Sample records for methods wild-type wt

  1. Direct comparison of progenitor cells derived from adipose, muscle, and bone marrow from wild-type or craniosynostotic rabbits

    PubMed Central

    GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee

    2010-01-01

    Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482

  2. Refractive index of dark-adapted bacteriorhodopsin and tris(hydroxymethyl)aminomethane buffer between 390 and 880 nm.

    PubMed

    Heiner, Zsuzsanna; Osvay, Károly

    2009-08-10

    The refractivity of wild-type bacteriorhodopsin (bR(WT)) suspended in tris(hydroxymethyl)aminomethane (TRIS) buffer has been measured in the spectral range of 390-840 nm by the method of angle of minimal deviation with the use of a hollow glass prism. The refractive indices of pure bR(WT) as well as of TRIS buffer have been determined from the concentration dependent refraction values. Sellmeier-type dispersion equations have been fitted for both the TRIS buffer and pure bR(WT).

  3. Expression of Biologically Active Human Butyrylcholinesterase in the Cabbage Looper (Trichoplusia ni)

    DTIC Science & Technology

    2000-01-01

    recombinant human BUChE; Sf, Spodoptera frugiperda ; VX, 0-ethyl S-[2-[bis(I -methylethyl)amino]ethyl]methyl phosphonothiolate; wt, wild-type. 1 To whom...ATCC (Rockville, MD, U.S.A.). Insect cells ( Spodoptera frugiperda Sf9 cells and T. ni High 5 cells) and wild-type (wt)-AcNPV were purchased from

  4. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    PubMed

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  5. The effect of calorie restriction on the presence of apoptotic ovarian cells in normal wild type mice and low-plasma-IGF-1 Laron dwarf mice

    PubMed Central

    2013-01-01

    Background It is known that caloric restriction extends lifespan and can minimize age-related dysfunction of the reproductive system. We became interested in how caloric restriction influences apoptosis, which is a crucial process that maintains ovarian cell homeostasis. Methods We examined ovarian cells in: 2.5-year-old wild type mice on caloric restriction (CR) or fed ad libitum (AL) and Laron dwarf mice (GHR-KO) at the same ages on CR or fed AL. Apoptosis was assessed by histochemical analysis on paraffin sections of ovarian tissue. Results Morphological and histochemical analysis revealed that CR improved reproductive potential in 2.5-year-old WT littermates and GHR-KO female mice, as indicated by the increased number of ovarian follicles. The level of apoptosis in ovarian tissue was higher in WT mice on a CR diet compared with WT mice on the AL diet. In GHR-KO mice, the level of apoptosis in ovaries was similar for mice on CR and on AL diets and bigger than in WT mice on CR. Conclusions Morphological and histochemical analysis revealed a younger biological age of the ovaries in 2-year-old WT littermates and GHR-KO female mice on CR compared with animals fed AL. PMID:24063422

  6. Comparison of effect of gamma ray irradiation on wild-type and N-terminal mutants of αA-crystallin.

    PubMed

    Ramkumar, Srinivasagan; Fujii, Noriko; Fujii, Norihiko; Thankappan, Bency; Sakaue, Hiroaki; Ingu, Kim; Natarajaseenivasan, Kalimuthusamy; Anbarasu, Kumarasamy

    2014-01-01

    To study the comparative structural and functional changes between wild-type (wt) and N-terminal congenital cataract causing αA-crystallin mutants (R12C, R21L, R49C, and R54C) upon exposure to different dosages of gamma rays. Alpha A crystallin N-terminal mutants were created with the site-directed mutagenesis method. The recombinantly overexpressed and purified wt and mutant proteins were used for further studies. A (60)Co source was used to generate gamma rays to irradiate wild and mutant proteins at dosages of 0.5, 1.0, and 2.0 kGy. The biophysical property of the gamma irradiated (GI) and non-gamma irradiated (NGI) αA-crystallin wt and N-terminal mutants were determined. Oligomeric size was determined by size exclusion high-performance liquid chromatography (HPLC), the secondary structure with circular dichroism (CD) spectrometry, conformation of proteins with surface hydrophobicity, and the functional characterization were determined regarding chaperone activity using the alcohol dehydrogenase (ADH) aggregation assay. αA-crystallin N-terminal mutants formed high molecular weight (HMW) cross-linked products as well as aggregates when exposed to GI compared to the NGI wt counterparts. Furthermore, all mutants exhibited changed β-sheet and random coil structure. The GI mutants demonstrated decreased surface hydrophobicity when compared to αA-crystallin wt at 0, 1.0, and 1.5 kGy; however, at 2.0 kGy a drastic increase in hydrophobicity was observed only in the mutant R54C, not the wt. In contrast, chaperone activity toward ADH was gradually elevated at the minimum level in all GI mutants, and significant elevation was observed in the R12C mutant. Our findings suggest that the N-terminal mutants of αA-crystallin are structurally and functionally more sensitive to GI when compared to their NGI counterparts and wt. Protein oxidation as a result of gamma irradiation drives the protein to cross-link and aggregate culminating in cataract formation.

  7. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; ...

    2016-03-23

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography. PLOS« less

  8. A Chrysodeixis chalcites Single-Nucleocapsid Nucleopolyhedrovirus Population from the Canary Islands Is Genotypically Structured To Maximize Survival

    PubMed Central

    Bernal, Alexandra; Simón, Oihane; Williams, Trevor; Muñoz, Delia

    2013-01-01

    A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus wild-type isolate from the Canary Islands, Spain, named ChchSNPV-TF1 (ChchTF1-wt), appears to have great potential as the basis for a biological insecticide for control of the pest. An improved understanding of the genotypic structure of this wild-type strain population should facilitate the selection of genotypes for inclusion in a bioinsecticidal product. Eight genetically distinct genotypes were cloned in vitro: ChchTF1-A to ChchTF1-H. Quantitative real-time PCR (qPCR) analysis confirmed that ChchTF1-A accounted for 36% of the genotypes in the wild-type population. In bioassays, ChchTF1-wt occlusion bodies (OBs) were significantly more pathogenic than any of the component single-genotype OBs, indicating that genotype interactions were likely responsible for the pathogenicity phenotype of wild-type OBs. However, the wild-type population was slower killing and produced higher OB yields than any of the single genotypes alone. These results strongly suggested that the ChchTF1-wt population is structured to maximize its transmission efficiency. Experimental OB mixtures and cooccluded genotype mixtures containing the most abundant and the rarest genotypes, at frequencies similar to those at which they were isolated, revealed a mutualistic interaction that restored the pathogenicity of OBs. In OB and cooccluded mixtures containing only the most abundant genotypes, ChchTF1-ABC, OB pathogenicity was even greater than that of wild-type OBs. The ChchTF1-ABC cooccluded mixture killed larvae 33 h faster than the wild-type population and remained genotypically and biologically stable throughout five successive passages in vivo. In conclusion, the ChchTF1-ABC mixture shows great potential as the active ingredient of a bioinsecticide to control C. chalcites in the Canary Islands. PMID:24096419

  9. Wild-type male offspring of fmr-1+/- mothers exhibit characteristics of the fragile X phenotype.

    PubMed

    Zupan, Bojana; Toth, Miklos

    2008-10-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1(+/-)) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1(-/-)) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in 'fragile X' mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.

  10. Wild-Type Male Offspring of fmr-1+/− Mothers Exhibit Characteristics of the Fragile X Phenotype

    PubMed Central

    Zupan, Bojana; Toth, Miklos

    2009-01-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1+/−) mothers (H> WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT> WT); here, we show that H> WT offspring are more active than WT> WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1−/−) mothers (H> KO/KO> KO). H> WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H> WT as well as in H> KO and KO> KO mice compared to WT> WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in ‘fragile X’ mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect. PMID:18172434

  11. Differential Activity of the Oral Glucan Synthase Inhibitor SCY-078 against Wild-Type and Echinocandin-Resistant Strains of Candida Species.

    PubMed

    Pfaller, Michael A; Messer, Shawn A; Rhomberg, Paul R; Borroto-Esoda, Katyna; Castanheira, Mariana

    2017-08-01

    SCY-078 (formerly MK-3118) is a novel orally active inhibitor of fungal β-(1,3)-glucan synthase (GS). SCY-078 is a derivative of enfumafungin and is structurally distinct from the echinocandin class of antifungal agents. We evaluated the in vitro activity of this compound against wild-type (WT) and echinocandin-resistant isolates containing mutations in the FKS genes of Candida spp. Against 36 Candida spp. FKS mutants tested, 30 (83.3%) were non-WT to 1 or more echinocandins, and only 9 (25.0%) were non-WT (MIC, >WT-upper limit) to SCY-078. Among C. glabrata isolates carrying FKS alterations, 84.0% were non-WT to the echinocandins versus only 24.0% for SCY-078. In contrast to the echinocandin comparators, the activity of SCY-078 was minimally affected by the presence of FKS mutations, suggesting that this agent is useful in the treatment of Candida infections due to echinocandin-resistant strains. Copyright © 2017 American Society for Microbiology.

  12. Comparative study on fermentation performance in the genome shuffled Candida versatilis and wild-type salt tolerant yeast strain.

    PubMed

    Qi, Wei; Guo, Hong-Lian; Wang, Chun-Ling; Hou, Li-Hua; Cao, Xiao-Hong; Liu, Jin-Fu; Lu, Fu-Ping

    2017-01-01

    The fermentation performance of a genome-shuffled strain of Candida versatilis S3-5, isolated for improved tolerance to salt, and wild-type (WT) strain were analysed. The fermentation parameters, such as growth, reducing sugar, ethanol, organic acids and volatile compounds, were detected during soy sauce fermentation process. The results showed that ethanol produced by the genome shuffled strain S3-5 was increasing at a faster rate and to a greater extent than WT. At the end of the fermentation, malic acid, citric acid and succinic acid formed in tricarboxylic acid cycle after S3-5 treatment elevated by 39.20%, 6.85% and 17.09% compared to WT, respectively. Moreover, flavour compounds such as phenethyl acetate, ethyl vanillate, ethyl acetate, isoamyl acetate, ethyl myristate, ethyl pentadecanoate, ethyl palmitate and phenylacetaldehyde produced by S3-5 were 2.26, 2.12, 2.87, 34.41, 6.32, 13.64, 2.23 and 78.85 times as compared to WT. S3-5 exhibited enhanced metabolic ability as compared to the wild-type strain, improved conversion of sugars to ethanol, metabolism of organic acid and formation of volatile compounds, especially esters, Moreover, S3-5 might be an ester-flavour type salt-tolerant yeast. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.

    PubMed

    Nahar, Noor; Rahman, Aminur; Nawani, Neelu N; Ghosh, Sibdas; Mandal, Abul

    2017-11-01

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. ACE as a Mechanosensor to Shear Stress Influences the Control of Its Own Regulation via Phosphorylation of Cytoplasmic Ser1270

    PubMed Central

    Barauna, Valerio Garrone; Campos, Luciene Cristina Gastalho; Miyakawa, Ayumi Aurea; Krieger, Jose Eduardo

    2011-01-01

    Objectives We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser1270 are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results Western blotting analysis showed that SS (18 h, 15 dyn/cm2) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra- or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser1270 compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser1270, consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser1270. PMID:21901117

  15. Time Courses of Cortical Glucose Metabolism and Microglial Activity Across the Life Span of Wild-Type Mice: A PET Study.

    PubMed

    Brendel, Matthias; Focke, Carola; Blume, Tanja; Peters, Finn; Deussing, Maximilian; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Albert, Nathalie; Lindner, Simon; von Ungern-Sternberg, Barbara; Bartenstein, Peter; Haass, Christian; Kleinberger, Gernot; Herms, Jochen; Rominger, Axel

    2017-12-01

    Contrary to findings in the human brain, 18 F-FDG PET shows cerebral hypermetabolism of aged wild-type (WT) mice relative to younger animals, supposedly due to microglial activation. Therefore, we used dual-tracer small-animal PET to examine directly the link between neuroinflammation and hypermetabolism in aged mice. Methods: WT mice (5-20 mo) were investigated in a cross-sectional design using 18 F-FDG ( n = 43) and translocator protein (TSPO) ( 18 F-GE180; n = 58) small-animal PET, with volume-of-interest and voxelwise analyses. Biochemical analysis of plasma cytokine levels and immunohistochemical confirmation of microglial activity were also performed. Results: Age-dependent cortical hypermetabolism in WT mice relative to young animals aged 5 mo peaked at 14.5 mo (+16%, P < 0.001) and declined to baseline at 20 mo. Similarly, cortical TSPO binding increased to a maximum at 14.5 mo (+15%, P < 0.001) and remained high to 20 mo, resulting in an overall correlation between 18 F-FDG uptake and TSPO binding (R = 0.69, P < 0.005). Biochemical and immunohistochemical analyses confirmed the TSPO small-animal PET findings. Conclusion: Age-dependent neuroinflammation is associated with the controversial observation of cerebral hypermetabolism in aging WT mice. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Echinocandin Susceptibility Testing of Candida Species: Comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, Disk Diffusion, and Agar Dilution Methods with RPMI and IsoSensitest Media▿

    PubMed Central

    Arendrup, Maiken Cavling; Garcia-Effron, Guillermo; Lass-Flörl, Cornelia; Lopez, Alicia Gomez; Rodriguez-Tudela, Juan-Luis; Cuenca-Estrella, Manuel; Perlin, David S.

    2010-01-01

    This study compared nine susceptibility testing methods and 12 endpoints for anidulafungin, caspofungin, and micafungin with the same collection of blinded FKS hot spot mutant (n = 29) and wild-type isolates (n = 94). The susceptibility tests included EUCAST Edef 7.1, agar dilution, Etest, and disk diffusion with RPMI-1640 plus 2% glucose (2G) and IsoSensitest-2G media and CLSI M27A-3. Microdilution plates were read after 24 and 48 h. The following test parameters were evaluated: fks hot spot mutants overlapping the wild-type distribution, distance between the two populations, number of very major errors (VMEs; fks mutants misclassified as susceptible), and major errors (MEs; wild-type isolates classified as resistant) using a wild-type-upper-limit value (WT-UL) (two twofold-dilutions higher than the MIC50) as the susceptibility breakpoint. The methods with the lowest number of errors (given as VMEs/MEs) across the three echinocandins were CLSI (12%/1%), agar dilution with RPMI-2G medium (14%/0%), and Etest with RPMI-2G medium (8%/3%). The fewest errors overall were observed for anidulafungin (4%/1% for EUCAST, 4%/3% for CLSI, and 3%/9% for Etest with RPMI-2G). For micafungin, VME rates of 10 to 71% were observed. For caspofungin, agar dilution with either medium was superior (VMEs/MEs of 0%/1%), while CLSI, EUCAST with IsoSensitest-2G medium, and Etest were less optimal (VMEs of 7%, 10%, and 10%, respectively). Applying the CLSI breakpoint (S ≤ 2 μg/ml) for CLSI results, 89.2% fks hot spot mutants were classified as anidulafungin susceptible, 60.7% as caspofungin susceptible, and 92.9% as micafungin susceptible. In conclusion, no test was perfect, but anidulafungin susceptibility testing using the WT-UL to define susceptibility reliably identified fks hot spot mutants. PMID:19884370

  17. Virologic surveillance for wild-type rubella viruses in the Americas.

    PubMed

    Icenogle, Joseph P; Siqueira, Marilda M; Abernathy, Emily S; Lemos, Xenia R; Fasce, Rodrigo A; Torres, Graciela; Reef, Susan E

    2011-09-01

    The goal of eliminating rubella from the Americas by 2010 was established in 2003. Subsequently, a systematic nomenclature for wild-type rubella viruses (wtRVs) was established, wtRVs circulating in the region were catalogued, and importations of wtRVs into a number of countries were documented. The geographic distribution of wtRVs of various genotypes in the Americas, interpreted in the context of the global distribution of these viruses, contributed to the documentation of rubella elimination from some countries. Data from virologic surveillance also contributed to the conclusion that viruses of genotype 2B began circulating endemically in the Americas during 2006-2007. Viruses of one genotype (1C), which are restricted to the Americas, will likely disappear completely from the world as they are eliminated from the Americas. Efforts to expand virologic surveillance for wtRVs in the Americas will also provide additional data aiding the elimination of rubella from the region. For example, identification of vaccine virus in specimens from rash and fever cases found during elimination can identify such cases as vaccine associated.

  18. The YAP1/SIX2 axis is required for DDX3-mediated tumor aggressiveness and cetuximab resistance in KRAS-wild-type colorectal cancer

    PubMed Central

    Wu, De-Wei; Lin, Po-Lin; Wang, Lee; Huang, Chi-Chou; Lee, Huei

    2017-01-01

    The mechanism underlying tumor aggressiveness and cetuximab (CTX) resistance in KRAS-wild-type (KRAS -WT) colorectal cancer remains obscure. We here provide evidence that DDX3 promoted soft agar growth and invasiveness of KRAS-WT cells, as already confirmed in KRAS-mutated cells. Mechanistically, increased KRAS expression induced ROS production, which elevated HIF-1α and YAP1 expression. Increased HIF-1α persistently promoted DDX3 expression via a KRAS/ROS/HIF-1α feedback loop. DDX3-mediated aggressiveness and CTX resistance were regulated by the YAP1/SIX2 axis in KRAS-WT cells and further confirmed in animal models. Kaplan-Meier and Cox regression analysis indicated that DDX3, KRAS, and YAP1 expression had prognostic value for OS and RFS in KRAS-WT and KRAS-mutated tumors, but SIX2 and YAP1/SIX2 were prognostic value only in KRAS-WT patients. The observation from patients seemed to support the mechanistic action of cell and animal models. We therefore suggest that combining YAP1 inhibitors with CTX may therefore suppress DDX3-mediated tumor aggressiveness and enhance CTX sensitivity in KRAS-WT colorectal cancer. PMID:28435452

  19. Oxidative Capacity and Fatigability in Run Trained Malignant Hyperthermia Susceptible Mice

    PubMed Central

    Rouviere, Clement; Corona, Benjamin T.; Ingalls, Christopher P.

    2011-01-01

    Introduction The purpose of this study was to test the hypothesis that Malignant Hyperthermia model mice (RyR1Y522S/wt) are more vulnerable to exercise-induced muscle injury and fatigability and adapt less to run training. Methods Following 6 weeks of voluntary wheel running, we measured anterior crural muscle fatigability, muscle injury, and cytochrome oxidase (COX) and citrate synthase (CS). Results Although RyR1Y522S/wt mice ran without experiencing MH episodes, they ran 42% less distance than wild type (WT) mice. Muscles from WT mice exhibited increased fatigue resistance and COX content after training. Muscles from RyR1Y522S/wt mice demonstrated no significant change in fatigability or COX and CS after training. However, muscles from RyR1Y522S/wt mice displayed less intrinsic fatigability and greater COX/CS content and muscle damage than WT mice. Discussion RyR1Y522S/wt mice can run without experiencing rhabdomyolysis, and their inability to adapt to training appears to stem from intrinsic enhancement of mitochondrial enzymes and fatigue resistance. PMID:22431093

  20. Drought stress-induced compositional changes in tolerant transgenic rice and its wild type.

    PubMed

    Nam, Kyong-Hee; Kim, Do-Young; Shin, Hee Jae; Nam, Ki Jung; An, Joo Hee; Pack, In-Soon; Park, Jung-Ho; Jeong, Soon-Chun; Kim, Ho Bang; Kim, Chang-Gi

    2014-06-15

    Comparing well-watered versus deficit conditions, we evaluated the chemical composition of grains harvested from wild-type (WT) and drought-tolerant, transgenic rice (Oryza sativa L.). The latter had been developed by inserting AtCYP78A7, which encodes a cytochrome P450 protein. Two transgenic Lines, '10B-5' and '18A-4', and the 'Hwayoung' WT were grown under a rainout shelter. After the harvested grains were polished, their levels of key components, including proximates, amino acids, fatty acids, minerals and vitamins were analysed to determine the effect of watering system and genotype. Drought treatment significantly influenced the levels of some nutritional components in both transgenic and WT grains. In particular, the amounts of lignoceric acid and copper in the WT decreased by 12.6% and 39.5%, respectively, by drought stress, whereas those of copper and potassium in the transgenics rose by 88.1-113.3% and 10.4-11.9%, respectively, under water-deficit conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    PubMed

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Revealing the drug-resistant mechanism for diarylpyrimidine analogue inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Zhang, Hao; Qin, Fang; Ye, Wei; Li, Zeng; Ma, Songyao; Xia, Yan; Jiang, Yi; Zhu, Jiayi; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2011-09-01

    Diaryltriazine (DATA) and diarylpyrimidine (DAPY) were two category inhibitors with highly potent activity for wild type (wt) and four principal mutant types (L100I, K103N, Y181C and Y188L) of HIV-1 reverse transcriptase (RT). We had revealed the drug-resistant mechanism of DATA analogue inhibitors with molecular dynamics simulation and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. In this work, we investigated the drug-resistant mechanism of DAPY analogue inhibitors. It was found that DAPY analogue inhibitors form more hydrogen bonds and hydrophobic contacts with wild type and mutants of HIV-1 RT than DATA inhibitors. This could explain that DAPY analogue inhibitors are more potent than DATA for the wild type and mutants of HIV-1 RT. Then, 3D-QSAR models were constructed for these inhibitors of wild type and four principal mutant types HIV-1 RT and evaluated by test set compounds. These combined models can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 RT inhibitors before resorting to in vitro and in vivo experiment. © 2011 John Wiley & Sons A/S.

  3. Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root.

    PubMed

    Failla, Mark L; Chitchumroonchokchai, Chureeporn; Siritunga, Dimuth; De Moura, Fabiana F; Fregene, Martin; Manary, Mark J; Sayre, Richard T

    2012-04-18

    Cassava is a root crop that serves as a primary caloric source for many African communities despite its low content of β-carotene (βC). Carotenoid content of roots from wild type (WT) and three transgenic lines with high βC were compared after cooking and preparation of nonfermented and fermented flours according to traditional African methods. The various methods of processing all decreased βC content per gram dry weight regardless of genotype. The greatest loss of βC occurred during preparation of gari (dry fermentation followed by roasting) from WT and transgenic lines. The quantities of βC in cooked transgenic cassava root that partitioned into mixed micelles during in vitro digestion and transported into Caco-2 cells were significantly greater than those for identically processed WT root. These results suggest that transgenic high βC cassava will provide individuals with greater quantities of bioaccessible βC.

  4. Analysis of the oncogene BRAF mutation and the correlation of the expression of wild-type BRAF and CREB1 in endometriosis

    PubMed Central

    Lv, Xiao; Ma, Yue; Long, Zaiqiu

    2018-01-01

    B-Raf proto-oncogene, serine/threonine kinase (BRAF) has previously been identified as a candidate target gene in endometriosis. Wild-type and mutated BRAF serve important roles in different diseases. The aim of the present study was to explore BRAF mutation, the mRNA and protein expression of wild-type BRAF (wtBRAF) in endometriosis, and the association between the expression levels of wtBRAF and the predicted transcription factor cAMP responsive element binding protein 1 (CREB1). In the present study, BRAF mutation was detected using Sanger sequencing among 30 ectopic and matched eutopic endometrium samples of patients with endometriosis as well as 25 normal endometrium samples, and no BRAF mutation was detected in exons 11 or 15. A region of ~2,000 bp upstream of the BRAF gene was then screened using NCBI and UCSC databases, and CREB1 was identified as a potential transcription factor of BRAF by analysis with the JASPAR and the TRANSFAC databases. Quantitative polymerase chain reaction was used to analysis the mRNA expression levels of wtBRAF and CREB1, and the corresponding protein expression levels were evaluated using immunohistochemistry and western blot analysis. The results revealed that the mRNA and protein expression levels of wtBRAF and CREB1 were significantly upregulated in the eutopic endometrial tissues of patients with endometriosis compared with normal endometrial tissues (P<0.05) and no significant difference in wtBRAF and CREB1 levels was detected between the ectopic and eutopic endometrium (P>0.05). In addition, correlation analysis revealed that the protein expression of CREB1 was positively correlated with the transcript level and protein expression of wtBRAF. It is reasonable to speculate that CREB1 may activate the transcription of wtBRAF through directly binding to its promoter, increasing BRAF expression and regulating the cell proliferation, migration and invasion of endometriosis. PMID:29286077

  5. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti.

    PubMed

    Bargielowski, Irka; Kaufmann, Christian; Alphey, Luke; Reiter, Paul; Koella, Jacob

    2012-12-01

    The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C. Our results show significant differences in the flight capacity of the modified lines. OX513A males bred with tetracycline covered 38% less distance, while OX3604C males reared without tetracycline spent 21% less time in flight than their WT counterparts. Such differences in flight performance should be considered when designing release programs (e.g., by placing release sites sufficiently close together to achieve adequate coverage). All mosquito lines had similar teneral carbohydrate contents, though males of the OX3604C line contained more lipids. The addition of tetracycline to the larval diet did not influence the flight potential of the males; however, it did change the teneral sugar reserves of the WT and the lipid reserves of both the WT and the OX3604C lines.

  6. Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain

    PubMed Central

    Ou, Judy J. J.; Drilling, Amanda J.; Cooksley, Clare; Bassiouni, Ahmed; Kidd, Stephen P.; Psaltis, Alkis J.; Wormald, Peter J.; Vreugde, Sarah

    2016-01-01

    Background: Staphylococcus aureus (S. aureus) small colony variants (SCVs) can survive within the host intracellular milieu and are associated with chronic relapsing infections. However, it is unknown whether host invasion rates and immune responses differ between SCVs and their wild-type counterparts. This study used a stable S. aureus SCV (WCH-SK2SCV) developed from a clinical isolate (WCH-SK2WT) in inflammation-relevant conditions. Intracellular infection rates as well as host immune responses to WCH-SK2WT and WCH-SK2SCV infections were investigated. Method: NuLi-1 cells were infected with either WCH-SK2WT or WCH-SK2SCV, and the intracellular infection rate was determined over time. mRNA expression of cells infected with each strain intra- and extra-cellularly was analyzed using a microfluidic qPCR array to generate an expression profile of thirty-nine genes involved in the host immune response. Results: No difference was found in the intracellular infection rate between WCH-SK2WT and WCH-SK2SCV. Whereas, extracellular infection induced a robust pro-inflammatory response, intracellular infection elicited a modest response. Intracellular WCH-SK2WT infection induced mRNA expression of TLR2, pro-inflammatory cytokines (IL1B, IL6, and IL12) and tissue remodeling factors (MMP9). In contrast, intracellular WCH-SK2SCV infection induced up regulation of only TLR2. Conclusions: Whereas, host intracellular infection rates of WCH-SK2SCV and WCH-SK2WT were similar, WCH-SK2SCV intracellular infection induced a less widespread up regulation of pro-inflammatory and tissue remodeling factors in comparison to intracellular WCH-SK2WT infection. These findings support the current view that SCVs are able to evade host immune detection to allow their own survival. PMID:28083514

  7. The yeast Holliday junction resolvase, CCE1, can restore wild-type mitochondrial DNA to human cells carrying rearranged mitochondrial DNA.

    PubMed

    Sembongi, Hiroshi; Di Re, Miriam; Bokori-Brown, Monika; Holt, Ian J

    2007-10-01

    Rearrangements of mitochondrial DNA (mtDNA) are a well-recognized cause of human disease; deletions are more frequent, but duplications are more readily transmitted to offspring. In theory, partial duplications of mtDNA can be resolved to partially deleted and wild-type (WT) molecules, via homologous recombination. Therefore, the yeast CCE1 gene, encoding a Holliday junction resolvase, was introduced into cells carrying partially duplicated or partially triplicated mtDNA. Some cell lines carrying the CCE1 gene had substantial amounts of WT mtDNA suggesting that the enzyme can mediate intramolecular recombination in human mitochondria. However, high levels of expression of CCE1 frequently led to mtDNA loss, and so it is necessary to strictly regulate the expression of CCE1 in human cells to ensure the selection and maintenance of WT mtDNA.

  8. Prevalence and Prognostic Impact of Wilms' Tumor 1 (WT1) Gene, Including SNP rs16754 in Cytogenetically Normal Acute Myeloblastic Leukemia (CN-AML): An Iranian Experience.

    PubMed

    Toogeh, Gholamreza; Ramzi, Mani; Faranoush, Mohammad; Amirizadeh, Naser; Haghpanah, Sezaneh; Moghadam, Mohammad; Cohan, Nader

    2016-03-01

    The aim of this study was to evaluate the effect of Wilms' tumor 1 (WT1) gene mutations in adult cytogenetically normal acute myeloblastic leukemia (CN-AML) patients on survival and clinical outcome. A total of 88 untreated Iranian adult patients with CN-AML were selected as a study group. Exons 7 (including the SNP rs16754), 8, and 9 as a WT1 gene hotspot region were evaluated by polymerase chain reaction and direct sequencing for detection of mutations. Response to treatment and clinical outcome including overall survival (OS) and disease-free survival (DFS) were evaluated according to WT1 gene mutational status. WT1 gene mutations were found in 12.5% of patients, most of which were found in exon 7. Complete remission was lower and relapse was higher in patients with WT1 gene mutation compared with WT1 gene wild type patients. OS and DFS was significantly lower in patients with WT1 gene mutation compared with patients with WT1 gene wild type (P < .001). Also, we did not find any significant effects of SNP rs16754 in exon 7 on clinical outcome and survival in patients with CN-AML. WT1 gene mutations are a predictor indicator of a poor prognosis factor in CN-AML patients. It is recommended that WT1 gene mutations be included in the molecular testing panel in order to better diagnose and confirm their prognostic significance for better management and treatment strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis.

    PubMed

    Moriwaki, Hiroshi; Koide, Remi; Yoshikawa, Ritsuko; Warabino, Yuya; Yamamoto, Hiroki

    2013-04-01

    The aim of this study is to investigate the potential of cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis 168 to adsorb rare earth ions. Freeze-dried cell powders prepared from both strains were used for the evaluation of adsorption ability for the rare earth ions, namely, La(III), Eu(III), and Tm(III). The rare earth ions were efficiently adsorbed onto powders of both wild-type strain (WT powder) and lipoteichoic acid-defective strain (∆LTA powder) at pH 3. The maximum adsorption capacities for Tm(III) by WT and ∆LTA powders were 43 and 37 mg g(-1), respectively. Removal (in percent) of Tm(III), La(III), and Eu(III) from aqueous solution by WT powder was greater than by ∆LTA powder. These results indicate that rare earth ions are adsorbed to functional groups, such as phosphate and carboxyl groups, of lipoteichoic acid. We observed coagulated ∆LTA powder in the removal of rare earth ions (1-20 mg L(-1)) from aqueous solution. In contrast, sedimentation of WT powder did not occur under the same conditions. This unique feature of ∆LTA powder may be caused by the difference of the distribution between lipoteichoic acid and wall teichoic acid. It appears that ∆LTA powder is useful for removal of rare earth ions by adsorption, because aggregation allows for rapid separation of the adsorbent by filtration.

  10. Cyclophilin B induces chemoresistance by degrading wild type p53 via interaction with MDM2 in colorectal cancer.

    PubMed

    Choi, Tae Gyu; Nguyen, Minh Nam; Kim, Jieun; Jo, Yong Hwa; Jang, Miran; Nguyen, Ngoc Ngo Yen; Yun, Hyeong Rok; Choe, Wonchae; Kang, Insug; Ha, Joohun; Tang, Dean G; Kim, Sung Soo

    2018-06-06

    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated using bioinformatics analyses that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Prevalence of Gene Mutations profiles by GenoType MTBDRplus/sl to First Line Antituberculosis Drugs and Clinical Characteristics in Drug Resistant Tuberculosis Patients Referred to the National Institute of Respiratory Diseases in Mexico City

    PubMed Central

    Martinez-Orozco, Jose Arturo; Nuñez-Luna, Blanca A; Narváez-Diaz, Luis A; Pilar, Mariela Segura-Del; Mujica-Sanchez, Mario; Salazar-Lezama, Miguel Angel; Mireles-Davalos, Christian D

    2017-01-01

    Abstract Background Drug resistance tuberculosis, specially MDR and XDR are a big challenge for diagnosis and treatment. In Mexico the prevalence of MDR is between 3–5%, a number probably underestimated due to lack of diagnostic tests for susceptibility. The National Institute of Respiratory Diseases in Mexico City is the national referral center for MDR/XDR tuberculosis. In our country there is no data about the gene mutations involved in drug resistance to first line antituberculosis treatment nor the clinical characteristics that accompany these findings. Objective: Evaluate the prevalence of genotyping profiles according to a line probe assay (LPA) in patients with drug resistance tuberculosis and their associated clinical characteristics Methods Retrospective cohort from 2010 to 2014 of M. tuberculosis isolates with any type of resistance to first line antituberculosis drugs identified by MGIT SIRE and in which GenoType MTBDRplus/sl were performed, we evaluate prevalence of genotyping profiles according to the LPA within the isolates and gather data from those with complete medical records to asses clinical characteristics. Results In 52 and 33 isolates phenotyping and genotyping MTBDRplus/sl respectively were performed, 41 resistant to Isoniazid INH with 75% genotypic concordance, 33 resistant to rifampicin RIF with 75.6% concordance, 14 to streptomycin SM with 23% concordance and 10 to ethambutol EMB with 100% concordance, 54% MDR tuberculosis. The genotyping profile for RIF was absence of probes rpoB Wild Type 8 (WT) 57.7%, WT 7 30.8% and presence of rpoB mutation 3 (MUT) 19.2%. For INH absence of InhA WT2 48.1% and InhA WT1 19.2%. For EMB absence of embB WT1 30.8% and for SM absence of rrs WT1 (19%). Absence of InhA WT1 was associated with female (P = 0.01) and DM2 (P = 0.032) patients, other clinical/biochemical characteristics and mortality was not different in patients with o without the genotypic profile for each drug. Cavitary disease by CT was more frequent in patients with WT probe absence in RIF and INH than those who did not have a LPA suggestive of resistance for this drugs. Conclusion Wild Type probe absense is the frequent finding in our isolates according to LPA in RIF, INH, EMB and SM, intrisic host factors and clinical characteristics seem not to be related to a particular resistant gene profile. Disclosures All authors: No reported disclosures.

  12. Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule

    PubMed Central

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A.L.; Monteiro, Ângelo; Gomes, Sara; Bessa, Cláudia; Pereira, Clara; Queiroz, Glória; Bisio, Alessandra; Fernandes, João; Gomes, Célia; Reis, Flávio; Gonçalves, Jorge; Inga, Alberto; Santos, Maria M.M.; Saraiva, Lucília

    2016-01-01

    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs. PMID:26735173

  13. Neurovirulent pathotype of Newcastle disease virus associated with the reduced capacity of NDV to replicate in vivo and in vitro

    USDA-ARS?s Scientific Manuscript database

    Reverse genetics was used to create two recombinant Newcastle disease viruses derived from a velogenic viscerotropic NDV strain from China, wild type ZJI (wt-ZJ1). One of the recombinant viruses (rZJ1) was identical to the wild type and the other had the gene for the green fluorescent protein (GFP)...

  14. Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice.

    PubMed

    Danilova, Vicktoria; Damak, Sami; Margolskee, Robert F; Hellekant, Göran

    2006-07-01

    The importance of alpha-gustducin in sweet taste transduction is based on data obtained with sucrose and the artificial sweetener SC45647. Here we studied the role of alpha-gustducin in sweet taste. We compared the behavioral and electrophysiological responses of alpha-gustducin knockout (KO) and wild-type (WT) mice to 11 different sweeteners, representing carbohydrates, artificial sweeteners, and sweet amino acids. In behavioral experiments, over 48-h preference ratios were measured in two-bottle preference tests. In electrophysiological experiments, integrated responses of chorda tympani (CT) and glossopharyngeal (NG) nerves were recorded. We found that preference ratios of the KO mice were significantly lower than those of WT for acesulfame-K, dulcin, fructose, NC00174, D-phenylalanine, L-proline, D-tryptophan, saccharin, SC45647, sucrose, but not neotame. The nerve responses to all sweeteners, except neotame, were smaller in the KO mice than in the WT mice. The differences between the responses in WT and KO mice were more pronounced in the CT than in the NG. These data indicate that alpha-gustducin participates in the transduction of the sweet taste in general.

  15. Molecular dynamics simulations of wild type and mutants of botulinum neurotoxin A complexed with synaptic vesicle protein 2C.

    PubMed

    Wang, Feng; Wan, Hua; Hu, Jian-Ping; Chang, Shan

    2015-01-01

    Botulinum neurotoxins (BoNTs) are known as the most poisonous biological substances, and they are also used to treat a wide range of medical conditions as well as in the cosmetic applications. Recently, the complex structures of the BoNT/A receptor-binding domain (BoNT/A-RBD) and the synaptic vesicle protein 2C luminal domain (SV2C-LD) were determined by X-ray crystallography. In this article, the wild type (WT) and four mutants of the new structure are studied by molecular dynamics (MD) simulations. The differently decreased structural stabilities of the mutants relative to WT are shown to be consistent with the experimental data of binding affinities. The conformational changes of the five systems are explored by using principal component analysis (PCA) and free energy landscape (FEL) methods. Based on the calculation of interactions at the binding interface, we divide the interface between BoNT/A-RBD and SV2C-LD into two crucial binding regions. Through the comparison of WT and four mutants, we further propose the relationship between the conformational changes of BoNT/A-RBD:SV2C-LD and the interfacial interactions. This study would provide some new insights into the understanding of the dynamics and the interaction mechanism of BoNT/A-RBD:SV2C-LD.

  16. Evaluation of biological safety in vitro and immunogenicity in vivo of recombinant Escherichia coli Shiga toxoids as candidate vaccines in cattle.

    PubMed

    Kerner, Katharina; Bridger, Philip S; Köpf, Gabriele; Fröhlich, Julia; Barth, Stefanie; Willems, Hermann; Bauerfeind, Rolf; Baljer, Georg; Menge, Christian

    2015-04-10

    Cattle are the most important reservoir for enterohemorrhagic Escherichia coli (EHEC), a subset of shigatoxigenic E. coli (STEC) capable of causing life-threatening infectious diseases in humans. In cattle, Shiga toxins (Stx) suppress the immune system thereby promoting long-term STEC shedding. First infections of animals at calves' age coincide with the lack of Stx-specific antibodies. We hypothesize that vaccination of calves against Shiga toxins prior to STEC infection may help to prevent the establishment of a persistent type of infection. The objectives of this study were to generate recombinant Shiga toxoids (rStx1mut & rStx2mut) by site-directed mutagenesis and to assess their immunomodulatory, antigenic, and immunogenic properties. Cultures of bovine primary immune cells were used as test systems. In ileal intraepithelial lymphocytes both, recombinant wild type Stx1 (rStx1WT) and rStx2WT significantly induced transcription of IL-4 mRNA. rStx1WT and rStx2WT reduced the expression of Stx-receptor CD77 (syn. Globotriaosylceramide, Gb3) on B and T cells from peripheral blood and of CD14 on monocyte-derived macrophages. At the same concentrations, rStx1mut and rStx2mut exhibited neither of these effects. Antibodies in sera of cattle naturally infected with STEC recognized the rStxmut toxoids equally well as the recombinant wild type toxins. Immunization of calves with rStx1mut plus rStx2mut led to induction of antibodies neutralizing Stx1 and Stx2. While keeping their antigenicity and immunogenicity recombinant Shiga toxoids are devoid of the immunosuppressive properties of the corresponding wild type toxins in cattle and candidate vaccines to mitigate long-term STEC shedding by the reservoir host.

  17. Haemodynamics of lambs grazing perennial ryegrass (Lolium perenne L.) either infected with AR6 novel wild-type endophyte or not infected

    USDA-ARS?s Scientific Manuscript database

    Coopworth ewe lambs were randomly assigned to 3, 0.10-ha pastures of ‘Extreme’ perennial ryegrass that were infected with the AR6 novel endophyte (AR6; n=5), infected with the wild-type endophyte (WT; n=6), or was endophyte-free (Nil; n=5). Lambs were conditioned to the pastures from 25 Feb. to 16 ...

  18. [Study of negative feedback between wild-type BRAF or RAFV600E and Mps1 in melanoma].

    PubMed

    Zhang, Ling; He, Chanting; Bi, Yanghui; Liu, Feng; Cui, Heyang; Wang, Juan; Song, Bin; Shi, Ruyi; Yang, Bin; Wang, Fang; Jia, Zhiwu; Zhao, Zhenxiang; Liu, Jing

    2015-04-01

    To study the effect of Mps1 on BRAFWT/MEK/ERK pathway in the presence of wild type BRAF or BRAFV600E in melanoma. Melanoma cells harboring BRAFWT genotype were transfected either with pBabe-puro-GST-BRAF-WT and/or pBabe-puro-GFP-Mps1-WT or pBabe-puro-GST-BRAFV600E and/or pBabe-puro-GFP-Mps1-WT, followed by Western blot to detect Mps1 and p-ERK expression. The melanoma cells harboring BRAFWT and BRAFV600E genotype were infected with pSUPER-Mps1 retrovirus to knockdown the endogenous Mps1 protein, followed by Western blot to detect Mps1 and p-ERK expression. Meanwhile, melanoma cells harboring BRAFV600E genotype were infected with pBabe-puro-GFP-Mps1 and Western blot was performed to detect Mps1 and p-ERK expression. In melanoma cells harboring BRAFWT genotype and transfected with pBabe-puro-GST-BRAF-WT and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels were notably reduced as compared to either negative control or empty vector. However, cells transfected with pBabe-puro-GST-BRAFV600E and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels did not change significantly compared with either negative control or empty vector. Knockout of Mps1 in BRAF wild-type cell lines led to an increased ERK activity. However, there was no significant change of ERK activity in BRAFV600E cell lines in the absence of Mps1. The expression of p-ERK in BRAFV600E mutant cell lines infected with pBabe-puro-GFP-Mps1-WT did not show any significant difference from either negative control or empty vector. Based on these findings, it suggests that there exists an auto-regulatory negative feedback loop between the Mps1 kinase and BRAFWT/ERK signaling. Oncogenic BRAFV600E abrogates the regulatory negative feedback loop of Mps1 on the MAPK pathway.

  19. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    PubMed

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. A comparison of the ultrastructure and composition of fruits' cuticular wax from the wild-type 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall) and its glossy mutant.

    PubMed

    Liu, De-Chun; Zeng, Qiong; Ji, Qing-Xun; Liu, Chuan-Fu; Liu, Shan-Bei; Liu, Yong

    2012-12-01

    The altered ultrastructure and composition of cuticular wax from 'glossy Newhall' (MT) fruits lead to its glossy phenotype. A novel mutant derived from the wild-type (WT) 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall), named 'glossy Newhall' (MT), which produced much more glossy fruits that were easily distinguishable from the WT fruits was characterized in this report. The total wax loads of both WT and MT fruits varied considerably during the fruit development. The most abundant wax fraction of WT mature fruits was triterpenoids, followed by aldehydes, alkanes, fatty acids, primary alcohol and cholesterol. The total wax load in MT mature fruits was reduced by 44.2 % compared with WT. Except for the minor wax components of primary alcohol and cholesterol, the amounts of all major wax fractions in MT mature fruits were decreased in varying degrees. The major reduction occurred in aldehydes that decreased 96.4 % and alkanes that decreased 81.9 %, which was consistent with scanning electron micrographs of MT mature fruit surfaces that showed a severe loss of wax crystals. Hence, aldehydes and alkanes were suggested to be required for wax crystal formation in 'Newhall' navel orange fruits.

