C.
2008-01-01
Purpose Paired box gene 6 (PAX6) heterozygous mutations are well known to cause congenital non-syndromic aniridia. These mutations produce primarily protein truncations and have been identified in approximately 40%–80% of all aniridia cases worldwide. In Mexico, there is only one previous report describing three intragenic deletions in five cases. In this study, we further analyze PAX6 variants in a group of Mexican aniridia patients and describe associated ocular findings. Methods We evaluated 30 nonrelated probands from two referral hospitals. Mutations were detected by single-strand conformation polymorphism (SSCP) and direct sequencing, and novel missense mutations and intronic changes were analyzed by in silico analysis. One intronic variation (IVS2+9G>A), which in silico analysis suggested had no pathological effects, was searched in 103 unaffected controls. Results Almost all cases exhibited phenotypes that were at the severe end of the aniridia spectrum with associated ocular alterations such as nystagmus, macular hypoplasia, and congenital cataracts. The mutation detection rate was 30%. Eight different mutations were identified: four (c.184_188dupGAGAC, c.361T>C, c.879dupC, and c.277G>A) were novel, and four (c.969C>T, IVS6+1G>C, c.853delC, and IVS7–2A>G) have been previously reported. The substitution at position 969 was observed in two patients. None of the intragenic deletions previously reported in Mexican patients were found. Most of the mutations detected predict either truncation of the PAX6 protein or conservative amino acid changes in the paired domain. We also detected two intronic non-pathogenic variations, IVS9–12C>T and IVS2+9G>A, that had been previously reported. Because the latter variation was considered potentially pathogenic, it was analyzed in 103 healthy Mexican newborns where we found an allelic frequency of 0.1116 for the A allele. Conclusions This study adds four novel mutations to the worldwide PAX6 mutational spectrum, and reaffirms the finding that c.969C>T is one of the three more frequent causal mutations in aniridia cases. It also provides evidence that IVS2+9G>A is an intronic change without pathogenic effect. PMID:18776953
Sequence alterations in RX in patients with microphthalmia, anophthalmia, and coloboma
London, Nikolas J.S.; Kessler, Patricia; Williams, Bryan; Pauer, Gayle J.; Hagstrom, Stephanie A.
2009-01-01
Purpose Microphthalmia, anophthalmia, and coloboma are ocular malformations with a significant genetic component. Rx is a homeobox gene expressed early in the developing retina and is important in retinal cell fate specification as well as stem cell proliferation. We screened a group of 24 patients with microphthalmia, coloboma, and/or anophthalmia for RX mutations. Methods We used standard PCR and automated sequencing techniques to amplify and sequence each of the three RX exons. Patients’ charts were reviewed for clinical information. The pathologic impact of the identified sequence variant was analyzed by computational methods using PolyPhen and PMut algorithms. Results In addition to the polymorphisms we identified a single patient with coloboma having a heterozygous nucleotide change (g.197G>C) in the first exon that results in a missense mutation of arginine to threonine at amino acid position 66 (R66T). In silico analysis predicted R66T to be a deleterious mutation. Conclusions Sequence variations in RX are uncommon in patients with congenital ocular malformations, but may play a role in disease pathogenesis. We observed a missense mutation in RX in a patient with a small, typical chorioretinal coloboma, and postulate that the mutation is responsible for the patient’s phenotype. PMID:19158959
2014-01-01
Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581
Naseer, Muhammad Imran; Rasool, Mahmood; Jan, Mohammed M; Chaudhary, Adeel G; Pushparaj, Peter Natesan; Abuzenadah, Adel M; Al-Qahtani, Mohammad H
2016-12-15
PGAP2 (Post-GPI Attachment to Proteins 2) gene is involved in lipid remodeling steps of Glycosylphosphatidylinositol (GPI)-anchor maturation. At the surface of the cell this gene is required for proper expression of GPI-anchored proteins. Hyperphosphatasia with mental retardation syndrome-3 is an autosomal recessive disorder usually characterized by severe mental retardation. Mutations in the PGAP2 gene cause hyperphosphatasia mental retardation syndrome-3. We have identified a large consanguineous family from Saudi origin segregating developmental delay, intellectual disability, epilepsy and microcephaly. Whole exome sequencing with 100× coverage was performed on two affected siblings of the family. Data analysis in the patient revealed a novel missense mutation c.191C>T in PGAP2 gene resulting in Alanine to Valine substitution (Ala64Val). The mutation was reconfirmed and validated by subsequent Sanger sequencing method. The mutation was ruled out in 100 unrelated healthy controls. We suggest that this pathogenic mutation disrupts the proper function of the gene proteins resulting in the disease state. Copyright © 2016 Elsevier B.V. All rights reserved.
Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families†
Chang, Wendy; Winder, Thomas L.; LeDuc, Charles A.; Simpson, Lynn L.; Millar, William S.; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A.; Chung, Wendy K.
2009-01-01
Objective Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. Method We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. Results We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. Conclusion These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. PMID:19266496
Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease
Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo
2017-01-01
Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643
Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo.
Falabella, Micol; Sun, Linqing; Barr, Justin; Pena, Andressa Z; Kershaw, Erin E; Gingras, Sebastien; Goncharova, Elena A; Kaufman, Brett A
2017-10-05
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo , testing RNA guides, and detecting recombinant mutations. Copyright © 2017 Falabella et al.
Pinzani, Pamela; Mancini, Irene; Vinci, Serena; Chiari, Marcella; Orlando, Claudio; Cremonesi, Laura; Ferrari, Maurizio
2013-01-01
Molecular diagnostics of human cancers may increase accuracy in prognosis, facilitate the selection of the optimal therapeutic regimen, improve patient outcome, reduce costs of treatment and favour development of personalized approaches to patient care. Moreover sensitivity and specificity are fundamental characteristics of any diagnostic method. We developed a highly sensitive microarray for the detection of common KRAS and BRAF oncogenic mutations. In colorectal cancer, KRAS and BRAF mutations have been shown to identify a cluster of patients that does not respond to anti-EGFR therapies; the identification of these mutations is therefore clinically extremely important. To verify the technical characteristics of the microarray system for the correct identification of the KRAS mutational status at the two hotspot codons 12 and 13 and of the BRAFV600E mutation in colorectal tumor, we selected 75 samples previously characterized by conventional and CO-amplification at Lower Denaturation temperature-PCR (COLD-PCR) followed by High Resolution Melting analysis and direct sequencing. Among these samples, 60 were collected during surgery and immediately steeped in RNAlater while the 15 remainders were formalin-fixed and paraffin-embedded (FFPE) tissues. The detection limit of the proposed method was different for the 7 KRAS mutations tested and for the V600E BRAF mutation. In particular, the microarray system has been able to detect a minimum of about 0.01% of mutated alleles in a background of wild-type DNA. A blind validation displayed complete concordance of results. The excellent agreement of the results showed that the new microarray substrate is highly specific in assigning the correct genotype without any enrichment strategy. PMID:23536897
Single-Molecule Counting of Point Mutations by Transient DNA Binding
NASA Astrophysics Data System (ADS)
Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan
2017-03-01
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
Boonyawat, Boonchai; Monsereenusorn, Chalinee; Traivaree, Chanchai
2014-01-01
Background Beta-thalassemia is one of the most common genetic disorders in Thailand. Clinical phenotype ranges from silent carrier to clinically manifested conditions including severe beta-thalassemia major and mild beta-thalassemia intermedia. Objective This study aimed to characterize the spectrum of beta-globin gene mutations in pediatric patients who were followed-up in Phramongkutklao Hospital. Patients and methods Eighty unrelated beta-thalassemia patients were enrolled in this study including 57 with beta-thalassemia/hemoglobin E, eight with homozygous beta-thalassemia, and 15 with heterozygous beta-thalassemia. Mutation analysis was performed by multiplex amplification refractory mutation system (M-ARMS), direct DNA sequencing of beta-globin gene, and gap polymerase chain reaction for 3.4 kb deletion detection, respectively. Results A total of 13 different beta-thalassemia mutations were identified among 88 alleles. The most common mutation was codon 41/42 (-TCTT) (37.5%), followed by codon 17 (A>T) (26.1%), IVS-I-5 (G>C) (8%), IVS-II-654 (C>T) (6.8%), IVS-I-1 (G>T) (4.5%), and codon 71/72 (+A) (2.3%), and all these six common mutations (85.2%) were detected by M-ARMS. Six uncommon mutations (10.2%) were identified by DNA sequencing including 4.5% for codon 35 (C>A) and 1.1% initiation codon mutation (ATG>AGG), codon 15 (G>A), codon 19 (A>G), codon 27/28 (+C), and codon 123/124/125 (-ACCCCACC), respectively. The 3.4 kb deletion was detected at 4.5%. The most common genotype of beta-thalassemia major patients was codon 41/42 (-TCTT)/codon 26 (G>A) or betaE accounting for 40%. Conclusion All of the beta-thalassemia alleles have been characterized by a combination of techniques including M-ARMS, DNA sequencing, and gap polymerase chain reaction for 3.4 kb deletion detection. Thirteen mutations account for 100% of the beta-thalassemia genes among the pediatric patients in our study. PMID:25525381
Hall, Michael J.; Reid, Julia E.; Burbidge, Lynn A.; Pruss, Dmitry; Deffenbaugh, Amie M.; Frye, Cynthia; Wenstrup, Richard J.; Ward, Brian E.; Scholl, Thomas A.; Noll, Walter W.
2009-01-01
Background In women at increased risk for breast and ovarian cancer, the identification of a BRCA1/2 mutation has important implications for screening and prevention counseling. Uncertainty regarding the role of BRCA1/2 testing in high-risk women from diverse ancestral backgrounds exists due to variability in prevalence estimates of deleterious (disease-associated) mutations in non-White populations. We examined the prevalence of BRCA1/2 mutations in an ethnically diverse group of women referred for genetic testing. Methods We conducted a cross-sectional analysis to assess the prevalence of BRCA1/2 mutations in a group of non-Ashkenazi Jewish women undergoing genetic testing. Results From 1996-2006, 46,276 women meeting study criteria underwent DNA full-sequence analysis of the BRCA1 and BRCA2 genes. Deleterious mutations were identified in 12.5% of subjects, and recurrent deleterious mutations (prevalence > 2%) were identified in all ancestral groups. Women of non-European descent were younger (45.9 yrs, SD11.6) than European (50.0 yrs, SD11.9)(p<0.001). Women of African (15.6%)[OR 1.3(1.1-1.5)] and Latin American (14.8%)[OR 1.2(1.1-1.4)] ancestries had a significantly higher prevalence of deleterious BRCA1/2 mutations compared to women of Western European ancestry (12.1%), primarily due to an increased prevalence of BRCA1 mutations in these two groups. Non-European ethnicity was strongly associated with having a variant of uncertain significance; however, re-classification decreased variant reporting (12.8%→5.9%), with women of African ancestry experiencing the largest decline (58%). Conclusions Mutation prevalence is high among women referred for clinical BRCA1/2 testing, and risk is similar across diverse ethnicities. BRCA1/2 testing is integral to cancer risk assessment in all high-risk women. PMID:19241424
Mariani, Sara; Bertero, Luca; Osella-Abate, Simona; Di Bello, Cristiana; Francia di Celle, Paola; Coppola, Vittoria; Sapino, Anna; Cassoni, Paola; Marchiò, Caterina
2017-01-01
Background: Gene mutations in the RAS family rule out metastatic colorectal carcinomas (mCRCs) from anti-EGFR therapies. Methods: We report a retrospective analysis by Sequenom Massarray and fast COLD-PCR followed by Sanger sequencing on 240 mCRCs. Results: By Sequenom, KRAS and NRAS exons 2-3-4 were mutated in 52.9% (127/240) of tumours, while BRAF codon 600 mutations reached 5% (12/240). Fast COLD-PCR found extra mutations at KRAS exon 2 in 15/166 (9%) of samples, previously diagnosed by Sequenom as wild-type or mutated at RAS (exons 3-4) or BRAF genes. After UDG digestion results were reproduced in 2/12 analysable subclonally mutated samples leading to a frequency of true subclonal KRAS mutations of 1.2% (2.1% of the previous Sequenom wild-type subgroup). In 10 out of 12 samples, the subclonal KRAS mutations disappeared (9 out of 12) or turned to a different sequence variant (1 out of 12). Conclusions: mCRC can harbour coexisting multiple gene mutations. High sensitivity assays allow the detection of a small subset of patients harbouring true subclonal KRAS mutations. However, DNA changes with mutant allele frequencies <3% detected in formalin-fixed paraffin-embedded samples may be artifactual in a non-negligible fraction of cases. UDG pre-treatment of DNA is mandatory to identify true DNA changes in archival samples and avoid misinterpretation due to artifacts. PMID:28618430
[Analysis of EML4-ALK gene fusion mutation in patients with non-small cell lung cancer].
