Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.
Frick, Eric; Rahmatalla, Salam
2018-04-04
The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.
Paramagnetic resonance of LaGaO3: Mn single crystals grown by floating zone melting
NASA Astrophysics Data System (ADS)
Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Salosin, M. A.; Fokin, A. V.; Gil'mutdinov, I. F.; Mukhamedshin, I. R.
2016-02-01
The EPR spectrum of Mn-doped lanthanum gallate single crystals grown by floating zone melting with optical heating has been studied. In contrast to the crystals grown according to the Czochralski method, no manganese is found in these crystals even after high-temperature annealing in air. The spectral characteristics of Fe3+ and Gd3+ centers in crystals prepared by various methods have been compared in the rhombohedral phase, and the fourth-rank nondiagonal parameters of the Fe3+ trigonal centers have been determined, as well.
A method which can enhance the optical-centering accuracy
NASA Astrophysics Data System (ADS)
Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua
2014-09-01
Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.
Computer simulation and discussion of high-accuracy laser direction finding in real time
NASA Astrophysics Data System (ADS)
Chen, Wenyi; Chen, Yongzhi
1997-12-01
On condition that CCD is used as the sensor, there are at least five methods that can be used to realize laser's direction finding with high accuracy. They are: image matching method, radiation center method, geometric center method, center of rectangle envelope method and center of maximum run length method. The first three can get the highest accuracy but working in real-time it is too complicated to realize and the cost is very expansive. The other two can also get high accuracy, and it is not difficult to realize working in real time. By using a single-chip microcomputer and an ordinary CCD camera a very simple system can get the position information of a laser beam. The data rate is 50 times per second.
Selective alkane activation with single-site atoms on amorphous support
Hock, Adam S.; Schweitzer, Neil M.; Miller, Jeffrey T.; Hu, Bo
2015-11-24
The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.
Comparative Study of Impedance Eduction Methods, Part 2: NASA Tests and Methodology
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Howerton, Brian M.; Busse-Gerstengarbe, Stefan
2013-01-01
A number of methods have been developed at NASA Langley Research Center for eduction of the acoustic impedance of sound-absorbing liners mounted in the wall of a flow duct. This investigation uses methods based on the Pridmore-Brown and convected Helmholtz equations to study the acoustic behavior of a single-layer, conventional liner fabricated by the German Aerospace Center and tested in the NASA Langley Grazing Flow Impedance Tube. Two key assumptions are explored in this portion of the investigation. First, a comparison of results achieved with uniform-flow and shear-flow impedance eduction methods is considered. Also, an approach based on the Prony method is used to extend these methods from single-mode to multi-mode implementations. Finally, a detailed investigation into the effects of harmonic distortion on the educed impedance is performed, and the results are used to develop guidelines regarding acceptable levels of harmonic distortion
NASA Technical Reports Server (NTRS)
Reed, Robert A.; Kinnison, Jim; Pickel, Jim; Buchner, Stephen; Marshall, Paul W.; Kniffin, Scott; LaBel, Kenneth A.
2003-01-01
Over the past 27 years, or so, increased concern over single event effects in spacecraft systems has resulted in research, development and engineering activities centered around a better understanding of the space radiation environment, single event effects predictive methods, ground test protocols, and test facility developments. This research has led to fairly well developed methods for assessing the impact of the space radiation environment on systems that contain SEE sensitive devices and the development of mitigation strategies either at the system or device level.
NASA Astrophysics Data System (ADS)
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J
2017-02-01
This study assessed the agreement between K vert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that K vert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m -1 ) and 95% limits of agreement (-1.89 to 3.75 kN⋅m -1 ). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m -1 ), sacral marker cluster and double integration (-3.25 kN⋅m -1 ), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m -1 ). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of K vert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of K vert during single-leg, on-the-spot hopping.
NASA Astrophysics Data System (ADS)
Rong, Youying; Ma, Jianhui; Chen, Lingxiao; Liu, Yan; Siyushev, Petr; Wu, Botao; Pan, Haifeng; Jelezko, Fedor; Wu, E.; Zeng, Heping
2018-05-01
We report a method with high time resolution to measure the excited-state lifetime of silicon vacancy centers in bulk diamond avoiding timing jitter from the single-photon detectors. Frequency upconversion of the fluorescence emitted from silicon vacancy centers was achieved from 738 nm to 436 nm via sum frequency generation with a short pump pulse. The excited-state lifetime can be obtained by measuring the intensity of upconverted light while the pump delay changes. As a probe, a pump laser with pulse duration of 11 ps provided a high temporal resolution of the measurement. The lifetime extracted from the pump–probe curve was 0.755 ns, which was comparable to the timing jitter of the single-photon detectors.
NASA Astrophysics Data System (ADS)
Rajchl, Martin; Abhari, Kamyar; Stirrat, John; Ukwatta, Eranga; Cantor, Diego; Li, Feng P.; Peters, Terry M.; White, James A.
2014-03-01
Multi-center trials provide the unique ability to investigate novel techniques across a range of geographical sites with sufficient statistical power, the inclusion of multiple operators determining feasibility under a wider array of clinical environments and work-flows. For this purpose, we introduce a new means of distributing pre-procedural cardiac models for image-guided interventions across a large scale multi-center trial. In this method, a single core facility is responsible for image processing, employing a novel web-based interface for model visualization and distribution. The requirements for such an interface, being WebGL-based, are minimal and well within the realms of accessibility for participating centers. We then demonstrate the accuracy of our approach using a single-center pacemaker lead implantation trial with generic planning models.
NASA Technical Reports Server (NTRS)
Jones, H. W.
1984-01-01
The computer-assisted C-matrix, Loewdin-alpha-function, single-center expansion method in spherical harmonics has been applied to the three-center nuclear-attraction integral (potential due to the product of separated Slater-type orbitals). Exact formulas are produced for 13 terms of an infinite series that permits evaluation to ten decimal digits of an example using 1s orbitals.
Vacancy-impurity centers in diamond: prospects for synthesis and applications
NASA Astrophysics Data System (ADS)
Ekimov, E. A.; Kondrin, M. V.
2017-06-01
The bright luminescence of impurity-vacancy complexes, combined with high chemical and radiation resistance, makes diamond an attractive platform for the production of single-photon emitters and luminescent biomarkers for applications in nanoelectronics and medicine. Two representatives of this kind of defects in diamond, silicon-vacancy (SiV) and germanium-vacancy (GeV) centers, are discussed in this review; their similarities and differences are demonstrated in terms of the more thoroughly studied nitrogen-vacancy (NV) complexes. The recent discovery of GeV luminescent centers opens a unique opportunity for the controlled synthesis of single-photon emitters in nanodiamonds. We demonstrate prospects for the high-pressure high-temperature (HPHT) technique to create single-photon emitters, not only as an auxiliary to chemical vapor deposition (CVD) and ion-implantation methods but also as a primary synthesis tool for producing color centers in nanodiamonds. Besides practical applications, comparative studies of these two complexes, which belong to the same structural class of defects, have a fundamental importance for deeper understanding of shelving levels, the electronic structure, and optical properties of these centers. In conclusion, we discuss several open problems regarding the structure, charge state, and practical application of these centers, which still require a solution.
Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen
2017-06-01
Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is predisposed to off-center encapsulated cells. High-speed microscopy reveals that cells are positioned at the microgel precursor droplets' oil/water interface within milliseconds after droplet formation. In conventional microencapsulation strategies, the droplets are typically gelled immediately after emulsification, which traps cells in this off-center position. By delaying crosslinking, driving cells toward the centers of microgels is succeeded. The centering of cells in enzymatically crosslinked microgels prevents their escape during at least 28 d. It thereby uniquely enables the long-term culture of individual cells within <5-µm-thick 3D uniform hydrogel coatings. Single cell analysis of mesenchymal stem cells in enzymatically crosslinked microgels reveals unprecedented high cell viability (>90%), maintained metabolic activity (>70%), and multilineage differentiation capacity (>60%) over a period of 28 d. The facile nature of this microfluidic cell-centering method enables its straightforward integration into many microencapsulation strategies and significantly enhances control, reproducibility, and reliability of 3D single cell cultures. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of the Prosodic Features of Infants' Vocalizing.
ERIC Educational Resources Information Center
Lane, Harlan; Sheppard, William
Traditional research methods of recording infant verbal behavior, namely, descriptions by a single observer transcribing the utterances of a single infant in a naturalistic setting, have been inadequate to provide data necessary for modern linguistic analyses. The Center for Research on Language and Language Behavior has undertaken to correct this…
CD-ROM technology at the EROS data center
Madigan, Michael E.; Weinheimer, Mary C.
1993-01-01
The vast amount of digital spatial data often required by a single user has created a demand for media alternatives to 1/2" magnetic tape. One such medium that has been recently adopted at the U.S. Geological Survey's EROS Data Center is the compact disc (CD). CD's are a versatile, dynamic, and low-cost method for providing a variety of data on a single media device and are compatible with various computer platforms. CD drives are available for personal computers, UNIX workstations, and mainframe systems, either directly connected, or through a network. This medium furnishes a quick method of reproducing and distributing large amounts of data on a single CD. Several data sets are already available on CD's, including collections of historical Landsat multispectral scanner data and biweekly composites of Advanced Very High Resolution Radiometer data for the conterminous United States. The EROS Data Center intends to provide even more data sets on CD's. Plans include specific data sets on a customized disc to fulfill individual requests, and mass production of unique data sets for large-scale distribution. Requests for a single compact disc-read only memory (CD-ROM) containing a large volume of data either for archiving or for one-time distribution can be addressed with a CD-write once (CD-WO) unit. Mass production and large-scale distribution will require CD-ROM replication and mastering.
OptiCentric lathe centering machine
NASA Astrophysics Data System (ADS)
Buß, C.; Heinisch, J.
2013-09-01
High precision optics depend on precisely aligned lenses. The shift and tilt of individual lenses as well as the air gap between elements require accuracies in the single micron regime. These accuracies are hard to meet with traditional assembly methods. Instead, lathe centering can be used to machine the mount with respect to the optical axis. Using a diamond turning process, all relevant errors of single mounted lenses can be corrected in one post-machining step. Building on the OptiCentric® and OptiSurf® measurement systems, Trioptics has developed their first lathe centering machines. The machine and specific design elements of the setup will be shown. For example, the machine can be used to turn optics for i-line steppers with highest precision.
Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit.
Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg
2015-08-12
To study the magnetic dynamics of superparamagnetic nanoparticles, we use scanning probe relaxometry and dephasing of the nitrogen vacancy (NV) center in diamond, characterizing the spin noise of a single 10 nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T1) and dephasing (T2) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.
Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit
NASA Astrophysics Data System (ADS)
Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg
2015-08-01
To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.
Broad band antennas and feed methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benzel, David M.; Twogood, Richard E.
Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (fourmore » plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.« less
Intelligent fault recognition strategy based on adaptive optimized multiple centers
NASA Astrophysics Data System (ADS)
Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong
2018-06-01
For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.
Continuous-wave modulation of a femtosecond oscillator using coherent molecules.
Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D
2018-03-01
We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.
[Topiramate in substance-related and addictive disorders].
Cohen, Johan; Dervaux, Alain; Laqueille, Xavier
2014-09-01
Drug treatments used in substance use disorders are not effective in all patients. To assess the effectiveness of topiramate use in the treatment of substance use disorders. Medline database from January 1966 to December 2013, Cochrane database and clinicaltrials.gov. We used keywords topiramate, addiction, substance abuse, alcohol, tobacco, nicotine, cocaine, methamphetamine, opiate, heroin, benzodiazepine, cannabis, bulimia nervosa, binge eating disorder, gambling. All clinical trials were included. Animal trials, laboratory tests, reviews, answers to writers, case-reports, case series and publications unrelated to the topic were excluded. Twenty-eight articles investigating the efficacy of topiramate in substance use were included. In alcohol-related disorder, several trials and a meta-analysis showed a reduction of days of consumption. In a single-center trial on tobacco-related disorder, topiramate was not found effective in reducing the carbon monoxide expired. In cocaine-related disorder, one single-center trial showed a reduction of days of consumption and two single-center trials have found a trend in favour of topiramate. In alcohol and cocaine co-dependency, a single-center trial found a trend in favour of topiramate. In methamphetamine-related disorder, a multicenter trial found a trend in favour of topiramate. In bulimia nervosa, two single-center trials showed a reduction in binge eating and compensatory behaviours. In binge eating disorder, several trials showed a reduction of binge eating and weight. In gambling, one single-center trial did not show any significant results. There were no randomized controlled trials found in opioid-related disorder, benzodiazepines-related disorder, and cannabis-related disorder. Definition of abstinence and methods to assess the efficacy of topiramate differed between trials. The methodological quality of included trials was variable, especially with no double-blind procedure in eight trials. Topiramate showed interest mainly in alcoholism, binge eating disorder and bulimia nervosa. No definitive conclusions can be reached for other substance use disorders such as nicotine dependence, cocaine dependence, amphetamine dependence or cannabis dependence and for gambling. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
OWL: A code for the two-center shell model with spherical Woods-Saxon potentials
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2018-03-01
A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.
The development of a revised version of multi-center molecular Ornstein-Zernike equation
NASA Astrophysics Data System (ADS)
Kido, Kentaro; Yokogawa, Daisuke; Sato, Hirofumi
2012-04-01
Ornstein-Zernike (OZ)-type theory is a powerful tool to obtain 3-dimensional solvent distribution around solute molecule. Recently, we proposed multi-center molecular OZ method, which is suitable for parallel computing of 3D solvation structure. The distribution function in this method consists of two components, namely reference and residue parts. Several types of the function were examined as the reference part to investigate the numerical robustness of the method. As the benchmark, the method is applied to water, benzene in aqueous solution and single-walled carbon nanotube in chloroform solution. The results indicate that fully-parallelization is achieved by utilizing the newly proposed reference functions.
Mouthaan, Brian E; Rados, Matea; Barsi, Péter; Boon, Paul; Carmichael, David W; Carrette, Evelien; Craiu, Dana; Cross, J Helen; Diehl, Beate; Dimova, Petia; Fabo, Daniel; Francione, Stefano; Gaskin, Vladislav; Gil-Nagel, Antonio; Grigoreva, Elena; Guekht, Alla; Hirsch, Edouard; Hecimovic, Hrvoje; Helmstaedter, Christoph; Jung, Julien; Kalviainen, Reetta; Kelemen, Anna; Kimiskidis, Vasilios; Kobulashvili, Teia; Krsek, Pavel; Kuchukhidze, Giorgi; Larsson, Pål G; Leitinger, Markus; Lossius, Morten I; Luzin, Roman; Malmgren, Kristina; Mameniskiene, Ruta; Marusic, Petr; Metin, Baris; Özkara, Cigdem; Pecina, Hrvoje; Quesada, Carlos M; Rugg-Gunn, Fergus; Rydenhag, Bertil; Ryvlin, Philippe; Scholly, Julia; Seeck, Margitta; Staack, Anke M; Steinhoff, Bernhard J; Stepanov, Valentin; Tarta-Arsene, Oana; Trinka, Eugen; Uzan, Mustafa; Vogt, Viola L; Vos, Sjoerd B; Vulliémoz, Serge; Huiskamp, Geertjan; Leijten, Frans S S; Van Eijsden, Pieter; Braun, Kees P J
2016-05-01
In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for high-quality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Woolacott, Nerys; Corbett, Mark; Jones-Diette, Julie; Hodgson, Robert
2017-10-01
Regulatory authorities are approving innovative therapies with limited evidence. Although this level of data is sufficient for the regulator to establish an acceptable risk-benefit balance, it is problematic for downstream health technology assessment, where assessment of cost-effectiveness requires reliable estimates of effectiveness relative to existing clinical practice. Some key issues associated with a limited evidence base include using data, from nonrandomized studies, from small single-arm trials, or from single-center trials; and using surrogate end points. We examined these methodological challenges through a pragmatic review of the available literature. Methods to adjust nonrandomized studies for confounding are imperfect. The relative treatment effect generated from single-arm trials is uncertain and may be optimistic. Single-center trial results may not be generalizable. Surrogate end points, on average, overestimate treatment effects. Current methods for analyzing such data are limited, and effectiveness claims based on these suboptimal forms of evidence are likely to be subject to significant uncertainty. Assessments of cost-effectiveness, based on the modeling of such data, are likely to be subject to considerable uncertainty. This uncertainty must not be underestimated by decision makers: methods for its quantification are required and schemes to protect payers from the cost of uncertainty should be implemented. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Direct experimental observation of nonclassicality in ensembles of single-photon emitters
NASA Astrophysics Data System (ADS)
Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.
2017-11-01
In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.
Arroyo-Camejo, Silvia; Adam, Marie-Pierre; Besbes, Mondher; Hugonin, Jean-Paul; Jacques, Vincent; Greffet, Jean-Jacques; Roch, Jean-François; Hell, Stefan W; Treussart, François
2013-12-23
Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-01-01
The negatively charged nitrogen vacancy (NV−) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV− state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials. PMID:27035935
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A; Peterka, Darcy S; Boyden, Edward S; Owen, Jonathan S; Yuste, Rafael; Englund, Dirk
2016-04-12
The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
NASA Astrophysics Data System (ADS)
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-04-01
The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
ERIC Educational Resources Information Center
Rondeau, Ann E.
2010-01-01
This dissertation touches on a series of events leading to an aspect of United States public policy dealing with weapons of mass destruction (WMD). After exploring the literature that describes the understanding of public policy, this paper uses the case study method to understand why and how a single research center and a particular set of…
Chew, Avenell L.; Sampson, Danuta M.; Kashani, Irwin; Chen, Fred K.
2017-01-01
Purpose We compared cone density measurements derived from the center of gaze-directed single images with reconstructed wide-field montages using the rtx1 adaptive optics (AO) retinal camera. Methods A total of 29 eyes from 29 healthy subjects were imaged with the rtx1 camera. Of 20 overlapping AO images acquired, 12 (at 3.2°, 5°, and 7°) were used for calculating gaze-directed cone densities. Wide-field AO montages were reconstructed and cone densities were measured at the corresponding 12 loci as determined by field projection relative to the foveal center aligned to the foveal dip on optical coherence tomography. Limits of agreement in cone density measurement between single AO images and wide-field AO montages were calculated. Results Cone density measurements failed in 1 or more gaze directions or retinal loci in up to 58% and 33% of the subjects using single AO images or wide-field AO montage, respectively. Although there were no significant overall differences between cone densities derived from single AO images and wide-field AO montages at any of the 12 gazes and locations (P = 0.01–0.65), the limits of agreement between the two methods ranged from as narrow as −2200 to +2600, to as wide as −4200 to +3800 cones/mm2. Conclusions Cone density measurement using the rtx1 AO camera is feasible using both methods. Local variation in image quality and altered visibility of cones after generating montages may contribute to the discrepancies. Translational Relevance Cone densities from single AO images are not interchangeable with wide-field montage derived–measurements. PMID:29285417
Choi, Inyoung; Choi, Ran; Lee, Jonghyun
2010-01-01
Objectives The objective of this research is to introduce the unique approach of the Catholic Medical Center (CMC) integrate network hospitals with organizational and technical methodologies adopted for seamless implementation. Methods The Catholic Medical Center has developed a new hospital information system to connect network hospitals and adopted new information technology architecture which uses single source for multiple distributed hospital systems. Results The hospital information system of the CMC was developed to integrate network hospitals adopting new system development principles; one source, one route and one management. This information architecture has reduced the cost for system development and operation, and has enhanced the efficiency of the management process. Conclusions Integrating network hospital through information system was not simple; it was much more complicated than single organization implementation. We are still looking for more efficient communication channel and decision making process, and also believe that our new system architecture will be able to improve CMC health care system and provide much better quality of health care service to patients and customers. PMID:21818432
Bougnoux, M.-E.; Accoceberry, I.; Angoulvant, A.; Bailly, E.; Botterel, F.; Chevrier, S.; Chouaki, T.; Dalle, F.; Datry, A.; Dupuis, A.; Fekkar, A.; Gangneux, J. P.; Guitard, J.; Hennequin, C.; Le Govic, Y.; Le Pape, P.; Maubon, D.; Sautour, M.; Sendid, B.; Chandenier, J.
2016-01-01
In vitro susceptibility of 933 Candida isolates, from 16 French hospitals, to micafungin was determined using the Etest in each center. All isolates were then sent to a single center for determination of MICs by the EUCAST reference method. Overall essential agreement between the two tests was 98.5% at ±2 log2 dilutions and 90.2% at ±1 log2 dilutions. Categorical agreement was 98.2%. The Etest is a valuable alternative to EUCAST for the routine determination of micafungin MICs in medical mycology laboratories. PMID:27297480
Coherent Raman spectroscopy for supersonic flow measurments
NASA Technical Reports Server (NTRS)
She, C. Y.
1986-01-01
In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.
Standard Methods for Bolt-Bearing Testing of Textile Composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
The response of three 2-D braided materials to bolt bearing loading was evaluated using data generated by Boeing Defense and Space Group in Philadelphia, PA. Three test methods, stabilized single shear, unstabilized single shear, and double shear, were compared. In general, these textile composites were found to be sensitive to bolt bearing test methods. The stabilized single shear method yielded higher strengths than the unstabilized single shear method in all cases. The double shear test method always produced the highest strengths but these results may be somewhat misleading. It is therefore recommended that standard material comparisons be made using the stabilized single shear test method. The effects of two geometric parameters, W/D and e/D, were also studied. An evaluation of the effect of the specimen width (W) to hole diameter (D) ratio concluded that bolt bearing responses were consistent with open hole tension results. A W/D ratio of 6 or greater should be maintained. The proximity of the hole to the specimen edge significantly affected strength. In all cases, strength was improved by increasing the ratio of the distance from the hole center to the specimen edge (e) to the hole diameter (D) above 2. An e/D ratio of 3 or greater is recommended.
ERIC Educational Resources Information Center
Ingram, Deborah D.; Parker, Jennifer D.; Schenker, Nathaniel; Weed, James A.; Hamilton, Brady; Arias, Elizabeth; Madans, Jennifer H.
This report documents the National Center for Health Statistics' (NCHS) methods for bridging the Census 2000 multiple-race resident population to single-race categories and describing bridged race resident population estimates. Data came from the pooled 1997-2000 National Health Interview Surveys. The bridging models included demographic and…
ERIC Educational Resources Information Center
Karsai, Istvan; Kampis, George
2010-01-01
Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…
Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.
Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans
2018-01-01
Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.
Agarwal, Jatin; Jain, Pradeep; Chandra, Anil
2015-01-01
Background The ability of an endodontic instrument to remain centered in the root canal system is one of the most important characteristic influencing the clinical performance of a particular file system. Thus, it is important to assess the canal centering ability of newly introduced single file systems before they can be considered a viable replacement of full-sequence rotary file systems. Aim The aim of the study was to compare the canal transportation, centering ability, and time taken for preparation of curved root canals after instrumentation with single file systems One Shape and Wave One, using cone-beam computed tomography (CBCT). Materials and Methods Sixty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 20o to 35o were divided into three groups of 20 samples each: ProTaper PT (group I) – full-sequence rotary control group, OneShape OS (group II)- single file continuous rotation, WaveOne WO – single file reciprocal motion (group III). Pre instrumentation and post instrumentation three-dimensional CBCT images were obtained from root cross-sections at 3mm, 6mm and 9mm from the apex. Scanned images were then accessed to determine canal transportation and centering ability. The data collected were evaluated using one-way analysis of variance (ANOVA) with Tukey’s honestly significant difference test. Results It was observed that there were no differences in the magnitude of transportation between the rotary instruments (p >0.05) at both 3mm as well as 6mm from the apex. At 9 mm from the apex, Group I PT showed significantly higher mean canal transportation and lower centering ability (0.19±0.08 and 0.39±0.16), as compared to Group II OS (0.12±0.07 and 0.54±0.24) and Group III WO (0.13±0.06 and 0.55±0.18) while the differences between OS and WO were not statistically significant Conclusion It was concluded that there was minor difference between the tested groups. Single file systems demonstrated average canal transportation and centering ability comparable to full sequence Protaper system in curved root canals. PMID:26155551
Grandchamp, Romain; Delorme, Arnaud
2011-01-01
In electroencephalography, the classical event-related potential model often proves to be a limited method to study complex brain dynamics. For this reason, spectral techniques adapted from signal processing such as event-related spectral perturbation (ERSP) – and its variant event-related synchronization and event-related desynchronization – have been used over the past 20 years. They represent average spectral changes in response to a stimulus. These spectral methods do not have strong consensus for comparing pre- and post-stimulus activity. When computing ERSP, pre-stimulus baseline removal is usually performed after averaging the spectral estimate of multiple trials. Correcting the baseline of each single-trial prior to averaging spectral estimates is an alternative baseline correction method. However, we show that this method leads to positively skewed post-stimulus ERSP values. We eventually present new single-trial-based ERSP baseline correction methods that perform trial normalization or centering prior to applying classical baseline correction methods. We show that single-trial correction methods minimize the contribution of artifactual data trials with high-amplitude spectral estimates and are robust to outliers when performing statistical inference testing. We then characterize these methods in terms of their time–frequency responses and behavior compared to classical ERSP methods. PMID:21994498
The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao
2018-01-01
Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.
Dynamics of Single-Photon Emission from Electrically Pumped Color Centers
NASA Astrophysics Data System (ADS)
Khramtsov, Igor A.; Agio, Mario; Fedyanin, Dmitry Yu.
2017-08-01
Low-power, high-speed, and bright electrically driven true single-photon sources, which are able to operate at room temperature, are vital for the practical realization of quantum-communication networks and optical quantum computations. Color centers in semiconductors are currently the best candidates; however, in spite of their intensive study in the past decade, the behavior of color centers in electrically controlled systems is poorly understood. Here we present a physical model and establish a theoretical approach to address single-photon emission dynamics of electrically pumped color centers, which interprets experimental results. We support our analysis with self-consistent numerical simulations of a single-photon emitting diode based on a single nitrogen-vacancy center in diamond and predict the second-order autocorrelation function and other emission characteristics. Our theoretical findings demonstrate remarkable agreement with the experimental results and pave the way to the understanding of single-electron and single-photon processes in semiconductors.
Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jinxing; Pu Zuyin; Xie Lun
Charged particle dynamics in magnetosphere has temporal and spatial multiscale; therefore, numerical accuracy over a long integration time is required. A variational symplectic integrator (VSI) [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008) and H. Qin, X. Guan, and W. M. Tang, Phys. Plasmas 16, 042510 (2009)] for the guiding-center motion of charged particles in general magnetic field is applied to study the dynamics of charged particles in magnetosphere. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing themore » dynamics. The VSI conserves exactly a discrete Lagrangian symplectic structure and has better numerical properties over a long integration time, compared with standard integrators, such as the standard and adaptive fourth order Runge-Kutta (RK4) methods. Applying the VSI method to guiding-center dynamics in the inner magnetosphere, we can accurately calculate the particles'orbits for an arbitrary long simulating time with good conservation property. When a time-independent convection and corotation electric field is considered, the VSI method can give the accurate single particle orbit, while the RK4 method gives an incorrect orbit due to its intrinsic error accumulation over a long integrating time.« less
Left-right correlation in coupled F-center defects.
Janesko, Benjamin G
2016-08-07
This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.
Low, Jeffrey; Ross, Joseph S; Ritchie, Jessica D; Gross, Cary P; Lehman, Richard; Lin, Haiqun; Fu, Rongwei; Stewart, Lesley A; Krumholz, Harlan M
2017-02-15
It is uncertain whether the replication of systematic reviews, particularly those with the same objectives and resources, would employ similar methods and/or arrive at identical findings. We compared the results and conclusions of two concurrent systematic reviews undertaken by two independent research teams provided with the same objectives, resources, and individual participant-level data. Two centers in the USA and UK were each provided with participant-level data on 17 multi-site clinical trials of recombinant human bone morphogenetic protein-2 (rhBMP-2). The teams were blinded to each other's methods and findings until after publication. We conducted a retrospective structured comparison of the results of the two systematic reviews. The main outcome measures included (1) trial inclusion criteria; (2) statistical methods; (3) summary efficacy and risk estimates; and (4) conclusions. The two research teams' meta-analyses inclusion criteria were broadly similar but differed slightly in trial inclusion and research methodology. They obtained similar results in summary estimates of most clinical outcomes and adverse events. Center A incorporated all trials into summary estimates of efficacy and harms, while Center B concentrated on analyses stratified by surgical approach. Center A found a statistically significant, but small, benefit whereas Center B reported no advantage. In the analysis of harms, neither showed an increased cancer risk at 48 months, although Center B reported a significant increase at 24 months. Conclusions reflected these differences in summary estimates of benefit balanced with small but potentially important risk of harm. Two independent groups given the same research objectives, data, resources, funding, and time produced broad general agreement but differed in several areas. These differences, the importance of which is debatable, indicate the value of the availability of data to allow for more than a single approach and a single interpretation of the data. PROSPERO CRD42012002040 and CRD42012001907 .
Bougnoux, M-E; Dannaoui, E; Accoceberry, I; Angoulvant, A; Bailly, E; Botterel, F; Chevrier, S; Chouaki, T; Cornet, M; Dalle, F; Datry, A; Dupuis, A; Fekkar, A; Gangneux, J P; Guitard, J; Hennequin, C; Le Govic, Y; Le Pape, P; Maubon, D; Ranque, S; Sautour, M; Sendid, B; Chandenier, J
2016-08-01
In vitro susceptibility of 933 Candida isolates, from 16 French hospitals, to micafungin was determined using the Etest in each center. All isolates were then sent to a single center for determination of MICs by the EUCAST reference method. Overall essential agreement between the two tests was 98.5% at ±2 log2 dilutions and 90.2% at ±1 log2 dilutions. Categorical agreement was 98.2%. The Etest is a valuable alternative to EUCAST for the routine determination of micafungin MICs in medical mycology laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Phase Correction for GPS Antenna with Nonunique Phase Center
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Dobbins, Justin
2005-01-01
A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.
Modern Methods for Modeling Change in Obesity Research in Nursing.
Sereika, Susan M; Zheng, Yaguang; Hu, Lu; Burke, Lora E
2017-08-01
Persons receiving treatment for weight loss often demonstrate heterogeneity in lifestyle behaviors and health outcomes over time. Traditional repeated measures approaches focus on the estimation and testing of an average temporal pattern, ignoring the interindividual variability about the trajectory. An alternate person-centered approach, group-based trajectory modeling, can be used to identify distinct latent classes of individuals following similar trajectories of behavior or outcome change as a function of age or time and can be expanded to include time-invariant and time-dependent covariates and outcomes. Another latent class method, growth mixture modeling, builds on group-based trajectory modeling to investigate heterogeneity within the distinct trajectory classes. In this applied methodologic study, group-based trajectory modeling for analyzing changes in behaviors or outcomes is described and contrasted with growth mixture modeling. An illustration of group-based trajectory modeling is provided using calorie intake data from a single-group, single-center prospective study for weight loss in adults who are either overweight or obese.
Two-dimensional and three-dimensional evaluation of the deformation relief
NASA Astrophysics Data System (ADS)
Alfyorova, E. A.; Lychagin, D. V.
2017-12-01
This work presents the experimental results concerning the research of the morphology of the face-centered cubic single crystal surface after compression deformation. Our aim is to identify the method of forming a quasiperiodic profile of single crystals with different crystal geometrical orientation and quantitative description of deformation structures. A set of modern methods such as optical and confocal microscopy is applied to determine the morphology of surface parameters. The results show that octahedral slip is an integral part of the formation of the quasiperiodic profile surface starting with initial strain. The similarity of the formation process of the surface profile at different scale levels is given. The size of consistent deformation regions is found. This is 45 µm for slip lines ([001]-single crystal) and 30 µm for mesobands ([110]-single crystal). The possibility of using two- and three-dimensional roughness parameters to describe the deformation structures was shown.
NASA Astrophysics Data System (ADS)
Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Salem, Hesham
2014-11-01
This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.
Antonucci, Laura; Bonvalet, Adeline; Solinas, Xavier; Jones, Michael R; Vos, Marten H; Joffre, Manuel
2013-09-01
A recently reported variant of asynchronous optical sampling compatible with arbitrary unstabilized laser repetition rates is applied to pump-probe spectroscopy. This makes possible the use of a 5.1 MHz chirped pulse oscillator as the pump laser, thus extending the available time window to almost 200 ns with a time resolution as good as about 320 fs. The method is illustrated with the measurement in a single experiment of the complete charge transfer dynamics of the reaction center from Rhodobacter sphaeroides.
Shin, Hyun Phil; Burman, Blaire; Kozarek, Richard A.; Zeigler, Amy; Wang, Chia; Lee, Houghton; Zehr, Troy; Edwards, Alicia M.; Siddique, Asma
2017-01-01
Background/Aims The approval of sofosbuvir (SOF), a direct-acting antiviral, has revolutionized the treatment of chronic hepatitis C virus (HCV). Methods We assessed the sustained virological response (SVR) of SOF-based regimens in a real-world single-center setting for the treatment of chronic HCV genotype 1 (G1) patients. This was a retrospective review of chronic HCV G1 adult patients treated with a SOF-based regimen at Virginia Mason Medical Center between December 2013 and August 2015. Results The cohort comprised 343 patients. Patients received SOF+ledipasvir (LDV) (n=155), SOF+simeprevir (SIM) (n=154), or SOF+peginterferon (PEG)+ribavirin (RBV) (n=34). Of the patients, 50.1% (n=172) had cirrhosis. The SVR rate was 92.2% for SOF/LDV, 87.0% for SOF/SIM, and 82.4% for SOF/PEG/RBV. Compared with the cirrhotic patients, the patients without cirrhosis had a higher SVR (96.8% vs 85.5%, p=0.01, SOF/LDV; 98.2% vs 80.6%, p=0.002, SOF/SIM; 86.4% vs 75.0%, p=0.41, SOF/PEG/RBV). In this study, prior treatment experience adversely affected the response rate in subjects treated with SOF/PEG/RBV. Conclusions In this single-center, real-world setting, the treatment of chronic HCV G1 resulted in a high rate of SVR, especially in patients without cirrhosis. PMID:28651301
Single Incision Laparoscopic Pancreas Resection for Pancreatic Metastasis of Renal Cell Carcinoma
Sümer, Aziz; Demirel, Tugrul; Karakullukçu, Nazlι; Batman, Burçin; İçscan, Yalιn; Sarιçam, Gülay; Serin, Kürçsat; Loh, Wei-Liang; Dinççağ, Ahmet; Mercan, Selçuk
2010-01-01
Background: Transumbilical single incision laparoscopic surgery (SILS) offers excellent cosmetic results and may be associated with decreased postoperative pain, reduced need for analgesia, and thus accelerated recovery. Herein, we report the first transumbilical single incision laparoscopic pancreatectomy case in a patient who had renal cell cancer metastasis on her pancreatic corpus and tail. Methods: A 59-year-old female who had metastatic lesions on her pancreas underwent laparoscopic subtotal pancreatectomy through a 2-cm umbilical incision. Results: Single incision pancreatectomy was performed with a special port (SILS port) and articulated equipment. The procedure lasted 330 minutes. Estimated blood loss was 100mL. No perioperative complications occurred. The patient was discharged on the seventh postoperative day with a low-volume (20mL/day) pancreatic fistula that ceased spontaneously. Pathology result of the specimen was renal cell cancer metastases. Conclusion: This is the first reported SILS pancreatectomy case, demonstrating that even advanced surgical procedures can be performed using the SILS technique in well-experienced centers. Transumbilical single incision laparoscopic pancreatectomy is feasible and can be performed safely in experienced centers. SILS may improve cosmetic results and allow accelerated recovery for patients even with malignancy requiring advanced laparoscopic interventions. PMID:21605524
Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Zhou, Yu; Zhang, Xiaoming; Liu, Fucai; Li, Yan; Li, Ke; Liu, Zheng; Wang, Guanzhong; Gao, Weibo
2017-06-01
Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single-photon emission, good photostability, and long spin-coherence time even at room temperature. As compared to diamond, which is widely used for hosting nitrogen-vacancy centers, silicon carbide has an advantage in terms of large-scale, high-quality, and low-cost growth, as well as an advanced fabrication technique in optoelectronics, leading to prospects for large-scale quantum engineering. In this paper, we report an experimental demonstration of the generation of a single-photon-emitter array through ion implantation. VSi defects are generated in predetermined locations with high generation efficiency (approximately 19 % ±4 % ). The single emitter probability reaches approximately 34 % ±4 % when the ion-implantation dose is properly set. This method serves as a critical step in integrating single VSi defect emitters with photonic structures, which, in turn, can improve the emission and collection efficiency of VSi defects when they are used in a spin photonic quantum network. On the other hand, the defects are shallow, and they are generated about 40 nm below the surface which can serve as a critical resource in quantum-sensing applications.
Bridgman growth and scintillation properties of calcium tungstate single crystal
NASA Astrophysics Data System (ADS)
Wang, Zhenhai; Jiang, Linwen; Chen, Yaping; Chen, Peng; Chen, Hongbing; Mao, Rihua
2017-12-01
CaWO4 single crystal with large size was grown by Bridgman method. The results of transmission spectra show that the transmittance of CaWO4 crystal reaches 79-85% in 320-800 nm wavelength range. The refraction index is near 1.80 in visible and infrared region. CaWO4 crystal shows a broad emission band centered at 424 nm under X-ray excitation and centered at 416 nm under ultraviolet (λex = 280 nm) excitation. The decay kinetics of CaWO4 single crystal shows double-exponential decay with fast decay constant τ1 = 5.4 μs and slow decay constant τ2 = 177.1 μs. The energy resolution of CaWO4 crystal was found to be 31.6% in the net peak of 545.9 channel. Meanwhile, the absolute output is at the lever of 19,000 ± 1000 photons/MeV. The results indicate the scintillator of CaWO4 single crystal has great potential in the applications of high-energy physics and nuclear physics due to its high light output and great energy resolution.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Wang, Miao
2013-10-01
Single domain YBCO superconductors with different additions of Bi2O3 have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi2O3 additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi2O3 less than 2 wt%; Bi2O3 can be reacted with Y2BaCuO5 and liquid phase and finally form Y2Ba4CuBiOx(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi2O3 addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.
Myer, Gregory D; Wordeman, Samuel C; Sugimoto, Dai; Bates, Nathaniel A; Roewer, Benjamin D; Medina McKeon, Jennifer M; DiCesare, Christopher A; Di Stasi, Stephanie L; Barber Foss, Kim D; Thomas, Staci M; Hewett, Timothy E
2014-05-01
Multi-center collaborations provide a powerful alternative to overcome the inherent limitations to single-center investigations. Specifically, multi-center projects can support large-scale prospective, longitudinal studies that investigate relatively uncommon outcomes, such as anterior cruciate ligament injury. This project was conceived to assess within- and between-center reliability of an affordable, clinical nomogram utilizing two-dimensional video methods to screen for risk of knee injury. The authors hypothesized that the two-dimensional screening methods would provide good-to-excellent reliability within and between institutions for assessment of frontal and sagittal plane biomechanics. Nineteen female, high school athletes participated. Two-dimensional video kinematics of the lower extremity during a drop vertical jump task were collected on all 19 study participants at each of the three facilities. Within-center and between-center reliability were assessed with intra- and inter-class correlation coefficients. Within-center reliability of the clinical nomogram variables was consistently excellent, but between-center reliability was fair-to-good. Within-center intra-class correlation coefficient for all nomogram variables combined was 0.98, while combined between-center inter-class correlation coefficient was 0.63. Injury risk screening protocols were reliable within and repeatable between centers. These results demonstrate the feasibility of multi-site biomechanical studies and establish a framework for further dissemination of injury risk screening algorithms. Specifically, multi-center studies may allow for further validation and optimization of two-dimensional video screening tools. 2b.
A full-potential approach to the relativistic single-site Green's function
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...
2016-07-07
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less
Grochowiecki, T; Jakimowicz, T; Grabowska-Derlatka, L; Szmidt, J
2014-10-01
The high rate of complication after pancreas transplantation not only had an impact on recipient quality of life and survival but also had significant financial implications. Thus, monitoring transplant center performance was crucial to indentifying changes in clinical practice that result in quality deterioration. To evaluate retrospectively the quality of the single, small pancreatic transplant program and to establish prospective monitoring of the center using risk-adjusted cumulative sum (CUSUM). From 1988 to 2014, 119 simultaneous pancreas and the kidney transplantations (SPKTx) were performed. The program was divided into 3 eras, based on surgical technique and immunosuppression. Analyses of the 15 fatal outcomes due to complication from pancreatic graft were performed. The risk model was developed using multivariable logistic regression analysis based on retrospective data of 112 SPKTx recipients. The risk-adjusted 1-sided CUSUM chart was plotted for retrospective and prospective events. The upper control limit was set to 2. There were 2 main causes of death: multiorgan failure (73.3%; 11/15) and septic hemorrhage (26.7%; 4/15). Quality analysis using the CUSUM chart revealed that the process was not homogeneous; however, no significant signal of program deterioration was obtained and the performance of the whole program was within the settled control limit. For a single pancreatic transplant center. The risk-adjusted CUSUM chart was a useful tool for quality program assessment. It could support decision making during traditional surgical morbidity and mortality conferences. For small transplant centers, increasing the sensitivity of the CUSUM method by lowering the upper control limit should be considered. However, an individual assessment approach of the for particular centers is recommended.
Damage properties simulations of self-healing composites.
Chen, Cheng; Ji, Hongwei; Wang, Huaiwen
2013-10-01
Self-healing materials are inspired by biological systems in which damage triggers an autonomic healing response. The damage properties of a self-healing polymer composite were investigated by numerical simulation in this paper. Unit cell models with single-edge centered crack and single-edge off-centered crack were employed to investigate the damage initiation and crack evolution by the extended finite element method (XFEM) modeling. The effect of microcapsule's Young's modulus on composites was investigated. Result indicates the microcapsule's Young's modulus has little effect on the unit cell's carrying capacity. It was found that during the crack propagation process, its direction is attracted toward the microcapsules, which makes it helpful for the microcapsules to be ruptured by the propagating crack fronts resulting in release of the healing agent into the cracks by capillary action.
Polymer waveguides for electro-optical integration in data centers and high-performance computers.
Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan
2015-02-23
To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.