  1. Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains.

    PubMed

    Billing, Anja M; Kessler, Julia R; Revets, Dominique; Sausy, Aurélie; Schmitz, Stephanie; Barra, Claire; Muller, Claude P

    2014-08-28

    Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but also between different wild type strains. In fact our study suggests that besides the cytokeratin and the IFN system wild type viruses seem to differ as much among each other than from vaccine strains. Thus our results are suggestive of complex and diverse virus-host interactions which differ considerably between different wild type strains. Our data indicate that interstrain differences are prominent and have so far been neglected by proteomics studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  3. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and “early aging” mice

    PubMed Central

    Guest, Ian; Ilic, Zoran; Sell, Stewart

    2015-01-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16–18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best. PMID:26796640

  4. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes

    PubMed Central

    West, William W.; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    Breast cancer is classified into different subtypes that are associated with different patient survival outcomes, underscoring the importance of understanding the role of precursor cell and genetic alterations in determining tumor subtypes. In this study, we evaluated the oncogenic phenotype of two distinct mammary stem/progenitor cell types designated as K5+/K19− or K5+/K19+ upon introduction of identical combinations of oncogenes-mutant H-Ras (mRas) and mutant p53 (mp53), together with either wild-type ErbB2(wtErbB2) or wild-type EGFR (wtEGFR). We examined their tumor forming and metastasis potential, using both in-vitro and in-vivo assays. Both the combinations efficiently transformed K5+/K19− or K5+/K19+ cells. Xenograft tumors formed by these cells were histologically heterogeneous, with variable proportions of luminal, basal-like and claudin-low type components depending on the cell types and oncogene combinations. Notably, K5+/K19− cells transformed with mRas/mp53/wtEGFR combination had a significantly longer latency for primary tumor development than other cell lines but more lung metastasis incidence than same cells expressing mRas/mp53/wtErbB2. K5+/K19+ cells exhibit shorter overall tumor latency, and high metastatic potential than K5+/K19− cells, suggesting that these K19+ progenitors are more susceptible to oncogenesis and metastasis. Our results suggest that both genetic alterations and cell type of origin contribute to oncogenic phenotype of breast tumors. PMID:25940703

  5. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  6. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  7. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  8. TERT promoter mutations contribute to IDH mutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse gliomas

    PubMed Central

    Ding, Xiao-Jie; Qin, Zhi-Yong; Hong, Christopher S.; Chen, Ling-Chao; Zhang, Xin; Zhao, Fang-Ping; Wang, Yin; Wang, Yang; Zhou, Liang-Fu; Zhuang, Zhengping; Ng, Ho-Keung; Yan, Hai; Yao, Yu; Mao, Ying

    2015-01-01

    IDH mutations frequently occur in WHO grade II and III diffuse gliomas and have favorable prognosis compared to wild-type tumors. However, whether IDH mutations in WHO grade II and II diffuse gliomas predict enhanced sensitivity to adjuvant radiation (RT) or chemotherapy (CHT) is still being debated. Recent studies have identified recurrent mutations in the promoter region of telomerase reverse transcriptase (TERT) in gliomas. We previously demonstrated that TERT promoter mutations may be promising biomarkers in glioma survival prognostication when combined with IDH mutations. This study analyzed IDH and TERT promoter mutations in 295 WHO grade II and III diffuse gliomas treated with or without adjuvant therapies to explore their impact on the sensitivity of tumors to genotoxic therapies. IDH mutations were found in 216 (73.2%) patients and TERT promoter mutations were found in 112 (38%) patients. In multivariate analysis, IDH mutations (p < 0.001) were independent prognostic factors for PFS and OS in patients receiving genotoxic therapies while TERT promoter mutations were not. In univariate analysis, IDH and TERT promoter mutations were not significant prognostic factors in patients who did not receive genotoxic therapies. Adjuvant RT and CHT were factors independently impacting PFS (RT p = 0.001, CHT p = 0.026) in IDH mutated WHO grade II and III diffuse gliomas but not in IDH wild-type group. Univariate and multivariate analyses demonstrated TERT promoter mutations further stratified IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to genotoxic therapies. Adjuvant RT and CHT were significant parameters influencing PFS in the IDH wt/TERT mut subgroup (RT p = 0.015, CHT p = 0.015) but not in the IDH wt/TERT wt subgroup. Our data demonstrated that IDH mutated WHO grade II and III diffuse gliomas had better PFS and OS than their IDH wild-type counterparts when genotoxic therapies were administered after surgery. Importantly, we also found that TERT promoter mutations further stratify IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to adjuvant therapies. Taken together, TERT promoter mutations may predict enhanced sensitivity to genotoxic therapies in IDH wild-type WHO grade II and III diffuse gliomas and may justify intensified treatment in this subgroup. PMID:26314843

  9. [Expression of matrix metalloproteinase-19 in the human cornea. Wound healing in the MMP-19 knock-out mouse model].

    PubMed

    Treumer, F; Flöhr, C; Klettner, A; Nölle, B; Roider, J

    2010-07-01

    At present there are no data in the literature on the expression of matrix metalloprotein-19 in the human cornea. The aim of this study was to analyze the expression of matrix metalloproteinase-19 in the human cornea and to investigate its potential role in corneal wound healing using a MMP-19 knock-out mouse model. A method with Western blotting and immunohistological staining for MMP-19 was performed using paraffin embedded human corneas. Excimer laser keratectomy was performed in wild type (wt) and MMP-19 knock-out (ko) mice and the rate of re-epithelialization was analyzed after 8 h and 18 h. MMP-19 was strongly expressed in the human corneal epithelium mainly in the basal cell layer. MMP-19 was not expressed in the corneal stroma. In the mouse model the size of the corneal lesion after 8 h was 83% (wt) and 89.9% (ko) of the initial area (p=0.09). After 18 h the lesion was 17% (wt) and 13.3% (ko) of the initial area (p=0.01). Laminin-5 was expressed in the migrating epithelial cells with no differences between wild type and knock-out mouse. MMP-19 showed a strong expression in the basal cells of the human corneal epithelium. Corneal re-epithelialization was slightly faster in the MMP-19 knock-out mouse. No differences in the expression of laminin-5 could be detected.

  10. Akt-mediated cardioprotective effects of aldosterone in type 2 diabetic mice.

    PubMed

    Fazal, Loubina; Azibani, Feriel; Bihry, Nicolas; Coutance, Guillaume; Polidano, Evelyne; Merval, Régine; Vodovar, Nicolas; Launay, Jean-Marie; Delcayre, Claude; Samuel, Jane-Lise

    2014-06-01

    Studies have shown that aldosterone would have angiogenic effects and therefore would be beneficial in the context of cardiovascular diseases. We thus investigated the potential involvement of aldosterone in triggering a cardiac angiogenic response in the context of type-2 diabetes and the molecular pathways involved. Male 3-wk-old aldosterone synthase (AS)-overexpressing mice and their control wild-type (WT) littermates were fed a standard or high-fat, high-sucrose (HFHS) diet. After 6 mo of diet treatment, mice were euthanized, and cardiac samples were assayed by RT-PCR, immunoblotting, and immunohistology. HFHS diet induced type-2 diabetes in WT (WT-D) and AS (AS-D) mice. VEGFa mRNAs decreased in WT-D (-43%, P<0.05 vs. WT) and increased in AS-D mice (+236%, P< 0.01 vs. WT-D). In WT-D mouse hearts, the proapoptotic p38MAPK was activated (P<0.05 vs. WT and AS-D), whereas Akt activity decreased (-64%, P<0.05 vs. WT). The AS mice, which exhibited a cardiac up-regulation of IGF1-R, showed an increase in Akt phosphorylation when diabetes was induced (P<0.05 vs. WT and AS-D). Contrary to WT-D mice, AS-D mouse hearts did not express inflammatory markers and exhibited a normal capillary density (P<0.05 vs. WT-D). To our knowledge, this is the first study providing new insights into the mechanisms whereby aldosterone prevents diabetes-induced cardiac disorders. © FASEB.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography. PLOS« less

  12. A Novel Method for Assessing Sex-Specific and Genotype-Specific Response to Injury in Astrocyte Culture

    PubMed Central

    Liu, Mingyue; Oyarzabal, Esteban; Yang, Rui; Murphy, Stephanie J; Hurn, Patricia D.

    2008-01-01

    Female astrocytes sustain less cell death from oxygen-glucose deprivation (OGD) than male astrocytes. Arimidex, an aromatase inhibitor, abolishes these sex differences. To verify sex-dependent differences in P450 aromatase function in astrocyte cell death following OGD, we developed a novel method that uses sex-specific and genotype-specific single pup primary astrocyte cultures from wild-type (WT) and aromatase-knockout (ArKO) mice. After determining sex by external and internal examination as well as PCR and genotype by PCR amplification of tail cDNA, we established cultures from 1−3 day-old male and female, WT and ArKO mice pups and grew them to confluence in estrogen-free media. Cell death was measured by lactate dehydrogenase (LDH) assay. Our study shows that, while WT female astrocytes are more resistant to OGD than WT male cells, sex differences disappear in ArKO cells. Cell death is significantly increased in ArKO compared to WT in female astrocytes but not male cells. Therefore, P450 aromatase appears to be essential in endogenous neuroprotection in females, and this finding may have clinical implications. This innovative technique may also be applied to other in vitro studies of sex-related functional differences. PMID:18436308

  13. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2014-09-01

    Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.

  14. [Construction of the new Escherichia coli K-12 wild-type strain with improved growth characteristics for application in metabolic engineering].

    PubMed

    Biriukova, I V; Krylov, A A; Kiseleva, E M; Minaeva, N I; Mashko, S V

    2010-03-01

    MG1655 of Escherichia coli K-12 is frequently used in metabolic engineering as the wild-type strain. However, its two mutations, ilvG and rph-1 provide a negative effect on culture growth. The "polar effect" of rph-1 decreases the level of pyrE expression, causing partial auxotrophy for pyrimidines. Mutation ilvG leading to the appearance of Val(S) phenotype causes retardation of cell growth rate on media containing amino acids. In this work, the substitution of two loci in the genome of MG1655 with the recovery of the wild-type phenotype was accomplished. Gene rph(wt) from the chromosome of E. coli TG1 was marked via Red-dependent integration of DNA fragment carrying lambda attL-Cm(R)-lambda attR and transduced with phage P1 into MG1655; later, the Cm(R) marker was removed with the use of lambda Xis/Int recombinase. Parallel to this procedure, a spontaneous Val(R) mutant of E. coli MG1655 yielding colonies of maximal size on M9 medium with glucose in the presence of Val (50 microg/ml) was isolated. It was shown that a nucleotide deletion in the isolated Val(R) strain had been generated in the region of the identified E. coli K-12 ilvG mutation, which led to the recovery of the reading frame and active protein synthesis. This mutation named ilvG-15, which is the only reason for the Val(R) phenotype in the obtained strain, was transferred to MG1655-rph(wt) using cotransduction, by analogy to the transfer of rph(wt). Evaluation of rates of aerobically growing cells (microm, hour(-1)) on M9 medium with glucose produced the following values: 0.56, 0.69, and 0.73 for strains MG1655, MG1655-rph(wt), and MG1655-(rph(wt), ilvG-15), respectively.

  15. A novel TFF2 splice variant (ΔEX2TFF2) correlates with longer overall survival time in cholangiocarcinoma

    PubMed Central

    KAMLUA, SURASEE; PATRAKITKOMJORN, SIRIPORN; JEARANAIKOON, PATCHAREE; MENHENIOTT, TREVELYAN R.; GIRAUD, ANDREW S.; LIMPAIBOON, TEMDUANG

    2012-01-01

    Trefoil factor 2 (TFF2) is a member of trefoil factor family found to be overexpressed in many cancers including cholangiocarcinoma (CCA). The majority of studies have focused on wild-type TFF2 (wtTFF2) expression, but information regarding alternative splicing variants of TFF2 mRNA has not been reported. In this study, we aimed to identify and quantify a novel TFF2 splice variant in cholangiocarcinoma (CCA). Seventy-eight tumors and 15 normal adjacent tissues were quantified for the expression of the TFF2 splice variant relative to wild-type (wt) TFF2 mRNA using quantitative reverse transcriptase polymerase chain reaction (QRT-PCR). The ratio of TFF2 splice variant against wtTFF2 was analyzed for associations with clinical parameters. We found a novel TFF2 splice variant, exon 2 skipping (ΔEX2TFF2), resulting in a stop codon (TAG) at exon 1. The ΔEX2TFF2/wtTFF2 ratio in tumors was significantly higher than in normal tissue (P<0.01). Interestingly, high ΔEX2TFF2/wtTFF2 ratio was significantly associated with good prognosis compared with low ratio (P=0.017). In contrast, the presence of wtTFF2 protein was associated with poor survival of CCA patients (P=0.034). This is the first report of a trefoil factor splice variant and its potential application as a prognostic biomarker in CCA. PMID:22159958

  16. Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer.

    PubMed

    Jorissen, Robert N; Christie, Michael; Mouradov, Dmitri; Sakthianandeswaren, Anuratha; Li, Shan; Love, Christopher; Xu, Zheng-Zhou; Molloy, Peter L; Jones, Ian T; McLaughlin, Stephen; Ward, Robyn L; Hawkins, Nicholas J; Ruszkiewicz, Andrew R; Moore, James; Burgess, Antony W; Busam, Dana; Zhao, Qi; Strausberg, Robert L; Lipton, Lara; Desai, Jayesh; Gibbs, Peter; Sieber, Oliver M

    2015-09-15

    APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. APC prognostic value was evaluated in 746 stage I-IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). APC-wt status is a marker of poor prognosis in MSS proximal colon cancer.

  17. Pemetrexed-carboplatin with intercalated icotinib in the treatment of patient with advanced EGFR wild-type lung adenocarcinoma: A case report.

    PubMed

    Xu, Tongpeng; Wu, Hao; Jin, Shidai; Min, Huang; Zhang, Zhihong; Shu, Yongqian; Wen, Wei; Guo, Renhua

    2017-08-01

    Tyrosine kinase inhibitors (TKIs) are known to have greater efficacy in epidermal growth factor receptor (EGFR) mutation nonsmall cell lung cancer (NSCLC). However, about 10% of EGFR wild-type (wt) patients respond to TKIs. Several strategies to increase the efficacy of TKIs in wt NSCLC are the subjects of ongoing investigations. One of them is combining EGFR TKI with intercalated chemotherapy. We describe a patient with EGFR wt NSCLC, who was found with ovarian and lung metastasis, was treated with pemetrexed and intercalated icotinib. In this case, we reported the successful long-term maintenance treatment of a patient with EGFR wt NSCLC with pemetrexed and Icotinib. The patient (40-year-old female) was found with ovarian masses and lung masses. Pathological, immunohistochemical, and amplification refractory mutation system (ARMS) assay examinations of ovarian specimen suggested the expression of metastatic lung adenocarcinoma with wt EGFR. After failure treatment with paclitaxel-carboplatin, the patient received 4 cycles of pemetrexed plus platinum with intercalated icotinib and then remained on pemetrexed and icotinib. A partial response was achieved after the treatment. The patient's condition had remained stable on pemetrexed and icotinib for more than 20 months, with no evidence of progression. To our knowledge, this is the first report using the long-term maintenance treatment with pemetrexed and intercalated icotinib in EGFR wt patient. The therapeutic strategies warrant further exploration in selected populations of NSCLC.

  18. Pemetrexed-carboplatin with intercalated icotinib in the treatment of patient with advanced EGFR wild-type lung adenocarcinoma

    PubMed Central

    Xu, Tongpeng; Wu, Hao; Jin, Shidai; Min, Huang; Zhang, Zhihong; Shu, Yongqian; Wen, Wei; Guo, Renhua

    2017-01-01

    Abstract Rationale: Tyrosine kinase inhibitors (TKIs) are known to have greater efficacy in epidermal growth factor receptor (EGFR) mutation nonsmall cell lung cancer (NSCLC). However, about 10% of EGFR wild-type (wt) patients respond to TKIs. Patient concerns: Several strategies to increase the efficacy of TKIs in wt NSCLC are the subjects of ongoing investigations. One of them is combining EGFR TKI with intercalated chemotherapy. Diagnoses: We describe a patient with EGFR wt NSCLC, who was found with ovarian and lung metastasis, was treated with pemetrexed and intercalated icotinib. Interventions: In this case, we reported the successful long-term maintenance treatment of a patient with EGFR wt NSCLC with pemetrexed and Icotinib. The patient (40-year-old female) was found with ovarian masses and lung masses. Pathological, immunohistochemical, and amplification refractory mutation system (ARMS) assay examinations of ovarian specimen suggested the expression of metastatic lung adenocarcinoma with wt EGFR. After failure treatment with paclitaxel-carboplatin, the patient received 4 cycles of pemetrexed plus platinum with intercalated icotinib and then remained on pemetrexed and icotinib. Outcomes: A partial response was achieved after the treatment. The patient's condition had remained stable on pemetrexed and icotinib for more than 20 months, with no evidence of progression. Lessons: To our knowledge, this is the first report using the long-term maintenance treatment with pemetrexed and intercalated icotinib in EGFR wt patient. The therapeutic strategies warrant further exploration in selected populations of NSCLC. PMID:28816950

  19. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice.

    PubMed

    Ryman, K D; Xie, H; Ledger, T N; Campbell, G A; Barrett, A D

    1997-04-14

    The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.

  20. Multiplexed Elimination of Wild-Type DNA and High-Resolution Melting Prior to Targeted Resequencing of Liquid Biopsies.

    PubMed

    Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Song, Chen; Adalsteinsson, Viktor A; Parsons, Heather A; Lin, Nancy U; Wagle, Nikhil; Makrigiorgos, G Mike

    2017-10-01

    The use of clinical samples and circulating cell-free DNA (cfDNA) collected from liquid biopsies for diagnostic and prognostic applications in cancer is burgeoning, and improved methods that reduce the influence of excess wild-type (WT) portion of the sample are desirable. Here we present enrichment of mutation-containing sequences using enzymatic degradation of WT DNA. Mutation enrichment is combined with high-resolution melting (HRM) performed in multiplexed closed-tube reactions as a rapid, cost-effective screening tool before targeted resequencing. We developed a homogeneous, closed-tube approach to use a double-stranded DNA-specific nuclease for degradation of WT DNA at multiple targets simultaneously. The No Denaturation Nuclease-assisted Minor Allele Enrichment with Probe Overlap (ND-NaME-PrO) uses WT oligonucleotides overlapping both strands on putative DNA targets. Under conditions of partial denaturation (DNA breathing), the oligonucleotide probes enhance double-stranded DNA-specific nuclease digestion at the selected targets, with high preference toward WT over mutant DNA. To validate ND-NaME-PrO, we used multiplexed HRM, digital PCR, and MiSeq targeted resequencing of mutated genomic DNA and cfDNA. Serial dilution of KRAS mutation-containing DNA shows mutation enrichment by 10- to 120-fold and detection of allelic fractions down to 0.01%. Multiplexed ND-NaME-PrO combined with multiplexed PCR-HRM showed mutation scanning of 10-20 DNA amplicons simultaneously. ND-NaME-PrO applied on cfDNA from clinical samples enables mutation enrichment and HRM scanning over 10 DNA targets. cfDNA mutations were enriched up to approximately 100-fold (average approximately 25-fold) and identified via targeted resequencing. Closed-tube homogeneous ND-NaME-PrO combined with multiplexed HRM is a convenient approach to efficiently enrich for mutations on multiple DNA targets and to enable prescreening before targeted resequencing. © 2017 American Association for Clinical Chemistry.

  1. Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A

    2012-12-01

    The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.

  2. Wild-type measles virus infection upregulates poliovirus receptor-related 4 and causes apoptosis in brain endothelial cells by induction of tumor necrosis factor-related apoptosis-inducing ligand.

    PubMed

    Abdullah, Hani'ah; Brankin, Brenda; Brady, Clare; Cosby, Sara Louise

    2013-07-01

    Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

  3. Differences in Establishment of Persistence of Vaccine and Wild Type Rubella Viruses in Fetal Endothelial Cells

    PubMed Central

    Perelygina, Ludmila; Adebayo, Adebola; Metcalfe, Maureen; Icenogle, Joseph

    2015-01-01

    Both wild type (WT) and vaccine rubella virus (RV) can pass through the placenta to infect a human fetus, but only wtRV routinely causes pathology. To investigate possible reasons for this, we compared establishment of persistence of wtRV and RA27/3 vaccine strains in fetal endothelial cells. We showed that yields of RA27/3 and wtRV were similar after the first round of replication, but then only vaccine-infected cultures went through a crisis characterized by partial cell loss and gradual decline of virus titer followed by recovery and establishment of persistent cultures with low levels of RA27/3 secretion. We compared various steps of virus replication, but we were unable to identify changes, which might explain the 2-log difference in RA27/3 and wtRV yields in persistently infected cultures. Whole genome sequencing did not reveal selection of virus variants in either the wtRV or RA27/3 cultures. Quantitative single-cell analysis of RV replication by in situ hybridization detected, on average, 1–4 copies of negative-strand RNA and ~50 copies of positive-strand genomic RNA in cells infected with both vaccine and WT viruses. The distinct characteristics of RA27/3 replication were the presence of large amounts of negative-strand RV RNA and RV dsRNA at the beginning of the crisis and the accumulation of high amounts of genomic RNA in a subpopulation of infected cells during crisis and persistence. These results suggest that RA27/3 can persist in fetal endothelial cells, but the characteristics of persistence and mechanisms for the establishment and maintenance of persistence are different from wtRV. PMID:26177032

  4. Spaceflight Influences both Mucosal and Peripheral Cytokine Production in PTN-Tg and Wild Type Mice

    PubMed Central

    Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P. J.; Green-Johnson, Julia M.

    2013-01-01

    Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice. PMID:23874826

  5. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma.

    PubMed

    Khurshed, Mohammed; Molenaar, Remco J; Lenting, Krissie; Leenders, William P; van Noorden, Cornelis J F

    2017-07-25

    Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) initiate low-grade glioma and secondary glioblastoma and induce a neomorphic activity that converts α-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (D-2-HG). It causes metabolic rewiring that is not fully understood. We investigated the effects of IDH1 mutations (IDH1MUT) on expression of genes that encode for metabolic enzymes by data mining The Cancer Genome Atlas. We analyzed 112 IDH1 wild-type (IDH1WT) versus 399 IDH1MUT low-grade glioma and 157 IDH1WT versus 9 IDH1MUT glioblastoma samples. In both glioma types, IDH1WT was associated with high expression levels of genes encoding enzymes that are involved in glycolysis and acetate anaplerosis, whereas IDH1MUT glioma overexpress genes encoding enzymes that are involved in the oxidative tricarboxylic acid (TCA) cycle. In vitro, we observed that IDH1MUT cancer cells have a higher basal respiration compared to IDH1WT cancer cells and inhibition of the IDH1MUT shifts the metabolism by decreasing oxygen consumption and increasing glycolysis. Our findings indicate that IDH1WT glioma have a typical Warburg phenotype whereas in IDH1MUT glioma the TCA cycle, rather than glycolytic lactate production, is the predominant metabolic pathway. Our data further suggest that the TCA in IDH1MUT glioma is driven by lactate and glutamate anaplerosis to facilitate production of α-KG, and ultimately D-2-HG. This metabolic rewiring may be a basis for novel therapies for IDH1MUT and IDH1WT glioma.

  6. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  7. The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity.

    PubMed

    Abbott, Jamie A; Guth, Ethan; Kim, Cindy; Regan, Cathy; Siu, Victoria M; Rupar, C Anthony; Demeler, Borries; Francklyn, Christopher S; Robey-Bond, Susan M

    2017-07-18

    Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNA His binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.

  8. Epigenetic Control of Prostate Cancer Metastasis: Role of Runx2 Phosphorylation

    DTIC Science & Technology

    2014-04-01

    prostate cancer cells. In the third budget year, we achieved the following: a. Generation of retrovirus and lentivirus vectors expressing WT RUNX2 and S301A... retrovirus vectors will be developed that express β-galactosidase (negative control), wild type Runx2, S301A/S319A (non-phosphorylated) or S301E/S310E...constitutively active) Runx2 mutants. As described last year, retrovirus and lentivirus vectors were constructed to stably introduce wild type and mutant

  9. Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii.

    PubMed

    Qawasmeh, Abdelqader; Obied, Hassan K; Raman, Anantanarayanan; Wheatley, Warwick

    2012-04-04

    Lolium perenne is a major forage and turf grass, which is often naturally infected with a "wild-type" strain (E(WT)) of the fungal endophyte Neotyphodium lolii , establishing a symbiotic relationship. In this study, the impacts of different strains wild type E(WT), AR1 (E(AR1)) and AR37 (E(AR37)), of N. lolii on the phenolic profile, phenolic content, and antioxidant capacity of L. perenne were examined. Samples could be ranked according to their phenol content as follows: E(AR1) > E(AR37) ≥ E(-) > E(WT). Radical-scavenging assays showed the same relative ranking of extracts. Flavonoid glycosides and hydroxycinnamic acids were the most abundant polyphenols in L. perenne extracts. Chlorogenic acid and its derivatives were the major compounds responsible for the antioxidant activity. Infection with N. lolii significantly influenced L. perenne phenolic content and antioxidant activity. In conclusion, changes in phenolic composition were merely quantitative. Endophyte infection can have zero, positive, or negative effect on phenol content depending on the endophyte strain.

  10. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    PubMed

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  11. Cysteine Inhibits Mercury Methylation by Geobacter sulfurreducens PCA Mutant Δ omcBESTZ

    DOE PAGES

    Lin, Hui; Lu, Xia; Liang, Liyuan; ...

    2015-04-21

    For cysteine enhances Hg uptake and methylation by Geobacter sulfurreducens PCA wild type (WT) strain in short-term assays. The prevalence of this enhancement in other strains remains poorly understood. We examined the influence of cysteine concentration on time-dependent Hg(II) reduction, sorption and methylation by PCA-WT and its c-type cytochrome-deficient mutant ( omcBESTZ) in phosphate buffered saline. Without cysteine, the mutant methylated twice as much Hg(II) as the PCA-WT, whereas addition of cysteine inhibited Hg methylation, regardless of the reaction time. PCA-WT, but, exhibited both time-dependent and cysteine concentration-dependent methylation. In 144 hour assay, nearly complete sorption of the Hg(II) bymore » PCA-WT occurred in the presence of 1 mM cysteine, resulting in our highest observed methylmercury production. Moreover, the chemical speciation modeling and experimental data suggest that uncharged Hg(II) species are more readily taken up, and that this uptake is kinetic limiting, thereby affecting Hg methylation by both mutant and WT.« less

  12. Piper betle induces phase I & II genes through Nrf2/ARE signaling pathway in mouse embryonic fibroblasts derived from wild type and Nrf2 knockout cells

    PubMed Central

    2014-01-01

    Background Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice. Methods WT and N0 cells were treated with 5 and 10 μg/ml of PB for 10 and 12-h for the determination of nuclear translocation of Nrf2 protein. Luciferase reporter gene activity was performed to evaluate the antioxidant response element (ARE)-induction by PB. Real-time PCR and Western blot were conducted on both WT and N0 cells after PB treatment for the determination of antioxidant enzymes [superoxide dismutase (SOD1) and heme-oxygenase (HO-1)], phase I oxidoreductase enzymes [NAD(P)H: quinone oxidoreductase (NQO1)] and phase II detoxifying enzyme [glutathione S-transferase (GST)]. Results Nuclear translocation of Nrf2 by PB in WT cells was better after 10 h incubation compared to 12 h. Real time PCR and Western blot analysis showed increased expressions of Nrf2, NQO1 and GSTA1 genes with corresponding increases in glutathione, NQO1 and HO-1 proteins in WT cells. Reporter gene ARE was stimulated by PB as shown by ARE/luciferase assay. Interestingly, PB induced SOD1 gene and protein expressions in N0 cells but not in WT cells. Conclusion The results of this study confirmed that PB activated Nrf2-ARE signaling pathway which subsequently induced some phase I oxidoreductase, phase II detoxifying and antioxidant genes expression via ARE reporter gene involved in the Nrf2 pathway with the exception of SOD1 which may not be dependent on this pathway. PMID:24559113

  13. T-type Ca2+ channels regulate the exit of cardiac myocytes from the cell cycle after birth

    PubMed Central

    Wang, Fang; Gao, Hui; Kubo, Hajime; Fan, Xiaoxuan; Zhang, Hongyu; Berretta, Remus; Chen, Xiongwen; Sharp, Thomas; Starosta, Timothy; Makarewich, Catherine; Li, Ying; Molkentin, Jeffrey D.; Houser, Steven R.

    2013-01-01

    T-type Ca2+ channels (TTCCs) are expressed in the fetal heart and then disappear from ventricular myocytes after birth. The hypothesis examined in this study was the α1G TTCCs' influence in myocyte maturation and their rapid withdrawal from the cell cycle after birth. Methods Cardiac myocytes were isolated from neonatal and adult wild type (WT), α1G−/− and α1G over expressing (α1GDT) mice. Bromodeoxyuridine (BrdU) uptake, myocyte nucleation, cell cycle analysis, and T-type Ca2+ currents were measured. Results All myocytes were mono-nucleated at birth and 35% of WT myocytes expressed functional TTCCs. Very few neonatal myocytes had functional TTCCs in α1G−/− hearts. By the end of the first week after birth no WT or α1G−/− had functional TTCCs. During the first week after birth about 25% of WT myocytes were BrdU+ and became bi-nucleated. Significantly fewer α1G−/− myocytes became bi-nucleated and fewer of these myocytes were BrdU+. Neonatal α1G−/− myocytes were also smaller than WT. Adult WT and α1G−/− hearts were similar in size, but α1G−/− myocytes were smaller and a greater % were mono-nucleated. α1G over expressing hearts were smaller than WT but their myocytes were larger. Conclusions The studies performed show that loss of functional TTCCs is associated with bi-nucleation and myocyte withdrawal from the cell cycle. Loss of α1G TTCCs slowed the transition from mono- to bi-nucleation and resulted in an adult heart with a greater number of small cardiac myocytes. These results suggest that TTCCs are involved in the regulation of myocyte size and the exit of myocytes from the cell cycle during the first week after birth. PMID:23743021

  14. Systemic metabolite changes in wild-type C57BL/6 mice fed black raspberries

    PubMed Central

    Pan, Pan; Skaer, Chad W.; Wang, Hsin-Tzu; Kreiser, Michael A.; Stirdivant, Steven M.; Oshima, Kiyoko; Huang, Yi-Wen; Young, Matthew R.; Wang, Li-Shu

    2017-01-01

    Introduction Freeze-dried black raspberries (BRBs) elicit chemopreventive effects against colorectal cancer in humans and in rodents. The study objective was to investigate potential BRB-caused metabolite changes using wild-type (WT) C57BL/6 mice. Methods and results WT mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver, and fecal specimens collected from both diet groups. BRBs significantly changed the levels of 41 colonic mucosa metabolites, 40 liver metabolites and 34 fecal metabolites compared to control diet-fed mice. BRBs reduced 34 lipid metabolites in colonic mucosa and increased levels of amino acids in liver. One metabolite, 3-[3-(sulfooxy) phenyl] propanoic acid, might be a useful biomarker of BRB consumption. In addition, BRB powder was found to contain 30-fold higher levels of linolenate compared to control diets. Consistently, multiple omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including stearidonate, docosapentaenoate (ω-3 DPA), eicosapentaenoate (EPA) and docosahexaenoate (DHA), were significantly elevated in livers of BRB-fed mice. Conclusion The data from the current study suggest that BRBs produce systemic metabolite changes in multiple tissue matrices, supporting our hypothesis that BRBs may serve as both a chemopreventive agent and a beneficial dietary supplement. PMID:28094560

  15. Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer.

    PubMed

    Baker, J B; Dutta, D; Watson, D; Maddala, T; Munneke, B M; Shak, S; Rowinsky, E K; Xu, L-A; Harbison, C T; Clark, E A; Mauro, D J; Khambata-Ford, S

    2011-02-01

    Although it is accepted that metastatic colorectal cancers (mCRCs) that carry activating mutations in KRAS are unresponsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, a significant fraction of KRAS wild-type (wt) mCRCs are also unresponsive to anti-EGFR therapy. Genes encoding EGFR ligands amphiregulin (AREG) and epiregulin (EREG) are promising gene expression-based markers but have not been incorporated into a test to dichotomise KRAS wt mCRC patients with respect to sensitivity to anti-EGFR treatment. We used RT-PCR to test 110 candidate gene expression markers in primary tumours from 144 KRAS wt mCRC patients who received monotherapy with the anti-EGFR antibody cetuximab. Results were correlated with multiple clinical endpoints: disease control, objective response, and progression-free survival (PFS). Expression of many of the tested candidate genes, including EREG and AREG, strongly associate with all clinical endpoints. Using multivariate analysis with two-layer five-fold cross-validation, we constructed a four-gene predictive classifier. Strikingly, patients below the classifier cutpoint had PFS and disease control rates similar to those of patients with KRAS mutant mCRC. Gene expression appears to identify KRAS wt mCRC patients who receive little benefit from cetuximab. It will be important to test this model in an independent validation study.

  16. Identification of the critical residues responsible for differential reactivation of the triosephosphate isomerases of two trypanosomes

    PubMed Central

    Rodríguez-Bolaños, Monica; Cabrera, Nallely

    2016-01-01

    The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei. Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins. PMID:27733588

  17. Type II Kinase Inhibitors Show an Unexpected Inhibition Mode against Parkinson’s Disease-Linked LRRK2 Mutant G2019S

    PubMed Central

    Liu, Min; Bender, Samantha A.; Cuny, Gregory D; Sherman, Woody; Glicksman, Marcie; Ray, Soumya S.

    2014-01-01

    A number of well-known type II inhibitors (ATP non-competitive) that bind kinases in their DFG-out conformation were tested against wild-type LRRK2 and the most common Parkinson’s disease-linked mutation G2019S. We found that traditional type II inhibitors exhibit surprising variability in their inhibition mechanism between wild type (WT) and the G2019S mutant of LRRK2. The type II kinase inhibitors were found to work by an ATP-competitive fashion against the G2019S mutant, whereas they appear to follow the expected non-competitive mechanism against WT. Since the G2019S mutation lies in the DXG-motif (DYG in LRRK2 but DFG in most other kinases) of the activation loop, we explored the structural consequence of the mutation on loop dynamics using an enhanced sampling method called metadynamics. The simulations suggest that the G2019S mutation stabilizes the DYG-in state of LRRK2 through a series of hydrogen bonds, leading to an increase in the conformational barrier between the active and inactive forms of the enzyme and a relative stabilization of the active form. The conformational bias toward the active form of LRRK2 mutants has two primary consequences: 1) the mutant enzyme becomes hyperactive, a known contributor to the Parkinsonian phenotype, as a consequence of being “locked” into the activated state and 2) the mutation creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP competitive fashion. Our results suggest that developing type II inhibitors, which are generally considered superior to type I inhibitors due to desirable selectivity profiles, might be especially challenging for the G2019S LRRK2 mutant. PMID:23379419

  18. Isolation of Novel Synthetic Prion Strains by Amplification in Transgenic Mice Coexpressing Wild-Type and Anchorless Prion Proteins

    PubMed Central

    Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.

    2012-01-01

    Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801

  19. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Lutfiya; Wells, Peter G., E-mail: pg.wells@utoronto.ca; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON

    2011-04-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1),more » exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.« less

  20. Infiltration of Matrix-Non-producers Weakens the Salmonella Biofilm and Impairs Its Antimicrobial Tolerance and Pathogenicity.

    PubMed

    Srinandan, Chakravarthy S; Elango, Monalisha; Gnanadhas, Divya P; Chakravortty, Dipshikha

    2015-01-01

    Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the EPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. EPS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non-producing cells benefit from the EPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non-producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of EPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.

  1. Prolyl Endopeptidase (PREP) is Associated With Male Reproductive Functions and Gamete Physiology in Mice.

    PubMed

    Dotolo, Raffaele; Kim, Jung Dae; Pariante, Paolo; Minucci, Sergio; Diano, Sabrina

    2016-03-01

    Prolyl endopeptidase (PREP) is a serine protease which has been implicated in many biological processes, such as the maturation and degradation of peptide hormones and neuropeptides, learning and memory, cell proliferation and differentiation, and glucose metabolism. A small number of reports have also suggested PREP participation in both male and female reproduction-associated processes. In the present work, we examined PREP distribution in male germ cells and studied the effects of its knockdown (Prep(gt/gt)) on testis and sperm in adult mice. The protein is expressed and localized in elongating spermatids and luminal spermatozoa of wild type (wt) mice, as well as Sertoli, Leydig, and peritubular cells. PREP is also expressed in the head and midpiece of epididymal spermatozoa, whereas the remaining tail region shows a weaker signal. Furthermore, testis weight, histology of seminiferous tubules, and epididymal sperm parameters were assessed in wt and Prep(gt/gt) mice: wild type testes have larger average tubule and lumen diameter; in addition, lumenal composition of seminiferous tubules is dissimilar between wt and Prep(gt/gt), as the percentage of spermiated tubules is much higher in wt. Finally, total sperm count, sperm motility, and normal morphology are also higher in wt than in Prep(gt/gt). These results show for the first time that the expression of PREP could be necessary for a correct reproductive function, and suggest that the enzyme may play a role in mouse spermatogenesis and sperm physiology. © 2015 Wiley Periodicals, Inc.

  2. Comparative Transcriptome of Wild Type and Selected Strains of the Microalgae Tisochrysis lutea Provides Insights into the Genetic Basis, Lipid Metabolism and the Life Cycle

    PubMed Central

    Carrier, Gregory; Garnier, Matthieu; Le Cunff, Loïc; Bougaran, Gaël; Probert, Ian; De Vargas, Colomban; Corre, Erwan; Cadoret, Jean-Paul; Saint-Jean, Bruno

    2014-01-01

    The applied exploitation of microalgae cultures has to date almost exclusively involved the use of wild type strains, deposited over decades in dedicated culture collections. Concomitantly, the concept of improving algae with selection programs for particular specific purposes is slowly emerging. Studying since a decade an economically and ecologically important haptophyte Tisochrysis lutea (Tiso), we took advantage of the availability of wild type (Tiso-Wt) and selected (Tiso-S2M2) strains to conduct a molecular variations study. This endeavour presented substantial challenges: the genome assembly was not yet available, the life cycle unknown and genetic diversity of Tiso-Wt poorly documented. This study brings the first molecular data in order to set up a selection strategy for that microalgae. Following high-throughput Illumina sequencing, transcriptomes of Tiso-Wt and Tiso-S2M2 were de novo assembled and annotated. Genetic diversity between both strains was analyzed and revealed a clear conservation, while a comparison of transcriptomes allowed identification of polymorphisms resulting from the selection program. Of 34,374 transcripts, 291 were differentially expressed and 165 contained positional polymorphisms (SNP, Indel). We focused on lipid over-accumulation of the Tiso-S2M2 strain and 8 candidate genes were identified by combining analysis of positional polymorphism, differential expression levels, selection signature and by study of putative gene function. Moreover, genetic analysis also suggests the existence of a sexual cycle and genetic recombination in Tisochrysis lutea. PMID:24489800

  3. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid.

    PubMed

    Vodicka, Petr; Mo, Shunyan; Tousley, Adelaide; Green, Karin M; Sapp, Ellen; Iuliano, Maria; Sadri-Vakili, Ghazaleh; Shaffer, Scott A; Aronin, Neil; DiFiglia, Marian; Kegel-Gleason, Kimberly B

    2015-01-01

    Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.

  4. Monomeric Nucleoprotein of Influenza A Virus

    PubMed Central

    Chenavas, Sylvie; Estrozi, Leandro F.; Slama-Schwok, Anny; Delmas, Bernard; Di Primo, Carmelo; Baudin, Florence; Li, Xinping; Crépin, Thibaut; Ruigrok, Rob W. H.

    2013-01-01

    Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt) nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection. PMID:23555270

  5. Ultrastructural remodelling of slow skeletal muscle fibres in creatine kinase deficient mice: a quantitative study.

    PubMed

    Novotová, Marta; Tarabová, Bohumila; Tylková, Lucia; Ventura-Clapier, Renée; Zahradník, Ivan

    2016-10-01

    Creatine kinase content, isoform distribution, and participation in energy transfer are muscle type specific. We analysed ultrastructural changes in slow muscle fibres of soleus due to invalidation of creatine kinase (CK) to reveal a difference in the remodelling strategy in comparison with fast muscle fibres of gastrocnemius published previously. We have employed the stereological method of vertical sections and electron microscopy of soleus muscles of wild type (WT) and CK-/- mice. The mitochondrial volume density was 1.4× higher but that of sarcoplasmic reticulum (SR) was almost 5× lower in slow CK-/- muscles fibres than in WT fibres. The volume density of terminal cisterns and of t-tubules was also lower in CK-/- than in WT fibres. The analysis of organelle environment revealed increased neighbourhood of mitochondria and A-bands that resulted from the decreased volume density of SR, from relocation of mitochondria along myofibrils, and from intrusion of mitochondria to myofibrils. These processes direct ATP supply closer to the contractile machinery. The decreased interaction between mitochondria and SR suggests reduced dependence of calcium uptake on oxidative ATP production. In conclusion, the architecture of skeletal muscle cells is under control of a cellular program that optimizes energy utilization specifically for a given muscle type.

  6. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung Heon; Kang, Sukmo; Dong, Mi Sook

    2015-06-15

    Cytochrome P450 (CYP) 1A1 is a heme-containing enzyme involved in detoxification of hydrophobic pollutants. Its Ala62Pro variant has been identified previously. Ala62 is located in α-helix A of CYP1A1. Residues such as Pro and Gly are α-helix breakers. In this study, the Ala62Pro variant was characterized using heterologous expression. E. coli expressing the Ala62Pro variant, and the purified variant protein, had lower CYP (i.e. holoenzyme) contents than their wild-type (WT) equivalents. The CYP variant from E. coli and mammalian cells exhibited lower 7-ethoxyresorufin O-dealkylation (EROD) and benzo[a]pyrene hydroxylation activities than the WT. Enhanced supplementation of a heme precursor during E.more » coli culture did not increase CYP content in E. coli expressing the variant, but did for the WT. As for Ala62Pro, E. coli expressing an Ala62Gly variant had a lower CYP content than the WT counterpart, but substitution of Ala62 with α-helix-compatible residues such as Ser and Val partially recovered the level of CYP produced. Microsomes from mammalian cells expressing Ala62Pro and Ala62Gly variants exhibited lower EROD activities than those expressing the WT or Ala62Val variant. A region harboring α-helix A has interactions with another region containing heme-interacting residues. Site-directed mutagenesis analyses suggest the importance of interactions between the two regions on holoenzyme expression. Together, these findings suggest that the Ala62Pro substitution leads to changes in protein characteristics and function of CYP1A1 via structural disturbance of the region where the residue is located. - Highlights: • Ala62 is located in α-helix A of the carcinogen-metabolizing enzyme CYP1A1. • Pro acts as an α-helix breaker. • A variant protein of CYP1A1, Ala62Pro, had lower heme content than the wild-type. • The variant of CYP1A1 had lower enzyme activities than the wild-type.« less

  7. Relationship between the melanocortin-1 receptor (MC1R) variant R306ter and physiological responses to mechanical or thermal stimuli in Labrador Retriever dogs.