Wang, Xuzhou; Chen, Weisheng; Yu, Yinghao
2015-02-01
Non-small cell lung cancer (NSCLC) is the main type of lung cancer, and the related locus mutation detection research has become a hot direction of molecular targeted therapy, studying on gene mutation status of echinodem microtubule associated protein like 4-Anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR), detecting the sensitivity of EML4-ALK gene fusion and gene mutation of EGFR. EML4-ALK gene fusion in 85 cases of paraffin embedded tumor tissue and adjacent lung tissue was detected with the application of immunohistochemistry (IHC), Scorpions amplification refractory mutation system (Scorpions ARMS) fluorescence quantitative PCR and fluorescence in situ hybridization (FISH) technology, and EGFR gene in 18, 19, 20 and 21 exon mutation status was detected with the application of ARMS method. In 115 cases of NSCLC, IHC showed 32 cases with ALK (D5F3) expression, the expression rate was 27.8%; ARMS showed 27 cases with EML4-ALK fusion gene mutation, the mutation detection rate was 23.5%; 53 cases were detected with EGFR mutation, the mutation rate was 46%. While FISH showed 23 cases with EML4-ALK fusion gene mutation, the detection rate was 20%, slightly lower than the ARMS detection results, suggesting that ARMS more sensitive. The application of IHC, ARMS fluorescence quantitative PCR and FISH technology can make a rapid and accurate evaluation of EML4-ALK gene fusion.
Sloane, Hillary S; Landers, James P; Kelly, Kimberly A
2016-07-01
KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark
2014-01-01
Background Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. Methods The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. Results A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3′ region of cagA throughout the tree. Conclusions We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. PMID:24827414
SEPT9 Mutations and a Conserved 17q25 Sequence in Sporadic and Hereditary Brachial Plexus Neuropathy
Klein, Christopher J.; Wu, Yanhong; Cunningham, Julie M.; Windebank, Anthony J.; Dyck, P. James B.; Friedenberg, Scott M.; Klein, Diane M.; Dyck, Peter J.
2009-01-01
Background The clinical characteristics of sporadic brachial plexus neuropathy (S-BPN) and hereditary brachial plexus neuropathy (H-BPN) are similar. At times of attack inflammation in brachial plexus nerves has been identified in both conditions. SEPT-9 mutations (Arg88Trp, Ser93Phe, 5UTR-131G to C) occur in some families with H-BPN. These mutations were not found in American H-BPN kindreds with a conserved 500 Kb sequence of DNA at 17q25 (the location of SEPT-9) where a founder mutation has been suggested. Objective To study 17q25 and SEPT-9 in S-BPN (56 patients) and H-BPN (13 kindreds). Methods Allele analysis at 17q25, SEPT-9 DNA sequencing and mRNA analysis from lymphoblast cultures. Results A conserved 17q25 sequence was found in 5 of 13 H-BPN kindreds and one S-BPN patient. This conserved sequence was not found in the family with a SEPT-9 mutation (Arg88Trp) or controls (182). SEPT-9 mRNA expression did not differ between forms of H-BPN and controls. No known mutations of SEPT-9 were found in S-BPN. Conclusions/Relevance Rare S-BPN patients have the same conserved 17q25 sequence found in many American H-BPN kindreds. BPN patients with this conserved sequence do not appear to have SEPT-9 mutations or alterations of its mRNA expression levels in lymphoblast cultures. BPN patients with this conserved sequence may have the most common genetic cause in the Americas by a founder effect mutation. PMID:19204161
Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo
2017-01-01
Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931
Exome capture sequencing identifies a novel mutation in BBS4
Wang, Hui; Chen, Xianfeng; Dudinsky, Lynn; Patenia, Claire; Chen, Yiyun; Li, Yumei; Wei, Yue; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard Alan; Lupski, James R.; Mardon, Graeme; Gibbs, Richard A.; Perkins, Brian D.
2011-01-01
Purpose Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. Methods Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. Results A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. Conclusions This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function. PMID:22219648
Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M.
2008-01-01
Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy. PMID:18669880
Structure-Functional Prediction and Analysis of Cancer Mutation Effects in Protein Kinases
Dixit, Anshuman; Verkhivker, Gennady M.
2014-01-01
A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes. PMID:24817905
Cao, Binbin; Yan, Huifang; Guo, Mangmang; Xie, Han; Wu, Ye; Gu, Qiang; Xiao, Jiangxi; Shang, Jing; Yang, Yanling; Xiong, Hui; Niu, Zhengping; Wu, Xiru; Jiang, Yuwu; Wang, Jingmin
2016-01-01
Objective Megalencephalic leukoencephalopathy with subcortical cysts (MLC, OMIM 604004) is a rare neurological deterioration disease. We aimed to clarify clinical and genetic features of Chinese MLC patients. Methods Clinical information and peripheral venous blood of 20 patients and their families were collected, Sanger-sequencing and Multiple Ligation-dependent Probe Amplification were performed to make genetic analysis. Splicing-site mutation was confirmed with RT-PCR. UPD was detected by haplotype analysis. Follow-up study was performed through telephone for 27 patients. Results Out of 20 patients, macrocephaly, classic MRI features, motor development delay and cognitive impairment were detected in 20(100%), 20(100%), 17(85%) and 4(20%) patients, respectively. 20(100%) were clinically diagnosed with MLC. 19(95%) were genetically diagnosed with 10 novel mutations in MLC1, MLC1 and GlialCAM mutations were identified in 15 and 4 patients, respectively. Deletion mutation from exon4 to exon9 and a homozygous point mutation due to maternal UPD of chromosome22 in MLC1 were found firstly. c.598-2A>C in MLC1 leads to the skip of exon8. c.772-1G>C in MLC1 accounting for 15.5%(9/58) alleles in Chinese patients might be a founder or a hot-spot mutation. Out of 27 patients in the follow-up study, head circumference was ranged from 56cm to 61cm in patients older than 5yeas old, with a median of 57cm. Motor development delay and cognitive impairment were detected in 22(81.5%) and 5(18.5%) patients, respectively. Motor and cognitive deterioration was found in 5 (18.5%) and 2 patients (7.4%), respectively. Improvements and MRI recovery were first found in Chinese patients. Rate of seizures (45.5%), transient motor retrogress (45.5%) and unconsciousness (13.6%) after head trauma was much higher than that after fever (18.2%, 9.1%, 0%, respectively). Significance It’s a clinical and genetic analysis and a follow-up study for largest sample of Chinese MLC patients, identifying 10 novel mutations, expanding mutation spectrums and discovering clinical features of Chinese MLC patients. PMID:27322623
Janku, F; Huang, H J; Fujii, T; Shelton, D N; Madwani, K; Fu, S; Tsimberidou, A M; Piha-Paul, S A; Wheler, J J; Zinner, R G; Naing, A; Hong, D S; Karp, D D; Cabrilo, G; Kopetz, E S; Subbiah, V; Luthra, R; Kee, B K; Eng, C; Morris, V K; Karlin-Neumann, G A; Meric-Bernstam, F
2017-03-01
Cell-free DNA (cfDNA) from plasma offers easily obtainable material for KRAS mutation analysis. Novel, multiplex, and accurate diagnostic systems using small amounts of DNA are needed to further the use of plasma cfDNA testing in personalized therapy. Samples of 16 ng of unamplified plasma cfDNA from 121 patients with diverse progressing advanced cancers were tested with a KRASG12/G13 multiplex assay to detect the seven most common mutations in the hotspot of exon 2 using droplet digital polymerase chain reaction (ddPCR). The results were retrospectively compared to mutation analysis of archival primary or metastatic tumor tissue obtained at different points of clinical care. Eighty-eight patients (73%) had KRASG12/G13 mutations in archival tumor specimens collected on average 18.5 months before plasma analysis, and 78 patients (64%) had KRASG12/G13 mutations in plasma cfDNA samples. The two methods had initial overall agreement in 103 (85%) patients (kappa, 0.66; ddPCR sensitivity, 84%; ddPCR specificity, 88%). Of the 18 discordant cases, 12 (67%) were resolved by increasing the amount of cfDNA, using mutation-specific probes, or re-testing the tumor tissue, yielding overall agreement in 115 patients (95%; kappa 0.87; ddPCR sensitivity, 96%; ddPCR specificity, 94%). The presence of ≥ 6.2% of KRASG12/G13 cfDNA in the wild-type background was associated with shorter survival (P = 0.001). Multiplex detection of KRASG12/G13 mutations in a small amount of unamplified plasma cfDNA using ddPCR has good sensitivity and specificity and good concordance with conventional clinical mutation testing of archival specimens. A higher percentage of mutant KRASG12/G13 in cfDNA corresponded with shorter survival. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yao, Shuyang; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu
2016-01-01
Background Epidermal growth factor receptor (EGFR) mutations occur in about 50% of Asian patients with non‐small cell lung cancer (NSCLC). Patients with advanced NSCLC and EGFR mutations derive clinical benefit from treatment with EGFR‐tyrosine kinase inhibitors (TKIs). This study assessed the efficacy and safety of adjuvant icotinib without chemotherapy in EGFR‐mutated NSCLC patients undergoing resection of stage IB–IIIA. Methods Our retrospective study enrolled 20 patients treated with icotinib as adjuvant therapy. Survival factors were evaluated by univariate and Cox regression analysis. Results The median follow‐up time was 30 months (range 24–41). At the data cut‐off, five patients (25%) had recurrence or metastasis and one patient had died of the disease. The two‐year disease‐free survival (DFS) rate was 85%. No recurrence occurred in the high‐risk stage IB subgroup during the follow‐up period. In univariate analysis, the micropapillary pattern had a statistically significant effect on DFS (P = 0.040). Multivariate logistic regression analysis showed that there was no independent predictor. Drug related adverse events (AEs) occurred in nine patients (45.0%). The most common AEs were skin‐related events and diarrhea, but were relatively mild. No grade 3 AEs or occurrences of intolerable toxicity were observed. Conclusions Icotinib as adjuvant therapy is effective in patients harboring EGFR mutations after complete resection, with an acceptable AE profile. Further trials with larger sample sizes might confirm the efficiency of adjuvant TKI in selected patients. PMID:27766784
Van Bockstaele, Femke; Janssens, Ann; Piette, Anne; Callewaert, Filip; Pede, Valerie; Offner, Fritz; Verhasselt, Bruno; Philippé, Jan
2006-07-15
ZAP-70 has been proposed as a surrogate marker for immunoglobulin heavy-chain variable region (IgV(H)) mutation status, which is known as a prognostic marker in B-cell chronic lymphocytic leukemia (CLL). The flow cytometric analysis of ZAP-70 suffers from difficulties in standardization and interpretation. We applied the Kolmogorov-Smirnov (KS) statistical test to make analysis more straightforward. We examined ZAP-70 expression by flow cytometry in 53 patients with CLL. Analysis was performed as initially described by Crespo et al. (New England J Med 2003; 348:1764-1775) and alternatively by application of the KS statistical test comparing T cells with B cells. Receiver-operating-characteristics (ROC)-curve analyses were performed to determine the optimal cut-off values for ZAP-70 measured by the two approaches. ZAP-70 protein expression was compared with ZAP-70 mRNA expression measured by a quantitative PCR (qPCR) and with the IgV(H) mutation status. Both flow cytometric analyses correlated well with the molecular technique and proved to be of equal value in predicting the IgV(H) mutation status. Applying the KS test is reproducible, simple, straightforward, and overcomes a number of difficulties encountered in the Crespo-method. The KS statistical test is an essential part of the software delivered with modern routine analytical flow cytometers and is well suited for analysis of ZAP-70 expression in CLL. (c) 2006 International Society for Analytical Cytology.
Huang, Zhi-Heng; Song, Zai; Zhang, Ping; Wu, Jie; Huang, Ying
2016-01-01
AIM: To investigate multiple polyps in a Chinese Peutz-Jeghers syndrome (PJS) infant. METHODS: A nine-month-old PJS infant was admitted to our hospital for recurrent prolapsed rectal polyps for one month. The clinical characteristics, a colonoscopic image, the pathological characteristics of the polyps and X-ray images of the intestinal perforation were obtained. Serine threonine-protein kinase 11 (STK11) gene analysis was also performed using a DNA sample from this infant. RESULTS: Here we describe the youngest known Chinese infant with PJS. Five polyps, including a giant polyp of approximately 4 cm × 2 cm in size, were removed from the infant’s intestine. Laparotomy was performed to repair a perforation caused by pneumoperitoneum. The pathological results showed that this child had PJS. Molecular analysis of the STK11 gene further revealed a novel frameshift mutation (c.64_65het_delAT) in exon 1 in this PJS infant. CONCLUSION: The appropriate treatment method for multiple polyps in an infant must be carefully considered. Our results also show that the STK11 gene mutation is the primary cause of PJS. PMID:27004004
Jabbar, Abdul; Gasser, Robin B
2013-07-01
Adult tapeworms of the genus Echinococcus (family Taeniidae) occur in the small intestines of carnivorous definitive hosts and are transmitted to particular intermediate mammalian hosts, in which they develop as fluid-filled larvae (cysts) in internal organs (usually lung and liver), causing the disease echinococcosis. Echinococcus species are of major medical importance and also cause losses to the meat and livestock industries, mainly due to the condemnation of infected offal. Decisions regarding the treatment and control of echinococcosis rely on the accurate identification of species and population variants (strains). Conventional, phenetic methods for specific identification have some significant limitations. Despite advances in the development of molecular tools, there has been limited application of mutation scanning methods to species of Echinococcus. Here, we briefly review key genetic markers used for the identification of Echinococcus species and techniques for the analysis of genetic variation within and among populations, and the diagnosis of echinococcosis. We also discuss the benefits of utilizing mutation scanning approaches to elucidate the population genetics and epidemiology of Echinococcus species. These benefits are likely to become more evident following the complete characterization of the genomes of E. granulosus and E. multilocularis.