In, Juneho; Yoo, Youngdong; Kim, Jin-Gyu; Seo, Kwanyong; Kim, Hyunju; Ihee, Hyotchel; Oh, Sang Ho; Kim, Bongsoo
2010-11-10
Laterally epitaxial single crystalline Ag2Te nanowires (NWs) are synthesized on sapphire substrates by the vapor transport method. We observed the phase transitions of these Ag2Te NWs via in situ transmission electron microscopy (TEM) after covering them with Pt layers. The constrained NW shows phase transition from monoclinic to a body-centered cubic (bcc) structure near the interfaces, which is ascribed to the thermal stress caused by differences in the thermal expansion coefficients. Furthermore, we observed the nucleation and growth of bcc phase penetrating into the face-centered cubic matrix at 200 °C by high-resolution TEM in real time. Our results would provide valuable insight into how compressive stresses imposed by overlayers affect behaviors of nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less
Registration of 'Jazzman' aromatic long-grain rice
USDA-ARS?s Scientific Manuscript database
Jazzman is a U.S.-bred Jasmine-type, soft-cooking aromatic long-grain rice cultivar (Oryza sativa L.) that is glabrous and has no seed dormancy. It was developed from a single cross using a modified pedigree breeding method at the Rice Research Station, Louisiana State University Agriculture Center,...
29 CFR 1910.305 - Wiring methods, components, and equipment for general use.
Code of Federal Regulations, 2010 CFR
2010-07-01
... distribution center. (B) Conductors shall be run as multiconductor cord or cable assemblies. However, if... persons, feeders may be run as single insulated conductors. (v) The following requirements apply to branch... shall be multiconductor cord or cable assemblies or open conductors. If run as open conductors, they...
29 CFR 1910.305 - Wiring methods, components, and equipment for general use.
Code of Federal Regulations, 2011 CFR
2011-07-01
... distribution center. (B) Conductors shall be run as multiconductor cord or cable assemblies. However, if... persons, feeders may be run as single insulated conductors. (v) The following requirements apply to branch... shall be multiconductor cord or cable assemblies or open conductors. If run as open conductors, they...
29 CFR 1910.305 - Wiring methods, components, and equipment for general use.
Code of Federal Regulations, 2013 CFR
2013-07-01
... distribution center. (B) Conductors shall be run as multiconductor cord or cable assemblies. However, if... persons, feeders may be run as single insulated conductors. (v) The following requirements apply to branch... shall be multiconductor cord or cable assemblies or open conductors. If run as open conductors, they...
29 CFR 1910.305 - Wiring methods, components, and equipment for general use.
Code of Federal Regulations, 2014 CFR
2014-07-01
... distribution center. (B) Conductors shall be run as multiconductor cord or cable assemblies. However, if... persons, feeders may be run as single insulated conductors. (v) The following requirements apply to branch... shall be multiconductor cord or cable assemblies or open conductors. If run as open conductors, they...
29 CFR 1910.305 - Wiring methods, components, and equipment for general use.
Code of Federal Regulations, 2012 CFR
2012-07-01
... distribution center. (B) Conductors shall be run as multiconductor cord or cable assemblies. However, if... persons, feeders may be run as single insulated conductors. (v) The following requirements apply to branch... shall be multiconductor cord or cable assemblies or open conductors. If run as open conductors, they...
Fiadjoe, John E; Hirschfeld, Matthew; Wu, Stephan; Markley, James; Gurnaney, Harshad; Jawad, Abbas F; Stricker, Paul; Kilbaugh, Todd; Ross, Patrick; Kovatsis, Pete
2015-08-01
The GlideScope Cobalt Video laryngoscope is being used more often in children with challenging laryngoscopy. There are, however, no pediatric trials comparing it to flexible fiberoptic bronchoscopy, the current accepted gold standard. This preliminary manikin study compares the first-attempt intubation success of the GlideScope Cobalt video laryngoscope to the flexible fiberoptic bronchoscope when performed by attending pediatric anesthesiologists at two major pediatric centers. This prospective randomized, crossover study evaluated 120 attempts (60 with each study device) to intubate the AirSim Pierre Robin manikin (PRM) with fiberoptic bronchoscopy and video laryngoscopy (VL). Attending pediatric anesthesiologists from two quaternary pediatric centers were eligible to participate. Each attending anesthesiologist randomly performed a single tracheal intubation attempt with one of the study devices followed by the alternate method. The primary outcome was the first-attempt success rate of tracheal intubation. Blinding was not feasible. We hypothesized that first-attempt success would be higher with fiberoptic bronchoscopy. Thirty anesthesiologists from each center were randomized to use one of the study devices followed by the alternate method. We analyzed all participants' data. There was no overall difference in first-attempt success between VL and fiberoptic bronchoscopy (88.3% vs 85% respectively, P = 0.59). There were significant institutional differences in first-attempt success using VL (76.7% vs 100%). There was no difference in first-attempt success of tracheal intubation using VL vs fiberoptic bronchoscopy when performed by attending anesthesiologists at two large pediatric centers. However, institutional differences exist in success rates with VL across the two centers. Results from single-center device evaluations should be verified by multi-center evaluations. A significant proportion of attending anesthesiologists lack experience with advanced airway devices; targeted education may enhance intubation success and patient safety. © 2015 John Wiley & Sons Ltd.
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
2016-02-02
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method
Graves, Robert; Pitarka, Arben
2014-12-17
This brief article describes refinements to the Graves and Pitarka (2010) broadband ground-motion simulation methodology (GP2010 hereafter) that have been implemented in version 14.3 of the Southern California Earthquake Center (SCEC) Broadband Platform (BBP). The updated version of our method on the current SCEC BBP is referred to as GP14.3. Here, our simulation technique is a hybrid approach that combines low- and high-frequency motions computed with different methods into a single broadband response.
Quantum control and engineering of single spins in diamond
NASA Astrophysics Data System (ADS)
Toyli, David M.
The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical properties, these measurements suggest that NV center sensors could be employed in a diverse range of applications such as intracellular thermometry, microfuidic thermometry, and scanning thermal microscopy. Finally, while the development of NV center technologies is motivated by the desirable properties of isolated defects in bulk diamond, the realization of many of these technologies, such as those using the spin as a proximal sensor, require a means to control the placement of NV centers within the diamond lattice. We demonstrate a method to pattern defect formation on sub-100-nm length scales using ion implantation and electron beam lithography techniques. The ability to engineer large scale arrays of NV centers with this method holds promise for a variety of applications in quantum information science and nanoscale sensing.
Public School Center vs. Family Home Day Care: Single Parents' Reasons for Selection.
ERIC Educational Resources Information Center
Rothschild, Maria Stupp
This study investigates the reasons single parents in San Diego had for choosing either a public day care center or a licensed day care home for their children. A sample of 30 single parents with children in school district administered children's centers was drawn and matched by a similarly geographically distributed sample of 23 parents with…
Application of integrated fluid-thermal-structural analysis methods
NASA Technical Reports Server (NTRS)
Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken
1988-01-01
Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.
Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials
NASA Technical Reports Server (NTRS)
Walker, K. P.; Jordan, E. H.
1985-01-01
A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.
Multicolor photonic crystal laser array
Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming
2015-04-28
A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
Locating Structural Centers: A Density-Based Clustering Method for Community Detection
Liu, Gongshen; Li, Jianhua; Nees, Jan P.
2017-01-01
Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030
Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Salem, Hesham
2014-11-11
This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Jacob, R Lorie; Geddes, Jonah; McCartney, Shirley; Burchiel, Kim J
2016-05-01
OBJECT The objective of this study was to compare the cost of deep brain stimulation (DBS) performed awake versus asleep at a single US academic health center and to compare costs across the University HealthSystem Consortium (UHC) Clinical Database. METHODS Inpatient and outpatient demographic and hospital financial data for patients receiving a neurostimulator lead implant (from the first quarter of 2009 to the second quarter of 2014) were collected and analyzed. Inpatient charges included those associated with International Classification of Diseases, Ninth Revision (ICD-9) procedure code 0293 (implantation or replacement of intracranial neurostimulator lead). Outpatient charges included all preoperative charges ≤ 30 days prior to implant and all postoperative charges ≤ 30 days after implant. The cost of care based on reported charges and a cost-to-charge ratio was estimated. The UHC database was queried (January 2011 to March 2014) with the same ICD-9 code. Procedure cost data across like hospitals (27 UHC hospitals) conducting similar DBS procedures were compared. RESULTS Two hundred eleven DBS procedures (53 awake and 158 asleep) were performed at a single US academic health center during the study period. The average patient age ( ± SD) was 65 ± 9 years old and 39% of patients were female. The most common primary diagnosis was Parkinson's disease (61.1%) followed by essential and other forms of tremor (36%). Overall average DBS procedure cost was $39,152 ± $5340. Asleep DBS cost $38,850 ± $4830, which was not significantly different than the awake DBS cost of $40,052 ± $6604. The standard deviation for asleep DBS was significantly lower (p ≤ 0.05). In 2013, the median cost for a neurostimulator implant lead was $34,052 at UHC-affiliated hospitals that performed at least 5 procedures a year. At Oregon Health & Science University, the median cost was $17,150 and the observed single academic health center cost for a neurostimulator lead implant was less than the expected cost (ratio 0.97). CONCLUSIONS In this single academic medical center cost analysis, DBS performed asleep was associated with a lower cost variation relative to the awake procedure. Furthermore, costs compared favorably to UHC-affiliated hospitals. While asleep DBS is not yet standard practice, this center exclusively performs asleep DBS at a lower cost than comparable institutions.
Development of a method to analyze single cell activity by using dielectrophoretic levitation.
Hakoda, M; Hachisu, T; Wakizaka, Y; Mii, S; Kitajima, N
2005-01-01
In cell fusion and genetic recombination, although the activity of single cells is extremely important, there is no method to analyze single cell activity. Development of a quick analyzing method for single cell activity is desired in various fields. Dielectrophoresis (DEP) refers to the force exerted on the induced dipole moment of an uncharged dielectric and/or conductive particle by a nonuniform electric field. By applying DEP, we obtained experimentally a relationship between the cell activity and the dielectric property, Re[K(omega)], and examined how to evaluate the single cell activity by measuring Re[K(omega)] of a single cell. A cone and plate electrode geometry was adapted in order to achieve the feedback-controlled DEP levitation. The single cell is exposed to a nonuniform field induced by the cone and plate electrode, and a more polarizable cell is moved to the direction of the cone electrode by the DEP force. The cell settles in the position where the DEP force and gravity are balanced by controlling applied voltage. This settled position, measured on the center axis of the cone electrode, depended on the dielectric constant of the cell. From these results, the relationship between the specific growth rates in cell growth phase and the dielectric properties Re[K(omega)] was obtained. Furthermore, the effect on the cell activity of various stresses, such as concentration of carbon dioxide, temperature, etc., was examined.
Daddy's Gone to Colorado: Male-Staffed Child Care for Father-Absent Boys.
ERIC Educational Resources Information Center
Brody, Steve
1978-01-01
The article presents the goals, methods, and case examples of The Nutury, a predominantly male-staffed child care center serving single-parent children. The primary goal is to provide consistent relationships with men for children without a male model in their home. Clinical observations reveal positive life-styles and attitudes. (LPG)
Manatee County Displaced Homemakers Program. Final Report from July 1, 1983 to August 31, 1984.
ERIC Educational Resources Information Center
Joynes, Margot
In the Displaced Homemaker project at the New Options Center in Manatee County, Bradenton, Florida, clients were displaced homemakers, single household heads needing training, homemakers seeking full-time employment, and anyone interested in jobs or training nontraditional to his/her sex. Various outreach methods--public service announcements,…
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
2012-09-10
Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, United States ABSTRACT: Toxicological ...species. Thus, it is more advantageous to predict the toxicological effects of a compound on humans directly from the human toxicological data of related...compounds. However, many popular quantitative structure−activity relationship ( QSAR ) methods that build a single global model by fitting all training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Qianqing; Liu, Dongqi; Liu, Gangqin
2014-07-28
Sources of single photons are of fundamental importance in many applications as to provide quantum states for quantum communication and quantum information processing. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, even at room temperature. However, the efficiency of photon collection of the color centers in bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, diamond structuring has been investigated by various methods. Among them, focused-ion-beam (FIB) direct patterning has been recognized as the most favorable technique. But it has been noted that diamond tends to presentmore » significant challenges in FIB milling, e.g., the susceptibility of forming charging related artifacts and topographical features. In this work, periodically-positioned-rings and overlay patterning with stagger-superimposed-rings were proposed to alleviate some problems encountered in FIB milling of diamond, for improved surface morphology and shape control. Cross-scale network and uniform nanostructure arrays have been achieved in single crystalline diamond substrates. High quality diamond solid immersion lens and nanopillars were sculptured with a nitrogen-vacancy center buried at the desired position. Compared with the film counterpart, an enhancement of about ten folds in single photon collection efficiency was achieved with greatly improved signal to noise ratio. All these results indicate that FIB milling through over-lay patterning could be an effective approach to fabricate diamond structures, potentially for quantum information studies.« less
Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation.
Polking, Mark J; Dibos, Alan M; de Leon, Nathalie P; Park, Hongkun
2018-01-01
Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unsupervised fuzzy segmentation of 3D magnetic resonance brain images
NASA Astrophysics Data System (ADS)
Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.
1993-07-01
Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.
Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F
2010-07-19
A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic.
2010-01-01
Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic. PMID:20642827
Nelson, Daniel A; Strachan, Briony C; Sloane, Hillary S; Li, Jingyi; Landers, James P
2014-03-28
We recently reported the 'pinwheel effect' as the foundation for a DNA assay based on a DNA concentration-dependent aggregation of silica-coated magnetic beads in a rotating magnetic field (RMF). Using a rotating magnet that generated a 5 cm magnetic field that impinged on a circular array of 5mm microwells, aggregation was found to only be effective in a single well at the center of the field. As a result, when multiple samples needed to be analyzed, the single-plex (single well) analysis was tedious, time-consuming and labor-intensive, as each well needed to be exposed to the center of the RMF in a serial manner for consistent well-to-well aggregation. For more effective multiplexing (simultaneous aggregation in 12 wells), we used a circular array of microwells and incorporated 'agitation' as a second force that worked in concert with the RMF to provide effective multiplexed aggregation-based DNA quantitation. The dual-force aggregation (DFA) approach allows for effective simultaneous aggregation in multiple wells (12 demonstrated) of the multi-well microdevice, allowing for 12 samples to be interrogated for DNA content in 140 s, providing a ∼35-fold improvement in time compared to single-plex approach (80 min) and ∼4-fold improvement over conventional fluorospectrometric methods. Furthermore, the increased interaction between DNA and beads provided by DFA improved the limit of detection to 250 fg μL(-1). The correlation between the DFA results and those from a fluorospectrometer, demonstrate DFA as an inexpensive and rapid alternative to more conventional methods (fluorescent and spectrophotometric). Copyright © 2014 Elsevier B.V. All rights reserved.
Motivation to volunteer among senior center participants.
Pardasani, Manoj
2018-04-01
Senior centers in the United States play a vital role in the aging continuum of care as the focal points of a community-based system of services targeting independent older adults to promote their social integration and civically engagement. Although several studies have evaluated the diversity of senior center programs, demographic characteristics of participants, and benefits of participation, very few have explored motivations to volunteer among participants. Many senior centers rely on a cadre of participants who volunteer there to assist with programs and meal services. However, a systematic examination of volunteering interests and the rationale for volunteering among senior center participants has been missing from the literature. This mixed-methods study, conducted at a large suburban senior center, explores the interests and motivations of volunteerism among the participants. The study found that there was limited interest in volunteering among senior center participants. Those who were motivated to volunteer wanted to do so in order to stay connected with their community. There was strong interest in volunteering for single events or projects rather than a long-term commitment. Implications for senior centers are discussed.
NASA Technical Reports Server (NTRS)
Roth, Don J.
1996-01-01
This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.
Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.
Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D
2009-10-09
Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
Optical Brain Imaging: A Powerful Tool for Neuroscience.
Zhu, Xinpei; Xia, Yanfang; Wang, Xuecen; Si, Ke; Gong, Wei
2017-02-01
As the control center of organisms, the brain remains little understood due to its complexity. Taking advantage of imaging methods, scientists have found an accessible approach to unraveling the mystery of neuroscience. Among these methods, optical imaging techniques are widely used due to their high molecular specificity and single-molecule sensitivity. Here, we overview several optical imaging techniques in neuroscience of recent years, including brain clearing, the micro-optical sectioning tomography system, and deep tissue imaging.
Moving Beyond the Single Center--Ways to Reinforce Molecular Orbital Theory in an Inorganic Course
ERIC Educational Resources Information Center
Cass, Marion E.; Hollingsworth, William E.
2004-01-01
It is suggested that molecular theory should be taught earlier in the inorganic chemistry curriculum even in the introductory chemistry course in order to integrate molecular orbital arguments more effectively throughout the curriculum. The method of teaching relies on having access to molecular modeling software as having access to such software…
NASA Astrophysics Data System (ADS)
Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong
2018-04-01
Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.
Li, Wei-Bing; Li, Kang; Fan, Kang-Qi; Zhang, Da-Xing; Wang, Wei-Dong
2018-04-24
Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.
A comparison of five approaches to measurement of anatomic knee alignment from radiographs.
McDaniel, G; Mitchell, K L; Charles, C; Kraus, V B
2010-02-01
The recent recognition of the correlation of the hip-knee-ankle angle (HKA) with femur-tibia angle (FTA) on a standard knee radiograph has led to the increasing inclusion of FTA assessments in OA studies due to its clinical relevance, cost effectiveness and minimal radiation exposure. Our goal was to investigate the performance metrics of currently used methods of FTA measurement to determine whether a specific protocol could be recommended based on these results. Inter- and intra-rater reliability of FTA measurements were determined by intraclass correlation coefficient (ICC) of two independent analysts. Minimal detectable differences were determined and the correlation of FTA and HKA was analyzed by linear regression. Differences among methods of measuring HKA were assessed by ANOVA. All five methods of FTA measurement demonstrated high precision by inter- and intra-rater reproducibility (ICCs>or=0.93). All five methods displayed good accuracy, but after correction for the offset of FTA from HKA, the femoral notch landmark method was the least accurate. However, the methods differed according to their minimal detectable differences; the FTA methods utilizing the center of the base of the tibial spines or the center of the tibial plateau as knee center landmarks yielded the smallest minimal detectable differences (1.25 degrees and 1.72 degrees, respectively). All methods of FTA were highly reproducible, but varied in their accuracy and sensitivity to detect meaningful differences. Based on these parameters we recommend standardizing measurement angles with vertices at the base of the tibial spines or the center of the tibia and comparing single-point and two-point methods in larger studies. Copyright 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Left-right correlation in coupled F-center defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu
This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H{sub 2}. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centersmore » may fail for adjacent F-centers.« less
Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.
Casanova, J; Wang, Z-Y; Plenio, M B
2016-09-23
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.
Hu, Z W; Li, W W; Zhang, X Y; Fan, B L; Wang, Y; Sun, Y C
2016-08-01
To develop a aided mechanical appliance for rapid reconstruction of three-dimensional(3D)relationship of dentition model after scanning and evaluation of its accuracy. The appliance was designed by forward engineering software and fabricated by a high precision computer numerical control(CNC)system. It contained upper and lower body, magnetic pedestal and three pillars. Nine 3 mm diameter hemispheres were distributed equally on the axial surface of each pedestal. Faro Edge 1.8m was used to directly obtain center of each hemisphere(contact method), defined as known center. A pair of die-stone standard dentition model were fixed in intercuspal position and then fixed on the magnetic pedestals with low expansion ratio plaster. Activity 880 dental scanner was used to scan casts after the plaster was completely set. In Geomagic 2012, the centers of each hemisphere were fitted and defined as scanning centers. Scanning centers were aligned to known centers by reference point system to finish the 3D reconstruction of the intercuspal occlusion for the dentition casts. An observation coordinate system was interactively established. The straight-line distances in the X(coronal), Y(saggital), and Z(vertical)between the remaining 6 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. The differences of the straight-line distances of the remaining 6 pairs of center points between the two methods were X:(-0.05±0.10)mm, Y:(0.02±0.06)mm, and Z:(0.01 ± 0.05)mm. The results of paired t-test showed no significant differences(P>0.05). The mechanical appliance can help to reconstruct 3D jaw relation by scanning single upper and lower dentition model with usual commercial available dental cast scanning system.
Diamond like carbon coatings: Categorization by atomic number density
NASA Technical Reports Server (NTRS)
Angus, John C.
1986-01-01
Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.
Semianalytical computation of path lines for finite-difference models
Pollock, D.W.
1988-01-01
A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author
Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.
2015-01-01
Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678
Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study
NASA Astrophysics Data System (ADS)
Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.
2015-04-01
Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd3Ga3Al2O12:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu)3Ga3Al2O12:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal.
Nakajima, Nobuharu
2010-07-20
When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central data due to a beam stop. As an alternative method, I present a noniterative solution in which an interpolation method based on the sampling theorem for the missing data is used for object reconstruction with our previously proposed phase-retrieval method using an aperture-array filter. Computer simulations demonstrate the reconstruction of a complex-amplitude object from a single diffraction pattern with a missing data area, which is generally difficult to treat with the iterative methods because a nonnegativity constraint cannot be used for such an object.
Evaluation of the use of a singularity element in finite element analysis of center-cracked plates
NASA Technical Reports Server (NTRS)
Mendelson, A.; Gross, B.; Srawley, J., E.
1972-01-01
Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.
Restrepo, John F; Garcia-Sucerquia, Jorge
2012-02-15
We present an automatic procedure for 3D tracking of micrometer-sized particles with high-NA digital lensless holographic microscopy. The method uses a two-feature approach to search for the best focal planes and to distinguish particles from artifacts or other elements on the reconstructed stream of the holograms. A set of reconstructed images is axially projected onto a single image. From the projected image, the centers of mass of all the reconstructed elements are identified. Starting from the centers of mass, the morphology of the profile of the maximum intensity along the reconstruction direction allows for the distinguishing of particles from others elements. The method is tested with modeled holograms and applied to automatically track micrometer-sized bubbles in a sample of 4 mm3 of soda.
NASA Technical Reports Server (NTRS)
1997-01-01
A new technique for rotating stall precursor identification in high-speed compressors has been developed at the NASA Lewis Research Center. This pseudo correlation integral method uses a mathematical algorithm based on chaos theory to identify nonlinear dynamic changes in the compressor. Through a study of four various configurations of a high-speed compressor stage, a multistage compressor rig, and an axi-centrifugal engine test, this algorithm, using only a single pressure sensor, has consistently predicted the onset of rotating stall.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki
2011-03-01
We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of RAID. With RAID technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. We can safely share the screen of workstation to which the medical image of Data Center is displayed from two or more web conference terminals at the same time. Moreover, Real time biometric face authentication system is connected with Data Center. Real time biometric face authentication system analyzes the feature of the face image of which it takes a picture in 20 seconds with the camera and defends the safety of the medical information. We propose a new information transmission method and a new information storage method with a new information security solution.
NASA Astrophysics Data System (ADS)
Mysore, Abhishek Arun Babu
A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and condenser and outlet chilled water temperatures of the evaporator.
Response Surface Methods for Spatially-Resolved Optical Measurement Techniques
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.
2003-01-01
Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.
A Review of Transmission Diagnostics Research at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Zakajsek, James J.
1994-01-01
This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, S. G.; Zhang, S. F.; Gao, M. C.
2013-08-22
For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking faultmore » energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.« less
NASA Astrophysics Data System (ADS)
Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Huang, Zhi-Yong; Lv, Hai-Jiang
2018-05-01
We suggest an experimental scheme that a single nitrogen-vacancy (NV) center coupled to a nearest neighbor 13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance (ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave (CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an (NV–13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about 14N–Vacancy–13C (14N–V–13C) plane. Protect supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).
Holonomic Quantum Control by Coherent Optical Excitation in Diamond.
Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D
2017-10-06
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Xiong, Rui; Yi, Fan; Yin, Di; Ke, Manzhu; Li, Changzhen; Liu, Zhengyou; Shi, Jing
2005-05-01
High quality and large-sized Rb 0.3MoO 3 single crystals were synthesized by molten salt electrolysis method. X-ray diffraction (XRD) patterns and rocking curves, as well as the white beam Laue diffraction of X-ray images show the crystals grown by this method have high quality. The lattice constants evaluated from XRD patterns are a0=1.87 nm, b0=0.75 nm, c0=1.00 nm, β=118.83∘. The in situ selected area electron diffraction (SAED) patterns along the [101¯], [11¯1¯] and [103¯] zone axes at room temperature indicate that the Rb 0.3MoO 3 crystal possess perfect C-centered symmetry. Temperature dependence of the resistivity shows this compound undergoes a metal to semiconductor transition at 183 K.
Sankar, R; Neupane, M; Xu, S-Y; Butler, C J; Zeljkovic, I; Panneer Muthuselvam, I; Huang, F-T; Guo, S-T; Karna, Sunil K; Chu, M-W; Lee, W L; Lin, M-T; Jayavel, R; Madhavan, V; Hasan, M Z; Chou, F C
2015-08-14
The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and transport property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.
Gene expression profiling of single cells on large-scale oligonucleotide arrays
Hartmann, Claudia H.; Klein, Christoph A.
2006-01-01
Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717
Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films
NASA Astrophysics Data System (ADS)
Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Savchyn, V.; Nizhankovskiy, S.; Dan'ko, A.; Puzikov, V.; Laguta, V.; Mares, J. A.; Nikl, M.; Nejezchleb, K.; Batentschuk, M.; Winnacker, A.
2012-10-01
The work is dedicated to growth by the liquid phase epitaxy method and study of the luminescence and scintillation properties of Sc3+ doped single crystalline films (SCF) of Lu3Al5O12 (LuAG) garnet. The scintillation properties of SCF are compared with single crystal (SC) analogues grown by the Horizontal Direct Crystallization and Czochralski methods. We consider the dependence of intensity of the Sc3+ emission in LuAG host on the activator concentration and influence of flux contamination on the light yield (LY) of the Sc3+ luminescence in LuAG:Sc SCF with respect to their SC counterparts and the reference YAP:Ce scintillator. From the NMR investigations of LuAG:Sc SCF we confirm the substitution by Sc3+ ions both the octahedral and dodecahedral positions of LuAG host and formation of the ScAl and ScLu related emission centers, respectively. We also show that the luminescence spectrum in the UV range and decay kinetics of LuAG:Sc SCF can be effectively tuned by changing the scandium content.
Strategic hospital partnerships: improved access to care and increased epilepsy surgical volume.
Vadera, Sumeet; Chan, Alvin Y; Mnatsankanyan, Lilit; Sazgar, Mona; Sen-Gupta, Indranil; Lin, Jack; Hsu, Frank P K
2018-05-01
OBJECTIVE Surgical treatment of patients with medically refractory focal epilepsy is underutilized. Patients may lack access to surgically proficient centers. The University of California, Irvine (UCI) entered strategic partnerships with 2 epilepsy centers with limited surgical capabilities. A formal memorandum of understanding (MOU) was created to provide epilepsy surgery to patients from these centers. METHODS The authors analyzed UCI surgical and financial data associated with patients undergoing epilepsy surgery between September 2012 and June 2016, before and after institution of the MOU. Variables collected included the length of stay, patient age, seizure semiology, use of invasive monitoring, and site of surgery as well as the monthly number of single-surgery cases, complex cases (i.e., staged surgeries), and overall number of surgery cases. RESULTS Over the 46 months of the study, a total of 104 patients underwent a total of 200 operations; 71 operations were performed in 39 patients during the pre-MOU period (28 months) and 129 operations were performed in 200 patients during the post-MOU period (18 months). There was a significant difference in the use of invasive monitoring, the site of surgery, the final therapy, and the type of insurance. The number of single-surgery cases, complex-surgery cases, and the overall number of cases increased significantly. CONCLUSIONS Partnerships with outside epilepsy centers are a means to increase access to surgical care. These partnerships are likely reproducible, can be mutually beneficial to all centers involved, and ultimately improve patient access to care.
Optimal control of quantum rings by terahertz laser pulses.
Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U
2007-04-13
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.
Family Support Center Village: A Unique Approach for Low-Income Single Women with Children
ERIC Educational Resources Information Center
Graber, Helen V.; Wolfe, Jayne L.
2004-01-01
The Family Support Center, recognizing the need for single women with children to maintain stability, has developed a program referred to as the Family Support Center Village, which incorporates a service enriched co-housing model. The "Village" will be the catalyst for these mothers' self-sufficiency and will provide opportunities to develop…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J; Liu, X
2016-06-15
Purpose: To perform a quantitative study to verify that the mechanical field center coincides with the radiation field center when both are off from the isocenter during the single-isocenter technique in linear accelerator-based SRS/SBRT procedure to treat multiple lesions. Methods: We developed an innovative method to measure this accuracy, called the off-isocenter Winston-Lutz test, and here we provide a practical clinical guideline to implement this technique. We used ImagePro V.6 to analyze images of a Winston-Lutz phantom obtained using a Varian 21EX linear accelerator with an electronic portal imaging device, set up as for single-isocenter SRS/SBRT for multiple lesions. Wemore » investigated asymmetry field centers that were 3 cm and 5 cm away from the isocenter, as well as performing the standard Winston-Lutz test. We used a special beam configuration to acquire images while avoiding collision, and we investigated both jaw and multileaf collimation. Results: For the jaw collimator setting, at 3 cm off-isocenter, the mechanical field deviated from the radiation field by about 2.5 mm; at 5 cm, the deviation was above 3 mm, up to 4.27 mm. For the multileaf collimator setting, at 3 cm off-isocenter, the deviation was below 1 mm; at 5 cm, the deviation was above 1 mm, up to 1.72 mm, which is 72% higher than the tolerance threshold. Conclusion: These results indicated that the further the asymmetry field center is from the machine isocenter, the larger the deviation of the mechanical field from the radiation field, and the distance between the center of the asymmetry field and the isocenter should not exceed 3 cm in of our clinic. We recommend that every clinic that uses linear accelerator, multileaf collimator-based SRS/SBRT perform the off-isocenter Winston-Lutz test in addition to the standard Winston-Lutz test and use their own deviation data to design the treatment plan.« less
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.
1971-01-01
The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.
Quantum logic readout and cooling of a single dark electron spin
NASA Astrophysics Data System (ADS)
Shi, Fazhan; Zhang, Qi; Naydenov, Boris; Jelezko, Fedor; Du, Jiangfeng; Reinhard, Friedemann; Wrachtrup, Jörg
2013-05-01
We study a single dark N2 electron spin defect in diamond, which is magnetically coupled to a nearby nitrogen-vacancy (NV) center. We perform pulsed electron spin resonance on this single spin by mapping its state to the NV center spin and optically reading out the latter. Moreover, we show that the NV center's spin polarization can be transferred to the electron spin by combined two decoupling control-NOT gates. These two results allow us to extend the NV center's two key properties—optical spin polarization and detection—to any electron spin in its vicinity. This enables dark electron spins to be used as local quantum registers and engineerable memories.
The Honolulu Liver Disease Cluster at the Medical Center: Its Mysteries and Challenges.
Teschke, Rolf; Eickhoff, Axel
2016-03-31
In 2013, physicians at the Honolulu Queen's Medical Center (QMC) noticed that seven liver disease patients reported the use of OxyELITE Pro (OEP), a widely consumed dietary supplement (DS). Assuming a temporal association between OEP use and disease, they argued that OEP was the cause of this mysterious cluster. Subsequent reexamination, however, has revealed that this QMC cohort is heterogeneous and not a cluster with a single agent causing a single disease. It is heterogeneous because patients used multiple DS's and drugs and because patients appeared to have suffered from multiple liver diseases: liver cirrhosis, liver failure by acetaminophen, hepatotoxicity by non-steroidal antiinflammatory drugs (NSAIDs), resolving acute viral hepatitis by hepatitis B virus (HBV), herpes simplex virus (HSV), and varicella zoster virus (VZV), and suspected hepatitis E virus (HEV). Failing to exclude these confounders and to consider more viable diagnoses, the QMC physicians may have missed specific treatment options in some of their patients. The QMC physicians unjustifiably upgraded their Roussel Uclaf Causality Assessment Method (RUCAM) causality scores so that all patients would appear to be "probable" for OEP. However, subsequent RUCAM reassessments by our group demonstrated a lack of causality for OEP in the evaluated QMC cases. The QMC's questionable approaches explain the extraordinary accumulation of suspected OEP cases at the QMC in Hawaii as single place, whereas similar cohorts were not published by any larger US liver center, substantiating that the problem is with the QMC. In this review article, we present and discuss new case data and critically evaluate upcoming developments of problematic regulatory assessments by the US Centers for Disease Control and Prevention (CDC), the Hawaii Department of Health (HDOH), and the Food and Drug Administration (FDA), as based on invalid QMC conclusions, clarifying now also basic facts and facilitating constructive discussions.
Su, Wei; Zhang, Yisen; Chen, Junfan; Liu, Jian; Rajah, Gary; Yang, Xinjian
2018-04-23
Background For the treatment of intracranial aneurysms, the low-profile visualized intraluminal support (LVIS) stent is a new generation of highly visible-braided stent that was recently introduced in China. Here, we report our single-center retrospective experience of safety and efficacy utilizing LVIS for stent-assisted coiling of intracranial aneurysms. Methods We included 218 patients with intracranial aneurysms consecutively treated with LVIS SR stents at our center in this study. Postoperative and follow-up embolization scores, procedural complications, clinical and angiographic findings at mid-term follow-up, as well as recurrence rate, preoperative and follow-up mRS scores were analyzed. Results Two hundred and eighteen patients with two hundred and twenty five intracranial aneurysms were enrolled. The locations and distribution were ICA (125, 55.6%), PcomA (47, 20.9%), VA (38, 16.8%), and BA (15, 6.7%). Two hundred and eighteen aneurysms were treated with the stent-assisted coiling and seven patients with LVIS stents alone. Angiographic follow-up was available for 115 (51.1%) aneurysms, 8 (7.0%) of which had recurrences including 7 (6.5%) unruptured aneurysms and 1(14.3%) ruptured aneurysm. The procedural complication rate was 2.75% in total, including distal hemorrhage (1, 0.45%; SAH), ischemic events (5, 2.3%). Conclusions Our single-center retrospective experience is one of the larger studies to date assessing the LVIS device. Compared with many laser-cut stent studies, the LVIS device had a higher aneurysm complete occlusion rate at follow-up coupled with low complication rates. However, this study was our initial experience with LVIS, larger patient numbers, and longer follow-up will be needed to fully assess the long-term efficacy of LVIS in treating intracranial aneurysms.
Choi, Kyunghak; Han, Youngjin; Ko, Gi-Young; Cho, Yong-Pil; Kwon, Tae-Won
2018-06-09
The objective of the study was to compare the treatment outcomes and cost of endovascular aortic aneurysm repair (EVAR) and open surgical repair (OSR) in patients with an abdominal aortic aneurysm (AAA) at a single center. Patients treated for an AAA at a single center between January 2007 and December 2012 were retrospectively identified and classified based on the treatment they received (EVAR or OSR). Patient demographics and in-hospital costs were recorded. Long-term survival was calculated using the Kaplan-Meier method. During the study period, 401 patients with AAA were treated at Asan Medical Center. Among these cases, 226 were treated with EVAR (56%) and 175 received OSR (44%). The mean age of the EVAR group was higher than that of the OSR group (71.25 ± 7.026 vs. 61.26 ± 8.175, P < 0.001). The need for intraoperative transfusion and total length of in-hospital stay were significantly lower in the EVAR group (P < 0.001). The OSR group showed significantly reduced rates of overall mortality (P = 0.003), overall reintervention (P = 0.001), and long-term survival (63.98 ± 1.86 vs. 99.54 ± 3.17, P < 0.001). The OSR group was charged significantly less than the EVAR group ($12,879.21 USD vs. $18,057.78 USD, P < 0.001). EVAR has advantages over OSR in terms of short-term mortality, in-hospital length of stay, and rates of perioperative transfusion. However, OSR is associated with better long-term survival, lower reintervention rates, and lower costs. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Xuemin; Chen, Long; Tang, Bo; Cao, Dongpu; He, Haibo
2018-02-01
This paper presents a real-time dynamic path planning method for autonomous driving that avoids both static and moving obstacles. The proposed path planning method determines not only an optimal path, but also the appropriate acceleration and speed for a vehicle. In this method, we first construct a center line from a set of predefined waypoints, which are usually obtained from a lane-level map. A series of path candidates are generated by the arc length and offset to the center line in the s - ρ coordinate system. Then, all of these candidates are converted into Cartesian coordinates. The optimal path is selected considering the total cost of static safety, comfortability, and dynamic safety; meanwhile, the appropriate acceleration and speed for the optimal path are also identified. Various types of roads, including single-lane roads and multi-lane roads with static and moving obstacles, are designed to test the proposed method. The simulation results demonstrate the effectiveness of the proposed method, and indicate its wide practical application to autonomous driving.
Yang, Yang; DeGruttola, Victor
2016-01-01
Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients. PMID:22740584
Yang, Yang; DeGruttola, Victor
2012-06-22
Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients.
Static and dynamic stability of pneumatic vibration isolators and systems of isolators
NASA Astrophysics Data System (ADS)
Ryaboy, Vyacheslav M.
2014-01-01
Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.
Compendium of NASA Langley reports on hypersonic aerodynamics
NASA Technical Reports Server (NTRS)
Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.
1987-01-01
Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.
2014-01-20
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency ofmore » (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.« less
Pulse-Echo Ultrasonic Imaging Method for Eliminating Sample Thickness Variation Effects
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1997-01-01
A pulse-echo, immersion method for ultrasonic evaluation of a material which accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer and automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjustments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.
High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State
NASA Astrophysics Data System (ADS)
Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.
2017-04-01
Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.
Remote sensing imagery classification using multi-objective gravitational search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2016-10-01
Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.
NASA Astrophysics Data System (ADS)
Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.
2018-03-01
Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.
Postural stabilization after single-leg vertical jump in individuals with chronic ankle instability.
Nunes, Guilherme S; de Noronha, Marcos
2016-11-01
To investigate the impact different ways to define reference balance can have when analysing time to stabilization (TTS). Secondarily, to investigate the difference in TTS between people with chronic ankle instability (CAI) and healthy controls. Cross-sectional study. Laboratory. Fifty recreational athletes (25 CAI, 25 controls). TTS of the center of pressure (CoP) after maximal single-leg vertical jump using as reference method the single-leg stance, pre-jump period, and post-jump period; and the CoP variability during the reference methods. The post-jump reference period had lower values for TTS in the anterior-posterior (AP) direction when compared to single-leg stance (P = 0.001) and to pre-jump (P = 0.002). For TTS in the medio-lateral (ML) direction, the post-jump reference period showed lower TTS when compared to single-leg stance (P = 0.01). We found no difference between CAI and control group for TTS for any direction. The CAI group showed more CoP variability than control group in the single-leg stance reference period for both directions. Different reference periods will produce different results for TTS. There is no difference in TTS after a maximum vertical jump between groups. People with CAI have more CoP variability in both directions during single-leg stance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vascular Plant Species of the Forest Ecology Research and Demonstration Area, Paul Smith's, New York
Gary L. Wade; Jonathan A. Myers; Cecilia R. Martin; Kathie Detmar; William, III Mator; Mark J. Twery; Mike Rechlin
2003-01-01
Five forest harvest methods (single-tree selection, group selection, two-age cut, shelterwood cut, and clearcut) are being demonstrated on 5-acre tracts near the Adirondack Park Agency?s Visitor Interpretation Center (VIC) at Paul Smith?s, New York. The tracts are part of the agency?s Forest Ecology Research and Demonstration Area. A primary goal is to show visitors...
Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation
NASA Astrophysics Data System (ADS)
Bourgeois, E.; Londero, E.; Buczak, K.; Hruby, J.; Gulka, M.; Balasubramaniam, Y.; Wachter, G.; Stursa, J.; Dobes, K.; Aumayr, F.; Trupke, M.; Gali, A.; Nesladek, M.
2017-01-01
The core issue for the implementation of NV center qubit technology is a sensitive readout of the NV spin state. We present here a detailed theoretical and experimental study of NV center photoionization processes, used as a basis for the design of a dual-beam photoelectric method for the detection of NV magnetic resonances (PDMR). This scheme, based on NV one-photon ionization, is significantly more efficient than the previously reported single-beam excitation scheme. We demonstrate this technique on small ensembles of ˜10 shallow NVs implanted in electronic grade diamond (a relevant material for quantum technology), on which we achieve a cw magnetic resonance contrast of 9%—three times enhanced compared to previous work. The dual-beam PDMR scheme allows independent control of the photoionization rate and spin magnetic resonance contrast. Under a similar excitation, we obtain a significantly higher photocurrent, and thus an improved signal-to-noise ratio, compared to single-beam PDMR. Finally, this scheme is predicted to enhance magnetic resonance contrast in the case of samples with a high proportion of substitutional nitrogen defects, and could therefore enable the photoelectric readout of single NV spins.
Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy
NASA Astrophysics Data System (ADS)
Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente
2017-02-01
We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.
Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy
Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente
2017-01-01
We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829
Riordan, Coleman P; Orbach, Darren B; Smith, Edward R; Scott, R Michael
2018-06-01
OBJECTIVE The most significant adverse outcome of intracranial hemorrhage from an arteriovenous malformation (AVM) is death. This study reviews a single-center experience with pediatric AVMs to quantify the incidence and characterize clinical and radiographic factors associated with sudden death from the hemorrhage of previously undiagnosed AVMs in children. METHODS A single-center database review of the period from 2006 to 2017 identified all patients with a first-time intracranial hemorrhage from a previously undiagnosed AVM. Clinical and radiographic data were collected and compared between patients who survived to hospital discharge and those who died at presentation. RESULTS A total of 57 patients (average age 10.8 years, range 0.1-19 years) presented with first-time intracranial hemorrhage from a previously undiagnosed AVM during the study period. Of this group, 7/57 (12%) patients (average age 11.5 years, range 6-16 years) suffered hemorrhages that led directly to their deaths. Compared to the cohort of patients who survived their hemorrhage, patients who died were 4 times more likely to have an AVM in the posterior fossa. No clear pattern of antecedent triggering activity (sports, trauma, etc.) was identified, and 3/7 (43%) experienced cardiac arrest in the prehospital setting. Surviving patients were ultimately treated with resection of the AVM in 42/50 (84%) of cases. CONCLUSIONS Children who present with hemorrhage from a previously undiagnosed intracranial AVM had a 12% chance of sudden death in our single-institution series of pediatric cerebrovascular cases. Clinical triggers of hemorrhage are unpredictable, but subsequent radiographic evidence of a posterior fossa AVM was present in 57% of fatal cases, and all fatal cases were in locations with high risk of potential herniation. These data support a proactive, aggressive approach toward definitive treatment of AVMs in children.
A nanodiamond-tapered fiber system with high single-mode coupling efficiency.