    PubMed

    Perez, Tania E; Mealey, Katrina L; Burke, Neal S; Grubb, Tamara L; Court, Michael H; Greene, Stephen A

    2017-03-01

    Variants in the MC1R gene have been associated with red hair color and sensitivity to pain in humans. The study objective was to determine if a relationship exists between MC1R genotype and physiological thermal or mechanical nociceptive thresholds in Labrador Retriever dogs. Prospective experimental study. Thirty-four Labrador Retriever dogs were included in the study following public requests for volunteers. Owner consent was obtained and owners verified that their dog was apparently not experiencing pain and had not been treated for pain during the previous 14 days. The study was approved by the Institutional Animal Care and Use Committee. Nociceptive thresholds were determined from a mean of three thermal and five mechanical replications using commercially available algometers. Each dog was genotyped for the previously described MC1R variant (R306ter). Data were analyzed using one-way anova with post hoc comparisons using Tukey's test (p < 0.05). Thirteen dogs were homozygous wild-type (WT/WT), nine were heterozygous (WT/R306ter), and eight were homozygous variant (R306ter/R306ter) genotype. Four dogs could not be genotyped. A significant difference (p = 0.04) in mechanical nociceptive thresholds was identified between dogs with the WT/WT genotype (12.1±2.1 N) and those with the WT/R306ter genotype (9.2±2.4 N). A difference in mechanical, but not thermal, nociceptive threshold was observed between wild-type and heterozygous MC1R variants. Differences in nociceptive thresholds between homozygous R306ter variants and other genotypes for MC1R were not observed. Compared with the wild-type MC1R genotype, nociceptive sensitivity to mechanical force in dogs with a single variant R306ter allele may be greater. However, in contrast to the reported association between homozygous MC1R variants (associated with red hair color) and nociception in humans, we found no evidence of a similar relationship in dogs with the homozygous variant genotype. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  8. Rapid functional screening of Streptomyces coelicolor regulators by use of a pH indicator and application to the MarR-like regulator AbsC.

    PubMed

    Yang, Yung-Hun; Song, Eunjung; Lee, Bo-Rahm; Kim, Eun-jung; Park, Sung-Hee; Kim, Yun-Gon; Lee, Chang-Soo; Kim, Byung-Gee

    2010-06-01

    To elucidate the function of an unknown regulator in Streptomyces, differences in phenotype and antibiotic production between a deletion mutant and a wild-type strain (WT) were compared. These differences are easily hidden by complex media. To determine the specific nutrient conditions that reveal such differences, we used a multiwell method containing different nutrients along with bromothymol blue. We found several nutrients that provide key information on characterization conditions. By comparing the growth of wild-type and mutant strains on screened nutrients, we were able to measure growth, organic acid production, and antibiotic production for the elucidation of regulator function. As a result of this method, a member of the MarR-like regulator family, SCO5405 (AbsC), was newly characterized to control pyruvate dehydrogenase in Streptomyces coelicolor. Deletion of SCO5405 increased the pH of the culture broth due to decreased production of organic acids such as pyruvate and alpha-ketoglutarate and increased extracellular actinorhodin (ACT) production in minimal medium containing glucose and alanine (MMGA). This method could therefore be a high-throughput method for the characterization of unknown regulators.

  9. Loss of Interleukin 1 Receptor Antagonist Enhances Susceptibility to Ebola Virus Infection.

    PubMed

    Hill-Batorski, Lindsay; Halfmann, Peter; Marzi, Andrea; Lopes, Tiago J S; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-10-01

    The current outbreak of Ebola virus (EBOV) infection in West Africa is unprecedented, with nearly 26 000 confirmed cases and >10 000 deaths. Comprehensive data on the pathogenesis of EBOV infection are lacking; however, recent studies suggested that fatal EBOV infections are characterized by dysregulation of the innate immune response and a subsequent cytokine storm. Specifically, several studies suggested that hypersecretion of interleukin 1 receptor antagonist (IL-1Ra) correlates with lethal EBOV infections. To examine the significance of IL-1Ra in EBOV infections, we infected mice that lack the gene encoding IL-1Ra, Il1rn (IL-1RN-KO), and mice with wild-type Il1rn (IL-1RN-WT) with a mouse-adapted EBOV (MA-EBOV). Infected IL-1RN-KO mice lost more weight and had a lower survival rate than IL-1RN-WT mice infected with MA-EBOV. In addition, IL-1RN-KO mice infected with wild-type EBOV, which does not cause lethal infection in adult immunocompetent mice, such as C57BL/6 mice, experienced greater weight loss than IL-1RN-WT mice infected with wild-type EBOV. Further studies revealed that the levels of 6 cytokines in spleens-IL-1α, IL-1β, interleukin 12p40, interleukin 17, granulocyte colony-stimulating factor, and regulated on activation, normal T-cell expressed and secreted-were significantly different between IL-1RN-KO mice and IL-1RN-WT mice infected with MA-EBOV. Collectively, our data suggest that IL-1Ra may have a protective effect upon EBOV infection, likely by damping an overactive proinflammatory immune response. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Nfib hemizygous mice are protected from hyperoxic lung injury and death.

    PubMed

    Kumar, Vasantha H S; Chaker El Khoury, Joseph; Gronostajski, Richard; Wang, Huamei; Nielsen, Lori; Ryan, Rita M

    2017-08-01

    Nuclear Factor I ( Nfi) genes encode transcription factors essential for the development of organ systems including the lung. Nfib null mice die at birth with immature lungs. Nfib hemizygous mice have reduced lung maturation with decreased survival. We therefore hypothesized that these mice would be more sensitive to lung injury and would have lower survival to hyperoxia. Adult Nfib hemizygous mice and their wild-type (Wt) littermates were exposed to 100% O 2 for 89, 80, 72 and 66 h for survival studies with lung outcome measurements at 66 h. Nfib hemizygous and Wt controls were also studied in RA at 66 h. Cell counts and cytokines were measured in bronchoalveolar lavage (BAL); lung sections examined by histopathology; lung angiogenic and oxidative stress gene expression assessed by real-time PCR Unexpectedly, Nfib hemizygous mice (0/14-0%) had significantly lower mortality compared to Wt mice (10/22-45%) at 80 h of hyperoxia ( P  < 0.003). LD 50 was 80 h in the Wt group versus 89 h in the hemizygous group. There were no differences in BAL cell counts between the groups. Among the cytokines studied, MIP-2 was significantly lower in hemizygous mice exposed to hyperoxia. New vessel formation, edema, congestion, and alveolar hemorrhage were noted on histopathology at 72 and 80 h in wild-type mice. Nfib hemizygous lungs had significant downregulation of genes involved in redox signaling and inflammatory pathways. Adult Nfib hemizygous mice are relatively resistant to hyperoxia compared to wild-type littermates. Mechanisms contributing to this resistance are not clear; however, transcription factors such as Nfib may regulate cell survival and play a role in modulating postnatal lung development. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Comparative transcriptomic analysis of silkwormBmovo-1 and wild type silkworm ovary

    PubMed Central

    Xue, Renyu; Hu, Xiaolong; Zhu, Liyuan; Cao, Guangli; Huang, Moli; Xue, Gaoxu; Song, Zuowei; Lu, Jiayu; Chen, Xueying; Gong, Chengliang

    2015-01-01

    The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm+Bmovo-1) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm+Bmovo-1 ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm+Bmovo-1 and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm+Bmovo-1 ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. PMID:26643037

  12. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.

    PubMed

    Kuscu, Cem; Parlak, Mahmut; Tufan, Turan; Yang, Jiekun; Szlachta, Karol; Wei, Xiaolong; Mammadov, Rashad; Adli, Mazhar

    2017-07-01

    CRISPR-Cas9-induced DNA damage may have deleterious effects at high-copy-number genomic regions. Here, we use CRISPR base editors to knock out genes by changing single nucleotides to create stop codons. We show that the CRISPR-STOP method is an efficient and less deleterious alternative to wild-type Cas9 for gene-knockout studies. Early stop codons can be introduced in ∼17,000 human genes. CRISPR-STOP-mediated targeted screening demonstrates comparable efficiency to WT Cas9, which indicates the suitability of our approach for genome-wide functional screenings.

  13. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice

    PubMed Central

    Friedrich, O; Both, M; Gillis, J M; Chamberlain, J S; Fink, RHA

    2004-01-01

    L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin. PMID:14594987

  14. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions.

    PubMed

    Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro

    2015-03-01

    Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.

  15. Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells.

    PubMed

    Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R

    2010-07-29

    The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells

    PubMed Central

    Schayek, Hagit; Seti, Hila; Greenberg, Norman M.; Sun, Shihua; Werner, Haim; Plymate, Stephen R.

    2010-01-01

    The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685

  17. High Fat Diet Attenuates the Anticontractile Activity of Aortic PVAT via a Mechanism Involving AMPK and Reduced Adiponectin Secretion

    PubMed Central

    Almabrouk, Tarek A. M.; White, Anna D.; Ugusman, Azizah B.; Skiba, Dominik S.; Katwan, Omar J.; Alganga, Husam; Guzik, Tomasz J.; Touyz, Rhian M.; Salt, Ian P.; Kennedy, Simon

    2018-01-01

    Background and aim: Perivascular adipose tissue (PVAT) positively regulates vascular function through production of factors such as adiponectin but this effect is attenuated in obesity. The enzyme AMP-activated protein kinase (AMPK) is present in PVAT and is implicated in mediating the vascular effects of adiponectin. In this study, we investigated the effect of an obesogenic high fat diet (HFD) on aortic PVAT and whether any changes involved AMPK. Methods: Wild type Sv129 (WT) and AMPKα1 knockout (KO) mice aged 8 weeks were fed normal diet (ND) or HFD (42% kcal fat) for 12 weeks. Adiponectin production by PVAT was assessed by ELISA and AMPK expression studied using immunoblotting. Macrophages in PVAT were identified using immunohistochemistry and markers of M1 and M2 macrophage subtypes evaluated using real time-qPCR. Vascular responses were measured in endothelium-denuded aortic rings with or without attached PVAT. Carotid wire injury was performed and PVAT inflammation studied 7 days later. Key results: Aortic PVAT from KO and WT mice was morphologically indistinct but KO PVAT had more infiltrating macrophages. HFD caused an increased infiltration of macrophages in WT mice with increased expression of the M1 macrophage markers Nos2 and Il1b and the M2 marker Chil3. In WT mice, HFD reduced the anticontractile effect of PVAT as well as reducing adiponectin secretion and AMPK phosphorylation. PVAT from KO mice on ND had significantly reduced adiponectin secretion and no anticontractile effect and feeding HFD did not alter this. Wire injury induced macrophage infiltration of PVAT but did not cause further infiltration in KO mice. Conclusions: High-fat diet causes an inflammatory infiltrate, reduced AMPK phosphorylation and attenuates the anticontractile effect of murine aortic PVAT. Mice lacking AMPKα1 phenocopy many of the changes in wild-type aortic PVAT after HFD, suggesting that AMPK may protect the vessel against deleterious changes in response to HFD. PMID:29479319

  18. An Analysis of Interactions between Fluorescently-Tagged Mutant and Wild-Type SOD1 in Intracellular Inclusions

    PubMed Central

    Qualls, David A.; Crosby, Keith; Brown, Hilda; Borchelt, David R.

    2013-01-01

    Background By mechanisms yet to be discerned, the co-expression of high levels of wild-type human superoxide dismutase 1 (hSOD1) with variants of hSOD1 encoding mutations linked familial amyotrophic lateral sclerosis (fALS) hastens the onset of motor neuron degeneration in transgenic mice. Although it is known that spinal cords of paralyzed mice accumulate detergent insoluble forms of WT hSOD1 along with mutant hSOD1, it has been difficult to determine whether there is co-deposition of the proteins in inclusion structures. Methodology/Principal Findings In the present study, we use cell culture models of mutant SOD1 aggregation, focusing on the A4V, G37R, and G85R variants, to examine interactions between WT-hSOD1 and misfolded mutant SOD1. In these studies, we fuse WT and mutant proteins to either yellow or red fluorescent protein so that the two proteins can be distinguished within inclusions structures. Conclusions/Significance Although the interpretation of the data is not entirely straightforward because we have strong evidence that the nature of the fused fluorophores affects the organization of the inclusions that form, our data are most consistent with the idea that normal dimeric WT-hSOD1 does not readily interact with misfolded forms of mutant hSOD1. We also demonstrate the monomerization of WT-hSOD1 by experimental mutation does induce the protein to aggregate, although such monomerization may enable interactions with misfolded mutant SOD1. Our data suggest that WT-hSOD1 is not prone to become intimately associated with misfolded mutant hSOD1 within intracellular inclusions that can be generated in cultured cells. PMID:24391857

  19. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA.

    PubMed

    Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan

    2012-05-01

    Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Human mitochondrial NDUFS3 protein bearing Leigh syndrome mutation is more prone to aggregation than its wild-type.

    PubMed

    Jaokar, Tulika M; Patil, Deepak P; Shouche, Yogesh S; Gaikwad, Sushama M; Suresh, C G

    2013-12-01

    NDUFS3 is an integral subunit of the Q module of the mitochondrial respiratory Complex-I. The combined mutation (T145I + R199W) in the subunit is reported to cause optic atrophy and Leigh syndrome accompanied by severe Complex-I deficiency. In the present study, we have cloned and overexpressed the human NDUFS3 subunit and its double mutant in a soluble form in Escherichia coli. The wild-type (w-t) and mutant proteins were purified to homogeneity through a serial two-step chromatographic purification procedure of anion exchange followed by size exclusion chromatography. The integrity and purity of the purified proteins was confirmed by Western blot analysis and MALDI-TOF/TOF. The conformational transitions of the purified subunits were studied through steady state as well as time resolved fluorescence and CD spectroscopy under various denaturing conditions. The mutant protein showed altered polarity around tryptophan residues, changed quenching parameters and also noticeably altered secondary and tertiary structure compared to the w-t protein. Mutant also exhibited a higher tendency than the w-t protein for aggregation which was examined using fluorescent (Thioflavin-T) and spectroscopic (Congo red) dye binding techniques. The pH stability of the w-t and mutant proteins varied at extreme acidic pH and the molten globule like structure of w-t at pH1 was absent in case of the mutant protein. Both the w-t and mutant proteins showed multi-step thermal and Gdn-HCl induced unfolding. Thus, the results provide insight into the alterations of NDUFS3 protein structure caused by the mutations, affecting the overall integrity of the protein and finally leading to disruption of Complex-I assembly. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those ofmore » the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.« less

  2. Effects of endoplasmic reticulum stressors on maturation and signaling of hemizygous and heterozygous wild-type and mutant forms of KIT.

    PubMed

    Brahimi-Adouane, Sabrina; Bachet, Jean-Baptiste; Tabone-Eglinger, Séverine; Subra, Frédéric; Capron, Claude; Blay, Jean-Yves; Emile, Jean-François

    2013-06-01

    Gain of function mutations of KIT are frequent in some human tumors, and are sensible to tyrosine kinase inhibitors. In most tumors, oncogenic mutations are heterozygous, however most in vitro data of KIT activation have been obtained with hemizygous mutation. This study aimed to investigate the maturation and activation of wild-type (WT) and mutant (M) forms of KIT in hemizygous and heterozygous conditions. WT and two types of exon 11 deletions M forms of human KIT were expressed in NIH3T3 cell lines. Membrane expression of KIT was quantified by flow cytometry. Quantification of glycosylated forms of KIT and phosphorylated forms of AKT and ERK were performed by western blot. Simultaneous activation of WT KIT and treatment with endoplasmic reticulum (ER) inhibitors, tunicamycin or brefeldin A induced a complete inhibition of membrane expression of the 145 kDa form of KIT. By contrast activation or ER inhibitors alone, only partly inhibited this form. ER inhibitors also inhibited KIT activation-dependent phosphorylation of AKT and ERK1/2. Brefeldin A induced a complete down regulation of the 145 kDa form in hemizygous M, and induced an intra-cellular accumulation of the 125 kDa form in WT but not in hemizygous M. Heterozygous cells had glycosylation and response to ER inhibitors patterns more similar to WT than to hemizygous M. Phosphorylated AKT was reduced in hemizygous cells in comparison to WT KIT cells and heterozygous cells, and in the presence of brefeldin A in all cell lines. Effects of ER inhibitors are significantly different in hemizygous and heterozygous mutants. Differences in intra-cellular trafficking of KIT forms result in differences in downstream signaling pathways, and activation of PI3K/AKT pathway appears to be tied to the presence of the mature 145 kDa form of KIT at the membrane surface. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice.

    PubMed

    Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey J; Rutkove, Seward B

    2015-01-01

    Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg-1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.

  4. Wild type measles virus attenuation independent of type I IFN.

    PubMed

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-02-03

    Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.

  5. Wild type measles virus attenuation independent of type I IFN

    PubMed Central

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-01-01

    Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351

  6. The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice.

    PubMed

    Sophocleous, A; Börjesson, A E; Salter, D M; Ralston, S H

    2015-09-01

    Cannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice. We analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2(-/-)) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA). Osteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2(-/-) compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2(-/-) mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2(-/-) mice produced less proteoglycans in vitro than wild type chondrocytes. These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells

    PubMed Central

    Meléndez, Giselle C.; Li, Jianping; Law, Brittany A.; Janicki, Joseph S.; Supowit, Scott C.; Levick, Scott P.

    2011-01-01

    Aims Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Methods and results Volume overload was induced by aortocaval fistula in TAC1−/− mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1−/− mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1−/− mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1−/− group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Conclusions Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix. PMID:21908647

  8. Wild-type MIC distribution and epidemiological cut-off values in clinical Legionella pneumophila serogroup 1 isolates.

    PubMed

    Bruin, Jacob P; Ijzerman, Ed P F; den Boer, Jeroen W; Mouton, Johan W; Diederen, Bram M W

    2012-01-01

    The purpose of this study was to establish wild-type (WT) distributions and determine the epidemiological cut-off values (ECOFF) in clinical L. pneumophila serogroup 1 isolates for 10 antimicrobials commonly used for the treatment of Legionella infections using a method feasible in a routine clinical laboratory. MICs of 183 clinical L. pneumophila serogroup 1 isolates, collected as part of an outbreak detection program, were tested using E-test methodology on buffered charcoal yeast extract agar supplemented with α-ketoglutarate (BCYE-α). The MICs were read after 2 days of incubation at 35 °C with increased humidity and without CO(2). ECOFFs were determined according to EUCAST methodology and expressed as WT ≤ X mg/L. All antimicrobials showed a WT distribution, although the width varied from 2 two-fold dilutions to 8 dilutions, depending on antibiotic class. The ECOFFs determined were 1.0 mg/L for ciprofloxacin, 0.50 mg/L for levofloxacin, 1.0 mg/L for moxifloxacin, 1.0 mg/L for erythromycin, 1.0 mg/L for azithromycin, 0.50 mg/L for clarithromycin, 1.0 mg/L for cefotaxime, 0.032 mg/L for rifampicin, 16 mg/L for tigecycline, and 8 mg/L for doxycycline. All isolates were inhibited by low concentrations of the fluoroquinolones and macrolides tested, with somewhat higher MICs for the fluoroquinolones. Rifampicin was found to be the most active against L. pneumophila isolates in vitro. These data can be used as a reference for the detection of resistance in clinical L. pneumophila isolates and as a setting of clinical breakpoints. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Endothelin-1 Mediated Induction of Extracellular Matrix Genes in Strial Marginal Cells Underlies Strial Pathology in Alport Mice

    PubMed Central

    Meehan, Daniel T.; Delimont, Duane; Dufek, Brianna; Zallocchi, Marisa; Phillips, Grady; Gratton, Michael Anne; Cosgrove, Dominic

    2016-01-01

    Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ETARs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ETAR antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ETAR blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ETARs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology. PMID:27553900

  10. Solution structure of lysine-free (K0) ubiquitin

    PubMed Central

    Huang, Tao; Li, Jess; Byrd, R Andrew

    2014-01-01

    Lysine-free ubiquitin (K0-Ub) is commonly used to study the ubiquitin-signaling pathway, where it is assumed to have the same structure and function as wild-type ubiquitin (wt-Ub). However, the K0-Ub 15N heteronuclear single quantum correlation NMR spectrum differs significantly from wt-Ub and the melting temperature is depressed by 19°C, raising the question of the structural integrity and equivalence to wt-Ub. The three-dimensional structure of K0-Ub was determined by solution NMR, using chemical shift and residual dipolar coupling data. K0-Ub adopts the same backbone structure as wt-Ub, and all significant chemical shifts can be related to interactions impacted by the K to R mutations. PMID:24591328

  11. NOX2 Deficiency Protects Against Streptozotocin-Induced β-Cell Destruction and Development of Diabetes in Mice

    PubMed Central

    Xiang, Fu-Li; Lu, Xiangru; Strutt, Brenda; Hill, David J.; Feng, Qingping

    2010-01-01

    OBJECTIVE The role of NOX2-containing NADPH oxidase in the development of diabetes is not fully understood. We hypothesized that NOX2 deficiency decreases reactive oxygen species (ROS) production and immune response and protects against streptozotocin (STZ)-induced β-cell destruction and development of diabetes in mice. RESEARCH DESIGN AND METHODS Five groups of mice—wild-type (WT), NOX2−/−, WT treated with apocynin, and WT adoptively transferred with NOX2−/− or WT splenocytes—were treated with multiple-low-dose STZ. Blood glucose and insulin levels were monitored, and an intraperitoneal glucose tolerance test was performed. Isolated WT and NOX2−/− pancreatic islets were treated with cytokines for 48 h. RESULTS Significantly lower blood glucose levels, higher insulin levels, and better glucose tolerance was observed in NOX2−/− mice and in WT mice adoptively transferred with NOX2−/− splenocytes compared with the respective control groups after STZ treatment. Compared with WT, β-cell apoptosis, as determined by TUNEL staining, and insulitis were significantly decreased, whereas β-cell mass was significantly increased in NOX2−/− mice. In response to cytokine stimulation, ROS production was significantly decreased, and insulin secretion was preserved in NOX2−/− compared with WT islets. Furthermore, proinflammatory cytokine release induced by concanavalin A was significantly decreased in NOX2−/− compared with WT splenocytes. CONCLUSIONS NOX2 deficiency decreases β-cell destruction and preserves islet function in STZ-induced diabetes by reducing ROS production, immune response, and β-cell apoptosis. PMID:20627937

  12. Noninvasive Imaging of Retinal Morphology and Microvasculature in Obese Mice Using Optical Coherence Tomography and Optical Microangiography

    PubMed Central

    Zhi, Zhongwei; Chao, Jennifer R.; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K.

    2014-01-01

    Purpose. To evaluate early diabetes-induced changes in retinal thickness and microvasculature in a type 2 diabetic mouse model by using optical coherence tomography (OCT)/optical microangiography (OMAG). Methods. Twenty-two-week-old obese (OB) BTBR mice (n = 10) and wild-type (WT) control mice (n = 10) were imaged. Three-dimensional (3D) data volumes were captured with spectral domain OCT using an ultrahigh-sensitive OMAG scanning protocol for 3D volumetric angiography of the retina and dense A-scan protocol for measurement of the total retinal blood flow (RBF) rate. The thicknesses of the nerve fiber layer (NFL) and that of the NFL to the inner plexiform layer (IPL) were measured and compared between OB and WT mice. The linear capillary densities within intermediate and deep capillary layers were determined by the number of capillaries crossing a 500-μm line. The RBF rate was evaluated using an en face Doppler approach. These quantitative measurements were compared between OB and WT mice. Results. The retinal thickness of the NFL to IPL was significantly reduced in OB mice (P < 0.01) compared to that in WT mice, whereas the NFL thickness between the two was unchanged. 3D depth-resolved OMAG angiography revealed the first in vivo 3D model of mouse retinal microcirculation. Although no obvious differences in capillary vessel densities of the intermediate and deep capillary layers were detected between normal and OB mice, the total RBF rate was significantly lower (P < 0.05) in OB mice than in WT mice. Conclusions. We conclude that OB BTBR mice have significantly reduced NFL–IPL thicknesses and total RBF rates compared with those of WT mice, as imaged by OCT/OMAG. OMAG provides an unprecedented capability for high-resolution depth-resolved imaging of mouse retinal vessels and blood flow that may play a pivotal role in providing a noninvasive method for detecting early microvascular changes in patients with diabetic retinopathy. PMID:24458155

  13. Capmatinib, Ceritinib, Regorafenib, or Entrectinib in Treating Patients With BRAF/NRAS Wild-Type Stage III-IV Melanoma

    ClinicalTrials.gov

    2017-12-20

    ALK Fusion Protein Expression; BRAF wt Allele; Invasive Skin Melanoma; MET Fusion Gene Positive; NRAS wt Allele; NTRK1 Fusion Positive; NTRK2 Fusion Positive; NTRK3 Fusion Positive; RET Fusion Positive; ROS1 Fusion Positive; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  14. [Molecular pathogenesis of Waardenburg syndrome type II resulting from SOX10 gene mutation].

    PubMed

    Zhang, Hua; Chen, Hongsheng; Feng, Yong; Qian, Minfei; Li, Jiping; Liu, Jun; Zhang, Chun

    2016-08-01

    To explore the molecular mechanism of Waardenburg syndrome type II (WS2) resulting from SOX10 gene mutation E248fs through in vitro experiment. 293T cells were transiently transfected with wild type (WT) SOX10 and mutant type (MT) E248fs plasmids. The regulatory effect of WT/MT SOX10 on the transcriptional activity of MITF gene and influence of E248fs on WT SOX10 function were determined with a luciferase activity assay. The DNA binding capacity of the WT/MT SOX10 with the promoter of the MITF gene was determined with a biotinylated double-stranded oligonucleotide probe containing the SOX10 binding sequence cattgtc to precipitate MITF and E248fs, respectively. The stability of SOX10 and E248fs were also analyzed. As a loss-of-function mutation, the E248fs mutant failed to transactivate the MITF promoter as compared with the WT SOX10 (P<0.01), which also showed a dominant-negative effect on WT SOX10. The WT SOX10 and E248fs mutant were also able to bind specifically to the cattgtc motif in the MITF promoter, whereas E248fs had degraded faster than WT SOX10. Despite the fact that the E248fs has a dominant-negative effect on SOX10, its reduced stability may down-regulate the transcription of MITF and decrease the synthesis of melanin, which may result in haploinsufficiency of SOX10 protein and cause the milder WS2 phenotype.

  15. Differential composition of culture supernatants from wild-type Brucella abortus and its isogenic virB mutants.

    PubMed

    Delpino, M Victoria; Comerci, Diego J; Wagner, Mary Ann; Eschenbrenner, Michel; Mujer, Cesar V; Ugalde, Rodolfo A; Fossati, Carlos A; Baldi, Pablo C; Delvecchio, Vito G

    2009-07-01

    The virB genes coding type IV secretion system are necessary for the intracellular survival and replication of Brucella spp. In this study, extracellular proteins from B. abortus 2308 (wild type, WT) and its isogenic virB10 polar mutant were compared. Culture supernatants harvested in the early stationary phase were concentrated and subjected to 2D electrophoresis. Spots present in the WT strain but absent in the virB10 mutant (differential spots) were considered extracellular proteins released in a virB-related manner, and were identified by MALDI-TOF analysis and matching with Brucella genomes. Among the 11 differential proteins identified, DnaK chaperone (Hsp70), choloylglycine hydrolase (CGH) and a peptidyl-prolyl cis-trans isomerase (PPIase) were chosen for further investigation because of their homology with extracellular and/or virulence factors from other bacteria. The three proteins were obtained in recombinant form and specific monoclonal antibodies (mAbs) were prepared. By Western blot with these mAbs, the three proteins were detected in supernatants from the WT but not in those from the virB10 polar mutant or from strains carrying non-polar mutations in virB10 or virB11 genes. These results suggest that the expression of virB genes affects the extracellular release of DnaK, PPIase and CGH, and possibly other proteins from B. abortus.

  16. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  17. The Role of Serotonin in Ventricular Repolarization in Pregnant Mice

    PubMed Central

    Park, Hyelim; Mun, Dasom; Lee, Seung-Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui-Nam; Lee, Moon-Hyoung

    2018-01-01

    Purpose The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. Materials and Methods We measured current amplitudes and the expression levels of voltage-gated K+ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a−/−-NP). Results During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a−/−-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Conclusion Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. PMID:29436197

  18. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    PubMed

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  19. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    PubMed

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Wild-Type MIC Distributions and Epidemiological Cutoff Values for Caspofungin and Aspergillus spp. for the CLSI Broth Microdilution Method (M38-A2 Document)▿

    PubMed Central

    Espinel-Ingroff, A.; Fothergill, A.; Fuller, J.; Johnson, E.; Pelaez, T.; Turnidge, J.

    2011-01-01

    Clinical breakpoints have not been established for mold testing. Epidemiologic cutoff values (ECVs) are available for six Aspergillus spp. and the triazoles, but not for caspofungin. Wild-type (WT) minimal effective concentration (MEC) distributions (organisms in a species-drug combination with no acquired resistance mechanisms) were defined in order to establish ECVs for six Aspergillus spp. and caspofungin. The number of available isolates was as follows: 1,691 A. fumigatus, 432 A. flavus, 192 A. nidulans, 440 A. niger, 385 A. terreus, and 75 A. versicolor isolates. CLSI broth microdilution MEC data gathered in five independent laboratories in Canada, Europe, and the United States were aggregated for the analyses. ECVs expressed in μg/ml that captured 95% and 99% of the modeled wild-type population were for A. fumigatus 0.5 and 1, A. flavus 0.25 and 0.5, A. nidulans 0.5 and 0.5, A. niger 0.25 and 0.25, A. terreus 0.25 and 0.5, and A. versicolor 0.25 and 0.5. Although caspofungin ECVs are not designed to predict the outcome of therapy, they may aid in the detection of strains with reduced antifungal susceptibility to this agent and acquired resistance mechanisms. PMID:21422219

  1. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species.

    PubMed

    Villasana, Laura E; Weber, Sydney; Akinyeke, Tunde; Raber, Jacob

    2016-09-01

    Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice. © 2016 International Society for Neurochemistry.

  2. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media

    PubMed Central

    Murrah, Kyle A.; Turner, Roberta L.; Pang, Bing; Perez, Antonia C.; Reimche, Jennifer L.; King, Lauren B.; Wren, John; Gandhi, Uma; Swords, W. Edward; Ornelles, David A.

    2015-01-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. PMID:25251686

  3. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    PubMed

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  4. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice

    PubMed Central

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight. PMID:27780273

  5. Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning

    PubMed Central

    Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-no, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu

    2018-01-01

    The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents’ spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model. PMID:29415035

  6. Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning.

    PubMed

    Higaki, Akinori; Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-No, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu

    2018-01-01

    The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents' spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model.

  7. Differential Responses of Polyamines and Antioxidants to Drought in a Centipedegrass Mutant in Comparison to Its Wild Type Plants

    PubMed Central

    Liu, Mingxi; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements. However, our knowledge on physiological adaptation of centipedegrass to drought stress is limited. Physiological responses to drought in a gamma-ray-induced mutant 22-1 as compared with two wild type (WT) lines were analyzed for understanding of drought tolerance mechanism of centipedegrass. The mutant showed an elevated drought tolerance with higher levels of relative water content, net photosynthetic rate (A) and stomatal conductance (gs) and lower levels of ion leakage and malondialdehyde (MDA) under drought stress as compared with WT plants. A showed significant correlation with gs and MDA. Higher levels of antioxidant enzymes activities, non-enzyme antioxidants, and polyamines including putrescine (Put), spermidine (Spd), and spermine (Spm) were maintained in 22-1 than in WT plants. Superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX), and glutathione reductase (GR) activities and ascorbic acid (AsA) content were significantly correlated with both Put and Spd levels, and reduced glutathione level was correlated with Put during drought stress. Exogenous application of Put, Spd, and Spm increased drought tolerance and activities of SOD, CAT, APX, and GR in WT plants. The results suggest that higher levels of polyamines and antioxidant defense system are associated with the elevated drought tolerance in 22-1, which may improve protection on photosynthesis against drought induced oxidative damage. PMID:28559909

  8. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

    PubMed

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B; Victor, Aaron; Meisen, Walter H; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E Antonio; Glorioso, Joseph C; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-07-09

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

  9. Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues.

    PubMed

    Baek, Seung Cheol; Ho, Thien-Hoang; Lee, Hyun Woo; Jung, Won Kyeong; Gang, Hyo-Seung; Kang, Lin-Woo; Kim, Hoon

    2017-05-01

    β-1,3-1,4-Glucanase (BGlc8H) from Paenibacillus sp. X4 was mutated by error-prone PCR or truncated using termination primers to improve its enzyme properties. The crystal structure of BGlc8H was determined at a resolution of 1.8 Å to study the possible roles of mutated residues and truncated regions of the enzyme. In mutation experiments, three clones of EP 2-6, 2-10, and 5-28 were finally selected that exhibited higher specific activities than the wild type when measured using their crude extracts. Enzyme variants of BG 2-6 , BG 2-10 , and BG 5-28 were mutated at two, two, and six amino acid residues, respectively. These enzymes were purified homogeneously by Hi-Trap Q and CHT-II chromatography. Specific activity of BG 5-28 was 2.11-fold higher than that of wild-type BG wt , whereas those of BG 2-6 and BG 2-10 were 0.93- and 1.19-fold that of the wild type, respectively. The optimum pH values and temperatures of the variants were nearly the same as those of BG wt (pH 5.0 and 40 °C, respectively). However, the half-life of the enzyme activity and catalytic efficiency (k cat /K m ) of BG 5-28 were 1.92- and 2.12-fold greater than those of BG wt at 40 °C, respectively. The catalytic efficiency of BG 5-28 increased to 3.09-fold that of BG wt at 60 °C. These increases in the thermostability and catalytic efficiency of BG 5-28 might be useful for the hydrolysis of β-glucans to produce fermentable sugars. Of the six mutated residues of BG 5-28 , five residues were present in mature BGlc8H protein, and two of them were located in the core scaffold of BGlc8H and the remaining three residues were in the substrate-binding pocket forming loop regions. In truncation experiments, three forms of C-terminal truncated BGlc8H were made, which comprised 360, 286, and 215 amino acid residues instead of the 409 residues of the wild type. No enzyme activity was observed for these truncated enzymes, suggesting the complete scaffold of the α 6 /α 6 -double-barrel structure is essential for enzyme activity.

  10. Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill.

    PubMed

    Yuminamochi, Eri; Koike, Taisuke; Takeda, Kazuyoshi; Horiuchi, Isao; Okumura, Ko

    2007-06-01

    Dried fruiting bodies of Agaricus blazei Murill (A. blazei) and its extracts have generally used as complementary and alternative medicines (CAMs). Here, we report that the oral administration of A. blazei augmented cytotoxicity of natural killer (NK) cells in wild-type (WT) C57BL/6, C3H/HeJ, and BALB/c mice. Augmented cytotoxicity was demonstrated by purified NK cells from treated wild-type (WT) and RAG-2-deficient mice, but not from interferon-gamma (IFN-gamma) deficient mice. NK cell activation and IFN-gamma production was also observed in vitro when dendritic cell (DC)-rich splenocytes of WT mice were coincubation with an extract of A. blazei. Both parameters were largely inhibited by neutralizing anti-interleukin-12 (IL-12) monoclonal antibody (mAb) and completely inhibited when anti-IL-12 mAb and anti-IL-18 mAb were used in combination. An aqueous extract of the hemicellulase-digested compound of A. blazei particle; (ABPC) induced IFN-gamma production more effectively, and this was completely inhibited by anti-IL-12 mAb alone. NK cell cytotoxicty was augmented with the same extracts, again in an IL-12 and IFN-gamma-dependent manner. These results clearly demonstrated that A. blazei and ABPC augmented NK cell activation through IL-12-mediated IFN-gamma production.

  11. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf . © 2015 John Wiley & Sons Ltd.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agostoni, Marco; Lucker, Ben F.; Smith, Matthew A. Y.

    Phycobilisomes (PBSs) are pigment-rich super-complexes required for efficient harvest and transfer of light energy to photosynthetic reaction centers of cyanobacteria. The model cyanobacterium Fremyella diplosiphon is able to adjust PBS pigmentation and size in response to the prevailing light spectrum through a process called complementary chromatic acclimation to optimize spectral light absorption, concomitantly optimizing photosynthesis and growth. We explored the fitness costs versus advantages of modulating antennae size and composition under sinusoidal continuous and fluctuating light conditions in F. diplosiphon by comparing growth of wild-type (WT) cells with a mutant strain deficient in PBSs in both monoculture and polyculture conditions.more » Comparative analyses of WT and the PBS-deficient FdCh1 strain under continuous vs. fluctuating sinusoidal light suggest a potential fitness advantage for maintaining PBSs in WT cells during continuous light and a fitness cost during transitions to and acclimation under fluctuating light. Here, we explored the physiological changes correlated with the observed differential growth to understand the dynamics and biochemical bases of comparative fitness of distinct strains under defined growth conditions. Wild-type F. diplosiphon appears to accumulate longer PBS rods and exhibits higher oxidative stress under fluctuating light conditions than continuous sinusoidal light, which may impact responses and the fitness of cells that do not adapt to rapid changes in external light.« less

  13. IRAK4 deficiency promotes cardiac remodeling induced by pressure overload

    PubMed Central

    Yuan, Yuan; Gan, Huawen; Dai, Jia; Zhou, Heng; Deng, Wei; Zong, Jing; Bian, Zhouyan; Liao, Haihan; Li, Hongliang; Tang, Qizhu

    2015-01-01

    Background: Interluekin1 receptor-associated kinase-4 (IRAK4) plays an essential role in the innate immune system. The aim of this study was to investigate the role of IRAK4 in cardiac remodeling induced by pressure overload and elucidate the underlying mechanisms. Methods: In vivo studies were performed using IRAK4 heterozygous knockout (HET) mice and wild type (WT) mice. Models of cardiac remodeling were induced by aortic banding (AB). Cardiac remodeling was evaluated by Echocardiography and histological analysis. Results: IRAK4 was upregulated in hearts of dilated cardiomyopathy (DCM) patients and also pressure overload-induced mice hearts. IRAK4 HET mice exhibited exacerbated cardiac hypertrophy, dysfunction and fibrosis after 4 weeks of AB compared with that in WT mice. Furthermore, enhanced activation of the MEK-ERK1/2, p38 and NFκB pathways was found in IRAK4 HET mice compared to WT mice. Conclusion: Our results suggest that IRAK4 may play a crucial role in the development of cardiac remodeling via negative regulation of multiple signaling pathways. PMID:26884959

  14. Exogenous PTHrP Repairs the Damaged Fracture Healing of PTHrP+/− Mice and Accelerates Fracture Healing of Wild Mice

    PubMed Central

    Wang, Yinhe; Fang, Xin; Wang, Chun; Ding, Congzhu; Lin, Hua; Liu, Anlong; Wang, Lei; Cao, Yang

    2017-01-01

    Bone fracture healing is a complicated physiological regenerative process initiated in response to injury and is similar to bone development. To demonstrate whether an exogenous supply of parathyroid hormone–related protein (PTHrP) helps in bone fracture healing, closed mid-diaphyseal femur fractures were created and stabilized with intramedullary pins in eight-week-old wild-type (WT) PTHrP+/+ and PTHrP+/− mice. After administering PTHrP for two weeks, callus tissue properties were analyzed at one, two, and four weeks post-fracture (PF) by various methods. Bone formation–related genes and protein expression levels were evaluated by real-time reverse transcriptase–polymerase chain reaction and Western blots. At two weeks PF, mineral density of callus, bony callus areas, mRNA levels of alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx-2), and protein levels of Runx-2 and insulin-like growth factor-1 decreased in PTHrP+/− mice compared with WT mice. At four weeks PF, total collagen-positive bony callus areas, osteoblast number, ALP-positive areas, and type I collagen-positive areas all decreased in PTHrP+/− mice. At both two and four weeks PF, tartrate-resistant acid phosphatase–positive osteoclast number and surface decreased a little in PTHrP+/− mice. The study indicates that exogenous PTHrP provided by subcutaneous injection could redress impaired bone fracture healing, leading to mutation of activated PTHrP by influencing callus areas, endochondral bone formation, osteoblastic bone formation, and bone turnover. PMID:28178186

  15. Role of CB2 receptors in social and aggressive behavior in male mice.

    PubMed

    Rodríguez-Arias, Marta; Navarrete, Francisco; Blanco-Gandia, M Carmen; Arenas, M Carmen; Aguilar, María A; Bartoll-Andrés, Adrián; Valverde, Olga; Miñarro, José; Manzanares, Jorge

    2015-08-01

    Male CB1KO mice exhibit stronger aggressive responses than wild-type mice. This study was designed to examine the role of cannabinoid CB2r in social and aggressive behavior. The social interaction test and resident-intruder paradigm were performed in mice lacking CB2r (CB2KO) and in wild-type (WT) littermates. The effects of the CB2r selective agonist JWH133 (1 and 2 mg/kg) on aggression were also evaluated in Oncins France 1 (OF1) mice. Gene expression analyses of monoamine oxidase-A (MAO-A), catechol-o-methyltransferase (COMT), 5-hydroxytryptamine transporter (5-HTT), and 5-HT1B receptor (5HT1Br) in the dorsal raphe nuclei (DR) and the amygdala (AMY) were carried out using real-time PCR. Group-housed CB2KO mice exhibited higher levels of aggression in the social interaction test and displayed more aggression than resident WT mice. Isolation increased aggressive behavior in WT mice but did not affect CB2KO animals; however, the latter mice exhibited higher levels of social interaction with their WT counterparts. MAO-A and 5-HTT gene expression was significantly higher in grouped CB2KO mice. The expression of 5HT1Br, COMT, and MAO-A in the AMY was more pronounced in CB2KO mice than in WT counterparts. Acute administration of the CB2 agonist JWH133 significantly reduced the level of aggression in aggressive isolated OF1 mice, an effect that decreased after pretreatment with the CB2 receptor antagonist AM630. Our results suggest that CB2r is implicated in social interaction and aggressive behavior and deserves further consideration as a potential new target for the management of aggression.