Rischewski, J; Schneppenheim, R
2001-01-30
Patients with Fanconi anemia (Fanc) are at risk of developing leukemia. Mutations of the group A gene (FancA) are most common. A multitude of polymorphisms and mutations within the 43 exons of the gene are described. To examine the role of heterozygosity as a risk factor for malignancies, a partially automatized screening method to identify aberrations was needed. We report on our experience with DHPLC (WAVE (Transgenomic)). PCR amplification of all 43 exons from one individual was performed on one microtiter plate on a gradient thermocycler. DHPLC analysis conditions were established via melting curves, prediction software, and test runs with aberrant samples. PCR products were analyzed twice: native, and after adding a WT-PCR product. Retention patterns were compared with previously identified polymorphic PCR products or mutants. We have defined the mutation screening conditions for all 43 exons of FancA using DHPLC. So far, 40 different sequence variations have been detected in more than 100 individuals. The native analysis identifies heterozygous individuals, and the second run detects homozygous aberrations. Retention patterns are specific for the underlying sequence aberration, thus reducing sequencing demand and costs. DHPLC is a valuable tool for reproducible recognition of known sequence aberrations and screening for unknown mutations in the highly polymorphic FancA gene.
Soler, Stephan; Rittore, Cécile; Touitou, Isabelle; Philibert, Laurent
2011-02-20
From the wide range of methods currently available for genotyping, we wished to identify a quick, reliable and affordable approach for routine use in our laboratory for LTA+252 C>T SNP screening. We set up and compared three genotyping methods for SNP detection: restriction fragment length polymorphism (RFLP), tetra primer amplification refractory mutation system PCR (TPAP) and unlabeled probe melting analysis (UPMA). The SNP model used was LTA+252 C>T, a cytokine gene polymorphism that has been associated with response to treatment in rheumatoid arthritis. The study was performed using 46 samples from healthy Caucasian volunteers. Allele and genotype distribution was similar to that previously described in the same population. All three genotyping methods showed good reproducibility and are suitable for a medium scale throughput molecular platform. UPMA was the most cost effective, reliable and safe method since it required the shortest technician time, could be performed in a single closed tube and involved automatic data analysis. This work is the first to compare these three genotyping techniques and provides evidence for UPMA being the method of choice for LTA+252 C>T SNP genotyping. Copyright © 2010 Elsevier B.V. All rights reserved.
Classification of TP53 Mutations and HPV Predict Survival in Advanced Larynx Cancer
Scheel, Adam; Bellile, Emily; McHugh, Jonathan B.; Walline, Heather M.; Prince, Mark E.; Urba, Susan; Wolf, Gregory T.; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E.; Bradford, Carol
2016-01-01
OBJECTIVE Assess TP53 functional mutations in the context of other biomarkers in advanced larynx cancer. STUDY DESIGN Prospective analysis of pretreatment tumor TP53, HPV, Bcl-xL and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. METHODS TP53 exons 4-9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl and cyclin D1 expression. RESULTS TP53 Mutations were found in 22/58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13/58 (22.4%) patients, nonsense mutations in 4/58 (6.9%), and deletions in 5/58 (8.6%). High risk HPV was found in 20/52 (38.5%) tumors. A classification based on crystal Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low risk mutations (p=0.0315). A model including this TP53 classification, HPV status, cyclin D1 and Bcl-xL staining significantly predicts survival (p=0.0017). CONCLUSION EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. PMID:27345657
Lavania, Mallika; Hena, Abu; Reja, Hasanoor; Nigam, Astha; Biswas, Nibir Kumar; Singh, Itu; Turankar, Ravindra P; Gupta, Ud; Kumar, Senthil; Rewaria, Latika; Patra, Pradip K R; Sengupta, Utpal; Bhattacharya, Basudeb
2016-03-01
Rifampicin is the major drug in the treatment of leprosy. The rifampicin resistance of Mycobacterium leprae results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. As M. leprae is a non-cultivable organism observation of its growth using mouse food-pad (MFP) is the only Gold Standard assay used for confirmation of "in-vivo" drug resistance. Any mutation at molecular level has to be verified by MFP assay for final confirmation of drug resistance in leprosy. In the present study, M. leprae strains showing a mutation only at codon 442 Gln-His and along with mutation either at codon 424 Val-Gly or at 438 Gln-Val within the Rifampicin Resistance Determining Region (RRDR) confirmed by DNA sequencing and by high resolution melting (HRM) analysis were subjected for its growth in MFP. The M. leprae strain having the new mutation at codon 442 Gln-His was found to be sensitive to all the three drugs and strains having additional mutations at 424 Val-Gly and 438 Gln-Val were conferring resistance with Multi drug therapy (MDT) in MFP. These results indicate that MFP is the gold standard method for confirming the mutations detected by molecular techniques.
Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations
2011-01-01
Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887
Labudde, Dirk
2015-01-01
The importance of short membrane sequence motifs has been shown in many works and emphasizes the related sequence motif analysis. Together with specific transmembrane helix-helix interactions, the analysis of interacting sequence parts is helpful for understanding the process during membrane protein folding and in retaining the three-dimensional fold. Here we present a simple high-throughput analysis method for deriving mutational information of interacting sequence parts. Applied on aquaporin water channel proteins, our approach supports the analysis of mutational variants within different interacting subsequences and finally the investigation of natural variants which cause diseases like, for example, nephrogenic diabetes insipidus. In this work we demonstrate a simple method for massive membrane protein data analysis. As shown, the presented in silico analyses provide information about interacting sequence parts which are constrained by protein evolution. We present a simple graphical visualization medium for the representation of evolutionary influenced interaction pattern pairs (EIPPs) adapted to mutagen investigations of aquaporin-2, a protein whose mutants are involved in the rare endocrine disorder known as nephrogenic diabetes insipidus, and membrane proteins in general. Furthermore, we present a new method to derive new evolutionary variations within EIPPs which can be used for further mutagen laboratory investigations. PMID:26180540
Grunert, Steffen; Labudde, Dirk
2015-01-01
The importance of short membrane sequence motifs has been shown in many works and emphasizes the related sequence motif analysis. Together with specific transmembrane helix-helix interactions, the analysis of interacting sequence parts is helpful for understanding the process during membrane protein folding and in retaining the three-dimensional fold. Here we present a simple high-throughput analysis method for deriving mutational information of interacting sequence parts. Applied on aquaporin water channel proteins, our approach supports the analysis of mutational variants within different interacting subsequences and finally the investigation of natural variants which cause diseases like, for example, nephrogenic diabetes insipidus. In this work we demonstrate a simple method for massive membrane protein data analysis. As shown, the presented in silico analyses provide information about interacting sequence parts which are constrained by protein evolution. We present a simple graphical visualization medium for the representation of evolutionary influenced interaction pattern pairs (EIPPs) adapted to mutagen investigations of aquaporin-2, a protein whose mutants are involved in the rare endocrine disorder known as nephrogenic diabetes insipidus, and membrane proteins in general. Furthermore, we present a new method to derive new evolutionary variations within EIPPs which can be used for further mutagen laboratory investigations.
Kang, Hyo Jae; Hwangbo, Bin; Lee, Jin Soo; Kim, Moon Soo; Lee, Jong Mog; Lee, Geon-Kook
2016-01-01
Introduction Although the use of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is increasing for epidermal growth factor receptor (EGFR) testing in lung cancer, the discordance rate in EGFR mutations between lymph node (LN) samples obtained by EBUS-TBNA and primary tumor (PT) is not well known. Thus, we compared the EGFR mutation status of LN samples obtained by EBUS-TBNA and PTs to estimate the efficacy of using EBUS-TBNA specimens for EGFR testing in advanced, non-squamous, non-small cell lung cancer (NSCLC). Materials and Methods Using data of patients from the EBUS-TBNA database (N = 1914) obtained between January 2009 and January 2013, we identified 100 treatment-naïve, advanced, non-squamous NSCLC patients (stage 3 and 4) with matched LN specimens obtained by EBUS-TBNA and PT specimens. Of these, 74 patients with paired specimens were feasible for EGFR mutation analysis, which we performed using a direct sequencing method. Results Of the 74 cases, at least one major [exon 19 deleted (19del) and L858R] or minor (T790M, exon 20 insertion, and other point mutations) EGFR mutation was detected in 31 cases (41.9%), which included PT (n = 31, 41.9%) and LN (n = 28, 37.8%) specimens. Major mutations were detected in 25 PT (33.8%, 19del = 13, L858R = 12) and 22 LN (29.8%, 19del = 11, L858R = 11) specimens. The discordance rate in major mutations between matched PT and LN specimens was 4.1% (3/74). Among minor mutations, T790M was detected in LN specimen only in 2 cases with L858R in PT and LN. The discordance rate major and minor EGFR mutations combined between matched PT and LN specimens was 12% (9/74). Conclusions We observed a high concordance rate of major EGFR mutations between matched LN specimens sampled by EBUS-TBNA and PTs, suggesting that LN samples obtained by EBUS-TBNA from advanced non-squamous NSCLC patients are effective for use in EGFR mutation testing. PMID:27685950
PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato
Singh, Om P; Bali, Prerna; Hemingway, Janet; Subbarao, Sarala K; Dash, Aditya P; Adak, Tridibes
2009-01-01
Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F) in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at kdr locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped. PMID:19594947
Molecular characterization of G6PD deficiency in Cyprus.
Drousiotou, Anthi; Touma, Elias H; Andreou, Nicoletta; Loiselet, Jacques; Angastiniotis, Michalis; Verrelli, Brian C; Tishkoff, Sarah A
2004-01-01
In the present study, we determined the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Cyprus using two different procedures in two separate adult population groups: a semiquantitative fluorescence test on blood spotted on filter paper and a quantitative spectrophotometric test on liquid blood. The frequency of G6PD deficiency among healthy adult males was found to be 5.1% using the semiquantitative procedure and 6.4% using the quantitative procedure. Neither method was able to detect all the expected female heterozygotes (5.3% and 47.1% of the expected number, respectively). A total of 21 male hemizygotes, 1 female homozygote and 9 female heterozygotes that tested positive for G6PD deficiency were studied at the molecular level. All 32 chromosomes were genotyped and five different mutations were identified. The Mediterranean mutation in exon 6 (563C-->T) (Ser188Phe) was found to be the most common variant in the Cypriot population, accounting for 52.6% of the deficient alleles. In the remaining chromosomes, four different mutations were identified: three known mutations, Kaiping 1388G-->A (Arg463His), Chatham 1003G-->A (Ala335Thr) and Acrokorinthos 463C-->G (His155Asp), and one previously undescribed mutation in exon 3, 148C-->T (Pro50Ser), which we called G6PD Kambos. We conclude that the frequency of G6PD deficiency in Cypriot males is 6.4%, and that this deficiency is the result of several different mutations. Although all the individuals carrying the Mediterranean variant can be detected using a semiquantitative screening method, a quantitative enzyme measurement is required to detect the G6PD variants with less severe enzyme deficiencies, while the most appropriate method for heterozygote detection is DNA analysis.
Whitney, Anna; Shakhnovich, Eugene I.
2015-01-01
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910
Sato, Keisaku; Pollock, Neil; Stowell, Kathryn M
2010-06-01
Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel. A number of different ex vivo methods can be used to demonstrate functionality, as long as cells from human patients can be obtained and cultured from at least two unrelated families. Because malignant hyperthermia is an uncommon disorder and many variants seem to be private, including the newly identified H4833Y mutation, these approaches are limited. The authors cloned the human skeletal muscle ryanodine receptor complementary DNA and expressed both normal and mutated forms in HEK-293 cells and carried out functional analysis using ryanodine binding assays in the presence of a specific agonist, 4-chloro-m-cresol, and the antagonist Mg. Transiently expressed human ryanodine receptor proteins colocalized with an endoplasmic reticulum marker in HEK-293 cells. Ryanodine binding assays confirmed that mutations causing malignant hyperthermia resulted in a hypersensitive channel, while those causing central core disease resulted in a hyposensitive channel. The functional assays validate recombinant human skeletal muscle ryanodine receptor for analysis of variants and add an additional mutation (H4833Y) to the repertoire of mutations that can be used for the genetic diagnosis of malignant hyperthermia.
Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming
2014-01-01
There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542
Li, Yuping; Xu, Hanyan; Su, Shanshan; Ye, Junru; Chen, Junjie; Jin, Xuru; Lin, Quan; Zhang, Dongqing; Ye, Caier; Chen, Chengshui
2017-01-01
Circulating tumor DNA (ctDNA) is a promising biomarker for noninvasive epidermal growth factor receptor (EGFR) mutations detection in lung cancer patients, but the existing methods have limitations in sensitivity or in availability. In this study, we evaluated the performance of a novel assay called ADx-SuperARMS in detecting EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma. A total of 109 patients with metastatic advanced adenocarcinoma were recruited who provided both blood samples and matched tumor tissue samples. EGFR mutation status in plasma samples were tested with ADx-SuperARMS EGFR assay and tumor tissue samples were tested with ADx-ARMS EGFR assay. The clinical sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) of ADx-SuperARMS EGFR assay were calculated by using EGFR mutation status in tumor tissue as standard reference. A receiver operating characteristic (ROC) analysis was implemented and an area under the curve (AUC) was calculated to evaluate sensitivity and specificity of exon 19 deletion (E19Del) and L858R mutation detection. The objective response rate (ORR) were calculated according to the EGFR mutation status determined by ADx-superARMS as well. 0.2% analytical sensitivity and 100% specificity of the ADx-SuperARMS EGFR assays for EGFR E19Del, L858R, and T790M mutants were confirmed by using a series of diluted cell line DNA. In the clinical study, EGFR mutations were detected in 45.9% (50/109) of the plasma samples and in 56.9% (62/109) of the matched tumor tissue samples. The sensitivity, specificity, PPV and NPV of the ADx-SuperARMS EGFR assay for plasma EGFR mutation detection were 82.0% (50/61), 100% (48/48), 100% (50/50), and 81.4% (48/59), respectively. In ROC analysis, ADx-SuperARMS achieved sensitivity and specificity of 88% and 99% in E19Dels as well as sensitivity and specificity of 89% and 100% in L858R, respectively. Among the 35 patients who were plasma EGFR mutation positive and treated with first generation of EGFR-tyrosine kinase inhibitors (TKIs), 23 (65.7%) achieved partial response, 11 (31.4%) sustained disease, and 1 (2.9%) progressive disease. The ORR and disease control rate (DCR) were 65.7% and 97.1%, respectively. ADx-SuperARMS EGFR assay is likely to be a highly sensitive and specific method to noninvasively detect plasma EGFR mutations of patients with advanced lung adenocarcinoma. The EGFR mutations detected by ADx-SuperARMS EGFR assay could predict the efficacy of the treatment with first generation of EGFR-TKIs. Hence, EGFR blood testing with ADx-SuperARMS could address the unmet clinical needs.
Analysis and implications of mutational variation.
Keightley, Peter D; Halligan, Daniel L
2009-06-01
Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.
Breast cancer in high-risk Afrikaner families: Is BRCA founder mutation testing sufficient?
Seymour, Heather Jessica; Wainstein, Tasha; Macaulay, Shelley; Haw, Tabitha; Krause, Amanda
2016-02-03
Germline pathogenic mutations in cancer susceptibility genes result in inherited cancer syndromes. In the Afrikaner population of South Africa (SA), three founder mutations in the BRCA genes that lead to hereditary breast and ovarian cancer syndrome (HBOCS) have been identified. To investigate the uptake and type of molecular testing performed on patients for HBOCS, to determine the prevalence of the three Afrikaner founder BRCA mutations as well as non-founder BRCA mutations in the study population, and to analyse the utility of two mutation prediction models (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) and Manchester scoring method) in assisting with the decision for the most cost-effective testing option. A retrospective file review was performed on counsellees of self-reported Afrikaner ancestry from Johannesburg, SA (2001 - 2014), with a personal or family history of breast and/or ovarian cancer. Demographic and family history information was recorded and Manchester and BOADICEA scores were calculated for each patient. Of 86 unrelated counsellees whose files were reviewed, 54 (62.8%) underwent BRCA genetic testing; 18 (33.3%) tested positive for a mutation, and 14 of these (77.8%) for an Afrikaner founder mutation. Twelve counsellees had the BRCA2 c.7934delG mutation. Four non-founder mutations were identified. BOADICEA scores were significantly higher in counsellees who tested positive for a mutation than in those who tested negative. Founder mutation testing should be performed as a first-line option. BOADICEA is very useful in identifying counsellees at high risk for a BRCA mutation and also assists with the decision to pursue further testing following a negative founder mutation result. These findings assist in guiding an informed genetic counselling service for at-risk individuals with an Afrikaner background.
Normanno, Nicola; Pinto, Carmine; Taddei, Gianluigi; Gambacorta, Marcello; Castiglione, Francesca; Barberis, Massimo; Clemente, Claudio; Marchetti, Antonio
2013-06-01
The Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytology organized an external quality assessment (EQA) scheme for EGFR mutation testing in non-small-cell lung cancer. Ten specimens, including three small biopsies with known epidermal growth factor receptor (EGFR) mutation status, were validated in three referral laboratories and provided to 47 participating centers. The participants were requested to perform mutational analysis, using their usual method, and to submit results within a 4-week time frame. According to a predefined scoring system, two points were assigned to correct genotype and zero points to false-negative or false-positive results. The threshold to pass the EQA was set at higher than 18 of 20 points. Two rounds were preplanned. All participating centers submitted the results within the time frame. Polymerase chain reaction (PCR)/sequencing was the main methodology used (n = 37 laboratories), although a few centers did use pyrosequencing (n = 8) or real-time PCR (n = 2). A significant number of analytical errors were observed (n = 20), with a high frequency of false-positive results (n = 16). The lower scores were obtained for the small biopsies. Fourteen of 47 centers (30%) that did not pass the first round, having a score less than or equal to 18 points, used PCR/sequencing, whereas 10 of 10 laboratories, using pyrosequencing or real-time PCR, passed the first round. Eight laboratories passed the second round. Overall, 41of 47 centers (87%) passed the EQA. The results of the EQA for EGFR testing in non-small-cell lung cancer suggest that good quality EGFR mutational analysis is performed in Italian laboratories, although differences between testing methods were observed, especially for small biopsies.
Whiley, David M; Jacob, Kevin; Nakos, Jennifer; Bletchly, Cheryl; Nimmo, Graeme R; Nissen, Michael D; Sloots, Theo P
2012-06-01
Numerous real-time PCR assays have been described for detection of the influenza A H275Y alteration. However, the performance of these methods can be undermined by sequence variation in the regions flanking the codon of interest. This is a problem encountered more broadly in microbial diagnostics. In this study, we developed a modification of hybridization probe-based melting curve analysis, whereby primers are used to mask proximal mutations in the sequence targets of hybridization probes, so as to limit the potential for sequence variation to interfere with typing. The approach was applied to the H275Y alteration of the influenza A (H1N1) 2009 strain, as well as a Neisseria gonorrhoeae mutation associated with antimicrobial resistance. Assay performances were assessed using influenza A and N. gonorrhoeae strains characterized by DNA sequencing. The modified hybridization probe-based approach proved successful in limiting the effects of proximal mutations, with the results of melting curve analyses being 100% consistent with the results of DNA sequencing for all influenza A and N. gonorrhoeae strains tested. Notably, these included influenza A and N. gonorrhoeae strains exhibiting additional mutations in hybridization probe targets. Of particular interest was that the H275Y assay correctly typed influenza A strains harbouring a T822C nucleotide substitution, previously shown to interfere with H275Y typing methods. Overall our modified hybridization probe-based approach provides a simple means of circumventing problems caused by sequence variation, and offers improved detection of the influenza A H275Y alteration and potentially other resistance mechanisms.
2008-01-01
Background The molecular events and evolutionary forces underlying lethal mutagenesis of virus (or virus extinction through an excess of mutations) are not well understood. Here we apply for the first time phylogenetic methods and Partition Analysis of Quasispecies (PAQ) to monitor genetic distances and intra-population structures of mutant spectra of foot-and-mouth disease virus (FMDV) quasispecies subjected to mutagenesis by base and nucleoside analogues. Results Phylogenetic and PAQ analyses have revealed a highly dynamic variation of intrapopulation diversity of FMDV quasispecies. The population diversity first suffers striking expansions in the presence of mutagens and then compressions either when the presence of the mutagenic analogue was discontinued or when a mutation that decreased sensitivity to a mutagen was selected. The pattern of mutations found in the populations was in agreement with the behavior of the corresponding nucleotide analogues with FMDV in vitro. Mutations accumulated at preferred genomic sites, and dn/ds ratios indicate the operation of negative (or purifying) selection in populations subjected to mutagenesis. No evidence of unusually elevated genetic distances has been obtained for FMDV populations approaching extinction. Conclusion Phylogenetic and PAQ analysis provide adequate procedures to describe the evolution of viral sequences subjected to lethal mutagenesis. These methods define the changes of intra-population structure more precisely than mutation frequencies and Shannon entropies. PAQ is very sensitive to variations of intrapopulation genetic distances. Strong negative (or purifying) selection operates in FMDV populations subjected to enhanced mutagenesis. The quantifications provide evidence that extinction does not imply unusual increases of intrapopulation complexity, in support of the lethal defection model of virus extinction. PMID:18637173
Mutations in SURF1 are important genetic causes of Leigh syndrome in Slovak patients.
Danis, Daniel; Brennerova, Katarina; Skopkova, Martina; Kurdiova, Timea; Ukropec, Jozef; Stanik, Juraj; Kolnikova, Miriam; Gasperikova, Daniela
2018-04-01
Leigh syndrome is a progressive early onset neurodegenerative disease typically presenting with psychomotor regression, signs of brainstem and/or basal ganglia disease, lactic acidosis, and characteristic magnetic resonance imaging findings. At molecular level, deficiency of respiratory complexes and/or pyruvate dehydrogenase complex is usually observed. Nuclear gene SURF1 encodes an assembly factor for cytochrome c-oxidase complex of the respiratory chain and autosomal recessive mutations in SURF1 are one of the most frequent causes of cytochrome c-oxidase-related Leigh syndrome cases. Here, we aimed to elucidate the genetic basis of Leigh syndrome in three Slovak families. Three probands presenting with Leigh syndrome were selected for DNA analysis. The first proband, presenting with atypical LS onset without abnormal basal ganglia magnetic resonance imaging findings, was analyzed with whole exome sequencing. In the two remaining probands, SURF1 was screened by Sanger sequencing. Four different heterozygous mutations were identified in SURF1: c.312_321delinsAT:p.(Pro104Profs*1), c.588+1G>A, c.823_833+7del:p. (?) and c.845_846del:p.(Ser282Cysfs*9). All the mutations are predicted to have a loss-of-function effect. We identified disease-causing mutations in all three probands, which points to the important role of SURF1 gene in etiology of Leigh syndrome in Slovakia. Our data showed that patients with atypical Leigh syndrome phenotype without lesions in basal ganglia may benefit from the whole exome sequencing method. In the case of probands presenting the typical phenotype, Sanger sequencing of the SURF1 gene seems to be an effective method of DNA analysis.
Polski, J M; Kimzey, S; Percival, R W; Grosso, L E
1998-01-01
AIM: To provide a more efficient method for isolating DNA from peripheral blood for use in diagnostic DNA mutation analysis. METHODS: The use of blood impregnated filter paper and Chelex-100 in DNA isolation was evaluated and compared with standard DNA isolation techniques. RESULTS: In polymerase chain reaction (PCR) based assays of five point mutations, identical results were obtained with DNA isolated routinely from peripheral blood and isolated using the filter paper and Chelex-100 method. CONCLUSION: In the clinical setting, this method provides a useful alternative to conventional DNA isolation. It is easily implemented and inexpensive, and provides sufficient, stable DNA for multiple assays. The potential for specimen contamination is reduced because most of the steps are performed in a single microcentrifuge tube. In addition, this method provides for easy storage and transport of samples from the point of acquisition. PMID:9893748
Phi, Xuan-Anh; Saadatmand, Sepideh; De Bock, Geertruida H; Warner, Ellen; Sardanelli, Francesco; Leach, Martin O; Riedl, Christopher C; Trop, Isabelle; Hooning, Maartje J; Mandel, Rodica; Santoro, Filippo; Kwan-Lim, Gek; Helbich, Thomas H; Tilanus-Linthorst, Madeleine MA; van den Heuvel, Edwin R; Houssami, Nehmat
2016-01-01
Background: We investigated the additional contribution of mammography to screening accuracy in BRCA1/2 mutation carriers screened with MRI at different ages using individual patient data from six high-risk screening trials. Methods: Sensitivity and specificity of MRI, mammography and the combination of these tests were compared stratified for BRCA mutation and age using generalised linear mixed models with random effect for studies. Number of screens needed (NSN) for additional mammography-only detected cancer was estimated. Results: In BRCA1/2 mutation carriers of all ages (BRCA1=1219 and BRCA2=732), adding mammography to MRI did not significantly increase screening sensitivity (increased by 3.9% in BRCA1 and 12.6% in BRCA2 mutation carriers, P>0.05). However, in women with BRCA2 mutation younger than 40 years, one-third of breast cancers were detected by mammography only. Number of screens needed for mammography to detect one breast cancer not detected by MRI was much higher for BRCA1 compared with BRCA2 mutation carriers at initial and repeat screening. Conclusions: Additional screening sensitivity from mammography above that from MRI is limited in BRCA1 mutation carriers, whereas mammography contributes to screening sensitivity in BRCA2 mutation carriers, especially those ⩽40 years. The evidence from our work highlights that a differential screening schedule by BRCA status is worth considering. PMID:26908327
Demirağ, Funda; Yılmaz, Aydın; Yılmaz Demirci, Nilgün; Yılmaz, Ülkü; Erdoğan, Yurdanur
2017-11-13
Background/aim: This study aimed to analyze EGFR, KRAS, and BRAF mutations in females with micropapillary predominant invasive lung adenocarcinoma and their relationships with immunohistochemical and clinicopathological patterns.Materials and methods: A total of 15 females with micropapillary lung adenocarcinoma were selected. Mutational analysis of the EGFR, KRAS, and BRAF genes was carried out. Information regarding the demographic data, tumor size, treatment, and survival time for each patient was collated, and the predominant cell type, secondary architectural growth patterns, psammoma bodies, necrosis, and visceral pleural and angiolymphatic invasions were evaluated.Results: We identified EGFR mutation in six cases, KRAS mutation in three cases, and BRAF mutation in one case. EGFR, c-kit, VEGFR, and bcl-2 positivity was observed in ten, seven, four, and six cases, respectively. All cases were positive for VEGF (strong positivity in 11 cases and weak positivity in four cases) and bcl-2 (strong positivity in nine cases and weak positivity in six cases). Seven (46.6%) cases were positive for c-kit and 10 (66.6%) cases were positive for EGFR. Conclusion: EGFR mutation occurred at a higher incidence rate in micropapillary predominant invasive adenocarcinoma than has previously been found in conventional lung adenocarcinomas. KRAS mutation was observed as having a similar frequency to what was previously observed, but the frequency of BRAF mutation was lower than previously reported.