Schröder, Tim; Fujiwara, Masazumi; Noda, Tetsuya; Zhao, Hong-Quan; Benson, Oliver; Takeuchi, Shigeki
2012-05-07
We present a fiber-coupled diamond-based single photon system. Single nanodiamonds containing nitrogen vacancy defect centers are deposited on a tapered fiber of 273 nanometer in diameter providing a record-high number of 689,000 single photons per second from a defect center in a single-mode fiber. The system can be cooled to cryogenic temperatures and coupled evanescently to other nanophotonic structures, such as microresonators. The system is suitable for integrated quantum transmission experiments, two-photon interference, quantum-random-number generation and nano-magnetometry.
Perceptual-center modeling is affected by including acoustic rate-of-change modulations.
Harsin, C A
1997-02-01
This study investigated the acoustic correlates of perceptual centers (p-centers) in CV and VC syllables and developed an acoustic p-center model. In Part 1, listeners located syllables' p-centers by a method-of-adjustment procedure. The CV syllables contained the consonants /s/,/r/,/n/,/t/,/d/,/k/, and /g/; the VCs, the consonants /s/,/r/, and /n/. The vowel in all syllables was /a/. The results of this experiment replicated and extended previous findings regarding the effects of phonetic variation on p-centers. In Part 2, a digital signal processing procedure was used to acoustically model p-center perception. Each stimulus was passed through a six-band digital filter, and the outputs were processed to derive low-frequency modulation components. These components were weighted according to a perceived modulation magnitude function and recombined to create six psychoacoustic envelopes containing modulation energies from 3 to 47 Hz. In this analysis, p-centers were found to be highly correlated with the time-weighted function of the rate-of-change in the psychoacoustic envelopes, multiplied by the psychoacoustic envelope magnitude increment. The results were interpreted as suggesting (1) the probable role of low-frequency energy modulations in p-center perception, and (2) the presence of perceptual processes that integrate multiple articulatory events into a single syllabic event.
Bright nanowire single photon source based on SiV centers in diamond
Marseglia, L.; Saha, K.; Ajoy, A.; ...
2018-01-01
The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less
Plasmonic enhancement of a silicon-vacancy center in a nanodiamond crystal
NASA Astrophysics Data System (ADS)
Meng, Xiang; Liu, Shang; Dadap, Jerry I.; Osgood, Richard M.
2017-06-01
This work reports a rigorous and comprehensive three-dimensional electromagnetic computation to investigate and design photoluminescence enhancement from a single silicon-vacancy center (SVC) in a nanodiamond crystal embedded in various metallic nanoantennae, each having a different geometry. The study demonstrates how each antenna design enhances the photoluminescence of SVCs in diamond. In particular, our report discusses how the 2D or 3D curvature of the nanoantenna and the control of the local environment of the SVC can lead to significant field enhancement of its optical field. Our calculated optimal photoluminescence for each design enhances the emission intensity by 15 -300 × that of a single SVC without antenna. The enhancement mechanisms are investigated using four representative structures that can be fabricated under feasible and realistic growth conditions, i.e., spherical-, nanorod-, nanodisk-dimer, and bow-tie nanoantennae. These results demonstrate a method for rationally designing arbitrary metallic nanoantenna/emitter assemblies to achieve optimal SVC photoluminescence.
EGR distribution and fluctuation probe based on CO.sub.2 measurements
Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung
2015-04-07
A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.
Postdoctoral Fellows | Center for Cancer Research
The Oncogenomics section of the Genetics Branch is a multidisciplinary and interdisciplinary translational research programmatic effort with the goal of utilizing genomics to develop novel immunotherapies for cancer. Our group is applying high throughput applied genomics methods including single cell RNAseq, single cell TCR sequencing, DNA sequencing, CRISPR/Cas9, bioinformatics combined with T cell based therapeutics to identify and develop novel immunotherapeutics for human cancer. We work with other investigators within the intramural program as well as industrial and pharmaceutical partners to rapidly translate our findings to the clinic. The program takes advantage of the uniqueness of the National Cancer Institute, (NCI), Center for Cancer Research (CCR) intramural program in that it spans high-risk basic discovery research in immunology, genomics and tumor biology, through preclinical translational research, to paradigm-shifting clinical trials. The position is available immediately. The appointment duration is up to 5 years. Stipends are commensurate with education and experience. Additional information can be found on Dr. Khan’s profile page: https://ccr.cancer.gov/Genetics-Branch/javed-khan
Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect
NASA Astrophysics Data System (ADS)
Li, Chang-Hao; Li, Peng-Bo
2018-05-01
We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.
Jain, Aditi; Asrani, Hemant; Singhal, Abhinav Chand; Bhatia, Taranjeet Kaur; Sharma, Vaibhav; Jaiswal, Pragya
2016-01-01
Aims: To compare the canal transportation, centering ability, and remaining dentin thickness of WaveOne and ProTaper systems using cone beam computed tomography. Subjects and Methods: Forty extracted human single-rooted premolars were used in the present study. Preinstrumentation scanning of all teeth was taken; canal curvatures were calculated, and the samples were randomly divided into two groups, with twenty samples in each group; one group was instrumented with WaveOne system and the other group with ProTaper rotary system. Postinstrumentation scans were performed, and the two scans were compared to determine canal transportation, centering ability, and remaining dentin thickness at 3 mm, 6 mm, and 9 mm from the root apex. Statistical Analysis Used: Student's unpaired t-test. Results: Using Student's unpaired t-test, results were as follows: for canal transportation, Group 1 showed significant difference at 3 mm and 6 mm and insignificant difference at 9 mm while Group 2 showed insignificant difference in all the three regions. For centering ability and remaining dentin thickness, Group 1 showed insignificant difference at 3 mm and 9 mm while significant difference at 6 mm was obtained. When comparison of remaining dentin thickness was done at three levels using two groups WaveOne and ProTaper, there was no significant difference between two groups. Conclusions: (1) WaveOne single reciprocation file system respected better canal anatomy better than ProTaper. (2) Individually, centering ability of WaveOne was better at 3 mm, 6 mm, and 9 mm levels. (3) However, ProTaper individually was better centered at 3 mm (apical third) and 9 mm (coronal 3rd) levels than 6 mm level (middle third). PMID:27656063
Planning Paths Through Singularities in the Center of Mass Space
NASA Technical Reports Server (NTRS)
Doggett, William R.; Messner, William C.; Juang, Jer-Nan
1998-01-01
The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.
NASA Astrophysics Data System (ADS)
Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun
2018-02-01
A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.
Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2016-01-01
An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.
Laser removal of graffiti from Pink Morelia Quarry
NASA Astrophysics Data System (ADS)
Penide, J.; Quintero, F.; Riveiro, A.; Sánchez-Castillo, A.; Comesaña, R.; del Val, J.; Lusquiños, F.; Pou, J.
2013-11-01
Morelia is an important city sited in Mexico. Its historical center reflects most of their culture and history, especially of the colonial period; in fact, it was appointed World Heritage Site by UNESCO. Sadly, there is a serious problem with graffiti in Morelia and its historical center is the worst affected since its delicate charming is definitely damaged. Hitherto, the conventional methods employed to remove graffiti from Pink Morelia Quarry (the most used building stone in Morelia) are quite aggressive to the appearance of the monuments, so actually, they are not a very good solution. In this work, we performed a study on the removal of graffiti from Pink Morelia Quarry by high power diode laser. We carried out an extensive experimental study looking for the optimal processing parameters, and compared a single-pass with a multi-pass method. Indeed, we achieved an effective cleaning without producing serious side effects in the stone. In conclusion, the multi-pass method emitting in continuous wave was revealed as the more effective operating modes to remove the graffiti.
Calibration for single multi-mode fiber digital scanning microscopy imaging system
NASA Astrophysics Data System (ADS)
Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong
2015-11-01
Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.
NASA Astrophysics Data System (ADS)
Agustina, L. D.; Subekti, S.; Kismiyati
2018-04-01
Cantang groupers (Epinephelus fuscoguttatus-lanceolatus) is a hybridized grouper fish of Brackishculture Center, Situbondo. In Indonesia, currently information about the parasite infection in cantang groupers is still few. This study aims to determine the prevalence and intensity of endoparasite worms that infect the gastrointestinal of cantang groupers (E. fuscoguttatus-lanceolatus) on the floating net cages at Lamong Bay, Surabaya. The method used in this study is survey method and analyzed descriptively. The endoparasite worms found in the gastrointestinal of cantang groupers were Anisakis physeteris and Neoechinorhynchus longnucleanus. The highest prevalence is single infection of Neoechinorhynchus longnucleanus was 3 % (occasionally) with intensity of 1 individual/fish and the lowest prevalence was single infection of Anisakis physeteris is 1 % (occasionally) with intensity of 1 individual/fish.
NASA Astrophysics Data System (ADS)
Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William
2017-11-01
The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.
Tylus, Urszula; Jia, Qingying; Strickland, Kara; Ramaswamy, Nagappan; Serov, Alexey; Atanassov, Plamen; Mukerjee, Sanjeev
2014-05-01
Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe-N x sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e - × 2e - mechanism in alkaline media on the primary Fe 2+ -N 4 centers and the dual-site 2e - × 2e - mechanism in acid media with the significant role of the surface bound coexisting Fe/Fe x O y nanoparticles (NPs) as the secondary active sites.
2015-01-01
Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe–Nx sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e– × 2e– mechanism in alkaline media on the primary Fe2+–N4 centers and the dual-site 2e– × 2e– mechanism in acid media with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs) as the secondary active sites. PMID:24817921
FBP and BPF reconstruction methods for circular X-ray tomography with off-center detector.
Schäfer, Dirk; Grass, Michael; van de Haar, Peter
2011-07-01
Circular scanning with an off-center planar detector is an acquisition scheme that allows to save detector area while keeping a large field of view (FOV). Several filtered back-projection (FBP) algorithms have been proposed earlier. The purpose of this work is to present two newly developed back-projection filtration (BPF) variants and evaluate the image quality of these methods compared to the existing state-of-the-art FBP methods. The first new BPF algorithm applies redundancy weighting of overlapping opposite projections before differentiation in a single projection. The second one uses the Katsevich-type differentiation involving two neighboring projections followed by redundancy weighting and back-projection. An averaging scheme is presented to mitigate streak artifacts inherent to circular BPF algorithms along the Hilbert filter lines in the off-center transaxial slices of the reconstructions. The image quality is assessed visually on reconstructed slices of simulated and clinical data. Quantitative evaluation studies are performed with the Forbild head phantom by calculating root-mean-squared-deviations (RMSDs) to the voxelized phantom for different detector overlap settings and by investigating the noise resolution trade-off with a wire phantom in the full detector and off-center scenario. The noise-resolution behavior of all off-center reconstruction methods corresponds to their full detector performance with the best resolution for the FDK based methods with the given imaging geometry. With respect to RMSD and visual inspection, the proposed BPF with Katsevich-type differentiation outperforms all other methods for the smallest chosen detector overlap of about 15 mm. The best FBP method is the algorithm that is also based on the Katsevich-type differentiation and subsequent redundancy weighting. For wider overlap of about 40-50 mm, these two algorithms produce similar results outperforming the other three methods. The clinical case with a detector overlap of about 17 mm confirms these results. The BPF-type reconstructions with Katsevich differentiation are widely independent of the size of the detector overlap and give the best results with respect to RMSD and visual inspection for minimal detector overlap. The increased homogeneity will improve correct assessment of lesions in the entire field of view.
NASA Astrophysics Data System (ADS)
Pham, T. D.
2016-12-01
Recurrence plots display binary texture of time series from dynamical systems with single dots and line structures. Using fuzzy recurrence plots, recurrences of the phase-space states can be visualized as grayscale texture, which is more informative for pattern analysis. The proposed method replaces the crucial similarity threshold required by symmetrical recurrence plots with the number of cluster centers, where the estimate of the latter parameter is less critical than the estimate of the former.
NASA Astrophysics Data System (ADS)
Miyaguchi, Tomoshige
2017-10-01
There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.
Identification of novel tumor antigens with patient-derived immune-selected antibodies
Rodriguez-Pinto, Daniel; Sparkowski, Jason; Keough, Martin P.; Phoenix, Kathryn N.; Vumbaca, Frank; Han, David K.; Gundelfinger, Eckart D.; Beesley, Philip
2010-01-01
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions. PMID:18568347
Distributed antenna system and method
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor)
2004-01-01
System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.
Pulse-echo ultrasonic imaging method for eliminating sample thickness variation effects
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1995-01-01
A pulse-echo, immersion method for ultrasonic evaluation of a material is discussed. It accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer, automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjusments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Fujimoto, Yutaka; Yamaji, Akihiro; Kurosawa, Shunsuke; Pejchal, Jan; Sugiyama, Makoto; Wakahara, Shingo; Futami, Yoshisuke; Yokota, Yuui; Kamada, Kei; Yubuta, Kunio; Shishido, Toetsu; Nikl, Martin
2013-09-01
Multicomponent garnet Ce:Gd3(Ga,Al)5O12 (Ce:GAGG) single crystals show very high light yield with reasonably fast scintillation response. Therefore, they can be promising scintillators for gamma-ray detection. However, in the decay curve a very slow component does exist. Therefore, it is necessary to optimize further the crystal growth technology of Ce:GAGG. In this study, Ce:GAGG single crystals were grown by the floating zone (FZ) method under atmospheres of various compositions such as Ar 100%, Ar 80% + O2 20%, Ar 60% + O2 40% and O2 100%. Radioluminescence spectra are dominated by the band at about 540 nm due to Ce3+ 5d1-4f transition. The Ce:GAGG single crystal grown under Ar atmosphere shows an intense slower decay component. It can be related to the processes of the delayed radiative recombination and thermally induced ionization of 5d1 level of Ce3+ center possibly further affected by oxygen vacancies. This slower decay process is significantly suppressed in the samples grown under the O2 containing atmosphere.
Decision Support Methods and Tools
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Alexandrov, Natalia M.; Brown, Sherilyn A.; Cerro, Jeffrey A.; Gumbert, Clyde r.; Sorokach, Michael R.; Burg, Cecile M.
2006-01-01
This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discussed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasel, Stella, E-mail: Stella.Blasel@kgu.de; Hattingen, Elke; Berkefeld, Joachim
2009-07-15
The detection of clinically silent ischemic lesions on postprocedural diffusion-weighted magnetic resonance images has become a preferred method for the description of embolic risks. The purpose of this single-center study was to evaluate whether diffusion-weighted imaging (DWI) could determine material related or technical risk factors of filter-protected carotid stenting. Eighty-four patients with symptomatic severe ({>=}60%) carotid artery stenoses received filter-protected carotid stenting. Standard DWI (b = 1000) was performed within 48 h before and after carotid stenting. The occurrence and load of new postinterventional DWI lesions were assessed. Multivariate analysis was performed to determine risk factors associated with DWI lesions,more » with emphasis on technical factors such as use of different access devices (guiding catheter method vs. long carotid sheath method), type of stent (open-cell nitinol stent vs. closed-cell Wallstent), and protective device (filters with 80-{mu}m vs. 110-120-{mu}m pore size). Markers for generalized atherosclerosis and for degree and site of stenosis were assessed to allow comparison of adequate risk profiles. Access, protective device, and stent type were not significantly associated with new embolic DWI lesions when we compared patients with equivalent risk profiles (long carotid sheath method 48% [11 of 23] vs. guiding catheter method 44% [27 of 61], Wallstent 47% [15 of 32] vs. nitinol stent 44% [23 of 52], and small pore size filter 61% [11 of 18] vs. large pore size filter 41% [27 of 66]). Single-center DWI studies with a moderate number of cases are inadequate for proper assessment of the embolic risk of technical- or material-related risk factors in carotid stenting. Larger multicenter studies with more cases are needed.« less
The effect of cane use on the compensatory step following posterior perturbations.
Hall, Courtney D; Jensen, Jody L
2004-08-01
The compensatory step is a critical component of the balance response and is impaired in older fallers. The purpose of this research was to examine whether utilization of a cane modified the compensatory step response following external posterior perturbations. Single subject withdrawal design was employed. Single subject statistical analysis--the standard deviation bandwidth-method--supplemented visual analysis of the data. Four older adults (range: 73-83 years) with balance impairment who habitually use a cane completed this study. Subjects received a series of sudden backward pulls that were large enough to elicit compensatory stepping. We examined the following variables both with and without cane use: timing of cane loading relative to step initiation and center of mass acceleration, stability margin, center of mass excursion and velocity, step length and width. No participant loaded the cane prior to initiation of the first compensatory step. There was no effect of cane use on the stability margin, nor was there an effect of cane use on center of mass excursion or velocity, or step length or width. These data suggest that cane use does not necessarily improve balance recovery following an external posterior perturbation when the individual is forced to rely on compensatory stepping. Instead these data suggest that the strongest factor in modifying step characteristics is experience with the perturbation.
Ito, Hiroaki; Inoue, Haruhiro; Odaka, Noriko; Satodate, Hitoshi; Suzuki, Michitaka; Mukai, Shumpei; Takehara, Yusuke; Omoto, Tomokatsu; Kudo, Shin-ei
2013-01-01
Background. This study addresses clinicopathological differences between patients with gastric cardia and subcardial cancer with and without esophagogastric junctional invasion. Methods. We performed a single-center, retrospective cohort study. We studied patients who underwent curative surgery for gastric cardia and subcardial cancers. Tumors centered in the proximal 5 cm of the stomach were classed into two types, according to whether they did (Ge) or did not (G) invade the esophagogastric junction. Results. A total of 80 patients were studied; 19 (73.1%) of 26 Ge tumors and 16 (29.6%) of 54 G tumors had lymph nodes metastases. Incidence of nodal metastasis in pT1 tumors was significantly higher in the Ge tumor group. No nodal metastasis in cervical lymph nodes was recognized. Only two patients with Ge tumors had mediastinal lymph node metastases. Incidence of perigastric lymph node metastasis was significantly higher in those with Ge tumors. Ge tumors tended to be staged as progressive disease using the esophageal cancer staging manual rather than the gastric cancer staging manual. Conclusion. Because there are some differences in clinicopathological characteristics, it is thought to be adequate to distinguish type Ge from type G tumor. PMID:23365732
Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals
NASA Astrophysics Data System (ADS)
Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.
2017-07-01
Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.
Highly accurate surface maps from profilometer measurements
NASA Astrophysics Data System (ADS)
Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.
2013-04-01
Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The quality of fundamental vibrational frequencies determined using the CCSD(T) method (singles and doubles coupled-cluster theory plus a perturbational estimate of the effects of connected triple excitations) is shown to be very good, usually predicting band centers to within plus or minus 8 per centimeter. This approach is applied to several molecules of interest in atmospheric chemistry, such as HNO, cis-FONO, cis-ClONO, and ClOOH. The HNO molecule displays a large and unusual anharmonicity in the H-N stretch. For the calculation of ultraviolet (UV) spectra, the linear response CCSD (LRCCSD) approach (which is equivalent to EOM-CCSD) has been shown to yield vertical excitation energies that are accurate to approximately equal to 0.1 eV for singly excited electronic states. This method together with more approximate methods is used to examine the UV spectra of several molecules important in stratospheric chemistry, including HOCl, Cl2O, ClONO2, HONO2, ClOOCl, ClOOH, and HOOH.
The advantages and disadvantages of centralized control of air power at operational level
NASA Astrophysics Data System (ADS)
Arisoy, Uǧur
2014-05-01
People do not want to see and hear a war. In today's world, if war is inevitable, the use of air power is seen as the preferable means of conducting operations instead of financially burdensome land battles which are more likely to cause heavy loss of life. The use of Air Power has gained importance in NATO operations in the Post-Cold War era. For example, air power has undertaken a decisive role from the beginning to the end of the operation in Libya. From this point of view, the most important issue to consider is how to direct air power more effectively at operational level. NATO's Core JFAC (Joint Force Air Command) was established in 2012 to control joint air power at operational level from a single center. US had experienced JFAC aproach in the Operation Desert Storm in 1991. UK, France, Germany, Italy and Spain are also directing their air power from their JFAC structures. Joint air power can be directed from a single center at operational level by means of JFAC. JFAC aproach provides complex planning progress of Air Power to be controled faster in a single center. An Air Power with a large number of aircrafts, long range missiles of cutting-edge technology may have difficulties in achieving results unless directed effectively. In this article, directing air power more effectively at operational level has been studied in the framework of directing air power from a single center carried out by SWOT analysis technique. "Directing Air Power at operational level from a single center similar to JFAC-like structure" is compared with "Directing Air Power at operational level from two centers similar to AC (Air Command) + CAOC (Combined Air Operations Center) structure" As a result of this study, it is assessed that directing air power at operational level from a single center would bring effectiveness to the air campaign. The study examines directing air power at operational level. Developments at political, strategic and tactical levels have been ignored.
Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD
NASA Astrophysics Data System (ADS)
Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu
2017-12-01
Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.
Photo-conductance of a single Quantum Dot
NASA Astrophysics Data System (ADS)
Zimmers, Alexandre; Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Dubertret, Benoit; Aubin, Herve; Ulysse, Christian; LPEM Collaboration
One promising strategy for the development of nanoscale resonant spin sensors is to measure the spin-dependent photo-current in Quantum Dots (QDots) containing spin-dependent recombination centers. To reach single spin sensitivity will require measurements of the photo-conductance of single QDots. We present here an experimental study of the conductance and photo-conductance of single HgSe QDots as function of drain and gate voltage. The evolution of the differential conductance dI/dV spectrum with the gate voltage demonstrates that single HgSe QDots are forming the junction. The amplitude of the gap measured in the differential conductance spectrum changes with the occupation level. A large inter-band gap, 0,85eV, is observed for the empty QDot, a smaller intra-band gap 0,25eV is observed for the doubly occupied QDot. These gap energies are consistent with the values extracted from the optical absorption spectrum. Upon illuminating the QDot junction, we show that the photo-conductive signal produced by this single QDot can be measured with a simple demodulation method. ANR Grant ''QUANTICON'' 10-0409-01 / DIM Nano-K / Chinese Scholarship Council.
Economic Burden of Road Traffic Accidents; Report from a Single Center from South Eastern Iran
Sargazi, Aliyeh; Sargazi, Atefeh; Nadakkavukaran Jim, Prigil Kumar; Danesh, HoseinAli; Aval, ForoughSargolzaee; Kiani, Zohre; Lashkarinia, AmirHosein; Sepehri, Zahra
2016-01-01
Objective: To determine the economic burden of road traffic accidents (RTAs) in patients admitted to a single center in south eastern Iran. Methods: This cross-sectional study was conducted in Amir-Al-Momenin hospital of Zabol affiliated with Zabol University of Medical Sciences during a 12-month period from April 2012 to April 2013. All the RTAs patients who were admitted to our emergency department were included. The direct expenses of hospital care were recorded according to their medical charts and the accountant registration information. Data are presented according to different RTAs characteristics. Results: Overall 1155 patients were included in the current study with mean age of 36.7 ± 5.14 years among whom there were 673(58.3%) men and 482 (41.7%) women. The annual incidence of RTAs were calculated to be 288 per 100,000 population. The RTAs economic burden in our center was 589,448.49 USD which accounted for 10.4% of total hospital expenses during the study period. The money spend on RTAs in our center was 130 times more than gross national income per capita. Cost of each patient in road traffic was 15 times more than cost of an average patient of the hospital in other sections. Conclusion: With considerable high ratio of accidents in Zabol, proper intervention is needed for controlling and preventing RTAs in order to decrease its injuries, impact and the associated economic burden. PMID:27162926
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz
2017-06-01
Bis(cyclopentadienyl)zirconium dichloride (BCZD; zirconocene dichloride) single crystals were exposed to 60Co-γ irradiation at room temperature. The irradiated single crystals were investigated between 125 and 470 K by electron paramagnetic resonance spectroscopy. The spectra of the crystals were found to be temperature independent. The paramagnetic center was attributed to the cyclopentadienyl radical. The g values of the radiation damage center observed in BCZD single crystal and the hyperfine structure constants of the free electron with nearby protons were obtained.
Validation of Caregiver-Centered Delirium Detection Tools: A Systematic Review.
Rosgen, Brianna; Krewulak, Karla; Demiantschuk, Danielle; Ely, E Wesley; Davidson, Judy E; Stelfox, Henry T; Fiest, Kirsten M
2018-04-18
To summarize the validity of caregiver-centered delirium detection tools in hospitalized adults and assess associated patient and caregiver outcomes. Systematic review. We searched MEDLINE, EMBASE, PsycINFO, CINAHL, and Scopus from inception to May 15, 2017. Hospitalized adults. Caregiver-centered delirium detection tools. We drafted a protocol from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two reviewers independently completed abstract and full-text review, data extraction, and quality assessment. We summarized findings using descriptive statistics including mean, median, standard deviation, range, frequencies (percentages), and Cohen's kappa. Studies that reported on the validity of caregiver-centered delirium detection tools or associated patient and caregiver outcomes and were cohort or cross-sectional in design were included. We reviewed 6,056 titles and abstracts, included 6 articles, and identified 6 caregiver-centered tools. All tools were designed to be administered in several minutes or less and had 11 items or fewer. Three tools were caregiver administered (completed independently by caregivers): Family Confusion Assessment Method (FAM-CAM), Informant Assessment of Geriatric Delirium (I-AGeD), and Sour Seven. Three tools were caregiver informed (administered by a healthcare professional using caregiver input): Single Question in Delirium (SQiD), Single Screening Question Delirium (SSQ-Delirium), and Stressful Caregiving Response to Experiences of Dying. Caregiver-administered tools had better psychometric properties (FAM-CAM sensitivity 75%, 95% confidence interval (CI)=35-95%, specificity 91%, 95% CI=74-97%; Sour Seven positive predictive value 89.5%, negative predictive value 90%) than caregiver-informed tools (SQiD: sensitivity 80%, 95% CI=28.4-99.5%; specificity 71%, 95% CI=41.9-91.6%; SSQ-Delirium sensitivity 79.6%, specificity 56.1%). Delirium detection is essential for appropriate delirium management. Caregiver-centered delirium detection tools show promise in improving delirium detection and associated patient and caregiver outcomes. Comparative studies using larger sample sizes and multiple centers are required to determine validity and reliability characteristics. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai; ...
2017-10-23
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jeong-Ho; Kang, Jihoon; Yeo, Min-Ju
PurposeCarotid endarterectomy and stenting are used to treat carotid stenosis, with the volume of carotid artery procedures increasing over the past decade. We investigated the 10-year trend of periprocedural complications with an increasing procedure volume of carotid stenting at a single tertiary hospital.MethodsWe collected 416 consecutive cases (384 patients) of carotid artery stenting performed for either symptomatic (231 cases, 55.5 %) or asymptomatic (185 cases, 44.5 %) internal carotid artery stenosis at a single center. Periprocedural complication was defined as any stroke, myocardial infarction, or death. Procedure-related outcome included any dissection, hemodynamic event, or periprocedural complication.ResultsThe mean age was 68.8 years (82.8 % males;more » range of 20–89 years); 23.9 % were older than 75 years. Before the procedure, 99.3 and 56.0 % of patients received antiplatelet and lipid-lowering medication, respectively. The overall periprocedural complication rate was 3.6 % (1.6 and 5.2 % in the asymptomatic and symptomatic group, respectively). The composite outcome of any stroke or death was 3.4 %. Periprocedural complication and procedure-related outcome showed a decremental trend with increasing procedure volume, and this trend remained after adjusting for confounders.ConclusionsOur study suggests that carotid stenting at an experienced center might reduce the periprocedural complications. Our periprocedural complication rate of carotid artery stenting may be comparable to, or somewhat lower than, that reported in other clinical trials.« less
Water Immersion Affects Episodic Memory and Postural Control in Healthy Older Adults.
Bressel, Eadric; Louder, Talin J; Raikes, Adam C; Alphonsa, Sushma; Kyvelidou, Anastasia
2018-05-04
Previous research has reported that younger adults make fewer cognitive errors on an auditory vigilance task while in chest-deep water compared with on land. The purpose of this study was to extend this previous work to include older adults and to examine the effect of environment (water vs land) on linear and nonlinear measures of postural control under single- and dual-task conditions. Twenty-one older adult participants (age = 71.6 ± 8.34 years) performed a cognitive (auditory vigilance) and motor (standing balance) task separately and simultaneously on land and in chest-deep water. Listening errors (n = count) from the auditory vigilance test and sample entropy (SampEn), center of pressure area, and velocity for the balance test served as dependent measures. Environment (land vs water) and task (single vs dual) comparisons were made with a Wilcoxon matched-pair test. Listening errors were 111% greater during land than during water environments (single-task = 4.0 ± 3.5 vs 1.9 ± 1.7; P = .03). Conversely, SampEn values were 100% greater during water than during land environments (single-task = 0.04 ± 0.01 vs 0.02 ± 0.01; P < .001). Center of pressure area and velocity followed a similar trend to SampEn with respect to environment differences, and none of the measures were different between single- and dual-task conditions (P > .05). The findings of this study expand current support for the potential use of partial aquatic immersion as a viable method for challenging both cognitive and motor abilities in older adults.
ADHD Symptom Reduction in Elementary Students: A Single-Case Effectiveness Design
ERIC Educational Resources Information Center
Schottelkorb, April A.; Ray, Dee C.
2009-01-01
The authors used a single-case design to examine the effectiveness of child-centered play therapy (CCPT) and person-centered teacher consultation (PCTC) for four elementary students identified with attention deficit hyperactivity disorder (ADHD) symptoms. Two students participated in CCPT and their teachers participated in PCTC. Two students…
Stationary swarming motion of active Brownian particles in parabolic external potential
NASA Astrophysics Data System (ADS)
Zhu, Wei Qiu; Deng, Mao Lin
2005-08-01
We investigate the stationary swarming motion of active Brownian particles in parabolic external potential and coupled to its mass center. Using Monte Carlo simulation we first show that the mass center approaches to rest after a sufficient long period of time. Thus, all the particles of a swarm have identical stationary motion relative to the mass center. Then the stationary probability density obtained by using the stochastic averaging method for quasi integrable Hamiltonian systems in our previous paper for the motion in 4-dimensional phase space of single active Brownian particle with Rayleigh friction model in parabolic potential is used to describe the relative stationary motion of each particle of the swarm and to obtain more probability densities including that for the total energy of the swarm. The analytical results are confirmed by comparing with those from simulation and also shown to be consistent with the existing deterministic exact steady-state solution.
Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth
Tzeng, Yan-Kai; Zhang, Jingyuan Linda; Lu, Haiyu; ...
2017-02-09
Color center-containing nanodiamonds have many applications in quantum technologies and biology. Diamondoids, molecular-sized diamonds have been used as seeds in chemical vapor deposition (CVD) growth. However, optimizing growth conditions to produce high crystal quality nanodiamonds with color centers requires varying growth conditions that often leads to ad-hoc and time-consuming, one-at-a-time testing of reaction conditions. In order to rapidly explore parameter space, we developed a microwave plasma CVD technique using a vertical, rather than horizontally oriented stage-substrate geometry. With this configuration, temperature, plasma density, and atomic hydrogen density vary continuously along the vertical axis of the substrate. Finally, this variation allowedmore » rapid identification of growth parameters that yield single crystal diamonds down to 10 nm in size and 75 nm diameter optically active center silicon-vacancy (Si-V) nanoparticles. Furthermore, this method may provide a means of incorporating a wide variety of dopants in nanodiamonds without ion irradiation damage.« less
Strategic planning as a tool for achieving alignment in academic health centers.
Higginbotham, Eve J; Church, Kathryn C
2012-01-01
After the passage of the Patient Protection and Affordable Care Act in March 2010, there is an urgent need for medical schools, teaching hospitals, and practice plans to work together seamlessly across a common mission. Although there is agreement that there should be greater coordination of initiatives and resources, there is little guidance in the literature to address the method to achieve the necessary transformation. Traditional approaches to strategic planning often engage a few leaders and produce a set of immeasurable initiatives. A nontraditional approach, consisting of a Whole-Scale (Dannemiller Tyson Associates, Ann Arbor, MI) engagement, appreciative inquiry, and a balanced scorecard can, more rapidly transform an academic health center. Using this nontraditional approach to strategic planning, increased organizational awareness was achieved in a single academic health center. Strategic planning can be an effective tool to achieve alignment, enhance accountability, and a first step in meeting the demands of the new landscape of healthcare.
Jeong, Jong Seob; Shung, K. Kirk
2013-01-01
We present an improved fabrication technique for the focused single element poly (vinylidene fluoride–trifluoroethylene) P(VDF–TrFE) transducer. In this work, a conductive epoxy for a backing layer was directly bonded to the 25 μm thick P(VDF–TrFE) film and thus made it easy to conform the aperture of the P(VDF–TrFE) transducer. Two prototype focused P(VDF–TrFE) transducers with disk- and ring-type aperture were fabricated and their performance was evaluated using the UBM (Ultrasound Biomicroscopy) system with a wire phantom. All transducers had a spherically focused aperture with a low f-number (focal depth/aperture size = 1). The center frequency of the disk-type P(VDF–TrFE) transducer was 23 MHz and −6 dB bandwidth was 102%. The ring-type P(VDF–TrFE) transducer had 20 MHz center frequency and −6 dB bandwidth of 103%. The measured pulse echo signal had reduced reverberation due to no additional adhesive layer between the P(VDF–TrFE) film and the backing layer. Hence, the proposed method is promising to fabricate a single element transducer using P(VDF–TrFE) film for high frequency applications. PMID:23021238
[Imaging center - optimization of the imaging process].
Busch, H-P
2013-04-01
Hospitals around the world are under increasing pressure to optimize the economic efficiency of treatment processes. Imaging is responsible for a great part of the success but also of the costs of treatment. In routine work an excessive supply of imaging methods leads to an "as well as" strategy up to the limit of the capacity without critical reflection. Exams that have no predictable influence on the clinical outcome are an unjustified burden for the patient. They are useless and threaten the financial situation and existence of the hospital. In recent years the focus of process optimization was exclusively on the quality and efficiency of performed single examinations. In the future critical discussion of the effectiveness of single exams in relation to the clinical outcome will be more important. Unnecessary exams can be avoided, only if in addition to the optimization of single exams (efficiency) there is an optimization strategy for the total imaging process (efficiency and effectiveness). This requires a new definition of processes (Imaging Pathway), new structures for organization (Imaging Center) and a new kind of thinking on the part of the medical staff. Motivation has to be changed from gratification of performed exams to gratification of process quality (medical quality, service quality, economics), including the avoidance of additional (unnecessary) exams. © Georg Thieme Verlag KG Stuttgart · New York.
Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred
Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less
Tailoring particle translocation via dielectrophoresis in pore channels
Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji
2016-01-01
Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126
Task Allocation for Single Pilot Operations: A Role for the Ground
NASA Technical Reports Server (NTRS)
Johnson, Walter; Lachter, Joel; Feary, Mike; Comerford, Doreen; Battiste, Vernol; Mogford, Richard
2012-01-01
Researchers at NASA Ames Research Center and NASA Langley Research Center are jointly investigating issues associated with potential configurations for an environment in which a single pilot, or reduced crew, might operate. The research summarized in this document represents several of the efforts being put forth at NASA Ames Research Center. Specifically, researchers at NASA Ames Research Center coordinated and hosted a technical interchange meeting in order to gain insight from members of the aviation community. A description of this meeting and the findings are presented first. Thereafter, plans for ensuing research are presented.
NASA Technical Reports Server (NTRS)
Goldstein, David B.; Varghese, Philip L.
1997-01-01
We proposed to create a single computational code incorporating methods that can model both rarefied and continuum flow to enable the efficient simulation of flow about space craft and high altitude hypersonic aerospace vehicles. The code was to use a single grid structure that permits a smooth transition between the continuum and rarefied portions of the flow. Developing an appropriate computational boundary between the two regions represented a major challenge. The primary approach chosen involves coupling a four-speed Lattice Boltzmann model for the continuum flow with the DSMC method in the rarefied regime. We also explored the possibility of using a standard finite difference Navier Stokes solver for the continuum flow. With the resulting code we will ultimately investigate three-dimensional plume impingement effects, a subject of critical importance to NASA and related to the work of Drs. Forrest Lumpkin, Steve Fitzgerald and Jay Le Beau at Johnson Space Center. Below is a brief background on the project and a summary of the results as of the end of the grant.
Developing and executing quality improvement projects (concept, methods, and evaluation).
Likosky, Donald S
2014-03-01
Continuous quality improvement, quality assurance, cycles of change--these words of often used to express the process of using data to inform and improve clinical care. Although many of us have been exposed to theories and practice of experimental work (e.g., randomized trial), few of us have been similarly exposed to the science underlying quality improvement. Through the lens of a single-center quality improvement study, this article exposes the reader to methodology for conducting such studies. The reader will gain an understanding of these methods required to embark on such a study.
NASA Astrophysics Data System (ADS)
Li, Qingyun; Karnowski, Karol; Villiger, Martin; Sampson, David D.
2017-04-01
A fibre-based full-range polarisation-sensitive optical coherence tomography system is developed to enable complete capture of the structural and birefringence properties of the anterior segment of the human eye in a single acquisition. The system uses a wavelength swept source centered at 1.3 μm, passively depth-encoded, orthogonal polarisation states in the illumination path and polarisation-diversity detection. Off-pivot galvanometer scanning is used to extend the imaging range and compensate for sensitivity drop-off. A Mueller matrix-based method is used to analyse data. We demonstrate the performance of the system and discuss issues relating to its optimisation.
Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
Huang, Yanhua; Zong, Wenjun
2014-01-01
In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.
Electro-optical detection of THz radiation in Fe implanted LiNbO3
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Ni, Hongwei; Zhan, Weiting; Yuan, Jie; Wang, Ruwu
2013-01-01
In this letter, the authors present first observation of terahertz generation from Fe implantation of LiNbO3 crystal substrate. LiNbO3 single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Fe ion implantation were implanted into LiNbO3 single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulsed centered at 800 nm were focused onto the samples. Terahertz was generated via optical rectification. The findings suggest that under the investigated implantation parameter, a spectral component in excess of 0.44 THz emission were found from Fe ion implantation of LiNbO3.
Resolving power of diffraction imaging with an objective: a numerical study.
Wang, Wenjin; Liu, Jing; Lu, Jun Qing; Ding, Junhua; Hu, Xin-Hua
2017-05-01
Diffraction imaging in the far-field can detect 3D morphological features of an object for its coherent nature. We describe methods for accurate calculation and analysis of diffraction images of scatterers of single and double spheres by an imaging unit based on microscope objective at non-conjugate positions. A quantitative study of the calculated diffraction imaging in spectral domain has been performed to assess the resolving power of diffraction imaging. It has been shown numerically that with coherent illumination of 532 nm in wavelength the imaging unit can resolve single spheres of 2 μm or larger in diameters and double spheres separated by less than 300 nm between their centers.
Shock-Induced phase transition of single crystal copper
NASA Astrophysics Data System (ADS)
Neogi, Anupam; Mitra, Nilanjan
2017-05-01
We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.
NASA Astrophysics Data System (ADS)
Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.
2018-05-01
Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.
Surface Structure Spread Single Crystals (S4C): Preparation and characterization
NASA Astrophysics Data System (ADS)
de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.
2013-02-01
A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S4Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S4Cs and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the S4Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ± 1° of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) ± 11°-S4C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S4Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S4Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.
DiCesare, Christopher A.; Bates, Nathaniel A.; Barber Foss, Kim D.; Thomas, Staci M.; Wordeman, Samuel C.; Sugimoto, Dai; Roewer, Benjamin D.; Medina McKeon, Jennifer M.; Di Stasi, Stephanie; Noehren, Brian W.; Ford, Kevin R.; Kiefer, Adam W.; Hewett, Timothy E.; Myer, Gregory D.