  16. Mesenchymal stem cells induce epithelial proliferation within the inflamed stomach.

    PubMed

    Donnelly, Jessica M; Engevik, Amy; Feng, Rui; Xiao, Chang; Boivin, Gregory P; Li, Jing; Houghton, JeanMarie; Zavros, Yana

    2014-06-15

    Bone marrow-derived mesenchymal stem cells (MSCs) sustain cancer cells by creating a microenvironment favorable for tumor growth. In particular, MSCs have been implicated in gastric cancer development. There is extensive evidence suggesting that Hedgehog signaling regulates tumor growth. However, very little is known regarding the precise roles of Hedgehog signaling and MSCs in tumor development within the stomach. The current study tests that hypothesis that Sonic Hedgehog (Shh), secreted from MSCs, provides a proliferative stimulus for the gastric epithelium in the presence of inflammation. Red fluorescent protein-expressing MSCs transformed in vitro (stMSCs) were transduced with lentiviral constructs containing a vector control (stMSC(vect)) or short hairpin RNA (shRNA) targeting the Shh gene (stMSC(ShhKO)). Gastric submucosal transplantation of wild-type MSCs (wtMSCs), wild-type MSCs overexpressing Shh (wtMSC(Shh)), stMSC(vect), or stMSC(ShhKO) cells in C57BL/6 control (BL/6) or gastrin-deficient (GKO) mice was performed and mice analyzed 30 and 60 days posttransplantation. Compared with BL/6 mice transplanted with wtMSC(Shh) and stMSC(vect) cells, inflamed GKO mice developed aggressive gastric tumors. Tumor development was not observed in mouse stomachs transplanted with wtMSC or stMSC(ShhKO) cells. Compared with stMSC(ShhKO)-transplanted mice, within the inflamed GKO mouse stomach, Shh-expressing stMSC(vect)- and wtMSC(Shh)-induced proliferation of CD44-positive cells. CD44-positive cells clustered in gland-like structures within the tumor stroma and were positive for Patched (Ptch) expression. We conclude that Shh, secreted from MSCs, provides a proliferative stimulus for the gastric epithelium that is associated with tumor development, a response that is sustained by chronic inflammation. Copyright © 2014 the American Physiological Society.

  17. Mesenchymal stem cells induce epithelial proliferation within the inflamed stomach

    PubMed Central

    Donnelly, Jessica M.; Engevik, Amy; Feng, Rui; Xiao, Chang; Boivin, Gregory P.; Li, Jing; Houghton, JeanMarie

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) sustain cancer cells by creating a microenvironment favorable for tumor growth. In particular, MSCs have been implicated in gastric cancer development. There is extensive evidence suggesting that Hedgehog signaling regulates tumor growth. However, very little is known regarding the precise roles of Hedgehog signaling and MSCs in tumor development within the stomach. The current study tests that hypothesis that Sonic Hedgehog (Shh), secreted from MSCs, provides a proliferative stimulus for the gastric epithelium in the presence of inflammation. Red fluorescent protein-expressing MSCs transformed in vitro (stMSCs) were transduced with lentiviral constructs containing a vector control (stMSCvect) or short hairpin RNA (shRNA) targeting the Shh gene (stMSCShhKO). Gastric submucosal transplantation of wild-type MSCs (wtMSCs), wild-type MSCs overexpressing Shh (wtMSCShh), stMSCvect, or stMSCShhKO cells in C57BL/6 control (BL/6) or gastrin-deficient (GKO) mice was performed and mice analyzed 30 and 60 days posttransplantation. Compared with BL/6 mice transplanted with wtMSCShh and stMSCvect cells, inflamed GKO mice developed aggressive gastric tumors. Tumor development was not observed in mouse stomachs transplanted with wtMSC or stMSCShhKO cells. Compared with stMSCShhKO-transplanted mice, within the inflamed GKO mouse stomach, Shh-expressing stMSCvect- and wtMSCShh-induced proliferation of CD44-positive cells. CD44-positive cells clustered in gland-like structures within the tumor stroma and were positive for Patched (Ptch) expression. We conclude that Shh, secreted from MSCs, provides a proliferative stimulus for the gastric epithelium that is associated with tumor development, a response that is sustained by chronic inflammation. PMID:24789207

  18. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).

    PubMed

    Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.

  19. Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice.

    PubMed

    Meehan, Daniel T; Delimont, Duane; Dufek, Brianna; Zallocchi, Marisa; Phillips, Grady; Gratton, Michael Anne; Cosgrove, Dominic

    2016-11-01

    Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ET A Rs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ET A R antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ET A R blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ET A Rs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The inappropriate occurrence of rapid eye movement sleep in narcolepsy is not due to a defect in homeostatic regulation of rapid eye movement sleep.

    PubMed

    Roman, Alexis; Meftah, Soraya; Arthaud, Sébastien; Luppi, Pierre-Hervé; Peyron, Christelle

    2018-06-01

    Narcolepsy type 1 is a disabling disorder with four primary symptoms: excessive-daytime-sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. The later three symptoms together with a short rapid eye movement (REM) sleep latency have suggested impairment in REM sleep homeostatic regulation with an enhanced propensity for (i.e. tendency to enter) REM sleep. To test this hypothesis, we challenged REM sleep homeostatic regulation in a recognized model of narcolepsy, the orexin knock-out (Orex-KO) mice and their wild-type (WT) littermates. We first performed 48 hr of REM sleep deprivation using the classic small-platforms-over-water method. We found that narcoleptic mice are similarly REM sleep deprived to WT mice. Although they had shorter sleep latency, Orex-KO mice recovered similarly to WT during the following 10 hr of recovery. Interestingly, Orex-KO mice also had cataplexy episodes immediately after REM sleep deprivation, anticipating REM sleep rebound, at a time of day when cataplexy does not occur in baseline condition. We then evaluated REM sleep propensity using our new automated method of deprivation that performs a specific and efficient REM sleep deprivation. We showed that REM sleep propensity is similar during light phase in Orex-KO and WT mice. However, during the dark phase, REM sleep propensity was not suppressed in Orex-KO mice when hypocretin/orexin neuropeptides are normally released. Altogether our data suggest that in addition to the well-known wake-promoting role of hypocretin/orexin, these neuropeptides would also suppress REM sleep. Therefore, hypocretin/orexin deficiency would facilitate the occurrence of REM sleep at any time of day in an opportunistic manner as seen in human narcolepsy.

  1. The effects of Capn1 gene inactivation on the differential expression of genes in skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    Protein turnover is required for muscle growth and regeneration and several proteolytic enzymes, including the calpains, degrade myofibrillar proteins during this process. In a previous experiment, phenotypic differences were observed between µ-calpain knockout (KO) and wild type (WT) mice, includin...

  2. B cells have distinct roles in host protection against different nematode parasites

    USDA-ARS?s Scientific Manuscript database

    B cells may mediate protective responses against nematode parasites by supporting Th2 cell development and/or by producing antibodies. To examine this, B cell-deficient mice were inoculated with Nippostrongylus brasiliensis (Nb) or Heligmosomoides polygyrus (Hp). B cell-deficient and wild type (WT...

  3. Oxidative capacity and fatigability in run-trained malignant hyperthermia-susceptible mice.

    PubMed

    Rouviere, Clement; Corona, Benjamin T; Ingalls, Christopher P

    2012-04-01

    The purpose of this study was to test the hypothesis that malignant hyperthermia model mice (RyR1Y522S/wt) are more vulnerable to exercise-induced muscle injury and fatigability and adapt less to run training. After 6 weeks of voluntary wheel running, we measured anterior crural muscle fatigability, muscle injury, and cytochrome oxidase (COX) and citrate synthase (CS). Although RyR1Y522S/wt mice ran without undergoing MH episodes, they ran 42% less distance than wild-type (WT) mice. Muscles from WT mice exhibited increased fatigue resistance and COX content after training. Muscles from RyR1Y522S/wt mice demonstrated no significant change in fatigability or COX and CS after training. However, muscles from RyR1Y522S/wt mice displayed less intrinsic fatigability and greater COX/CS content and muscle damage than WT mice. RyR1Y522S/wt mice can run without having rhabdomyolysis, and their inability to adapt to training appears to stem from intrinsic enhancement of mitochondrial enzymes and fatigue resistance. Copyright © 2012 Wiley Periodicals, Inc.

  4. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study

    PubMed Central

    Hartimath, Siddesh V.; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K.; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A.J.O.; de Vries, Erik F.J.

    2018-01-01

    Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [18F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [18F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [18F]FB-IL2v to IL2R was reversible. The volume of distribution (VT) and the non-displaceable binding potential (BPnd) of mutant [18F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [18F]FB-IL2 (p < 0.01). Pretreatment with wt-IL2 significantly reduced the VT and BPnd of mutant [18F]FB-IL2v in the implant (p < 0.001). This demonstrates that wild-type [18F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [18F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug. PMID:29467958

  5. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study.

    PubMed

    Hartimath, Siddesh V; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A J O; de Vries, Erik F J

    2018-01-23

    Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [ 18 F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [ 18 F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [ 18 F]FB-IL2v to IL2R was reversible. The volume of distribution (V T ) and the non-displaceable binding potential (BP nd ) of mutant [ 18 F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [ 18 F]FB-IL2 ( p < 0.01). Pretreatment with wt-IL2 significantly reduced the V T and BPnd of mutant [ 18 F]FB-IL2v in the implant ( p < 0.001). This demonstrates that wild-type [ 18 F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [ 18 F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug.

  6. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp ofmore » Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.« less

  7. Use of SLAM and PVRL4 and identification of pro-HB-EGF as cell entry receptors for wild type phocine distemper virus.

    PubMed

    Melia, Mary M; Earle, John Philip; Abdullah, Haniah; Reaney, Katherine; Tangy, Frederic; Cosby, Sara Louise

    2014-01-01

    Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.

  8. Selective Gene Regulation by Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2012-10-01

    empty vector, wt AR, AR-E255K and AR- R753Q cells were transfected with an ARE- responsive reporter and renilla as control. Cells were treated with...empty vector (empty), wild-type AR (WT), AR-E255K or AR-R753Q were transfected with ARE-luciferase and renilla . Cells were treated with 0 or 1 nm...R1881, harvested after 24 hrs to read luciferase and renilla actiivity. % G ro w th (D ay 5 / D ay 1 ) Vector WTAR E255KR753Q 600 700 800 900

  9. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS

    PubMed Central

    Bosco, Daryl A.; Morfini, Gerardo; Karabacak, N. Murat; Song, Yuyu; Gros-Louis, Francois; Pasinelli, Piera; Goolsby, Holly; Fontaine, Benjamin A.; Lemay, Nathan; McKenna-Yasek, Diane; Frosch, Matthew P.; Agar, Jeffery N.; Julien, Jean-Pierre; Brady, Scott T.; Brown, Robert H.

    2010-01-01

    Many mutations confer upon copper/zinc superoxide dismutase-1 (SOD1) one or more toxic function(s) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we demonstrate that oxidized WT-SOD1 and mutant-SOD1 share a conformational epitope that is not present in normal WT-SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbosacral spinal cord displayed striking C4F6 immunoreactivity, denoting the presence of aberrant WT-SOD1 species. Recombinant, oxidized WT-SOD1 and WT-SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal transport in a manner similar to FALS-linked mutant SOD1. Studies here suggest that WT-SOD1 can be pathogenic in SALS and identifies an SOD1-dependent pathogenic mechanism common to FALS and SALS. PMID:20953194

  10. Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance.

    PubMed

    Zhang, Chen; Li, Xia; He, Yafei; Zhang, Jinfei; Yan, Ting; Liu, Xiaolong

    2017-06-01

    We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C 4 PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C 4 -PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C 4 photosynthesis can be used to increase the yield of rice under drought conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients.

    PubMed

    Figueroa, Javier M; Skog, Johan; Akers, Johnny; Li, Hongying; Komotar, Ricardo; Jensen, Randy; Ringel, Florian; Yang, Isaac; Kalkanis, Steven; Thompson, Reid; LoGuidice, Lori; Berghoff, Emily; Parsa, Andrew; Liau, Linda; Curry, William; Cahill, Daniel; Bettegowda, Chetan; Lang, Frederick F; Chiocca, E Antonio; Henson, John; Kim, Ryan; Breakefield, Xandra; Chen, Clark; Messer, Karen; Hochberg, Fred; Carter, Bob S

    2017-10-19

    RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR). CSF and matching tumor tissue were obtained from patients undergoing resection of GBMs. We determined wild-type (wt)EGFR DNA copy number amplification, as well as wtEGFR and EGFR variant (v)III RNA expression in tumor samples. We also characterized wtEGFR and EGFRvIII RNA expression in CSF-derived EVs. EGFRvIII-positive tumors had significantly greater wtEGFR DNA amplification (P = 0.02) and RNA expression (P = 0.03), and EGFRvIII-positive CSF-derived EVs had significantly more wtEGFR RNA expression (P = 0.004). EGFRvIII was detected in CSF-derived EVs for 14 of the 23 EGFRvIII tissue-positive GBM patients. Conversely, only one of the 48 EGFRvIII tissue-negative patients had the EGFRvIII mutation detected in their CSF-derived EVs. These results yield a sensitivity of 61% and a specificity of 98% for the utility of CSF-derived EVs to detect an EGFRvIII-positive GBM. Our results demonstrate CSF-derived EVs contain RNA signatures reflective of the underlying molecular genetic status of GBMs in terms of wtEGFR expression and EGFRvIII status. The high specificity of the CSF-derived EV diagnostic test gives us an accurate determination of positive EGFRvIII tumor status and is essentially a less invasive "liquid biopsy" that might direct mutation-specific therapies for GBMs. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice.

    PubMed

    Pal, Sukumar; Tifrea, Delia F; Zhong, Guangming; de la Maza, Luis M

    2018-01-01

    Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 10 5 C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice ( P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) ( P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 10 4 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 10 5 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed. Copyright © 2017 American Society for Microbiology.

  13. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*

    PubMed Central

    Minkoff, Benjamin B.; Stecker, Kelly E.; Sussman, Michael R.

    2015-01-01

    Abscisic acid (ABA)1 is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs rapid phosphoproteomic changes. PMID:25693798

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svensson, Emelie; Eriksson, Helena; Gekas, Christos

    The Wilms tumor gene 1 (WT1) encodes a zinc-finger-containing transcription factor highly expressed in immature hematopoietic progenitor cells. Overexpression and presence of somatic mutations in acute leukemia indicate a role for WT1 in the pathogenesis of leukemia. CD34{sup +} progenitor cells were transduced with one splice variant of human WT1 without the KTS insert in the zinc-finger domain, WT1(+/-), and with a deleted mutant of WT1 lacking the entire zinc-finger region, WT1(delZ), thus incapable of binding DNA. We show that inhibition of erythroid colony formation and differentiation is absolutely dependent on the DNA-binding zinc-finger domain of WT1. Unexpectedly, however, WT1(delZ)more » was equally effective as wild type protein in the reduction of myeloid clonogenic growth as well as in stimulation of myeloid differentiation, as judged by the expression of cell surface CD11b. Expression of neither WT1(+/-) nor WT1(delZ) upregulated mRNA for the cdk inhibitor p21{sup Waf1/Cip1} or p27{sup Kip1}. Our results demonstrate that WT1 affects proliferation and differentiation in erythroid and myeloid cells by different molecular mechanisms, and suggest that mutations affecting the zinc-finger domain of WT1 could interfere with normal differentiation in the pathogenesis of leukemia.« less

  15. In Vitro and in Vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B, Type I (SR-BI), to the PDZ1 Domain of Its Adaptor Protein PDZK1*

    PubMed Central

    Kocher, Olivier; Birrane, Gabriel; Tsukamoto, Kosuke; Fenske, Sara; Yesilaltay, Ayce; Pal, Rinku; Daniels, Kathleen; Ladias, John A. A.; Krieger, Monty

    2010-01-01

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys14-Xaa4-Asn19-Tyr-Gly-Phe-Phe-Leu24), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI (503VLQEAKL509). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (Kd) of the K14A and F22A mutants were 3.2 and 4.0 μm, respectively, similar to 2.6 μm measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI (505QEAKL509) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10–20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1. PMID:20739281

  16. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O Kocher; G Birrane; K Tsukamoto

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M,more » respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.« less

  17. Ovariectomy modify local renin-angiotensin-aldosterone system gene expressions in the heart of ApoE (-/-) mice.

    PubMed

    Borges, Celina Carvalho; Penna-de-Carvalho, Aline; Medeiros Junior, Jorge L; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos A

    2017-12-15

    The evaluation of the local Renin-Angiotensin-Aldosterone system (RAAS) gene expressions in the heart of ovariectomized (OVX) apolipoprotein E deficient mice (ApoE). Four-months old C57BL/6 female mice (wild-type, wt, n=20), and ApoE female mice (n=20), were submitted to OVX or a surgical procedure without ovary removal (SHAM) and formed four groups (n=10/group): SHAM/wt, SHAM/ApoE, OVX/wt, and OVX/ApoE. OVX led to greater body mass, plasma triglycerides (TG) and total cholesterol, and resulted in insulin resistance and altered RAAS gene expressions in the heart tissue. The gene expression of angiotensin-converting enzyme (ACE)-2 was lower in OVX/wt than in SHAM/wt (P=0.0004), Mas receptor (MASr) was lower in OVX/wt compared to SHAM/wt (P<0.0001). Also, angiotensin II receptor type 1 (AT1r) was higher in OVX/wt than in SHAM/wt (P=0.0229), and AT2r was lower in OVX/wt than in SHAM/wt (P=0.0121). OVX and ApoE deficiency showed interaction potentializing the insulin resistance, increasing TG levels and altering ACE and MASr gene expressions. ACE gene expression was higher in OVX/ApoE than in OVX/wt (P<0.0001), and MASr gene expression was lower in OVX/ApoE than in OVX/wt (P<0.0001). The impact of OVX on local RAAS cascade in the heart of ApoE deficient animals, besides the metabolic changes culminating with insulin resistance, involves an upregulation of renin, ACE, and AT1r gene expressions. The findings may contribute to clarify the mechanisms of development of postmenopausal hypertension and the link between RAAS and apolipoprotein E. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Electrocardiographic Characterization of Cardiac Hypertrophy in Mice that Overexpress the ErbB2 Receptor Tyrosine Kinase

    PubMed Central

    Sysa-Shah, Polina; Sørensen, Lars L; Abraham, M Roselle; Gabrielson, Kathleen L

    2015-01-01

    Electrocardiography is an important method for evaluation and risk stratification of patients with cardiac hypertrophy. We hypothesized that the recently developed transgenic mouse model of cardiac hypertrophy (ErbB2tg) will display distinct ECG features, enabling WT (wild type) mice to be distinguished from transgenic mice without using conventional PCR genotyping. We evaluated more than 2000 mice and developed specific criteria for genotype determination by using cageside ECG, during which unanesthetized mice were manually restrained for less than 1 min. Compared with those from WT counterparts, the ECG recordings of ErbB2tg mice were characterized by higher P- and R-wave amplitudes, broader QRS complexes, inverted T waves, and ST interval depression. Pearson's correlation matrix analysis of combined WT and ErbB2tg data revealed significant correlation between heart weight and the ECG parameters of QT interval (corrected for heart rate), QRS interval, ST height, R amplitude, P amplitude, and PR interval. In addition, the left ventricular posterior wall thickness as determined by echocardiography correlated with ECG-determined ST height, R amplitude, QRS interval; echocardiographic left ventricular mass correlated with ECG-determined ST height and PR interval. In summary, we have determined phenotypic ECG criteria to differentiate ErbB2tg from WT genotypes in 98.8% of mice. This inexpensive and time-efficient ECG-based phenotypic method might be applied to differentiate between genotypes in other rodent models of cardiac hypertrophy. Furthermore, with appropriate modifications, this method might be translated for use in other species. PMID:26310459

  19. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl−/− retinal transcriptomes

    PubMed Central

    Brooks, Matthew J.; Rajasimha, Harsha K.; Roger, Jerome E.

    2011-01-01

    Purpose Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl−/−) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl−/− mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl−/− retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. PMID:22162623

  20. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groezinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de; Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Bantleon, Ruediger, E-mail: ruediger.bantleon@med.uni-tuebingen.de

    2012-12-15

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types ofmore » immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.« less

  1. The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes

    PubMed Central

    Gallagher, Emily Jane; Sun, Hui; Kornhauser, Caroline; Tobin-Hess, Aviva; Epstein, Sol; Yakar, Shoshana; LeRoith, Derek

    2017-01-01

    Background Individuals with type 2 diabetes (T2D) are at greater risk of bone fractures than those without diabetes. Certain oral diabetic medications may further increase the risk of fracture. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are incretin-based therapies that are being increasingly used for the management of T2D. It has been hypothesized that these agents may reduce fracture risk in those with T2D. In this study, we used a mouse model of T2D to examine the effects of the DPP-IV inhibitor, MK-0626, on bone. Methods Male wild type (WT) and diabetic muscle-lysine-arginine (MKR) mice were treated with MK-0626, pioglitazone, alendronate or vehicle. The effects of treatment with MK-0626 on bone microarchitecture and turnover were compared with treatment with pioglitazone, alendronate and vehicle. Osteoblast differentiation was determined by alkaline phosphatase staining of bone marrow cells from WT and MKR mice after treatment with pioglitazone, MK-0626 or phosphate buffered saline. Results We found that MK-0626 had neutral effects on cortical and trabecular bone in diabetic mice. Pioglitazone had detrimental effects on the trabecular bone of WT but not of diabetic mice. Alendronate caused improvements in cortical and trabecular bone architecture in diabetic and WT mice. MK-0626 did not alter osteoblast differentiation, but pioglitazone impaired osteoblast differentiation in vitro. Conclusions Overall, the DPP-IV inhibitor, MK-0626, had no adverse effects on bone in an animal model of T2D or directly on osteoblasts in culture. These findings are reassuring as DPP-IV inhibitors are being widely used to treat patients with T2D who are already at an increased risk of fractures. PMID:24023014

  2. Contribution of Neuraminidase of Influenza Viruses to the Sensitivity to Sera Inhibitors and Reassortment Efficiency

    PubMed Central

    Kiseleva, Irina; Larionova, Natalie; Fedorova, Ekaterina; Bazhenova, Ekaterina; Dubrovina, Irina; Isakova-Sivak, Irina; Rudenko, Larisa

    2014-01-01

    Live attenuated influenza vaccine (LAIV) represent reassortant viruses with hemagglutinin (HA) and neuraminidase (NA) gene segments inherited from circulating wild-type (WT) parental influenza viruses recommended for inclusion into seasonal vaccine formulation, and the 6 internal protein-encoding gene segments from cold-adapted attenuated master donor viruses (genome composition 6:2). In this study, we describe the obstacles in developing LAIV strains while taking into account the phenotypic peculiarities of WT viruses used for reassortment. Genomic composition analysis of 849 seasonal LAIV reassortants revealed that over 80% of reassortants based on inhibitor-resistant WT viruses inherited WT NA, compared to 26% of LAIV reassortants based on inhibitor-sensitive WT viruses. In addition, the highest percentage of LAIV genotype reassortants was achieved when WT parental viruses were resistant to non-specific serum inhibitors. We demonstrate that NA may play a role in influenza virus sensitivity to non-specific serum inhibitors. Replacing NA of inhibitor-sensitive WT virus with the NA of inhibitor-resistant master donor virus significantly decreased the sensitivity of the resulting reassortant virus to serum heat-stable inhibitors. PMID:25132869

  3. Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1-40 Dimer Structures from Atomistic Simulations.

    PubMed

    Nguyen, Phuong H; Sterpone, Fabio; Campanera, Josep M; Nasica-Labouze, Jessica; Derreumaux, Philippe

    2016-06-15

    The A2V mutation was reported to protect from Alzheimer's disease in its heterozygous form and cause an early Alzheimer's disease type dementia in its homozygous form. Experiments showed that the aggregation rate follows the order A2V > WT (wild-type) > A2V-WT. To understand the impact of this mutation, we carried out replica exchange molecular dynamics simulations of Aβ1-40 WT-A2V and A2V-A2V dimers and compared to the WT dimer. Our atomistic simulations reveal that the mean secondary structure remains constant, but there are substantial differences in the intramolecular and intermolecular conformations upon single and double A2V mutation. Upon single mutation, the intrinsic disorder is reduced, the intermolecular potential energies are reduced, the population of intramolecular three-stranded β-sheets is increased, and the number of all α dimer topologies is decreased. Taken together, these results offer an explanation for the reduced aggregation rate of the Aβ1-40 A2V-WT peptides and the protective effect of A2V in heterozygotes.

  4. Lipid biosensor interactions with wild type and matrix deletion HIV-1 Gag proteins.

    PubMed

    Barklis, Eric; Staubus, August O; Mack, Andrew; Harper, Logan; Barklis, Robin Lid; Alfadhli, Ayna

    2018-05-01

    The matrix (MA) domain of the HIV-1 precursor Gag protein (PrGag) has been shown interact with the HIV-1 envelope (Env) protein, and to direct PrGag proteins to plasma membrane (PM) assembly sites by virtue of its affinity to phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2). Unexpectedly, HIV-1 viruses with large MA deletions (ΔMA) have been shown to be conditionally infectious as long as they are matched with Env truncation mutant proteins or alternative viral glycoproteins. To characterize the interactions of wild type (WT) and ΔMA Gag proteins with PI(4,5)P2 and other acidic phospholipids, we have employed a set of lipid biosensors as probes. Our investigations showed marked differences in WT and ΔMA Gag colocalization with biosensors, effects on biosensor release, and association of biosensors with virus-like particles. These results demonstrate an alternative approach to the analysis of viral protein-lipid associations, and provide new data as to the lipid compositions of HIV-1 assembly sites. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Synthesis, Biological Activity, and Crystal Structure of Potent Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase That Retain Activity against Mutant Forms of the Enzyme†

    PubMed Central

    Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.

    2010-01-01

    In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538

  6. Rootcap structure in wild type and in a starchless mutant of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kiss, J. Z.

    1989-01-01

    Rootcaps of the wild type (WT) and of a starchless, gravitropic mutant (TC7) of Arabidopsis thaliana L. were examined by electron microscopy to identify cellular polarities with respect to gravity. In columella cells, nuclei are located proximally, and the nuclear envelope is continuous with endoplasmic reticulum (ER) that is in turn connected to nearby plasmodesmata. Impregnation of ER with osmium ferricyanide revealed numerous contacts between columella plastids and ER in both genotypes. ER is present mostly in the outer regions of the columella protoplast except in older columella cells that are developing into peripheral cells. In vertical roots, only columella cells that are intermediate in development (story 2 cells) have a higher surface density (S) of ER in the distal compared to proximal regions of the cell. The distal but not the proximal S of the ER is constant throughout columella development. Plastids are less sedimented in TC7 columella cells compared to those of the WT. It is hypothesized that plastid contact with the ER plays a role in gravity perception in both genotypes.

  7. Staurosporine scaffold-based rational discovery of the wild-type sparing reversible inhibitors of EGFR T790M gatekeeper mutant in lung cancer with analog-sensitive kinase technology.

    PubMed

    Song, Xiaoyun; Liu, Xingcai; Ding, Xi

    2017-04-01

    The human epidermal growth factor receptor (EGFR) has been established as an attractive target for lung cancer therapy. However, an acquired EGFR T790M gatekeeper mutation is frequently observed in patients treated with first-line anticancer agents such as gefitinib and erlotinib to cause drug resistance, largely limiting the application of small-molecule kinase inhibitors in EGFR-targeted chemotherapy. Previously, the reversible pan-kinase inhibitor staurosporine and its several analogs such as Gö6976 and K252a have been reported to selectively inhibit the EGFR T790M mutant (EGFR T790M ) over wild-type kinase (EGFR WT ), suggesting that the staurosporine scaffold is potentially to develop the wild-type sparing reversible inhibitors of EGFR T790M . Here, we systematically evaluated the inhibitor response of 28 staurosporine scaffold-based compounds to EGFR T790M mutation at structural, energetic, and molecular levels by using an integrated in silico-in vitro analog-sensitive (AS) kinase technology. With the strategy, we were able to identify 4 novel wild-type sparing inhibitors UCN-01, UCN-02, AFN941, and SB-218078 with high or moderate selectivity of 30-, 45-, 5-, and 8-fold for EGFR T790M over EGFR WT , respectively, which are comparable with or even better than that of the parent compound staurosporine (24-fold). Molecular modeling and structural analysis revealed that van der Waals contacts and hydrophobic forces can form between the side chain of mutated residue Met790 and the pyrrolidinone moiety of inhibitor ligand UCN-02, which may simultaneously improve the favorable interaction energy between the kinase and inhibitor, and reduce the unfavorable desolvation penalty upon the kinase-inhibitor binding. A hydroxyl group of UCN-02 additional to staurosporine locates at the pyrrolidinone moiety, which can largely alter the electronic distribution of pyrrolidinone moiety and thus promote the intermolecular interaction with Met790 residue. This can well explain the measured higher selectivity of UCN-02 than staurosporine for mutant over wild-type kinase. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The SBP-Box Gene VpSBP11 from Chinese Wild Vitis Is Involved in Floral Transition and Affects Leaf Development.

    PubMed

    Hou, Hongmin; Yan, Xiaoxiao; Sha, Ting; Yan, Qin; Wang, Xiping

    2017-07-13

    Flowering occurs in angiosperms during a major developmental transition from vegetative growth to the reproductive phase. Squamosa promoter binding protein (SBP)-box genes have been found to play critical roles in regulating flower and fruit development, but their roles in grapevine have remained unclear. To better understand the functions of the grape SBP-box genes in both vegetative and reproductive growth phases, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP11 , was obtained from Chinese wild grapevine Vitis pseudoreticulata Wen Tsai Wang (W. T. Wang) clone 'Baihe-35-1'. VpSBP11 encoded a putative polypeptide of 170 amino acids with a highly conserved SBP-domain with two zinc-binding sites of the Cx2C-x3-H-x11-C-x6-H (C2HCH) type and a nuclear localization signal. We confirmed that the VpSBP11 protein was targeted to the nucleus and possessed transcriptional activation activity by subcellular localization and trans -activation assay. Over-expression of VpSBP11 in Arabidopsis thaliana was shown to activate the FUL gene, and subsequently the AP1 and LFY genes, all of which were floral meristem identity genes, and to cause earlier flowering than in wild type (WT) plants. The pattern of vegetative growth was also different between the transgenic and WT plants. For example, in the VpSBP11 over-expressing transgenic plants, the number of rosette leaves was less than that of WT; the petiole was significantly elongated; and the rosette and cauline leaves curled upwards or downwards. These results were consistent with VpSBP11 acting as a transcription factor during the transition from the vegetative stage to the reproductive stage.

  9. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis

    PubMed Central

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi

    2011-01-01

    Background. In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Methods. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). Results. The urinary protein level in Tg mice decreased significantly during the acute phase (∼Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with vascular thrombosis in WT mice. The glomerular damage in Tg mice was improved by administration of an ARB. Conclusions. The present experimental model suggests that tubular enhancement of L-FABP may protect mice with anti-GBM GN from progression of both tubulointerstitial and glomerular injury. PMID:21525165

  10. Fluorescence In Situ Hybridization and Immunohistochemistry as Diagnostic Methods for ALK Positive Non-Small Cell Lung Cancer Patients

    PubMed Central

    Martinez, Pablo; Hernández-Losa, Javier; Cedrés, Susana; Castellví, Josep; Martinez-Marti, Alex; Tallada, Natalia; Murtra-Garrell, Nuria; Navarro-Mendivill, Alejandro; Rodriguez-Freixinos, Victor; Canela, Mercedes; Ramon y Cajal, Santiago; Felip, Enriqueta

    2013-01-01

    Background Anaplastic Lymphoma Kinase (ALK) positivity represents a novel molecular target in a subset of Non-Small Cell Lung Cancers (NSCLC). We explore Fluorescence in situ Hybridization (FISH) and Immunohistochemistry (IHC) as diagnostic methods for ALK positive patients and to describe its prevalence and outcomes in a population of NSCLC patients. Methods NSCLC patients previously screened for Epidermal Growth Factor Receptor (EGFR) at our institution were selected. ALK positive patients were identified by FISH and the value of IHC (D5F3) was explored. Results ninety-nine patients were identified. Median age was 61.5 years (range 35–83), all were caucasians, eighty percent were adenocarcinomas, fifty-one percent were male and thirty-eight percent were current smokers. Seven (7.1%) patients were ALK positive by FISH, thirteen (13.1%) were EGFR mutant, and 65 (65.6%) were negative/Wild Type (WT) for both ALK and EGFR. ALK positivity and EGFR mutations were mutually exclusive. ALK positive patients tend to be younger than EGFR mutated or wt patients. ALK positive patients were predominantly never smokers (71.4%) and adenocarcinoma (71.4%). ALK positive and EGFR mutant patients have a better outcome than negative/WT. All patients with ALK FISH negative tumours were negative for ALK IHC. Out of 6 patients positive for ALK FISH with more tissue available, 5 were positive for ALK IHC and 1 negative. Conclusions ALK positive patients represent 7.1% of a population of selected NSCLC. ALK positive patients have different clinical features and a better outcome than EGFR WT and ALK negative patients. IHC is a promising method for detecting ALK positive NSCLC patients. PMID:23359795

  11. Preparation of Graphene Oxide and Its Mechanism in Promoting Tomato Roots Growth.

    PubMed

    Jiao, Jingzhi; Cheng, Fan; Zhang, Xuekun; Xie, Lingli; Li, Zhiyang; Yuan, Chengfei; Xu, Benbo; Zhang, Liming

    2016-04-01

    Graphene oxide is a new kind of nanomaterial. The graphene oxide was prepared and its quality detected by atomic force microscopy (AFM) and transmission electron microscopy (TEM), for better understanding of effects of the nanomaterial on plants. Wild type. (WT) tomato (Solanum lycopersicum) germplasm 'New Yorker' and corresponding transgenic plants (Prd29A::LeNCED1) were treated with prepared graphene oxide. 9-cis-epoxycarotenoid dioxygenase (NCED) is a key gene for ABA biosynthesis and overexpression of the NCED resulted in ABA accumulation and higher drought tolerance. Seminal root length in the WT tomato was longer than that in the control samples when the seedlings were treated with 20 mg/L graphene oxide for 15 days. In contrast, the same treatment resulted in shorter seminal root length in the transgenic plants compared with control samples. The graphene oxide treatments led to lower Superoxide Dismutase (SOD), Peroxidase (POD), Catalase (CAT) activity and Malondialdehyde (MDA) content in the WT and transgenic plants. 20 mg/L graphene oxide treatment also affected the transcript levels of IAA7, IAA4 and IAA10 but the effect on the wild type and corresponding transgenic plants was different. IAA4 transcription level decreased both in the WT and Prd29A::LeNCED1 transgenic plants while the IAA7 transcription level decreased in the transgenic plants and increased in the WT tomato. The IAA10 transcription level decreased in the WT tomato and increased in the Prd29A::LeNCED1 transgenic plants. Graphene oxide treatments resulted in higher transcription level of ABCG25 and ABCG40 in the WT plants but had no significant effect on transgenic plants. The transcription level of NCED in the WT and Prd29A::LeNCED1 transgenic plants treated with graphene oxide increased significantly, however, it was higher in the transgenic plants than in the WT tomato after 15 d treatment, indicating that the graphene oxide activated the rd29A promoter as does drought and salt. The HD-ZIP transcription level only decreased significantly in the treated Prd29A::LeNCED1 transgenic plants. All these results suggested that there was a crosstalk between ABA and graphene oxide and the graphene oxide affected plant growth through the ABA and IAA pathway.

  12. Interleukin-12- and interferon-γ-mediated natural killer cell activation by Agaricus blazei Murill

    PubMed Central

    Yuminamochi, Eri; Koike, Taisuke; Takeda, Kazuyoshi; Horiuchi, Isao; Okumura, Ko

    2007-01-01

    Dried fruiting bodies of Agaricus blazei Murill (A. blazei) and its extracts have generally used as complementary and alternative medicines (CAMs). Here, we report that the oral administration of A. blazei augmented cytotoxicity of natural killer (NK) cells in wild-type (WT) C57BL/6, C3H/HeJ, and BALB/c mice. Augmented cytotoxicity was demonstrated by purified NK cells from treated wild-type (WT) and RAG-2-deficient mice, but not from interferon-γ (IFN-γ) deficient mice. NK cell activation and IFN-γ production was also observed in vitro when dendritic cell (DC)-rich splenocytes of WT mice were coincubation with an extract of A. blazei. Both parameters were largely inhibited by neutralizing anti-interleukin-12 (IL-12) monoclonal antibody (mAb) and completely inhibited when anti-IL-12 mAb and anti-IL-18 mAb were used in combination. An aqueous extract of the hemicellulase-digested compound of A. blazei particle; (ABPC) induced IFN-γ production more effectively, and this was completely inhibited by anti-IL-12 mAb alone. NK cell cytotoxicty was augmented with the same extracts, again in an IL-12 and IFN-γ-dependent manner. These results clearly demonstrated that A. blazei and ABPC augmented NK cell activation through IL-12-mediated IFN-γ production. PMID:17346284

  13. Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability.

    PubMed

    Denisenko, Yury A; Gusakov, Alexander V; Rozhkova, Aleksandra M; Osipov, Dmitry O; Zorov, Ivan N; Matys, Veronika Yu; Uporov, Igor V; Sinitsyn, Arkady P

    2017-11-01

    In order to investigate factors affecting the thermostability of GH10 xylanase A from Penicillium canescens (PcXylA) and to obtain its more stable variant, the wild-type (wt) enzyme and its mutant forms, carrying single amino acid substitutions, were cloned and expressed in Penicillium verruculosum B1-537 (niaD-) auxotrophic strain under the control of the cbh1 gene promoter. The recombinant PcXylA-wt and I6V, I6L, L18F, N77D, Y125R, H191R, S246P, A293P mutants were successfully expressed and purified for characterization. The mutations did not affect the enzyme specific activity against xylan from wheat as well as its pH-optimum of activity. One mutant (L18F) displayed a higher thermostability relative to the wild-type enzyme; its half-life time at 50-60°C was 2-2.5-fold longer than that for the PcXylA-wt, and the melting temperature was 60.0 and 56.1°C, respectively. Most of other mutations led to decrease in the enzyme thermostability. This study, together with data of other researchers, suggests that multiple mutations should be introduced into GH10 xylanases in order to dramatically improve their stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Competition-based phenotyping reveals a fitness cost for maintaining phycobilisomes under fluctuating light in the cyanobacterium Fremyella diplosiphon

    DOE PAGES

    Agostoni, Marco; Lucker, Ben F.; Smith, Matthew A. Y.; ...

    2016-02-21

    Phycobilisomes (PBSs) are pigment-rich super-complexes required for efficient harvest and transfer of light energy to photosynthetic reaction centers of cyanobacteria. The model cyanobacterium Fremyella diplosiphon is able to adjust PBS pigmentation and size in response to the prevailing light spectrum through a process called complementary chromatic acclimation to optimize spectral light absorption, concomitantly optimizing photosynthesis and growth. We explored the fitness costs versus advantages of modulating antennae size and composition under sinusoidal continuous and fluctuating light conditions in F. diplosiphon by comparing growth of wild-type (WT) cells with a mutant strain deficient in PBSs in both monoculture and polyculture conditions.more » Comparative analyses of WT and the PBS-deficient FdCh1 strain under continuous vs. fluctuating sinusoidal light suggest a potential fitness advantage for maintaining PBSs in WT cells during continuous light and a fitness cost during transitions to and acclimation under fluctuating light. Here, we explored the physiological changes correlated with the observed differential growth to understand the dynamics and biochemical bases of comparative fitness of distinct strains under defined growth conditions. Wild-type F. diplosiphon appears to accumulate longer PBS rods and exhibits higher oxidative stress under fluctuating light conditions than continuous sinusoidal light, which may impact responses and the fitness of cells that do not adapt to rapid changes in external light.« less

  15. Kinetic and CD/MCD spectroscopic studies of the atypical, three-His-ligated, non-heme Fe2+ center in diketone dioxygenase: the role of hydrophilic outer shell residues in catalysis.

    PubMed

    Straganz, Grit D; Diebold, Adrienne R; Egger, Sigrid; Nidetzky, Bernd; Solomon, Edward I

    2010-02-09

    Diketone cleaving enzyme (Dke1) is a dioxygenase with an atypical, three-histidine-ligated, mononuclear non-heme Fe(2+) center. To assess the role in enzyme catalysis of the hydrophilic residues in the active site pocket, residues Glu98, Arg80, Tyr70, and Thr107 were subjected to mutational analysis. Steady state and pre-steady state kinetics indicated a role for Glu98 in promoting both substrate binding and O(2) reduction. Additionally, the Glu98 substitution eliminated the pH dependence of substrate binding (k(cat)(app)/K(M)(app)-pH profile) present in wild-type Dke1 (pK(a) = 6.3 +/- 0.4 and 8.4 +/- 0.4). MCD spectroscopy revealed that the Glu98 --> Gln mutation leads to the conversion of the six-coordinate (6C) resting Fe(2+) center present in the wild-type enzyme at pH 7.0 to a mixture of five-coordinate (5C) and 6C sites. The 6C geometry was restored with a pH shift to 9.5 which also resulted in ligand field (LF) energy splittings identical to that found for wild-type (WT) Dke1 at pH 9.5. In WT Dke1, these LF transitions are shifted up in energy by approximately 300 cm(-1) at pH 9.5 relative to pH 7.0. These data, combined with CD pH titrations which reveal a pK(a) of approximately 8.2 for resting WT Dke1 and the Glu98 --> Gln variant, indicate the deprotonation of a metal-ligated water. Together, the kinetic and spectroscopic data reveal a stabilizing effect of Glu98 on the 6C geometry of the metal center, priming it for substrate ligation. Arg80 and Tyr70 are shown to promote O(2) reduction, while Thr107 stabilizes the Fe(II) cofactor.

  16. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller-Pinsler, Lutfiya; Wells, Peter G., E-mail: pg.wells@utoronto.ca; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated formore » functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • EtOH developmental toxicity involves reactive oxygen species formation.« less

  17. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

  18. Profiling of the Terpene Metabolome in Carrot Fruits of Wild ( Daucus carota L. ssp. carota) Accessions and Characterization of a Geraniol Synthase.

    PubMed

    Yahyaa, Mosaab; Ibdah, Muhammad; Marzouk, Sally; Ibdah, Mwafaq

    2018-03-14

    Fruits from wild carrot ( Daucus carota L. ssp. carota) have been used for medicinal purposes since ancient times. The oil of its seeds, with their abundant monoterpenes and sesquiterpenes, has drawn attention in recent years because of its potential pharmaceutical application. A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of terpene volatiles in carrot fruits of wild accessions. This work reports a similarity-based cloning strategy identification and functional characterization of one carrot monoterpene terpene synthase, WtDcTPS1. Recombinant WtDcTPS1 protein produces mainly geraniol, the predominant monoterpene in carrot seeds of wild accession 23727. The results suggest a role for the WtDcTPS1 gene in the biosynthesis of carrot fruit aroma and flavor compounds.

  19. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model

    PubMed Central

    Mensah, Solomon; Hirshberg, Carly; Tarbell, John M.

    2016-01-01

    Background and aims Previous experiments suggest that both increased endothelial cell apoptosis and endothelial surface glycocalyx shedding could play a role in the endothelial dysfunction and inflammation of athero-prone regions of the vasculature. We sought to elucidate the possibly synergistic mechanisms by which endothelial cell apoptosis and glycocalyx shedding promote atherogenesis. Methods 4- to 6-week old male C57Bl/6 apolipoprotein E knockout (ApoE−/−) mice were fed a Western diet for 10 weeks and developed plaques in their brachiocephalic arteries. Results Glycocalyx coverage and thickness were significantly reduced over the plaque region compared to the non-plaque region (coverage plaque: 71±23%, non-plaque: 97±3%, p= 0.02; thickness plaque: 0.85±0.15 μm, non-plaque: 1.2±0.21 μm, p= 0.006). Values in the non-plaque region were not different from those found in wild type mice fed a normal diet (coverage WT: 92±3%, p= 0.7 vs. non-plaque ApoE−/−, thickness WT: 1.1±0.06 μm, p= 0.2 vs. non-plaque ApoE−/−). Endothelial cell apoptosis was significantly increased in ApoE−/− mice compared to wild type mice (ApoE−/− :64.3±33.0, WT: 1.1±0.5 TUNEL-pos/cm, p= 2×10−7). The number of apoptotic endothelial cells per unit length was 2 times higher in the plaque region than in the non-plaque region of the same vessel (p= 3×10−5). Increased expression of matrix metalloproteinase 9 co-localized with glycocalyx shedding and plaque buildup. Conclusions Our results suggest that, in concert with endothelial apoptosis that increases lipid permeability, glycocalyx shedding initiated by inflammation facilitates monocyte adhesion and macrophage infiltration that promote lipid retention and the development of atherosclerotic plaques. PMID:27529818

  20. Comparison of Toxic Metal Distribution Characteristics and Health Risk between Cultured and Wild Fish Captured from Honghu City, China.