Lee, Kyungjong; Um, Sang-Won; Jeong, Byeong-Ho; Yang, Jung Wook; Choi, Yoon-La; Han, Joungho; Kim, Hojoong; Kwon, O Jung
2016-01-01
Objective A mutational analysis of tumor tissue samples is an important part of advanced lung cancer treatment strategies. This study evaluated the efficacy of a triple gene analysis using samples obtained via endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). Methods Either metastatic lymph nodes or primary lung mass samples obtained by EBUS-TBNA were collected between May 2011 and May 2013. We consecutively analyzed epidermal growth factor receptor (EGFR), V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), and anaplastic lymphoma kinase (ALK) fusion genes using remnant tissue samples. Results A total of 109 patients were diagnosed with non-small cell lung cancer (NSCLC). Of these, 70% were adenocarcinoma, 27% squamous cell carcinoma with NSCLC, and 3% were related to other types of lung cancer. EGFR mutations were detected in 23 cases (21.1%), KRAS mutations in 13 cases (11.9%), and ALK fusion genes in 5 cases (4.9%). The ALK fusion genes could not be analyzed in four cases because of insufficient tissue samples remaining after routine histochemistry and an EGFR/KRAS mutation analysis. We found that small biopsy samples from EBUS-TBNA were adequate for performing a triple gene analysis in 97 patients (96%). ALK fusion protein immunohistochemistry (IHC) was 100% consistent with fluorescence in situ hybridization (FISH). Conclusion Small samples obtained by EBUS-TBNA were found to be sufficient for performing a triple gene analysis following routine histology and IHC. ALK IHC showed a very good concordance with FISH for detecting ALK fusion genes. PMID:27803402
Wang, Shi-Yuan; Zhang, Qi; Zhang, Xiang; Zhao, Pei-Quan
2016-01-01
AIM To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis (LCA) in Chinese. METHODS LCA subjects and their families were retrospectively collected from 2013 to 2015. Firstly, whole-exome sequencing was performed in patients who had underwent gene mutation screening with nothing found, and then homozygous sites was selected, candidate sites were annotated, and pathogenic analysis was conducted using softwares including Sorting Tolerant from Intolerant (SIFT), Polyphen-2, Mutation assessor, Condel, and Functional Analysis through Hidden Markov Models (FATHMM). Furthermore, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of pathogenic genes were performed followed by co-segregation analysis using Fisher exact Test. Sanger sequencing was used to validate single-nucleotide variations (SNVs). Expanded verification was performed in the rest patients. RESULTS Totally 51 LCA families with 53 patients and 24 family members were recruited. A total of 104 SNVs (66 LCA-related genes and 15 co-segregated genes) were submitted for expand verification. The frequencies of homozygous mutation of KRT12 and CYP1A1 were simultaneously observed in 3 families. Enrichment analysis showed that the potential pathogenic genes were mainly enriched in functions related to cell adhesion, biological adhesion, retinoid metabolic process, and eye development biological adhesion. Additionally, WFS1 and STAU2 had the highest homozygous frequencies. CONCLUSION LCA is a highly heterogeneous disease. Mutations in KRT12, CYP1A1, WFS1, and STAU2 may be involved in the development of LCA. PMID:27672588
Mutation analysis of β-thalassemia in East-Western Indian population: a recent molecular approach
Shah, Parth S; Shah, Nidhi D; Ray, Hari Shankar P; Khatri, Nikunj B; Vaghasia, Ketan K; Raval, Rutvik J; Shah, Sandip C; Rao, Mandava V
2017-01-01
Background β-Thalassemia is the most prevalent genetic disorder in India. Its traits and coinheritance vary from mild to severe conditions, resulting in thalassemia minor, intermediate, and major, depending upon many factors. Purpose The objective of this study was to identify the incidence of β-thalassemia traits, their coinheritance, and mutations, as well as to support the patients already diagnosed with β-thalassemia in East-Western Indian population for better management. Patients and methods Seventy-five referral cases for β-thalassemia were analyzed for various β-thalassemia traits, heterozygosity, and homozygosity conditions. Blood phenotypic parameters using cell counter and capillary electrophoresis were investigated. Analyses of eight common mutations of thalassemia in India were carried out using polymerase chain reaction-amplification refractory mutation system, end point polymerase chain reaction, and DNA sequencing methods. Results Of these (75) referral cases from East-Western Indian region, 68 were positive for β-thalassemia (90.67%). The majority of case types were of β-thalassemia minor (49, 65.33%), followed by HbE traits (6, 8.0%) and β-thalassemia major, including heterozygous and homozygous (5, 6.66%; 4, 5.33%) types and then HbE homozygous (2, 2.66%), as well as one each of the HbE/β-thalassemia and HbD/β-thalassemia (1, 1.34%) combination. Mutation analysis also revealed that the highest frequency of mutation was c.92+5G>C (41, 60.29%) followed by deletion 619bp (9, 13.23%) and c.79G>A (8, 11.76%) in our study group. Five cases (nos. 24, 27, 33, 58, and 71) exhibited coinheritance between β0/β+ (2), β0/β D (1), and c.124_127delTTCT/β+ or β0(2) affecting the Rajasthani and Gujarati populations in our study of the Western region of India. Conclusion We strongly recommend these Western populations for genetic screening before adopting reproductive technologies and interracial marital relations. PMID:28546763
Study establishes basis for genomic classification of endometrial cancers
A comprehensive genomic analysis of nearly 400 endometrial tumors suggests that certain molecular characteristics – such as the frequency of mutations – could complement current pathology methods and help distinguish between principal types of endometrial
Fassan, Matteo; Indraccolo, Stefano; Calabrese, Fiorella; Favaretto, Adolfo; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Lunardi, Francesca; Attili, Ilaria; Pavan, Alberto; Rugge, Massimo; Guarneri, Valentina; Conte, PierFranco; Pasello, Giulia
2017-01-01
Introduction Tyrosine-kinase inhibitors (TKIs) represent the best treatment for advanced non-small cell lung cancer (NSCLC) with common exon 19 deletion or exon 21 epidermal growth factor receptor mutation (EGFRm). This is an observational study investigating epidemiology, clinical features and treatment outcome of NSCLC cases harbouring rare/complex EGFRm. Results Among 764 non-squamous NSCLC cases with known EGFRm status, 26(3.4%) harboured rare/complex EGFRm. Patients receiving first-line TKIs (N = 17) achieved median Progression Free Survival (PFS) and Overall Survival (OS) of 53 (IC 95%, 2–105) and 84 (CI 95%, 27–141) weeks respectively, without significant covariate impact. Response Rate and Disease Control Rate (DCR) were 47% and 65%, respectively. Uncommon exon 19 mutations achieved longer OS and PFS and higher DCR compared with exon 18 and 20 mutations. No additional gene mutation was discovered by MassARRAY analysis. TKIs were globally well tolerated. Materials and methods A retrospective review of advanced non-squamous NSCLC harbouring rare/complex EGFRm referred to our Center between 2010 and 2015 was performed. Additional molecular pathways disregulation was explored in selected cases, through MassARRAY analysis. Conclusions Peculiar clinical features and lower TKIs sensitivity of uncommon/complex compared with common EGFRm were shown. Exon 19 EGFRm achieved the best TKIs treatment outcome, while the optimal treatment of exon 18 and 20 mutations should be further clarified. PMID:28427238
Extensive scanning of the calpain-3 gene broadens the spectrum of LGMD2A phenotypes
Piluso, G; Politano, L; Aurino, S; Fanin, M; Ricci, E; Ventriglia, V; Belsito, A; Totaro, A; Saccone, V; Topaloglu, H; Nascimbeni, A; Fulizio, L; Broccolini, A; Canki-Klain, N; Comi, L; Nigro, G; Angelini, C; Nigro, V
2005-01-01
Background: The limb girdle muscular dystrophies (LGMD) are a heterogeneous group of Mendelian disorders highlighted by weakness of the pelvic and shoulder girdle muscles. Seventeen autosomal loci have been so far identified and genetic tests are mandatory to distinguish among the forms. Mutations at the calpain 3 locus (CAPN3) cause LGMD type 2A. Objective: To obtain unbiased information on the consequences of CAPN3 mutations. Patients: 530 subjects with different grades of symptoms and 300 controls. Methods: High throughput denaturing HPLC analysis of DNA pools. Results: 141 LGMD2A cases were identified, carrying 82 different CAPN3 mutations (45 novel), along with 18 novel polymorphisms/variants. Females had a more favourable course than males. In 94% of the more severely affected patient group, the defect was also discovered in the second allele. This proves the sensitivity of the approach. CAPN3 mutations were found in 35.1% of classical LGMD phenotypes. Mutations were also found in 18.4% of atypical patients and in 12.6% of subjects with high serum creatine kinase levels. Conclusions: A non-invasive and cost–effective strategy, based on the high throughput denaturing HPLC analysis of DNA pools, was used to obtain unbiased information on the consequences of CAPN3 mutations in the largest genetic study ever undertaken. This broadens the spectrum of LGMD2A phenotypes and sets the carrier frequency at 1:103. PMID:16141003
Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer.
Mu, Zhaomei; Benali-Furet, Naoual; Uzan, Georges; Znaty, Anaëlle; Ye, Zhong; Paolillo, Carmela; Wang, Chun; Austin, Laura; Rossi, Giovanna; Fortina, Paolo; Yang, Hushan; Cristofanilli, Massimo
2016-09-30
The availability of blood-based diagnostic testing using a non-invasive technique holds promise for real-time monitoring of disease progression and treatment selection. Circulating tumor cells (CTCs) have been used as a prognostic biomarker for the metastatic breast cancer (MBC). The molecular characterization of CTCs is fundamental to the phenotypic identification of malignant cells and description of the relevant genetic alterations that may change according to disease progression and therapy resistance. However, the molecular characterization of CTCs remains a challenge because of the rarity and heterogeneity of CTCs and technological difficulties in the enrichment, isolation and molecular characterization of CTCs. In this pilot study, we evaluated circulating tumor associated cells in one blood draw by size exclusion technology and cytological analysis. Among 30 prospectively enrolled MBC patients, CTCs, circulating tumor cell clusters (CTC clusters), CTCs of epithelial-mesenchymal transition (EMT) and cancer associated macrophage-like cells (CAMLs) were detected and analyzed. For molecular characterization of CTCs, size-exclusion method for CTC enrichment was tested in combination with DEPArray™ technology, which allows the recovery of single CTCs or pools of CTCs as a pure CTC sample for mutation analysis. Genomic mutations of TP53 and ESR1 were analyzed by targeted sequencing on isolated 7 CTCs from a patient with MBC. The results of genomic analysis showed heterozygous TP53 R248W mutation from one single CTC and pools of three CTCs, and homozygous TP53 R248W mutation from one single CTC and pools of two CTCs. Wild-type ESR1 was detected in the same isolated CTCs. The results of this study reveal that size-exclusion method can be used to enrich and identify circulating tumor associated cells, and enriched CTCs were characterized for genetic alterations in MBC patients, respectively.
2011-01-01
Background The gene CHEK2 encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though CHEK2 has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE) represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether CHEK2 was subject to DAE in lymphoblastoid cell lines (LCLs) from high-risk breast cancer patients for whom no mutation in BRCA1 or BRCA2 had been identified. Methods We implemented an assay based on high-resolution melting (HRM) curve analysis and developed an analysis tool for DAE assessment. Results We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of CHEK2 that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs. Conclusions Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms. PMID:21569354
Novel mutations in the genes TGM1 and ALOXE3 underlying autosomal recessive congenital ichthyosis
Ullah, Rahim; Ansar, Muhammad; Durrani, Zaka Ullah; Lee, Kwanghyuk; Santos-Cortez, Regie Lyn P.; Muhammad, Dost; Ali, Mahboob; Zia, Muhammad; Ayub, Muhammad; Khan, Suliman; Smith, Josh D.; Nickerson, Deborah A.; Shendure, Jay; Bamshad, Michael; Leal, Suzanne M.; Ahmad, Wasim
2016-01-01
Background Ichthyoses are clinically characterized by scaling or hyperkeratosis of the skin or both. It can be an isolated condition limited to the skin or appear secondarily with involvement of other cutaneous or systemic abnormalities. Methods The present study investigated clinical and molecular characterization of three consanguineous families (A, B, C) segregating two different forms of autosomal recessive congenital ichthyosis (ARCI). Linkage in three consanguineous families (A, B, C) segregating two different forms of ARCI was searched by typing microsatellite and single nucleotide polymorphism marker analysis. Sequencing of the two genes TGM1 and ALOXE3 was performed by the dideoxy chain termination method. Results Genome-wide linkage analysis established linkage in family A to TGM1 gene on chromosome 14q11 and in families B and C to ALOXE3 gene on chromosome 17p13. Subsequently, sequencing of these genes using samples from affected family members led to the identification of three novel mutations: a missense variant p.Trp455Arg in TGM1 (family A); a nonsense variant p.Arg140* in ALOXE3 (family B); and a complex rearrangement in ALOXE3 (family C). Conclusion The present study further extends the spectrum of mutations in the two genes involved in causing ARCI. Characterizing the clinical spectrum resulting from mutations in the TGM1 and ALOXE3 genes will improve diagnosis and may direct clinical care of the family members. PMID:26578203
Deminoff, S. J.; Tornow, J.; Santangelo, G. M.