2015-01-01
Background: Anterior cruciate ligament (ACL) injuries are physically and financially devastating but affect a relatively small percentage of the population. Prospective identification of risk factors for ACL injury necessitates a large sample size; therefore, study of this injury would benefit from a multicenter approach. Purpose: To determine the reliability of kinematic and kinetic measures of a single-leg cross drop task across 3 institutions. Study Design: Controlled laboratory study. Methods: Twenty-five female high school volleyball players participated in this study. Three-dimensional motion data of each participant performing the single-leg cross drop were collected at 3 institutions over a period of 4 weeks. Coefficients of multiple correlation were calculated to assess the reliability of kinematic and kinetic measures during the landing phase of the movement. Results: Between-centers reliability for kinematic waveforms in the frontal and sagittal planes was good, but moderate in the transverse plane. Between-centers reliability for kinetic waveforms was good in the sagittal, frontal, and transverse planes. Conclusion: Based on these findings, the single-leg cross drop task has moderate to good reliability of kinematic and kinetic measures across institutions after implementation of a standardized testing protocol. Clinical Relevance: Multicenter collaborations can increase study numbers and generalize results, which is beneficial for studies of relatively rare phenomena, such as ACL injury. An important step is to determine the reliability of risk assessments across institutions before a multicenter collaboration can be initiated. PMID:26779550
FBP and BPF reconstruction methods for circular X-ray tomography with off-center detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Dirk; Grass, Michael; Haar, Peter van de
2011-05-15
Purpose: Circular scanning with an off-center planar detector is an acquisition scheme that allows to save detector area while keeping a large field of view (FOV). Several filtered back-projection (FBP) algorithms have been proposed earlier. The purpose of this work is to present two newly developed back-projection filtration (BPF) variants and evaluate the image quality of these methods compared to the existing state-of-the-art FBP methods. Methods: The first new BPF algorithm applies redundancy weighting of overlapping opposite projections before differentiation in a single projection. The second one uses the Katsevich-type differentiation involving two neighboring projections followed by redundancy weighting andmore » back-projection. An averaging scheme is presented to mitigate streak artifacts inherent to circular BPF algorithms along the Hilbert filter lines in the off-center transaxial slices of the reconstructions. The image quality is assessed visually on reconstructed slices of simulated and clinical data. Quantitative evaluation studies are performed with the Forbild head phantom by calculating root-mean-squared-deviations (RMSDs) to the voxelized phantom for different detector overlap settings and by investigating the noise resolution trade-off with a wire phantom in the full detector and off-center scenario. Results: The noise-resolution behavior of all off-center reconstruction methods corresponds to their full detector performance with the best resolution for the FDK based methods with the given imaging geometry. With respect to RMSD and visual inspection, the proposed BPF with Katsevich-type differentiation outperforms all other methods for the smallest chosen detector overlap of about 15 mm. The best FBP method is the algorithm that is also based on the Katsevich-type differentiation and subsequent redundancy weighting. For wider overlap of about 40-50 mm, these two algorithms produce similar results outperforming the other three methods. The clinical case with a detector overlap of about 17 mm confirms these results. Conclusions: The BPF-type reconstructions with Katsevich differentiation are widely independent of the size of the detector overlap and give the best results with respect to RMSD and visual inspection for minimal detector overlap. The increased homogeneity will improve correct assessment of lesions in the entire field of view.« less
1976-04-15
System, Dual-System, Single-Mode, and Dual-Mode configurations. Tests were conducted to determine the feasibility of incorporating modular hardware on a...and 11-1/2 feet OFF-CENTER with the BAK-12 configured in the Single and Dual Mode to determine the effect of engaging the aircraft arresting-hook...cable OFF-CENTER. 90,000- pound deadload arrestments were conducted ON-CENTER in the Dual Mode to determine system performance with high-energy
The Honolulu Liver Disease Cluster at the Medical Center: Its Mysteries and Challenges
Teschke, Rolf; Eickhoff, Axel
2016-01-01
In 2013, physicians at the Honolulu Queen’s Medical Center (QMC) noticed that seven liver disease patients reported the use of OxyELITE Pro (OEP), a widely consumed dietary supplement (DS). Assuming a temporal association between OEP use and disease, they argued that OEP was the cause of this mysterious cluster. Subsequent reexamination, however, has revealed that this QMC cohort is heterogeneous and not a cluster with a single agent causing a single disease. It is heterogeneous because patients used multiple DS’s and drugs and because patients appeared to have suffered from multiple liver diseases: liver cirrhosis, liver failure by acetaminophen, hepatotoxicity by non-steroidal antiinflammatory drugs (NSAIDs), resolving acute viral hepatitis by hepatitis B virus (HBV), herpes simplex virus (HSV), and varicella zoster virus (VZV), and suspected hepatitis E virus (HEV). Failing to exclude these confounders and to consider more viable diagnoses, the QMC physicians may have missed specific treatment options in some of their patients. The QMC physicians unjustifiably upgraded their Roussel Uclaf Causality Assessment Method (RUCAM) causality scores so that all patients would appear to be “probable” for OEP. However, subsequent RUCAM reassessments by our group demonstrated a lack of causality for OEP in the evaluated QMC cases. The QMC’s questionable approaches explain the extraordinary accumulation of suspected OEP cases at the QMC in Hawaii as single place, whereas similar cohorts were not published by any larger US liver center, substantiating that the problem is with the QMC. In this review article, we present and discuss new case data and critically evaluate upcoming developments of problematic regulatory assessments by the US Centers for Disease Control and Prevention (CDC), the Hawaii Department of Health (HDOH), and the Food and Drug Administration (FDA), as based on invalid QMC conclusions, clarifying now also basic facts and facilitating constructive discussions. PMID:27043544
NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings
NASA Technical Reports Server (NTRS)
Comerford, Doreen; Brandt, Summer L.; Lachter, Joel B.; Wu, Shu-Chieh; Mogford, Richard H.; Battiste, Vernol; Johnson, Walter W.
2013-01-01
Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO.
NASA Technical Reports Server (NTRS)
Roth, Don J.
1998-01-01
NASA Lewis Research Center's Life Prediction Branch, in partnership with Sonix, Inc., and Cleveland State University, recently advanced the development of, refined, and commercialized an advanced nondestructive evaluation (NDE) inspection method entitled the Single Transducer Thickness-Independent Ultrasonic Imaging Method. Selected by R&D Magazine as one of the 100 most technologically significant new products of 1996, the method uses a single transducer to eliminate the superimposing effects of thickness variation in the ultrasonic images of materials. As a result, any variation seen in the image is due solely to microstructural variation. This nondestructive method precisely and accurately characterizes material gradients (pore fraction, density, or chemical) that affect the uniformity of a material's physical performance (mechanical, thermal, or electrical). Advantages of the method over conventional ultrasonic imaging include (1) elimination of machining costs (for precision thickness control) during the quality control stages of material processing and development and (2) elimination of labor costs and subjectivity involved in further image processing and image interpretation. At NASA Lewis, the method has been used primarily for accurate inspections of high temperature structural materials including monolithic ceramics, metal matrix composites, and polymer matrix composites. Data were published this year for platelike samples, and current research is focusing on applying the method to tubular components. The initial publicity regarding the development of the method generated 150 requests for further information from a wide variety of institutions and individuals including the Federal Bureau of Investigation (FBI), Lockheed Martin Corporation, Rockwell International, Hewlett Packard Company, and Procter & Gamble Company. In addition, NASA has been solicited by the 3M Company and Allison Abrasives to use this method to inspect composite materials that are manufactured by these companies.
A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals
NASA Astrophysics Data System (ADS)
Juul, K. J.; Niordson, C. F.; Nielsen, K. L.; Kysar, J. W.
2018-03-01
A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.
Overview of Conceptual Design of Early VentureStar(TM) Configurations
NASA Technical Reports Server (NTRS)
Lockwood, M. K.
2000-01-01
One of NASA's goals is to enable commercial access to space at a cost of $1000/lb (an order of magnitude less than today's cost) by approximately 2010. Based on results from the 1994 Congressionally mandated, NASA led, Access-to-Space Study, an all rocket-powered single-stage-to-orbit reusable launch vehicle was, selected as the best option for meeting the goal. To address the technology development issues and the follow-on development of an operational vehicle, NASA initiated the X-33 program. The focus of this paper is on the contributions made by the NASA Langley Research Center (LaRC), from 1997-1998, to the conceptual design of the Lockheed Martin Skunk Work's (LMSW) operational reusable single-stage-to-orbit VentureStar(sup TM) vehicle. The LaRC effort has been in direct support of LMSW and NASA Marshall Space Flight Center (MSFC). The primary objectives have been to reduce vehicle dry weight and improve flyability of the VentureStar(sup TM) concepts. This paper will briefly describe the analysis methods used and will present several of the concepts analyzed and design trades completed.
Fully Mechanically Controlled Automated Electron Microscopic Tomography
Liu, Jinxin; Li, Hongchang; Zhang, Lei; ...
2016-07-11
Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisitionmore » without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.« less
Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.
Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L
2014-01-01
Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.
The Minnesota Center for Twin and Family Research Genome-Wide Association Study
Miller, Michael B.; Basu, Saonli; Cunningham, Julie; Eskin, Eleazar; Malone, Steven M.; Oetting, William S.; Schork, Nicholas; Sul, Jae Hoon; Iacono, William G.; Mcgue, Matt
2012-01-01
As part of the Genes, Environment and Development Initiative (GEDI), the Minnesota Center for Twin and Family Research (MCTFR) undertook a genome-wide association study (GWAS), which we describe here. A total of 8405 research participants, clustered in 4-member families, have been successfully genotyped on 527,829 single nucleotide polymorphism (SNP) markers using Illumina’s Human660W-Quad array. Quality control screening of samples and markers as well as SNP imputation procedures are described. We also describe methods for ancestry control and how the familial clustering of the MCTFR sample can be accounted for in the analysis using a Rapid Feasible Generalized Least Squares algorithm. The rich longitudinal MCTFR assessments provide numerous opportunities for collaboration. PMID:23363460
NASA Astrophysics Data System (ADS)
Cross, L. E.; Newnham, R. E.; Biggers, J. V.
1984-05-01
This report focuses upon the parts of the Center program which have drawn most extensively upon Navy funds. In the basic study of polarization processes in high K dielectrics, major progress has been made in understanding the mechanisms in relaxor ferroelectric in the perovskite structure families. A new effort is also being mounted to obtain more precise evaluation of the internal stress effects in fine grained barium titanate. Related to reliability, studies of the effects of induced macro-defects are described, and preparation for the evaluation of space charge by internal potential distribution measurements discussed. To develop new processing methods for very thin dielectric layers, a new type of single barrier layer multilayer is discussed, and work on the thermal evaporation of oriented crystalline antimony sulphur iodide describe.
Personal Aircraft Point to the Future of Transportation
NASA Technical Reports Server (NTRS)
2010-01-01
NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.
Low-temperature growth and photoluminescence property of ZnS nanoribbons.
Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen
2005-10-06
At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.
Agarwal, Rolly S; Agarwal, Jatin; Jain, Pradeep; Chandra, Anil
2015-05-01
The ability of an endodontic instrument to remain centered in the root canal system is one of the most important characteristic influencing the clinical performance of a particular file system. Thus, it is important to assess the canal centering ability of newly introduced single file systems before they can be considered a viable replacement of full-sequence rotary file systems. The aim of the study was to compare the canal transportation, centering ability, and time taken for preparation of curved root canals after instrumentation with single file systems One Shape and Wave One, using cone-beam computed tomography (CBCT). Sixty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 20(o) to 35(o) were divided into three groups of 20 samples each: ProTaper PT (group I) - full-sequence rotary control group, OneShape OS (group II)- single file continuous rotation, WaveOne WO - single file reciprocal motion (group III). Pre instrumentation and post instrumentation three-dimensional CBCT images were obtained from root cross-sections at 3mm, 6mm and 9mm from the apex. Scanned images were then accessed to determine canal transportation and centering ability. The data collected were evaluated using one-way analysis of variance (ANOVA) with Tukey's honestly significant difference test. It was observed that there were no differences in the magnitude of transportation between the rotary instruments (p >0.05) at both 3mm as well as 6mm from the apex. At 9 mm from the apex, Group I PT showed significantly higher mean canal transportation and lower centering ability (0.19±0.08 and 0.39±0.16), as compared to Group II OS (0.12±0.07 and 0.54±0.24) and Group III WO (0.13±0.06 and 0.55±0.18) while the differences between OS and WO were not statistically significant. It was concluded that there was minor difference between the tested groups. Single file systems demonstrated average canal transportation and centering ability comparable to full sequence Protaper system in curved root canals.
KHATAMI, Mehri; HEIDARI, Mohammad Mehdi; HADADZADEH, Mehdi; SCHEIBER-MOJDEHKAR, Barbara; BITARAF SANI, Morteza; HOUSHMAND, Massoud
2017-01-01
Background: A significant role of Renin-angiotensin system (RAS) genetic variants in the pathogenesis of essential hypertension and cardiovascular diseases has been proved. This study aimed to develop a new, fast and cheap method for the simultaneous detection of two missense single nucleotide polymorphisms (T207M or rs4762 and M268T orrs699) of angiotensinogen (AGT) in single-step Multiplex Hexa-Primer Amplification Refractory Mutation System - polymerase chain reaction (H-ARMS-PCR). Methods: In this case-control study, 148 patients with coronary artery disease (CAD) and 135 controls were included. The patients were referred to cardiac centers in Afshar Hospital (Yazd, Iran) from 2012 to 2015. Two sets of inner primer (for each SNP) and one set outer primer pairs were designed for genotyping of rs4762 and rs699 in single tube H-ARMS-PCR. Direct sequencing of all samples was also performed to assess the accuracy of this method. DNA sequencing method validated the results of single tube H-ARMS-PCR. Results: We found full accordance for genotype adscription by sequencing method. The frequency of the AGT T521 and C702 alleles was significantly higher in CAD patients than in the control group (OR: 0.551, 95% CI: 0.359–0.846, P=0.008 and OR: 0.629, 95% CI: 0.422–0.936, P=0.028, respectively). Conclusion: This is the first work describing a rapid, low-cost, high-throughput simultaneous detection of rs4762 and rs699 polymorphisms in AGT gene, used in large clinical studies. PMID:28828324
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.; ...
2018-01-29
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
Color center annealing and ageing in electron and ion-irradiated yttria-stabilized zirconia
NASA Astrophysics Data System (ADS)
Costantini, Jean-Marc; Beuneu, François
2005-04-01
We have used X-band electron paramagnetic resonance (EPR) measurements at room-temperature (RT) to study the thermal annealing and RT ageing of color centers induced in yttria-stabilized zirconia (YSZ), i.e. ZrO2:Y with 9.5 mol% Y2O3, by swift electron and ion-irradiations. YSZ single crystals with the <1 0 0> orientation were irradiated with 2.5 MeV electrons, and implanted with 100 MeV 13C ions. Electron and ion beams produce the same two color centers, namely an F+-type center (singly ionized oxygen vacancy) and the so-called T-center (Zr3+ in a trigonal oxygen local environment) which is also produced by X-ray irradiations. Isochronal annealing was performed in air up to 973 K. For both electron and ion irradiations, the defect densities are plotted versus temperature or time at various fluences. The influence of a thermal treatment at 1373 K of the YSZ single crystals under vacuum prior to the irradiations was also investigated. In these reduced samples, color centers are found to be more stable than in as-received samples. Two kinds of recovery processes are observed depending on fluence and heat treatment.
Complete Quantum Control of a Single Silicon-Vacancy Center in a Diamond Nanopillar
NASA Astrophysics Data System (ADS)
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan-Kai; Dory, Constantin; Radulaski, Marina; Kelaita, Yousif; Shen, Zhi-Xun; Melosh, Nicholas A.; Chu, Steven; Vuckovic, Jelena
Coherent quantum control of a quantum bit (qubit) is an important step towards its use in a quantum network. SiV- center in diamond offers excellent physical qualities such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the fast spin manipulation and techniques to extend the spin coherence time are under active investigation. Here, we demonstrate full coherent control over the state of a single SiV- center in a diamond nanopillar using ultrafast optical pulses. The high quality of the chemical vapor deposition grown SiV- centers allows us to coherently manipulate and quasi-resonantly read out the state of the single SiV- center. Moreover, the SiV- centers being coherently controlled are integrated into diamond nanopillar arrays in a site-controlled, individually addressable manner with high yield, low strain, and high spectral stability, which paves the way for scalable on chip optically accessible quantum system in a quantum photonic network. Financial support is provided by the DOE Office of Basic Energy Sciences, Division of Materials Sciences through Stanford Institute for Materials and Energy Sciences (SIMES) under contract DE-AC02-76SF00515.
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
Automatic control of solar power plants
NASA Astrophysics Data System (ADS)
Ermakov, V. S.; Dubilovich, V. M.
1982-02-01
The automatic control of the heliostat field of a 200-MW solar power plant is discussed. The advantages of the decentralized control principle with the solution of a number of individual problems in a single control center are emphasized. The basic requirements on heliostat construction are examined, and possible functional schemes for the automatic control of a heliostat field are described. It is proposed that groups of heliostats can be controlled from a single center and on the basis of a single algorithm.
Myer, Gregory D; Bates, Nathaniel A; DiCesare, Christopher A; Barber Foss, Kim D; Thomas, Staci M; Wordeman, Samuel C; Sugimoto, Dai; Roewer, Benjamin D; Medina McKeon, Jennifer M; Di Stasi, Stephanie L; Noehren, Brian W; McNally, Michael; Ford, Kevin R; Kiefer, Adam W; Hewett, Timothy E
2015-05-01
Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable. To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities. Multicenter reliability study. 3 laboratories. 25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period. Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories. Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing. Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94). CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly reliable results can be achieved with multicenter biomechanical screening models.
Nanoscale magnetic imaging with a single nitrogen-vacancy center in diamond
NASA Astrophysics Data System (ADS)
Hong, Sungkun
Magnetic imaging has been playing central roles not only in fundamental sciences but also in engineering and industry. Their numerous applications can be found in various areas, ranging from chemical analysis and biomedical imaging to magnetic data storage technology. An outstanding problem is to develop new magnetic imaging techniques with improved spatial resolutions down to nanoscale, while maintaining their magnetic sensitivities. For instance, if detecting individual electron or nuclear spins with nanomter spatial resolution is possible, it would allow for direct imaging of chemical structures of complex molecules, which then could bring termendous impacts on biological sciences. While realization of such nanoscale magnetic imaging still remains challenging, nitrogen-vacancy (NV) defects in diamond have recently considered as promising magnetic field sensors, as their electron spins show exceptionally long coherence even at room temperature. This thesis presents experimental progress in realizing a nanoscale magnetic imaging apparatus with a single nitrogen-vacancy (NV) color center diamond. We first fabricated diamond nanopillar devices hosting single NV centers at their ends, and incorporated them to a custom-built atomic force microscope (AFM). Our devices showed unprecedented combination of magnetic field sensitivity and spatial resolution for scanning NV systems. We then used these devices to magnetically image a single isolated electronic spin with nanometer resolution, for the first time under ambient condition. We also extended our study to improve and generalize the application of the scanning NV magnetometer we developed. We first introduced magnetic field gradients from a strongly magnetized tip, and demonstrated that the spatial resolution can be further improved by spectrally distinguishing identical spins at different locations. In addition, we developed a method to synchronize the periodic motion of an AFM tip and pulsed microwave sequences controlling an NV spin. This scheme enabled employment of 'AC magnetic field sensing scheme' in imaging samples with static and spatially varying magnetizations.
Brauer, Brian C; Chen, Yang K; Fukami, Norio; Shah, Raj J
2009-09-01
When conventional ERCP methods fail because of periampullary or ductal obstruction, EUS-guided cholangiopancreatography (EUS-CP) may aid in pancreaticobiliary access. To report our experience when using single-operator EUS-CP. An academic tertiary-referral center. Consecutive patients undergoing EUS-CP were prospectively identified. These patients had undergone failed attempt(s) at therapeutic ERCP. A data sheet was used to record indications, reasons for failed ERCP, EUS-CP visualization of the duct of interest, transpapillary or transenteric intervention, clinical follow-up, and complications. Technical success was decompression of the duct of interest. Clinical success was resolution of jaundice or a > or = 50% reduction in pain or narcotics, as applicable. Between February 2003 and June 2007, EUS-CP was attempted in 20 patients (11 men, 9 women; mean [SD] age 58 +/- 14.9 years). Indications included jaundice (n = 8), biliary stones (n = 3), chronic pancreatitis (n = 6), acute pancreatitis (n = 2), and papillary stenosis (n = 1). Reasons for failed ERCP included periampullary mass (n = 8), intradiverticular papillae (n = 4), and pancreatic duct (PD) stricture (n = 7) or stone (n = 1). Technical success was achieved in 18 of 20 patients (90%). Biliary decompression was obtained in 11 of 12 patients (92%) (7 transpapillary and 4 transenteric-transcholedochal). Pancreatic decompression was obtained in 7 of 8 patients (88%) (3 transpapillary, 4 transgastric). On follow-up, clinical improvement was noted in 15 of 20 patients (70%). For treatment of pain associated with chronic pancreatitis, pain scores decreased by a mean of 1.75 (P = .18). Complications (in 2 of 20 [10%]) included perforation (n = 1) and respiratory failure (n = 1). A single-center nonrandomized observational study with a small patient population. At our academic referral center, single-operator EUS-CP provided decompression of obstructed ducts and may be performed after a failed attempt at conventional ERCP during the same endoscopic session.
Development of Anthropometric Specifications for the Warrior Injury Assessment Manikin (WIAMan)
2013-10-01
kg/m2 (mean 26.7 kg/m2). Body Landmark Data in Vehicle Seat Conditions Soldiers were instructed to sit comfortably in the seat . Lower and upper...landmark locations from 100 soldiers with a wide range of body size obtained in a single squad seating condition were analyzed using regression methods to...establish target surface landmark and internal joint center locations. Laser scan data from 126 men in up to four seated postures were analyzed
Mantke, Rene; Diener, Markus; Kropf, Siegfried; Otto, Ronny; Manger, Thomas; Vestweber, Boris; Mirow, Lutz; Winde, Günther; Lippert, Hans
2016-09-07
Increasing experience with minimally invasive surgery and the development of new instruments has resulted in a tendency toward reducing the number of abdominal skin incisions. Retrospective and randomized prospective studies could show the feasibility of single-incision surgery without any increased risk to the patient. However, large prospective multicenter observational datasets do not currently exist. This prospective multicenter observational quality study will provide a relevant dataset reflecting the feasibility and safety of single-incision surgery. This study focuses on external validity, clinical relevance, and the patients' perspective. Accordingly, the single-incision multiport/single port laparoscopic abdominal surgery (SILAP) study will supplement the existing evidence, which does not currently allow evidence-based surgical decision making. The SILAP study is an international prospective multicenter observational quality study. Mortality, morbidity, complications during surgery, complications postoperatively, patient characteristics, and technical aspects will be monitored. We expect more than 100 surgical centers to participate with 5000 patients with abdominal single-incision surgery during the study period. Funding was obtained in 2012. Enrollment began on January 01, 2013, and will be completed on December 31, 2018. As of January 2016, 2119 patients have been included, 106 German centers are registered, and 27 centers are very active (>5 patients per year). This prospective multicenter observational quality study will provide a relevant dataset reflecting the feasibility and safety of single-incision surgery. An international enlargement and recruitment of centers outside of Germany is meaningful. German Clinical Trials Register: DRKS00004594; https://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00004594 (Archived by WebCite at http://www.webcitation.org/6jK6ZVyUs).
Initial Comparison of Single Cylinder Stirling Engine Computer Model Predictions with Test Results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A Stirling engine digital computer model developed at NASA Lewis Research Center was configured to predict the performance of the GPU-3 single-cylinder rhombic drive engine. Revisions to the basic equations and assumptions are discussed. Model predictions with the early results of the Lewis Research Center GPU-3 tests are compared.
Kwiek, Bartłomiej; Rożalski, Michał; Kowalewski, Cezary; Ambroziak, Marcin
2017-10-01
We wanted to asses the efficacy of large spot 532 nm laser for the treatment of facial capillary malformations with the use of three-dimensional (3D) image analysis. Retrospective single center study on previously non-treated patients with facial capillary malformations (CM) was performed. A total of 44 consecutive Caucasian patients aged 5-66 were included. Patients had 3D photography performed before and after and had at least one single session of treatment with 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with contact cooling, fluencies ranging from 8 to 11.5 J/cm 2 , pulse duration ranging from 5 to 9 milliseconds and spot size ranging from 5 to 10 mm. Objective analysis of percentage improvement based on 3D digital assessment of combined color and area improvement (global clearance effect [GCE]) were performed. Median maximal improvement achieved during the treatment (GCE max ) was 70.4%. Mean number of laser procedures required to achieve this improvement was 7.1 (ranging from 2 to 14)). Improvement of minimum 25% (GCE 25) was achieved by all patients, of minimum 50% (GCE 50) by 77.3%, of minimum 75% (GCE 75) by 38.6%, and of minimum 90% (GCE 90) by 13.64. Large spot 532 nm laser is highly effective in the treatment of facial CM. 3D color and area image analysis provides an objective method to compare different methods of facial CM treatment in future studies. Lasers Surg. Med. 49:743-749, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Boutsidis, Christos
In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of photon antibunching from emitters doped in each of these structures. These experimental observations include photon antibunching from: nanocrystal quantum dots and nanodiamond color-centers doped in a cholesteric microcavity; terrylene and DiIC 18(3) dye molecules doped in nematic structures, and nanocrystal quantum dots doped in the distributed Bragg reflector microcavity. A value of the zero-time second-order coherence as low as g(2)(0) = 0.001 +/- 0.03 was measured. These results represent an important step forward in the realization of room temperature single-photon sources with definite polarization for secure quantum communication.
Stevens, Dennis C; Helseth, Carol C; Khan, M Akram; Munson, David P; Reid, E J
2011-01-01
The purpose of this research was to test the hypothesis that parental satisfaction with neonatal intensive care is greater in a single-family room facility as compared with a conventional open-bay neonatal intensive care unit (NICU). This investigation was a prospective cohort study comparing satisfaction survey results for parents who responded to a commercially available parent NICU satisfaction survey following the provision of NICU care in open-bay and single-family room facilities. A subset of 16 items indicative of family-centered care was also computed and compared for these two NICU facilities. Parents whose babies received care in the single-family room facility expressed significantly improved survey responses in regard to the NICU environment, overall assessment of care, and total survey score than did parents of neonates in the open-bay facility. With the exception of the section on nursing in which scores in both facilities were high, nonsignificant improvement in median scores for the sections on delivery, physicians, discharge planning, and personal issues were noted. The total median item score for family-centered care was significantly greater in the single-family room than the open-bay facility. Parental satisfaction with care in the single-family room NICU was improved in comparison with the traditional open-bay NICU. The single-family room environment appears more conducive to the provision of family-centered care. Improved parental satisfaction with care and the potential for enhanced family-centered care need to be considered in decisions made regarding the configuration of NICU facilities in the future.
Toward efficient fiber-based quantum interface (Conference Presentation)
NASA Astrophysics Data System (ADS)
Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey
2016-04-01
NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports, vol. 528, no. 1, p. 1-45, 2013. [2] A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park and M.D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, vol. 450, p. 402-406, 2007. [3] Michael J. Burek , Yiwen Chu, Madelaine S.Z. Liddy, Parth Patel, Jake Rochman , Srujan Meesala, Wooyoung Hong, Qimin Quan, Mikhail D. Lukin and Marko Loncar High quality-factor optical nanocavities in bulk single-crystal diamond, Nature communications 6718 (2014) [4] Tim Schroder, Andreas W. Schell, Gunter Kewes, Thomas Aichele, and Oliver Benson Fiber-Integrated Diamond-Based Single Photon Source, Nano Lett. 2011, 11, 198-202 [5]Lars Liebermeister, et. al. "Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center", Appl. Phys. Lett. 104, 031101 (2014)
Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.
Molecular dynamics simulation of fast particle irradiation on the single crystal CeO2
NASA Astrophysics Data System (ADS)
Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.
2013-11-01
We used a molecular dynamics method to simulate structural relaxation caused by the high-energy-ion irradiation of single crystal CeO2. As the initial condition, we assumed high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order diameter located in the center of the single crystal. The potential proposed by Inaba et al. was utilized to calculate interactions between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it was dissipated in the crystal. We compared the obtained results with those of computer simulations for UO2 and found that CeO2 was more stable than UO2 when supplied with high thermal energy.
Wei, Wei-Qi; Leibson, Cynthia L; Ransom, Jeanine E; Kho, Abel N; Caraballo, Pedro J; Chai, High Seng; Yawn, Barbara P; Pacheco, Jennifer A
2012-01-01
Objective To evaluate data fragmentation across healthcare centers with regard to the accuracy of a high-throughput clinical phenotyping (HTCP) algorithm developed to differentiate (1) patients with type 2 diabetes mellitus (T2DM) and (2) patients with no diabetes. Materials and methods This population-based study identified all Olmsted County, Minnesota residents in 2007. We used provider-linked electronic medical record data from the two healthcare centers that provide >95% of all care to County residents (ie, Olmsted Medical Center and Mayo Clinic in Rochester, Minnesota, USA). Subjects were limited to residents with one or more encounter January 1, 2006 through December 31, 2007 at both healthcare centers. DM-relevant data on diagnoses, laboratory results, and medication from both centers were obtained during this period. The algorithm was first executed using data from both centers (ie, the gold standard) and then from Mayo Clinic alone. Positive predictive values and false-negative rates were calculated, and the McNemar test was used to compare categorization when data from the Mayo Clinic alone were used with the gold standard. Age and sex were compared between true-positive and false-negative subjects with T2DM. Statistical significance was accepted as p<0.05. Results With data from both medical centers, 765 subjects with T2DM (4256 non-DM subjects) were identified. When single-center data were used, 252 T2DM subjects (1573 non-DM subjects) were missed; an additional false-positive 27 T2DM subjects (215 non-DM subjects) were identified. The positive predictive values and false-negative rates were 95.0% (513/540) and 32.9% (252/765), respectively, for T2DM subjects and 92.6% (2683/2898) and 37.0% (1573/4256), respectively, for non-DM subjects. Age and sex distribution differed between true-positive (mean age 62.1; 45% female) and false-negative (mean age 65.0; 56.0% female) T2DM subjects. Conclusion The findings show that application of an HTCP algorithm using data from a single medical center contributes to misclassification. These findings should be considered carefully by researchers when developing and executing HTCP algorithms. PMID:22249968
Chang, Chun-Shin; Wallace, Christopher Glenn; Pai, Betty Chien-Jung; Chiu, Yu-Ting; Hsieh, Yuh-Jia; Chen, I-Ju; Liao, Yu-Fang; Liou, Eric Jen-Wein; Chen, Philip Kuo-Ting
2014-08-01
Nasoalveolar molding became increasingly popular in the 1990s as a means of easing surgery and improving nasal outcomes for cleft lip repairs. In the late 1990s, three orthodontists from our center underwent nasoalveolar molding training: two at the Rush Craniofacial Center, in Chicago; and one at New York University Craniofacial Center. They brought two different nasoalveolar molding techniques back to Chang Gung Craniofacial Center: the modified Figueroa and the modified Grayson techniques. Outcomes following use of these techniques have not previously been compared prospectively. Between May of 2010 and March of 2013, a randomized, prospective, single-blind trial was conducted to compare the number of clinical visits, total costs, complications, and nasal symmetry between the two nasoalveolar molding techniques in 30 patients with unilateral complete cleft lip. There were no differences between nasoalveolar molding techniques in the number of clinical visits, total costs, nostril height, or nostril area ratio. Preoperatively but after nasoalveolar molding, the nostril width ratio was wider for the Figueroa group than for the Grayson group. Six months after surgical correction, there were no differences in nostril height, nostril width, nasal sill height, or nostril area ratio between nasoalveolar molding methods. Alveolar ulceration occurred more frequently in the Grayson group. The modified Grayson technique reduced nostril width more efficiently, but alveolar ulceration was more frequent and no differences in nostril width were found following surgery. Overall, the two nasoalveolar molding techniques produced similar nasal outcomes. Therapeutic, II.
Vasopressor use following traumatic injury – A single center retrospective study
Hylands, Mathieu; Godbout, Marie-Pier; Mayer, Sandeep K.; Fraser, William D.; Vanasse, Alain; Leclair, Marc-André; Turgeon, Alexis F.; Lauzier, François; Charbonney, Emmanuel; Trottier, Vincent; Razek, Tarek S.; Roy, André; D’Aragon, Frédérick; Belley-Côté, Emilie; Day, Andrew G.; Le Guillan, Soazig; Sabbagh, Robert
2017-01-01
Objectives Vasopressors are not recommended by current trauma guidelines, but recent reports indicate that they are commonly used. We aimed to describe the early hemodynamic management of trauma patients outside densely populated urban centers. Methods We conducted a single-center retrospective cohort study in a Canadian regional trauma center. All adult patients treated for traumatic injury in 2013 who died within 24 hours of admission or were transferred to the intensive care unit were included. A systolic blood pressure <90 mmHg, a mean arterial pressure <60 mmHg, the use of vasopressors or ≥2 L of intravenous fluids defined hemodynamic instability. Main outcome measures were use of intravenous fluids and vasopressors prior to surgical or endovascular management. Results Of 111 eligible patients, 63 met our criteria for hemodynamic instability. Of these, 60 (95%) had sustained blunt injury and 22 (35%) had concomitant severe traumatic brain injury. The subgroup of patients referred from a primary or secondary hospital (20 of 63, 32%) had significantly longer transport times (243 vs. 61 min, p<0.01). Vasopressors, used in 26 patients (41%), were independently associated with severe traumatic brain injury (odds ratio 10.2, 95% CI 2.7–38.5). Conclusions In this cohort, most trauma patients had suffered multiple blunt injuries. Patients were likely to receive vasopressors during the early phase of trauma care, particularly if they exhibited signs of neurologic injury. While these results may be context-specific, determining the risk-benefit trade-offs of fluid resuscitation, vasopressors and permissive hypotension in specific patients subgroups constitutes a priority for trauma research going forwards. PMID:28448605
Baracat, Patrícia Junqueira Ferraz; de Sá Ferreira, Arthur
2013-12-01
The present study investigated the association between postural tasks and center of pressure spatial patterns of three-dimensional statokinesigrams. Young (n=35; 27.0±7.7years) and elderly (n=38; 67.3±8.7years) healthy volunteers maintained an undisturbed standing position during postural tasks characterized by combined sensory (vision/no vision) and biomechanical challenges (feet apart/together). A method for the analysis of three-dimensional statokinesigrams based on nonparametric statistics and image-processing analysis was employed. Four patterns of spatial distribution were derived from ankle and hip strategies according to the quantity (single; double; multi) and location (anteroposterior; mediolateral) of high-density regions on three-dimensional statokinesigrams. Significant associations between postural task and spatial pattern were observed (young: gamma=0.548, p<.001; elderly: gamma=0.582, p<.001). Robustness analysis revealed small changes related to parameter choices for histogram processing. MANOVA revealed multivariate main effects for postural task [Wilks' Lambda=0.245, p<.001] and age [Wilks' Lambda=0.308, p<.001], with interaction [Wilks' Lambda=0.732, p<.001]. The quantity of high-density regions was positively correlated to stabilogram and statokinesigram variables (p<.05 or lower). In conclusion, postural tasks are associated with center of pressure spatial patterns and are similar in young and elderly healthy volunteers. Single-centered patterns reflected more stable postural conditions and were more frequent with complete visual input and a wide base of support. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of 300 Minimally Invasive Liver Resections at a Single Institution
Koffron, Alan J.; Auffenberg, Greg; Kung, Robert; Abecassis, Michael
2007-01-01
Objective: We present the largest, most comprehensive, single center experience to date of minimally invasive liver resection (MILR). Summary Background Data: Despite anecdotal reports of MILR, few large single center reports have examined these procedures by comparing them to their open counterparts. Methods: Three hundred MILR were performed between July 2001 and November 2006 at our center for both benign and malignant conditions. These included 241 pure laparoscopic, 32 hand-assisted laparoscopic, and 27 laparoscopy-assisted open (hybrid) resections. These MILR were compared with 100 contemporaneous, cohort-matched open resections. MILR included segmentectomies (110), bisegmentectomies (63), left hepatectomies (47), right hepatectomies (64), extended right hepatectomies (8), and caudate lobe (8) resections. Benign etiologies encompassed cysts (70), hemangiomata (37), focal nodular hyperplasia (FNH) (23), adenomata (47), and 20 live donor right lobectomies. Malignant etiologies included primary (43) and metastatic (60) tumors. Hepatic fibrosis/cirrhosis was present in 25 of 103 patients with malignant diseases (24%). Results: There was high data consistency within the 3 types of MILR. MILR compared favorably with standard open techniques: operative times (99 vs. 182 minutes), blood loss (102 vs. 325 ml), transfusion requirement (2 of 300 vs. 8 of 100), length of stay (1.9 vs. 5.4 days), overall operative complications (9.3% vs. 22%), and local malignancy recurrence (2% vs. 3%). No port-site recurrences occurred. Conversion from laparoscopic to hand-assisted laparoscopic resection occurred in 20 patients (6%), with no conversions to open. No hand-assisted procedures were converted to open, but 2 laparoscopy-assisted (7%) were converted to open. Conclusion: Our data show that MILR outcomes compare favorably with those of the open standard technique. Our experience suggests that MILR of varying magnitudes is safe and effective for both benign and malignant conditions. PMID:17717442
Analysis and Design of Novel Nanophotonic Structures
NASA Astrophysics Data System (ADS)
Shugayev, Roman
Nanophotonic devices hold promise to revolutionize the fields of optical communications, quantum computing and bioimaging. Designing viable solutions to these pressing problems require developing accurate models of the relevant systems. While a great deal of work has been performed in terms of developing individual models with varying levels of fidelity, some of these more complex systems still require improved links between scales to allow for accurate design and optimization within a reasonable amount of computing time. For instance, color centers in nanocrystals appear to be a promising platform for room-temperature scalable quantum information science, but questions still remain about the optimal structures to control single-photon emitter rates, coupling fidelity, and suitable scaling architectures. In this work, a method for efficient optical access and readout of nanocrystal states via magnetic transitions was demonstrated. Separately novel Mie resonant devices that guarantee on-demand enhancement of emission from the single vacancy sources were shown. To improve addressability of the crystal-based impurities, a new approach for realization of single photon electro-optical devices is also proposed in this work. Furthermore, this work on color centers in nanocrystals has been shown to be sensitive to the local refractive index environment. This allows this system to be adapted to biomedical applications, such as sensitive, minimally invasive cancer detection. In this work, a novel scheme for propagation loss-free sensing of local refractive index using nanocrystal probes with broken symmetry is carefully investigated. In conclusion, this thesis develops several novel simulation and optimization techniques that combine existing nanophotonic modeling tools into a unique multi-scale modeling tool. It has been successfully applied to nanophotonically-tuned color vacancy centers. Potential applications span optical communications, quantum information processing, and biomedical sensing.
Correlation of Site of Embryo Transfer with IVF Outcome: Analysis of 743 Cycles from a Single Center
Singh, Neeta; Lata, Kusum; Malhotra, Neena; Vanamail, P.
2017-01-01
Objective: To investigate the influence of site of embryo transfer (ET) on reproductive outcome. Materials and Methods: A retrospective analysis of 743 ultrasound-guided ET in fresh in vitro fertilization (IVF) cycles from a single center over a period of 4 years was conducted. The distance between the fundal endometrial surface and the air bubble was measured, and accordingly, patients were divided into four groups (≤10 mm; >10 and ≤15 mm; >15 and 20 mm; >20 and <25 mm). Setting: Tertiary Assisted Reproductive Technology (ART) center. Patient(s): All patients enrolled in the IVF program undergoing ET. Intervention(s): Controlled ovarian hyperstimulation (OS), IVF, and ET. Main Outcome Measure(s): Cleavage rate and clinical pregnancy rate. Result(s): Clinical pregnancy rate was significantly more in groups 2 and 3 compared to the other groups. Logistic regression analysis showed that one unit increase in embryos transfer will enhance the pregnancy outcome about 3.7 (adjusted odds ratio) times with 95% confidence limits 2.6 to 5.4. Similarly, pregnancy outcome will be 3.1 (95% confidence limits: 1.5–6.4) times higher for distance group >15 and <20 mm compared to less than 10-mm distance group. Ectopic pregnancy rates were similar in all the four groups. Conclusion: The present study demonstrates that site of ET has significant difference on reproductive outcome. PMID:28904498
Some Problems of Rocket-Space Vehicles' Characteristics co- ordination
NASA Astrophysics Data System (ADS)
Sergienko, Alexander A.
2002-01-01
of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.
Centered reduced moments and associate density functions applied to alkaline comet assay.
Castaneda, Roman; Pelaez, Alejandro; Marquez, Maria-Elena; Abad, Pablo
2005-01-01
The single cell gel electrophoresis assay is a sensitive, rapid, and visual technique for deoxyribonucleic acid (DNA) strand-break detection in individual mammalian cells, whose application has significantly increased in the past few years. The cells are embedded in agarose on glass slides followed by lyses of the cell membrane. Thereafter, damaged DNA strands are electrophoresed away from the nucleus towards the anode giving the appearance of a comet tail. Nowadays, charge coupled device cameras are attached at optical microscopes for recording the images of the cells, and digital image processing is applied for obtaining quantitative descriptors. However, the conventional software is usually expensive, inflexible and, in many cases, can only provide low-order descriptors based in image segmentation, determination of centers of mass, and Euclidean distances. Associated density functions and centered reduced moments offer an effective and flexible alternative for quantitative analysis of the comet cells. We will show how the position of the center of mass, the lengths and orientation of the main semiaxes, and the eccentricity of such images can be accurately determined by this method.
Method for maintaining a cutting blade centered in a kerf
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2002-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana
2015-10-01
Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.
Axial acoustic radiation force on a sphere in Gaussian field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen
2015-10-28
Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated.more » Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.« less
Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer
NASA Astrophysics Data System (ADS)
Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming
2018-03-01
Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.
Coherent control of a single nitrogen-vacancy center spin in optically levitated nanodiamond
Pettit, Robert M.; Neukirch, Levi Patrick; Zhang, Yi; ...
2017-05-12
Here, we report the first observation, to the best of our knowledge, of electron spin transients in single negatively charged nitrogen-vacancy (NV -) centers, contained within optically trapped nanodiamonds, in both atmospheric pressure and low vacuum. It is shown that, after an initial exposure to low vacuum, the trapped nanodiamonds remain at temperatures near room temperature even in low vacuum. Furthermore, the transverse coherence time of the NV - center spin, measured to be T 2=101.4 ns, is robust over the range of trapping powers considered in this study.
Opportunities and Challenges Within the Veterans Administration
Schafer, Paul W.
1981-01-01
Because the Veterans Administration operates the largest health care delivery system in the nation under the aegis of a single administration, having 172 medical centers and the third largest federal agency budget, it should assume a logical role at the forefront of automated health care application development. During the past three years, two quite different approaches to the development of medical application software have proceeded side-by-side within the Veterans Administration. One approach employed modern methods and techniques, requiring only a minimum amount of personnel and equipment resources and using local facility funds. It has produced a bounty of cost-effective automated health care application systems that are now in active use at a number of VA Medical Centers (VAMCs) nationwide. The other approach followed methods and techniques known to be unproductive, and used all of the centrally administered funds, personnel and equipment resources available. It has produced nothing of value; on the contrary, it has delayed the implementation of automated systems that could be providing important clinical services to veterans.
Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz. PMID:25415417
Highly compact circulators in square-lattice photonic crystal waveguides.
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz.
EPR study of the effect of ionizing radiation on chromium centers in Mg2SiO4: Cr,Li laser crystals
NASA Astrophysics Data System (ADS)
Akhmetzyanov, D. A.; Dudnikova, V. B.; Zharikov, E. V.; Zhiteitsev, E. R.; Konovalov, A. A.; Tarasov, V. F.
2013-09-01
Forsterite single crystals doped with chromium and lithium and exposed to ionizing radiation have been studied using multifrequency electron paramagnetic resonance (EPR) spectroscopy. It has been found that ionizing irradiation up to a dose of 108 rad does not lead to a significant change in the concentration of single chromium impurity centers. At the same time, γ-ray irradiation of the crystal leads to a decrease in the concentration of active laser centers, which form an associate of trivalent chromium and monovalent lithium in the crystallographic positions M2 and M1, respectively, and to the formation of new centers of divalent chromium. The structure and magnetic properties of the new centers have been discussed.
Bartke, Rebecca M; Cameron, Elizabeth L; Cristie-David, Ajitha S; Custer, Thomas C; Denies, Maxwell S; Daher, May; Dhakal, Soma; Ghosh, Soumi; Heinicke, Laurie A; Hoff, J Damon; Hou, Qian; Kahlscheuer, Matthew L; Karslake, Joshua; Krieger, Adam G; Li, Jieming; Li, Xiang; Lund, Paul E; Vo, Nguyen N; Park, Jun; Pitchiaya, Sethuramasundaram; Rai, Victoria; Smith, David J; Suddala, Krishna C; Wang, Jiarui; Widom, Julia R; Walter, Nils G
2015-05-01
Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yutian; Yang, Fei; Tolbert, Leon M.