    PubMed

    Zhang, Jingdong; Zhu, Liyun; Li, Fei; Liu, Chaoyang; Qiu, Zhenzhen; Xiao, Minsi; Cai, Ying

    2018-02-14

    Honghu Lake, which listed in the "Ramsar Convention", is the seventh largest freshwater lake in China and is regarded as one of the biggest freshwater product output areas in China. The toxic element distribution in cultured and wild fish and the corresponding health risks through fish consumption from Honghu area were investigated. The mean concentration in the muscle of cultured and wild fish ( Carassius auratus and Ctenopharyngodon idellus ) decreased in the order: Zn (18.94) > Cu (0.8489) > Cr (0.2840) > Pb (0.2052) and Zn (16.30) > Cr (1.947) > Cu (0.4166) > Pb (0.0525) > Cd (0.0060) (mean; mg/kg, wet weight). Scales (Multi factor pollution index (MPI) = 3.342) and the liver (MPI = 1.276) were regarded as the main accumulation tissues for cultured fish, and the bladder (MPI = 0.640) and intestine (MPI = 0.477) were regarded as the main accumulation tissues for wild fish. There were no obvious health risks associated with the consumption of cultured and wild fish based on the calculated results of the target hazard quotient (THQ), carcinogenic risk (CR), and estimated weekly intake (EWI). Pb and Cr were recognized as the major health risk contributors for inhabitants through wild and cultured fish consumption. Cultured fish had a greater health risk than wild fish based on the calculation results of THQ and CR. Muscle consumption resulted in more health risks than mixed edible tissues for cultured fish, but for wild fish, the conclusion was the opposite. Mixed fish (cultured:wild = 1:1) muscle consumption had relatively lower risks than the consumption of cultured or wild fish muscle separately. Consuming no more than 465 g/day (wet wt) of cultured fish muscle, 68 g/day (wet wt) of wild fish muscle, 452 g/day (wet wt) of mixed cultured fish edible tissues or 186 g/day (wet wt) of mixed wild fish edible tissues from the Honghu area can assure human health.

  1. Toll-like Receptor 4 Mediates Fat, Sugar and Umami Taste Preference, and Food Intake and Body Weight Regulation

    PubMed Central

    Camandola, Simonetta; Mattson, Mark P.

    2017-01-01

    Objective Immune and inflammatory pathways play important roles in the pathogenesis of metabolic disorders. In the present study we investigate the role of TLR4 in orosensory detection of dietary lipids and sugars. Methods Taste preferences of TLR4 knockout (KO) and wild type (WT) male mice under standard, and high fat and high sugar diets were assessed with 2-bottle tests. Gene expression of taste signaling molecules was analyzed in the tongue epithelium The role of TLR4 in food intake, and weigh gain was investigated in TLR4 KO and WT mice fed a high fat and high sugar diet for 12 weeks. Results Compared to WT mice TLR4 KO mice showed reduced preference for lipids, sugars, and umami in 2-bottle preference test. The altered taste perception was associated with decreased levels of key taste regulatory molecules in the tongue epithelium. TLR4 KO mice on a high fat and high sugar diet consumed less food and drink, resulting in diminished weight gain. Conclusions TLR4 signaling promotes ingestion of sugar and fat by a mechanism involving increased preference for such obesogenic foods. PMID:28500692

  2. Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: Molecular simulation approaches

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Nguyen, Hoang Linh; Linh, Huynh Quang; Nguyen, Minh Tho

    2018-01-01

    The steered molecular dynamics (SMD), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and free energy perturbation (FEP) methods were used to determine the binding affinity of the L-742,001 inhibitor to the endonuclease domain of the A/H1N1/PA influenza viruses (including wild type (WT) and three mutations I79L, E119D and F105S for both pH1N1 PA and PR8 PA viruses). Calculated results showed that the L-742,001 inhibitor not only binds to the PR8 PAs (1934 A influenza virus) better than to the pH1N1 PAs (2009 A influenza virus) but also more strongly interacts with the WT endonuclease domain than with three mutant variants for both pH1N1 PA and PR8 PA viruses. The binding affinities obtained by the SMD, MM-PBSA and FEP methods attain high correlation with available experimental data. Here the FEP method appears to provide a more accurate determination of the binding affinity than the SMD and MM-PBSA counterparts.

  3. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  4. Tissue-Specific Reduction in Splicing Efficiency of IKBKAP Due to the Major Mutation Associated with Familial Dysautonomia

    PubMed Central

    Cuajungco, Math P.; Leyne, Maire; Mull, James; Gill, Sandra P.; Lu, Weining; Zagzag, David; Axelrod, Felicia B.; Maayan, Channa; Gusella, James F.; Slaugenhaupt, Susan A.

    2003-01-01

    We recently identified a mutation in the I-κB kinase associated protein (IKBKAP) gene as the major cause of familial dysautonomia (FD), a recessive sensory and autonomic neuropathy. This alteration, located at base pair 6 of the intron 20 donor splice site, is present on >99.5% of FD chromosomes and results in tissue-specific skipping of exon 20. A second FD mutation, a missense change in exon 19 (R696P), was seen in only four patients heterozygous for the major mutation. Here, we have further characterized the consequences of the major mutation by examining the ratio of wild-type to mutant (WT:MU) IKBKAP transcript in EBV-transformed lymphoblast lines, primary fibroblasts, freshly collected blood samples, and postmortem tissues from patients with FD. We consistently found that WT IKBKAP transcripts were present, albeit to varying extents, in all cell lines, blood, and postmortem FD tissues. Further, a corresponding decrease in the level of WT protein is seen in FD cell lines and tissues. The WT:MU ratio in cultured lymphoblasts varied with growth phase but not with serum concentration or inclusion of antibiotics. Using both densitometry and real-time quantitative polymerase chain reaction, we found that relative WT:MU IKBKAP RNA levels were highest in cultured patient lymphoblasts and lowest in postmortem central and peripheral nervous tissues. These observations suggest that the relative inefficiency of WT IKBKAP mRNA production from the mutant alleles in the nervous system underlies the selective degeneration of sensory and autonomic neurons in FD.Therefore, exploration of methods to increase the WT:MU IKBKAP transcript ratio in the nervous system offers a promising approach for developing an effective therapy for patients with FD. PMID:12577200

  5. FGFR3 Heterodimerization in Achondroplasia, the Most Common Form of Human Dwarfism*

    PubMed Central

    He, Lijuan; Shobnam, Nadia; Wimley, William C.; Hristova, Kalina

    2011-01-01

    The G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) causes achondroplasia, the most common form of human dwarfism. Achondroplasia is a heterozygous disorder, and thus the affected individuals express both wild-type and mutant FGFR3. Yet heterodimerization in achondroplasia has not been characterized thus far. To investigate the formation of FGFR3 heterodimers in cellular membranes, we designed an FGFR3 construct that lacks the kinase domain, and we monitored the formation of inactive heterodimers between this construct and wild-type and mutant FGFR3. The formation of the inactive heterodimers depleted the pool of full-length receptors capable of forming active homodimers and ultimately reduced their phosphorylation. By analyzing the effect of the truncated FGFR3 on full-length receptor phosphorylation, we demonstrated that FGFR3 WT/G380R heterodimers form with lower probability than wild-type FGFR3 homodimers at low ligand concentration. These results further our knowledge of FGFR3-associated bone disorders. PMID:21324899

  6. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network.

    PubMed

    Schiekofer, Stephan; Galasso, Gennaro; Sato, Kaori; Kraus, Benjamin J; Walsh, Kenneth

    2005-08-01

    Diabetes is a risk factor for the development of cardiovascular diseases associated with impaired angiogenesis or increased endothelial cell apoptosis. Here it is shown that angiogenic repair of ischemic hindlimbs was impaired in Lepr(db/db) mice, a leptin receptor-deficient model of diabetes, compared with wild-type (WT) C57BL/6 mice, as evaluated by laser Doppler flow and capillary density analyses. To identify molecular targets associated with this disease process, hindlimb cDNA expression profiles were created from adductor muscle of Lepr(db/db) and WT mice before and after hindlimb ischemia using Affymetrix GeneChip Mouse Expression Set microarrays. The expression patterns of numerous angiogenesis-related proteins were altered in Lepr(db/db) versus WT mice after ischemic injury. These transcripts included neuropilin-1, vascular endothelial growth factor-A, placental growth factor, elastin, and matrix metalloproteinases implicated in blood vessel growth and maintenance of vessel wall integrity. These data illustrate that impaired ischemia-induced neovascularization in type 2 diabetes is associated with the dysregulation of a complex angiogenesis-regulatory network.

  7. HSP27 Alleviates Cardiac Aging in Mice via a Mechanism Involving Antioxidation and Mitophagy Activation.

    PubMed

    Lin, Shenglan; Wang, Yana; Zhang, Xiaojin; Kong, Qiuyue; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian; Liu, Li

    2016-01-01

    Aging-induced cardiac dysfunction is a prominent feature of cardiac aging. Heat shock protein 27 (HSP27) protects cardiac function against ischemia or chemical challenge. We hypothesized that HSP27 attenuates cardiac aging. Transgenic (Tg) mice with cardiac-specific expression of the HSP27 gene and wild-type (WT) littermates were employed in the experiments. Echocardiography revealed a significant decline in the cardiac function of old WT mice compared with young WT mice. In striking contrast, the aging-induced impairment of cardiac function was attenuated in old Tg mice compared with old WT mice. Levels of cardiac aging markers were lower in old Tg mouse hearts than in old WT mouse hearts. Less interstitial fibrosis and lower contents of reactive oxygen species and ubiquitin-conjugated proteins were detected in old Tg hearts than in old WT hearts. Furthermore, old Tg hearts demonstrated lower accumulation of LC3-II and p62 than old WT hearts. Levels of Atg13, Vps34, and Rab7 were also higher in old Tg hearts than in old WT hearts. Additionally, old Tg hearts had higher levels of PINK1 and Parkin than old WT hearts, suggesting that mitophagy was activated in old Tg hearts. Taken together, HSP27 alleviated cardiac aging and this action involved antioxidation and mitophagy activation.

  8. Live Cell Imaging Reveals Differential Modifications to Cytoplasmic Dynein Properties by Phospho- and Dephospho-mimic Mutations of the Intermediate Chain 2C S84

    PubMed Central

    Blasier, Kiev R.; Humsi, Michael K.; Ha, Junghoon; Ross, Mitchell W.; Smiley, W. Russell; Inamdar, Nirja A.; Mitchell, David J.; Lo, Kevin W.-H.; Pfister, K. Kevin

    2014-01-01

    Cytoplasmic dynein is a multi-subunit motor protein responsible for intracellular cargo transport toward microtubule minus ends. There are multiple isoforms of the dynein intermediate chain (DYNC1I, IC) which is encoded by two genes. One way to regulate cytoplasmic dynein is by IC phosphorylation. The IC-2C isoform is expressed in all cells and the functional significance of phosphorylation on IC-2C serine 84 was investigated using live cell imaging of fluorescent protein-tagged wild type IC-2C (WT) and phospho- and dephospho-mimic mutant isoforms in axonal transport model systems. Both mutations modulated dynein functional properties. The dephospho-mimic mutant IC-2C S84A had greater co-localization with mitochondria than IC-2C wild-type (WT) or the phospho-mimic mutant IC-2C S84D. The dephospho-mimic mutant IC-2C S84A was also more likely to be motile than the phospho-mimic mutant IC-2C S84D or IC-2C WT. In contrast, the phospho-mimic mutant IC-2C S84D mutant was more likely to move in the retrograde direction than was the IC-2C S84A mutant. The phospho-mimic IC-2C S84D was also as likely as IC-2C WT to co-localize with mitochondria. Both the S84D phospho- and S84A, dephospho-mimic mutants were found to be capable of microtubule minus end directed (retrograde) movement in axons. They were also observed to be passively transported in the anterograde direction. These data suggest that the IC-2C S84 has a role in modulating dynein properties. PMID:24798412

  9. Cost-minimization analysis of panitumumab compared with cetuximab for first-line treatment of patients with wild-type RAS metastatic colorectal cancer.

    PubMed

    Graham, Christopher N; Hechmati, Guy; Fakih, Marwan G; Knox, Hediyyih N; Maglinte, Gregory A; Hjelmgren, Jonas; Barber, Beth; Schwartzberg, Lee S

    2015-01-01

    To compare the costs of first-line treatment with panitumumab + FOLFOX in comparison to cetuximab + FOLFIRI among patients with wild-type (WT) RAS metastatic colorectal cancer (mCRC) in the US. A cost-minimization model was developed assuming similar treatment efficacy between both regimens. The model estimated the costs associated with drug acquisition, treatment administration frequency (every 2 weeks for panitumumab, weekly for cetuximab), and incidence of infusion reactions. Average anti-EGFR doses were calculated from the ASPECCT clinical trial, and average doses of chemotherapy regimens were based on product labels. Using the medical component of the consumer price index, adverse event costs were inflated to 2014 US dollars, and all other costs were reported in 2014 US dollars. The time horizon for the model was based on average first-line progression-free survival of a WT RAS patient, estimated from parametric survival analyses of PRIME clinical trial data. Relative to cetuximab + FOLFIRI in the first-line treatment of WT RAS mCRC, the cost-minimization model demonstrated lower projected drug acquisition, administration, and adverse event costs for patients who received panitumumab + FOLFOX. The overall cost per patient for first-line treatment was $179,219 for panitumumab + FOLFOX vs $202,344 for cetuximab + FOLFIRI, resulting in a per-patient saving of $23,125 (11.4%) in favor of panitumumab + FOLFOX. From a value perspective, the cost-minimization model supports panitumumab + FOLFOX instead of cetuximab + FOLFIRI as the preferred first-line treatment of WT RAS mCRC patients requiring systemic therapy.

  10. Temporal Resolution of Autophosphorylation for Normal and Oncogenic Forms of EGFR and Differential Effects of Gefitinib†

    PubMed Central

    Kim, Youngjoo; Li, Zhimin; Apetri, Mihaela; Luo, BeiBei; Settleman, Jeffrey E.; Anderson, Karen S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases (RTK). EGFR overexpression or mutation in many different forms of cancers has highlighted its role as an important therapeutic target. Gefitinib, the first small molecule inhibitor of EGFR kinase function to be approved for the treatment of non-small cell lung cancer (NSCLC) by the FDA, demonstrates clinical activity primarily in patients with tumors that harbor somatic kinase domain mutations in EGFR. Here, we compare wild-type EGFR autophosphorylation kinetics to the L834R (also called L858R) EGFR form, one of the most common mutations in lung cancer patients. Using rapid chemical quench, time resolved electrospray mass spectrometry (ESI-MS) and western blot analyses, we examined the order of autophosphorylation in wild-type (WT) and L834R EGFR and the effect of gefitinib (Iressa ™) on the phosphorylation of individual tyrosines. These studies establish that there is a temporal order of autophosphorylation of key tyrosines involved in downstream signaling for WT EGFR and a loss of order for the oncogenic L834R mutant. These studies also reveal unique signature patterns of drug sensitivity for inhibition of tyrosine autophosphorylation by gefitinib; distinct for WT and oncogenic L834R mutant forms of EGFR. Fluorescence studies show that for WT EGFR, the binding affinity for gefitinib is weaker for the phosphorylated protein while for the oncogenic mutant, L834R EGFR, the binding affinity of gefitinib is substantially enhanced and likely contributes to the efficacy observed clinically. This mechanistic information is important in understanding the molecular details underpinning clinical observations as well as to aid in the design of more potent and selective EGFR inhibitors. PMID:22657099

  11. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status.

    PubMed

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G; Wong, Kwok-Kin; Khuri, Fadlo R; Zhou, Wei; Shin, Dong M

    2017-08-29

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 ( kras G12D/wt /p53 -/- /lkb1 wt/wt ) and t2 ( kras G12D/wt /p53 -/- / lkb1 -/- ) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer.

  12. Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Binmei; Wu, Yuejin; Xu, Xue; Song, M.; Zhao, M.; Fu, X. D.

    2008-04-01

    Dominant Semidwarf mutant rice (Sdd) was obtained from its wild type (WT) by irradiation with a low-energy ion beam. Six tall revertants of Sdd were induced by irradiation. The revertants restored the plant height to that of WT plants. Investigation of the agronomic character and genetic analysis indicate that the revertants are similar to WT plants with putative different inherited mutations. The revertants were checked for DNA differences using the simple sequence repeat technique. Among 408 such primers used, only 2 primers detected mutation sites in the revertants, which provided the molecular evidence for the revertants induced from Sdd. This study indicates that ion irradiation may be used as a mutagen to create revertants for plant architecture studies and could be a new application.

  13. Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples.

    PubMed

    Günthard, H F; Wong, J K; Ignacio, C C; Havlir, D V; Richman, D D

    1998-07-01

    The performance of the high-density oligonucleotide array methodology (GeneChip) in detecting drug resistance mutations in HIV-1 pol was compared with that of automated dideoxynucleotide sequencing (ABI) of clinical samples, viral stocks, and plasmid-derived NL4-3 clones. Sequences from 29 clinical samples (plasma RNA, n = 17; lymph node RNA, n = 5; lymph node DNA, n = 7) from 12 patients, from 6 viral stock RNA samples, and from 13 NL4-3 clones were generated by both methods. Editing was done independently by a different investigator for each method before comparing the sequences. In addition, NL4-3 wild type (WT) and mutants were mixed in varying concentrations and sequenced by both methods. Overall, a concordance of 99.1% was found for a total of 30,865 bases compared. The comparison of clinical samples (plasma RNA and lymph node RNA and DNA) showed a slightly lower match of base calls, 98.8% for 19,831 nucleotides compared (protease region, 99.5%, n = 8272; RT region, 98.3%, n = 11,316), than for viral stocks and NL4-3 clones (protease region, 99.8%; RT region, 99.5%). Artificial mixing experiments showed a bias toward calling wild-type bases by GeneChip. Discordant base calls are most likely due to differential detection of mixtures. The concordance between GeneChip and ABI was high and appeared dependent on the nature of the templates (directly amplified versus cloned) and the complexity of mixes.

  14. Modeling and Validation of the Ecological Behavior of Wild-Type Listeria monocytogenes and Stress-Resistant Variants.

    PubMed

    Metselaar, Karin I; Abee, Tjakko; Zwietering, Marcel H; den Besten, Heidy M W

    2016-09-01

    Listeria monocytogenes exhibits a heterogeneous response upon stress exposure which can be partially attributed to the presence of stable stress-resistant variants. This study aimed to evaluate the impact of the presence of stress-resistant variants of Listeria monocytogenes and their corresponding trade-offs on population composition under different environmental conditions. A set of stress robustness and growth parameters of the wild type (WT) and an rpsU deletion variant was obtained and used to model their growth behavior under combined mild stress conditions and to model their kinetics under single- and mixed-strain conditions in a simulated food chain. Growth predictions for the WT and the rpsU deletion variant matched the experimental data generally well, although some deviations from the predictions were observed. The data highlighted the influence of the environmental conditions on the ratio between the WT and variant. Prediction of performance in the simulated food chain proved to be challenging. The trend of faster growth and lower stress robustness for the WT than for the rpsU variant in the different steps of the chain was confirmed, but especially for the inactivation steps and the time needed to resume growth after an inactivation step, the experimental data deviated from the model predictions. This report provides insights into the conditions which can select for stress-resistant variants in industrial settings and discusses their potential persistence in food processing environments. Listeria monocytogenes exhibits a heterogeneous stress response which can partially be attributed to the presence of genetic variants. These stress-resistant variants survive better under severe conditions but have, on the other hand, a reduced growth rate. To date, the ecological behavior and potential impact of the presence of stress-resistant variants is not fully understood. In this study, we quantitatively assessed growth and inactivation behavior of wild-type L. monocytogenes and its stress-resistant variants. Predictions were validated under different conditions, as well as along a model food chain. This work illustrates the effects of environmental factors on population dynamics of L. monocytogenes and is a first step in evaluating the impact of population diversity on food safety. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Continuous in vivo infusion of interferon-gamma (IFN-γ) enhances engraftment of syngeneic wild-type cells in Fanca–/– and Fancg–/– mice

    PubMed Central

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J.; Critser, John; Arwert, Fre; Haneline, Laura S.; Clapp, D. Wade

    2006-01-01

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc–/– cells to interferon-gamma (IFN-γ), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc–/– mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca–/– and Fancg–/– mice are hypersensitive to IFN-γ and that in vivo infusion of IFN-γ at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-γ conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients. PMID:16946306

  16. Continuous in vivo infusion of interferon-gamma (IFN-gamma) enhances engraftment of syngeneic wild-type cells in Fanca-/- and Fancg-/- mice.

    PubMed

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J; Critser, John; Arwert, Fre; Haneline, Laura S; Clapp, D Wade

    2006-12-15

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc-/- cells to interferon-gamma (IFN-gamma), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc-/- mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca-/- and Fancg-/- mice are hypersensitive to IFN-gamma and that in vivo infusion of IFN-gamma at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-gamma conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients.

  17. Latency of Varicella Zoster Virus in Dorsal Root, Cranial, and Enteric Ganglia in Vaccinated Children

    PubMed Central

    Gershon, Anne A.; Chen, Jason; Davis, Larry; Krinsky, Clarissa; Cowles, Robert; Reichard, Ross; Gershon, Michael

    2012-01-01

    Despite vaccination, varicella-zoster virus (VZV) remains an important pathogen. We investigated VZV latency in autopsy specimens from vaccinees, in gastrointestinal tissue removed surgically, and in a guinea pig model. We propose that retrograde transport from infected skin and viremia deliver VZV to neurons in which it becomes latent. Wild type (WT) VZV was found to be latent in many ganglia of vaccinated children with no history of varicella, suggesting that subclinical infection with WT-VZV occurs with subsequent viremic dissemination. The 30% to 40% rate of WT-VZV zoster reported in vaccinees and occasional trigeminal zoster due to vaccine type VZV (vOka) are consistent with viremic delivery of VZV to multiple ganglia. Most human intestinal specimens contained latent VZV within neurons of the enteric nervous system (ENS). Induction of viremia in guinea pigs led to VZV latency throughout the ENS. The possibility VZV reactivation in the ENS is an unsuspected cause of gastrointestinal disease requires future investigation. PMID:23303966

  18. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice.

    PubMed

    Garcia, J P; Adams, V; Beingesser, J; Hughes, M L; Poon, R; Lyras, D; Hill, A; McClane, B A; Rood, J I; Uzal, F A

    2013-07-01

    Clostridium perfringens type D causes disease in sheep, goats, and other ruminants. Type D isolates produce, at minimum, alpha and epsilon (ETX) toxins, but some express up to five different toxins, raising questions about which toxins are necessary for the virulence of these bacteria. We evaluated the contribution of ETX to C. perfringens type D pathogenicity in an intraduodenal challenge model in sheep, goats, and mice using a virulent C. perfringens type D wild-type strain (WT), an isogenic ETX null mutant (etx mutant), and a strain where the etx mutation has been reversed (etx complemented). All sheep and goats, and most mice, challenged with the WT isolate developed acute clinical disease followed by death in most cases. Sheep developed various gross and/or histological changes that included edema of brain, lungs, and heart as well as hydropericardium. Goats developed various effects, including necrotizing colitis, pulmonary edema, and hydropericardium. No significant gross or histological abnormalities were observed in any mice infected with the WT strain. All sheep, goats, and mice challenged with the isogenic etx mutant remained clinically healthy for ≥24 h, and no gross or histological abnormalities were observed in those animals. Complementation of etx knockout restored virulence; most goats, sheep, and mice receiving this complemented mutant developed clinical and pathological changes similar to those observed in WT-infected animals. These results indicate that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.

  19. Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms

    PubMed Central

    Rema, Tara; Lawrence, John R.; Dynes, James J.; Hitchcock, Adam P.

    2014-01-01

    The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 μg ml−1) was derived from a CHX-tolerant (MIC, 15.0 μg ml−1) D. acidovorans parent strain using transposon mutagenesis. D. acidovorans mutant (MT51) and wild-type (WT15) strain biofilms were cultivated in flow cells and then treated with CHX at sub-MIC and inhibitory concentrations and examined by confocal laser scanning microscopy (CLSM), scanning transmission X-ray microscopy (STXM), and infrared (IR) spectroscopy. Specific morphological, structural, and chemical compositional differences between the CHX-treated and -untreated biofilms of both strains were observed. Apart from architectural differences, CLSM revealed a negative effect of CHX on biofilm thickness in the CHX-sensitive MT51 biofilms relative to those of the WT15 strain. STXM analyses showed that the WT15 biofilms contained two morphochemical cell variants, whereas only one type was detected in the MT51 biofilms. The cells in the MT51 biofilms bioaccumulated CHX to a similar extent as one of the cell types found in the WT15 biofilms, whereas the other cell type in the WT15 biofilms did not bioaccumulate CHX. STXM and IR spectral analyses revealed that CHX-sensitive MT51 cells accumulated the highest levels of CHX. Pretreating biofilms with EDTA promoted the accumulation of CHX in all cells. Thus, it is suggested that a subpopulation of cells that do not accumulate CHX appear to be responsible for greater CHX resistance in D. acidovorans WT15 biofilm in conjunction with the possible involvement of bacterial membrane stability. PMID:25022584

  20. PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes.

    PubMed

    Hassouneh, Ramzi; Nasrallah, Rania; Zimpelmann, Joe; Gutsol, Alex; Eckert, David; Ghossein, Jamie; Burns, Kevin D; Hébert, Richard L

    2016-06-01

    The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.

  1. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage.

    PubMed

    Li, Yan; Yu, Shirley; Duncan, Todd; Li, Yichao; Liu, Pinghu; Gene, Erelda; Cortes-Pena, Yoel; Qian, Haohua; Dong, Lijin; Redmond, T Michael

    2015-08-01

    Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation.

    PubMed

    Duncan, Christopher G; Barwick, Benjamin G; Jin, Genglin; Rago, Carlo; Kapoor-Vazirani, Priya; Powell, Doris R; Chi, Jen-Tsan; Bigner, Darell D; Vertino, Paula M; Yan, Hai

    2012-12-01

    Monoallelic point mutations of the NADP(+)-dependent isocitrate dehydrogenases IDH1 and IDH2 occur frequently in gliomas, acute myeloid leukemias, and chondromas, and display robust association with specific DNA hypermethylation signatures. Here we show that heterozygous expression of the IDH1(R132H) allele is sufficient to induce the genome-wide alterations in DNA methylation characteristic of these tumors. Using a gene-targeting approach, we knocked-in a single copy of the most frequently observed IDH1 mutation, R132H, into a human cancer cell line and profiled changes in DNA methylation at over 27,000 CpG dinucleotides relative to wild-type parental cells. We find that IDH1(R132H/WT) mutation induces widespread alterations in DNA methylation, including hypermethylation of 2010 and hypomethylation of 842 CpG loci. We demonstrate that many of these alterations are consistent with those observed in IDH1-mutant and G-CIMP+ primary gliomas and can segregate IDH wild-type and mutated tumors as well as those exhibiting the G-CIMP phenotype in unsupervised analysis of two primary glioma cohorts. Further, we show that the direction of IDH1(R132H/WT)-mediated DNA methylation change is largely dependent upon preexisting DNA methylation levels, resulting in depletion of moderately methylated loci. Additionally, whereas the levels of multiple histone H3 and H4 methylation modifications were globally increased, consistent with broad inhibition of histone demethylation, hypermethylation at H3K9 in particular accompanied locus-specific DNA hypermethylation at several genes down-regulated in IDH1(R132H/WT) knock-in cells. These data provide insight on epigenetic alterations induced by IDH1 mutations and support a causal role for IDH1(R132H/WT) mutants in driving epigenetic instability in human cancer cells.

  4. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus.

    PubMed

    Chursov, Andrey; Kopetzky, Sebastian J; Leshchiner, Ignaty; Kondofersky, Ivan; Theis, Fabian J; Frishman, Dmitrij; Shneider, Alexander

    2012-10-01

    For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.

  5. The Macrophage Galactose-Type Lectin-1 (MGL1) Recognizes Taenia crassiceps Antigens, Triggers Intracellular Signaling, and Is Critical for Resistance to This Infection

    PubMed Central

    Montero-Barrera, Daniel; Valderrama-Carvajal, Héctor; Terrazas, César A.; Rojas-Hernández, Saúl; Ledesma-Soto, Yadira; Vera-Arias, Laura; Carrasco-Yépez, Maricela; Gómez-García, Lorena; Martínez-Saucedo, Diana; Becerra-Díaz, Mireya; Terrazas, Luis I.

    2015-01-01

    C-type lectins are multifunctional sugar-binding molecules expressed on dendritic cells (DCs) and macrophages that internalize antigens for processing and presentation. Macrophage galactose-type lectin 1 (MGL1) recognizes glycoconjugates expressing Lewis X structures which contain galactose residues, and it is selectively expressed on immature DCs and macrophages. Helminth parasites contain large amounts of glycosylated components, which play a role in the immune regulation induced by such infections. Macrophages from MGL1−/− mice showed less binding ability toward parasite antigens than their wild-type (WT) counterparts. Exposure of WT macrophages to T. crassiceps antigens triggered tyrosine phosphorylation signaling activity, which was diminished in MGL1−/− macrophages. Following T. crassiceps infection, MGL1−/− mice failed to produce significant levels of inflammatory cytokines early in the infection compared to WT mice. In contrast, MGL1−/− mice developed a Th2-dominant immune response that was associated with significantly higher parasite loads, whereas WT mice were resistant. Flow cytometry and RT-PCR analyses showed overexpression of the mannose receptors, IL-4Rα, PDL2, arginase-1, Ym1, and RELM-α on MGL1−/− macrophages. These studies indicate that MGL1 is involved in T. crassiceps recognition and subsequent innate immune activation and resistance. PMID:25664320

  6. Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy.

    PubMed

    Devaraj, Sridevi; Tobias, Peter; Kasinath, Balakuntalam S; Ramsamooj, Rajendra; Afify, Alaa; Jialal, Ishwarlal

    2011-08-01

    Type 1 diabetes (T1DM) is a proinflammatory state and confers an increased risk for vascular complications. Toll-like receptors (TLR) could participate in diabetic vasculopathies. Whether TLR activation contributes to the proinflammatory state of T1DM and the pathogenesis of diabetic nephropathy remains unknown. We induced T1DM in TLR2 knockout mice (TLR2-/-) and wild-type littermates (C57BL/6J-WT) using streptozotocin (STZ). Fasting blood, peritoneal macrophages, and kidneys were obtained for flow cytometry, Western blot, microscopy, and cytokine assays at 6 and 14 weeks after induction of diabetes. Macrophage TLR2 expression and MyD88-dependent signaling were increased in diabetic mice (WT+STZ) compared with nondiabetic WT mice. These biomarkers were attenuated in diabetic TLR2-/- macrophages. WT+STZ mice showed increased kidney:body weight ratio due to cell hypertrophy, increased albuminuria, decreased kidney nephrin, podocin, and podocyte number and increased transforming growth factor-β and laminin compared with WT mice. Nephrin, podocin, and podocyte number and effacement were restored, and transforming growth factor-β and laminin levels were decreased in TLR2-/-+ STZ mice kidneys versus WT+STZ. Peritoneal and kidney macrophages were predominantly M1 phenotype in WT+STZ mice; this was attenuated in TLR2-/-+STZ mice. These data support a role for TLR2 in promoting inflammation and early changes of incipient diabetic nephropathy, in addition to albuminuria and podocyte loss.

  7. Identification and Characterization of Small-Molecule Inhibitors of the R132H/R132H Mutant Isocitrate Dehydrogenase 1 Homodimer and R132H/Wild-Type Heterodimer.

    PubMed

    Brooks, Eric; Wu, Xiang; Hanel, Art; Nguyen, Shaun; Wang, Jing; Zhang, Jeffrey H; Harrison, Amanda; Zhang, Wentao

    2014-09-01

    Recurrent genetic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have been identified in multiple tumor types. The most frequent mutation, IDH1 R132H, is a gain-of-function mutation resulting in an enzyme-catalyzing conversion of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). A high-throughput assay quantifying consumption of NADPH by IDH1 R132H has been optimized and implemented to screen 3 million compounds in 1536-well formats. The primary high-throughput screening hits were further characterized by RapidFire-mass spectrometry measuring 2-HG directly. Multiple distinct chemotypes were identified with nanomolar potencies (6-300 nM). All inhibitors were found to be inactive against the wild-type IDH1 homodimers. An IDH1 heterodimer between wild-type and R132H mutant is capable of catalyzing conversion of α-KG to 2-HG and isocitrate to α-KG. Interestingly, one of the inhibitors, EXEL-9324, was found to inhibit both conversions by the IDH1 heterodimer. This indicates the R132H/WT heterodimer may adopt conformations distinct from that of the R132H/R132H homodimer. Further enzymatic studies support this conclusion as the heterodimer exhibited a significantly lower apparent Michaelis-Menten constant for α-KG (K(m)=110 µM) compared with the R132H homodimer (K(m)= 1200 µM). The enhanced apparent affinity for α-KG suggests R132H/WT heterodimeric IDH1 can produce 2-HG more efficiently at normal intracellular levels of α-KG (approximately 100 µM). © 2014 Society for Laboratory Automation and Screening.

  8. Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry

    NASA Astrophysics Data System (ADS)

    Song, Hong Yan; Su, Xiaodi

    In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.

  9. De Novo Transcriptome Analysis for Kentucky Bluegrass Dwarf Mutants Induced by Space Mutation

    PubMed Central

    Gan, Lu; Di, Rong; Chao, Yuehui; Han, Liebao; Chen, Xingwu; Wu, Chao; Yin, Shuxia

    2016-01-01

    Kentucky bluegrass (Poa pratensis L.) is a major cool-season turfgrass requiring frequent mowing. Utilization of cultivars with slow growth is a promising method to decrease mowing frequency. In this study, two dwarf mutant selections of Kentucky bluegrass (A12 and A16) induced by space mutation were analyzed for the differentially expressed genes compared with the wild type (WT) by the high-throughput RNA-Seq technology. 253,909 unigenes were obtained by de novo assembly. 24.20% of the unigenes had a significant level of amino acid sequence identity to Brachypodium distachyon proteins, followed by Hordeum vulgare with 18.72% among the non-redundant (NR) Blastx top hits. Assembled unigenes were associated with 32 pathways using KEGG orthology terms and their respective KEGG maps. Between WT and A16 libraries, 4,203 differentially expressed genes (DEGs) were identified, whereas there were 883 DEGs between WT and A12 libraries. Further investigation revealed that the DEG pathways were mainly involved in terpenoid biosynthesis and plant hormone metabolism, which might account for the differences of plant height and leaf blade color between dwarf mutant and WT plants. Our study presents the first comprehensive transcriptomic data and gene function analysis of Poa pratensis L., providing a valuable resource for future studies in plant dwarfing breeding and comparative genome analysis for Pooideae plants. PMID:27010560

  10. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling

    PubMed Central

    Davis, Robert T.; Simon, Jillian N.; Utter, Megan; Mungai, Paul; Alvarez, Manuel G.; Chowdhury, Shamim A.K.; Heydemann, Ahlke; Ke, Yunbo; Wolska, Beata M.; Solaro, R. John

    2015-01-01

    Aims Despite its known cardiovascular benefits, the intracellular signalling mechanisms underlying physiological cardiac growth remain poorly understood. Therefore, the purpose of this study was to investigate a novel role of p21-activated kinase-1 (Pak1) in the regulation of exercise-induced cardiac hypertrophy. Methods and results Wild-type (WT) and Pak1 KO mice were subjected to 6 weeks of treadmill endurance exercise training (ex-training). Cardiac function was assessed via echocardiography, in situ haemodynamics, and the pCa–force relations in skinned fibre preparations at baseline and at the end of the training regimen. Post-translational modifications to the sarcomeric proteins and expression levels of calcium-regulating proteins were also assessed following ex-training. Heart weight/tibia length and echocardiography data revealed that there was marked hypertrophy following ex-training in the WT mice, which was not evident in the KO mice. Additionally, following ex-training, WT mice demonstrated an increase in cardiac contractility, myofilament calcium sensitivity, and phosphorylation of cardiac myosin-binding protein C, cardiac TnT, and tropomyosin compared with KO mice. With ex-training in WT mice, there were also increased protein levels of calcineurin and increased phosphorylation of phospholamban. Conclusions Our data suggest that Pak1 is essential for adaptive physiological cardiac remodelling and support previous evidence that demonstrates Pak1 signalling is important for cardiac growth and survival. PMID:26464331

  11. Piper betle induces phase I & II genes through Nrf2/ARE signaling pathway in mouse embryonic fibroblasts derived from wild type and Nrf2 knockout cells.

    PubMed

    Wan Hasan, Wan Nuraini; Kwak, Mi-Kyoung; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2014-02-23

    Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice. WT and N0 cells were treated with 5 and 10 μg/ml of PB for 10 and 12-h for the determination of nuclear translocation of Nrf2 protein. Luciferase reporter gene activity was performed to evaluate the antioxidant response element (ARE)-induction by PB. Real-time PCR and Western blot were conducted on both WT and N0 cells after PB treatment for the determination of antioxidant enzymes [superoxide dismutase (SOD1) and heme-oxygenase (HO-1)], phase I oxidoreductase enzymes [ quinone oxidoreductase (NQO1)] and phase II detoxifying enzyme [glutathione S-transferase (GST)]. Nuclear translocation of Nrf2 by PB in WT cells was better after 10 h incubation compared to 12 h. Real time PCR and Western blot analysis showed increased expressions of Nrf2, NQO1 and GSTA1 genes with corresponding increases in glutathione, NQO1 and HO-1 proteins in WT cells. Reporter gene ARE was stimulated by PB as shown by ARE/luciferase assay. Interestingly, PB induced SOD1 gene and protein expressions in N0 cells but not in WT cells. The results of this study confirmed that PB activated Nrf2-ARE signaling pathway which subsequently induced some phase I oxidoreductase, phase II detoxifying and antioxidant genes expression via ARE reporter gene involved in the Nrf2 pathway with the exception of SOD1 which may not be dependent on this pathway.

  12. A semisynthetic strategy leads to alteration of the backbone amidate ligand in the NiSOD active site

    DOE PAGES

    Campeciño, Julius O.; Dudycz, Lech W.; Tumelty, David; ...

    2015-07-01

    Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategymore » that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N 2S 2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with g z < g x,y. 14N-hyperfine is observed on g z« less

  13. Murray's Law in elastin haploinsufficient (Eln+/-) and wild-type (WT) mice.

    PubMed

    Sather, Bradley A; Hageman, Daniel; Wagenseil, Jessica E

    2012-12-01

    Using either the principle of minimum energy or constant shear stress, a relation can be derived that predicts the diameters of branching vessels at a bifurcation. This relation, known as Murray's Law, has been shown to predict vessel diameters in a variety of cardiovascular systems from adult humans to developing chicks. The goal of this study is to investigate Murray's Law in vessels from mice that are haploinsufficient for the elastin protein (Eln+/-). Elastin is one of the major proteins in the blood vessel wall and is organized in concentric rings, known as lamellae, with smooth muscle cells (SMCs) around the vessel lumen. Eln+/- mice have an increased number of lamellae, as well as smaller, thinner vessels. It is possible that due to decreased amounts of elastin available for vessel wall remodeling during development and in adulthood, Eln+/- vessels would not follow Murray's Law. We examined vessel bifurcations in six different physiologic regions, including the brain, heart, epidermis, ceocum (or cecum), testes, and intestines, in Eln+/- mice and wild-type (WT) littermates. All vessels were between 40 and 300 μm in diameter. We found that the diameters of both Eln+/- and WT vessels have an average of 13% error from the diameters predicted by Murray's Law, with no significant differences between genotypes or physiologic regions. The data suggest that vessels are optimized to follow Murray's Law, despite limitations on the proteins available for growth and remodeling of the vessel wall.

  14. The Role of Dipeptidyl Peptidase IV in Lung Metastasis of Breast Cancer Cells

    DTIC Science & Technology

    1999-05-01

    Our studies focused on (1) cloning and sequencing of wild-type endothelial DPP IV (wtDPP IV) and preparation of truncated DPP IV ( tDPP IV); (2...that was identical to hepatic DPP IV. Acid extraction of rat lung yielded a tDPP IV, which was an effective inhibitor of breast cancer cell adhesion to

  15. An evaluation of the basis and consequences of a stay-green mutation in the navel negra (nan) citrus mutant using transcriptomic and proteomic profiling and metabolite analysis

    USDA-ARS?s Scientific Manuscript database

    A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown colored flavedo during ripening. Analysis of pigment composition in the wild type (WT) and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis...

  16. DEPENDENCE OF ECDYSTEROID METABOLISM AND DEVELOPMENT IN HOST LARVAE ON THE TIME OF BACULOVIRUS INFECTION AND THE ACTIVITY OF THE UDP-GLUCOSYL TRANSFERASE GENE.

    EPA Science Inventory

    Infection of fourth-instar gypsy moth (Lymantria dispar, Lepidoptera: Lymantriidae) larvae with the wild-type (Wt) gypsy moth baculovirus, LdNPV on the first day post-molt, or infection of fifth instars on the fifth day post-molt, results in elevated ecdysteroid levels in both he...

  17. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  18. Female mice lacking active nadph-oxidase enzymes are protected against “western diet”--induced obesity and metabolic syndrome

    USDA-ARS?s Scientific Manuscript database

    NADPH oxidase (Nox) enzymes have been implicated in regulation of adipocyte differentiation and inflammation in a variety of tissues. We examined the effects of feeding AIN-93G or a “Western diet” (WD) (45% fat, 0.5% cholesterol) on development of obesity and “metabolic syndrome” in wild type (WT) m...

  19. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.

    PubMed

    Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J

    2014-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.

  20. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair–deficient p53 haploinsufficient [Xpa(−/−)p53(+/−)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days

    PubMed Central

    Poirier, Miriam C.

    2012-01-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(−/−)p53(+/−) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)–DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(−/−)p53(+/−) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(−/−)p53(+/−) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(−/−)p53(+/−) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP–DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(−/−)p53(+/−) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH–DNA adduct levels consistently in human organs. PMID:22828138

  1. Expression of Interleukin-4 by Recombinant Respiratory Syncytial Virus Is Associated with Accelerated Inflammation and a Nonfunctional Cytotoxic T-Lymphocyte Response following Primary Infection but Not following Challenge with Wild-Type Virus

    PubMed Central

    Bukreyev, Alexander; Belyakov, Igor M.; Prince, Gregory A.; Yim, Kevin C.; Harris, Katie K.; Berzofsky, Jay A.; Collins, Peter L.