1995-01-01
The GCR1 gene of Saccharomyces cerevisiae encodes a transcriptional activator that complexes with Rap1p and, through UAS(RPG) elements (Rap1p DNA binding sites), stimulates efficient expression of glycolytic and translational component genes. To map the functionally important domains in Gcr1p, we combined multiple rounds of random mutagenesis in vitro with in vivo selection of functional genes to locate conserved, or hypomutable, regions. We name this method unigenic evolution, a statistical analysis of mutations in evolutionary variants of a single gene in an otherwise isogenic background. Examination of the distribution of 315 mutations in 24 variant alleles allowed the localization of four hypomutable regions in GCR1 (A, B, C, and D). Dispensable N-terminal (intronic) and C-terminal portions of the evolved region of GCR1 were included in the analysis as controls and were, as expected, not hypomutable. The analysis of several insertion, deletion, and point mutations, combined with a comparison of the hypomutability and hydrophobicity plots of Gcr1p, suggested that some of the hypomutable regions may individually or in combination correspond to functionally important surface domains. In particular, we determined that region D contains a putative leucine zipper and is necessary and sufficient for Gcr1p homodimerization. PMID:8601472
Mancini, Irene; Santucci, Claudio; Sestini, Roberta; Simi, Lisa; Pratesi, Nicola; Cianchi, Fabio; Valanzano, Rosa; Pinzani, Pamela; Orlando, Claudio
2010-01-01
Fast and reliable tests to detect mutations in human cancers are required to better define clinical samples and orient targeted therapies. KRAS mutations occur in 30–50% of colorectal cancers (CRCs) and represent a marker of clinical resistance to cetuximab therapy. In addition, the BRAF V600E is mutated in about 10% of CRCs, and the development of a specific inhibitor of mutant BRAF kinase has prompted a growing interest in BRAFV600E detection. Traditional methods, such as PCR and direct sequencing, do not detect low-level mutations in cancer, resulting in false negative diagnoses. In this study, we designed a protocol to detect mutations of KRAS and BRAFV600E in 117 sporadic CRCs based on coamplification at lower denaturation temperature PCR (COLD-PCR) and high-resolution melting (HRM). Using traditional PCR and direct sequencing, we found KRAS mutations in 47 (40%) patients and BRAFV600E in 10 (8.5%). The use of COLD-PCR in apparently wild-type samples allowed us to identify 15 newly mutated CRCs (10 for KRAS and 5 for BRAFV600E), raising the percentage of mutated CRCs to 48.7% for KRAS and to 12.8% for BRAFV600E. Therefore, COLD-PCR combined with HRM permits the correct identification of less represented mutations in CRC and better selection of patients eligible for targeted therapies, without requiring expensive and time-consuming procedures. PMID:20616366
De Novo Paternal FBN1 Mutation Detected in Embryos Before Implantation.
Wang, Shuling; Niu, Ziru; Wang, Hui; Ma, Minyue; Zhang, Wei; Fang Wang, Shu; Wang, Jun; Yan, Hong; Liu, Yifan; Duan, Na; Zhang, Xiandong; Yao, Yuanqing
2017-06-26
BACKGROUND Marfan syndrome (MFS) is an autosomal dominant disease caused by mutations in the Fibrillin (FBN)1 gene and characterized by disorders in the cardiovascular, skeletal, and visual systems. The diversity of mutations and phenotypic heterogeneity of MFS make prenatal molecular diagnoses difficult. In this study, we used pre-implantation genetic diagnosis (PGD) to identify the pathogenic mutation in a male patient with MFS and to determine whether his offspring would be free of the disease. MATERIAL AND METHODS The history and pedigree of the proband were analyzed. Mutation analysis was performed on the couple and immediate family members. The couple chose IVF treatment and 4 blastocysts were biopsied. PGD was carried out by targeted high-throughput sequencing of the FBN1 gene in the embryos, along with single-nucleotide polymorphism haplotyping. Sanger sequencing was used to confirm the causative mutation. RESULTS c.2647T>C (p.Trp883Arg) was identified as the de novo likely pathogenic mutation in the proband. Whole-genome amplification and sequencing of the 3 embryos revealed that they did not carry the mutation, and 1 blastocyst was transferred back to the uterus. The amniocentesis test result analyzed by Sanger sequencing confirmed the PGD. A premature but healthy infant free of heart malformations was born. CONCLUSIONS The de novo mutation c.2647T>C (p.Trp883Arg) in FBN1 was identified in a Chinese patient with MFS. Embryos without the mutation were identified by PGD and resulted in a successful pregnancy.
Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin
2017-01-01
Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816
Jiang, Baijia; Ryan, Kathleen A.; Hamedani, Ali; Cheng, Yuching; Sparks, Mary J.; Koontz, Deborah; Bean, Christopher J.; Gallagher, Margaret; Hooper, W. Craig; McArdle, Patrick F.; O'Connell, Jeffrey R.; Stine, O. Colin; Wozniak, Marcella A.; Stern, Barney J.; Mitchell, Braxton D.; Kittner, Steven J.; Cole, John W.
2014-01-01
Background and Purpose Although the prothrombin G20210A mutation has been implicated as a risk factor for venous thrombosis, its role in arterial ischemic stroke is unclear, particularly among young-adults. To address this issue, we examined the association between prothrombin G20210A and ischemic stroke in a Caucasian case-control population and additionally performed a meta-analysis Methods From the population-based Genetics of Early Onset Stroke (GEOS) study we identified 397 individuals of European ancestry aged 15-49 years with first-ever ischemic stroke and 426 matched-controls. Logistic regression was used to calculate odds ratios in the entire population and for subgroups stratified by gender, age, oral contraceptive use, migraine and smoking status. A meta-analysis of 17 case-control studies (n=2305 cases <55 years) was also performed with and without GEOS data. Results Within GEOS, the association of the prothrombin G20210A mutation with ischemic stroke did not achieve statistical significance (OR=2.5,95%CI=0.9-6.5,p=0.07). However, among adults aged 15-42 (younger than median age), cases were significantly more likely than controls to have the mutation (OR=5.9,95%CI=1.2-28.1,p=0.03), whereas adults ages 42-49 were not (OR=1.4,95%CI=0.4-5.1,p=0.94). In our meta-analysis, the mutation was associated with significantly increased stroke risk in adults <=55 years (OR=1.4;95%CI=1.1-1.9;p=0.02) with significance increasing with addition of the GEOS results (OR=1.5;95%CI=1.1-2.0;p=0.005). Conclusions The prothrombin G20210A mutation is associated with ischemic stroke in young-adults and may have an even stronger association among those with earlier onset strokes. Our finding of a stronger association in the younger-young adult population requires replication. PMID:24619398
Siena, S; Sartore-Bianchi, A; Garcia-Carbonero, R; Karthaus, M; Smith, D; Tabernero, J; Van Cutsem, E; Guan, X; Boedigheimer, M; Ang, A; Twomey, B; Bach, B A; Jung, A S; Bardelli, A
2018-01-01
Mutations in rat sarcoma (RAS) genes may be a mechanism of secondary resistance in epidermal growth factor receptor inhibitor-treated patients. Tumor-tissue biopsy testing has been the standard for evaluating mutational status; however, plasma testing of cell-free DNA has been shown to be a more sensitive method for detecting clonal evolution. Archival pre- and post-treatment tumor biopsy samples from a phase II study of panitumumab in combination with irinotecan in patients with metastatic colorectal cancer (mCRC) that also collected plasma samples before, during, and after treatment were analyzed for emergence of mutations during/post-treatment by next-generation sequencing and BEAMing. The rate of emergence of tumor tissue RAS mutations was 9.5% by next-generation sequencing (n = 21) and 6.3% by BEAMing (n = 16). Plasma testing of cell-free DNA by BEAMing revealed a mutant RAS emergence rate of 36.7% (n = 39). Exploratory outcomes analysis of plasma samples indicated that patients who had emergent RAS mutations at progression had similar median progression-free survival to those patients who remained wild-type at progression. Serial analysis of plasma samples showed that the first detected emergence of RAS mutations preceded progression by a median of 3.6 months (range, -0.3 to 7.5 months) and that there did not appear to be a mutant RAS allele frequency threshold that could predict near-term outcomes. This first prospective analysis in mCRC showed that serial plasma biopsies are more inclusive than tissue biopsies for evaluating global tumor heterogeneity; however, the clinical utility of plasma testing in mCRC remains to be further explored. NCT00891930. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.
Morgan, Claire; Lewis, Paul D
2006-01-31
The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems. The ease at which iMARS has allowed us to carry out an exhaustive investigation to assess mutation distribution, mutation type, strand bias, target sequences and motifs, as well as predict mutation hotspots provides us with a valuable tool in helping to distinguish true chemically induced hotspots from background mutations and gives a true reflection of mutation frequency.
Wang, Shiyun; Zhang, Rong; Xiang, Guangxin; Li, Yang; Hou, Xuhong; Jiang, Fusong; Jiang, Feng; Hu, Cheng; Jia, Weiping
2015-12-29
This study aimed to detect α- and β-thalassaemia mutations in the Jino ethnic minority population of Yunnan Province, Southwest China. A total of 1613 Jino adults were continuously recruited from February 2012 to April 2012. Fasting venous blood samples were obtained to determine haematological variables. Haemoglobin analysis was conducted using high-performance liquid chromatography. Participants with hypochromic microcytic anaemia or positive haemoglobin analysis profiles were confirmed by α- and β-globin genetic testing, including DNA microarray analysis, direct sequencing methods and multiplex gap-PCR assays. Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital. We found 363 suspected cases by primary screening of haematological variables and haemoglobin analysis. After further genetic testing, four types of α- and β-thalassaemia mutation were detected in 203 out of 363 individuals. Both α(0)- and α(+)-thalassaemia mutations, --(SEA) and -α(3.7), were identified. β-Thalassaemia mutations included CD17 (HBB:c.52A>T) and CD26 (HbE or HBB:c.79G>A). In addition, 13 HbE carriers had coexisting α(0)- or α(+)-thalassaemia deletions. Clinical haematological variables indicated that, in this study, carriers of all thalassaemic genotypes had more severe hypochromic microcytic anaemia than non-thalassaemic individuals. Our results provide information on the Jino ethnic minority that may be useful for further genetic counselling, prenatal screening and clinical diagnosis of thalassaemia in this region. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene
Hoornaert, K P; Dewinter, C; Vereecke, I; Beemer, F A; Courtens, W; Fryer, A; Fryssira, H; Lees, M; Müllner‐Eidenböck, A; Rimoin, D L; Siderius, L; Superti‐Furga, A; Temple, K; Willems, P J; Zankl, A; Zweier, C; De Paepe, A; Coucke, P; Mortier, G R
2006-01-01
Background The majority of COL2A1 missense mutations are substitutions of obligatory glycine residues in the triple helical domain. Only a few non‐glycine missense mutations have been reported and among these, the arginine to cysteine substitutions predominate. Objective To investigate in more detail the phenotype resulting from arginine to cysteine mutations in the COL2A1 gene. Methods The clinical and radiographic phenotype of all patients in whom an arginine to cysteine mutation in the COL2A1 gene was identified in our laboratory, was studied and correlated with the abnormal genotype. The COL2A1 genotyping involved DHPLC analysis with subsequent sequencing of the abnormal fragments. Results Six different mutations (R75C, R365C, R519C, R704C, R789C, R1076C) were found in 11 unrelated probands. Each mutation resulted in a rather constant and site‐specific phenotype, but a perinatally lethal disorder was never observed. Spondyloarthropathy with normal stature and no ocular involvement were features of patients with the R75C, R519C, or R1076C mutation. Short third and/or fourth toes was a distinguishing feature of the R75C mutation and brachydactyly with enlarged finger joints a key feature of the R1076C substitution. Stickler dysplasia with brachydactyly was observed in patients with the R704C mutation. The R365C and R789C mutations resulted in classic Stickler dysplasia and spondyloepiphyseal dysplasia congenita (SEDC), respectively. Conclusions Arginine to cysteine mutations are rather infrequent COL2A1 mutations which cause a spectrum of phenotypes including classic SEDC and Stickler dysplasia, but also some unusual entities that have not yet been recognised and described as type II collagenopathies. PMID:16155195
Comprehensive Molecular Screening in Chinese Usher Syndrome Patients.