With the increased cloud computing and digital information storage, the energy requirement of data centers keeps increasing. A high-voltage point of load (HV POL) with an input series output parallel structure is proposed to convert 400 to 1 VDC within a single stage to increase the power conversion efficiency. The symmetrical controlled half-bridge current doubler is selected as the converter topology in the HV POL. A load-dependent soft-switching method has been proposed with an auxiliary circuit that includes inductor, diode, and MOSFETs so that the hard-switching issue of typical symmetrical controlled half-bridge converters is resolved. The operation principles of themore » proposed soft-switching half-bridge current doubler have been analyzed in detail. Then, the necessity of adjusting the timing with the loading in the proposed method is analyzed based on losses, and a controller is designed to realize the load-dependent operation. A lossless RCD current sensing method is used to sense the output inductor current value in the proposed load-dependent operation. In conclusion, experimental efficiency of a hardware prototype is provided to show that the proposed method can increase the converter's efficiency in both heavy- and light-load conditions.« less
Cui, Yutian; Yang, Fei; Tolbert, Leon M.; ...
2016-06-14
With the increased cloud computing and digital information storage, the energy requirement of data centers keeps increasing. A high-voltage point of load (HV POL) with an input series output parallel structure is proposed to convert 400 to 1 VDC within a single stage to increase the power conversion efficiency. The symmetrical controlled half-bridge current doubler is selected as the converter topology in the HV POL. A load-dependent soft-switching method has been proposed with an auxiliary circuit that includes inductor, diode, and MOSFETs so that the hard-switching issue of typical symmetrical controlled half-bridge converters is resolved. The operation principles of themore » proposed soft-switching half-bridge current doubler have been analyzed in detail. Then, the necessity of adjusting the timing with the loading in the proposed method is analyzed based on losses, and a controller is designed to realize the load-dependent operation. A lossless RCD current sensing method is used to sense the output inductor current value in the proposed load-dependent operation. In conclusion, experimental efficiency of a hardware prototype is provided to show that the proposed method can increase the converter's efficiency in both heavy- and light-load conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marseglia, L.; Saha, K.; Ajoy, A.
The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less
Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme
NASA Astrophysics Data System (ADS)
Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak
2017-11-01
We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.
NASA Astrophysics Data System (ADS)
Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.
2017-05-01
Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.
Innovative mechanism for measuring the mass properties of an object
NASA Technical Reports Server (NTRS)
Wolcott, Kedron R.; Graham, Todd A.; Doty, Keith L.
1994-01-01
The Kennedy Space Center Robotics Group recently completed development and testing on a novel approach to measure the mass properties of a rigid body. This unique design can measure the payload's weight, mass center location, and moments of inertia about three orthogonal axes. Furthermore, these measurements only require a single torque sensor and a single angular position sensor.
Sadot, Dan; Dorman, G; Gorshtein, Albert; Sonkin, Eduard; Vidal, Or
2015-01-26
112Gbit/sec DSP-based single channel transmission of PAM4 at 56Gbaud over 15GHz of effective analog bandwidth is experimentally demonstrated. The DSP enables use of mature 25G optoelectronics for 2-10km datacenter intra-connections, and 8Tbit/sec over 80km interconnections between data centers.
ERIC Educational Resources Information Center
Middlesex County Vocational and Technical High Schools, New Brunswick, NJ.
The Teenage Parent Center of the Single Parent Assistance, Counseling and Education Project was developed to support, guide, and direct adolescent mothers, pregnant teenagers, and teens at risk of becoming parents through successful completion of a high school diploma or school year in a vocational setting in Middlesex County, New Jersey. The…
The Sakai Spinner: A Paperclip Top
ERIC Educational Resources Information Center
Corrao, Christian T.
2014-01-01
A challenge: Can you create a stable top from a single paper clip? Several interesting solutions to this problem were provided by Takao Sakai from Japan, the requirement of each being that the center of gravity be located on the vertical y-axis at the center of the top. In the simplest configuration, we see that there exists a single angle ?…
2012-01-01
Background Aseptic loosening is one of the greatest problems in hip replacement surgery. The rotation center of the hip is believed to influence the longevity of fixation. The aim of this study was to compare the influence of cemented and cementless cup fixation techniques on the position of the center of rotation because cemented cup fixation requires the removal of more bone for solid fixation than the cementless technique. Methods We retrospectively compared pre- and post-operative positions of the hip rotation center in 25 and 68 patients who underwent artificial hip replacements in our department in 2007 using cemented or cementless cup fixation, respectively, with digital radiographic image analysis. Results The mean horizontal and vertical distances between the rotation center and the acetabular teardrop were compared in radiographic images taken pre- and post-operatively. The mean horizontal difference was −2.63 mm (range: -11.00 mm to 10.46 mm, standard deviation 4.23 mm) for patients who underwent cementless fixation, and −2.84 mm (range: -10.87 to 5.30 mm, standard deviation 4.59 mm) for patients who underwent cemented fixation. The mean vertical difference was 0.60 mm (range: -20.15 mm to 10.00 mm, standard deviation 3.93 mm) and 0.41 mm (range: -9.26 mm to 6.54 mm, standard deviation 3.58 mm) for the cementless and cemented fixation groups, respectively. The two fixation techniques had no significant difference on the position of the hip rotation center in the 93 patients in this study. Conclusions The hip rotation center was similarly restored using either the cemented or cementless fixation techniques in this patient cohort, indicating that the fixation technique itself does not interfere with the position of the center of rotation. To completely answer this question further studies with more patients are needed. PMID:22686355
Sensors Provide Early Warning of Biological Threats
NASA Technical Reports Server (NTRS)
2009-01-01
Early Warning Inc. of Troy, New York, licensed powerful biosensor technology from Ames Research Center. Incorporating carbon nanotubes tipped with single strands of nucleic acid from waterborne pathogens, the sensor can detect even minute amounts of targeted, disease causing bacteria, viruses, and parasites. Early Warning features the NASA biosensor in its water analyzer, which can provide advance alert of potential biological hazards in water used for agriculture, food and beverages, showers, and at beaches and lakes -- within hours instead of the days required by conventional laboratory methods.
Using Genotype Abundance to Improve Phylogenetic Inference
Mesin, Luka; Victora, Gabriel D; Minin, Vladimir N; Matsen, Frederick A
2018-01-01
Abstract Modern biological techniques enable very dense genetic sampling of unfolding evolutionary histories, and thus frequently sample some genotypes multiple times. This motivates strategies to incorporate genotype abundance information in phylogenetic inference. In this article, we synthesize a stochastic process model with standard sequence-based phylogenetic optimality, and show that tree estimation is substantially improved by doing so. Our method is validated with extensive simulations and an experimental single-cell lineage tracing study of germinal center B cell receptor affinity maturation. PMID:29474671
FAA Helicopter/Heliport Research, Engineering, and Development Bibiliography, 1964-1986.
1986-11-01
Systems Control Technology) FAA/RD-82/16 FAA/PM-85/8 BURNHAM, DAVID C. (Transportation System Center) FAA-RD-78-143 21 CHAMBEKS, HAiR (Y W. (FAA Tecnnical...prediction methods for drive engines, gearboxes, jets with and without bypass flow, as well as noise reduction and performance losses for partly sonic inlets...engines, single stream and coaxial Jets, and gearboxes are also included, as well as noise reduction and performance loss *s of partly sonic inlet& and
2016-02-28
centered at a point, x, where the field is to be evaluated , and the far field region Ωfar. A single unit cell located at x′ in the far field region is...successive shell adds less total error as expected because of the increased distance from evaluation point. . . . . . . . . . . . . . . . . . 108...of freedom in the system to more manageable levels. Energies or forces in the system are then evaluated through numerical quadrature rules and allow
An Analysis of the Concurrent Certification Program at Fleet Readiness Center Southwest
2009-12-01
Mapping 5S Methodology Kanban Poka - yoke A3 Problem Solving Single Point Lesson Plans (SPLP) Total Productive Maintenance (TPM) 54 What...the actual demand of the customers. Kanban is as a demand signal which immediately propagates through the supply chain. D. POKA - YOKE : A Japanese...term that means "fail-safing" or "mistake- proofing." Avoiding (yokeru) inadvertent errors ( poka ) is a behavior-shaping constraint, or a method of
Uranium Measurement Improvements at the Savannah River Technology Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shick, C. Jr.
Uranium isotope ratio and isotope dilution methods by mass spectrometry are used to achieve sensitivity, precision and accuracy for various applications. This report presents recent progress made at SRTC in the analysis of minor isotopes of uranium. Comparison of routine measurements of NBL certified uranium (U005a) using the SRTC Three Stage Mass Spectrometer (3SMS) and the SRTC Single Stage Mass Spectrometer (SSMS). As expected, the three stage mass spectrometer yielded superior sensitivity, precision, and accuracy for this application.
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine
2017-09-01
Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.
NASA Astrophysics Data System (ADS)
Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C.; Shimoni, Olga; Aharonovich, Igor
2015-03-01
Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07510b
Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys
Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...
2015-09-03
High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V
2016-01-01
ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155
Edinburgh, Laurel; Pape-Blabolil, Julie; Harpin, Scott B.; Saewyc, Elizabeth
2015-01-01
The aim of this study was to describe contextual events, abuse experiences, and disclosure processes of adolescents who presented to a hospital-based Child Advocacy Center for medical evaluation and evidentiary collection as indicated after experiencing multiple perpetrator rape during a single event (n = 32) and to compare these findings to a group of single perpetrator sexual assaults (n = 534). This study used a retrospective mixed-methods design with in-depth, forensic interviews and complete physical examinations of gang-raped adolescents. Patients ranged from 12 to 17 years (M = 14 years). Girls who experienced multiple perpetrator rape during a single event were more likely to have run away, to have drunk alcohol in the past month, and to have participated in binge drinking in the past 2 weeks. Acute presentation of these victims were rare but 30% had hymenal transections and 38% had sexually transmitted infections (STIs). Forensic interviews revealed alcohol was a common weapon used by offenders, and its use resulted in victims experiencing difficulty in remembering and reporting details for police investigation or physical and mental health care. Most victims were raped at parties they attended with people they thought they could trust, and they felt let down by witnesses who could have helped but did not intervene. Although relatively rare, multiple perpetrator rape during a single event is a type of severe sexual assault experience and has significant risks for deleterious health outcomes. These victims require health care by trained providers to diagnose physical findings, treat STIs, screen for trauma, and support victims. PMID:24933707
Production of confluent hypergeometric beam by computer-generated hologram
NASA Astrophysics Data System (ADS)
Chen, Jiannong; Wang, Gang; Xu, Qinfeng
2011-02-01
Because of their spiral wave front, phase singularity, zero-intensity center and orbital angular momentum, dark hollow vortex beams have been found many applications in the field of atom optics such as atom cooling, atom transport and atom guiding. In this paper, a method for generating confluent hypergeometric beam by computer-generated hologram displayed on the spatial light modulator is presented. The hologram is formed by interference between a single ring Laguerre-Gaussian beam and a plane wave. The far-field Fraunhofer diffraction of this optical field transmitted from the hologram is the confluent hypergeometric beam. This beam is a circular symmetric beam which has a phase singularity, spiral wave front, zero-intensity center, and intrinsic orbital angular momentum. It is a new dark hollow vortex beam.
Perioperative management in orthotopic liver transplantation: results of an Italian national survey.
Biancofiore, G; Della Rocca, G
2012-06-01
No data are available on the perioperative approach during orthotopic liver transplantation (OLT) in Italy, apart from sporadically single center studies. The Department of Anesthesia cooperating with each Italian licensed OLT center received a questionnaire regarding preoperative evaluation, intraoperative anesthesia management, anesthetic drugs, blood components therapy, perioperative monitoring, supportive therapies, postoperative care, staff and organization. Twenty-two centers were surveyed and 17 returned the questionnaire. Center specific protocols for OLT anesthesia exist in 12 centers. Balanced anesthesia (volatile anesthetic agents and continuous infusion of opioids) is the standard anesthetic method. In 14 cases a thromboelastogram is available; one center reported not to have a rapid infusion device available. Pulmonary artery catheterization with a continuous cardiac output device is the most used hemodynamic monitoring system; in case of hemodynamic instability, the combination of dopamine/noradrenaline resulted the first choice before vascular clamping whereas noradrenaline alone after graft's reperfusion. No difference about which intraoperative phase is mostly characterized by the use of blood components was reported. Postoperative care is provided on anesthesiological-guided Intensive Care Units (ICU) in all the surveyed centers and in three centers the ICU is dedicated only to transplant patients. The results of this survey show that in Italy the perioperative management of patients undergoing OLT is not homogeneous. This database allows to debate on the best practices and pathways for perioperative management of these patients, and to stimulate future clinical trials aimed to assess the different component and steps forwards of the whole process.
Alexander, Paul E; Bonner, Ashley J; Agarwal, Arnav; Li, Shelly-Anne; Hariharan, Abishek; Izhar, Zain; Bhatnagar, Neera; Alba, Carolina; Akl, Elie A; Fei, Yutong; Guyatt, Gordon H; Beyene, Joseph
2016-06-01
Prior studies regarding whether single-center trial estimates are larger than multi-center are equivocal. We examined the extent to which single-center trials yield systematically larger effects than multi-center trials. We searched the 119 core clinical journals and the Cochrane Database of Systematic Reviews for meta-analyses (MAs) of randomized controlled trials (RCTs) published during 2012. In this meta-epidemiologic study, for binary variables, we computed the pooled ratio of ORs (RORs), and for continuous outcomes mean difference in standardized mean differences (SMDs), we conducted weighted random-effects meta-regression and random-effects MA modeling. Our primary analyses were restricted to MAs that included at least five RCTs and in which at least 25% of the studies used each of single trial center (SC) and more trial center (MC) designs. We identified 81 MAs for the odds ratio (OR) and 43 for the SMD outcome measures. Based on our analytic plan, our primary analysis (core) is based on 25 MAs/241 RCTs (binary outcome) and 18 MAs/173 RCTs (continuous outcome). Based on the core analysis, we found no difference in magnitude of effect between SC and MC for binary outcomes [RORs: 1.02; 95% confidence interval (CI): 0.83, 1.24; I(2) 20.2%]. Effect sizes were systematically larger for SC than MC for the continuous outcome measure (mean difference in SMDs: -0.13; 95% CI: -0.21, -0.05; I(2) 0%). Our results do not support prior findings of larger effects in SC than MC trials addressing binary outcomes but show a very similar small increase in effect in SC than MC trials addressing continuous outcomes. Authors of systematic reviews would be wise to include all trials irrespective of SC vs. MC design and address SC vs. MC status as a possible explanation of heterogeneity (and consider sensitivity analyses). Copyright © 2015 Elsevier Inc. All rights reserved.
Michetti, Christopher P; Fakhry, Samir M; Ferguson, Pamela L; Cook, Alan; Moore, Forrest O; Gross, Ronald
2012-05-01
Ventilator-associated pneumonia (VAP) rates reported by the National Healthcare Safety Network (NHSN) are used as a benchmark and quality measure, yet different rates are reported from many trauma centers. This multi-institutional study was undertaken to elucidate VAP rates at major trauma centers. VAP rate/1,000 ventilator days, diagnostic methods, institutional, and aggregate patient data were collected retrospectively from a convenience sample of trauma centers for 2008 and 2009 and analyzed with descriptive statistics. At 47 participating Level I and II centers, the pooled mean VAP rate was 17.2 versus 8.1 for NHSN (2006-2008). Hospitals' rates were highly variable (range, 1.8-57.6), with 72.3% being above NHSN's mean. Rates differed based on who determined the rate (trauma service, 27.5; infection control or quality or epidemiology, 11.9; or collaborative effort, 19.9) and the frequency with which VAP was excluded based on aspiration or diagnosis before hospital day 5. In 2008 and 2009, blunt trauma patients had higher VAP rates (17.3 and 17.6, respectively) than penetrating patients (11.0 and 10.9, respectively). More centers used a clinical diagnostic strategy (57%) than a bacteriologic strategy (43%). Patients with VAP had a mean Injury Severity Score of 28.7, mean Intensive Care Unit length of stay of 20.8 days, and a 12.2% mortality rate. 50.5% of VAP patients had a traumatic brain injury. VAP rates at major trauma centers are markedly higher than those reported by NHSN and vary significantly among centers. Available data are insufficient to set benchmarks, because it is questionable whether any one data set is truly representative of most trauma centers. Application of a single benchmark to all centers may be inappropriate, and reliable diagnostic and reporting standards are needed. Prospective analysis of a larger data set is warranted, with attention to injury severity, risk factors specific to trauma patients, diagnostic method used, VAP definitions and exclusions, and reporting guidelines. III, prognostic study.
Wang, Rui-Xia; Cai, Kang; Yin, Zhang-Qi; Long, Gui-Lu
2017-11-27
In a diamond, the mechanical vibration-induced strain can lead to interaction between the mechanical mode and the nitrogen-vacancy (NV) centers. In this work, we propose to utilize the strain-induced coupling for the quantum non-demolition (QND) single phonon measurement and memory in a diamond. The single phonon in a diamond mechanical resonator can be perfectly absorbed and emitted by the NV centers ensemble (NVE) with adiabatically tuning the microwave driving. An optical laser drives the NVE to the excited states, which have much larger coupling strength to the mechanical mode. By adiabatically eliminating the excited states under large detuning limit, the effective coupling between the mechanical mode and the NVE can be used for QND measurement of the single phonon state. Under realistic experimental conditions, we numerically simulate the scheme. It is found that the fidelity of the absorbing and emitting process can reach a much high value. The overlap between the input and the output phonon shapes can reach 98.57%.
Strategic Planning as a Tool for Achieving Alignment in Academic Health Centers
Higginbotham, Eve J.; Church, Kathryn C.
2012-01-01
After the passage of the Patient Protection and Affordable Care Act in March 2010, there is an urgent need for medical schools, teaching hospitals, and practice plans to work together seamlessly across a common mission. Although there is agreement that there should be greater coordination of initiatives and resources, there is little guidance in the literature to address the method to achieve the necessary transformation. Traditional approaches to strategic planning often engage a few leaders and produce a set of immeasurable initiatives. A nontraditional approach, consisting of a Whole-Scale (Dannemiller Tyson Associates, Ann Arbor, MI) engagement, appreciative inquiry, and a balanced scorecard can, more rapidly transform an academic health center. Using this nontraditional approach to strategic planning, increased organizational awareness was achieved in a single academic health center. Strategic planning can be an effective tool to achieve alignment, enhance accountability, and a first step in meeting the demands of the new landscape of healthcare. PMID:23303997
Nanomaterials Work at NASA-Johnson Space Center
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram
2005-01-01
Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.
Computational Issues in Damping Identification for Large Scale Problems
NASA Technical Reports Server (NTRS)
Pilkey, Deborah L.; Roe, Kevin P.; Inman, Daniel J.
1997-01-01
Two damping identification methods are tested for efficiency in large-scale applications. One is an iterative routine, and the other a least squares method. Numerical simulations have been performed on multiple degree-of-freedom models to test the effectiveness of the algorithm and the usefulness of parallel computation for the problems. High Performance Fortran is used to parallelize the algorithm. Tests were performed using the IBM-SP2 at NASA Ames Research Center. The least squares method tested incurs high communication costs, which reduces the benefit of high performance computing. This method's memory requirement grows at a very rapid rate meaning that larger problems can quickly exceed available computer memory. The iterative method's memory requirement grows at a much slower pace and is able to handle problems with 500+ degrees of freedom on a single processor. This method benefits from parallelization, and significant speedup can he seen for problems of 100+ degrees-of-freedom.
Secondary Writing Centers: Benefits of College and Secondary Collaboration.
ERIC Educational Resources Information Center
Brinkley, Ellen H.
Based on college writing center models, a number of high schools are deciding to establish writing centers, some of them in anticipation of competency tests in composition. Staffing can be the single most significant and expensive factor for secondary schools wanting to provide writing centers. Among the options for dealing with the staffing…
ERIC Educational Resources Information Center
Phipps, Christa Brown
2017-01-01
Low income male preschoolers with externalizing behaviors have continued behavior issues throughout elementary school, middle school, high school, and into adulthood and create stress for their teachers. Because of this, it is important to detect externalizing behaviors early and implement an appropriate intervention. A single subject reversal…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian
2016-08-09
We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less
Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector
NASA Astrophysics Data System (ADS)
Wei, Ming; Xu, Chun-Xiang; Qin, Fei-Fei; Gowri Manohari, Arumugam; Lu, Jun-Feng; Zhu, Qiu-Xiang
2017-07-01
ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the Al nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration of Al NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of Al NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, Al NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors. Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054, the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177, and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
Summary of compliant and multi-arm control at NASA. Langley Research Center
NASA Technical Reports Server (NTRS)
Harrison, Fenton W.
1992-01-01
The topics are presented in viewgraph form and include the: single arm system, single arm axis system, single arm control systems, single arm hand controller axis system, single arm position axis system, single arm vision axis system, single arm force axis system, multi-arm system, multi-arm axis system, and the dual arm hand control axis system with control signals.
NASA Astrophysics Data System (ADS)
Bolshedvorskii, S. V.; Vorobyov, V. V.; Soshenko, V. V.; Zeleneev, A.; Sorokin, V. N.; Smolyaninov, A. N.; Akimov, A. V.
2018-02-01
Quickly developing application of nitrogen-vacancy color centers in diamond sets demands on cheap and high optical and spin properties nanodiamonds. Among other types, detonation nanodiamonds are easiest for production but often show no NV color centers inside. In this work we show, that aggregates of detonation nanodiamonds could be as good, or even better in terms of brightness and spin properties, than more expensive single crystal nanodiamonds. This way aggregates of detonation nanodiamonds could efficiently serve as cheap and bright source of single photon radiation or sensitive element of biocompatible sensor.
Superresolution Microscopy of Single Rare-Earth Emitters in YAG and H 3 Centers in Diamond
NASA Astrophysics Data System (ADS)
Kolesov, R.; Lasse, S.; Rothfuchs, C.; Wieck, A. D.; Xia, K.; Kornher, T.; Wrachtrup, J.
2018-01-01
We demonstrate superresolution imaging of single rare-earth emitting centers, namely, trivalent cerium, in yttrium aluminum garnet crystals by means of stimulated emission depletion (STED) microscopy. The achieved all-optical resolution is ≈50 nm . Similar results were obtained on H 3 color centers in diamond. In both cases, STED resolution is improving slower than the conventional inverse square-root dependence on the depletion beam intensity. In the proposed model of this effect, the anomalous behavior is caused by excited state absorption and the interaction of the emitter with nonfluorescing crystal defects in its local surrounding.
Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus
2012-01-01
Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. Keywords: single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit PMID:22594601
Vermersch, Charlotte; Raia Barjat, Tiphaine; Perrot, Marianne; Lima, Suzanne; Chauleur, Céline
2016-04-01
The sentinel node has a fundamental role in the management of early breast cancer. Currently, the double detection of blue and radioisotope is recommended. But in common practice, many centers use a single method. However, with a single detection, the risk of false negatives and the identification failure rate increase to a significant extent and the number of sentinel lymph node detected and removed is not enough. Furthermore, the tracers used until now show inconveniences. The purpose of this work is to present a new method of detection, using the green of indocyanine coupled with fluorescence imaging, and to compare it with the already existing methods. The method combined by fluorescence and isotopic is reliable, sure, of fast learning and could constitute a good strategy of detection. The major interest is to obtain a satisfactory number of sentinel nodes. The profit could be even more important for overweight patients. The fluorescence used alone is at the moment not possible. Wide ranging studies are necessary. The FLUOTECH, randomized study of 100 patients, comparing the isotopic method of double isotope technique and fluorescence, is underway to confirm these data. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Quantification of protein interaction kinetics in a micro droplet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, L. L.; College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044; Wang, S. P., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu
Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the averagemore » SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.« less
Quantification of protein interaction kinetics in a micro droplet
NASA Astrophysics Data System (ADS)
Yin, L. L.; Wang, S. P.; Shan, X. N.; Zhang, S. T.; Tao, N. J.
2015-11-01
Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.
Scientist, Single Cell Analysis Facility | Center for Cancer Research
The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals
Jamshaid, Anila; Ather, M Hammad; Hussain, Ghazi; Khawaja, Karim B
2008-11-01
This study compared the efficacy and safety profile of electrohydraulic (EH) and electromagnetic (EM) lithotriptors in the treatment of 10- to 20-mm renal and proximal ureteric stones at a single center and by a single operator. Between January 2001 and December 2006, we sequentially treated patients meeting study inclusion criteria with MPL 9000 Dornier EH for the first 3 years, followed by the EM Siemens Modularis shockwave lithotripsy (SWL) unit. A single operator performed all SWL treatments under the supervision of an admitting urologist. We analyzed the demographic features and stone- and treatment-related parameters including complications for both groups. In each group, the stone-free rate and efficiency quotient was determined at 1-3 months. Of 274 patients, we sequentially treated 112 using the EH lithotriptor, and 162 the EM lithotriptor. The pre-SWL patients and stone-related parameters were similar in the two groups, except for diagnostic imaging modalities. The mean number of SWL sessions, need for ancillary procedure, retreatment rate, stone location, stone-free rate, and efficiency quotient were not significantly different between groups. The mean number of shockwaves required for complete fragmentation was 2977 and 6044 (P < .000) for the EH and EM groups, respectively. Single center, single operator experience with two types of lithotriptor indicated that both are equally efficacious, with similar safety profiles. The only significant difference was that the EH lithotriptor required fewer shockwaves for fragmentation.
Resonance fluorescence and quantum interference of a single NV center
NASA Astrophysics Data System (ADS)
Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.
2017-11-01
The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.
Mujtaba, Alhasan; Taher, Mohammed A; Hazza, Mazin A; Al-Rubaye, Hassan M; Kata, Asaad H; AbdulWahab, Hamid; AbdulBari, AbdulAmeer; AlRubay, Hayder K
2018-05-21
Patients undergoing coronary catheterization are at high risk of developing contrast-induced nephropathy (CIN) acute kidney injury (AKI). Several approaches have been supposed to limit such an effect but with mixed results or non-practical methods. Spironolactone is supposed to be effective as a nephroprotective agent in animal studies. This study will try to measure the effect of spironolactone on the incidence of CIN-AKI in patients undergoing coronary catheterization (angiography angioplasty). This study is a single-center, investigator-driven, double-blinded randomized controlled study in Iraq-Basra. More than 400 patients admitted for coronary angio unit in our center will be allocated in a 1:1 ratio to receive either spironolactone 200 mg single dose or placebo in addition to their usual premedication. Primary end point will be CIN defined as more than 25% or 0.3 mg/dl elevation in serum creatinine (S.Cr.) from baseline during the first 2-3 days after the procedure. We hope to identify or answer an important question regarding CIN in such high-risk patients. ClinicalTrials.gov Identifier, NCT03329443.
Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie
2015-11-04
Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.
Does the anthropometric model influence whole-body center of mass calculations in gait?
Catena, Robert D; Chen, Szu-Hua; Chou, Li-Shan
2017-07-05
Examining whole-body center of mass (COM) motion is one of method being used to quantify dynamic balance and energy during gait. One common method for estimating the COM position is to apply an anthropometric model to a marker set and calculate the weighted sum from known segmental COM positions. Several anthropometric models are available to perform such a calculation. However, to date there has been no study of how the anthropometric model affects whole-body COM calculations during gait. This information is pertinent to researchers because the choice of anthropometric model may influence gait research findings and currently the trend is to consistently use a single model. In this study we analyzed a single stride of gait data from 103 young adult participants. We compared the whole-body COM motion calculated from 4 different anthropometric models (Plagenhoef et al., 1983; Winter, 1990; de Leva, 1996; Pavol et al., 2002). We found that anterior-posterior motion calculations are relatively unaffected by the anthropometric model. However, medial-lateral and vertical motions are significantly affected by the use of different anthropometric models. Our findings suggest that the researcher carefully choose an anthropometric model to fit their study populations when interested in medial-lateral or vertical motions of the COM. Our data can provide researchers a priori information on the model determination depending on the particular variable and how conservative they may want to be with COM comparisons between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lv, Houning; Zhao, Ningning; Zheng, Zhongqing; Wang, Tao; Yang, Fang; Jiang, Xihui; Lin, Lin; Sun, Chao; Wang, Bangmao
2017-05-01
Peroral endoscopic myotomy (POEM) has emerged as an advanced technique for the treatment of achalasia, and defining the learning curve is mandatory. From August 2011 to June 2014, two operators in our institution (A&B) carried out POEM on 35 and 33 consecutive patients, respectively. Moving average and cumulative sum (CUSUM) methods were used to analyze the POEM learning curve for corrected operative time (cOT), referring to duration of per centimeter myotomy. Additionally, perioperative outcomes were compared among distinct learning curve phases. Using the moving average method, cOT reached a plateau at the 29th case and at the 24th case for operators A and B, respectively. CUSUM analysis identified three phases: initial learning period (Phase 1), efficiency period (Phase 2) and mastery period (Phase 3). The relatively smooth state in the CUSUM graph occurred at the 26th case and at the 24th case for operators A and B, respectively. Mean cOT of distinct phases for operator A were 8.32, 5.20 and 3.97 min, whereas they were 5.99, 3.06 and 3.75 min for operator B, respectively. Eckardt score and lower esophageal sphincter pressure significantly decreased during the 1-year follow-up period. Data were comparable regarding patient characteristics and perioperative outcomes. This single-center study demonstrated that expert endoscopists with experience in esophageal endoscopic submucosal dissection reached a plateau in learning of POEM after approximately 25 cases. © 2016 Japan Gastroenterological Endoscopy Society.
Inaty, Hanine; Folch, Erik; Berger, Robert; Fernandez-Bussy, Sebastian; Chatterji, Sumit; Alape, Daniel; Majid, Adnan
2016-06-01
Cryodebridement (CD) refers to the removal of obstructive material from the lumen of the tracheobronchial tree by freezing with a cryoprobe, which is usually inserted through a flexible bronchoscope. This method of achieving instant recanalization of airways has been established for over 20 years, but published experience comprises limited case series. This study describes a single large-volume referral center experience, including clinical outcomes and safety profile. Electronic medical records of 156 patients who underwent bronchoscopic CD between December 2007 and March 2012 as the primary method to relieve airway obstruction were reviewed retrospectively. The most frequent cause of airway obstruction was malignancy (n = 88), with non-small-cell lung cancer and metastatic renal cell carcinoma being the most common etiologies. The site of obstruction was localized to the central airways in 63 patients (40%) and the distal airways in 44 patients (28%), and it was diffuse in 49 patients (32%). Bronchoscopic airway patency was achieved in 95% of patients, with the highest success rates found in those with obstruction localized in the central airways. Improvement in symptoms occurred in 118 (82%) of 144 symptomatic patients. Serious complications were reported in 17 patients (11%) and included respiratory distress, severe bleeding, airway injury, and hemodynamic instability. All patients responded to treatment, and no intra- or postoperative deaths were reported. CD, when used alone or in combination with other endoscopic treatment modalities, appears to be safe and effective in treating endoluminal airway obstruction.
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano; Rocca, Michele; Boaga, Jacopo
2014-05-01
This presentation aims to outline the preliminary findings related to an extensive seismic survey conducted in the historical center of Venice, Italy. The survey was conducted via noninvasive and low-cost seismic techniques based on surface waves analysis and microtremor methods, mainly using single station horizontal to vertical spectral ratio techninques (HVSR) and multichannel analysis of surface waves in passive (ReMI) and active (MASW) configurations. The importance and the fragility of the cultural heritage of Venice, coupled with its peculiar geological and geotechnical characteristics, stress the importance of a good knowledge of its geological architecture and seismic characteristics as an opportunity to improve restoration and conservation planning. Even if Venice is located in a relatively low seismic hazard zone, a local characterization of soil resonance frequencies and surficial shear waves velocities could improve the planning of engineering interventions, furnishing important information on possible local effects related to seismic amplification and possible coupling within buildings and soil resonance frequencies. In the specific we collected more than 50 HVSR single station noise measurements and several passive and active multichannel analysis of surface waves located in the historical center. In this work we report the characteristics of the conducted seismic surveys (instrumentation, sampling geometry, etc.) and the preliminary findings of our analysis. Moreover, we discuss briefly the practical issues, mainly of logistic nature, of conducting this kind of surveys in a peculiar and crowed historical center as represented by Venice urban contest. Acknowledgments Instrumentation acquired in relation to the project co-financed by Regione Veneto, POR-CRO, FESR, 2007-2013, action 1.1.1. "Supporto ad attività di ricerca, processi e reti di innovazione e alla creazione di imprese in settori a elevato contenuto tecnologico"
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
Ji, Zhicheng; Ji, Hongkai
2016-01-01
When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. PMID:27179027
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.
Ji, Zhicheng; Ji, Hongkai
2016-07-27
When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... Denver, Kempe Center for the Prevention and Treatment of Child Abuse & Neglect AGENCY: Children's Bureau... Colorado Denver, Kempe Center for the Prevention and Treatment of Child Abuse & Neglect. SUMMARY: The..., Kempe Center for the Prevention and Treatment of Child Abuse & Neglect (Kempe Center), Denver, CO, an...
Expression cloning of human B cell immunoglobulins.
Wardemann, Hedda; Kofer, Juliane
2013-01-01
The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xufan; Budai, John D.; Liu, Feng
2013-01-01
Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature <4000 K) with good color rendition (i.e., color rendering index >80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors’ emission spectrum. Here, we report a new yellow Ba 0.93Eu 0.07Al 2O 4 phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature <4000 K and color rendering index >80more » were readily achieved when combining the Ba 0.93Eu 0.07Al 2O 4 phosphor with a blue light-emitting diode (440–470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index >80) can be achieved based on single-phosphor, single-emitting-center conversion.« less
Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves
NASA Astrophysics Data System (ADS)
Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K. A.; Quinto-Su, P. A.; Pezeril, T.
2018-05-01
In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.
Generation of three wide frequency bands within a single white-light cavity
NASA Astrophysics Data System (ADS)
Othman, Anas; Yevick, David; Al-Amri, M.
2018-04-01
We theoretically investigate the double-Λ scheme inside a Fabry-Pérot cavity employing a weak probe beam and two strong driving fields together with an incoherent pumping mechanism. By generating analytical expressions for the susceptibility and applying the white-light cavity conditions, we devise a procedure that reaches the white-light condition at a smaller gas density than the values typically cited in similar previous studies. Further, when the intensities of the two driving fields are equal, a single giant white band is obtained, while for unequal driving fields three white bands can be present in the cavity. Two additional techniques are then advanced for generating three white bands and a method is described for displacing the center frequency of the bands. Finally, some potential applications are suggested.
Library preparation and data analysis packages for rapid genome sequencing.
Pomraning, Kyle R; Smith, Kristina M; Bredeweg, Erin L; Connolly, Lanelle R; Phatale, Pallavi A; Freitag, Michael
2012-01-01
High-throughput sequencing (HTS) has quickly become a valuable tool for comparative genetics and genomics and is now regularly carried out in laboratories that are not connected to large sequencing centers. Here we describe an updated version of our protocol for constructing single- and paired-end Illumina sequencing libraries, beginning with purified genomic DNA. The present protocol can also be used for "multiplexing," i.e. the analysis of several samples in a single flowcell lane by generating "barcoded" or "indexed" Illumina sequencing libraries in a way that is independent from Illumina-supported methods. To analyze sequencing results, we suggest several independent approaches but end users should be aware that this is a quickly evolving field and that currently many alignment (or "mapping") and counting algorithms are being developed and tested.
Robust techniques for polarization and detection of nuclear spin ensembles
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2017-11-01
Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.
Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei
2016-03-11
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.
Thomas, John Meurig; Raja, Robert
2008-06-01
In the mid-1990s, it became possible to prepare high-area silicas having pore diameters controllably adjustable in the range ca. 20-200 Å. Moreover, the inner walls of these nanoporous solids could be functionalized to yield single-site, chiral, catalytically active organometallic centers, the precise structures of which could be determined using in situ X-ray absorption and FTIR and multinuclear magic angle spinning (MAS) NMR spectroscopy. This approach opened up the prospect of performing heterogeneous enantioselective conversions in a novel manner, under the spatial restrictions imposed by the nanocavities within which the reactions occur. In particular, it suggested an alternative method for preparing pharmaceutically and agrochemically useful asymmetric products by capitalizing on the notion, initially tentatively perceived, that spatial confinement of prochiral reactants (and transition states formed at the chiral active center) would provide an altogether new method of boosting the enantioselectivity of the anchored chiral catalyst. Initially, we anchored chiral single-site heterogeneous catalysts to nanopores covalently via a ligand attached to Pd(II) or Rh(I) centers. Later, we employed a more convenient and cheaper electrostatic method, relying in part on strong hydrogen bonding. This Account provides many examples of these processes, encompassing hydrogenations, oxidations, and aminations. Of particular note is the facile synthesis from methyl benzoylformate of methyl mandelate, which is a precursor in the synthesis of pemoline, a stimulant of the central nervous system; our procedure offers several viable methods for reducing ketocarboxylic acids. In addition to relying on earlier (synchrotron-based) in situ techniques for characterizing catalysts, we have constructed experimental procedures involving robotically controlled catalytic reactors that allow the kinetics of conversion and enantioselectivity to be monitored continually, and we have access to sophisticated, high-sensitivity chiral chromatographic facilities and automated high-throughput combinatorial test rigs so as to optimize the reaction conditions (e.g., H(2) pressure, temperature, time on-stream, pH, and choice of ligand and central metal ion) for high enantioselectivity. This Account reports our discoveries of selective hydrogenations and aminations of synthetic, pharmaceutical, and biological significance, and the findings of other researchers who have achieved similar success in oxidations, dehydrations, cyclopropanations, and hydroformylations. Although the practical advantages and broad general principles governing the enhancement of enantioselectivity through spatial confinement are clear, we require a deeper theoretical understanding of the details pertaining to the phenomenology involved, particularly through molecular dynamics simulations. Ample scope exists for the general exploitation of nanospace in asymmetric hydrogenations with transition metal complexes and for its deployment for the formation of C-N, C-C, C-O, C-S, and other bonds.
Tran, Jacqueline; Rice, Anthony J; Main, Luana C; Gastin, Paul B
2014-04-01
The systematic management of training requires accurate training load measurement. However, quantifying the training of elite Australian rowers is challenging because of (a) the multicenter, multistate structure of the national program; (b) the variety of training undertaken; and (c) the limitations of existing methods for quantifying the loads accumulated from varied training formats. Therefore, the purpose of this project was to develop a new measure for quantifying training loads in rowing (the T2minute method). Sport scientists and senior coaches at the National Rowing Center of Excellence collaborated to develop the measure, which incorporates training duration, intensity, and mode to quantify a single index of training load. To account for training at different intensities, the method uses standardized intensity zones (T zones) established at the Australian Institute of Sport. Each zone was assigned a weighting factor according to the curvilinear relationship between power output and blood lactate response. Each training mode was assigned a weighting factor based on whether coaches perceived it to be "harder" or "easier" than on-water rowing. A common measurement unit, the T2minute, was defined to normalize sessions in different modes to a single index of load; one T2minute is equivalent to 1 minute of on-water single scull rowing at T2 intensity (approximately 60-72% VO2max). The T2minute method was successfully implemented to support national training strategies in Australian high performance rowing. By incorporating duration, intensity, and mode, the T2minute method extends the concepts that underpin current load measures, providing 1 consistent system to quantify loads from varied training formats.
Levin, Amanda B; Fisher, Kiondra R; Cato, Krista D; Zurca, Adrian D; October, Tessie W
2015-11-01
To identify areas for improvement in family-centered rounds from both the family and provider perspectives. Prospective, cross-sectional mixed-methods study, including an objective measure (direct observation of family-centered rounds) and subjective measures (surveys of English-speaking families and providers) of family-centered rounds. PICU in a single, tertiary children's hospital. Families of children admitted to the PICU, physicians, and nurses. None. Two hundred thirty-two family-centered round encounters were observed over a 10-week period. Family-centered round encounters averaged 10.5 minutes per child. Multivariable regression analysis revealed that family presence was independently associated with length of family-centered rounds (p < 0.002) despite family talk time accounting for an average of 25 seconds (4%) of the encounter. Non-English-speaking families were less likely to attend family-centered rounds compared with English-speaking families even when physically present at the patient's bedside (p < 0.001). Most commonly families and providers agreed that family-centered rounds keep the family informed and reported positive statements about family presence on family-centered rounds; however, PICU fellows did not agree that families provided pertinent information and nurses reported that family presence limited patient discussions. The primary advice families offered providers to improve family-centered rounds was to be more considerate and courteous, including accommodating family schedules, minimizing distractions, and limiting computer viewing. Family presence increased the length of family-centered rounds despite a small percentage of time spoken by families, suggesting longer rounds are due to changes in provider behavior when families are present. Also, non-English-speaking families may need more support to be able to attend and benefit from family-centered rounds. Lastly, in an era of full family-centered rounds acceptance, families and most providers, except fellows, report benefit from family presence during family-centered rounds. However, providers should be aware of the perception of their behaviors to optimize the experience for families.
Williams, Richard V; Ravishankar, Chitra; Zak, Victor; Evans, Frank; Atz, Andrew M; Border, William L; Levine, Jami; Li, Jennifer S; Mahony, Lynn; Mital, Seema; Pearson, Gail D; Prakash, Ashwin; Hsu, Daphne T
2010-01-01
Although congenital heart disease is associated with low birth weight and prematurity, there is little information about these birth outcomes in infants with single ventricle physiology. We describe the birth outcomes (i.e., gestational age and birth weight) in neonates with single ventricle physiology screened for enrollment in the Pediatric Heart Network's Infant Single Ventricle Trial, compare these outcomes with US norms, and examine the association of birth outcomes with anatomic diagnosis and race. All neonates with single ventricle physiology presenting to Infant Single Ventricle Trial centers were screened for enrollment. Demographic data and anatomic diagnoses were obtained from medical records. A total of 1245 neonates with single ventricle physiology were screened at 10 centers (63 to 266 per center). Diagnoses included hypoplastic left heart syndrome in 49%, unbalanced atrioventricular septal defect in 12%, and tricuspid atresia in 9%. Preterm birth occurred in 16% of neonates with single ventricle physiology vs. 12% in normal neonates (P < .001), low birth weight (<2.5 kg) in 18% vs. 8% in normals (P < .001), and small for gestational age (<10th percentile by definition) in 22% vs. 10% in normals (P < .001). A genetic syndrome was reported in 8%. The percentage of preterm birth, low birth weight, and small for gestational age was similar between screened neonates with and without hypoplastic left heart syndrome. In this large, contemporary cohort of neonates with single ventricle physiology, rates of preterm birth, low birth weight, and small for gestational age were higher than in the general population, but similar between screened neonates with and without hypoplastic left heart syndrome.