    2005-01-01

    The outcome of a viral infection or of immunization with a vaccine can be influenced by the local cytokine environment. In studies of experimental vaccines against respiratory syncytial virus (RSV), an increased stimulation of Th2 (T helper 2) lymphocytes was associated with increased immunopathology upon subsequent RSV infection. For this study, we investigated the effect of increased local expression of the Th2 cytokine interleukin-4 (IL-4) from the genome of a recombinant RSV following primary infection and after a challenge with wild-type (wt) RSV. Mice infected with RSV/IL-4 exhibited an accelerated pulmonary inflammatory response compared to those infected with wt RSV, although the wt RSV group caught up by day 8. In the first few days postinfection, RSV/IL-4 was associated with a small but significant acceleration in the expansion of pulmonary T lymphocytes specific for an RSV CD8+ cytotoxic T-lymphocyte (CTL) epitope presented as a major histocompatibility complex class I tetramer. However, by day 7 the response of tetramer-positive T lymphocytes in the wt RSV group caught up and exceeded that of the RSV/IL-4 group. At all times, the CTL response of the RSV/IL-4 group was deficient in the production of gamma interferon and was nonfunctional for in vitro cell killing. The accelerated inflammatory response coincided with an accelerated accumulation and activation of pulmonary dendritic cells early in infection, but thereafter the dendritic cells were deficient in the expression of B7-1, which governs the acquisition of cytolytic activity by CTL. Following a challenge with wt RSV, there was an increase in Th2 cytokines in the animals that had previously been infected with RSV/IL-4 compared to those previously infected with wt RSV, but the CD8+ CTL response and the amount of pulmonary inflammation were not significantly different. Thus, a strong Th2 environment during primary pulmonary immunization with live RSV resulted in early inflammation and a largely nonfunctional primary CTL response but had a minimal effect on the secondary response. PMID:16014914

  2. University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- | Office of Cancer Genomics

    Cancer.gov

    University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- This data set contains the transcriptional profiles of 20 dorsal skin samples from eight-week-old mice. Mice were generated by crossing FVB/N to Mus spretus mice to generate F1 mice, and then crossing F1 mice back to the FVB/N strain. 10  FVB/N mice lacking Hras1 (aka HrasKO, Hras-/-) and 10  FVB/N mice with wild-type Hras1 were generated. Read the abstract.

  3. Two barcodes encoded by the type-1 PDZ and by phospho-Ser312 regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    PubMed

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß 1 -AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß 1 -AR is inhibited when PKA or its substrate serine at position 312 (Ser 312 ) are inactivated. We tested the hypothesis that phospho-Ser 312 provided a second barcode for ß 1 -AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß 1 -AR trafficking. Recycling of WT ß 1 -AR or WT ß 2 -AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21 C ). These maneuvers however, did not inhibit the recycling of a phospho-Ser 312 ß 1 -AR mimic ((S312D) ß 1 -AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß 1 -AR and WT ß 2 -AR, but had no effect on (S312D) ß 1 -AR∆PDZ or on phosphorylation of WT ß 1 -AR by PKA at Ser 312 . However, depletion of FKBP15, a FAM21 C -binding endosomal protein, selectively inhibited WT ß 1 -AR but not ß 2 -AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß 1 -AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser 312 " verification "barcode". This organization allows tight regulation of ß 1 -AR density to signaling intensity in conditions associated with aberrant ß 1 -AR signaling such as in hypertension and heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cardiac Function in Young and Old Little Mice

    PubMed Central

    Reddy, Anilkumar K.; Amador-Noguez, Daniel; Darlington, Gretchen J.; Scholz, Beth A.; Michael, Lloyd H.; Hartley, Craig J.; Entman, Mark L.; Taffet, George E.

    2009-01-01

    We studied cardiac function in young and old, wild-type (WT), and longer-living Little mice using cardiac flow velocities, echocardiographic measurements, and left ventricular (LV) pressure (P) to determine if enhanced reserves were in part responsible for longevity in these mice. Resting/baseline cardiac function, as measured by velocities, LV dimensions, +dP/dtmax, and −dP/dtmax, was significantly lower in young Little mice versus young WT mice. Fractional shortening (FS) increased significantly, and neither +dP/dtmax nor −dP/dtmax declined with age in Little mice. In contrast, old WT mice had no change in FS but had significantly lower +dP/dtmax and −dP/dtmax versus young WT mice. Significant decreases were observed in the velocity indices of old Little mice versus old WT mice, but other parameters were unchanged. The magnitude of dobutamine stress response remained unchanged with age in Little mice, while that in WT mice decreased. These data suggest that while resting cardiac function in Little mice versus WT mice is lower at young age, it is relatively unaltered with aging. Additionally, cardiac function in response to stress was maintained with age in Little mice but not in their WT counterparts. Thus, some mouse models of increased longevity may not be associated with enhanced reserves. PMID:18166681

  5. Root hairs increase root exudation and rhizosphere extension

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebandanadkouki, Mohsen; Kuzyakov, Yakov; Carmintati, Andrea

    2017-04-01

    Plant roots employ various mechanisms to increase their access to limited soil resources. An example of such strategies is the production of root hairs. Root hairs extend the root surface and therefore increase the access to nutrients. Additionally, carbon release from root hairs might facilitate nutrient uptake by spreading of carbon in the rhizosphere and enhancing microbial activity. The aim of this study was to test: i) how root hairs change the allocation of carbon in the soil-plant system; ii) whether root hairs exude carbon into the soil and iii) how differences in C release between plants with and without root hairs affect rhizosphere extension. We grew barley plants with and without root hairs (wild type: WT, bald root barley: brb) in rhizoboxes filled with a sandy soil. Root elongation was monitored over time. After 4 weeks of growth, plants were labelled with 14CO2. A filter paper was placed on the soil surface before labelling and was removed after 36 h. 14C imaging of the soil surface and of the filter paper was used to quantify the allocation of 14C into the roots and the exudation of 14C, respectively. Plants were sampled destructively one day after labeling to quantify 14C in the plant-soil system. 14CO2 release from soil over time (17 d) was quantified by trapping CO2 in NaOH with an additional subset of plants. WT and brb plants had a similar aboveground biomass and allocated similar amounts of 14C into shoots (170 KBq for WT; 152 KBq for brb) and roots one day after labelling. Biomass of root, rhizosphere soil as well as root elongation were lower for brb compared to the wild type. WT plants transported more C from the shoots to the roots (22.8% for WT; 13.8% for brb) and from the root into the rhizosphere (8.8% for WT 3.5% for brb). Yet lower amounts of 14CO2 were released from soil over time for WT. Radial and longitudinal rhizosphere extension was increased for WT compared to brb (4.7 vs. 2.6 mm; 5.6 vs. 3.1 cm). The total exudation which was estimated based on the grey values of the filter paper images was 1.6 times higher for WT compared to brb. After one month, brb plants performed as good as WT plants, presumably because nutrients and water were not limiting for young plants. Under nutrient limiting conditions higher C release as well as increased longitudinal and radial rhizosphere extension for WT may maintain higher nutrient accessibility compared to root hair free plants.

  6. Differential proteomic responses of selectively bred and wild-type Sydney rock oyster populations exposed to elevated CO2.

    PubMed

    Thompson, E L; O'Connor, W; Parker, L; Ross, P; Raftos, D A

    2015-03-01

    Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2 ). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2 , whilst being deleterious to adult oysters. © 2015 John Wiley & Sons Ltd.

  7. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    PubMed

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. No Significant Increase in the Δ4- and Δ7-Dafachronic Acid Concentration in the Long-Lived glp-1 Mutant, nor in the Mutants Defective in Dauer Formation.

    PubMed

    Li, Tie-Mei; Liu, Weilong; Lu, Shan; Zhang, Yan-Ping; Jia, Le-Mei; Chen, Jie; Li, Xiangke; Lei, Xiaoguang; Dong, Meng-Qiu

    2015-05-12

    The steroid hormone dafachronic acid (DA) regulates dauer formation and lifespan in Caenorhabditis elegans by binding to the nuclear receptor DAF-12. However, little is known about how DA concentrations change under various physiologic conditions and about how DA/DAF-12 signaling interacts with other signaling pathways that also regulate dauer formation and lifespan. Using a sensitive bioanalytical method, we quantified the endogenous DA concentrations in a long-lived germline-less glp-1 mutant and in the Dauer formation-defective (Daf-d) mutants daf-12, daf-16, daf-5, and daf-3. We found that the DA concentration in the glp-1 mutant was similar to that in the wild type (WT). This result is contrary to the long-held belief that germline loss-induced longevity involves increased DA production and suggests instead that this type of longevity involves an enhanced response to DA. We also found evidence suggesting that increased DA sensitivity underlies lifespan extension triggered by exogenous DA. At the L2/L3 stage, the DA concentration in a daf-12 null mutant decreased to 22% of the WT level. This finding is consistent with the previously proposed positive feedback regulation between DAF-12 and DA production. Surprisingly, the DA concentrations in the daf-16, daf-5, and daf-3 mutants were only 19-34% of the WT level at the L2/L3 stage, slightly greater than those in the Dauer formation-constitutive (Daf-c) mutants at the pre-dauer stage (4-15% of the WT L2 control). Our experimental evidence suggested that the positive feedback between DA and DAF-12 was partially induced in the three Daf-d mutants. Copyright © 2015 Li et al.

  9. Loss of T cells influences sex differences in behavior and brain structure.

    PubMed

    Rilett, Kelly C; Friedel, Miriam; Ellegood, Jacob; MacKenzie, Robyn N; Lerch, Jason P; Foster, Jane A

    2015-05-01

    Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. AMPK-α2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet.

    PubMed

    Abbott, Marcia J; Turcotte, Lorraine P

    2014-10-15

    AMP-activated protein kinase (AMPK) has been studied extensively and postulated to be a target for the treatment and/or prevention of metabolic disorders such as insulin resistance. Exercise training has been deemed a beneficial treatment for obesity and insulin resistance. Furthermore, exercise is a feasible method to combat high-fat diet (HFD)-induced alterations in insulin sensitivity. The purpose of this study was to determine whether AMPK-α2 activity is required to gain beneficial effects of exercise training with high-fat feeding. Wild-type (WT) and AMPK-α2 dominant-negative (DN) male mice were fed standard diet (SD), underwent voluntary wheel running (TR), fed HFD, or trained with HFD (TR + HFD). By week 6, TR, irrespective of genotype, decreased blood glucose and increased citrate synthase activity in both diet groups and decreased insulin levels in HFD groups. Hindlimb perfusions were performed, and, in WT mice with SD, TR increased insulin-mediated palmitate uptake (76.7%) and oxidation (>2-fold). These training-induced changes were not observed in the DN mice. With HFD, TR decreased palmitate oxidation (61-64%) in both WT and DN and increased palmitate uptake (112%) in the WT with no effects on palmitate uptake in the DN. With SD, TR increased ERK1/2 and JNK1/2 phosphorylation, regardless of genotype. With HFD, TR reduced JNK1/2 phosphorylation, regardless of genotype, carnitine palmitoyltransferase 1 expression in WT, and CD36 expression in both DN and WT. These data suggest that low AMPK-α2 signaling disrupts, in part, the exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following HFD. Copyright © 2014 the American Physiological Society.

  11. Absence of PKC-Alpha Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus

    PubMed Central

    Sim, Jae H.; Himmel, Nathaniel J.; Redd, Sara K.; Pulous, Fadi E.; Rogers, Richard T.; Black, Lauren N.; Hong, Seongun M.; von Bergen, Tobias N.; Blount, Mitsi A.

    2014-01-01

    Lithium, an effective antipsychotic, induces nephrogenic diabetes insipidus (NDI) in ∼40% of patients. The decreased capacity to concentrate urine is likely due to lithium acutely disrupting the cAMP pathway and chronically reducing urea transporter (UT-A1) and water channel (AQP2) expression in the inner medulla. Targeting an alternative signaling pathway, such as PKC-mediated signaling, may be an effective method of treating lithium-induced polyuria. PKC-alpha null mice (PKCα KO) and strain-matched wild type (WT) controls were treated with lithium for 0, 3 or 5 days. WT mice had increased urine output and lowered urine osmolality after 3 and 5 days of treatment whereas PKCα KO mice had no change in urine output or concentration. Western blot analysis revealed that AQP2 expression in medullary tissues was lowered after 3 and 5 days in WT mice; however, AQP2 was unchanged in PKCα KO. Similar results were observed with UT-A1 expression. Animals were also treated with lithium for 6 weeks. Lithium-treated WT mice had 19-fold increased urine output whereas treated PKCα KO animals had a 4-fold increase in output. AQP2 and UT-A1 expression was lowered in 6 week lithium-treated WT animals whereas in treated PKCα KO mice, AQP2 was only reduced by 2-fold and UT-A1 expression was unaffected. Urinary sodium, potassium and calcium were elevated in lithium-fed WT but not in lithium-fed PKCα KO mice. Our data show that ablation of PKCα preserves AQP2 and UT-A1 protein expression and localization in lithium-induced NDI, and prevents the development of the severe polyuria associated with lithium therapy. PMID:25006961

  12. Early-Onset, Slow Progression of Cone Photoreceptor Dysfunction and Degeneration in CNG Channel Subunit CNGB3 Deficiency

    PubMed Central

    Xu, Jianhua; Morris, Lynsie; Fliesler, Steven J.; Sherry, David M.

    2011-01-01

    Purpose. To investigate the progression of cone dysfunction and degeneration in CNG channel subunit CNGB3 deficiency. Methods. Retinal structure and function in CNGB3−/− and wild-type (WT) mice were evaluated by electroretinography (ERG), lectin cytochemistry, and correlative Western blot analysis of cone-specific proteins. Cone and rod terminal integrity was assessed by electron microscopy and synaptic protein immunohistochemical distribution. Results. Cone ERG amplitudes (photopic b-wave) in CNGB3−/− mice were reduced to approximately 50% of WT levels by postnatal day 15, decreasing further to approximately 30% of WT levels by 1 month and to approximately 20% by 12 months of age. Rod ERG responses (scotopic a-wave) were not affected in CNGB3−/− mice. Average CNGB3−/− cone densities were approximately 80% of WT levels at 1 month and declined slowly thereafter to only approximately 50% of WT levels by 12 months. Expression levels of M-opsin, cone transducin α-subunit, and cone arrestin in CNGB3−/− mice were reduced by 50% to 60% by 1 month and declined to 35% to 45% of WT levels by 9 months. In addition, cone opsin mislocalized to the outer nuclear layer and the outer plexiform layer in the CNGB3−/− retina. Cone and rod synaptic marker expression and terminal ultrastructure were normal in the CNGB3−/− retina. Conclusions. These findings are consistent with an early-onset, slow progression of cone functional defects and cone loss in CNGB3−/− mice, with the cone signaling deficits arising from disrupted phototransduction and cone loss rather than from synaptic defects. PMID:21273547

  13. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  14. The role of connexin-36 gap junctions in alcohol intoxication and consumption.

    PubMed

    Steffensen, Scott C; Bradley, Katie D; Hansen, David M; Wilcox, Jeffrey D; Wilcox, Rebecca S; Allison, David W; Merrill, Collin B; Edwards, Jeffrey G

    2011-08-01

    Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and consumption. Using behavioral, molecular, and electrophysiological methods, we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Compared to WT mice, Cx36 KO mice exhibited significantly more ethanol-induced motor impairment in the open field test, but less disruption in motor coordination in the rotarod paradigm. Cx36 KO mice, and WT mice treated with the Cx36 antagonist mefloquine (MFQ), consumed significantly less ethanol than their WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC₅₀ of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron GABA-mediated sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption. Copyright © 2010 Wiley-Liss, Inc.

  15. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease

    PubMed Central

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; da Cunha, Sandro Torrentes; Paula, Luis Felipe; Carvalho, Alysson Roncally; de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli dos Santos

    2017-01-01

    BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice. PMID:28767980

  16. Aequorea green fluorescent protein analysis by flow cytometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.

    The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered atmore » 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.« less

  17. Differential expression of the TWEAK receptor Fn14 in IDH1 wild-type and mutant gliomas.

    PubMed

    Hersh, David S; Peng, Sen; Dancy, Jimena G; Galisteo, Rebeca; Eschbacher, Jennifer M; Castellani, Rudy J; Heath, Jonathan E; Legesse, Teklu; Kim, Anthony J; Woodworth, Graeme F; Tran, Nhan L; Winkles, Jeffrey A

    2018-06-01

    The TNF receptor superfamily member Fn14 is overexpressed by many solid tumor types, including glioblastoma (GBM), the most common and lethal form of adult brain cancer. GBM is notable for a highly infiltrative growth pattern and several groups have reported that high Fn14 expression levels can increase tumor cell invasiveness. We reported previously that the mesenchymal and proneural GBM transcriptomic subtypes expressed the highest and lowest levels of Fn14 mRNA, respectively. Given the recent histopathological re-classification of human gliomas by the World Health Organization based on isocitrate dehydrogenase 1 (IDH1) gene mutation status, we extended this work by comparing Fn14 gene expression in IDH1 wild-type (WT) and mutant (R132H) gliomas and in cell lines engineered to overexpress the IDH1 R132H enzyme. We found that both low-grade and high-grade (i.e., GBM) IDH1 R132H gliomas exhibit low Fn14 mRNA and protein levels compared to IDH1 WT gliomas. Forced overexpression of the IDH1 R132H protein in glioma cells reduced Fn14 expression, while treatment of IDH1 R132H-overexpressing cells with the IDH1 R132H inhibitor AGI-5198 or the DNA demethylating agent 5-aza-2'-deoxycytidine increased Fn14 expression. These results support a role for Fn14 in the more aggressive and invasive phenotype associated with IDH1 WT tumors and indicate that the low levels of Fn14 gene expression noted in IDH1 R132H mutant gliomas may be due to epigenetic regulation via changes in DNA methylation.

  18. Wilms’ Tumor 1 Gene Mutations Independently Predict Poor Outcome in Adults With Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    PubMed Central

    Paschka, Peter; Marcucci, Guido; Ruppert, Amy S.; Whitman, Susan P.; Mrózek, Krzysztof; Maharry, Kati; Langer, Christian; Baldus, Claudia D.; Zhao, Weiqiang; Powell, Bayard L.; Baer, Maria R.; Carroll, Andrew J.; Caligiuri, Michael A.; Kolitz, Jonathan E.; Larson, Richard A.; Bloomfield, Clara D.

    2008-01-01

    Purpose To analyze the prognostic impact of Wilms’ tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods We studied 196 adults younger than 60 years with newly diagnosed primary CN-AML, who were treated similarly on Cancer and Leukemia Group B (CALGB) protocols 9621 and 19808, for WT1 mutations in exons 7 and 9. The patients also were assessed for the presence of FLT3 internal tandem duplications (FLT3-ITD), FLT3 tyrosine kinase domain mutations (FLT3-TKD), MLL partial tandem duplications (MLL-PTD), NPM1 and CEBPA mutations, and for the expression levels of ERG and BAALC. Results Twenty-one patients (10.7%) harbored WT1 mutations. Complete remission rates were not significantly different between patients with WT1 mutations and those with unmutated WT1 (P = .36; 76% v 84%). Patients with WT1 mutations had worse disease-free survival (DFS; P < .001; 3-year rates, 13% v 50%) and overall survival (OS; P < .001; 3-year rates, 10% v 56%) than patients with unmutated WT1. In multivariable analyses, WT1 mutations independently predicted worse DFS (P = .009; hazard ratio [HR] = 2.7) when controlling for CEBPA mutational status, ERG expression level, and FLT3-ITD/NPM1 molecular-risk group (ie, FLT3-ITDnegative/NPM1mutated as low risk v FLT3-ITDpositive and/or NPM1wild-type as high risk). WT1 mutations also independently predicted worse OS (P < .001; HR = 3.2) when controlling for CEBPA mutational status, FLT3-ITD/NPM1 molecular-risk group, and white blood cell count. Conclusion We report the first evidence that WT1 mutations independently predict extremely poor outcome in intensively treated, younger patients with CN-AML. Future trials should include testing for WT1 mutations as part of molecularly based risk assessment and risk-adapted treatment stratification of patients with CN-AML. PMID:18559874

  19. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  20. Comparison of the hepatic and thyroid gland effects of sodium phenobarbital in wild type and constitutive androstane receptor (CAR) knockout rats and pregnenolone-16α-carbonitrile in wild type and pregnane X receptor (PXR) knockout rats.

    PubMed

    Haines, Corinne; Chatham, Lynsey R; Vardy, Audrey; Elcombe, Clifford R; Foster, John R; Lake, Brian G

    2018-05-01

    A number of chemicals produce liver and thyroid gland tumours in rodents by nongenotoxic modes of action (MOAs). In this study the hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were examined in male Sprague-Dawley wild type (WT) rats and in CAR knockout (CAR KO) rats and the effects of the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in WT and PXR knockout (PXR KO) rats. Rats were either fed diets containing 0 (control) or 500 ppm NaPB or were dosed with 0 (control) or 100 mg/kg/day PCN orally for 7 days. The treatment of WT rats with NaPB and PCN for 7 days resulted in increased relative liver weight, increased hepatocyte replicative DNA synthesis (RDS) and the induction of cytochrome P450 CYP2B and CYP3A subfamily enzyme, mRNA and protein levels. In marked contrast, the treatment of CAR KO rats with NaPB and PXR KO rats with PCN did not result in any increases in liver weight and induction of CYP2B and CYP3A enzymes. The treatment of CAR KO rats with NaPB had no effect on hepatocyte RDS, while PCN produced only a small increase in hepatocyte RDS in PXR KO rats. Treatment with NaPB had no effect on thyroid gland weight in WT and CAR KO rats, whereas treatment with PCN resulted in an increase in relative thyroid gland weight in WT, but not in PXR KO, rats. Thyroid gland follicular cell RDS was increased by the treatment of WT rats with NaPB and PCN, with NaPB also producing a small increase in thyroid gland follicular cell RDS in CAR KO rats. Overall, the present study with CAR KO rats demonstrates that a functional CAR is required for NaPB-mediated increases in liver weight, stimulation of hepatocyte RDS and induction of hepatic CYP enzymes. The studies with PXR KO rats demonstrate that a functional PXR is required for PCN-mediated increases in liver weight and induction of hepatic CYP enzymes; with induction of hepatocyte RDS also being largely mediated through PXR. The hepatic effects of NaPB in CAR KO rats and of PCN in PXR KO rats are in agreement with those observed in other recent literature studies. These results suggest that CAR KO and PXR KO rats are useful experimental models for liver MOA studies with rodent CAR and PXR activators and may also be useful for thyroid gland MOA studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% andmore » 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.« less

  2. PHEX Mimetic (SPR4-Peptide) Corrects and Improves HYP and Wild Type Mice Energy-Metabolism

    PubMed Central

    Zelenchuk, Lesya V.; Hedge, Anne-Marie; Rowe, Peter S. N.

    2014-01-01

    Context PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. Results SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. Conclusions ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of sclerostin and/or sequestration of ASARM-peptides improves energy metabolism and may have utility for treating familial rickets, osteoporosis, obesity and diabetes. PMID:24839967

  3. Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage

    NASA Astrophysics Data System (ADS)

    Takagi, Yasushi; Mitsui, Akira; Nishiyama, Akira; Nozaki, Kazuhiko; Sono, Hiroshi; Gon, Yasuhiro; Hashimoto, Nobuo; Yodoi, Junji

    1999-03-01

    Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.

  4. Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803.

    PubMed

    Shimakawa, Ginga; Hasunuma, Tomohisa; Kondo, Akihiko; Matsuda, Mami; Makino, Amane; Miyake, Chikahiro

    2014-01-01

    We tested the hypothesis that inducing photosynthesis in cyanobacteria requires respiration. A mutant deficient in glycogen phosphorylase (∆GlgP) was prepared in Synechocystis sp. PCC 6803 to suppress respiration. The accumulated glycogen in ΔGlgP was 250-450% of that accumulated in wild type (WT). The rate of dark respiration in ΔGlgP was 25% of that in WT. In the dark, P700(+) reduction was suppressed in ΔGlgP, and the rate corresponded to that in (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone)-treated WT, supporting a lower respiration rate in ∆GlgP. Photosynthetic O2-evolution rate reached a steady-state value much slower in ∆GlgP than in WT. This retardation was solved by addition of d-glucose. Furthermore, we found that the contents of Calvin cycle intermediates in ∆GlgP were lower than those in WT under dark conditions. These observations indicated that respiration provided the carbon source for regeneration of ribulose 1,5-bisphosphate in order to drive the rapid start of photosynthesis.

  5. Krüppel-Like Factor 5 Protects Against Dextran Sulfate Sodium-Induced Colonic Injury by Promoting Epithelial Repair in Mice

    PubMed Central

    McConnell, Beth B.; Kim, Samuel S.; Bialkowska, Agnieszka B.; Yu, Ke; Sitaraman, Shanthi V.; Yang, Vincent. W.

    2010-01-01

    BACKGROUND & AIMS Krüppel-like factor 5 (KLF5) is a transcription factor that promotes proliferation; is highly expressed in dividing crypt cells of the gastrointestinal epithelium and is induced by various stress stimuli. We sought to determine the role of KLF5 in colonic inflammation and recovery by studying mice with dextran sulfate sodium (DSS)-induced colitis. METHODS Wild-type (WT) and Klf5+/− mice were given DSS in the drinking water to induce colitis. For recovery experiments, mice were given normal drinking water for 5 days after DSS administration. The extent of colitis was determined using established clinical and histological scoring systems. Immunohistochemical and immunoblotting analyses were used to examine proliferation, migration, and expression of the epidermal growth factor receptor (EGFR). RESULTS Klf5 expression was increased in colonic tissues of WT mice given DSS; induction of Klf5 was downstream of mitogen-activated protein kinase signaling. In DSS-induced colitis, Klf5+/− mice exhibited greater sensitivity to DSS than WT mice, with significantly higher clinical and histological colitis scores. In recovery experiments, Klf5+/− mice showed poor recovery, with continued weight loss and higher mortality than WT mice. Klf5+/− mice from the recovery period had reduced epithelial proliferation and cell migration at sites of ulceration compared to WT mice; these reductions correlated with reduced expression of EGFR. CONCLUSIONS Epithelial repair is an important aspect of recovery from DSS-induced colitis. The transcription factor KLF5 regulates mucosal healing through its effects on epithelial proliferation and migration. PMID:21078320

  6. Bone morphogenetic protein signaling is impaired in an Hfe knockout mouse model of hemochromatosis

    PubMed Central

    Corradini, Elena; Garuti, Cinzia; Montosi, Giuliana; Ventura, Paolo; Andriopoulos, Billy; Lin, Herbert Y.; Pietrangelo, Antonello; Babitt, Jodie L.

    2009-01-01

    Background and Aims Mutations in HFE are the most common cause of the iron-overload disorder hereditary hemochromatosis (HH). Levels of the main iron regulatory hormone, hepcidin, are inappropriately low in HH mouse models and patients with HFE mutations, indicating that HFE regulates hepcidin. The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is an important endogenous regulator of hepcidin expression. We investigated whether HFE is involved in BMP6-SMAD regulation of hepcidin expression. Methods The BMP6-SMAD pathway was examined in Hfe knockout (KO) mice and in wild-type (WT) mice as controls. Mice were placed on diets of varying iron content. Hepcidin induction by BMP6 was examined in primary hepatocytes from Hfe KO mice; data were compared with those of WT mice. Results Liver levels of Bmp6 mRNA were higher in Hfe KO mice; these were appropriate for the increased hepatic levels of iron in these mice, compared with WT mice. However, levels of hepatic phosphorylated Smad 1/5/8 protein (an intracellular mediator of Bmp6 signaling) and Id1 mRNA (a target gene of Bmp6) were inappropriately low for the body iron burden and Bmp6 mRNA levels in Hfe KO, compared with WT mice. BMP6 induction of hepcidin expression was reduced in Hfe KO hepatocytes compared with WT hepatocytes. Conclusions HFE is not involved in regulation of BMP6 by iron, but does regulate the downstream signals of BMP6 that are triggered by iron. PMID:19591830

  7. CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons.

    PubMed

    Tracy, Matthew E; Tesic, Vesna; Stamenic, Tamara Timic; Joksimovic, Srdjan M; Busquet, Nicolas; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M

    2018-03-23

    Recent data have implicated voltage-gated calcium channels in the regulation of the excitability of neurons within the mesolimbic reward system. While the attention of most research has centered on high voltage L-type calcium channel activity, the presence and role of the low voltage-gated T-type calcium channel (T-channels) has not been well explored. Hence, we investigated T-channel properties in the neurons of the ventral tegmental area (VTA) utilizing wild-type (WT) rats and mice, Ca V 3.1 knock-out (KO) mice, and TH-eGFP knock-in (KI) rats in acute horizontal brain slices of adolescent animals. In voltage-clamp experiments, we first assessed T-channel activity in WT rats with characteristic properties of voltage-dependent activation and inactivation, as well as characteristic crisscrossing patterns of macroscopic current kinetics. T-current kinetics were similar in WT mice and WT rats but T-currents were abolished in Ca V 3.1 KO mice. In ensuing current-clamp experiments, we observed the presence of hyperpolarization-induced rebound burst firing in a subset of neurons in WT rats, as well as dopaminergic and non-dopaminergic neurons in TH-eGFP KI rats. Following the application of a pan-selective T-channel blocker TTA-P2, rebound bursting was significantly inhibited in all tested cells. In a behavioral assessment, the acute locomotor increase induced by a MK-801 (Dizocilpine) injection in WT mice was abolished in Ca V 3.1 KO mice, suggesting a tangible role for 3.1 T-type channels in drug response. We conclude that pharmacological targeting of Ca V 3.1 isoform of T-channels may be a novel approach for the treatment of disorders of mesolimbic reward system. Copyright © 2018. Published by Elsevier Ltd.

  8. Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo.

    PubMed

    Thuesen, Anne D; Andersen, Henrik; Cardel, Majken; Toft, Anja; Walter, Steen; Marcussen, Niels; Jensen, Boye L; Bie, Peter; Hansen, Pernille B L

    2014-08-15

    Voltage-gated Ca(2+) (Cav) channels play an essential role in the regulation of renal blood flow and glomerular filtration rate (GFR). Because T-type Cav channels are differentially expressed in pre- and postglomerular vessels, it was hypothesized that they impact renal blood flow and GFR differentially. The question was addressed with the use of two T-type Cav knockout (Cav3.1(-/-) and Cav3.2(-/-)) mouse strains. Continuous recordings of blood pressure and heart rate, para-aminohippurate clearance (renal plasma flow), and inulin clearance (GFR) were performed in conscious, chronically catheterized, wild-type (WT) and Cav3.1(-/-) and Cav3.2(-/-) mice. The contractility of afferent and efferent arterioles was determined in isolated perfused blood vessels. Efferent arterioles from Cav3.2(-/-) mice constricted significantly more in response to a depolarization compared with WT mice. GFR was increased in Cav3.2(-/-) mice with no significant changes in renal plasma flow, heart rate, and blood pressure. Cav3.1(-/-) mice had a higher renal plasma flow compared with WT mice, whereas GFR was indistinguishable from WT mice. No difference in the concentration response to K(+) was observed in isolated afferent and efferent arterioles from Cav3.1(-/-) mice compared with WT mice. Heart rate was significantly lower in Cav3.1(-/-) mice compared with WT mice with no difference in blood pressure. T-type antagonists significantly inhibited the constriction of human intrarenal arteries in response to a small depolarization. In conclusion, Cav3.2 channels support dilatation of efferent arterioles and affect GFR, whereas Cav3.1 channels in vivo contribute to renal vascular resistance. It is suggested that endothelial and nerve localization of Cav3.2 and Cav3.1, respectively, may account for the observed effects. Copyright © 2014 the American Physiological Society.

  9. IL-4 Knock out Mice Display Anxiety-like Behavior

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Blevins, Neil A.; Lawson, Marcus A.; Gainey, Stephen J.; Towers, Albert E.; McNeil, Leslie K.; Freund, Gregory G.

    2015-01-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety. PMID:25772794

  10. IL-4 Knock Out Mice Display Anxiety-Like Behavior.

    PubMed

    Moon, Morgan L; Joesting, Jennifer J; Blevins, Neil A; Lawson, Marcus A; Gainey, Stephen J; Towers, Albert E; McNeil, Leslie K; Freund, Gregory G

    2015-07-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety.

  11. Evaluation of the behavioral characteristics of the mdx mouse model of duchenne muscular dystrophy through operant conditioning procedures.

    PubMed

    Lewon, Matthew; Peters, Christina M; Van Ry, Pam M; Burkin, Dean J; Hunter, Kenneth W; Hayes, Linda J

    2017-09-01

    The mdx mouse is an important nonhuman model for Duchenne muscular dystrophy (DMD) research. Characterizing the behavioral traits of the strain relative to congenic wild-type (WT) mice may enhance our understanding of the cognitive deficits observed in some humans with DMD and contribute to treatment development and evaluation. In this paper we report the results of a number of experiments comparing the behavior of mdx to WT mice in operant conditioning procedures designed to assess learning and memory. We found that mdx outperformed WT in all learning and memory tasks involving food reinforcement, and this appeared to be related to the differential effects of the food deprivation motivating operation on mdx mice. Conversely, WT outperformed mdx in an escape/avoidance learning task. These results suggest motivational differences between the strains and demonstrate the potential utility of operant conditioning procedures in the assessment of the behavioral characteristics of the mdx mouse. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Discovery of wt RET and V804M RET Inhibitors: From Hit to Lead.

    PubMed

    Mologni, Luca; Dalla Via, Martina; Chilin, Adriana; Palumbo, Manlio; Marzaro, Giovanni

    2017-08-22

    Oncogenic activation of RET kinase has been found in several neoplastic diseases, like medullary thyroid carcinoma, multiple endocrine neoplasia, papillary thyroid carcinoma, and non-small-cell lung cancer. Currently approved RET inhibitors were not originally designed to be RET inhibitors, and their potency against RET kinase has not been optimized. Hence, novel compounds able to inhibit both wild-type RET ( wt RET) and its mutants (e.g., V804M RET) are needed. Herein we present the development and the preliminary evaluation of a new sub-micromolar wt RET/ V804M RET inhibitor, N-(2-fluoro-5-trifluoromethylphenyl)-N'-{4'-[(2''-benzamido)pyridin-4''-ylamino]phenyl}urea (69), endowed with a 4-anilinopyridine structure, starting from our previously identified 4-anilinopyrimidine hit compound. Profiling against a panel of kinases indicated 69 as a multi cKIT/ wt RET/ V804M RET inhibitor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Renoprotective impact of estrogen receptor α and its splice variants in female mice with type 1 diabetes.

    PubMed

    Irsik, Debra L; Romero-Aleshire, Melissa Jill; Chavez, Erin M; Fallet, Rachel W; Brooks, Heddwen L; Carmines, Pamela K; Lane, Pascale H

    2018-04-18

    Estrogen has been implicated in the regulation of growth and immune function in the kidney, which expresses the full-length estrogen receptor α (ERα66), its ERα splice variants, and estrogen receptor β (ERβ). Thus, we hypothesized that these splice variants may inhibit glomerular enlargement that occurs early in type 1 diabetes (T1D). T1D was induced by streptozotocin (STZ) injection in 8-12 wk-old female mice lacking ERα66 (ERα66KO) or all ERα variants (αERKO), and their wild-type (WT) littermates. Basal renal ERα36 protein expression was reduced in the ERα66KO model and was downregulated by T1D in WT mice. T1D did not alter ERα46 or ERβ in WT-STZ; however, ERα46 was decreased modestly in ERα66KO. Renal hypertrophy was evident in all diabetic mice. F4/80-positive immunostaining was reduced in ERα66KO, compared with WT and αERKO mice, but was higher in STZ than in WT mice across all genotypes. Glomerular area was greater in WT and αERKO than in ERα66KO mice, with T1D-induced glomerular enlargement apparent in WT-STZ and αERKO-STZ, but not in ERα66KO-STZ. Proteinuria and hyperfiltration were evident in ERα66KO-STZ and αERKO-STZ, but not in WT-STZ mice. These data indicate that ERα splice variants may exert an inhibitory influence on glomerular enlargement and macrophage infiltration during T1D; however, effects of splice variants are masked in the presence of the full-length ERα66, suggesting that ERα66 acts in opposition to its splice variants to influence these parameters. In contrast, hyperfiltration and proteinuria in T1D are attenuated via an ERα66-dependent mechanism that is unaffected by splice variant status.

  14. Maximizing PTH Anabolic Osteoporosis Therapy. Revision

    DTIC Science & Technology

    2016-09-01

    Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick...mono-therapy and PTH+ anti-catabolic combination therapies on Nmp4-/- and wild type (WT) mice. The scope of the research comprises the following

  15. Effect of running exercise on the number of the neurons in the hippocampus of young transgenic APP/PS1 mice.

    PubMed

    Jiang, Lin; Ma, Jing; Zhang, Yi; Zhou, Chun-Ni; Zhang, Lei; Chao, Feng-Lei; Chen, Lin-Mu; Jiang, Rong; Wu, Hong; Tang, Yong

    2018-08-01

    To investigate the effect of running exercise on the number of the neurons in the hippocampus of young APP/PS1 mice, twenty 6-month-old male APP/ PS1 transgenic mice were randomly divided into the APP/PS1 control (AD control) group and the APP/PS1 running (AD running) group (10 mice per group), and ten wild-type mice of the littermate were regarded as the wild-type (WT) group. The AD running mice ran on motorized treadmill machiene for 4 months, while the WT mice and AD control mice were housed in standard condition without running. Then, Morris water maze tests (MWM) were used to assess the special learning and memory abilities of mice in three groups. The stereological methods were used to quantitatively evaluate the volume of the hippocampus, CA1/2, CA3 and the dentate gyrus (DG) and count the number of the neurons in CA1/2, CA3 and DG. We found that 4-month running effectively shortened the escape latency of young APP/PS1 control mice in MWM. More importantly, 4-month running effectively increased the volumes of the hippocampus, CA1/2, CA3 and DG and increased the number of neurons in CA1/2, CA3 and DG in young APP/PS1 mice. The present results suggested that 4-month running has significant beneficial effects on the spatial learning and memory capacities of young APP/PS1 mice and could delay the progress of atrophy of hippocampus and the neuron death in CA1/2, CA3 and DG in young APP/PS1 mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Progression of Pro23His Retinopathy in a Miniature Swine Model of Retinitis Pigmentosa

    PubMed Central

    Scott, Patrick A.; de Castro, Juan P. Fernandez; DeMarco, Paul J.; Ross, Jason W.; Njoka, Josephat; Walters, Eric; Prather, Randall S.; McCall, Maureen A.; Kaplan, Henry J.

    2017-01-01

    Purpose We characterize the progression of retinopathy in Filial 1 (F1) progeny of a transgenic (Tg) founder miniswine exhibiting severe Pro23His (P23H) retinopathy. Methods The F1 TgP23H miniswine progeny were created by crossing TgP23H founder miniswine 53-1 with wild type (WT) inbred miniature swine. Scotopic (rod-driven) and photopic (cone-driven) retinal functions were evaluated in F1 TgP23H and WT littermates using full field electroretinograms (ffERGs) at 1, 2, 3, 6, 9, 12, and 18 months of age, as well as the Tg founder miniswine at 6 years of age. Miniswine were euthanized and their retinas processed for morphologic evaluation at the light and electron microscopic level. Retinal morphology of a 36-month-old Tg miniswine also was examined. Results Wild type littermates reached mature scotopic and photopic retinal function by 3 months, while TgP23H miniswine showed abnormal scotopic ffERGs at the earliest time point, 1 month, and depressed photopic ffERGs after 2 months. Rod and cone photoreceptors (PR) exhibited morphologic abnormalities and dropout from the outer nuclear layer at 1 month, with only a monolayer of cone PR somata remaining after 2 months. The retinas showed progressive neural remodeling of the outer retina that included dendritic retraction of rod bipolar cells and glial seal formation by Müller cells. The TgP23H founder miniswine showed cone PR with relatively intact morphology exclusive to the area centralis. Conclusions The F1 Tg miniswine and the TgP23H founder miniswine exhibit similar retinopathy. Translational Relevance TgP23H miniswine are a useful large-eye model to study pathogenesis and preservation cone PRs in humans with retinitis pigmentosa. PMID:28316877

  17. Mannose-Binding Lectin Contributes to Deleterious Inflammatory Response in Pandemic H1N1 and Avian H9N2 Infection

    PubMed Central

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K. W.; Peiris, J. S. Malik; Takahashi, K.