Sun, Tengyang; Xu, Ke; Ren, Yanfan; Xie, Yue; Zhang, Xiaohui; Tian, Lu; Li, Yang
2018-03-01
Usher syndrome (USH) refers to a group of autosomal recessive disorders causing deafness and blindness. The objectives of this study were to determine the mutation spectrum in a cohort of Chinese patients with USH and to describe the clinical features of the patients with mutations. A total of 119 probands who were clinically diagnosed with USH were recruited for genetic analysis. All probands underwent ophthalmic examinations. A combination of molecular screening methods, including targeted next-generation sequencing, Sanger-DNA sequencing, and multiplex ligation probe amplification assay, was used to detect mutations. We found biallelic mutations in 92 probands (77.3%), monoallelic mutations in 5 patients (4.2%), and 1 hemizygous mutation in 1 patient (0.8%), resulting in an overall mutation detection rate of 78.2%. Overall, 132 distinct disease-causing mutations involving seven USH (ABHD12, CDH23, GPR98, MYO7A, PCDH15, USH1C, and USH2A) genes; 5 other retinal degeneration genes (CHM, CNGA1, EYS, PDE6B, and TULP1); and 1 nonsyndromic hearing loss gene (MYO15A) were identified, and 78 were novel. Mutations of MYOA7 were responsible for 60% of USH1 families, followed by PCDH15 (20%) and USH1C (10%). Mutations of USH2A accounted for 67.7% of USH2 families, and mutation c.8559-2A>G was the most frequent one, accounting for 19.1% of the identified USH2A alleles. Our results confirm that the mutation spectrum for each USH gene in Chinese patients differs from those of other populations. The formation of the mutation profile for the Chinese population will enable a precise genetic diagnosis for USH patients in the future.
Mutation Spectrum and Birth Prevalence of Inborn Errors of Metabolism among Emiratis
Al-Shamsi, Aisha; Hertecant, Jozef L.; Al-Hamad, Sania; Souid, Abdul-Kader; Al-Jasmi, Fatma
2014-01-01
Objectives: This study aimed to determine the mutation spectrum and prevalence of inborn errors of metabolism (IEM) among Emiratis. Methods: The reported mutation spectrum included all patients who were diagnosed with IEM (excluding those with lysosomal storage diseases [LSD]) at Tawam Hospital Metabolic Center in Abu Dhabi, United Arab Emirates, between January 1995 and May 2013. Disease prevalence (per 100,000 live births) was estimated from data available for 1995–2011. Results: In 189 patients, 57 distinct IEM were diagnosed, of which 20 (35%) entities were previously reported LSD (65 patients with 39 mutations), with a birth prevalence of 26.87/100,000. This study investigated the remaining 37 (65%) patients with other IEM (124 patients with 62 mutations). Mutation analysis was performed on 108 (87%) of the 124 patients. Five patients with biotinidase deficiency had compound heterozygous mutations, and two siblings with lysinuric protein intolerance had two homozygous mutations. The remaining 103 (95%) patients had homozygous mutations. As of this study, 29 (47%) of the mutations have been reported only in Emiratis. Two mutations were found in three tribes (biotinidase deficiency [BTD, c.1330G>C] and phenylketonuria [PAH, c.168+5G>C]). Two mutations were found in two tribes (isovaleric aciduria [IVD, c.1184G>A] and propionic aciduria [PCCB, c.990dupT]). The remaining 58 (94%) mutations were each found in individual tribes. The prevalence was 48.37/100,000. The most prevalent diseases (2.2–4.9/100,000) were biotinidase deficiency; tyrosinemia type 1; phenylketonuria; propionic aciduria; glutaric aciduria type 1; glycogen storage disease type Ia, and mitochondrial deoxyribonucleic acid depletion. Conclusion: The IEM birth prevalence (LSD and non-LSD) was 75.24/100,000. These results justify implementing prevention programmes that incorporate genetic counselling and screening. PMID:24516753
Sullivan, Lori S.; Avery, Cheryl E.; Sasser, Elizabeth M.; Roorda, Austin; Duncan, Jacque L.; Wheaton, Dianna H.; Birch, David G.; Branham, Kari E.; Heckenlively, John R.; Sieving, Paul A.; Daiger, Stephen P.
2013-01-01
Purpose The purpose of this project was to determine the spectrum and frequency of mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) that cause autosomal dominant retinitis pigmentosa (adRP). Methods A well-characterized adRP cohort of 251 families was tested for mutations in the exons and intron/exon junctions of SNRNP200 using fluorescent dideoxy sequencing. An additional 21 adRP families from the eyeGENE® Network were tested for possible mutations. Bioinformatic and segregation analysis was performed on novel variants. Results SNRNP200 mutations were identified in seven of the families tested. Two previously reported mutations, p.Arg681Cys and p.Ser1087Leu, were found in two families each. One family had the previously reported p.Arg681His mutation. Two novel SNRNP200 variants, p.Pro682Ser and p.Ala542Val, were also identified in one family each. Bioinformatic and segregation analyses suggested that these novel variants are likely to be pathogenic. Clinical examination of patients with SNRNP200 mutations showed a wide range of clinical symptoms and severity, including one instance of non-penetrance. Conclusions Mutations in SNRNP200 caused 1.6% of disease in our adRP cohort. Pathogenic mutations were found primarily in exons 16 and 25, but the novel p.Ala542Val mutation in exon 13 suggests that variation in other genetic regions is also responsible for causing dominant disease. SNRNP200 mutations were associated with a wide range of clinical symptoms similar to those of individuals with other splice-factor gene mutations. PMID:24319334
Parkin dosage mutations have greater pathogenicity in familial PD than simple sequence mutations
Pankratz, N; Kissell, D K.; Pauciulo, M W.; Halter, C A.; Rudolph, A; Pfeiffer, R F.; Marder, K S.; Foroud, T; Nichols, W C.
2009-01-01
Objective: Mutations in both alleles of parkin have been shown to result in Parkinson disease (PD). However, it is unclear whether haploinsufficiency (presence of a mutation in only 1 of the 2 parkin alleles) increases the risk for PD. Methods: We performed comprehensive dosage and sequence analysis of all 12 exons of parkin in a sample of 520 independent patients with familial PD and 263 controls. We evaluated whether presence of a single parkin mutation, either a sequence (point mutation or small insertion/deletion) or dosage (whole exon deletion or duplication) mutation, was found at increased frequency in cases as compared with controls. We then compared the clinical characteristics of cases with 0, 1, or 2 parkin mutations. Results: We identified 55 independent patients with PD with at least 1 parkin mutation and 9 controls with a single sequence mutation. Cases and controls had a similar frequency of single sequence mutations (3.1% vs 3.4%, p = 0.83); however, the cases had a significantly higher rate of dosage mutations (2.6% vs 0%, p = 0.009). Cases with a single dosage mutation were more likely to have an earlier age at onset (50% with onset at ≤45 years) compared with those with no parkin mutations (10%, p = 0.00002); this was not true for cases with only a single sequence mutation (25% with onset at ≤45 years, p = 0.06). Conclusions: Parkin haploinsufficiency, specifically for a dosage mutation rather than a point mutation or small insertion/deletion, is a risk factor for familial PD and may be associated with earlier age at onset. GLOSSARY ADL = Activities of Daily Living; GDS = Geriatric Depression Scale; MLPA = multiplex ligation-dependent probe amplification; MMSE = Mini-Mental State Examination; PD = Parkinson disease; UPDRS = Unified Parkinson’s Disease Rating Scale. PMID:19636047
The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations
Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns
2015-01-01
Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253
Coutinho, Cyntia Arivabeni de Araújo Correia; Marson, Fernando Augusto de Lima; Ribeiro, Antônio Fernando; Ribeiro, José Dirceu; Bertuzzo, Carmen Silvia
2013-01-01
OBJECTIVE: To determine the frequency of six mutations (F508del, G542X, G551D, R553X, R1162X, and N1303K) in patients with cystic fibrosis (CF) diagnosed, at a referral center, on the basis of abnormal results in two determinations of sweat sodium and chloride concentrations. METHODS: This was a cross-sectional study involving 70 patients with CF. The mean age of the patients was 12.38 ± 9.00 years, 51.43% were female, and 94.29% were White. Mutation screening was performed with polymerase chain reaction (for F508del), followed by enzymatic digestion (for other mutations). Clinical analysis was performed on the basis of gender, age, ethnicity, pulmonary/gastrointestinal symptoms, and Shwachman-Kulczycki (SK) score. RESULTS: All of the patients showed pulmonary symptoms, and 8 had no gastrointestinal symptoms. On the basis of the SK scores, CF was determined to be mild, moderate, and severe in 22 (42.3%), 17 (32.7%), and 13 (25.0%) of the patients, respectively. There was no association between F508del mutation and disease severity by SK score. Of the 140 alleles analyzed, F508del mutation was identified in 70 (50%). Other mutations (G542X, G551D, R553X, R1162X, and N1303K) were identified in 12 (7.93%) of the alleles studied. In F508del homozygous patients with severe disease, the OR was 0.124 (95% CI: 0.005-0.826). CONCLUSIONS: In 50% of the alleles studied, the molecular diagnosis of CF was confirmed by identifying a single mutation (F508del). If we consider the analysis of the six most common mutations in the Brazilian population (including F508del), the molecular diagnosis was confirmed in 58.57% of the alleles studied. PMID:24310628
Molecular Epidemiology and Genotyping of Hepatitis B Virus of HBsAg-Positive Patients in Oman
Al Naamani, Khalid; Al Awaidy, Salah; Busaidy, Suleiman Al; Pauli, Georg; Bock, C.-Thomas
2014-01-01
Background Hepatitis B virus (HBV) infection is a major global health burden with distinct geographic public health significance. Oman is a country with intermediate HBV carrier prevalence; however, little is known about the incidence of HBV variants in circulation. We investigated the HBV genotype distribution, the occurrence of antiviral resistance, and HBV surface antigen (HBsAg) escape mutations in HBsAg-positive patients in Oman. Methods Serum samples were collected from 179 chronically HBV-infected patients enrolled in various gastroenterology clinics in Oman. HBV genotypes were determined by sequencing and phylogenetic analysis. Mutations in the HBV polymerase and the HBsAg gene were characterized by mutational analysis. Results HBV genotypes D (130/170; 76.47%) and A (32/170; 18.28%) are predominant in Oman. The HBV genotypes C and E were less frequent (each 1.18%), while the HBV genotypes B, G, F, and H were not detected. Four patients revealed HBV genotype mixtures (HBV-A/D and D/C). The analyses of vaccine escape mutations yield that 148/170 (87.06%) HBV sequences were wild type. 22/170 (12.94%) HBV sequences showed mutations in the “a” determinant of the HBsAg domain. Two patients showed the described HBV vaccine escape mutation sP120T. 8/146 (5.48%) HBV isolates harbored mutations in the HBV polymerase known to confer resistance against antiviral therapy. Especially the lamivudine resistance mutations rtL180M/rtM204V and rtM204I were detected. Conclusion This study shows the distribution of HBV genotypes, therapy resistance, and vaccine escape mutations in HBV-infected patients in Oman. Our findings will have a major impact on therapy management and diagnostics of chronic HBV infections in Oman to control HBV infection in this intermediate HBV-endemic country. PMID:24835494
Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette
2009-06-01
Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.
Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice
Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K
2005-01-01
Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676
Houssaini, Allal; Assoumou, Lambert; Miller, Veronica; Calvez, Vincent; Marcelin, Anne-Geneviève; Flandre, Philippe
2013-01-01
Background Several attempts have been made to determine HIV-1 resistance from genotype resistance testing. We compare scoring methods for building weighted genotyping scores and commonly used systems to determine whether the virus of a HIV-infected patient is resistant. Methods and Principal Findings Three statistical methods (linear discriminant analysis, support vector machine and logistic regression) are used to determine the weight of mutations involved in HIV resistance. We compared these weighted scores with known interpretation systems (ANRS, REGA and Stanford HIV-db) to classify patients as resistant or not. Our methodology is illustrated on the Forum for Collaborative HIV Research didanosine database (N = 1453). The database was divided into four samples according to the country of enrolment (France, USA/Canada, Italy and Spain/UK/Switzerland). The total sample and the four country-based samples allow external validation (one sample is used to estimate a score and the other samples are used to validate it). We used the observed precision to compare the performance of newly derived scores with other interpretation systems. Our results show that newly derived scores performed better than or similar to existing interpretation systems, even with external validation sets. No difference was found between the three methods investigated. Our analysis identified four new mutations associated with didanosine resistance: D123S, Q207K, H208Y and K223Q. Conclusions We explored the potential of three statistical methods to construct weighted scores for didanosine resistance. Our proposed scores performed at least as well as already existing interpretation systems and previously unrecognized didanosine-resistance associated mutations were identified. This approach could be used for building scores of genotypic resistance to other antiretroviral drugs. PMID:23555613
Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang
2015-08-26
The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.
Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing.
Sahoo, Malaya K; Holubar, Marisa; Huang, ChunHong; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Waggoner, Jesse J; Troy, Stephanie B; Garcia-Garcia, Lourdes; Ferreyra-Reyes, Leticia; Maldonado, Yvonne; Pinsky, Benjamin A
2017-07-01
Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5' untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5' UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication. Copyright © 2017 Sahoo et al.
Methods for detection of ataxia telangiectasia mutations
Gatti, Richard A.