Method for producing carbon nanotubes
Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM
2006-02-14
Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.
NASA Technical Reports Server (NTRS)
Rogallo, Vernon L; Yaggy, Paul F; Mccloud, John L , III
1956-01-01
A simplified procedure is shown for calculating the once-per-revolution oscillating aerodynamic thrust loads on propellers of tractor airplanes at zero yaw. The only flow field information required for the application of the procedure is a knowledge of the upflow angles at the horizontal center line of the propeller disk. Methods are presented whereby these angles may be computed without recourse to experimental survey of the flow field. The loads computed by the simplified procedure are compared with those computed by a more rigorous method and the procedure is applied to several airplane configurations which are believed typical of current designs. The results are generally satisfactory.
Behind the Mosaic: Insurgent Centers of Gravity and Counterinsurgency
2011-12-01
centers of gravity vary by time, space , and purpose. While Clausewitz’s key statement on a center of gravity defines a single center of gravity, he...explicitly or implicitly, that multiple centers of gravity can vary with time, space , and purpose. Shimon Naveh Retired Israeli Reserve Brigadier...century military forces, which in turn expanded operations in time and space . The integration of operations distributed in time and space distributed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhenbin
2012-01-01
We present a measurement of the single top quark cross section in the lepton plus jets final state using an integrated luminosity corresponding to 7.5 fb -1 of p\\bar p collision data collected by the Collider Detector at Fermilab. The single top candidate events are identified by the signature of a charged lepton, large missing transverse energy, and two or three jets with at least one of them identified as originating from a bottom quark. A new Monte Carlo generator POWHEG is used to model the single top quark production processes, which include s-channel, t-channel, and Wt-channel. A neural network multivariate method is exploited to discriminate the single top quark signal from the comparatively large backgrounds. We measure a single top production cross section ofmore » $$3.04^{+0.57}_{-0.53} (\\mathrm{stat.~+~syst.})$$ pb assuming $$m_{\\rm top}=172.5$$~GeV/$c^2$. In addition, we extract the CKM matrix element value $$|V_{tb}|=0.96\\pm 0.09~(\\mathrm{stat.~+~syst.})\\ ± 0.05~(\\mathrm{theory})$$ and set a lower limit of $$|V_{tb}|>0.78$$ at the 95% credibility level.« less
Kalinowski, Jarosław A.; Makal, Anna; Coppens, Philip
2011-01-01
A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license. PMID:22199400
Baffelli, Renata; Notarangelo, Lucia D; Imberti, Luisa; Hershfield, Michael S; Serana, Federico; Santisteban, Ines; Bolda, Federica; Porta, Fulvio; Lanfranchi, Arnalda
2015-10-01
We carried out a retrospective analysis of 27 patients with Adenosine Deaminase (ADA) deficiency diagnosed in a single center from 1997 to the 2013, for evaluating whether data regarding types of disease-inducing mutations, biochemical and immunological features as well as clinical outcomes of patients treated with enzyme replacement or transplantation, were comparable to those obtained in multicenter studies. The ADA deficiency diagnosis was performed with biochemical, immunological and molecular techniques. Ten patients treated with hematopoietic stem cell transplantation and three in treatment with enzyme replacement were followed up in our center. Twenty-four different mutations were identified and five were not previously reported. Identical mutations were found among patients from the same Romani ethnic group or from the same geographical region. A more rapid recovery was observed in enzyme replacement treated patients in comparison with those transplanted that, however, showed a continuous and long-lasting improvement both in terms of immune and metabolic recovery. The data obtained in our single center are comparable with those that have been reported in multicenter surveys.
ERIC Educational Resources Information Center
PEPNet, 2009
2009-01-01
PEPNet's "Perspectives" is the collaborative newsletter of the four PEPNet regional centers. This newsletter combines each centers individual strengths into a single resource that can be used on a national level. The issue focuses on the following topics: (1) Web Tool Locates Needed Resources; (2) Family Center on Technology and Disability (Ana…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimo-Oka, T.; Miwa, S.; Suzuki, Y.
2015-04-13
Individual nuclear spins in diamond can be optically detected through hyperfine couplings with the electron spin of a single nitrogen-vacancy (NV) center; such nuclear spins have outstandingly long coherence times. Among the hyperfine couplings in the NV center, the nearest neighbor {sup 13}C nuclear spins have the largest coupling strength. Nearest neighbor {sup 13}C nuclear spins have the potential to perform fastest gate operations, providing highest fidelity in quantum computing. Herein, we report on the control of coherences in the NV center where all three nearest neighbor carbons are of the {sup 13}C isotope. Coherence among the three and fourmore » qubits are generated and analyzed at room temperature.« less
Comparison of different measurement methods for transmittance haze
NASA Astrophysics Data System (ADS)
Yu, Hsueh-Ling; Hsaio, Chin-Chai
2009-08-01
Transmittance haze is increasingly important to the LCD and solar cell industry. Most commercial haze measurement instruments are designed according to the method recommended in the documentary standards like ASTM D 1003 (ASTM 2003 Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics), JIS K 7361 (JIS 1997 Plastics—Determination of the Total Luminous Transmittance of Transparent Materials—Part 1: Single Beam Instrument) and ISO 14782 (ISO 1997 Plastics—Determination of Haze of Transparent Materials). To improve the measurement accuracy of the current standards, a new apparatus was designed by the Center for Measurement Standards (Yu et al 2006 Meas. Sci. Technol. 17 N29-36). Besides the methods mentioned above, a double-beam method is used in the design of some instruments. There are discrepancies between the various methods. But no matter which method is used, a white standard is always needed. This paper compares the measurement results from different methods, presents the effect of the white standard, and analyses the measurement uncertainty.
Massage Therapy in Outpatient Cancer Care: A Metropolitan Area Analysis.
Cowen, Virginia S; Miccio, Robin Streit; Parikh, Bijal
2017-10-01
Massage offers cancer patients general quality of life benefits as well as alleviation of cancer-related symptoms/cancer-treatment-related symptoms including pain, anxiety, and fatigue. Little is known about whether massage is accessible to cancer patients who receive treatment in the outpatient setting and how massage is incorporated into the overall cancer treatment plan. Outpatient cancer centers (n = 78) in a single metropolitan area were included this mixed-methods project that included a systematic analysis of website information and a telephone survey. Massage was offered at only 40 centers (51.3% of total). A range of massage modalities were represented, with energy-based therapies (Reiki and Therapeutic Touch) most frequently provided. Although massage therapists are licensed health care providers in the states included in this analysis, massage was also provided by nurses, physical therapists, and other health care professionals.
NASA Astrophysics Data System (ADS)
Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.
2008-12-01
This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.
Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A
2008-12-28
This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.
The application of an atomistic J-integral to a ductile crack.
Zimmerman, Jonathan A; Jones, Reese E
2013-04-17
In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.
Finding a Child Care Solution for the Single Parent during Mobilization.
1987-04-01
Major Taylor is currently a student at the Air Command and Staff College. Major Taylor has masters degrees in business management and international...center family day care centers are especially applicable to the needs of the PRO" single parent during mobility. Recommendations of the study are to...recommended to implement family day care as soon as possible. 20. DISTRISUTION/AVAILASILITY OF AB3STRACT 21 ABSTRACT SECURITY CLASSIFICATION
Perspectives: When the Centers Do Not Hold
ERIC Educational Resources Information Center
Rosen, Lawrence
2010-01-01
During the last twenty years or so, the number of endowed centers at many universities has increased enormously--to as many as fifty or more at a single institution. There are centers for every region (or sub-region) of the world and every ethnic/religious group (or sub-group) known to history. There are centers for the study of illness and…
Faklaris, Orestis; Garrot, Damien; Joshi, Vandana; Druon, Frédéric; Boudou, Jean-Paul; Sauvage, Thierry; Georges, Patrick; Curmi, Patrick A; Treussart, François
2008-12-01
Diamond nanoparticles are promising photoluminescent probes for tracking intracellular processes, due to embedded, perfectly photostable color centers. In this work, the spontaneous internalization of such nanoparticles (diameter 25 nm) in HeLa cancer cells is investigated by confocal microscopy and time-resolved techniques. Nanoparticles are observed inside the cell cytoplasm at the single-particle and single-color-center level, assessed by time-correlation intensity measurements. Improvement of the nanoparticle signal-to-noise ratio inside the cell is achieved using a pulsed-excitation laser and time-resolved detection taking advantage of the long radiative lifetime of the color-center excited state as compared to cell autofluorescence. The internalization pathways are also investigated, with endosomal marking and colocalization analyses. The low colocalization ratio observed proves that nanodiamonds are not trapped in endosomes, a promising result in prospect of drug delivery by these nanoparticles. Low cytotoxicity of these nanoparticles in this cell line is also shown.
"The Single-Parent Family" and Welfare Reform: Is Marriage the Solution?
ERIC Educational Resources Information Center
Fitchen, Janet M.
1995-01-01
Many proposals for welfare reform center on the issue of marriage-based families versus single-parent families and oversimplify the relationship between single-parenting and poverty. Research done in upstate rural New York among low-income families showed that personal and economic characteristics of married and single mothers were similar as to…
Accelerated aggregation of donor nitrogen in diamond containing NV centers
NASA Astrophysics Data System (ADS)
Lobanov, Sergey; Vins, Victor; Yelisseev, Alexander; Afonin, Dmitry; Blinkov, Alexander; Maximov, Yuriy
2010-05-01
The aggregation of donor nitrogen (C centers) into nitrogen pairs (A centers) is considered to be a second-order chemical reaction and the kinetics of this reaction can be written as follows: Kt = 1-- -1- Ct C0 where K is the aggregation rate constant that depends exponentially on temperature and activation energy K = Aexp (- Ea-kT ) and C0 and CT are C center concentrations before and after the aggregation. The activation energy Ea in natural diamonds is equal to 5±0.3 eV. However, it was shown by Vins (2004) that Ea varied in synthetic diamonds depending on Ni concentration from 3 to 6 eV; and in synthetic diamonds containing cobalt the activation energy exceeded 4 eV. The aggregation rate of C centers also increased dramatically in diamonds irradiated with high-energy electrons (Collins, 1980). An HPHT diamond single crystal grown in the Fe-Co-C system using the TGG method was studied. The initial C center concentration determined from the intensity of the 1130 cm-1 IR absorption band was equal to 118 ppm. In order to determine the influence of NV centers on the activation energy of aggregation, the crystal was at first irradiated with high-energy electrons (3MeV, 2×1018cm-2) and annealed in a quartz ampoule in vacuum (8000C, 2 hrs). This led to the formation of over 5 ppm of NV centers. After that the sample was annealed at high temperatures in the argon flow (15300C, 30 minutes). The IR absorption spectra revealed an
Pan, Yong-Le; Hill, Steven C; Coleman, Mark
2012-02-27
A new method is demonstrated for optically trapping micron-sized absorbing particles in air and obtaining their single-particle Raman spectra. A 488-nm Gaussian beam from an Argon ion laser is transformed by conical lenses (axicons) and other optics into two counter-propagating hollow beams, which are then focused tightly to form hollow conical beams near the trapping region. The combination of the two coaxial conical beams, with focal points shifted relative to each other along the axis of the beams, generates a low-light-intensity biconical region totally enclosed by the high-intensity light at the surface of the bicone, which is a type of bottle beam. Particles within this region are trapped by the photophoretic forces that push particles toward the low-intensity center of this region. Raman spectra from individual trapped particles made from carbon nanotubes are measured. This trapping technique could lead to the development of an on-line real-time single-particle Raman spectrometer for characterization of absorbing aerosol particles.
Morphology and anisotropy of thin conductive inkjet printed lines of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Torres-Canas, Fernando; Blanc, Christophe; Mašlík, Jan; Tahir, Said; Izard, Nicolas; Karasahin, Senguel; Castellani, Mauro; Dammasch, Matthias; Zamora-Ledezma, Camilo; Anglaret, Eric
2017-03-01
We show that the properties of thin conductive inkjet printed lines of single-walled carbon nanotubes (SWCNT) can be greatly tuned, using only a few deposition parameters. The morphology, anisotropy and electrical resistivity of single-stroke printed lines are studied as a function of ink concentration and drop density. An original method based on coupled profilometry-Raman measurements is developed to determine the height, mass, orientational order and density profiles of SWCNT across the printed lines with a micrometric lateral resolution. Height profiles can be tuned from ‘rail tracks’ (twin parallel lines) to layers of homogeneous thickness by controlling nanotube concentration and drop density. In all samples, the nanotubes are strongly oriented parallel to the line axis at the edges of the lines, and the orientational order decreases continuously towards the center of the lines. The resistivity of ‘rail tracks’ is significantly larger than that of homogeneous deposits, likely because of large amounts of electrical dead-ends.
NASA Astrophysics Data System (ADS)
Ge, Wenchao; Bhattacharya, M.
2016-10-01
Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.
Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.
Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W
2016-08-01
The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.
Cherian, Mathew P; Yadav, Manish Kumar; Mehta, Pankaj; Vijayan, K; Arulselvan, V; Jayabalan, Suresh
2014-01-01
Flow diversion is a novel method of therapy wherein an endoluminal sleeve, the flow diverter stent is placed across the neck of complex aneurysms to curatively reconstruct abnormal vasculature. We present the first Indian single center experience with the pipeline embolization device (PED) and 6 months follow-up results of 5 patients. Five complex or recurrent intracranial aneurysms in five patients were treated with PED. The patients were followed-up with magnetic resonance angiography (MRA) after 4 weeks and conventional angiography after 6 months. Feasibility, complications, clinical outcome, early 1-month MRA and 6 months conventional angiographic follow-up results were analyzed. Of the five aneurysms treated, four were in the anterior circulation and one in the posterior circulation. All five patients were treated with a single PED in each, and additionally coils were used in one patient. At 1-month MRA follow-up, complete occlusion was seen in 2 (40%) of the five cases. Post 6 months conventional angiography showed complete occlusion of the aneurysm sac in all five cases (100%). Side branch ostia were covered in three patients, all of which were patent (100%). There was no incidence of major neurological morbidity or mortality. One patient (20%) who had basilar top aneurysm experienced minor neurological disability after 5 days which partially improved. Pipeline embolization device for complex and recurrent aneurysms is technically feasible, safe, offers low complication rate, and definitive vascular reconstruction. PED can be used without fear of occlusion of covered eloquent side branches and perforators.
Edinburgh, Laurel; Pape-Blabolil, Julie; Harpin, Scott B; Saewyc, Elizabeth
2014-09-01
The aim of this study was to describe contextual events, abuse experiences, and disclosure processes of adolescents who presented to a hospital-based Child Advocacy Center for medical evaluation and evidentiary collection as indicated after experiencing multiple perpetrator rape during a single event (n=32) and to compare these findings to a group of single perpetrator sexual assaults (n=534). This study used a retrospective mixed-methods design with in-depth, forensic interviews and complete physical examinations of gang-raped adolescents. Patients ranged from 12 to 17 years (M=14 years). Girls who experienced multiple perpetrator rape during a single event were more likely to have run away, to have drunk alcohol in the past month, and to have participated in binge drinking in the past 2 weeks. Acute presentation of these victims were rare but 30% had hymenal transections and 38% had sexually transmitted infections (STIs). Forensic interviews revealed alcohol was a common weapon used by offenders, and its use resulted in victims experiencing difficulty in remembering and reporting details for police investigation or physical and mental health care. Most victims were raped at parties they attended with people they thought they could trust, and they felt let down by witnesses who could have helped but did not intervene. Although relatively rare, multiple perpetrator rape during a single event is a type of severe sexual assault experience and has significant risks for deleterious health outcomes. These victims require health care by trained providers to diagnose physical findings, treat STIs, screen for trauma, and support victims. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lee, Yung-Heng; Chung, Chi-Jen; Wang, Chih-Wei; Peng, Yao-Te; Chang, Chih-Han; Chen, Chih-Hsien; Chen, Yen-Nien; Li, Chun-Ting
2016-04-01
This study investigated the biomechanical response of porous cages and lumbar spine segments immediately after surgery and after bone fusion, in addition to the long-term effects of various posterior lumbar interbody fusion (PLIF) techniques, by using the finite element method. Lumbar L3-L4 models based on three PLIF techniques (a single cage at the center of the intervertebral space, a single cage half-anterior to the intervertebral space, and two cages bilateral to the intervertebral space) with and without bone ingrowth were used to determine the biomechanical response of porous cages and lumbar segments instrumented with porous titanium cages (cage porosity=50%, pore diameter=1mm). The results indicated that bone fusion enhanced the stability of the lumbar segments with porous cages without any posterior instrumentation and reduced the peak von Mises stress in the cortical bones and porous cages. Two cages placed bilateral to the intervertebral space achieved the highest structural stability in the lumbar segment and lowest von Mises stress in the cages under both bone fusion conditions. Under identical loading (2-Nm), the range of motion in the single cage at the center of the intervertebral space with bone fusion decreased by 11% (from 1.18° to 1.05°) during flexion and by 66.5% (from 4.46° to 1.5°) during extension in the single cage half-anterior to the intervertebral space with bone fusion compared with no-fusion models. Thus, two porous titanium cages with 50% porosity can achieve high stability of a lumbar segment with PLIF. If only one cage is available, placing the cage half-anterior to the intervertebral space is recommended for managing degenerated lumbar segments. Copyright © 2016 Elsevier Ltd. All rights reserved.
The association between cecal insertion time and colorectal neoplasm detection
2013-01-01
Background Information on the impact of cecal insertion time on colorectal neoplasm detection is limited. Our objective was to determine the association between cecal insertion time and colorectal neoplasm detection rate in colonoscopy screening. Methods We performed a cross-sectional study of 12,679 consecutive subjects aged 40–79 years undergoing screening colonoscopy in routine health check-ups at the Center for Health Promotion of the Samsung Medical Center from December 2007 to June 2009. Fixed effects logistic regression conditioning on colonoscopist was used to eliminate confounding due to differences in technical ability and other characteristics across colonoscopists. Results The mean cecal insertion time was 5.9 (SD, 4.4 minutes). We identified 4,249 (33.5%) participants with colorectal neoplasms, of whom 1,956 had small single adenomas (<5 mm), 595 had medium single adenomas (5–9 mm), and 1,699 had multiple adenomas or advanced colorectal neoplasms. The overall rates of colorectal neoplasm detection by quartiles of cecal insertion time were 36.8%, 33.4%, 32.7%, and 31.0%, respectively (p trend <0.001).The odds for small single colorectal adenoma detection was 16% lower (adjusted OR 0.84; 95% CI 0.71 to 0.99) in the fourth compared to the first quartile of insertion time (p trend 0.005). Insertion time was not associated with the detection rate of single adenomas ≥5 mm, multiple adenomas or advanced colorectal neoplasms. Conclusion Shorter insertion times were associated with increased rates of detection of small colorectal adenomas <5 mm. Cecal insertion time may be clinically relevant as missed small colorectal adenomas may progress to more advanced lesions. PMID:23915303
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Anderson, Bernhard H.
2009-01-01
The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.
Coe, Ryan L; Seibel, Eric J
2013-09-01
We present theoretical and experimental results of axial displacement of objects relative to a fixed condenser focal plane (FP) in optical projection tomographic microscopy (OPTM). OPTM produces three-dimensional, reconstructed images of single cells from two-dimensional projections. The cell rotates in a microcapillary to acquire projections from different perspectives where the objective FP is scanned through the cell while the condenser FP remains fixed at the center of the microcapillary. This work uses a combination of experimental and theoretical methods to improve the OPTM instrument design.
Multi-Institution Research Centers: Planning and Management Challenges
ERIC Educational Resources Information Center
Spooner, Catherine; Lavey, Lisa; Mukuka, Chilandu; Eames-Brown, Rosslyn
2016-01-01
Funding multi-institution centers of research excellence (CREs) has become a common means of supporting collaborative partnerships to address specific research topics. However, there is little guidance for those planning or managing a multi-institution CRE, which faces specific challenges not faced by single-institution research centers. We…
77 FR 22326 - Board of Scientific Counselors, National Center for Health Statistics, (BSC, NCHS)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Board of...) of the Federal Advisory Committee Act (Pub. L. 92-463), the Centers for Disease Control and..., and organizational affiliation of the presenter. Written comments should not exceed five single-spaced...
Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.
Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline
2012-05-17
The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit.
Photoredox Generated Radicals in Csp2-Csp3 Bond Construction
NASA Astrophysics Data System (ADS)
Primer, David Neal
The routine application of Csp3-hybridized nucleophiles in cross-coupling has been an ongoing pursuit in the agrochemical, pharmaceutical, and materials science industries for over 40 years. Unfortunately, despite numerous attempts to circumvent the problems associated with alkyl nucleophiles, application of these reagents in transition metal-catalyzed C-C bond-forming reactions has remained largely restricted. In recent years, many chemists have noted the lack of reliable, turnkey reactions that exist for the installation of Csp3-hybridized centers--reactions that would be useful for delivering molecules with enhanced three-dimensional topology and altered chemical properties. As such, a general method for alkyl nucleophile activation in cross-coupling would offer access to a host of compounds inaccessible by other means. From a mechanistic standpoint, the continued failure of alkylmetallics is inherent to the high energy intermediates associated with a traditional transmetalation. To overcome this problem, we have pioneered an alternate, single-electron pathway involving 1) initial oxidation of an alkylmetallic reagent, 2) oxidative alkyl radical capture at a metal center, and 3) subsequent reduction of the metal center to return its initial oxidation state. This series of steps constitutes a formal transmetalation that avoids the energy-demanding steps that plague a traditional anionic approach. Under this enabling paradigm, a host of alkyl precursors (alkyl-trifluoroborates and -silicates) have been generally used in cross-coupling for the first time. In summary, the synergistic use of an Ir photoredox catalyst and a Ni cross-coupling catalyst to mediate the cross-coupling of (hetero)aryl bromides with diverse alkyl radical precursors will be discussed. Methods for coupling various trifluoroborate classes (alpha-alkoxy, alpha-trifluoromethyl, secondary and tertiary alkyl) will be covered, focusing on their complementarity to traditional protocols. Finally, a discussion of novel silicate radical precursors and their advantages in a single-electron transmetalation regime will be included.
Gresham, Gillian K; Ehrhardt, Stephan; Meinert, Jill L; Appel, Lawrence J; Meinert, Curtis L
2018-02-01
Background The National Institutes of Health is one of the largest biomedical research agencies in the world. Clinical trials are an important component of National Institutes of Health research efforts. Given the recent updates in National Institutes of Health trial reporting requirements, more information regarding the current state of National Institutes of Health-funded clinical trials is warranted. The objective of this analysis was to describe characteristics and trends of clinical trials funded by the National Institutes of Health over time and by Institutes and Centers of the National Institutes of Health. Methods Interventional studies funded by the National Institutes of Health and registered in ClinicalTrials.gov between 2005 and 2015 were included in the analysis. Trials were identified from the 27 March 2016 Clinical Trials Transformation Initiative Aggregate Analysis of ClinicalTrials.gov database. A descriptive analysis of trials by year and National Institutes of Health Institute/Center was performed. Results There were 12,987 National Institutes of Health-funded clinical trials registered between 2005 and 2015. There were 1,580, 1,116, and 930 trials registered in 2005, 2010, and 2015, respectively. The majority were early-development trials (phases 0, 1, or 2; 53%), randomized (61%), and single-center (63%). Trial demographics have remained unchanged over time. Median trial sample size was 64 (interquartile range 29-192) with 10% of trials enrolling ≥500 participants. Most trials were completed within 5 years of enrollment start (69%). Trial characteristics varied considerably across National Institutes of Health Institutes and Centers. Results were reported under the assumptions that most National Institutes of Health-funded trials are registered in ClinicalTrials.gov and that trials are being registered completely and accurately. Conclusion In conclusion, there has been a decline in the number of trials being funded over time, explained in part by a relatively constant budget, increases in trial costs, or other factors that cannot be quantified. National Institutes of Health-funded trials are relatively small and tend to be single-centered. There are substantial differences in the number and types of trials done by Institutes and Centers within the National Institutes of Health.
Astrometry of Single-Chord Occultations: Application to the 1993 Triton Event
NASA Technical Reports Server (NTRS)
Olkin, Catherine B.; Elliot, J. L.; Bus, Schelte J.; McDonald, Stephen W.; Dahn, Conrad C.
1996-01-01
This paper outlines a method for reducing astrometric data to derive the closest approach time and distance to the center of an occultation shadow for a single observer. The method applies to CCD frames, strip scans or photographic plates and uses a set of field stars of unknown positions to define a common coordinate system for all frames. The motion of the occulting body is used to establish the transformation between this common coordinate system and the celestial coordinate system of the body's ephemeris. This method is demonstrated by application to the Tr6O occultation by Triton on 1993 July 10 UT. Over an interval of four nights that included the occultation time, 80 frames of Triton and Tr6O were taken near the meridian with the U.S. Naval Observatory (USNO) 61-inch astrometric reflector. Application of the method presented here to these data yields a closest approach distance of 359 +/- 133 km (corresponding to 0.017 +/- 0.006 arcsec) for the occultation chord obtained with the Kuiper Airborne Observatory (KAO). Comparison of the astrometric closest approach time with the KAO light-curve midtime shows a difference of 2.2 +/- 4.1 s. Relative photometry of Triton and Tr6O, needed for photometric calibration of the occultation light curve, is also presented.
Economics of data center optics
NASA Astrophysics Data System (ADS)
Huff, Lisa
2016-03-01
Traffic to and from data centers is now reaching Zettabytes/year. Even the smallest of businesses now rely on data centers for revenue generation. And, the largest data centers today are orders of magnitude larger than the supercomputing centers of a few years ago. Until quite recently, for most data center managers, optical data centers were nice to dream about, but not really essential. Today, the all-optical data center - perhaps even an all-single mode fiber (SMF) data center is something that even managers of medium-sized data centers should be considering. Economical transceivers are the key to increased adoption of data center optics. An analysis of current and near future data center optics economics will be discussed in this paper.
Nanopores: A journey towards DNA sequencing
Wanunu, Meni
2013-01-01
Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507
Bıçakcı, Ünal; Genç, Gürkan; Tander, Burak; Günaydın, Mithat; Demirel, Dilek; Özkaya, Ozan; Rızalar, Rıza; Arıtürk, Ender; Bernay, Ferit
2016-01-01
INTRODUCTION: The aim of this study was to evaluate patients with end stage renal failure (ESRD) who underwent chronic peritoneal dialysis (CPD). The clinical outcomes of laparoscopic and open placements of catheters were compared. MATERIALS AND METHODS: We reviewed 49 (18 male and 31 female) children with CPD according to age, sex, cause of ESRD, catheter insertion method, kt/V rate, complications, presence of peritonitis, catheter survival rate between January 2002 and February 2014. RESULTS: Thirty-three patients were with open placement and 16 patients were with laparoscopic placement. The rate of the peritonitis is significantly less in patients with laparoscopic access than open access (n = 4 vs n = 25) (P <0.01). Patients with peritonitis were younger than those who had no attack of peritonitis (10.95 ± 0.8 years vs 13.4 ± 0.85 years). According to the development of complications, significant difference has not been found between the open (n = 9) and laparoscopic (n = 3) approaches except the peritonitis. Catheter survival rate for the first year was 95%, and for five years was 87.5%. There was no difference between open and laparoscopic group according to catheter survival rate. The mean kt/V which indicates the effectiveness of peritoneal dialysis was mean 2.26 ± 0.08. No difference was found between laparoscopic and open methods according to kt/V. CONCLUSION: Laparoscopic placement of CPD results in lower peritonitis rate. Catheter survival rate was excellent in both groups. Single port laparoscopic access for CPD catheter insertion is an effective and safe method. PMID:27073310
Which Assessment Method of Malnutrition in Head and Neck Cancer?
Saroul, Nicolas; Pastourel, Rémy; Mulliez, Aurélien; Farigon, Nicolas; Dupuch, Vincent; Mom, Thierry; Boirie, Yves; Gilain, Laurent
2018-06-01
Objective To assess the value of several diagnostic methods of nutritional status during the initial management of a head and neck cancer. Study Design Single-center prospective study. Setting Tertiary referral center. Subjects and Methods Ninety patients with head and neck cancer participated in the study. Assessment of their nutritional status was made with anthropometric, biological, body, and muscle measurements (the last by computed tomography: L3 muscle mass index [L3MMI]). Assessment of muscle performance (functional reflection of nutritional status) was made via the Short Physical Performance Battery test. The malnutrition thresholds were set according to the literature. Results Mean body mass index (BMI) was 24.6 ± 5.4 kg/m 2 . Mean weight loss and albumin levels were -4.5 ± 10.5 kg and 37.1 ± 5.2 g/L, respectively. Fourteen percent of patients were diagnosed as malnourished on the basis of BMI, 54% according to the Nutritional Risk Index (NRI), and 58% by L3MMI. There was 64% agreement between NRI and L3MMI ( P < .001). All patients identified as malnourished by BMI were considered as such by the other assessment methods; however, many malnourished patients had normal or high BMI. The Short Physical Performance Battery score was low particularly among patients considered to be the most undernourished by the other methods. Conclusion NRI and L3MMI are the best methods to identify patients as being malnourished. Functional muscle assessment can determine the severity of malnutrition.
Arch bar stabilization of endotracheal tubes in children with facial burns.
Perrotta, V J; Stern, J D; Lo, A K; Mitra, A
1995-01-01
Endotracheal tube stabilization in children with facial burns can be difficult. Several methods rely on straps or complex devices that apply undesirable pressure to the face, potentially destroying skin grafts and making wound care difficult. Techniques that rely on a single wire or suture can be unreliable. Presented here is the arch bar method of endotracheal tube stabilization, which appears to be free of these problems. This method employs a standard dental arch bar secured to four maxillary teeth with 24-gauge stainless steel wire. The endotracheal tube is anchored to the arch bar with two pieces of wire or suture material. The arch bar method of endotracheal tube stabilization was used on three patients in the burn center at St. Christopher's Hospital for Children. Wound care and successful skin grafting were performed without difficulty. No complications related to the arch bars occurred.
Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei
2016-01-01
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm. PMID:26978372
Wagner, Mathilde; Corcuera-Solano, Idoia; Lo, Grace; Esses, Steven; Liao, Joseph; Besa, Cecilia; Chen, Nelson; Abraham, Ginu; Fung, Maggie; Babb, James S; Ehman, Richard L; Taouli, Bachir
2017-08-01
Purpose To assess the determinants of technical failure of magnetic resonance (MR) elastography of the liver in a large single-center study. Materials and Methods This retrospective study was approved by the institutional review board. Seven hundred eighty-one MR elastography examinations performed in 691 consecutive patients (mean age, 58 years; male patients, 434 [62.8%]) in a single center between June 2013 and August 2014 were retrospectively evaluated. MR elastography was performed at 3.0 T (n = 443) or 1.5 T (n = 338) by using a gradient-recalled-echo pulse sequence. MR elastography and anatomic image analysis were performed by two observers. Additional observers measured liver T2* and fat fraction. Technical failure was defined as no pixel value with a confidence index higher than 95% and/or no apparent shear waves imaged. Logistic regression analysis was performed to assess potential predictive factors of technical failure of MR elastography. Results The technical failure rate of MR elastography at 1.5 T was 3.5% (12 of 338), while it was higher, 15.3% (68 of 443), at 3.0 T. On the basis of univariate analysis, body mass index, liver iron deposition, massive ascites, use of 3.0 T, presence of cirrhosis, and alcoholic liver disease were all significantly associated with failure of MR elastography (P < .004); but on the basis of multivariable analysis, only body mass index, liver iron deposition, massive ascites, and use of 3.0 T were significantly associated with failure of MR elastography (P < .004). Conclusion The technical failure rate of MR elastography with a gradient-recalled-echo pulse sequence was low at 1.5 T but substantially higher at 3.0 T. Massive ascites, iron deposition, and high body mass index were additional independent factors associated with failure of MR elastography of the liver with a two-dimensional gradient-recalled-echo pulse sequence. © RSNA, 2017.
Restless Leg Syndrome in Different Types of Demyelinating Neuropathies: A Single-Center Pilot Study
Luigetti, Marco; Del Grande, Alessandra; Testani, Elisa; Bisogni, Giulia; Losurdo, Anna; Giannantoni, Nadia Mariagrazia; Mazza, Salvatore; Sabatelli, Mario; Della Marca, Giacomo
2013-01-01
Objective: to determine the prevalence of restless legs syndrome (RLS) in a cohort of patients with demyelinating neuropathies. Methods: Patients were retrospectively recruited from our cohort of different forms of demyelinating neuropathies, including chronic inflammatory demyelinating neuropathy (CIDP), Charcot-Marie-Tooth 1A (CMT1A), and hereditary neuropathy with liability to pressure palsies (HNPP) referred to our Department of Neurology in a 10-year period. The validated 4-item RLS questionnaire was used for diagnosis of RLS. All patients with RLS who fulfilled criteria underwent a suggested immobilization test to confirm the diagnosis. A group of outpatients referred to the sleep disorders unit and data from published literature were used as controls. Results: Prevalence of RLS in demyelinating neuropathy group was higher than prevalence observed in control population (p = 0.0142) or in the literature data (p = 0.0007). In particular, in comparison with both control population and literature data, prevalence of RLS was higher in CIDP group (p = 0.0266 and p = 0.0063, respectively) and in CMT1A group (p = 0.0312 and p = 0.0105, respectively), but not in HNPP (p = 1.000 and p = 0.9320, respectively). Conclusions: our study confirms a high prevalence of RLS in inflammatory neuropathies as CIDP and, among inherited neuropathies, in CMT1A but not in HNPP. Considering that this is only a small cohort from a single-center retrospective experience, the link between RLS and neuropathy remains uncertain, and larger multicenter studies are probably needed to clarify the real meaning of the association between RLS and neuropathy. Citation: Luigetti M; Del Grande A; Testani E; Bisogni G; Losurdo A; Giannantoni NM; Mazza S; Sabatelli M; Della Marca G. Restless leg syndrome in different types of demyelinating neuropathies: a single-center pilot study. J Clin Sleep Med 2013;9(9):945-949. PMID:23997707
Schwab, Kristin; Saggar, Rajeev; Duffy, Erin; Elashoff, David; Tseng, Chi-Hong; Weigt, Sam; Charan, Deepshikha; Abtin, Fereidoun; Johannes, Jimmy; Derhovanessian, Ariss; Conklin, Jeffrey; Ghassemi, Kevin; Khanna, Dinesh; Siddiqui, Osama; Ardehali, Abbas; Hunter, Curtis; Kwon, Murray; Biniwale, Reshma; Lo, Michelle; Volkmann, Elizabeth; Torres Barba, David; Belperio, John A.; Mahrer, Thomas; Furst, Daniel E.; Kafaja, Suzanne; Clements, Philip; Shino, Michael; Gregson, Aric; Kubak, Bernard; Lynch, Joseph P.; Ross, David
2016-01-01
Rationale: Consideration of lung transplantation in patients with systemic sclerosis (SSc) remains guarded, often due to the concern for esophageal dysfunction and the associated potential for allograft injury and suboptimal post–lung transplantation outcomes. Objectives: The purpose of this study was to systematically report our single-center experience regarding lung transplantation in the setting of SSc, with a particular focus on esophageal dysfunction. Methods: We retrospectively reviewed all lung transplants at our center from January 1, 2000 through August 31, 2012 (n = 562), comparing the SSc group (n = 35) to the following lung transplant diagnostic subsets: all non-SSc (n = 527), non-SSc diffuse fibrotic lung disease (n = 264), and a non-SSc matched group (n = 109). We evaluated post–lung transplant outcomes, including survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates. In addition, we defined severe esophageal dysfunction using esophageal manometry and esophageal morphometry criteria on the basis of chest computed tomography images. For patients with SSc referred for lung transplant but subsequently denied (n = 36), we queried the reason(s) for denial with respect to the concern for esophageal dysfunction. Measurements and Main Results: The 1-, 3-, and 5-year post–lung transplant survival for SSc was 94, 77, and 70%, respectively, and similar to the other groups. The remaining post–lung transplant outcomes evaluated were also similar between SSc and the other groups. Approximately 60% of the SSc group had severe esophageal dysfunction. Pre–lung transplant chest computed tomography imaging demonstrated significantly abnormal esophageal morphometry for SSc when compared with the matched group. Importantly, esophageal dysfunction was the sole reason for lung transplant denial in a single case. Conclusions: Relative to other lung transplant indications, our SSc group experienced comparable survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates, despite the high prevalence of severe esophageal dysfunction. Esophageal dysfunction rarely precluded active listing for lung transplantation. PMID:27078625
Torok, Kathryn S.; Arkachaisri, Thaschawee
2013-01-01
Objective To evaluate the effectiveness of a uniform single-center treatment protocol composed of high-dose methotrexate (MTX) and oral corticosteroids in a pediatric localized scleroderma (LS) cohort. Methods Thirty-six patients with LS were recruited. Patients with active disease, defined as erythematous lesions and/or new lesions, or expansion of existing lesions, were started on oral prednisone 2 mg/kg/day (maximum 60 mg/day) and subcutaneous (SC) MTX at 1 mg/kg/week (maximum 25 mg/week). Prednisone was tapered and kept at 0.25 mg/kg/day for 12 months. MTX SC was continued for 24 months, and then switched to oral administration to complete 36 months of therapy. Modified LS Skin Severity Index (mLoSSI) and the physician global assessment of disease activity (PGA-A) were used as outcome measures. Results Twenty-five patients with LS were female with a median age at onset of 7.86 years [interquartile range (IQR) 4.63–11.91]. Median disease duration from onset until start of this treatment regimen was 19.2 months (IQR 8.96–35.35). Median duration of followup was 36.40 months (IQR 29.39–45.36). All patients demonstrated significant improvement in mLoSSI at median 1.77 months (IQR 0.76–2.37, 95% CI 1.54, 2.01). PGA-A followed the same trend. No significant adverse reactions or flares were observed during therapy. Conclusion This single-center LS treatment protocol was effective and well tolerated. Clinical outcome in LS is affected by dose and route of administration of immunosuppressive regimens. Daily tapering dose of corticosteroids and parenteral MTX were effective in controlling LS activity without significant adverse reaction. This regimen should be considered as one of the therapies for LS clinical trials. PMID:22247357
Harris, Caleb F; Bayless, Michael B; van Leest, Nicolaas P; Bruch, Quinton J; Livesay, Brooke N; Bacsa, John; Hardcastle, Kenneth I; Shores, Matthew P; de Bruin, Bas; Soper, Jake D
2017-10-16
A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO] 2- dianions, of the general formula [(OCO)Co II L] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)Co II L] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc + /Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [( S OCO)Co III (THF) 2 ] + containing a closed-shell [ S OCO] 2- diphenolate ligand bound to a S = 1 Co(III) center, or [( S OCO • )Co II (THF) 2 ] + with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [ S OCO • ] - containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [( S OCO 0 )Co II (THF) 3 ] 2+ , with a single unpaired electron localized on the d 7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell S OCO 0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.
Effect of Fuel Temperature Profile on Eigenvalue Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C
2008-01-01
Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less
Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitskiy, S. A.; Artemyev, A. N.; Jänkälä, K.
2015-01-21
Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li{sub 2−8} are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li{submore » 2} are in a good agreement with the available theoretical data, whereas those computed for Li{sub 3−8} clusters can be considered as theoretical predictions.« less
NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems
ERIC Educational Resources Information Center
National Aeronautics and Space Administration (NASA), 2010
2010-01-01
National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…
Plan for the Center for Academic Development at Hamline University.
ERIC Educational Resources Information Center
Johnson, Jack K.
It is recommended that the development and implementation of all new or existing programs related to life-long learning and expansion of opportunities for non-traditional learners at Hamline University be consolidated into a single administrative unit called the Center for Academic Development. The proposed mission of the center, including…
NASA Astrophysics Data System (ADS)
Lai, Yen-Yu; Lin, Guin-Dar; Twamley, Jason; Goan, Hsi-Sheng
2018-05-01
We propose a quantum memory scheme to transfer and store the quantum state of a superconducting flux qubit (FQ) into the electron spin of a single nitrogen-vacancy (NV) center in diamond via yttrium iron garnet (YIG), a ferromagnet. Unlike an ensemble of NV centers, the YIG moderator can enhance the effective FQ-NV-center coupling strength without introducing additional appreciable decoherence. We derive the effective interaction between the FQ and the NV center by tracing out the degrees of freedom of the collective mode of the YIG spins. We demonstrate the transfer, storage, and retrieval procedures, taking into account the effects of spontaneous decay and pure dephasing. Using realistic experimental parameters for the FQ, NV center and YIG, we find that a combined transfer, storage, and retrieval fidelity higher than 0.9, with a long storage time of 10 ms, can be achieved. This hybrid system not only acts as a promising quantum memory, but also provides an example of enhanced coupling between various systems through collective degrees of freedom.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Powell, R. W.
1979-01-01
Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Keith V.; Childs, Bradley C.; Mast, Daniel S.
The molecular and electronic structures for the Group 7b heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re 2O 7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density ofmore » states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ~0.2 eV due to an under-correlation of the metal d conducting states. As a result, homologue and compression studies show that Re 2O 7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.« less
Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data
NASA Astrophysics Data System (ADS)
Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.
2015-12-01
Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delice, S., E-mail: sdelice@metu.edu.tr; Isik, M.; Gasanly, N.M.
2015-10-15
Highlights: • Optical and thermoluminescence properties of Ga{sub 4}S{sub 3}Se crystals were investigated. • Indirect and direct band gap energies were found as 2.39 and 2.53 eV, respectively. • The activation energy of the trap center was determined as 495 meV. - Abstract: Optical and thermoluminescence properties on GaS{sub 0.75}Se{sub 0.25} crystals were investigated in the present work. Transmission and reflection measurements were performed at room temperature in the wavelength range of 400–1000 nm. Analysis revealed the presence of indirect and direct transitions with band gap energies of 2.39 and 2.53 eV, respectively. TL spectra obtained at low temperatures (10–300more » K) exhibited one peak having maximum temperature of 168 K. Observed peak was analyzed using curve fitting, initial rise and peak shape methods to calculate the activation energy of the associated trap center. All applied methods were consistent with the value of 495 meV. Attempt-to-escape-frequency and capture cross section of the trap center were determined using the results of curve fitting. Heating rate dependence studies of the glow curve in the range of 0.4–0.8 K/s resulted with decrease of TL intensity and shift of the peak maximum temperature to higher values.« less
New library buildings: the Health Sciences Library, Memorial University of Newfoundland, St. John's.