    2012-01-01

    Background. Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. Methods. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Results. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Conclusions. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response. PMID:22080095

  18. In vitro characterization of Multi-Drug Resistant HIV-1 Isolates from a Recently Infected Patient Associated with Dual Tropism and Rapid Disease Progression

    PubMed Central

    Mohri, Hiroshi; Markowitz, Martin

    2013-01-01

    Objective: Multi-drug resistant (MDR)-HIV-1 variants are thought to be less fit than wild type virus. In 2005 we reported a case of transmitted MDR-HIV-1 infection associated with dual tropism and rapid clinical progression. Here, we report the in vitro characterization of the virus isolates. Methods: Replication characteristics of bulk and clonal isolates from this case (MDR-1) were examined and compared with these to a panel of transmitted MDR and wild type viruses (MDR-2~4, WT-1, 2). Results: Infectivity and frequency of infectious virion of propagated isolates were high in MDR-1 biological clones (mean titer, 3.5×105 TCID50/ml; mean frequency of infectious virion, 1/2,444) and its bulk isolate (3.2×106TCID50/ml; 1/301), as compared to the other biological clones (7.3×103TCID50/ml; 1/21,320). Up-slope (log10p24/ml/d) of viral replication in PBMC culture was much higher in MDR-1 clones (1.30±0.30: mean±SD) than those of MDR-2~4 (0.75±0.08) or WT-1, -2 clones (0.82±0.03). The bulk isolate and dual tropic biological clones from MDR-1 depleted CD4+ T cells very rapidly in vitro compared to the other viruses tested. Conclusion: These findings support the hypothesis that multi-drug resistant HIV-1 can effectively evolve and compensate to not only retain high level replication but exhibit virulence associated with rapid disease progression. PMID:18645523

  19. Fine Mapping of a Gene (ER4.1) that Causes Epidermal Reticulation of Tomato Fruit and Characterization of the Associated Transcriptome

    PubMed Central

    Cui, Lipeng; Qiu, Zhengkun; Wang, Zhirong; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen; Wang, Xiaoxuan

    2017-01-01

    The hydrophobic cuticle that covers the surface of tomato (Solanum lycopersicum) fruit plays key roles in development and protection against biotic and abiotic stresses, including water loss, mechanical damage, UV radiation, pathogens, and pests. However, many details of the genes and regulatory mechanisms involved in cuticle biosynthesis in fleshy fruits are not well understood. In this study, we describe a novel tomato fruit phenotype, characterized by epidermal reticulation (ER) of green fruit and a higher water loss rate than wild type (WT) fruit. The ER phenotype is controlled by a single gene, ER4.1, derived from an introgressed chromosomal segment from the wild tomato species S. pennellii (LA0716). We performed fine mapping of the single dominant gene to an ~300 kb region and identified Solyc04g082540, Solyc04g082950, Solyc04g082630, and Solyc04g082910as potential candidate genes for the ER4.1 locus, based on comparative RNA-seq analysis of ER and WT fruit peels. In addition, the transcriptome analysis revealed that the expression levels of genes involved in cutin, wax and flavonoid biosynthesis were altered in the ER fruit compared with WT. This study provides new insights into the regulatory mechanisms and metabolism of the fruit cuticle. PMID:28798753

  20. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    PubMed Central

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  1. Calpastatin Controls Polymicrobial Sepsis by Limiting Procoagulant Microparticle Release

    PubMed Central

    Gerotziafas, Grigoris; Byrnes, Colleen; Hu, Xuzhen; Perez, Joelle; Lévi, Charlène; Placier, Sandrine; Letavernier, Emmanuel; Leelahavanichkul, Asada; Haymann, Jean-philippe; Elalamy, Ismail; Miller, Jeffrey L.; Star, Robert A.; Yuen, Peter S. T.; Baud, Laurent

    2012-01-01

    Rationale: Sepsis, a leading cause of death worldwide, involves widespread activation of inflammation, massive activation of coagulation, and lymphocyte apoptosis. Calpains, calcium-activated cysteine proteases, have been shown to increase inflammatory reactions and lymphocyte apoptosis. Moreover, calpain plays an essential role in microparticle release. Objectives: We investigated the contribution of calpain in eliciting tissue damage during sepsis. Methods: To test our hypothesis, we induced polymicrobial sepsis by cecal ligation and puncture in wild-type (WT) mice and transgenic mice expressing high levels of calpastatin, a calpain-specific inhibitor. Measurements and Main Results: In WT mice, calpain activity increased transiently peaking at 6 hours after cecal ligation and puncture surgery. Calpastatin overexpression improved survival, organ dysfunction (including lung, kidney, and liver damage), and lymphocyte apoptosis. It decreased the sepsis-induced systemic proinflammatory response and disseminated intravascular coagulation, by reducing the number of procoagulant circulating microparticles and therefore delaying thrombin generation. The deleterious effect of microparticles in this model was confirmed by transferring microparticles from septic WT to septic transgenic mice, worsening their survival and coagulopathy. Conclusions: These results demonstrate an important role of the calpain/calpastatin system in coagulation/inflammation pathways during sepsis, because calpain inhibition is associated with less severe disseminated intravascular coagulation and better overall outcomes in sepsis. PMID:22268136

  2. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting

    PubMed Central

    Yamada, Koji; Suzuki, Hideyuki; Takeuchi, Takuto; Kazama, Yusuke; Mitra, Sharbanee; Abe, Tomoko; Goda, Keisuke; Suzuki, Kengo; Iwata, Osamu

    2016-01-01

    Euglena gracilis, a microalgal species of unicellular flagellate protists, has attracted much attention in both the industrial and academic sectors due to recent advances in the mass cultivation of E. gracilis that have enabled the cost-effective production of nutritional food and cosmetic commodities. In addition, it is known to produce paramylon (β-1,3-glucan in a crystalline form) as reserve polysaccharide and convert it to wax ester in hypoxic and anaerobic conditions–a promising feedstock for biodiesel and aviation biofuel. However, there remain a number of technical challenges to be solved before it can be deployed in the competitive fuel market. Here we present a method for efficient selective breeding of live oil-rich E. gracilis with fluorescence-activated cell sorting (FACS). Specifically, the selective breeding method is a repetitive procedure for one-week heterotrophic cultivation, staining intracellular lipids with BODIPY505/515, and FACS-based isolation of top 0.5% lipid-rich E. gracilis cells with high viability, after inducing mutation with Fe-ion irradiation to the wild type (WT). Consequently, we acquire a live, stable, lipid-rich E. gracilis mutant strain, named B1ZFeL, with 40% more lipid content on average than the WT. Our method paves the way for rapid, cost-effective, energy-efficient production of biofuel. PMID:27212384

  3. A Human Strain of Oxalobacter (HC-1) Promotes Enteric Oxalate Secretion in the Small Intestine of Mice and Reduces Urinary Oxalate Excretion

    PubMed Central

    Hatch, Marguerite; Freel, Robert W.

    2013-01-01

    Enteric oxalate secretion that correlated with reductions in urinary oxalate excretion was previously reported in a mouse model of Primary Hyperoxaluria, and in wild type (WT) mice colonized with a wild rat strain (OXWR) of Oxalobacter (Am J Physiol 300: G461-G469, 2011). Since a human strain of the bacterium is more likely to be clinically used as a probiotic therapeutic, we tested the effects of HC-1 in WT. Following artificial colonization of WT mice with HC-1, the bacteria were confirmed to be present in the large intestine and, unexpectedly, detected in the small intestine for varying periods of time. The main objective of the present study was to determine whether the presence of HC-1 promoted intestinal secretion in the more proximal segments of the gastrointestinal tract. In addition, we determined whether HC-1 colonization led to reductions in urinary oxalate excretion in these mice. The results show that the human Oxalobacter strain promotes a robust net secretion of oxalate in the distal ileum as well as in the caecum and distal colon and these changes in transport correlate with the beneficial effect of reducing renal excretion of oxalate. We conclude that OXWR effects on intestinal oxalate transport and oxalate homeostasis are not unique to the wild rat strain and that, mechanistically, HC-1 has significant potential for use as a probiotic treatment for hyperoxaluria especially if it is also targeted to the upper and lower gastrointestinal tract. PMID:23959075

  4. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix.

    PubMed

    Terajima, Masahiko; Taga, Yuki; Cabral, Wayne A; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Marini, Joan C; Yamauchi, Mitsuo

    2017-08-04

    Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.

  5. Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model

    PubMed Central

    Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.

    2013-01-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruening, W.; Nakagama, H.: Bardessy, N.

    Wilms` tumor (WT), an embryonal malignancy of the kidney, occurs most frequently in children under the age of 5 years, affecting {approximately}1 in 10,000 individuals. The WT1 tumor suppressor gene, residing at 11p13, is structurally altered in {approximately}10-15% of WT cases. Individuals with germline mutations within the WT1 gene suffer from predisposition to WT and developmental defects of the urogenital system. Patients with heterozygous deletions of the WT1 gene, or mutations predicted to cause inactivation of one WT1 allele, suffer relatively mild genital system defects (notably hypospadias and cryptorchidism in males) and a predisposition to WT. These results suggest thatmore » developing genital system development is sensitive to the absolute concentrations of the WT1 gene products. Patients with missense mutations within the WT1 gene, however, can suffer from a much more severe disorder known as Denys-Drash syndrome (DDS). This syndrome is characterized by intersex disorders, renal nephropathy, and a predisposition to WTs. The increased severity of the developmental defects associated with DDS, compared to those individuals with mild genital system anomalies and WTs, suggests that mutations defined in patients with DDS behave in a dominant-negative fashion. We have identified a novel WT1 mutation in a patient with DDS. This mutation, predicted to produce a truncated WT1 polypeptide encompassing exons 1, 2, and 3, defines a domain capable of behaving as an antimorph. We have also demonstrated that WT1 can self-associate in vivo using yeast two-hybrid systems. Deletion analysis have mapped the interacting domains to the amino terminus of the WT1 polypeptide, within exons 1 and 2. These results provide a molecular mechanism to explain how WT1 mutations can function in a dominant-negative fashion to eliminate wild-type WT1 activity, leading to DDS.« less

  7. Hepatitis E Seroprevalence in Europe: A Meta-Analysis

    PubMed Central

    Hartl, Johannes; Otto, Benjamin; Madden, Richie Guy; Webb, Glynn; Woolson, Kathy Louise; Kriston, Levente; Vettorazzi, Eik; Lohse, Ansgar W.; Dalton, Harry Richard; Pischke, Sven

    2016-01-01

    There have been large numbers of studies on anti-HEV IgG seroprevalence in Europe, however, the results of these studies have produced high variability of seroprevalence rates, making interpretation increasingly problematic. Therefore, the aim of this study was to develop a clearer understanding of anti-HEV IgG seroprevalence in Europe and identify risk groups for HEV exposure by a meta-analysis of published studies. Methods: All European HEV-seroprevalence studies from 2003 to 2015 were reviewed. Data were stratified by assay, geographical location, and patient cohort (general population, patients with HIV, solid-organ transplant recipients, chronic liver disease patients, and individuals in contact with swine/wild animals). Data were pooled using a mixed-effects model. Results: Four hundred thirty-two studies were initially identified, of which 73 studies were included in the analysis. Seroprevalence estimates ranged from 0.6% to 52.5%, increased with age, but were unrelated to gender. General population seroprevalence varied depending on assays: Wantai (WT): 17%, Mikrogen (MG): 10%, MP-diagnostics (MP): 7%, DiaPro: 4%, Abbott 2%. The WT assay reported significantly higher seroprevalence rates across all cohorts (p < 0.001). Individuals in contact with swine/wild animals had significantly higher seroprevalence rates than the general population, irrespective of assay (p < 0.0001). There was no difference between any other cohorts. The highest seroprevalence was observed in France (WT: 32%, MP: 16%) the lowest in Italy (WT: 7.5%, MP 0.9%). Seroprevalence varied between and within countries. The observed heterogeneity was attributed to geographical region (23%), assay employed (23%) and study cohort (7%). Conclusion: Seroprevalcence rates primarily depend on the seroassy that is used, followed by the geographical region and study cohort. Seroprevalence is higher in individuals exposed to swine and/or wild animals, and increases with age. PMID:27509518

  8. CXCR6 Plays a Critical Role in Angiotensin II-induced Renal Injury and Fibrosis

    PubMed Central

    Xia, Yunfeng; Jin, Xiaogao; Yan, Jingyin; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Objective Recent studies have shown that angiotensin II (Ang II) plays a critical role in the pathogenesis and progression of hypertensive kidney disease. However, the signaling mechanisms are poorly understood. In this study, we investigated the role of CXCR6 in Ang II-induced renal injury and fibrosis. Approach and Results Wild-type and CXCR6-GFP knockin mice were treated with Ang II via subcutaneous osmotic minipumps at 1500 ng/kg/min after unilateral nephrectomy for up to 4 weeks. WT and CXCR6-GFP knockin mice had virtually identical blood pressure at baseline. Ang II treatment led to an increase in blood pressure that was similar between WT and CXCR6-GFP knockin mice. CXCR6-GFP knockin mice were protected from Ang II-induced renal dysfunction, proteinuria, and fibrosis. CXCR6-GFP knockin mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts and produced less extracellular matrix protein in the kidneys following Ang II treatment. Furthermore, CXCR6-GFP knockin mice exhibited fewer F4/80+ macrophages and CD3+ T cells and expressed less proinflammatory cytokines in the kidneys after Ang II treatment. Finally, wild-type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts, macrophages, and T cells in the kidney after Ang II treatment compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Conclusions Our results indicate that CXCR6 plays a pivotal role in the development of Ang II-induced renal injury and fibrosis through regulation of macrophage and T cell infiltration and bone marrow-derived fibroblast accumulation. PMID:24855055

  9. ERp29 Regulates ΔF508 and Wild-type Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Trafficking to the Plasma Membrane in Cystic Fibrosis (CF) and Non-CF Epithelial Cells*

    PubMed Central

    Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L.; Guttentag, Susan; Hubbard, Michael J.; Rubenstein, Ronald C.

    2011-01-01

    Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o− WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells. PMID:21525008

  10. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.

    PubMed

    Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L; Guttentag, Susan; Hubbard, Michael J; Rubenstein, Ronald C

    2011-06-17

    Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o- WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells.

  11. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice.

    PubMed

    Tehrani, A M; Hwang, S-K; Kim, T-H; Cho, C-S; Hua, J; Nah, W-S; Kwon, J-T; Kim, J-S; Chang, S-H; Yu, K-N; Park, S-J; Bhandari, D R; Lee, K-H; An, G-H; Beck, G R; Cho, M-H

    2007-03-01

    Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.

  12. Capillary arterialization requires the bone-marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle.

    PubMed

    Nickerson, Meghan M; Burke, Caitlin W; Meisner, Joshua K; Shuptrine, Casey W; Song, Ji; Price, Richard J

    2009-01-01

    Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT-WT and CCR2(-/-)-WT (donor-host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP(+)-WT mice, by smooth muscle (SM) alpha-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT-WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM alpha-actin(+) vessels, and a 45% increase in the fraction of vessels coated with SM alpha-actin, indicating significant capillary arterialization. However, in CCR2(-/-)-WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP(+)-WT mice, EGFP and SM alpha-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle.

  13. Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.

    PubMed

    Bu, Yuanyuan; Kou, Jing; Sun, Bo; Takano, Testuo; Liu, Shenkui

    2015-05-22

    Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt stress tolerance was also improved. We hypothesized that urease acting on urea generates NH₄⁺, which probably exacerbates salt stress. As expected, the urease inhibitor significantly decreased the NH₄⁺ level in WT seeds. These findings suggest that blocking urease activity improves salt tolerance during seed germination by lowering the concentration of NH₄⁺. Copyright © 2015. Published by Elsevier B.V.

  14. Role of medial prefrontal cortex Narp in the extinction of morphine conditioned place preference.

    PubMed

    Blouin, Ashley M; Han, Sungho; Pearce, Anne M; Cheng, Kailun; Lee, Jongah J; Johnson, Alexander W; Wang, Chuansong; During, Matthew J; Holland, Peter C; Shaham, Yavin; Baraban, Jay M; Reti, Irving M

    2013-01-15

    Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus (AAV) expressing wild-type (WT) Narp into the mPFC of Narp KO mice rescued the extinction and the injection of AAV expressing a dominant negative form of Narp (NarpN) into the mPFC of WT mice impaired the extinction of morphine CPP. These findings suggest that Narp in the mPFC mediates the extinction of morphine CPP.

  15. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.

    PubMed

    Wang, Xinkun; Patel, Nilam D; Hui, Dongwei; Pal, Ranu; Hafez, Mohamed M; Sayed-Ahmed, Mohamed M; Al-Yahya, Abdulaziz A; Michaelis, Elias K

    2014-03-04

    Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.

  16. Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Hegemann, P.; Mathes, T.

    2007-05-01

    The photo-cycle dynamics of the H44R mutant of the BLUF domain of the transcriptional anti-repressor protein AppA (AppA-H44R) from the non-sulfur anoxyphototropic purple bacterium Rhodobacter sphaeroides is studied in order to gain information on the involvement of His44 in the photo-cyclic mechanism of the AppA BLUF domain and to add information to the involved processes. The amino acid residue histidine at position 44 is replaced by arginine. A 12 nm red-shifted signalling state is formed upon blue-light excitation, while in wild-type AppA (AppA-wt) the red-shift is 16 nm. The recovery to the receptor dark state is approximately a factor of 2.5 faster ( τrec ≈ 6.5 min) than the recovery of the wild-type counterpart. Extended light exposure of the mutant causes photo-degradation of flavin (mainly free flavin conversion to lumichrome and re-equilibration between free and non-covalently bound flavin) and protein aggregation (showing up as light scattering). No photo-degradation was observed for AppA-wt. The quantum efficiency of signalling-state formation determined by intensity dependent absorption measurements is found to be ϕs ≈ 0.3 (for AppA-wt: ϕs ≈ 0.24). A two-component single-exponential fluorescence relaxation was observed, which is interpreted as fast fluorescence quenching to an equilibrium value by photo-induced electron transfer followed by slower fluorescence decay due to charge recombination. Based on the experimental findings, an extended photo-cycle model for BLUF domains is proposed.

  17. Targeting glutamine metabolism in myeloproliferative neoplasms

    PubMed Central

    Zhan, Huichun; Ciano, Kristen; Dong, Katherine; Zucker, Stanley

    2016-01-01

    JAK2V617F mutation can be detected in the majority of myeloproliferative neoplasm (MPN) patients. The JAK2 inhibitor Ruxolitinib is the first FDA-approved treatment for MPNs. However, its use is limited by various dose related toxicities. Here, we studied the metabolic state and glutamine metabolism of BaF3-hEPOR-JAK2V617F and BaF3-hEPOR-JAK2WT cells. We found that the JAK2V617F-mutant cells were associated with increased oxygen consumption rate and extracellular acidification rate than the JAK2WT cells and there was an increased glutamine metabolism in JAK2V617F-mutant cells compared to wild-type cells. Glutaminase (GLS), the key enzyme in gluta-mine metabolism, was upregulated in the JAK2V617F-mutant BaF3 cells compared to the JAK2WT BaF3 cells. In MPN patient peripheral blood CD34+ cells, GLS expression was increased in JAK2V617F-mutant progenitor cells compared to JAK2 wild-type progenitor cells from the same patients and GLS levels were increased at the time of disease progression compared to at earlier time points. Moreover, GLS inhibitor increased the growth inhibitory effect of Ruxolitinib in both JAK2V617F-mutant cell lines and peripheral blood CD34+ cells from MPN patients. Therefore, GLS inhibitor should be further explored to enhance the therapeutic effectiveness of JAK2 inhibitor and allow the administration of lower doses of the drug to avoid its toxicity. PMID:26227854

  18. Expression of interferon-induced antiviral genes is delayed in a STAT1 knockout mouse model of Crimean-Congo hemorrhagic fever.

    PubMed

    Bowick, Gavin C; Airo, Adriana M; Bente, Dennis A

    2012-06-19

    Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO). Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1. We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed response in the KO mice permits rapid viral dissemination and fatal illness.

  19. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction. © 2016 American Heart Association, Inc.

  20. Renal Liver-Type Fatty Acid Binding Protein (L-FABP) Attenuates Acute Kidney Injury in Aristolochic Acid Nephrotoxicity

    PubMed Central

    Matsui, Katsuomi; Kamijo-Ikemorif, Atsuko; Sugaya, Takeshi; Yasuda, Takashi; Kimura, Kenjiro

    2011-01-01

    Injection of aristolochic acid (AA) in mice causes AA-induced nephrotoxicity, in which oxidative stress contributes to development of tubulointerstitial damage (TID). Liver-type fatty acid binding protein (L-FABP) is expressed in human proximal tubules and has an endogenous antioxidative function. The renoprotection of renal L-FABP was examined in a model of AA-induced nephrotoxicity. Established human L-FABP (hL-FABP) transgenic (Tg) mice and wild-type (WT) mice were treated with AA for up to 5 days. Mice were sacrificed on days 1, 3, and 5 after the start of AA injection. Although mouse L-FABP was not expressed in proximal tubules of WT mice, hL-FABP was expressed in proximal tubules of Tg mice. The expression of renal hL-FABP was significantly increased in Tg mice administered AA (Tg-AA), compared with the control (saline-treated Tg mice). In WT-AA mice, there was high urinary excretion of Nε-(hexanoyl)-lysine, the production of heme oxygenase-1 and receptor for advanced glycation end products increased, and TID was provoked. In contrast, renal hL-FABP in Tg-AA mice suppressed production of Nε-(hexanoyl)lysine, heme oxygenase-1, and receptor for advanced glycation end products. Renal dysfunction was significantly milder in Tg-AA mice than in WT-AA mice. The degree of TID was significantly attenuated in Tg-AA mice, compared with WT-AA. In conclusion, renal hL-FABP reduced the oxidative stress in AA-induced nephrotoxicity and attenuated TID. PMID:21356355

  1. Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice

    PubMed Central

    Dziarski, Roman; Dowd, Scot E.; Gupta, Dipika

    2016-01-01

    Dysbiosis is a hallmark of inflammatory bowel disease (IBD), but it is unclear which specific intestinal bacteria predispose to and which protect from IBD and how they are regulated. Peptidoglycan recognition proteins (Pglyrps) are antibacterial, participate in maintaining intestinal microflora, and modulate inflammatory responses. Mice deficient in any one of the four Pglyrp genes are more sensitive to dextran sulfate sodium (DSS)-induced colitis, and stools from Pglyrp-deficient mice transferred to wild type (WT) germ-free mice predispose them to much more severe colitis than stools from WT mice. However, the identities of these Pglyrp-regulated bacteria that predispose Pglyrp-deficient mice to colitis or protect WT mice from colitis are not known. Here we identified significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice. The most consistent changes in microbiome in all Pglyrp-deficient mice were in Bacteroidales, from which we selected four species, two with increased abundance (Prevotella falsenii and Parabacteroides distasonis) and two with decreased abundance (Bacteroides eggerthii and Alistipes finegoldii). We then gavaged WT mice with stock type strains of these species to test the hypothesis that they predispose to or protect from DSS-induced colitis. P. falsenii, P. distasonis, and B. eggerthii all enhanced DSS-induced colitis in both WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora. By contrast, A. finegoldii (which is the most abundant species in WT mice) attenuated DSS-induced colitis both in WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora, similar to the colitis protective effect of the entire normal microflora. These results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii as colitis-protective species. PMID:26727498

  2. A Field Trial of TCE Phytoremediation by Genetically Modified Poplars Expressing Cytochrome P450 2E1.

    PubMed

    Legault, Emily K; James, C Andrew; Stewart, Keith; Muiznieks, Indulis; Doty, Sharon L; Strand, Stuart E

    2017-06-06

    A controlled field study was performed to evaluate the effectiveness of transgenic poplars for phytoremediation. Three hydraulically contained test beds were planted with 12 transgenic poplars, 12 wild type (WT) poplars, or left unplanted, and dosed with equivalent concentrations of trichloroethylene (TCE). Removal of TCE was enhanced in the transgenic tree bed, but not to the extent of the enhanced removal observed in laboratory studies. Total chlorinated ethene removal was 87% in the CYP2E1 bed, 85% in the WT bed, and 34% in the unplanted bed in 2012. Evapotranspiration of TCE from transgenic leaves was reduced by 80% and diffusion of TCE from transgenic stems was reduced by 90% compared to WT. Cis-dichloroethene and vinyl chloride levels were reduced in the transgenic tree bed. Chloride ion accumulated in the planted beds corresponding to the TCE loss, suggesting that contaminant dehalogenation was the primary loss fate.

  3. Genetics of Eosinophilic Esophagitis

    DTIC Science & Technology

    2012-03-01

    cells, left panel, and differential cell counts , right panel) in bronchoalveolar lavage fluid (BALF) in IL- 21R-/- mice compared to wild-type (WT). A...positive skin tests. A third group (30%) had multiple sensitivities to foods and pollens (GM total IgE 285 IU/ ml). Tests for IgE to carbohydrate antigens...milk sensitized, and those with multiple pollen allergies. The frequent occurrence of multiple associated sensitivities to grains, legumes, molds, and

  4. A Real-Time PCR Assay to Identify and Discriminate Among Wild-Type and Vaccine Strains of Varicella-Zoster Virus and Herpes Simplex Virus in Clinical Specimens, and Comparison With the Clinical Diagnoses

    PubMed Central

    Harbecke, Ruth; Oxman, Michael N.; Arnold, Beth A.; Ip, Charlotte; Johnson, Gary R.; Levin, Myron J.; Gelb, Lawrence D.; Schmader, Kenneth E.; Straus, Stephen E.; Wang, Hui; Wright, Peter F.; Pachucki, Constance T.; Gershon, Anne A.; Arbeit, Robert D.; Davis, Larry E.; Simberkoff, Michael S.; Weinberg, Adriana; Williams, Heather M.; Cheney, Carol; Petrukhin, Luba; Abraham, Katalin G.; Shaw, Alan; Manoff, Susan; Antonello, Joseph M.; Green, Tina; Wang, Yue; Tan, Charles; Keller, Paul M.

    2014-01-01

    A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human β-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results. PMID:19475609

  5. Role of actin depolymerizing factor cofilin in Aspergillus fumigatus oxidative stress response and pathogenesis.

    PubMed

    Jia, Xiaodong; Zhang, Xi; Hu, Yingsong; Hu, Mandong; Tian, Shuguang; Han, Xuelin; Sun, Yansong; Han, Li

    2018-06-01

    Aspergillus fumigatus is a major fungal pathogen that is responsible for approximately 90% of human aspergillosis. Cofilin is an actin depolymerizing factor that plays crucial roles in multiple cellular functions in many organisms. However, the functions of cofilin in A. fumigatus are still unknown. In this study, we constructed an A. fumigatus strain overexpressing cofilin (cofilin OE). The cofilin OE strain displayed a slightly different growth phenotype, significantly increased resistance against H 2 O 2 and diamide, and increased activation of the high osmolarity glycerol pathway compared to the wild-type strain (WT). The cofilin OE strain internalized more efficiently into lung epithelial A549 cells, and induced increased transcription of inflammatory factors (MCP-1, TNF-α and IL-8) compared to WT. Cofilin overexpression also resulted in increased polysaccharides including β-1, 3-glucan and chitin, and increased transcription of genes related to oxidative stress responses and polysaccharide synthesis in A. fumigatus. However, the cofilin OE strain exhibited similar virulence to the wild-type strain in murine and Galleria mellonella infection models. These results demonstrated for the first time that cofilin, a regulator of actin cytoskeleton dynamics, might play a critical role in the regulation of oxidative stress responses and cell wall polysaccharide synthesis in A. fumigatus.

  6. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    PubMed Central

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  7. Suppressed prostate epithelial development with impaired branching morphogenesis in mice lacking stromal fibromuscular androgen receptor.

    PubMed

    Lai, Kuo-Pao; Yamashita, Shinichi; Vitkus, Spencer; Shyr, Chih-Rong; Yeh, Shuyuan; Chang, Chawnshang

    2012-01-01

    Using the cre-loxP system, we generated a new mouse model [double stromal androgen receptor knockout (dARKO)] with selectively deleted androgen receptor (AR) in both stromal fibroblasts and smooth muscle cells, and found the size of the anterior prostate (AP) lobes was significantly reduced as compared with those from wild-type littermate controls. The reduction in prostate size of the dARKO mouse was accompanied by impaired branching morphogenesis and partial loss of the infolding glandular structure. Further dissection found decreased proliferation and increased apoptosis of the prostate epithelium in the dARKO mouse AP. These phenotype changes were further confirmed with newly established immortalized prostate stromal cells (PrSC) from wild-type and dARKO mice. Mechanistically, IGF-1, placental growth factor, and secreted phosphoprotein-1 controlled by stromal AR were differentially expressed in PrSC-wt and PrSC-ARKO. Moreover, the conditioned media (CM) from PrSC-wt promoted prostate epithelium growth significantly as compared with CM from PrSC-dARKO. Finally, adding IGF-1/placental growth factor recombinant proteins into PrSC-dARKO CM was able to partially rescue epithelium growth. Together, our data concluded that stromal fibromuscular AR could modulate epithelium growth and maintain cellular homeostasis through identified growth factors.

  8. Local versus global aortic pulse wave velocity in early atherosclerosis: An animal study in ApoE-/--mice using ultrahigh field MRI

    PubMed Central

    Gotschy, Alexander; Bauer, Wolfgang R.; Winter, Patrick; Nordbeck, Peter; Rommel, Eberhard; Jakob, Peter M.; Herold, Volker

    2017-01-01

    Increased aortic stiffness is known to be associated with atherosclerosis and has a predictive value for cardiovascular events. This study aims to investigate the local distribution of early arterial stiffening due to initial atherosclerotic lesions. Therefore, global and local pulse wave velocity (PWV) were measured in ApoE-/- and wild type (WT) mice using ultrahigh field MRI. For quantification of global aortic stiffness, a new multi-point transit-time (TT) method was implemented and validated to determine the global PWV in the murine aorta. Local aortic stiffness was measured by assessing the local PWV in the upper abdominal aorta, using the flow/area (QA) method. Significant differences between age matched ApoE-/- and WT mice were determined for global and local PWV measurements (global PWV: ApoE-/-: 2.7±0.2m/s vs WT: 2.1±0.2m/s, P<0.03; local PWV: ApoE-/-: 2.9±0.2m/s vs WT: 2.2±0.2m/s, P<0.03). Within the WT mouse group, the global PWV correlated well with the local PWV in the upper abdominal aorta (R2 = 0.75, P<0.01), implying a widely uniform arterial elasticity. In ApoE-/- animals, however, no significant correlation between individual local and global PWV was present (R2 = 0.07, P = 0.53), implying a heterogeneous distribution of vascular stiffening in early atherosclerosis. The assessment of global PWV using the new multi-point TT measurement technique was validated against a pressure wire measurement in a vessel phantom and showed excellent agreement. The experimental results demonstrate that vascular stiffening caused by early atherosclerosis is unequally distributed over the length of large vessels. This finding implies that assessing heterogeneity of arterial stiffness by multiple local measurements of PWV might be more sensitive than global PWV to identify early atherosclerotic lesions. PMID:28207773

  9. Local versus global aortic pulse wave velocity in early atherosclerosis: An animal study in ApoE-/--mice using ultrahigh field MRI.

    PubMed

    Gotschy, Alexander; Bauer, Wolfgang R; Winter, Patrick; Nordbeck, Peter; Rommel, Eberhard; Jakob, Peter M; Herold, Volker

    2017-01-01

    Increased aortic stiffness is known to be associated with atherosclerosis and has a predictive value for cardiovascular events. This study aims to investigate the local distribution of early arterial stiffening due to initial atherosclerotic lesions. Therefore, global and local pulse wave velocity (PWV) were measured in ApoE-/- and wild type (WT) mice using ultrahigh field MRI. For quantification of global aortic stiffness, a new multi-point transit-time (TT) method was implemented and validated to determine the global PWV in the murine aorta. Local aortic stiffness was measured by assessing the local PWV in the upper abdominal aorta, using the flow/area (QA) method. Significant differences between age matched ApoE-/- and WT mice were determined for global and local PWV measurements (global PWV: ApoE-/-: 2.7±0.2m/s vs WT: 2.1±0.2m/s, P<0.03; local PWV: ApoE-/-: 2.9±0.2m/s vs WT: 2.2±0.2m/s, P<0.03). Within the WT mouse group, the global PWV correlated well with the local PWV in the upper abdominal aorta (R2 = 0.75, P<0.01), implying a widely uniform arterial elasticity. In ApoE-/- animals, however, no significant correlation between individual local and global PWV was present (R2 = 0.07, P = 0.53), implying a heterogeneous distribution of vascular stiffening in early atherosclerosis. The assessment of global PWV using the new multi-point TT measurement technique was validated against a pressure wire measurement in a vessel phantom and showed excellent agreement. The experimental results demonstrate that vascular stiffening caused by early atherosclerosis is unequally distributed over the length of large vessels. This finding implies that assessing heterogeneity of arterial stiffness by multiple local measurements of PWV might be more sensitive than global PWV to identify early atherosclerotic lesions.

  10. Effect of Genetically Modified Poplars on Soil Microbial Communities during the Phytoremediation of Waste Mine Tailings▿†

    PubMed Central

    Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana

    2011-01-01

    The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678

  11. Ca2+-Binding Protein 1 Regulates Hippocampal-dependent Memory and Synaptic Plasticity.

    PubMed

    Yang, Tian; Britt, Jeremiah K; Cintrón-Pérez, Coral J; Vázquez-Rosa, Edwin; Tobin, Kevin V; Stalker, Grant; Hardie, Jason; Taugher, Rebecca J; Wemmie, John; Pieper, Andrew A; Lee, Amy

    2018-06-01

    Ca 2+ -binding protein 1 (CaBP1) is a Ca 2+ -sensing protein similar to calmodulin that potently regulates voltage-gated Ca 2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). By western blot, the largest CaBP1 splice variant, caldendrin, was detected in hippocampal lysates from wild-type (WT) but not C-KO mice. Compared to WT mice, C-KO mice exhibited mild deficits in spatial learning and memory in both the Barnes maze and in Morris water maze reversal learning. In contextual but not cued fear-conditioning assays, C-KO mice showed greater freezing responses than WT mice. In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.

    PubMed

    Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre

    2017-09-01

    What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  14. Parent-of-origin effects on schizophrenia-relevant behaviours of type III neuregulin 1 mutant mice.

    PubMed

    Shang, Kani; Talmage, David A; Karl, Tim

    2017-08-14

    A robust, disease-relevant phenotype is paramount to the validity of genetic mouse models, which are an important tool in understanding complex diseases. Recent evidence from genome-wide association studies suggests the genetic contribution of parents to offspring is not equivalent. Despite this, few studies to date have examined the potential impact of parent genotype (i.e. origin of mutation) on the offspring of disease-relevant genetic mouse models. To elucidate the potential impact of the sex of the mutant parent on offspring phenotype, we characterized male and female offspring of an established schizophrenia mouse model, which had been generated using two different breeding schemes, in a range of disease-relevant behaviours. We compared heterozygous type III neuregulin 1 mutant (type III Nrg1 +/- ) and wild type-like control (WT) offspring from mutant father x WT mother pairings with offspring from mutant mother x WT father pairings. Offspring were tested in schizophrenia-relevant paradigms including the elevated plus maze (EPM), fear conditioning (FC), prepulse inhibition (PPI), social interaction (SI), and open field (OF). We found type III Nrg1 +/- males from mutant fathers, but not mutant mothers, showed deficits in contextual fear-associated memory and exhibited increased social interaction, compared to their WT littermates. Type III Nrg1 +/- females across breeding colonies only exhibited a subtle change to their acoustic startle response and sensorimotor gating. These results suggest a paternal-dependent transmission of genetically induced behavioural characteristics. Though the mechanisms governing this phenomenon are unclear, our results show that parental origin of mutation can alter the behavioural phenotype of genetic mouse models. Thus, researchers should carefully consider their breeding scheme when dealing with genetic mouse models of diseases such as schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  15. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yujing; Nakanishi, Masako; Sato, Fuyuki

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development ofmore » hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased Noggin expression.« less

  16. NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system.

    PubMed

    Li, Chengcheng; Luo, Yi; Shao, Lijian; Meng, Aimin; Zhou, Daohong

    2018-01-01

    Previous studies have shown that inhibition of inducible NO synthase (NOS2 or iNOS) with an inhibitor can selectively protect several normal tissues against radiation during radiotherapy. However, the role of NOS2 in ionizing radiation (IR)-induced bone marrow (BM) suppression is unknown and thus was investigated in the present study using NOS2 - / - and wild-type mice 14 days after they were exposed to a sublethal dose of total body irradiation (TBI). The effects of different doses of IR (1, 2 and 4 Gy) on the apoptosis and colony-forming ability of bone marrow cells from wild-type (WT) and NOS2 - / - mice were investigated in vitro. In addition, we exposed NOS2 - / - mice and WT mice to 6-Gy TBI or sham irradiation. They were euthanized 14 days after TBI for analysis of peripheral blood cell counts and bone marrow cellularity. Colony-forming unit-granulocyte and macrophage, burst-forming unit-erythroid and CFU-granulocyte, erythroid, macrophage in bone marrow cells from the mice were determined to evaluate the function of hematopoietic progenitor cells (HPCs), and the ability of hematopoietic stem cells (HSCs) to self-renew was analysed by the cobblestone area forming cell assay. The cell cycling of HPCs and HSCs were measured by flow cytometry. Exposure to 2 and 4 Gy IR induced bone marrow cell apoptosis and inhibited the proliferation of HPCs in vitro. However, there was no difference between the cells from WT mice and NOS2 - / - mice in response to IR exposure in vitro. Exposure of WT mice and NOS2 - / - mice to 6 Gy TBI decreased the white blood cell, red blood cell, and platelet counts in the peripheral blood and bone marrow mononuclear cells, and reduced the colony-forming ability of HPCs (P < 0.05), damaged the clonogenic function of HSCs. However, these changes were not significantly different in WT and NOS2 - / - mice. These data suggest that IR induces BM suppression in a NOS2-independent manner.

  17. Effect of Primary Tumor Location on Second- or Later-line Treatment Outcomes in Patients With RAS Wild-type Metastatic Colorectal Cancer and All Treatment Lines in Patients With RAS Mutations in Four Randomized Panitumumab Studies.

    PubMed

    Boeckx, Nele; Koukakis, Reija; Op de Beeck, Ken; Rolfo, Christian; Van Camp, Guy; Siena, Salvatore; Tabernero, Josep; Douillard, Jean-Yves; André, Thierry; Peeters, Marc

    2018-03-08

    The primary tumor location has a prognostic impact in metastatic colorectal cancer (mCRC). We report the results from retrospective analyses assessing the effect of tumor location on prognosis and efficacy of second- and later-line panitumumab treatment in patients with RAS wild-type (WT) mCRC and on prognosis in all lines of treatment in patients with RAS mutant (MT) mCRC. RAS WT data (n = 483) from 2 randomized phase III panitumumab trials (ClinicalTrials.gov identifiers, NCT00339183 and NCT00113763) were analyzed for treatment outcomes stratified by tumor location. The second analysis assessed the effect of tumor location in RAS MT patients (n = 1205) from 4 panitumumab studies (ClinicalTrials.gov identifiers, NCT00364013, NCT00819780, NCT00339183, and NCT00113763). Primary tumors located in the cecum to transverse colon were coded as right-sided; those located from the splenic flexure to the rectum were coded as left-sided. Of all patients, the tumor location was ascertained for 83% to 88%; 71% to 77% of patients had left-sided tumors. RAS WT patients with right-sided tumors did worse for all efficacy parameters compared with those with left-sided tumors. The patients with left-sided tumors had better outcomes with panitumumab than with the comparator treatment. Because of the low patient numbers, no conclusions could be drawn for right-sided mCRC. The prognostic effect of tumor location on survival was unclear for RAS MT patients. These retrospective analyses have confirmed that RAS WT right-sided mCRC is associated with a poor prognosis, regardless of the treatment. RAS WT patients with left-sided tumors benefitted from the addition of panitumumab in second or later treatment lines. Further research is warranted to determine the optimum management of right-sided mCRC and RAS MT tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Autophagy is involved in regulating the immune response of dendritic cells to influenza A (H1N1) pdm09 infection.

    PubMed

    Zang, Farong; Chen, Yinghu; Lin, Zhendong; Cai, Zhijian; Yu, Lei; Xu, Feng; Wang, Jiaoli; Zhu, Weiguo; Lu, Huoquan

    2016-05-01

    Autophagy can mediate antiviral immunity. However, it remains unknown whether autophagy regulates the immune response of dendritic cells (DCs) to influenza A (H1N1) pdm09 infection. In this study, we found that infection with the H1N1 virus induced DC autophagy in an endocytosis-dependent manner. Compared with autophagy-deficient Beclin-1(+/-) mice, we found that bone-marrow-derived DCs from wild-type mice (WT BMDCs) presented a more mature phenotype on H1N1 infection. Wild-type BMDCs secreted higher levels of interleukin-6 (IL-6), tumour necrosis factor- α (TNF-α), interferon-β (IFN-β), IL-12p70 and IFN-γ than did Beclin-1(+/-) BMDCs. In contrast to Beclin-1(+/-) BMDCs, H1N1-infected WT BMDCs exhibited increased activation of extracellular signal-regulated kinase, Jun N-terminal kinase, p38, and nuclear factor-κB as well as IFN regulatory factor 7 nuclear translocation. Blockade of autophagosomal and lysosomal fusion by bafilomycin A1 decreased the co-localization of H1N1 viruses, autophagosomes and lysosomes as well as the secretion of IL-6, TNF-α and IFN-β in H1N1-infected BMDCs. In contrast to Beclin-1(+/-) BMDCs, H1N1-infected WT BMDCs were more efficient in inducing allogeneic CD4(+) T-cell proliferation and driving T helper type 1, 2 and 17 cell differentiation while inhibiting CD4(+) Foxp3(+) regulatory T-cell differentiation. Moreover, WT BMDCs were more efficient at cross-presenting the ovalbumin antigen to CD8(+) T cells. We consistently found that Beclin-1(+/-) BMDCs were inferior in their inhibition of H1N1 virus replication and their induction of H1N1-specific CD4(+) and CD8(+) T-cell responses, which produced lower levels of IL-6, TNF-α and IFN-β in vivo. Our data indicate that autophagy is important in the regulation of the DC immune response to H1N1 infection, thereby extending our understanding of host immune responses to the virus. © 2016 John Wiley & Sons Ltd.

  19. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit.

    PubMed

    Li, Haile; Liu, Danping; Li, Chen; Zhou, Shanjian; Tian, Dachuan; Xiao, Dawei; Zhang, Huan; Gao, Feng; Huang, Jianhua

    2017-12-01

    Mesenchymal stem cells (MSCs)-derived exosomes exhibit protective effects on damaged or diseased tissues. Hypoxia-inducible factor 1α (HIF-1α) plays a critical role in bone development. However, HIF-1α is easily biodegradable under normoxic conditions. The bone-marrow-derived mesenchymal stem cells (BMSCs) were transfected with adenovirus carrying triple point-mutations (amino acids 402, 564, and 803) in the HIF-1α coding sequence (CDS). The mutant HIF-1α can efficiently express functional proteins under normoxic conditions. To date, no study has reported the role of exosomes secreted by mutant HIF-1α modified BMSCs in the recovery of the early steroid-induced avascular necrosis of femoral head (SANFH). In this study, we firstly analyzed exosomes derived from BMSCs modified by mutant (BMSC-Exos MU ) or wild-type HIF-1α (BMSC-Exos WT ). In vitro, we investigated the osteogenic differentiation capacity of BMSCs modified by BMSC-Exos MU or BMSC-Exos WT , and the angiogenesis effects of BMSC-Exos MU and BMSC-Exos WT on human umbilical vein endothelial cells (HUVECs). Besides, the healing of the femoral head was also assessed in vivo. We found that the potential of osteogenic differentiation of BMSCs treated with BMSC-Exos MU was higher than the wild-type group in vitro. In addition, BMSC-Exos MU stimulated the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Compared with the BMSC-Exos WT or PBS control group, the injection of BMSC-Exos MU into the necrosis region markedly accelerated the bone regeneration and angiogenesis, which were indicated by the increased trabecular reconstruction and microvascular density. Taken together, our data suggest that BMSC-Exos MU facilitates the repair of SANFH by enhancing osteogenesis and angiogenesis. © 2017 International Federation for Cell Biology.

  20. The Response of Ω-Loop D Dynamics to Truncation of Trimethyllysine 72 of Yeast Iso-1-cytochrome c Depends on the Nature of Loop Deformation

    PubMed Central

    McClelland, Levi J.; Seagraves, Sean M.; Khan, Khurshid Alam; Cherney, Melisa M.; Bandi, Swati; Culbertson, Justin E.; Bowler, Bruce E.

    2015-01-01

    Trimethyllysine 72 (tmK72) has been suggested to play a role in sterically constraining the heme crevice dynamics of yeast iso-1-cytochrome c mediated by the Ω-loop D cooperative substructure (residues 70 to 85). A tmK72A mutation causes a gain in peroxidase activity, a function of cytochrome c that is important early in apoptosis. More than one higher energy state is accessible for the Ω-loop D substructure via tier 0 dynamics. Two of these are alkaline conformers mediated by Lys73 and Lys79. In the current work, the effect of the tmK72A mutation on the thermodynamic and kinetic properties of wild type iso-1-cytochrome c (yWT versus WT*) and on variants carrying a K73H mutation (yWT/K73H versus WT*/K73H) is studied. Whereas the tmK72A mutation confers increased peroxidase activity in wild type yeast iso-1-cytochrome c and increased dynamics for formation of a previously studied His79-heme alkaline conformer, the tmK72A mutation speeds return of the His73-heme alkaline conformer to the native state through destabilization of the His73-heme alkaline conformer relative to the native conformer. These opposing behaviors demonstrate that the response of the dynamics of a protein substructure to mutation depends on the nature of the perturbation to the substructure. For a protein substructure which mediates more than one function of a protein through multiple non-native structures, a mutation could change the partitioning between these functions. The current results suggest that the tier 0 dynamics of Ω-loop D that mediates peroxidase activity has similarities to the tier 0 dynamics required to form the His79-heme alkaline conformer. PMID:25948392

  1. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    PubMed

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  2. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  3. FUS and TARDBP but Not SOD1 Interact in Genetic Models of Amyotrophic Lateral Sclerosis

    PubMed Central

    Kabashi, Edor; Bercier, Valérie; Lissouba, Alexandra; Liao, Meijiang; Brustein, Edna; Rouleau, Guy A.; Drapeau, Pierre

    2011-01-01

    Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS–related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS–related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1. PMID:21829392

  4. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Bercier, Valérie; Lissouba, Alexandra; Liao, Meijiang; Brustein, Edna; Rouleau, Guy A; Drapeau, Pierre

    2011-08-01

    Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.