2005-10-04
The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.
Szperl, Agata M.; Golachowska, Magdalena R.; Bruinenberg, Marcel; Prekeris, Rytis; Thunnissen, Andy-Mark W. H.; Karrenbeld, Arend; Dijkstra, Gerard; Hoekstra, Dick; Mercer, David; Ksiazyk, Janusz; Wijmenga, Cisca; Wapenaar, Martin C.; Rings, Edmond H. H. M.; van IJzendoorn, Sven C. D.
2010-01-01
Objectives Microvillus inclusion disease (MVID) is a rare autosomal recessive enteropathy characterized by intractable diarrhea and malabsorption. Recently, various MYO5B gene mutations have been identified in MVID patients. Interestingly, several MVID patients showed only a MYO5B mutation in one allele (heterozygous) or no mutations in the MYO5B gene, illustrating the need to further functionally characterize the cell biological effects of the MYO5B mutations. Methods The genomic DNA of nine patients diagnosed with microvillus inclusion disease was screened for MYO5B mutations, and qPCR and immunohistochemistry on the material of two patients was performed to investigate resultant cellular consequences. Results We demonstrate for the first time that MYO5B mutations can be correlated with altered myosin Vb mRNA expression and with an aberrant subcellular distribution of the myosin Vb protein. Moreover, we demonstrate that the typical and myosin Vb–controlled accumulation of rab11a-and FIP5-positive recycling endosomes in the apical cytoplasm of the cells is abolished in MVID enterocytes, which is indicative for altered myosin Vb function. Also, we report 8 novel MYO5B mutations in 9 MVID patients of various etnic backgrounds, including compound heterozygous mutations. Conclusions Our functional analysis indicate that MYO5B mutations can be correlated with an aberrant subcellular distribution of the myosin Vb protein and apical recycling endosomes which, together with the additional compound heterozygous mutations, significantly strengthen the link between MYO5B and MVID. PMID:21206382
Novel mutations of CHST6 in Iranian patients with macular corneal dystrophy
Salehi, Zivar; Houshmand, Masoud; Mohamadi, Mohamad Javad; Promehr, Leila Azizade; Mozafarzadeh, Zahra
2009-01-01
Purpose To characterize mutations within the carbohydrate sulfotransferase 6 (CHST6) gene in Iranian subjects from 12 families with macular corneal dystrophy (MCD). Methods Genomic DNA was extracted from peripheral blood of 20 affected patients and 60 healthy volunteers followed by polymerase chain reaction (PCR) and direct sequencing of the CHST6 coding region. The observed nucleotide sequences were then compared with those found by investigators in other populations with MCD and in the controls. Results Analysis of CHST6 revealed 11 different mutations. These mutations were comprised of six novel missense mutations (p.F55L, p.P132L, p.S136G, p.C149Y, p.D203Y, and p.H249R), one novel nonsense mutation (p.S48X), one novel frame shift (after P297), and three previously reported missense mutations (p.P31L, p.C165Y, and p.R127C). The majority of the detected MCD mutations are located in the binding sites or the binding pocket, except the p.P31L and p.H249R mutations. Conclusions Nucleotide changes within the coding region of CHST6 are predicted to significantly alter the encoded sulfotransferase within the evolutionary conserved sequences. Our findings show that CHST6 mutations are responsible for the pathogenesis of MCD in Iranian patients. Moreover, the observation that some cases of MCD cannot be explained by mutations in the coding region of CHST6 suggests that MCD may result from possible upstream rearrangements in the CHST6 genomic region. PMID:19223992
Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L
2018-06-01
To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji
2017-01-01
18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.
Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I
Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.
2012-01-01
Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625
Novel polymorphisms of the APOA2 gene and its promoter region affect body traits in cattle.
Zhou, Yang; Li, Caixia; Cai, Hanfang; Xu, Yao; Lan, Xianyong; Lei, Chuzhao; Chen, Hong
2013-12-01
Apolipoprotein A-II (APOA2) is one of the major constituents of high-density lipoprotein and plays a critical role in lipid metabolism and obesity. However, similar research for the bovine APOA2 gene is lacking. In this study, polymorphisms of the bovine APOA2 gene and its promoter region were detected in 1021 cows from four breeds by sequencing and PCR-RFLP methods. Totally, we detected six novel mutations which included one mutation in the promoter region, two mutations in the exons and three mutations in the introns. There were four polymorphisms within APOA2 gene were analyzed. The allele A, T, T and G frequencies of the four loci were predominant in the four breeds when in separate or combinations analysis which suggested cows with those alleles to be more adapted to the steppe environment. The association analysis indicated three SVs in Nangyang cows, two SVs in Qinchun cows and the 9 haplotypes in Nangyang cows were significantly associated with body traits (P<0.05 or P<0.01). The results of this study suggested the bovine APOA2 gene may be a strong candidate gene for body traits in the cattle breeding program. © 2013.
Hartel, Bas P; Löfgren, Maria; Huygen, Patrick L M; Guchelaar, Iris; Lo-A-Njoe Kort, Nicole; Sadeghi, Andre M; van Wijk, Erwin; Tranebjærg, Lisbeth; Kremer, Hannie; Kimberling, William J; Cremers, Cor W R J; Möller, Claes; Pennings, Ronald J E
2016-09-01
Usher syndrome is an inherited disorder that is characterized by hearing impairment (HI), retinitis pigmentosa, and in some cases vestibular dysfunction. Usher syndrome type IIa is caused by mutations in USH2A. HI in these patients is highly heterogeneous and the present study evaluates the effects of different types of USH2A mutations on the audiometric phenotype. Data from two large centres of expertise on Usher Syndrome in the Netherlands and Sweden were combined in order to create a large combined sample of patients to identify possible genotype-phenotype correlations. A retrospective study on HI in 110 patients (65 Dutch and 45 Swedish) genetically diagnosed with Usher syndrome type IIa. We used methods especially designed for characterizing and testing differences in audiological phenotype between patient subgroups. These methods included Age Related Typical Audiograms (ARTA) and a method to evaluate the difference in the degree of HI developed throughout life between subgroups. Cross-sectional linear regression analysis of last-visit audiograms for the best hearing ear demonstrated a gradual decline of hearing over decades. The congenital level of HI was in the range of 16-33 dB at 0.25-0.5 kHz, and in the range of 51-60 dB at 1-8 kHz. The annual threshold deterioration was in the range of 0.4-0.5 dB/year at 0.25-2 kHz and in the range of 0.7-0.8 dB/year at 4-8 kHz. Patients with two truncating mutations, including homozygotes for the common c.2299delG mutation, developed significantly more severe HI throughout life than patients with one truncating mutation combined with one nontruncating mutation, and patients with two nontruncating mutations. The results have direct implications for patient counselling in terms of prognosis of hearing and may serve as baseline measures for future (genetic) therapeutic interventions. Copyright © 2016 Elsevier B.V. All rights reserved.
Hestekin, Christa N; Lin, Jennifer S; Senderowicz, Lionel; Jakupciak, John P; O'Connell, Catherine; Rademaker, Alfred; Barron, Annelise E
2011-11-01
Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here, we demonstrate the first blinded study using microchip electrophoresis (ME)-SSCP/HA. We demonstrate the ability of ME-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5-9 in a blinded study in an analysis time of <10 min. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lim, Hassol; Park, Young-Mi; Lee, Jong-Keuk; Taek Lim, Hyun
2016-10-01
To present an efficient and successful application of a single-exome sequencing study in a family clinically diagnosed with X-linked retinitis pigmentosa. Exome sequencing study based on clinical examination data. An 8-year-old proband and his family. The proband and his family members underwent comprehensive ophthalmologic examinations. Exome sequencing was undertaken in the proband using Agilent SureSelect Human All Exon Kit and Illumina HiSeq 2000 platform. Bioinformatic analysis used Illumina pipeline with Burrows-Wheeler Aligner-Genome Analysis Toolkit (BWA-GATK), followed by ANNOVAR to perform variant functional annotation. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation. Analysis of exome sequence data identified a novel frameshift mutation in RP2 gene resulting in a premature stop codon (c.665delC, p.Pro222fsTer237). Sanger sequencing revealed this mutation co-segregated with the disease phenotype in the child's family. We identified a novel causative mutation in RP2 from a single proband's exome sequence data analysis. This study highlights the effectiveness of the whole-exome sequencing in the genetic diagnosis of X-linked retinitis pigmentosa, over the conventional sequencing methods. Even using a single exome, exome sequencing technology would be able to pinpoint pathogenic variant(s) for X-linked retinitis pigmentosa, when properly applied with aid of adequate variant filtering strategy. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Iacocca, Michael A.; Wang, Jian; Dron, Jacqueline S.; Robinson, John F.; McIntyre, Adam D.; Cao, Henian
2017-01-01
Familial hypercholesterolemia (FH) is a heritable condition of severely elevated LDL cholesterol, caused predominantly by autosomal codominant mutations in the LDL receptor gene (LDLR). In providing a molecular diagnosis for FH, the current procedure often includes targeted next-generation sequencing (NGS) panels for the detection of small-scale DNA variants, followed by multiplex ligation-dependent probe amplification (MLPA) in LDLR for the detection of whole-exon copy number variants (CNVs). The latter is essential because ∼10% of FH cases are attributed to CNVs in LDLR; accounting for them decreases false negative findings. Here, we determined the potential of replacing MLPA with bioinformatic analysis applied to NGS data, which uses depth-of-coverage analysis as its principal method to identify whole-exon CNV events. In analysis of 388 FH patient samples, there was 100% concordance in LDLR CNV detection between these two methods: 38 reported CNVs identified by MLPA were also successfully detected by our NGS method, while 350 samples negative for CNVs by MLPA were also negative by NGS. This result suggests that MLPA can be removed from the routine diagnostic screening for FH, significantly reducing associated costs, resources, and analysis time, while promoting more widespread assessment of this important class of mutations across diagnostic laboratories. PMID:28874442
Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates
Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.
2015-01-01
The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902
Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene
Pauli, Silke; Söker, Torben; Klopp, Norman; Illig, Thomas; Engel, Wolfgang
2007-01-01
Purpose The study demonstrates the functional candidate gene analysis in a cataract family of German descent. Methods We screened a German family, clinically documented to have congenital cataracts, for mutation in the candidate genes CRYG (A to D) and CRYBB2 through polymerase chain reaction analyses and sequencing. Results Congenital cataract was first observed in a daughter of healthy parents. Her two children (a boy and a girl) also suffer from congenital cataracts and have been operated within the first weeks of birth. Morphologically, the cataract is characterized as nuclear with an additional ring-shaped cortical opacity. Molecular analysis revealed no causative mutation in any of the CRYG genes. However, sequencing of the exons of the CRYBB2 gene identified a sequence variation in exon 5 (383 A>T) with a substitution of Asp to Val at position 128. All three affected family members revealed this change but it was not observed in any of the unaffected persons of the family. The putative mutation creates a restriction site for the enzyme TaiI. This mutation was checked for in controls of randomly selected DNA samples from ophthalmologically normal individuals from the population-based KORA S4 study (n=96) and no mutation was observed. Moreover, the Asp at position 128 is within a stretch of 12 amino acids, which are highly conserved throughout the animal kingdom. For the mutant protein, the isoelectric point is raised from pH 6.50 to 6.75. Additionally, the random coil structure of the protein between the amino acids 126-139 is interrupted by a short extended strand structure. In addition, this region becomes hydrophobic (from neutral to +1) and the electrostatic potential in the region surrounding the exchanged amino acid alters from a mainly negative potential to an enlarged positive potential. Conclusions The D128V mutation segregates only in affected family members and is not seen in representative controls. It represents the first mutation outside exon 6 of the human CRYBB2 gene. PMID:17653036
Tajamolian, Masoud; Kolahdouz, Parisa; Nikpour, Parvaneh; Forouzannia, Seyed Khalil; Sheikhha, Mohammad Hasan; Yazd, Ehsan Farashahi
2018-01-01
Background: Familial hypercholesterolemia (FH) is a disorder that is inherited by autosomal dominant pattern. The main cause of FH disease is the occurrence of mutations in low-density lipoprotein receptor (LDLR) gene sequence, as well as apolipoprotein B and proprotein convertase subtilisin/kexin type 9 genes, located in the next ranks, respectively. Materials and Methods: Forty-five unrelated Iranian patients with FH were screened using a high-resolution melting (HRM) method for exon 9 along with intron/exon boundaries of LDLR gene. Samples with shift in resultant HRM curves were compared to normal ones, sequenced, and analyzed. Results: Our findings revealed a missense mutation c. 1246C>T and a known variant IVS9-30C>T (rs1003723) that was recognized in 71% of the patients (22%: homozygous and 49%: heterozygous genotypes). In silico analysis, predicted the pathological effect of the c. 1246C>T mutation in LDLR protein structure, but IVS9-30C>T variant had no predicted effect on splice site and branch point function. Conclusion: FH is a hereditary type of hypercholesterolemia that leads to premature cardiovascular disease and atherosclerosis, and early diagnosis is needed. We detected a rare missense mutation (1246C>T) and a common single nucleotide polymorphism (SNP) in the Iranian population. These reports could help in the genetic diagnosis and counseling of FH patients. PMID:29531935
Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe
NASA Astrophysics Data System (ADS)
Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao
2017-03-01
Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.