Fredericksen, R B
1979-01-01
The new Health Sciences Library of Memorial University of Newfoundland is described and illustrated. A library facility that forms part of a larger health sciences center, this is a medium-sized academic health sciences library built on a single level. Along with a physical description of the library and its features, the concepts of single-level libraries, phased occupancy, and the project management approach to building a large health center library are discussed in detail. Images PMID:476319
Shah, Dipali Yogesh; Wadekar, Swati Ishwara; Dadpe, Ashwini Manish; Jadhav, Ganesh Ranganath; Choudhary, Lalit Jayant; Kalra, Dheeraj Deepak
2017-01-01
Context and Aims: The purpose of this study was to compare and evaluate the shaping ability of ProTaper (PT) and Self-Adjusting File (SAF) system using cone-beam computed tomography (CBCT) to assess their performance in oval-shaped root canals. Materials and Methods: Sixty-two mandibular premolars with single oval canals were divided into two experimental groups (n = 31) according to the systems used: Group I – PT and Group II – SAF. Canals were evaluated before and after instrumentation using CBCT to assess centering ratio and canal transportation at three levels. Data were statistically analyzed using one-way analysis of variance, post hoc Tukey's test, and t-test. Results: The SAF showed better centering ability and lesser canal transportation than the PT only in the buccolingual plane at 6 and 9 mm levels. The shaping ability of the PT was best in the apical third in both the planes. The SAF had statistically significant better centering and lesser canal transportation in the buccolingual as compared to the mesiodistal plane at the middle and coronal levels. Conclusions: The SAF produced significantly less transportation and remained centered than the PT at the middle and coronal levels in the buccolingual plane of oval canals. In the mesiodistal plane, the performance of both the systems was parallel. PMID:28855757
Thermal Signature Identification System (TheSIS)
NASA Technical Reports Server (NTRS)
Merritt, Scott; Bean, Brian
2015-01-01
We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.
NASA Technical Reports Server (NTRS)
Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.
2001-01-01
The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.
A single scan skeletonization algorithm: application to medical imaging of trabecular bone
NASA Astrophysics Data System (ADS)
Arlicot, Aurore; Amouriq, Yves; Evenou, Pierre; Normand, Nicolas; Guédon, Jean-Pierre
2010-03-01
Shape description is an important step in image analysis. The skeleton is used as a simple, compact representation of a shape. A skeleton represents the line centered in the shape and must be homotopic and one point wide. Current skeletonization algorithms compute the skeleton over several image scans, using either thinning algorithms or distance transforms. The principle of thinning is to delete points as one goes along, preserving the topology of the shape. On the other hand, the maxima of the local distance transform identifies the skeleton and is an equivalent way to calculate the medial axis. However, with this method, the skeleton obtained is disconnected so it is required to connect all the points of the medial axis to produce the skeleton. In this study we introduce a translated distance transform and adapt an existing distance driven homotopic algorithm to perform skeletonization with a single scan and thus allow the processing of unbounded images. This method is applied, in our study, on micro scanner images of trabecular bones. We wish to characterize the bone micro architecture in order to quantify bone integrity.
Overview of an Indoor Sonic Boom Simulator at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Klos, Jacob
2012-01-01
A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact ]induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.
Massage Therapy in Outpatient Cancer Care: A Metropolitan Area Analysis
Miccio, Robin Streit; Parikh, Bijal
2017-01-01
Massage offers cancer patients general quality of life benefits as well as alleviation of cancer-related symptoms/cancer-treatment–related symptoms including pain, anxiety, and fatigue. Little is known about whether massage is accessible to cancer patients who receive treatment in the outpatient setting and how massage is incorporated into the overall cancer treatment plan. Outpatient cancer centers (n = 78) in a single metropolitan area were included this mixed-methods project that included a systematic analysis of website information and a telephone survey. Massage was offered at only 40 centers (51.3% of total). A range of massage modalities were represented, with energy-based therapies (Reiki and Therapeutic Touch) most frequently provided. Although massage therapists are licensed health care providers in the states included in this analysis, massage was also provided by nurses, physical therapists, and other health care professionals. PMID:28845677
NASA Astrophysics Data System (ADS)
Aslam, Nabeel; Pfender, Matthias; Zaiser, Sebastian; Favaro de Oliveira, Felipe; Momenzadeh, S. Ali; Denisenko, Andrej; Isoya, Junichi; Neumann, Philipp; Wrachtrup, Joerg
Recently nuclear magnetic resonance (NMR) of nanoscale samples at ambient conditions has been achieved with nitrogen-vacancy (NV) centers in diamond. So far the spectral resolution in the NV NMR experiments was limited by the sensor's coherence time, which in turn prohibited revealing the chemical composition and dynamics of the system under investigation. By entangling the NV electron spin sensor with a long-lived memory spin qubit we increase the spectral resolution of NMR measurement sequences for the detection of external nuclear spins. Applying the latter sensor-memory-couple it is particularly easy to track diffusion processes, to identify the molecules under study and to deduce the actual NV center depth inside the diamond. We performed nanoscale NMR on several liquid and solid samples exhibiting unique NMR response. Our method paves the way for nanoscale identification of molecule and protein structures and dynamics of conformational changes.
Synthesis of Epitaxial Single-Layer MoS2 on Au(111).
Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A
2015-09-08
We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.
Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin
2015-07-25
To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.
Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor
2015-03-21
Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.
Liparulo, Valeria; Pica, Alessandra; Guarro, Giuseppe; Alfano, Carmine; Puma, Francesco
2017-01-01
Background Chest wall resection and reconstruction (CWRR) is quite challenging in surgery, due to evolution in techniques. Neoplasms of the chest wall, primary or secondary, have been considered inoperable for a long time. Thanks to evolving surgical techniques, reconstruction after extensive chest wall resection is possible with good functional and aesthetic results. Methods In our single-center experience, seven cases of extensive CWRR for tumors were performed with a multidisciplinary approach by both thoracic and plastic surgeons. Patients have been retrospective analyzed. Results Acceptable clinical and aesthetical results have been recorded, with a smooth post-operative course and a low rate of post-surgical complications. Two early complications and one late complication (asymptomatic bone allograft fracture on the site of the bar implant) were recorded. Neither postoperative deaths nor local recurrences were registered after a median follow-up period of 13 months. Conclusions Surgical planning is most effective when it is tailored to the patient. Specifically, in the treatment of selected chest wall tumors, the multidisciplinary approach is considered mandatory when an extensive demolition is required. Indeed, here, the radical wide en-bloc resection can lead to good results provided that the extent of resection is not influenced by any anticipated problem in reconstruction. PMID:29312715
NASA Astrophysics Data System (ADS)
Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.
2018-04-01
A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.
NASA Technical Reports Server (NTRS)
Codoni, Joshua R.; Berry, Scott A.
2012-01-01
Recent experimental supersonic retropropulsion tests were conducted at the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 2 for a range of Mach numbers from 2.4 to 4.6. A 5-inch 70-degree sphere-cone forebody model with a 10-inch cylindrical aftbody experimental model was used which is capable of multiple retrorocket configurations. These configurations include a single central nozzle on the center point of the forebody, three nozzles at the forebody half-radius, and a combination of the first two configurations with no jets being plugged. A series of measurements were achieved through various instrumentation including forebody and aftbody pressure, internal pressures and temperatures, and high speed Schlieren visualization. Specifically, several high speed pressure transducers on the forebody and in the plenum were implemented to look at unsteady flow effects. The following work focuses on analyzing frequency traits due to the unsteady flow for a range of thrust coefficients for single, tri, and quad-nozzle test cases at freestream Mach 4.6 and angle of attack ranging from -8 degrees to +20 degrees. This analysis uses Matlab s fast Fourier transform, Welch's method (modified average of a periodogram), to create a power spectral density and analyze any high speed pressure transducer frequency traits due to the unsteady flow.
Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2
NASA Astrophysics Data System (ADS)
Yu, Hua; Deng, Degang; Su, Weitao; Li, Chenxia; Xu, Shiqing
2018-06-01
BaZn2(BO3)2 self-activated phosphors were prepared by the conventional high temperature solid-state method. The PL spectra of BaZn2(BO3)2 powders prepared under reductive and air atmosphere consist of a weak ultraviolet emission band (∼410 nm) and a broad emission band which were centered at ∼ 500 and 545 nm, respectively. According to the spectral analysis and EPR results, the green and yellow emissions may arise from the transitions of photo-generated electron close to the conduction band to the deeply trapped hole in single ionized oxygen vacancy (V+ o) centers and single negatively charged interstitial oxygen ion (O- i), respectively. An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Yb3+ doped BaZn2(BO3)2 phosphor. Upon excitation with an ultraviolet photon at 375 nm, the emissions of two NIR photons at 983 nm from Yb3+ ions were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency, and the quantum efficiency on the Yb3+ doping content were investigated in detail. The results indicated that the maximum energy transfer and the corresponding downconversion quantum efficiency could reach between 68.5% and 168.5%.
Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond
NASA Astrophysics Data System (ADS)
Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.
2015-01-01
Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.
NASA Astrophysics Data System (ADS)
Ossés de Eicker, Margarita; Zah, Rainer; Triviño, Rubén; Hurni, Hans
The spatial accuracy of top-down traffic emission inventory maps obtained with a simplified disaggregation method based on street density was assessed in seven mid-sized Chilean cities. Each top-down emission inventory map was compared against a reference, namely a more accurate bottom-up emission inventory map from the same study area. The comparison was carried out using a combination of numerical indicators and visual interpretation. Statistically significant differences were found between the seven cities with regard to the spatial accuracy of their top-down emission inventory maps. In compact cities with a simple street network and a single center, a good accuracy of the spatial distribution of emissions was achieved with correlation values>0.8 with respect to the bottom-up emission inventory of reference. In contrast, the simplified disaggregation method is not suitable for complex cities consisting of interconnected nuclei, resulting in correlation values<0.5. Although top-down disaggregation of traffic emissions generally exhibits low accuracy, the accuracy is significantly higher in compact cities and might be further improved by applying a correction factor for the city center. Therefore, the method can be used by local environmental authorities in cities with limited resources and with little knowledge on the pollution situation to get an overview on the spatial distribution of the emissions generated by traffic activities.
Gaur, Aditya H; Bundy, David G; Werner, Eric J; Hord, Jeffrey D; Miller, Marlene R; Tang, Li; Lawlor, John P; Billett, Amy L
2017-06-01
OBJECTIVE To assess the burden of bloodstream infections (BSIs) among pediatric hematology-oncology (PHO) inpatients, to propose a comprehensive, all-BSI tracking approach, and to discuss how such an approach helps better inform within-center and across-center differences in CLABSI rate DESIGN Prospective cohort study SETTING US multicenter, quality-improvement, BSI prevention network PARTICIPANTS PHO centers across the United States who agreed to follow a standardized central-line-maintenance care bundle and track all BSI events and central-line days every month. METHODS Infections were categorized as CLABSI (stratified by mucosal barrier injury-related, laboratory-confirmed BSI [MBI-LCBI] versus non-MBI-LCBI) and secondary BSI, using National Healthcare Safety Network (NHSN) definitions. Single positive blood cultures (SPBCs) with NHSN defined common commensals were also tracked. RESULTS Between 2013 and 2015, 34 PHO centers reported 1,110 BSIs. Among them, 708 (63.8%) were CLABSIs, 170 (15.3%) were secondary BSIs, and 232 (20.9%) were SPBCs. Most SPBCs (75%) occurred in patients with profound neutropenia; 22% of SPBCs were viridans group streptococci. Among the CLABSIs, 51% were MBI-LCBI. Excluding SPBCs, CLABSI rates were higher (88% vs 77%) and secondary BSI rates were lower (12% vs 23%) after the NHSN updated the definition of secondary BSI (P<.001). Preliminary analyses showed across-center differences in CLABSI versus secondary BSI and between SPBC and CLABSI versus non-CLABSI rates. CONCLUSIONS Tracking all BSIs, not just CLABSIs in PHO patients, is a patient-centered, clinically relevant approach that could help better assess across-center and within-center differences in infection rates, including CLABSI. This approach enables informed decision making by healthcare providers, payors, and the public. Infect Control Hosp Epidemiol 2017;38:690-696.
Sub-word image clustering in Farsi printed books
NASA Astrophysics Data System (ADS)
Soheili, Mohammad Reza; Kabir, Ehsanollah; Stricker, Didier
2015-02-01
Most OCR systems are designed for the recognition of a single page. In case of unfamiliar font faces, low quality papers and degraded prints, the performance of these products drops sharply. However, an OCR system can use redundancy of word occurrences in large documents to improve recognition results. In this paper, we propose a sub-word image clustering method for the applications dealing with large printed documents. We assume that the whole document is printed by a unique unknown font with low quality print. Our proposed method finds clusters of equivalent sub-word images with an incremental algorithm. Due to the low print quality, we propose an image matching algorithm for measuring the distance between two sub-word images, based on Hamming distance and the ratio of the area to the perimeter of the connected components. We built a ground-truth dataset of more than 111000 sub-word images to evaluate our method. All of these images were extracted from an old Farsi book. We cluster all of these sub-words, including isolated letters and even punctuation marks. Then all centers of created clusters are labeled manually. We show that all sub-words of the book can be recognized with more than 99.7% accuracy by assigning the label of each cluster center to all of its members.
Camp H.M. Smith and Navy Public Works Center Manana Title ...
Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Four-Bedroom, Single-Family Type 10, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
Camp H.M. Smith and Navy Public Works Center Manana Title ...
Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
Camp H.M. Smith and Navy Public Works Center Manana Title ...
Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 9, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
34 CFR 656.4 - What types of Centers receive grants?
Code of Federal Regulations, 2010 CFR
2010-07-01
...? The Secretary awards grants to Centers that— (a) Focus on— (1) A single country or on a world area... the country or area; or (2) International studies or the international aspects of contemporary issues...
The Savage Origins of Child-Centered Pedagogy, 1871-1913
ERIC Educational Resources Information Center
Fallace, Thomas
2015-01-01
Child-centered pedagogy is at the ideological core of progressive education. The simple idea that the child rather than the teacher or textbook should be the major focus of the classroom is, perhaps, the single most enduring educational idea of the era. In this historical study, the author argues that child-centered education emerged directly from…
Building Literacy Opportunities into Children's Block Play: What Every Teacher Should Know
ERIC Educational Resources Information Center
Wellhousen, Karyn; Giles, Rebecca M.
2005-01-01
Learning centers are a highly regarded and widely accepted practice in early childhood classrooms. Centers offer a variety of experiences during a single time segment that encourage children to explore materials, interact with peers, and accomplish new tasks. In this article, the author presents the block center, a popular mainstay among learning…
Site Planning: Auraria Higher Education Center.
ERIC Educational Resources Information Center
Auraria Higher Education Center, Denver, CO.
This book presents the site master plan for the Auraria Higher Education Center, which is dedicated to the offering of an urban-oriented program in higher education and is made up of three institutions -- the Denver Center of the University of Colorado, Metropolitan State College, and the Community College of Denver located on a single site in the…
The Center for Cancer Research’s ability to rapidly deploy integrated basic and clinical research teams at a single site facilitated the rapid FDA approval of the immunotherapy drug avelumab for metastatic Merkel cell carcinoma, a rare, aggressive form of skin cancer. Learn more...
Marshak Lectureship: Vibrational properties of isolated color centers in diamond
NASA Astrophysics Data System (ADS)
Alkauskas, Audrius
In this talk we review our recent work on first-principles calculations of vibrational properties of isolated defect spin qubits and single photon emitters in diamond. These properties include local vibrational spectra, luminescence lineshapes, and electron-phonon coupling. They are key in understanding physical mechanisms behind spin-selective optical initialization and read-out, quantum efficiency of single-photon emitters, as well as in the experimental identification of as yet unknown centers. We first present the methodology to calculate and analyze vibrational properties of effectively isolated defect centers. We then apply the methodology to the nitrogen-vacancy and the silicon-vacancy centers in diamond. First-principles calculations yield important new insights about these important defects. Work performed in collaboration with M. W. Doherty, A. Gali, E. Londero, L. Razinkovas, and C. G. Van de Walle. Supported by the Research Council of Lithuania (Grant M-ERA.NET-1/2015).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akturk, Eser S.; Yap, Glenn P. A.; Theopold, Klaus H.
2015-10-16
A chromium(I) dinitrogen complex reacts rapidly with O 2 to form the mononuclear dioxo complex [Tp tBu,MeCr V(O) 2] (Tp tBu,Me=hydrotris(3- tert-butyl-5-methylpyrazolyl)borate), whereas the analogous reaction with sulfur stops at the persulfido complex [Tp tBu,MeCr III(S 2)]. The transformation of the putative peroxo intermediate [Tp tBu,MeCr III(O 2)] (S= 3/ 2) into [Tp tBu,MeCr V(O) 2] (S= 1/ 2) is spin-forbidden. The minimum-energy crossing point for the two potential energy surfaces has been identified. Finally, although the dinuclear complex [(Tp tBu,MeCr) 2(μ-O) 2] exists, mechanistic experiments suggest that O 2 activation occurs on a single metal center, by an oxidativemore » addition on the quartet surface followed by crossover to the doublet surface.« less
Al-Thani, Hassan; Jabbour, Gaby; El-Menyar, Ayman; Abdelrahman, Husham; Peralta, Ruben; Zarour, Ahmad
2018-01-01
Objective: To investigate the presentation, management and outcomes of left and right-sided traumatic diaphragmatic injury (TDI) in a single level I trauma center. Methods: This cross-sectional study was conducted during a 7-year period from 2008 to 2015 in a level I trauma center in Qatar. We included all the patients who presented with TDIs during the study period. Data included demographics, mechanism of injury, associated injuries, initial vitals, emergency department disposition, length of ICU and hospital stay, ventilator days, management, and outcomes. The variables were analyzed and compared for patients with left (LTDI) and right (RTDI). Results: A total of 52 TDI cases (79% LTDI and 21% RTDI) were identified with a mean age of 31±11. LTDI patients were more likely to have higher Injury severity scores (p=0.50) and greater AAST organ injury scoring (p=0.661 for all) than RTDI patients. Surgical repair was performed for 85% LTDI vs. 73% RTDI (p=0.342). Recurrent DIs was reported only in LTDI (5.1% vs. 0.0%; p=0.911). Twelve patients died (9 LTDI and 3 RTDI), of them 5 had associated head injury. Conclusion: This single-institution study confirms that LTDI are more commonly diagnosed than RTDI. Exploratory laparotomy is the most frequent procedure considered for the management of diaphragmatic injuries in the emergency settings. To improve outcomes in patients presenting with TDI, large prospective multicenter studies are needed to standardize the TDI management protocols including the diagnostic workup, timing of surgical intervention, and the most appropriate approach of treatment. PMID:29379805
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Kenji; Narita, Yoshitaka, E-mail: yonarita@ncc.go.jp; Miyakita, Yasuji
2011-11-15
Purpose: Data comparing the clinical outcomes of local brain radiotherapy (LBRT) and whole brain RT (WBRT) in patients with a single brain metastasis after tumor removal are limited. Patients and Methods: A retrospective analysis was performed to compare the patterns of treatment failure, cause of death, progression-free survival, median survival time, and Karnofsky performance status for long-term survivors among patients who underwent surgery followed by either LBRT or WBRT between 1990 and 2008 at the National Cancer Center Hospital. Results: A total of 130 consecutive patients were identified. The median progression-free survival period among the patients who received postoperative LBRTmore » (n = 64) and WBRT (n = 66) was 9.7 and 11.5 months, respectively (p = .75). The local recurrence rates (LBRT, 9.4% vs. WBRT, 12.1%) and intracranial new metastasis rate (LBRT, 42.2% vs. WBRT, 33.3%) were similar in each arm. The incidence of leptomeningeal metastasis was also equivalent (LBRT, 9.4% vs. WBRT, 10.6%). The median survival time for the LBRT and WBRT patients was 13.9 and 16.7 months, respectively (p = .88). A neurologic cause of death was noted in 35.6% of the patients in the LBRT group and 36.7% of the WBRT group (p = .99). The Karnofsky performance status at 2 years was comparable between the two groups. Conclusions: The clinical outcomes of LBRT and WBRT were similar. A prospective evaluation is warranted.« less
NASA Astrophysics Data System (ADS)
Topaz, On; Luxenberg, Michael; Schumacher, Audrey
1994-07-01
Clinical experience with the mid IR holmium:YAG laser in a single medical center (St. Paul Ramsey Medical Center, University of Minnesota Medical School, St. Paul, MN) includes 112 patients who underwent holmium laser coronary angioplasty. Utilizing a unique lasing technique; `pulse and retreat,' we applied this laser to thrombotic and nonthrombotic lesions in patients presenting with unstable angina, stable angina, and acute myocardial infarction. A very high clinical success and very low complication rates were achieved. Holmium:YAG laser is effective and safe therapy for patients with symptomatic coronary artery disease. Unlike excimer lasers, the clinical success, efficacy and safety of holmium laser angioplasty is not compromised when thrombus is present.
Multimode and single-mode fibers for data center and high-performance computing applications
NASA Astrophysics Data System (ADS)
Bickham, Scott R.
2016-03-01
Data center (DC) and high performance computing (HPC) applications have traditionally used a combination of copper, multimode fiber and single-mode fiber interconnects with relative percentages that depend on factors such as the line rate, reach and connectivity costs. The balance between these transmission media has increasingly shifted towards optical fiber due to the reach constraints of copper at data rates of 10 Gb/s and higher. The percentage of single-mode fiber deployed in the DC has also grown slightly since 2014, coinciding with the emergence of mega DCs with extended distance needs beyond 100 m. This trend will likely continue in the next few years as DCs expand their capacity from 100G to 400G, increase the physical size of their facilities and begin to utilize silicon-photonics transceiver technology. However there is a still a need for the low-cost and high-density connectivity, and this is sustaining the deployment of multimode fiber for links <= 100 m. In this paper, we discuss options for single-mode and multimode fibers in DCs and HPCs and introduce a reduced diameter multimode fiber concept which provides intra-and inter-rack connectivity as well as compatibility with silicon-photonic transceivers operating at 1310 nm. We also discuss the trade-offs between single-mode fiber attributes such as bend-insensitivity, attenuation and mode field diameter and their roles in capacity and connectivity in data centers.
Single passenger rail car impact test. Volume III, Test procedures, instrumentation and data.
DOT National Transportation Integrated Search
2000-01-12
A full-scale impact test was performed November 16, 1999, at the Federal Railroad Administrations Transportation : Technology Center, Pueblo, Colorado, by Transportation Technology Center, Inc., a subsidiary of the Association of : American Railro...
Camp H.M. Smith and Navy Public Works Center Manana Title ...
Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Types 8 and 11, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
Camp H.M. Smith and Navy Public Works Center Manana Title ...
Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Single-Family Type 6, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
Müller, Anne D; Artemyev, Anton N; Demekhin, Philipp V
2018-06-07
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.
NASA Astrophysics Data System (ADS)
Müller, Anne D.; Artemyev, Anton N.; Demekhin, Philipp V.
2018-06-01
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
NASA Innovation Builds Better Nanotubes
NASA Technical Reports Server (NTRS)
2008-01-01
Nanotailor Inc., based in Austin, Texas, licensed Goddard Space Flight Center's unique single-walled carbon nanotube (SWCNT) fabrication process with plans to make high-quality, low-cost SWCNTs available commercially. Carbon nanotubes are being used in a wide variety of applications, and NASA's improved production method will increase their applicability in medicine, microelectronics, advanced materials, and molecular containment. Nanotailor built and tested a prototype based on Goddard's process, and is using this technique to lower the cost and improve the integrity of nanotubes, offering a better product for use in biomaterials, advanced materials, space exploration, highway and building construction, and many other applications.
Identification of cost effective energy conservation measures
NASA Technical Reports Server (NTRS)
Bierenbaum, H. S.; Boggs, W. H.
1978-01-01
In addition to a successful program of readily implemented conservation actions for reducing building energy consumption at Kennedy Space Center, recent detailed analyses have identified further substantial savings for buildings representative of technical facilities designed when energy costs were low. The techniques employed for determination of these energy savings consisted of facility configuration analysis, power and lighting measurements, detailed computer simulations and simulation verifications. Use of these methods resulted in identification of projected energy savings as large as $330,000 a year (approximately two year break-even period) in a single building. Application of these techniques to other commercial buildings is discussed
ERIC Educational Resources Information Center
FISCHER, JOHN H.
TO ASSIST IN DESEGREGATION, VARIOUS MODELS FOR THE SCHOOL PARK ARE PROPOSED--(1) ASSEMBLING ALL STUDENTS AND SCHOOLS OF A SMALL OR MEDIUM-SIZED COMMUNITY ON A SINGLE CAMPUS, (2) SERVING ONE SECTION OF A LARGE CITY, (3) CENTERING ALL SCHOOL FACILITIES FOR A SINGLE LEVEL OF EDUCATION ON A SINGLE SITE, AND (4) ESTABLISHING RINGS OF SCHOOL PARKS ABOUT…
The Effects of Ridge Axis Width on Mantle Melting at Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Montesi, L.; Magni, V.; Gaina, C.
2017-12-01
Mantle upwelling in response to plate divergence produces melt at mid-ocean ridges. Melt starts when the solidus is crossed and stops when conductive cooling overcomes heat advection associated with the upwelling. Most mid-ocean ridge models assume that divergence takes place only in a narrow zone that defines the ridge axis, resulting in a single upwelling. However, more complex patterns of divergence are occasionally observed. The rift axis can be 20 km wide at ultraslow spreading center. Overlapping spreading center contain two parallel axes. Rifting in backarc basins is sometimes organized as a series of parallel spreading centers. Distributing plate divergence over several rifts reduces the intensity of upwelling and limits melting. Can this have a significant effect on the expected crustal thickness and on the mode of melt delivery at the seafloor? We address this question by modeling mantle flow and melting underneath two spreading centers separated by a rigid block. We adopt a non-linear rheology that includes dislocation creep, diffusion creep and yielding and include hydrothermal cooling by enhancing thermal conductivity where yielding takes place. The crustal thickness decreases if the rifts are separated by 30 km or more but only if the half spreading rate is between 1 and 2 cm/yr. At melting depth, a single upwelling remains the norm until the separation of the rifts exceeds a critical value ranging from 15 km in the fastest ridges to more than 50 km at ultraslow spreading centers. The stability of the central upwelling is due to hydrothermal cooling, which prevents hot mantle from reaching the surface at each spreading center. When hydrothermal cooling is suppressed, or the spreading centers are sufficiently separated, the rigid block becomes extremely cold and separates two distinct, highly asymmetric upwellings that may focus melt beyond the spreading center. In that case, melt delivery might drive further and further the divergence centers, whereas, when a single upwelling is retained, melt delivery would drive the spreading centers closer together. Thus, the system composed of two rifts is unstable and, if observed in nature, indicates either a transient geodynamic regime, like a recent change in spreading rates, or control structural or stress heterogeneities.
MetaPhinder—Identifying Bacteriophage Sequences in Metagenomic Data Sets
Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten
2016-01-01
Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder. PMID:27684958
MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets.
Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten
Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder.
A single-stage flux-corrected transport algorithm for high-order finite-volume methods
Chaplin, Christopher; Colella, Phillip
2017-05-08
We present a new limiter method for solving the advection equation using a high-order, finite-volume discretization. The limiter is based on the flux-corrected transport algorithm. Here, we modify the classical algorithm by introducing a new computation for solution bounds at smooth extrema, as well as improving the preconstraint on the high-order fluxes. We compute the high-order fluxes via a method-of-lines approach with fourth-order Runge-Kutta as the time integrator. For computing low-order fluxes, we select the corner-transport upwind method due to its improved stability over donor-cell upwind. Several spatial differencing schemes are investigated for the high-order flux computation, including centered- differencemore » and upwind schemes. We show that the upwind schemes perform well on account of the dissipation of high-wavenumber components. The new limiter method retains high-order accuracy for smooth solutions and accurately captures fronts in discontinuous solutions. Further, we need only apply the limiter once per complete time step.« less
Petegrosso, Raphael; Tolar, Jakub
2018-01-01
Single-cell RNA sequencing (scRNA-seq) has been widely applied to discover new cell types by detecting sub-populations in a heterogeneous group of cells. Since scRNA-seq experiments have lower read coverage/tag counts and introduce more technical biases compared to bulk RNA-seq experiments, the limited number of sampled cells combined with the experimental biases and other dataset specific variations presents a challenge to cross-dataset analysis and discovery of relevant biological variations across multiple cell populations. In this paper, we introduce a method of variance-driven multitask clustering of single-cell RNA-seq data (scVDMC) that utilizes multiple single-cell populations from biological replicates or different samples. scVDMC clusters single cells in multiple scRNA-seq experiments of similar cell types and markers but varying expression patterns such that the scRNA-seq data are better integrated than typical pooled analyses which only increase the sample size. By controlling the variance among the cell clusters within each dataset and across all the datasets, scVDMC detects cell sub-populations in each individual experiment with shared cell-type markers but varying cluster centers among all the experiments. Applied to two real scRNA-seq datasets with several replicates and one large-scale droplet-based dataset on three patient samples, scVDMC more accurately detected cell populations and known cell markers than pooled clustering and other recently proposed scRNA-seq clustering methods. In the case study applied to in-house Recessive Dystrophic Epidermolysis Bullosa (RDEB) scRNA-seq data, scVDMC revealed several new cell types and unknown markers validated by flow cytometry. MATLAB/Octave code available at https://github.com/kuanglab/scVDMC. PMID:29630593
Detail Extraction from Electron Backscatter Diffraction Patterns
NASA Astrophysics Data System (ADS)
Basinger, Jay
Cross-correlation based analysis of electron backscatter diffraction (EBSD) patterns and the use of simulated reference patterns has opened up entirely new avenues of insight into local lattice properties within EBSD scans. The benefits of accessing new levels of orientation resolution and multiple types of previously inaccessible data measures are accompanied with new challenges in characterizing microscope geometry and other error previously ignored in EBSD systems. The foremost of these challenges, when using simulated patterns in high resolution EBSD (HR-EBSD), is the determination of pattern center (the location on the sample from which the EBSD pattern originated) with sufficient accuracy to avoid the introduction of phantom lattice rotations and elastic strain into these highly sensitive measures. This dissertation demonstrates how to greatly improve pattern center determination. It also presents a method for the extraction of grain boundary plane information from single two-dimensional surface scans. These are accomplished through the use of previously un-accessed detail within EBSD images, coupled with physical models of the backscattering phenomena. A software algorithm is detailed and applied for the determination of pattern center with an accuracy of ˜0.03% of the phosphor screen width, or ˜10μm. This resolution makes it possible to apply a simulated pattern method (developed at BYU) in HR-EBSD, with several important benefits over the original HR-EBSD approach developed by Angus Wilkinson. Experimental work is done on epitaxially-grown silicon and germanium in order to gauge the precision of HR-EBSD with simulated reference patterns using the new pattern center calibration approach. It is found that strain resolution with a calibrated pattern center and simulated reference patterns can be as low as 7x10-4. Finally, Monte Carlo-based models of the electron interaction volume are used in conjunction with pattern-mixing-strength curves of line scans crossing grain boundaries in order to recover 3D grain boundary plane information. Validation of the approach is done using 3D serial scan data and coherent twin boundaries in tantalum and copper. The proposed method for recovery of grain boundary plane orientation exhibits an average error of 3 degrees.
Decoherence by spontaneous emission: A single-atom analog of superradiance
NASA Astrophysics Data System (ADS)
Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia
2016-12-01
We show that the decoherence of the atomic center-of-mass induced by spontaneous emission involves interferences corresponding to a single-atom analog of superradiance. We use a decomposition of the stationary decoherence rate as a sum of local and nonlocal contributions obtained to second order in the interaction by the influence functional method. These terms are respectively related to the strength of the coupling between system and environment, and to the quality of the information about the system leaking into the environment. While the local contribution always yields a positive decoherence rate, the nonlocal one may lead to recoherence when only partial information about the system is obtained from the disturbed environment. The nonlocal contribution contains interferences between different quantum amplitudes leading to oscillations of the decoherence rate reminiscent of superradiance. These concepts, illustrated here in the framework of atom interferometry within a trap, may be applied to a variety of quantum systems.
Barack Obama Blindness (BOB): Absence of Visual Awareness to a Single Object.
Persuh, Marjan; Melara, Robert D
2016-01-01
In two experiments, we evaluated whether a perceiver's prior expectations could alone obliterate his or her awareness of a salient visual stimulus. To establish expectancy, observers first made a demanding visual discrimination on each of three baseline trials. Then, on a fourth, critical trial, a single, salient and highly visible object appeared in full view at the center of the visual field and in the absence of any competing visual input. Surprisingly, fully half of the participants were unaware of the solitary object in front of their eyes. Dramatically, observers were blind even when the only stimulus on display was the face of U.S. President Barack Obama. We term this novel, counterintuitive phenomenon, Barack Obama Blindness (BOB). Employing a method that rules out putative memory effects by probing awareness immediately after presentation of the critical stimulus, we demonstrate that the BOB effect is a true failure of conscious vision.
Barack Obama Blindness (BOB): Absence of Visual Awareness to a Single Object
Persuh, Marjan; Melara, Robert D.
2016-01-01
In two experiments, we evaluated whether a perceiver’s prior expectations could alone obliterate his or her awareness of a salient visual stimulus. To establish expectancy, observers first made a demanding visual discrimination on each of three baseline trials. Then, on a fourth, critical trial, a single, salient and highly visible object appeared in full view at the center of the visual field and in the absence of any competing visual input. Surprisingly, fully half of the participants were unaware of the solitary object in front of their eyes. Dramatically, observers were blind even when the only stimulus on display was the face of U.S. President Barack Obama. We term this novel, counterintuitive phenomenon, Barack Obama Blindness (BOB). Employing a method that rules out putative memory effects by probing awareness immediately after presentation of the critical stimulus, we demonstrate that the BOB effect is a true failure of conscious vision. PMID:27047362
Plasmid and surface antigen markers of endemic and epidemic Legionella pneumophila strains.
Brown, A; Vickers, R M; Elder, E M; Lema, M; Garrity, G M
1982-01-01
Environmental and clinical isolates of Legionella pneumophila obtained from the Pittsburgh Veterans Administration Medical Center were studied for the presence of plasmids and for unique surface antigens. The majority of environmental isolates contained a single 80-megadalton plasmid. After an epidemic of nosocomial Legionnaires disease subsided in the Spring of 1981, plasmid-bearing environmental isolates persisted in the environment. Whereas L. pneumophila could not be reisolated from most sites with plasmidless isolates. During this epidemic the attack rate was highest on wards with plasmidless isolates. All clinical isolates were plasmidless. Strains were serotyped by the indirect immunofluorescence method with serum from a single immunized rat which was used both without absorption and after absorption with various plasmid-bearing and plasmidless isolates. These studies suggested that a plasmid-associated surface antigen was present and that the most common plasmidless environmental serotype was similar to the epidemic clinical serotype. Images PMID:7119096
XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.
2009-01-01
Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.
Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide.
Bock, Matthias; Lenhard, Andreas; Chunnilall, Christopher; Becher, Christoph
2016-10-17
We present the realization of a highly efficient photon pair source based on spontaneous parametric downconversion (SPDC) in a periodically poled lithium niobate (PPLN) ridge waveguide. The source is suitable for long distance quantum communication applications as the photon pairs are located at the centers of the telecommunication O- and C- band at 1312 nm and 1557 nm. The high efficiency is confirmed by a conversion efficiency of 4 × 10-6 - which is to our knowledge among the highest conversion efficiencies reported so far - and a heralding efficiency of 64.1 ± 2.1%. The heralded single-photon properties are confirmed by the measurement of the photon statistics with a Click/No-Click method as well as the heralded g(2)-function. A minimum value for g(2)(0) of 0.001 ± 0.0003 indicating clear antibunching has been observed.
Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.
2015-01-01
During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069
Kaji, Amy H; Langford, Vinette; Lewis, Roger J
2008-09-01
There is currently no validated method for assessing hospital disaster preparedness. We determine the degree of correlation between the results of 3 methods for assessing hospital disaster preparedness: administration of an on-site survey, drill observation using a structured evaluation tool, and video analysis of team performance in the hospital incident command center. This was a prospective, observational study conducted during a regional disaster drill, comparing the results from an on-site survey, a structured disaster drill evaluation tool, and a video analysis of teamwork, performed at 6 911-receiving hospitals in Los Angeles County, CA. The on-site survey was conducted separately from the drill and assessed hospital disaster plan structure, vendor agreements, modes of communication, medical and surgical supplies, involvement of law enforcement, mutual aid agreements with other facilities, drills and training, surge capacity, decontamination capability, and pharmaceutical stockpiles. The drill evaluation tool, developed by Johns Hopkins University under contract from the Agency for Healthcare Research and Quality, was used to assess various aspects of drill performance, such as the availability of the hospital disaster plan, the geographic configuration of the incident command center, whether drill participants were identifiable, whether the noise level interfered with effective communication, and how often key information (eg, number of available staffed floor, intensive care, and isolation beds; number of arriving victims; expected triage level of victims; number of potential discharges) was received by the incident command center. Teamwork behaviors in the incident command center were quantitatively assessed, using the MedTeams analysis of the video recordings obtained during the disaster drill. Spearman rank correlations of the results between pair-wise groupings of the 3 assessment methods were calculated. The 3 evaluation methods demonstrated qualitatively different results with respect to each hospital's level of disaster preparedness. The Spearman rank correlation coefficient between the results of the on-site survey and the video analysis of teamwork was -0.34; between the results of the on-site survey and the structured drill evaluation tool, 0.15; and between the results of the video analysis and the drill evaluation tool, 0.82. The disparate results obtained from the 3 methods suggest that each measures distinct aspects of disaster preparedness, and perhaps no single method adequately characterizes overall hospital preparedness.
A method to track rotational motion for use in single-molecule biophysics.
Lipfert, Jan; Kerssemakers, Jacob J W; Rojer, Maylon; Dekker, Nynke H
2011-10-01
The double helical nature of DNA links many cellular processes such as DNA replication, transcription, and repair to rotational motion and the accumulation of torsional strain. Magnetic tweezers (MTs) are a single-molecule technique that enables the application of precisely calibrated stretching forces to nucleic acid tethers and to control their rotational motion. However, conventional magnetic tweezers do not directly monitor rotation or measure torque. Here, we describe a method to directly measure rotational motion of particles in MT. The method relies on attaching small, non-magnetic beads to the magnetic beads to act as fiducial markers for rotational tracking. CCD images of the beads are analyzed with a tracking algorithm specifically designed to minimize crosstalk between translational and rotational motion: first, the in-plane center position of the magnetic bead is determined with a kernel-based tracker, while subsequently the height and rotation angle of the bead are determined via correlation-based algorithms. Evaluation of the tracking algorithm using both simulated images and recorded images of surface-immobilized beads demonstrates a rotational resolution of 0.1°, while maintaining a translational resolution of 1-2 nm. Example traces of the rotational fluctuations exhibited by DNA-tethered beads confined in magnetic potentials of varying stiffness demonstrate the robustness of the method and the potential for simultaneous tracking of multiple beads. Our rotation tracking algorithm enables the extension of MTs to magnetic torque tweezers (MTT) to directly measure the torque in single molecules. In addition, we envision uses of the algorithm in a range of biophysical measurements, including further extensions of MT, tethered particle motion, and optical trapping measurements.
Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.
Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho
2011-01-01
The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of <3% and estimate the remaining medication volume with an accuracy of >98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A review on single photon sources in silicon carbide.
Lohrmann, A; Johnson, B C; McCallum, J C; Castelletto, S
2017-03-01
This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.
Rubin, Samuel J; Kirke, Diana N; Ezzat, Waleed H; Truong, Minh T; Salama, Andrew R; Jalisi, Scharukh
Determine whether marital status is a significant predictor of survival in human papillomavirus-positive oropharyngeal cancer. A single center retrospective study included patients diagnosed with human papilloma virus-positive oropharyngeal cancer at Boston Medical Center between January 1, 2010 and December 30, 2015, and initiated treatment with curative intent at Boston Medical Center. Demographic data and tumor-related variables were recorded. Univariate analysis was performed using a two-sample t-test, chi-squared test, Fisher's exact test, and Kaplan Meier curves with a log rank test. Multivariate survival analysis was performed using a Cox regression model. A total of 65 patients were included in the study with 24 patients described as married and 41 patients described as single. There was no significant difference in most demographic variables or tumor related variables between the two study groups, except single patients were significantly more likely to have government insurance (p=0.0431). Furthermore, there was no significant difference in 3-year overall survival between married patients and single patients (married=91.67% vs single=87.80%; p=0.6532) or 3-year progression free survival (married=79.17% vs single=85.37%; p=0.8136). After adjusting for confounders including age, sex, race, insurance type, smoking status, treatment, and AJCC combined pathologic stage, marital status was not a significant predictor of survival [HR=0.903; 95% CI (0.126,6.489); p=0.9192]. Although previous literature has demonstrated that married patients with head and neck cancer have a survival benefit compared to single patients with head and neck cancer, we were unable to demonstrate the same survival benefit in a cohort of patients with human papilloma virus-positive oropharyngeal cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Design of TIR collimating lens for ordinary differential equation of extended light source
NASA Astrophysics Data System (ADS)
Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi
2017-10-01
The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.
Radiation accumulation of F{sub 2} color centers in LiF crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisitsyna, L. A.
2016-01-15
The paper presents the results of the research of the F{sub 2} centers accumulation dose dependences in the LiF crystals, the kinetics of absorption relaxation initiated by exposure to a single electron pulse in the band maxima of different electron centers obtained by time-resolved spectrometry with nanosecond resolution. An analytical description of the F{sub 2} center accumulation in an absorbed dose range ≤10{sup 3} Gy is provided.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
NASA Astrophysics Data System (ADS)
Asif, Rameez; Haithem, Mustafa
2018-03-01
We revisited our previous work "10 Gbit/s mode-multiplexed QPSK transmission using MDM-to-MFDM based single coherent receiver for intraand inter data center networking" [Opt. Commun. 391 (2017) 106-110] and discover a mistake in the Appendix 'A', i.e. mode-selective coherent detection technique. In this section, the direct referencing of the previous work at appropriate points is not adequate (page no. 109).
L10 FePtCu bit patterned media
NASA Astrophysics Data System (ADS)
Brombacher, C.; Grobis, M.; Lee, J.; Fidler, J.; Eriksson, T.; Werner, T.; Hellwig, O.; Albrecht, M.
2012-01-01
Chemically ordered 5 nm-thick L10 FePtCu films with strong perpendicular magnetic anisotropy were post-patterned by nanoimprint lithography into a dot array over a 3 mm-wide circumferential band on a 3 inch Si wafer. The dots with a diameter of 30 nm and a center-to-center pitch of 60 nm appear as single domain and reveal an enhanced switching field as compared to the continuous film. We demonstrate successful recording on a single track using shingled writing with a conventional hard disk drive write/read head.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Robert A., E-mail: rolson2@bccancer.bc.ca; University of Northern British Columbia, Prince George, British Columbia; University of British Columbia, Vancouver, British Columbia
Purpose: To assess the impact of a population-based intervention to increase the consistency and use of single-fraction radiation therapy (SFRT) for bone metastases. Methods and Materials: In 2012, an audit of radiation therapy prescriptions for bone metastases in British Columbia identified significant interphysician and -center (26%-73%) variation in the use of SFRT. Anonymous physician-level and identifiable regional cancer center SFRT use data were presented to all radiation oncologists, together with published guidelines, meta-analyses, and recommendations from practice leaders. The use of SFRT for bone metastases from 2007 through 2011 was compared with use of SFRT in 2013, to assess themore » impact of the audit and educational intervention. Multilevel logistic regression was used to assess the relationship between the usage of SFRT and the timing of the radiation while controlling for potentially confounding variables. Physician and center were included as group effects to account for the clustered structure of the data. Results: A total of 16,898 courses of RT were delivered from 2007 through 2011, and 3200 courses were delivered in 2013. The rates of SFRT use in 2007, 2008, 2009, 2010, 2011, and 2013 were 50.5%, 50.9%, 48.3%, 48.5%, 48.0%, and 59.7%, respectively (P<.001). Use of SFRT increased in each of 5 regional centers: A: 26% to 32%; B: 36% to 56%; C: 39% to 57%; D: 49% to 56%; and E: 73% to 85.0%. Use of SFRT was more consistent; 3 of 5 centers used SFRT for 56% to 57% of bone metastases RT courses. The regression analysis showed strong evidence that the usage of SFRT increased after the 2012 intervention (odds ratio 2.27, 95% confidence interval 2.06-2.50, P<.0001). Conclusion: Assessed on a population basis, an audit-based intervention increased utilization of SFRT for bone metastases. The intervention reversed a trend to decreasing SFRT use, reduced costs, and improved patient convenience. This suggests that dissemination of programmatic quality indicators in oncology can lead to increased utilization of evidence-based practice.« less
Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.
Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania
2015-09-09
Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weissman-Miller, Deborah; Miller, Rosalie J; Shotwell, Mary P
2017-01-01
Translational research is redefined in this paper using a combination of methods in statistics and data science to enhance the understanding of outcomes and practice in occupational therapy. These new methods are applied, using larger data and smaller single-subject data, to a study in hippotherapy for children with developmental disabilities (DD). The Centers for Disease Control and Prevention estimates DD affects nearly 10 million children, aged 2-19, where diagnoses may be comorbid. Hippotherapy is defined here as a treatment strategy in occupational therapy using equine movement to achieve functional outcomes. Semiparametric ratio estimator (SPRE), a single-subject statistical and small data science model, is used to derive a "change point" indicating where the participant adapts to treatment, from which predictions are made. Data analyzed here is from an institutional review board approved pilot study using the Hippotherapy Evaluation and Assessment Tool measure, where outcomes are given separately for each of four measured domains and the total scores of each participant. Analysis with SPRE, using statistical methods to predict a "change point" and data science graphical interpretations of data, shows the translational comparisons between results from larger mean values and the very different results from smaller values for each HEAT domain in terms of relationships and statistical probabilities.
Miller, Rosalie J.; Shotwell, Mary P.
2017-01-01
Translational research is redefined in this paper using a combination of methods in statistics and data science to enhance the understanding of outcomes and practice in occupational therapy. These new methods are applied, using larger data and smaller single-subject data, to a study in hippotherapy for children with developmental disabilities (DD). The Centers for Disease Control and Prevention estimates DD affects nearly 10 million children, aged 2–19, where diagnoses may be comorbid. Hippotherapy is defined here as a treatment strategy in occupational therapy using equine movement to achieve functional outcomes. Semiparametric ratio estimator (SPRE), a single-subject statistical and small data science model, is used to derive a “change point” indicating where the participant adapts to treatment, from which predictions are made. Data analyzed here is from an institutional review board approved pilot study using the Hippotherapy Evaluation and Assessment Tool measure, where outcomes are given separately for each of four measured domains and the total scores of each participant. Analysis with SPRE, using statistical methods to predict a “change point” and data science graphical interpretations of data, shows the translational comparisons between results from larger mean values and the very different results from smaller values for each HEAT domain in terms of relationships and statistical probabilities. PMID:29097962
Motion capture for human motion measuring by using single camera with triangle markers
NASA Astrophysics Data System (ADS)
Takahashi, Hidenori; Tanaka, Takayuki; Kaneko, Shun'ichi
2005-12-01
This study aims to realize a motion capture for measuring 3D human motions by using single camera. Although motion capture by using multiple cameras is widely used in sports field, medical field, engineering field and so on, optical motion capture method with one camera is not established. In this paper, the authors achieved a 3D motion capture by using one camera, named as Mono-MoCap (MMC), on the basis of two calibration methods and triangle markers which each length of side is given. The camera calibration methods made 3D coordinates transformation parameter and a lens distortion parameter with Modified DLT method. The triangle markers enabled to calculate a coordinate value of a depth direction on a camera coordinate. Experiments of 3D position measurement by using the MMC on a measurement space of cubic 2 m on each side show an average error of measurement of a center of gravity of a triangle marker was less than 2 mm. As compared with conventional motion capture method by using multiple cameras, the MMC has enough accuracy for 3D measurement. Also, by putting a triangle marker on each human joint, the MMC was able to capture a walking motion, a standing-up motion and a bending and stretching motion. In addition, a method using a triangle marker together with conventional spherical markers was proposed. Finally, a method to estimate a position of a marker by measuring the velocity of the marker was proposed in order to improve the accuracy of MMC.
Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics
NASA Astrophysics Data System (ADS)
Shalaginov, Mikhail Y.
Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.
NASA Astrophysics Data System (ADS)
Osipov, V. Yu.; Shames, A. I.; Efimov, N. N.; Shakhov, F. M.; Kidalov, S. V.; Minin, V. V.; Vul', A. Ya.
2018-04-01
The electron paramagnetic resonance (EPR) spectra of triplet centers in detonation nanodiamonds (DNDs) and diamond single crystals of submicrometer size, synthesized from those DNDs at high pressures and temperatures, are studied. In the EPR spectra of DNDs, signals from negatively charged nitrogen- vacancy centers (NV)/sup(-) with a g factor of g 1 = 4.24 and multivacancies with g 2 = 4.00 are observed. The signals from (NV)/sup(-) centers disappear in the spectra of diamond single crystals, and a quintet signal with g = 4.00 is detected at the position of the signal from multivacancies. Analysis of the shape and position of the quintet' lines showed that this ESR signal is due to the pairs of nitrogen substitution centers in diamond, separated from each other by distances not exceeding 0.7 nm, between which a strong exchange interaction takes place. A comparison of the experimental data and the simulation results allows determining the spin-Hamiltonian parameters of the exchange-coupled pairs of paramagnetic impurity nitrogen atoms.
Kangur, Liina; Jones, Michael R; Freiberg, Arvi
2017-12-01
Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Toker, C.; Gokdag, Y. E.; Arikan, F.; Arikan, O.
2012-04-01
Ionosphere is a very important part of Space Weather. Modeling and monitoring of ionospheric variability is a major part of satellite communication, navigation and positioning systems. Total Electron Content (TEC), which is defined as the line integral of the electron density along a ray path, is one of the parameters to investigate the ionospheric variability. Dual-frequency GPS receivers, with their world wide availability and efficiency in TEC estimation, have become a major source of global and regional TEC modeling. When Global Ionospheric Maps (GIM) of International GPS Service (IGS) centers (http://iono.jpl.nasa.gov/gim.html) are investigated, it can be observed that regional ionosphere along the midlatitude regions can be modeled as a constant, linear or a quadratic surface. Globally, especially around the magnetic equator, the TEC surfaces resemble twisted and dispersed single centered or double centered Gaussian functions. Particle Swarm Optimization (PSO) proved itself as a fast converging and an effective optimization tool in various diverse fields. Yet, in order to apply this optimization technique into TEC modeling, the method has to be modified for higher efficiency and accuracy in extraction of geophysical parameters such as model parameters of TEC surfaces. In this study, a modified PSO (mPSO) method is applied to regional and global synthetic TEC surfaces. The synthetic surfaces that represent the trend and small scale variability of various ionospheric states are necessary to compare the performance of mPSO over number of iterations, accuracy in parameter estimation and overall surface reconstruction. The Cramer-Rao bounds for each surface type and model are also investigated and performance of mPSO are tested with respect to these bounds. For global models, the sample points that are used in optimization are obtained using IGS receiver network. For regional TEC models, regional networks such as Turkish National Permanent GPS Network (TNPGN-Active) receiver sites are used. The regional TEC models are grouped into constant (one parameter), linear (two parameters), and quadratic (six parameters) surfaces which are functions of latitude and longitude. Global models require seven parameters for single centered Gaussian and 13 parameters for double centered Gaussian function. The error criterion is the normalized percentage error for both the surface and the parameters. It is observed that mPSO is very successful in parameter extraction of various regional and global models. The normalized reconstruction error varies from 10-4 for constant surfaces to 10-3 for quadratic surfaces in regional models, sampled with regional networks. Even for the cases of a severe geomagnetic storm that affects measurements globally, with IGS network, the reconstruction error is on the order of 10-1 even though individual parameters have higher normalized errors. The modified PSO technique proved itself to be a useful tool for parameter extraction of more complicated TEC models. This study is supported by TUBITAK EEEAG under Grant No: 109E055.
NASA Astrophysics Data System (ADS)
Zabeti, S.; Fikri, M.; Schulz, C.
2017-11-01
Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.
DeWitt, Nancy T.; Reich, Christopher D.; Smith, Christopher G.; Reynolds, Billy J.
2014-01-01
A team of scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, collected 92 line-kilometers of dual-frequency single-beam bathymetry data in the tidal creeks, bayous, and coastal areas near Weeks Bay, southwest Louisiana. Limited bathymetry data exist for these tidally and meteorologically influenced shallow-water estuarine environments. In order to reduce the present knowledge gap, the objectives of this study were to (1) develop methods for regional inland bathymetry mapping and monitoring, (2) test inland bathymetry mapping system in pilot locations for integrating multiple elevation (aerial and terrestrial lidar) and bathymetry datasets, (3) implement inland bathymetry mapping and monitoring in highly focused sites, and (4) evaluate changes in bathymetry and channel-fill sediment storage using these methods. This report contains single-beam bathymetric data collected between January 14 and 18, 2013. Data were collected from the RV Mako (5-meter vessel) in water depths that ranged from This report serves as an archive of processed bathymetry data. Geographic information system data provided in this document include a 10-meter cell-size interpolated gridded bathymetry surface, and trackline maps. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata. Do not use these data for navigational purposes.
Optical Modification of a Single Impurity Molecule in a Solid
1991-10-17
have led to direct observations of the lifetime-limited homogeneous Iinewidth of a single pentacene molecule as well as the surprising observation of...advances in the optical detection and spectroscopy of single impurity centers in solids. For the system composed of pentacene impurity molecules in the...limited homogcncous linewidth of a single pentacene molecule as well as the surprising observation of spontaneous spectral diffusion in a crystal
Santori, G; Andorno, E; Morelli, N; Casaccia, M; Bottino, G; Di Domenico, S; Valente, U
2009-05-01
In many Western countries a "minimum volume rule" policy has been adopted as a quality measure for complex surgical procedures. In Italy, the National Transplant Centre set the minimum number of orthotopic liver transplantation (OLT) procedures/y at 25/center. OLT procedures performed in a single center for a reasonably large period may be treated as a time series to evaluate trend, seasonal cycles, and nonsystematic fluctuations. Between January 1, 1987 and December 31, 2006, we performed 563 cadaveric donor OLTs to adult recipients. During 2007, there were another 28 procedures. The greatest numbers of OLTs/y were performed in 2001 (n = 51), 2005 (n = 50), and 2004 (n = 49). A time series analysis performed using R Statistical Software (Foundation for Statistical Computing, Vienna, Austria), a free software environment for statistical computing and graphics, showed an incremental trend after exponential smoothing as well as after seasonal decomposition. The predicted OLT/mo for 2007 calculated with the Holt-Winters exponential smoothing applied to the previous period 1987-2006 helped to identify the months where there was a major difference between predicted and performed procedures. The time series approach may be helpful to establish a minimum volume/y at a single-center level.
Automatically generated acceptance test: A software reliability experiment
NASA Technical Reports Server (NTRS)
Protzel, Peter W.
1988-01-01
This study presents results of a software reliability experiment investigating the feasibility of a new error detection method. The method can be used as an acceptance test and is solely based on empirical data about the behavior of internal states of a program. The experimental design uses the existing environment of a multi-version experiment previously conducted at the NASA Langley Research Center, in which the launch interceptor problem is used as a model. This allows the controlled experimental investigation of versions with well-known single and multiple faults, and the availability of an oracle permits the determination of the error detection performance of the test. Fault interaction phenomena are observed that have an amplifying effect on the number of error occurrences. Preliminary results indicate that all faults examined so far are detected by the acceptance test. This shows promise for further investigations, and for the employment of this test method on other applications.
The Flight Optimization System Weights Estimation Method
NASA Technical Reports Server (NTRS)
Wells, Douglas P.; Horvath, Bryce L.; McCullers, Linwood A.
2017-01-01
FLOPS has been the primary aircraft synthesis software used by the Aeronautics Systems Analysis Branch at NASA Langley Research Center. It was created for rapid conceptual aircraft design and advanced technology impact assessments. FLOPS is a single computer program that includes weights estimation, aerodynamics estimation, engine cycle analysis, propulsion data scaling and interpolation, detailed mission performance analysis, takeoff and landing performance analysis, noise footprint estimation, and cost analysis. It is well known as a baseline and common denominator for aircraft design studies. FLOPS is capable of calibrating a model to known aircraft data, making it useful for new aircraft and modifications to existing aircraft. The weight estimation method in FLOPS is known to be of high fidelity for conventional tube with wing aircraft and a substantial amount of effort went into its development. This report serves as a comprehensive documentation of the FLOPS weight estimation method. The development process is presented with the weight estimation process.
Typography and layout of technical reports - Survey of current practices
NASA Technical Reports Server (NTRS)
Pinelli, T. E.; Cordle, V. M.; Mccullough, R.
1985-01-01
As part of a review of the NASA Langley Research Center scientific and technical information program, 50 technical reports from industry, research institutions, and government agencies were systematically examined and analyzed to determine current usage and practice in regard to (1) typography, including composition method, type style, type size, and margin treatment; (2) graphic design, including layout and imposition of material on the page; and (3) physical media, including paper, ink, and binding methods. The results indicate that approximately 50 percent of the reports were typeset, 70 percent used Roman (serif) type, 80 percent used 10- or 11-point type for text, 60 percent used a ragged right-hand margin, slightly more than half used paragraph indentation, 75 percent used a single-column layout, 65 percent had one or more figures or tables placed perpendicular to (not aligned with) the text, and perfect binding was the most frequently used binding method.
Vibration Signature Analysis of a Faulted Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.
Turbomachinery aeroelasticity at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Kaza, Krishna Rao V.
1989-01-01
The turbomachinery aeroelastic effort is focused on unstalled and stalled flutter, forced response, and whirl flutter of both single rotation and counter rotation propfans. It also includes forced response of the Space Shuttle Main Engine (SSME) turbopump blades. Because of certain unique features of propfans and the SSME turbopump blades, it is not possible to directly use the existing aeroelastic technology of conventional propellers, turbofans or helicopters. Therefore, reliable aeroelastic stability and response analysis methods for these propulsion systems must be developed. The development of these methods for propfans requires specific basic technology disciplines, such as 2-D and 3-D steady and unsteady aerodynamic theories in subsonic, transonic and supersonic flow regimes; modeling of composite blades; geometric nonlinear effects; and passive and active control of flutter and response. These methods are incorporated in a computer program, ASTROP. The program has flexibility such that new and future models in basic disciplines can be easily implemented.
Bridging gaps in handoffs: a continuity of care based approach.
Abraham, Joanna; Kannampallil, Thomas G; Patel, Vimla L
2012-04-01
Handoff among healthcare providers has been recognized as a major source of medical errors. Most prior research has often focused on the communication aspects of handoff, with limited emphasis on the overall handoff process, especially from a clinician workflow perspective. Such a workflow perspective that is based on the continuity of care model provides a framework required to identify and support an interconnected trajectory of care events affecting handoff communication. To this end, we propose a new methodology, referred to as the clinician-centered approach that allows us to investigate and represent the entire clinician workflow prior to, during and, after handoff communication. This representation of clinician activities supports a comprehensive analysis of the interdependencies in the handoff process across the care continuum, as opposed to a single discrete, information sharing activity. The clinician-centered approach is supported by multifaceted methods for data collection such as observations, shadowing of clinicians, audio recording of handoff communication, semi-structured interviews and artifact identification and collection. The analysis followed a two-stage mixed inductive-deductive method. The iterative development of clinician-centered approach was realized using a multi-faceted study conducted in the Medical Intensive Care Unit (MICU) of an academic hospital. Using the clinician-centered approach, we (a) identify the nature, inherent characteristics and the interdependencies between three phases of the handoff process and (b) develop a descriptive framework of handoff communication in critical care that captures the non-linear, recursive and interactive nature of collaboration and decision-making. The results reported in this paper serve as a "proof of concept" of our approach, emphasizing the importance of capturing a coordinated and uninterrupted succession of clinician information management and transfer activities in relation to patient care events. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Yinan; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu; Hohenstein, Edward G.
2015-01-14
Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCFmore » in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.« less
Jung, Kihwan; Kim, Hojong
2015-01-01
Background and Objectives To evaluate the relationship between age and anesthesia method used for tympanostomy tube insertion (TTI) and to provide evidence to guide the selection of an appropriate anesthesia method in children. Subjects and Methods We performed a retrospective review of children under 15 years of age who underwent tympanostomy tube insertion (n=159) or myringotomy alone (n=175) under local or general anesthesia by a single surgeon at a university-based, secondary care referral hospital. Epidermiologic data between local and general anesthesia groups as well as between TTI and myringotomy were analyzed. Medical costs were compared between local and general anesthesia groups. Results Children who received local anesthesia were significantly older than those who received general anesthesia. Unilateral tympanostomy tube insertion was performed more frequently under local anesthesia than bilateral. Logistic regression modeling showed that local anesthesia was more frequently applied in older children (odds ratio=1.041) and for unilateral tympanostomy tube insertion (odds ratio=8.990). The cut-off value of age for local anesthesia was roughly 5 years. Conclusions In a pediatric population at a single medical center, age and whether unilateral or bilateral procedures were required were important factors in selecting an anesthesia method for tympanostomy tube insertion. Our findings suggest that local anesthesia can be preferentially considered for children 5 years of age or older, especially in those with unilateral otitis media with effusion. PMID:26185791
Correlates of Living Alone among Single Elderly Chinese Immigrants in Canada
ERIC Educational Resources Information Center
Lai, Daniel W. L.; Leonenko, Wendy L.
2007-01-01
According to traditional Chinese culture, families will care for their elderly. Therefore, it appears to be uncommon for elderly Chinese to live alone. This study examines the correlates for single elderly Chinese immigrants in Canada to live alone. Using a probability sample of single elderly Chinese immigrants (N = 660) in seven urban centers,…
Representation of multiaquifer well effects in three-dimensional ground-water flow simulation
Bennett, Gordon D.; Kontis, Angelo L.; Larson, Steven P.
1982-01-01
The presence of multiaquifer or multilayer wells changes the nature of the equations which must be solved in a three-dimensional ground-water flow simulation and, in effect, alters the stencil of computation. A method has been devised which takes this change into consideration by allowing simulation of the hydraulic effects of a multiaquifer well on the aquifer system. It also allows for calculation of the water level and individual aquifer discharges in such a well. The method is valid for the case of a single well located at the center of a square node block. Where more than one well per node is involved, the effects of the stencil alteration still must be considered, although difficulties arise in estimating and justifying the parameters to be utilized.
Material characterization of structural adhesives in the lap shear mode
NASA Technical Reports Server (NTRS)
Sancaktar, E.; Schenck, S. C.
1983-01-01
A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.
Synthesis and characterization of gold nanodogbones by the seeded mediated growth method
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Meen, Teen-Hang; Yang, Cheng-Fu
2007-10-01
Novel gold nanodogbones (GDBs) are successfully fabricated using a simple seeded mediated growth (SMG) method. The shapes of GDBs depend on the amount of added vitamin C solvent. The amount of vitamin C solvent was varied from 10 to 40 µl to investigate the influence of vitamin C solvent on the GDBs. It is found that the aspect ratios (R) of GDBs were in the range from 2.34 to 1.46, and the UV-vis absorption measurement revealed a pronounced blueshift on the longitudinal surface plasmon resonance (SPR) band from 713 to 676 nm. The GDBs were determined by x-ray diffraction (XRD) to be single-crystalline with a face-centered cubic (fcc) structure. The lattice constant calculated from this selected-area electron diffraction (SAED) pattern is 4.068 Å.
Fundamental-mode MMF transmission enabled by mode conversion
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi
2018-03-01
Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Comparison of postural stability between injured and uninjured ballet dancers.
Lin, Cheng-Feng; Lee, I-Jung; Liao, Jung-Hsien; Wu, Hong-Wen; Su, Fong-Chin
2011-06-01
Ballet movements require a limited base of support; thus, ballet dancers require a high level of postural control. However, postural stability in ballet dancers is still unclear and needs to be understood. To evaluate ballet dancers' postural stability in performing single-leg standing, the en pointe task, and the first and fifth positions and to determine differences in task performance among healthy nondancers, healthy dancers, and dancers with ankle sprains. Controlled laboratory study. Injured dancers, uninjured dancers, and nondancers were recruited for this study (N = 33 age-matched participants; n= 11 per group). The tasks tested were single-leg standing with eyes open and closed, first position, fifth position, and en pointe. Center of pressure parameters were calculated from the ground-reaction force collected with 1 force plate. Analysis of variance was used to assess the differences of center of pressure parameters among 3 groups in single-leg standing; independent t test was used to examine the differences of center of pressure parameters between injured and uninjured dancers. During single-leg standing, injured dancers had significantly greater maximum displacement in the medial-lateral direction and total trajectory of center of pressure, compared with the uninjured dancers and nondancers. During the first and fifth positions, the injured dancers demonstrated significantly greater standard deviation of center of pressure position in the medial-lateral and anterior-posterior directions, compared with the uninjured dancers. During en pointe, the injured dancers had significantly greater maximum displacement in the medial-lateral direction and the anterior-posterior direction, compared with the uninjured dancers. The injured and uninjured dancers demonstrated differences in postural stability in the medial-lateral direction during single-leg standing and the ballet postures. Although the injured dancers received ballet training, their postural stability may still be inferior to that of the nondancers. This study is a first step in understanding that injured ballet dancers do not have the same postural stability as uninjured dancers and that it is even inferior to that of nondancers, which is important to understand for further study on rehabilitation. The future development of effective balance training programs for ballet dancers with ankle injuries should emphasize improvements in medial-lateral directional balance.
Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide
NASA Astrophysics Data System (ADS)
Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg
2018-03-01
Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.
Robotic-assisted single-port donor nephrectomy using the da Vinci single-site platform.
LaMattina, John C; Alvarez-Casas, Josue; Lu, Irene; Powell, Jessica M; Sultan, Samuel; Phelan, Michael W; Barth, Rolf N
2018-02-01
Although single-port donor nephrectomy offers improved cosmetic outcomes, technical challenges have limited its application to selected centers. Our center has performed over 400 single-port donor nephrectomies. The da Vinci single-site robotic platform was utilized in an effort to overcome the steric, visualization, ergonomic, and other technical limitations associated with the single-port approach. Food and Drug Administration device exemption was obtained. Selection criteria for kidney donation included body mass index <35, left kidney donors, and ≤2 renal arteries. After colonic mobilization using standard single-port techniques, the robotic approach was utilized for ureteral complex and hilar dissection. Three cases were performed using the robotic single-site platform. Average total operative time was 262 ± 42 min including 82 ± 16 min of robotic use. Docking time took 20 ± 10 min. Blood loss averaged 77 ± 64 mL. No intraoperative complications occurred, and all procedures were completed with our standard laparoscopic single-port approach. This is the first clinical experience of robotic-assisted donor nephrectomy utilizing the da Vinci single-site platform. Our experience supported the safety of this approach but found that the technology added cost and complexity without tangible benefit. Development of articulating instruments, energy, and stapling devices will be necessary for increased application of robotic single-site surgery for donor nephrectomy. Copyright © 2017 Elsevier Inc. All rights reserved.
Single photon quantum cryptography.
Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe
2002-10-28
We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2014-01-01
Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58±0.06; failed injury group: 1.54±0.07; successful non-injured group: 1.64±0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD. Copyright © 2014 Elsevier B.V. All rights reserved.
Combination products regulation at the FDA.
Lauritsen, K J; Nguyen, T
2009-05-01
The US Food and Drug Administration (FDA) is responsible for protecting the public health by assuring the safety, efficacy, and security of drugs, biological products, and medical devices. As single-entity products, drugs are generally regulated by the Center for Drug Evaluation and Research (CDER), devices by the Center for Devices and Radiological Health (CDRH), and biologics by the Center for Biologics Evaluation and Research (CBER). In recent years, technological advances have led to a blurring of the historical lines of separation between the centers.
Center for Biophotonics Science and Technology (CBST).
Chuang, Frank
2004-01-01
The Center for Biophotonics Science and Technology (CBST) is the only center in the country funded by the National Science Foundation and devoted to the study of light and radiant energy in biology and medicine. Our consortium of 10 world-class academic institutions and research laboratories is comprised of physical and life scientists, physicians and engineers - along with industry participants, educators and community leaders - working together to bring biophotonics to the forefront of mainstream science. The three main arms of CBST are (1) Science and Technology, (2) Education, and (3) Knowledge Transfer. The research sponsored by the center focuses on critical themes that are expected to have significant impact on current biomedical science and technology. Projects include the development of new methods in optical microscopy that work well beyond the diffraction limit; ultrafast, high-intensity X-ray lasers to resolve the structure of single biomolecules, and new devices and sensors for minimally - or noninvasive medical applications. CBST is developing a new curriculum, along with training materials, internships and research fellowships to introduce biophotonics to students and teachers at all educational levels. Finally, the knowledge transfer component of CBST is seeking to catalyze the rapid growth of biophotonics as a new technology sector by supplying intellectual capital and tools to stimulate the growth of new products and new companies. By coupling the center's biophotonics research projects with industry partners and sponsors, a unique R&D environment is created to expand the use of photons in the development of life sciences, bioengineering and health care.
Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konjevic, R.; Steinitz, B.; Poff, K.L.
1989-12-01
In the phototropic response of Arabidopsis thaliana seedlings, the shape of the fluence-response relation depends on fluence rate and wavelength. At low fluence rates, the response to 450-nm light is characterized by a single maximum at about 0.3 {mu}mol{center dot}m{sup {minus}2}. At higher fluence rates, the response shows two distinct maxima, I and II, at 0.3 and 3.5 {mu}mol{center dot}m{sup {minus}2}, respectively. The response to 500-nm light shows a single maximum at 2 {mu}mol{center dot}m{sup {minus}2}, and the response to 510-nm light shows a single maximum at 4.5 {mu}mol{center dot}m{sup {minus}2}, independent of fluence rate. The response to 490-nm lightmore » shows a maximal at 4.5 {mu}mol{center dot}m{sup {minus}2} and a shoulder at about 0.6 {mu}mol{center dot}m{sup {minus}2}. Preirradiation with high-fluence 510-nm light from above, immediately followed by unilateral 450-nm light, eliminates maximum II but not maximum I. Preirradiation with high-fluence 450-nm light from above eliminates the response to subsequent unilateral irradiation with either 450-nm or 510-nm light. The recovery of the response following high-fluence 450-nm light is considerably slower than the recovery following high-fluence 510-nm light. Unilateral irradiation with low-fluence 510-nm light followed by 450-nm light results in curvature that is approximately the sum of those produced by either irradiation alone. Based on these results, it is proposed that phototropism in A. thaliana seedlings is mediated by at least two blue-light photoreceptor pigments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, H; Bubric, K; Giovannetti, H
2016-06-15
Purpose: As a quality improvement measure, we undertook this work to incorporate usability testing into the implementation procedures for new electronic documents and forms used by four affiliated radiation therapy centers. Methods: A human factors specialist provided training in usability testing for a team of medical physicists, radiation therapists, and radiation oncologists from four radiotherapy centers. A usability testing plan was then developed that included controlled scenarios and standardized forms for qualitative and quantitative feedback from participants, including patients. Usability tests were performed by end users using the same hardware and viewing conditions that are found in the clinical environment.more » A pilot test of a form used during radiotherapy CT simulation was performed in a single department; feedback informed adaptive improvements to the electronic form, hardware requirements, resource accessibility and the usability testing plan. Following refinements to the testing plan, usability testing was performed at three affiliated cancer centers with different vault layouts and hardware. Results: Feedback from the testing resulted in the detection of 6 critical errors (omissions and inability to complete task without assistance), 6 non-critical errors (recoverable), and multiple suggestions for improvement. Usability problems with room layout were detected at one center and problems with hardware were detected at one center. Upon amalgamation and summary of the results, three key recommendations were presented to the document’s authors for incorporation into the electronic form. Documented inefficiencies and patient safety concerns related to the room layout and hardware were presented to administration along with a request for funding to purchase upgraded hardware and accessories to allow a more efficient workflow within the simulator vault. Conclusion: By including usability testing as part of the process when introducing any new document or procedure into clinical use, associated risks can be identified and mitigated before patient care and clinical workflow are impacted.« less
Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene
NASA Astrophysics Data System (ADS)
Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.
2012-07-01
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-03-28
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-03-01
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.
Breed, Greg A.; Golson, Emily A.; Tinker, M. Tim
2017-01-01
The home‐range concept is central in animal ecology and behavior, and numerous mechanistic models have been developed to understand home range formation and maintenance. These mechanistic models usually assume a single, contiguous home range. Here we describe and implement a simple home‐range model that can accommodate multiple home‐range centers, form complex shapes, allow discontinuities in use patterns, and infer how external and internal variables affect movement and use patterns. The model assumes individuals associate with two or more home‐range centers and move among them with some estimable probability. Movement in and around home‐range centers is governed by a two‐dimensional Ornstein‐Uhlenbeck process, while transitions between centers are modeled as a stochastic state‐switching process. We augmented this base model by introducing environmental and demographic covariates that modify transition probabilities between home‐range centers and can be estimated to provide insight into the movement process. We demonstrate the model using telemetry data from sea otters (Enhydra lutris) in California. The model was fit using a Bayesian Markov Chain Monte Carlo method, which estimated transition probabilities, as well as unique Ornstein‐Uhlenbeck diffusion and centralizing tendency parameters. Estimated parameters could then be used to simulate movement and space use that was virtually indistinguishable from real data. We used Deviance Information Criterion (DIC) scores to assess model fit and determined that both wind and reproductive status were predictive of transitions between home‐range centers. Females were less likely to move between home‐range centers on windy days, less likely to move between centers when tending pups, and much more likely to move between centers just after weaning a pup. These tendencies are predicted by theoretical movement rules but were not previously known and show that our model can extract meaningful behavioral insight from complex movement data.
Lazzari, Roberta Delasta; Politti, Fabiano; Santos, Cibele Alimedia; Dumont, Arislander Jonathan Lopes; Rezende, Fernanda Lobo; Grecco, Luanda André Collange; Braun Ferreira, Luiz Alfredo; Oliveira, Claudia Santos
2015-01-01
[Purpose] The aim of the present study was to investigate the effects of a single session of transcranial direct current stimulation combined with virtual reality training on the balance of children with cerebral palsy. [Subjetcs and Methods] Children with cerebral palsy between four and 12 years of age were randomly allocated to two groups: an experimental group which performed a single session of mobility training with virtual reality combined with active transcranial direct current stimulation; and a control group which performed a single session of mobility training with virtual reality combined with placebo transcranial direct current stimulation. The children were evaluated before and after the training protocols. Static balance (sway area, displacement, velocity and frequency of oscillations of the center of pressure on the anteroposterior and mediolateral axes) was evaluated using a force plate under four conditions (30-second measurements for each condition): feet on the force plate with the eyes open, and with the eyes closed; feet on a foam mat with the eyes open, and with the eyes closed. [Results] An increase in sway velocity was the only significant difference found. [Conclusion] A single session of anodal transcranial direct current stimulation combined with mobility training elicited to lead to an increase in the body sway velocity of children with cerebral palsy. PMID:25931726
DOT National Transportation Integrated Search
2000-05-24
A full-scale impact test was performed November 16, 1999, at the Federal Railroad Administration's Transportation Technology Center, Pueblo, Colorado, by Transportation Technology Center, Inc., a subsidiary of the Association of American Railroads. T...
Molecular and electronic structures of M 2O 7 (M = Mn, Tc, Re)
Lawler, Keith V.; Childs, Bradley C.; Mast, Daniel S.; ...
2017-02-21
The molecular and electronic structures for the Group 7b heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re 2O 7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density ofmore » states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ~0.2 eV due to an under-correlation of the metal d conducting states. As a result, homologue and compression studies show that Re 2O 7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.« less
Nonsomatotopic organization of the higher motor centers in octopus.
Zullo, Letizia; Sumbre, German; Agnisola, Claudio; Flash, Tamar; Hochner, Binyamin
2009-10-13
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.
Dialyzer reuse--part II: advantages and disadvantages.
Twardowski, Zbylut J
2006-01-01
Although single dialyzer use and reuse by chemical reprocessing are both associated with some complications, there is no definitive advantage to either in this respect. Some complications occur mainly at the first use of a dialyzer: a new cellophane or cuprophane membrane may activate the complement system, or a noxious agent may be introduced to the dialyzer during production or generated during storage. These agents may not be completely removed during the routine rinsing procedure. The reuse of dialyzers is associated with environmental contamination, allergic reactions, residual chemical infusion (rebound release), inadequate concentration of disinfectants, and pyrogen reactions. Bleach used during reprocessing causes a progressive increase in dialyzer permeability to larger molecules, including albumin. Reprocessing methods without the use of bleach are associated with progressive decreases in membrane permeability, particularly to larger molecules. Most comparative studies have not shown differences in mortality between centers reusing and those not reusing dialyzers, however, the largest cluster of dialysis-related deaths occurred with single-use dialyzers due to the presence of perfluorohydrocarbon introduced during the manufacturing process and not completely removed during preparation of the dialyzers before the dialysis procedure. The cost savings associated with reuse is substantial, especially with more expensive, high-flux synthetic membrane dialyzers. With reuse, some dialysis centers can afford to utilize more efficient dialyzers that are more expensive; consequently they provide a higher dose of dialysis and reduce mortality. Some studies have shown minimally higher morbidity with chemical reuse, depending on the method. Waste disposal is definitely decreased with the reuse of dialyzers, thus environmental impacts are lessened, particularly if reprocessing is done by heat disinfection. It is safe to predict that dialyzer reuse in dialysis centers will continue because it also saves money for the providers. Saving both time for the patient and money for the provider were the main motivations to design a new machine for daily home hemodialysis. The machine, developed in the 1990s, cleans and heat disinfects the dialyzer and lines in situ so they do not need to be changed for a month. In contrast, reuse of dialyzers in home hemodialysis patients treated with other hemodialysis machines is becoming less popular and is almost extinct.
Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper
Van de Heyning, Paul; Távora-Vieira, Dayse; Mertens, Griet; Van Rompaey, Vincent; Rajan, Gunesh P.; Müller, Joachim; Hempel, John Martin; Leander, Daniel; Polterauer, Daniel; Marx, Mathieu; Usami, Shin-ichi; Kitoh, Ryosuke; Miyagawa, Maiko; Moteki, Hideaki; Smilsky, Kari; Baumgartner, Wolf-Dieter; Keintzel, Thomas Georg; Sprinzl, Georg Mathias; Wolf-Magele, Astrid; Arndt, Susan; Wesarg, Thomas; Zirn, Stefan; Baumann, Uwe; Weissgerber, Tobias; Rader, Tobias; Hagen, Rudolf; Kurz, Anja; Rak, Kristen; Stokroos, Robert; George, Erwin; Polo, Ruben; Medina, María del Mar; Henkin, Yael; Hilly, Ohad; Ulanovski, David; Rajeswaran, Ranjith; Kameswaran, Mohan; Di Gregorio, Maria Fernanda; Zernotti, Mario E.
2017-01-01
Background While hearing aids for a contralateral routing of signals (CROS-HA) and bone conduction devices have been the traditional treatment for single-sided deafness (SSD) and asymmetric hearing loss (AHL), in recent years, cochlear implants (CIs) have increasingly become a viable treatment choice, particularly in countries where regulatory approval and reimbursement schemes are in place. Part of the reason for this shift is that the CI is the only device capable of restoring bilateral input to the auditory system and hence of possibly reinstating binaural hearing. Although several studies have independently shown that the CI is a safe and effective treatment for SSD and AHL, clinical outcome measures in those studies and across CI centers vary greatly. Only with a consistent use of defined and agreed-upon outcome measures across centers can high-level evidence be generated to assess the safety and efficacy of CIs and alternative treatments in recipients with SSD and AHL. Methods This paper presents a comparative study design and minimum outcome measures for the assessment of current treatment options in patients with SSD/AHL. The protocol was developed, discussed, and eventually agreed upon by expert panels that convened at the 2015 APSCI conference in Beijing, China, and at the CI 2016 conference in Toronto, Canada. Results A longitudinal study design comparing CROS-HA, BCD, and CI treatments is proposed. The recommended outcome measures include (1) speech in noise testing, using the same set of 3 spatial configurations to compare binaural benefits such as summation, squelch, and head shadow across devices; (2) localization testing, using stimuli that rove in both level and spectral content; (3) questionnaires to collect quality of life measures and the frequency of device use; and (4) questionnaires for assessing the impact of tinnitus before and after treatment, if applicable. Conclusion A protocol for the assessment of treatment options and outcomes in recipients with SSD and AHL is presented. The proposed set of minimum outcome measures aims at harmonizing assessment methods across centers and thus at generating a growing body of high-level evidence for those treatment options. PMID:28319951
Biological Information Processing in Single Microtubules
2014-03-05
single Microtubule Google Mountain view campus, workshop on quantum biology 22 October 2010 3. Paul Davies Beyond Center at Arizona State University...Phoenix) Phoenix, workshop on quantum biology and cancer research, Experimental studies on single microtubule, 25-27 October 2010, Tempe, Arizona...State University, USA 4. Quantum aspects of microtubule: Direct experimental evidence for the existence of quantum states in microtubule, Towards a
Student Engagement at Two Single-Sex Colleges: Hampden-Sydney and Sweet Briar
ERIC Educational Resources Information Center
Simms, Edith L.
2010-01-01
Since the 1960s the higher educational system in the United States has steadily lost its single-sex colleges; and as of 2008 only 51 women's and four men's institutions remain (National Center for Educational Statistics, 2008). Many of the previous single-sex schools have admitted members of the opposite sex, giving in to the national trend of…
Zhang, Xintong; Qi, Xingshun; De Stefano, Valerio; Hou, Feifei; Ning, Zheng; Zhao, Jiancheng; Peng, Ying; Li, Jing; Deng, Han; Li, Hongyu; Guo, Xiaozhong
2016-01-01
Background Risk of venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), may be increased in liver cirrhosis. We conducted a single-center study to explore the epidemiology, risk factors, and in-hospital mortality of VTE in Chinese patients with liver cirrhosis. Material/Methods All patients with liver cirrhosis who were consecutively admitted to our hospital between January 2011 and December 2013 were retrospectively included. Results Of 2006 patients with liver cirrhosis included, 9 patients were diagnosed with or developed VTE during hospitalization, including 5 patients with a previous history of DVT, 1 patient with either a previous history of DVT or new onset of PE, and 3 patients with new onset of VTE (PE, n=1; DVT, n=2). Risk factors for VTE included a significantly higher proportion of hypertension and significantly higher red blood cells, hemoglobin, alanine aminotransferase, aspartate aminotransferase, prothrombin time (PT), international normalized ratio (INR), D-dimer, and Child-Pugh scores. The in-hospital mortality was significantly higher in patients with VTE than those without VTE (33.3% [3/9] versus 3.4% [67/1997], P<0.001). Conclusions VTE was observed in 0.4% of patients with liver cirrhosis during hospitalization and it significantly increased the in-hospital mortality. Elevated PT/INR aggravated the risk of VTE. PMID:27009380
Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo
2015-01-01
Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Conclusions: Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography. PMID:26133635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
Rover mast calibration, exact camera pointing, and camara handoff for visual target tracking
NASA Technical Reports Server (NTRS)
Kim, Won S.; Ansar, Adnan I.; Steele, Robert D.
2005-01-01
This paper presents three technical elements that we have developed to improve the accuracy of the visual target tracking for single-sol approach-and-instrument placement in future Mars rover missions. An accurate, straightforward method of rover mast calibration is achieved by using a total station, a camera calibration target, and four prism targets mounted on the rover. The method was applied to Rocky8 rover mast calibration and yielded a 1.1-pixel rms residual error. Camera pointing requires inverse kinematic solutions for mast pan and tilt angles such that the target image appears right at the center of the camera image. Two issues were raised. Mast camera frames are in general not parallel to the masthead base frame. Further, the optical axis of the camera model in general does not pass through the center of the image. Despite these issues, we managed to derive non-iterative closed-form exact solutions, which were verified with Matlab routines. Actual camera pointing experiments aver 50 random target image paints yielded less than 1.3-pixel rms pointing error. Finally, a purely geometric method for camera handoff using stereo views of the target has been developed. Experimental test runs show less than 2.5 pixels error on high-resolution Navcam for Pancam-to-Navcam handoff, and less than 4 pixels error on lower-resolution Hazcam for Navcam-to-Hazcam handoff.
Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor
NASA Astrophysics Data System (ADS)
Bae, Eun-Hyon; Lee, Kyun-Kyung
A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.
NASA Astrophysics Data System (ADS)
Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.
2017-12-01
A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, X.; Liang, J. H.; Chen, B. L.
2015-07-28
Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.