  5. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status

    PubMed Central

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G.; Wong, Kwok-Kin; Khuri, Fadlo R.; Zhou, Wei; Shin, Dong M.

    2017-01-01

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 (krasG12D/wt/p53-/-/lkb1wt/wt) and t2 (krasG12D/wt/p53-/-/lkb1-/-) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer. PMID:28938614

  6. A fragment substitution in the promoter of CsHDZIV11/CsGL3 is responsible for fruit spine density in cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Haiyang; Wang, Lina; Zheng, Shuangshuang; Liu, Zezhou; Wu, Xiaoqin; Gao, Zhihui; Cao, Chenxing; Li, Qiang; Ren, Zhonghai

    2016-07-01

    The indel in the promoter of CsHDZIV11 co-segregates with fruit spine density and could be used for molecular breeding in cucumber. Fruit spine density is an important quality trait for marketing in cucumber (Cucumis sativus L.). However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, we isolated a mutant, few spines 1 (fs1), from CNS2 (wild type, WT), a North China-type cucumber with a high density of fruit spines. Genetic analysis showed that fs1 was controlled by a single recessive Mendelian factor. Bulked segregant analysis combined with genome resequencing were used for mapping fs1 in the F2 population derived from a cross between the fs1 mutant and WT, and it was located on chromosome 6 through association analysis. To develop more polymorphic markers to locate fs1, another F2 population was constructed from the cross between fs1 and 'Chinese long' 9930. Then, fs1 was narrowed down to a 110.4-kb genomic region containing 25 annotated genes. A fragment substitution was identified in the promoter region of Csa6M514870 between fs1 and WT. This fragment in fs1 was also present in wild cucumber. Csa6M514870 encodes a PDF2-related protein, a homeodomain-leucine zipper IV transcription factor (CsHDZIV11/CsGL3) sharing high identity and similarity with proteins related to trichome formation or epidermal cell differentiation. Quantitative reverse-transcription PCR revealed a higher expression level of CsHDZIV11 in young fruits from fs1 compared to WT. A molecular marker based on this indel co-segregated with the spine density. This work provides a solid foundation not only for understanding the molecular mechanism of fruit spine density, but also for molecular breeding in cucumber.

  7. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells.

    PubMed

    Cremers, Niels A J; Lundvig, Ditte M S; van Dalen, Stephanie C M; Schelbergen, Rik F; van Lent, Peter L E M; Szarek, Walter A; Regan, Raymond F; Carels, Carine E; Wagener, Frank A D T G

    2014-10-08

    Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.

  8. The role of adhesins in bacteria motility modification

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  9. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    PubMed

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  10. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice.

    PubMed

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-08-01

    To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.

  11. Type VI Secretion Systems of Erwinia amylovora Contribute to Bacterial Competition, Virulence, and Exopolysaccharide Production.

    PubMed

    Tian, Yanli; Zhao, Yuqiang; Shi, Linye; Cui, Zhongli; Hu, Baishi; Zhao, Youfu

    2017-06-01

    The type VI secretion system (T6SS) plays a major role in mediating interbacterial competition and might contribute to virulence in plant pathogenic bacteria. However, the role of T6SS in Erwinia amylovora remains unknown. In this study, 33 deletion mutants within three T6SS clusters were generated in E. amylovora strain NCPPB1665. Our results showed that all 33 mutants displayed reduced antibacterial activities against Escherichia coli as compared with that of the wild-type (WT) strain, indicating that Erwinia amylovora T6SS are functional. Of the 33 mutants, 19 exhibited reduced virulence on immature pear fruit as compared with that of the WT strain. Among them, 6, 1, and 12 genes belonged to T6SS-1, T6SS-2, and T6SS-3 clusters, respectively. Interestingly, these 19 mutants also produced less amylovoran or levan or both. These findings suggest that E. amylovora T6SS play a role in bacterial competition and virulence possibly by influencing exopolysaccharide production.

  12. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice.

    PubMed

    Lyu, Chuang; Lyu, Gong-Wei; Martinez, Aurora; Shi, Tie-Jun Sten

    2017-01-01

    The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.

  13. Reductive Elimination of H2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme.

    PubMed

    Lukoyanov, Dmitriy; Khadka, Nimesh; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Hoffman, Brian M

    2016-08-24

    We proposed a reductive elimination/oxidative addition (re/oa) mechanism for reduction of N2 to 2NH3 by nitrogenase, based on identification of a freeze-trapped intermediate of the α-70(Val→Ile) MoFe protein as the Janus intermediate that stores four reducing equivalents on FeMo-co as two [Fe-H-Fe] bridging hydrides (denoted E4(4H)). The mechanism postulates that obligatory re of the hydrides as H2 drives reduction of N2 to a state (denoted E4(2N2H)) with a moiety at the diazene (HN═NH) reduction level bound to the catalytic FeMo-co. EPR/ENDOR/photophysical measurements on wild type (WT) MoFe protein now establish this mechanism. They show that a state freeze-trapped during N2 reduction by WT MoFe is the same Janus intermediate, thereby establishing the α-70(Val→Ile) intermediate as a reliable guide to mechanism. Monitoring the Janus state in WT MoFe during N2 reduction under mixed-isotope condition, H2O buffer/D2, and the converse, establishes that the bridging hydrides/deuterides do not exchange with solvent during enzymatic turnover, thereby solving longstanding puzzles. Relaxation of E4(2N2H) to the WT resting-state is shown to occur via oa of H2 and release of N2 to form Janus, followed by sequential release of two H2, demonstrating the kinetic reversibility of the re/oa equilibrium. Relative populations of E4(2N2H)/E4(4H) freeze-trapped during WT turnover furthermore show that the reversible re/oa equilibrium between [E4(4H) + N2] and [E4(2N2H) + H2] is ∼ thermoneutral (ΔreG(0) ∼ -2 kcal/mol), whereas, by itself, hydrogenation of N2(g) is highly endergonic. These findings demonstrate that (i) re/oa accounts for the historical Key Constraints on mechanism, (ii) that Janus is central to N2 reduction by WT enzyme, which (iii) indeed occurs via the re/oa mechanism. Thus, emerges a picture of the central mechanistic steps by which nitrogenase carries out one of the most challenging chemical transformations in biology.

  14. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasprzak, Kazimierz S.; Diwan, Bhalchandra A.; Kaczmarek, Monika Z.

    2011-11-15

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- < gamma > -lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni{sub 3}S{sub 2}), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strainsmore » of mice differed significantly with regard to (1) Ni{sub 3}S{sub 2} carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni{sub 3}S{sub 2}. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni{sub 3}S{sub 2} in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni{sub 3}S{sub 2} carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni{sub 3}S{sub 2} and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: Black-Right-Pointing-Pointer Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. Black-Right-Pointing-Pointer Gulo-/- mice unable to synthesize ascorbate were used in this study. Black-Right-Pointing-Pointer The reduction in ascorbate levels in Gulo-/- mice increased acute toxicity induced by Ni{sub 3}S{sub 2}. Black-Right-Pointing-Pointer Gulo-/- mice were found to be 40% more susceptible than WT mice to nickel-induced carcinogenesis.« less

  15. Micropropagation of Agave salmiana: Means to Production of Antioxidant and Bioactive Principles

    PubMed Central

    Puente-Garza, César A.; Gutiérrez-Mora, Antonia; García-Lara, Silverio

    2015-01-01

    Maguey, Agave salmiana, is an important plant for the “pulque” beverage and functional food industries; however, it has several constraints for elite and homogeneous plant production. In this study, a micropropagation process was established to generate in vitro plants. The effect of the method on metabolite content and antioxidant (AOX) activity in regenerated plants was evaluated. Young germinated plantlets were micropropagated from axillary shoots using Murashige and Skoog medium supplemented with L2 vitamins, 0.04 mg/L 2,4-dichlorophenoxyacetic acid and 10 mg/L 6-benzylaminopurine. Total soluble sugars from the aqueous fraction and total phenolic acids, total saponins, and AOX activity of the methanol fraction were determined in wild-type (WT) plants, in in vitro (IN) plants, and ex vitro acclimated plants (EN). The results showed that IN plants have a 50% lower soluble sugar content compared to WT, and EN. The total phenolic acids content was at least 30% higher in micropropagated (IN) and regenerated (EN) plants compared to WT. The total saponin content in IN, and EN plants was 36 and 25 times higher compared to WT. The AOX capacity of IN plants was on average three times higher compared to other treatments. However, no correlation was found between the AOX activity and total phenolic acids or total saponins. A negative and significant correlation (r = –0.927; p = 0.003) was found between the AOX activity and the total soluble sugars content. Micropropagated plants of A. salmiana have a different phytochemical content and bioactivity after the in vitro process compared to WT plants. The micropropagation process could be used as a platform for phytochemical enhancement of Agave plants. PMID:26635850

  16. Micropropagation of Agave salmiana: Means to Production of Antioxidant and Bioactive Principles.

    PubMed

    Puente-Garza, César A; Gutiérrez-Mora, Antonia; García-Lara, Silverio

    2015-01-01

    Maguey, Agave salmiana, is an important plant for the "pulque" beverage and functional food industries; however, it has several constraints for elite and homogeneous plant production. In this study, a micropropagation process was established to generate in vitro plants. The effect of the method on metabolite content and antioxidant (AOX) activity in regenerated plants was evaluated. Young germinated plantlets were micropropagated from axillary shoots using Murashige and Skoog medium supplemented with L2 vitamins, 0.04 mg/L 2,4-dichlorophenoxyacetic acid and 10 mg/L 6-benzylaminopurine. Total soluble sugars from the aqueous fraction and total phenolic acids, total saponins, and AOX activity of the methanol fraction were determined in wild-type (WT) plants, in in vitro (IN) plants, and ex vitro acclimated plants (EN). The results showed that IN plants have a 50% lower soluble sugar content compared to WT, and EN. The total phenolic acids content was at least 30% higher in micropropagated (IN) and regenerated (EN) plants compared to WT. The total saponin content in IN, and EN plants was 36 and 25 times higher compared to WT. The AOX capacity of IN plants was on average three times higher compared to other treatments. However, no correlation was found between the AOX activity and total phenolic acids or total saponins. A negative and significant correlation (r = -0.927; p = 0.003) was found between the AOX activity and the total soluble sugars content. Micropropagated plants of A. salmiana have a different phytochemical content and bioactivity after the in vitro process compared to WT plants. The micropropagation process could be used as a platform for phytochemical enhancement of Agave plants.

  17. Gene constellation of influenza A virus reassortants with high growth phenotype prepared as seed candidates for vaccine production.

    PubMed

    Fulvini, Andrew A; Ramanunninair, Manojkumar; Le, Jianhua; Pokorny, Barbara A; Arroyo, Jennifer Minieri; Silverman, Jeanmarie; Devis, Rene; Bucher, Doris

    2011-01-01

    Influenza A virus vaccines undergo yearly reformulations due to the antigenic variability of the virus caused by antigenic drift and shift. It is critical to the vaccine manufacturing process to obtain influenza A seed virus that is antigenically identical to circulating wild type (wt) virus and grows to high titers in embryonated chicken eggs. Inactivated influenza A seasonal vaccines are generated by classical reassortment. The classical method takes advantage of the ability of the influenza virus to reassort based on the segmented nature of its genome. In ovo co-inoculation of a high growth or yield (hy) donor virus and a low yield wt virus with antibody selection against the donor surface antigens results in progeny viruses that grow to high titers in ovo with wt origin hemagglutinin (HA) and neuraminidase (NA) glycoproteins. In this report we determined the parental origin of the remaining six genes encoding the internal proteins that contribute to the hy phenotype in ovo. The genetic analysis was conducted using reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP). The characterization was conducted to determine the parental origin of the gene segments (hy donor virus or wt virus), gene segment ratios and constellations. Fold increase in growth of reassortant viruses compared to respective parent wt viruses was determined by hemagglutination assay titers. In this study fifty-seven influenza A vaccine candidate reassortants were analyzed for the presence or absence of correlations between specific gene segment ratios, gene constellations and hy reassortant phenotype. We found two gene ratios, 6:2 and 5:3, to be the most prevalent among the hy reassortants analyzed, although other gene ratios also conferred hy in certain reassortants.

  18. Gene Constellation of Influenza A Virus Reassortants with High Growth Phenotype Prepared as Seed Candidates for Vaccine Production

    PubMed Central

    Fulvini, Andrew A.; Ramanunninair, Manojkumar; Le, Jianhua; Pokorny, Barbara A.; Arroyo, Jennifer Minieri; Silverman, Jeanmarie; Devis, Rene; Bucher, Doris

    2011-01-01

    Background Influenza A virus vaccines undergo yearly reformulations due to the antigenic variability of the virus caused by antigenic drift and shift. It is critical to the vaccine manufacturing process to obtain influenza A seed virus that is antigenically identical to circulating wild type (wt) virus and grows to high titers in embryonated chicken eggs. Inactivated influenza A seasonal vaccines are generated by classical reassortment. The classical method takes advantage of the ability of the influenza virus to reassort based on the segmented nature of its genome. In ovo co-inoculation of a high growth or yield (hy) donor virus and a low yield wt virus with antibody selection against the donor surface antigens results in progeny viruses that grow to high titers in ovo with wt origin hemagglutinin (HA) and neuraminidase (NA) glycoproteins. In this report we determined the parental origin of the remaining six genes encoding the internal proteins that contribute to the hy phenotype in ovo. Methodology The genetic analysis was conducted using reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP). The characterization was conducted to determine the parental origin of the gene segments (hy donor virus or wt virus), gene segment ratios and constellations. Fold increase in growth of reassortant viruses compared to respective parent wt viruses was determined by hemagglutination assay titers. Significance In this study fifty-seven influenza A vaccine candidate reassortants were analyzed for the presence or absence of correlations between specific gene segment ratios, gene constellations and hy reassortant phenotype. We found two gene ratios, 6∶2 and 5∶3, to be the most prevalent among the hy reassortants analyzed, although other gene ratios also conferred hy in certain reassortants. PMID:21695145

  19. TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups-A meta-analysis of aggregate data.

    PubMed

    Vuong, Huy Gia; Altibi, Ahmed M A; Duong, Uyen N P; Ngo, Hanh T T; Pham, Thong Quang; Chan, Aden Ka-Yin; Park, Chul-Kee; Fung, Kar-Ming; Hassell, Lewis

    2017-12-01

    The clinical significance of telomerase reverse transcriptase (TERT) promoter mutation in glioma remains unclear. The aim of our meta-analysis is to investigate the prognostic impact TERT promoter mutation in glioma patients and its interaction with other molecular markers, particularly Isocitrate Dehydrogenase (IDH) mutation from aggregate level data. Relevant articles were searched in four electronic databases including PubMed, Scopus, Web of Science and Virtual Health Library. Pooled HRs were calculated using random effect model weighted by inverse variance method. From 1010 studies, we finally included 28 studies with 11519 patients for meta-analyses. TERT mutation is significantly associated with compromised overall survival (OS) (HR=1.38; 95% CI=1.15-1.67) and progression-free survival (PFS) (HR=1.31; 95% CI=1.06-1.63) in glioma patients. In studying its reaction with IDH, TERT promoter mutation was associated with reduced OS in both IDH-mutant (IDH-mut) and IDH-wild type (IDH-wt) glioblastomas but shown to have inverse effects on IDH-mut and IDH-wt grade II/III tumors. Our analysis categorized WHO grade II/III glioma patients into four distinct survival subgroups with descending survival as follow: TERT-mut/IDH-mut≫TERT-wt/IDH-mut≫TERT-wt/IDH-wt≫TERT-mut/IDH-wt. Prognostic value of TERT promoter mutations in gliomas is dependent on tumor grade and the IDH mutational status. With the same tumor grade in WHO grade II and III tumors and the same IDH mutation status, TERT-mut is a prognostic factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice

    PubMed Central

    Devos, Fien C.; Pollaris, Lore; Cremer, Jonathan; Seys, Sven; Hoshino, Tomoaki; Ceuppens, Jan; Talavera, Karel; Nemery, Benoit; Hoet, Peter H. M.

    2017-01-01

    Background While the importance of the Th2 cytokine IL-13 as a central mediator of airway hyperreactivity (AHR) has been described in allergic protein-induced asthma, this has never been investigated in chemical-induced asthma. Objective We examined the importance of IL-13 in a mouse model of chemical-induced AHR, using toluene-2,4-diisocyanate (TDI). Methods In a first set-up, wild type (WT) and IL-13 knockout (KO) C57Bl/6 mice were dermally treated on days 1 and 8 with 1% TDI or vehicle (acetone/olive oil) on both ears. On day 15, mice received an intranasal instillation with 0.1% TDI or vehicle. In a second set-up, WT mice sensitized with 1% TDI or vehicle, received i.v. either anti-IL-13 or control antibody prior to the intranasal challenge. Results TDI-sensitized and TDI-challenged WT mice showed AHR to methacholine, in contrast to TDI-sensitized and TDI-challenged IL-13 KO mice, which also showed lower levels of total serum IgE. TDI-sensitized and TDI-challenged IL-13 KO mice had lower numbers of T-cells in the auricular lymph nodes. TDI-treated WT mice, receiving anti-IL-13, showed no AHR, in contrast to those receiving control antibody, despite increased levels of IgE. Anti-IL-13 treatment in TDI-treated WT mice resulted in lower levels of serum IL-13, but did not induce changes in T- and B-cell numbers, and in the cytokine production profile. Conclusion and clinical relevance We conclude that IL-13 plays a critical role in the effector phase of chemical-induced, immune-mediated AHR. This implicates that anti-IL-13 treatment could have a beneficial effect in patients with this asthma phenotype. PMID:28704401

  1. The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis

    PubMed Central

    Manoury, Boris; Nenan, Soazig; Leclerc, Olivier; Guenon, Isabelle; Boichot, Elisabeth; Planquois, Jean-Michel; Bertrand, Claude P; Lagente, Vincent

    2005-01-01

    Background Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway. Methods Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal. Results BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains. Conclusions These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis. PMID:15663794

  2. The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina

    PubMed Central

    Xiong, Wei-Hong; Pang, Ji-Jie; Pennesi, Mark E.; Duvoisin, Robert M.; Wu, Samuel M.; Morgans, Catherine W.

    2015-01-01

    Purpose Protein kinase C α (PKCα) is abundantly expressed in rod bipolar cells (RBCs) in the retina, yet the physiological function of PKCα in these cells is not well understood. To elucidate the role of PKCα in visual processing in the eye, we examined the effect of genetic deletion of PKCα on the ERG and on RBC light responses in the mouse. Methods Immunofluorescent labeling was performed on wild-type (WT), TRPM1 knockout, and PKCα knockout (PKC-KO) retina. Scotopic and photopic ERGs were recorded from WT and PKC-KO mice. Light responses of RBCs were measured using whole-cell recordings in retinal slices from WT and PKC-KO mice. Results Protein kinase C alpha expression in RBCs is correlated with the activity state of the cell. Rod bipolar cells dendrites are a major site of PKCα phosphorylation. Electroretinogram recordings indicated that loss of PKCα affects the scotopic b-wave, including a larger peak amplitude, longer implicit time, and broader width of the b-wave. There were no differences in the ERG a- or c-wave between PKCα KO and WT mice, indicating no measurable effect of PKCα in photoreceptors or the RPE. The photopic ERG was unaffected consistent with the lack of detectable PKCα in cone bipolar cells. Whole-cell recordings from RBCs in PKC-KO retinal slices revealed that, compared with WT, RBC light responses in the PKC-KO retina are delayed and of longer duration. Conclusions Protein kinase C alpha plays an important modulatory role in RBCs, regulating both the peak amplitude and temporal properties of the RBC light response in the rod visual pathway. PMID:26230760

  3. Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells

    PubMed Central

    Liu, Chunming; Sherpa, Tshering

    2013-01-01

    Purpose To determine if achromatopsia associated F525N and T383fsX mutations in the CNGB3 subunit of cone photoreceptor cyclic nucleotide-gated (CNG) channels increases susceptibility to cell death in photoreceptor-derived cells. Methods Photoreceptor-derived 661W cells were transfected with cDNA encoding wild-type (WT) CNGA3 subunits plus WT or mutant CNGB3 subunits, and incubated with the membrane-permeable CNG channel activators 8-(4-chlorophenylthio) guanosine 3′,5′-cyclic monophosphate (CPT-cGMP) or CPT-adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Cell viability under these conditions was determined by measuring lactate dehydrogenase release. Channel ligand sensitivity was calibrated by patch-clamp recording after expression of WT or mutant channels in Xenopus oocytes. Results Coexpression of CNGA3 with CNGB3 subunits containing F525N or T383fsX mutations produced channels exhibiting increased apparent affinity for CPT-cGMP compared to WT channels. Consistent with these effects, cytotoxicity in the presence of 0.1 μM CPT-cGMP was enhanced relative to WT channels, and the increase in cell death was more pronounced for the mutation with the largest gain-of-function effect on channel gating, F525N. Increased susceptibility to cell death was prevented by application of the CNG channel blocker L-cis-diltiazem. Increased cytotoxicity was also found to be dependent on the presence of extracellular calcium. Conclusions These results indicate a connection between disease-associated mutations in cone CNG channel subunits, altered CNG channel-activation properties, and photoreceptor cytotoxicity. The rescue of cell viability via CNG channel block or removal of extracellular calcium suggests that cytotoxicity in this model depends on calcium entry through hyperactive CNG channels. PMID:23805033

  4. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway

    PubMed Central

    Luo, Ming; Cai, Wangqing; Tu, Yalin; Pi, Rongbiao; Liu, Anmin

    2017-01-01

    Purpose Numerous studies have reported that glioma patients with isocitrate dehydrogenase 1(IDH1) R132H mutation are sensitive to temozolomide treatment. However, the mechanism of IDH1 mutations on the chemosensitivity of glioma remains unclear. In this study, we investigated the role and the potential mechanism of Nrf2 in IDH1 R132H-mediated drug resistance. Methods Wild type IDH1 (R132H-WT) and mutant IDH1 (R132H) plasmids were constructed. Stable U87 cells and U251 cells overexpressing IDH1 were generated. Phenotypic differences between IDH1-WT and IDH1 R132H overexpressing cells were evaluated using MTT, cell colony formation assay, scratch test assay and flow cytometry. Expression of IDH1 and its associated targets, nuclear factor-erythroid 2-related factor 2 (Nrf2), NAD(P)H quinine oxidoreductase 1 (NQO1), multidrug resistant protein 1 (MRP1) and p53 were analyzed. Results The IDH1 R132H overexpressing cells were more sensitive to temozolomide than WT and the control, and Nrf2 was significantly decreased in IDH1 R132H overexpressing cells. We found that knocking down Nrf2 could decrease resistance to temozolomide. The nuclear translocation of Nrf2 in IDH1 R132H overexpressing cells was lower than the WT and the control groups after temozolomide treatment. When compared with WT cells, NQO1 expression was reduced in IDH1 R132H cells, especially after temozolomide treatment. P53 was involved in the resistance mechanism of temozolomide mediated by Nrf2 and NQO1. Conclusions Nrf2 played an important role in IDH1 R132H-mediated drug resistance. The present study provides new insight for glioma chemotherapy with temozolomide. PMID:28427200

  5. Reduction of virion-associated σ1 fibers on oncolytic reovirus variants promotes adaptation toward tumorigenic cells.

    PubMed

    Mohamed, Adil; Teicher, Carmit; Haefliger, Sarah; Shmulevitz, Maya

    2015-04-01

    Wild-type mammalian orthoreovirus serotype 3 Dearing (T3wt) is nonpathogenic in humans but preferentially infects and kills cancer cells in culture and demonstrates promising antitumor activity in vivo. Using forward genetics, we previously isolated two variants of reovirus, T3v1 and T3v2, with increased infectivity toward a panel of cancer cell lines and improved in vivo oncolysis in a murine melanoma model relative to that of T3wt. Our current study explored how mutations in T3v1 and T3v2 promote infectivity. Reovirions contain trimers of σ1, the reovirus cell attachment protein, at icosahedral capsid vertices. Quantitative Western blot analysis showed that purified T3v1 and T3v2 virions had ∼ 2- and 4-fold-lower levels of σ1 fiber than did T3wt virions. Importantly, using RNA interference to reduce σ1 levels during T3wt production, we were able to generate wild-type reovirus with reduced levels of σ1 per virion. As σ1 levels were reduced, virion infectivity increased by 2- to 5-fold per cell-bound particle, demonstrating a causal relationship between virion σ1 levels and the infectivity of incoming virions. During infection of tumorigenic L929 cells, T3wt, T3v1, and T3v2 uncoated the outer capsid proteins σ3 and μ1C at similar rates. However, having started with fewer σ1 molecules, a complete loss of σ1 was achieved sooner for T3v1 and T3v2. Distinct from intracellular uncoating, chymotrypsin digestion, as a mimic of natural enteric infection, resulted in more rapid σ3 and μ1C removal, unique disassembly intermediates, and a rapid loss of infectivity for T3v1 and T3v2 compared to T3wt. Optimal infectivity toward natural versus therapeutic niches may therefore require distinct reovirus structures and σ1 levels. Wild-type reovirus is currently in clinical trials as a potential cancer therapy. Our molecular studies on variants of reovirus with enhanced oncolytic activity in vitro and in vivo now show that distinct reovirus structures promote adaptation toward cancer cells and away from conditions that mimic natural routes of infection. Specifically, we found that reovirus particles with fewer molecules of the cell attachment protein σ1 became more infectious toward transformed cells. Reduced σ1 levels conferred a benefit to incoming particles only, resulting in an earlier depletion of σ1 and a higher probability of establishing productive infection. Conversely, reovirus variants with fewer σ1 molecules showed reduced stability and infectivity and distinct disassembly when exposed to conditions that mimic natural intestinal proteolysis. These findings support a model where the mode of infection dictates the precise optimum of reovirus structure and provide a molecular rationale for considering alternative reovirus structures during oncolytic therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis).

    PubMed

    Yu, Keqin; Xu, Qiang; Da, Xinlei; Guo, Fei; Ding, Yuduan; Deng, Xiuxin

    2012-01-10

    The transcriptome of the fruit pulp of the sweet orange variety Anliu (WT) and that of its red fleshed mutant Hong Anliu (MT) were compared to understand the dynamics and differential expression of genes expressed during fruit development and ripening. The transcriptomes of WT and MT were sampled at four developmental stages using an Illumina sequencing platform. A total of 19,440 and 18,829 genes were detected in MT and WT, respectively. Hierarchical clustering analysis revealed 24 expression patterns for the set of all genes detected, of which 20 were in common between MT and WT. Over 89% of the genes showed differential expression during fruit development and ripening in the WT. Functional categorization of the differentially expressed genes revealed that cell wall biosynthesis, carbohydrate and citric acid metabolism, carotenoid metabolism, and the response to stress were the most differentially regulated processes occurring during fruit development and ripening. A description of the transcriptomic changes occurring during fruit development and ripening was obtained in sweet orange, along with a dynamic view of the gene expression differences between the wild type and a red fleshed mutant. © 2012 Yu et al; licensee BioMed Central Ltd.

  7. Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition.

    PubMed

    Facelli, Evelina; Smith, Sally E; Facelli, José M; Christophersen, Helle M; Andrew Smith, F

    2010-03-01

    *We studied the effects of two arbuscular mycorrhizal (AM) fungi, singly or together, on the outcome of competition between a host (tomato cultivar, wild-type (WT)) and a surrogate nonhost (rmc, a mycorrhiza-defective mutant of WT) as influenced by the contributions of the direct and AM phosphorus (P) uptake pathways to plant P. *We grew plants singly or in pairs of the same or different genotypes (inoculated or not) in pots containing a small compartment with (32)P-labelled soil accessible to AM fungal hyphae and determined expression of orthophosphate (P(i)) transporter genes involved in both AM and direct P uptake. *Gigaspora margarita increased WT competitive effects on rmc. WT and rmc inoculated with Glomus intraradices both showed growth depressions, which were mitigated when G. margarita was present. Orthophosphate transporter gene expression and (32)P transfer showed that the AM pathway operated in single inoculated WT, but not in rmc. *Effects of AM fungi on plant competition depended on the relative contributions of AM and direct pathways of P uptake. Glomus intraradices reduced the efficiency of direct uptake in both WT and rmc. The two-fungus combination showed that interactions between fungi are important in determining outcomes of plant competition.

  8. Persistence of a sugar-rejecting cockroach genotype under various dietary regimes

    NASA Astrophysics Data System (ADS)

    Jensen, Kim; Wada-Katsumata, Ayako; Schal, Coby; Silverman, Jules

    2017-04-01

    Glucose-aversion is a heritable trait that evolved in a number of German cockroach (Blattella germanica L.) populations in response to strong selection with glucose-containing insecticide baits. However, in the absence of glucose-containing bait, glucose-averse (GA) cockroaches have lower performance than wild-type (WT) cockroaches in several fitness-determining traits. We allocated 48 caged populations initiated with homozygous GA and WT adults to four dietary treatments consisting of either pure rodent chow, rodent chow mixed to yield a content of either 20% glucose or 20% fructose, or a treatment consisting of choice between the 20% glucose- and the 20% fructose-containing food. After 6 months we found significantly higher frequency of WT individuals in populations restricted to the 20% glucose food, and after 12 months all dietary treatments contained significantly more WT individuals than expected. In accompanying experiments, we found lower survival and longer development time of GA nymphs restricted to glucose-containing food. We furthermore found evidence for assortative mating of females with males from their own genotype, with significant differences within WT cockroaches. Our study shows experimental evidence that within heterogeneous populations, WT German cockroaches will over time prevail in abundance over GA individuals, even when glucose is not a dietary component.

  9. Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas.

    PubMed

    Golinska, Monika; Troy, Helen; Chung, Yuen-Li; McSheehy, Paul M; Mayr, Manuel; Yin, Xiaoke; Ly, Lucy; Williams, Kaye J; Airley, Rachel E; Harris, Adrian L; Latigo, John; Perumal, Meg; Aboagye, Eric O; Perrett, David; Stubbs, Marion; Griffiths, John R

    2011-05-25

    HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.

  10. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    PubMed

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-05

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms. (c) 2006 Wiley Periodicals, Inc.

  11. Lack of angiopoietin-like-2 expression limits the metabolic stress induced by a high-fat diet and maintains endothelial function in mice.

    PubMed

    Yu, Carol; Luo, Xiaoyan; Farhat, Nada; Daneault, Caroline; Duquette, Natacha; Martel, Cécile; Lambert, Jean; Thorin-Trescases, Nathalie; Rosiers, Christine Des; Thorin, Eric

    2014-08-15

    Angiopoietin-like-2 (angptl2) is produced by several cell types including endothelial cells, adipocytes and macrophages, and contributes to the inflammatory process in cardiovascular diseases. We hypothesized that angptl2 impairs endothelial function, and that lowering angptl2 levels protects the endothelium against high-fat diet (HFD)-induced fat accumulation and hypercholesterolemia. Acute recombinant angptl2 reduced (P<0.05) acetylcholine-mediated vasodilation of isolated wild-type (WT) mouse femoral artery, an effect reversed (P<0.05) by the antioxidant N-acetylcysteine. Accordingly, in angptl2 knockdown (KD) mice, ACh-mediated endothelium-dependent vasodilation was greater (P<0.05) than in WT mice. In arteries from KD mice, prostacyclin contributed to the overall dilation unlike in WT mice. After a 3-month HFD, overall vasodilation was not altered, but dissecting out the endothelial intrinsic pathways revealed that NO production was reduced in arteries isolated from HFD-fed WT mice (P<0.05), while NO release was maintained in KD mice. Similarly, endothelium-derived hyperpolarizing factor (EDHF) was preserved in mesenteric arteries from HFD-fed KD mice but not in those from WT mice. Finally, the HFD increased (P<0.05) total cholesterol-to-high-density lipoprotein ratios, low-density lipoprotein-to-high-density lipoprotein ratios, and leptin levels in WT mice only, while glycemia remained similar in the 2 strains. KD mice displayed less triglyceride accumulation in the liver (P<0.05 versus WT), and adipocyte diameters in mesenteric and epididymal white adipose tissues were smaller (P<0.05) in KD than in WT fed an HFD, while inflammatory gene expression increased (P<0.05) in the fat of WT mice only. Lack of angptl2 expression limits the metabolic stress induced by an HFD and maintains endothelial function in mice. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. The Metallothionein-Null Phenotype Is Associated with Heightened Sensitivity to Lead Toxicity and an Inability to Form Inclusion Bodies

    PubMed Central

    Qu, Wei; Diwan, Bhalchandra A.; Liu, Jie; Goyer, Robert A.; Dawson, Tammy; Horton, John L.; Cherian, M. George; Waalkes, Michael P.

    2002-01-01

    Susceptibility to lead toxicity in MT-null mice and cells, lacking the major forms of the metallothionein (MT) gene, was compared to wild-type (WT) mice or cells. Male MT-null and WT mice received lead in the drinking water (0 to 4000 ppm) for 10 to 20 weeks. Lead did not alter body weight in any group. Unlike WT mice, lead-treated MT-null mice showed dose-related nephromegaly. In addition, after lead exposure renal function was significantly diminished in MT-null mice in comparison to WT mice. MT-null mice accumulated less renal lead than WT mice and did not form lead inclusion bodies, which were present in the kidneys of WT mice. In gene array analysis, renal glutathione S-transferases were up-regulated after lead in MT-null mice only. In vitro studies on fibroblast cell lines derived from MT-null and WT mice showed that MT-null cells were much more sensitive to lead cytotoxicity. MT-null cells accumulated less lead and formed no inclusion bodies. The MT-null phenotype seems to preclude lead-induced inclusion body formation and increases lead toxicity at the organ and cellular level despite reducing lead accumulation. This study reveals important roles for MT in chronic lead toxicity, lead accumulation, and inclusion body formation. PMID:11891201

  13. Association of swine vertnin (VRTN) gene with production traits in Duroc pigs improved using a closed nucleus breeding system.

    PubMed

    Hirose, Kensuke; Mikawa, Satoshi; Okumura, Naohiko; Noguchi, Go; Fukawa, Kazuo; Kanaya, Naoe; Mikawa, Ayumi; Arakawa, Aisaku; Ito, Tetsuya; Hayashi, Yoichi; Tachibana, Fumio; Awata, Takashi

    2013-03-01

    Vertnin (VRTN) is involved in the variation of vertebral number in pigs and it is located on Sus scrofa chromosome 7. Vertebral number is related to body size in pigs, and many reports have suggested presence of an association between body length (BL) and meat production traits. Therefore, we analyzed the relationship between the VRTN genotype and the production and body composition traits in purebred Duroc pigs. Intramuscular fat content (IMF) in the Longissimus muscle was significantly associated with the VRTN genotype. The mean IMF of individuals with the wild-type genotype (Wt/Wt) (5.22%) was greater than that of individuals with the Wt/Q (4.99%) and Q/Q genotypes (4.79%). In addition, a best linear unbiased predictor of multiple traits animal model showed that the Wt allele had a positive effect on the IMF breeding value. No associations were observed between the VRTN genotype and other production traits. The VRTN genotype was related to BL. The Q/Q genotype individuals (100.0 cm) were longer than individuals with the Wt/Q (99.5 cm) and Wt/Wt genotypes (98.9 cm). These results suggest that in addition to the maintenance of an appropriate backfat thickness value, VRTN has the potential to act as a genetic marker of IMF. © 2012 Japanese Society of Animal Science.

  14. Type III Neuregulin 1 Is Required for Multiple Forms of Excitatory Synaptic Plasticity of Mouse Cortico-Amygdala Circuits

    PubMed Central

    Emmetsberger, Jaime; Talmage, David A.; Role, Lorna W.

    2013-01-01

    The amygdala plays an important role in the formation and storage of memories associated with emotional events. The cortical glutamatergic inputs onto pyramidal neurons in the basolateral nucleus of the amygdala (BLA) contribute to this process. As the interaction between neuregulin 1 (Nrg1) and its ErbB receptors has been implicated in the pathological mechanisms of schizophrenia, loss of Nrg1 may disrupt cortical–amygdala neural circuits, resulting in altered processing of salient memories. Here we show that Nrg1 is critical in multiple forms of plasticity of cortical projections to pyramidal neurons of the BLA. The miniature EPSCs in Nrg1 heterozygous animals have a faster time constant of decay and evoked synaptic currents have a smaller NMDA/AMPA ratio than those recorded in wild-type (WT) littermates. Both high-frequency electrical stimulation of cortical inputs and θ burst stimulation combined with nicotine exposure results in long-lasting potentiation in WT animals. However, the same manipulations have little to no effect on glutamatergic synaptic plasticity in the BLA from Nrg1 heterozygous mice. Comparison of WT, Nrg1 heterozygous animals and α7 nicotinic receptor heterozygous mice reveals that the sustained phase of potentiation of glutamatergic transmission after θ burst stimulation with or without nicotine only occurs in the WT mice. Together, these findings support the idea that type III Nrg1 is essential to multiple aspects of the modulation of excitatory plasticity at cortical–BLA synapses. PMID:23739962

  15. Altered Macrophage and Dendritic Cell Response in Mif−/− Mice Reveals a Role of Mif for Inflammatory-Th1 Response in Type 1 Diabetes

    PubMed Central

    Vazquez-Mendoza, Alicia

    2016-01-01

    Macrophage migration inhibitory factor (Mif) is highly expressed in type 1 diabetes mellitus (T1DM). However, there is limited information about how Mif influences the activation of macrophages (Mφ) and dendritic cells (DC) in T1DM. To address this issue, we induced T1DM by administering multiple low doses of streptozotocin (STZ) to Mif−/− or wild-type (Wt) BALB/c mice. We found that Mif−/− mice treated with STZ (Mif−/−STZ) developed lower levels of hyperglycemia, inflammatory cytokines, and specific pancreatic islet antigen- (PIAg-) IgG and displayed reduced cellular infiltration into the pancreatic islets compared to Wt mice treated with STZ (WtSTZ). Moreover, Mφ and DC from Mif−/−STZ displayed lower expression of MHC-II, costimulatory molecules CD80, CD86, and CD40, Toll-like receptor- (TLR-) 2, and TLR-4 than WtSTZ. These changes were associated with a reduced capacity of Mφ and DC from Mif−/−STZ to induce proliferation in ovalbumin-specific T cells. All the deficiencies observed in Mif−/−STZ were recovered by exogenous administration of recombinant Mif. These findings suggest that Mif plays a role in the molecular mechanisms of Mφ and DC activation and drives T cell responses involved in the pathology of T1DM. Therefore, Mif is a potential therapeutic target to reduce the pathology of T1DM. PMID:27699180

  16. Altered Macrophage and Dendritic Cell Response in Mif-/- Mice Reveals a Role of Mif for Inflammatory-Th1 Response in Type 1 Diabetes.

    PubMed

    Sánchez-Zamora, Yuriko Itzel; Juarez-Avelar, Imelda; Vazquez-Mendoza, Alicia; Hiriart, Marcia; Rodriguez-Sosa, Miriam

    2016-01-01

    Macrophage migration inhibitory factor (Mif) is highly expressed in type 1 diabetes mellitus (T1DM). However, there is limited information about how Mif influences the activation of macrophages (M φ ) and dendritic cells (DC) in T1DM. To address this issue, we induced T1DM by administering multiple low doses of streptozotocin (STZ) to Mif-/- or wild-type (Wt) BALB/c mice. We found that Mif-/- mice treated with STZ ( Mif-/- STZ) developed lower levels of hyperglycemia, inflammatory cytokines, and specific pancreatic islet antigen- (PIAg-) IgG and displayed reduced cellular infiltration into the pancreatic islets compared to Wt mice treated with STZ (WtSTZ). Moreover, M φ and DC from Mif-/- STZ displayed lower expression of MHC-II, costimulatory molecules CD80, CD86, and CD40, Toll-like receptor- (TLR-) 2, and TLR-4 than WtSTZ. These changes were associated with a reduced capacity of M φ and DC from Mif-/- STZ to induce proliferation in ovalbumin-specific T cells. All the deficiencies observed in Mif-/- STZ were recovered by exogenous administration of recombinant Mif. These findings suggest that Mif plays a role in the molecular mechanisms of M φ and DC activation and drives T cell responses involved in the pathology of T1DM. Therefore, Mif is a potential therapeutic target to reduce the pathology of T1DM.

  17. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome

    PubMed Central

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D.

    2018-01-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aorta wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1mgR/mgR mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy (AFM) was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1mgR/mgR tissues, whereas the media layer of mutant aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, mutant mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS. PMID:27090893

  18. A collagen α2(I) mutation impairs healing after experimental myocardial infarction.

    PubMed

    Hofmann, Ulrich; Bonz, Andreas; Frantz, Stefan; Hu, Kai; Waller, Christiane; Roemer, Katrin; Wolf, Jürgen; Gattenlöhner, Stefan; Bauersachs, Johann; Ertl, Georg

    2012-01-01

    Collagen breakdown and de novo synthesis are important processes during early wound healing after myocardial infarction (MI). We tested the hypothesis that collagen I, the main constituent of the extracellular matrix, affects wound healing after MI. The osteogenesis imperfecta mouse (OIM), lacking procollagen-α2(I) expression, represents a model of the type III form of the disease in humans. Homozygous (OIM/OIM), heterozygous (OIM/WT), and wild-type (WT/WT) mice were subjected to a permanent myocardial infarction protocol or sham surgery. Baseline functional and geometrical parameters determined by echocardiography did not differ between genotypes. After MI but not after sham surgery, OIM/OIM animals exhibited significantly increased mortality, due to early ventricular rupture between day 3 and 7. Echocardiography at day 1 demonstrated increased left ventricular dilation in OIM/OIM animals. Less collagen I mRNA within the infarct area was found in OIM/OIM animals. At 2 days after MI, MMP-9 expression in the infarct border zone was higher in OIM/OIM than in WT/WT animals. Increased granulocyte infiltration into the infarct border zone occurred in OIM/OIM animals. Neither granulocyte depletion nor MMP inhibition reduced mortality in OIM/OIM animals. In this murine model, deficiency of collagen I leads to a myocardial wound-healing defect. Both structural alterations within pre-existing collagen matrix and impaired collagen de novo expression contribute to a high rate of early myocardial rupture after MI. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    PubMed

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  20. Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium.

    PubMed

    Platt, James L; Kent, Nicholas A; Kimmel, Alan R; Harwood, Adrian J

    2017-04-01

    Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states. © 2017 Platt et al.; Published by Cold Spring Harbor Laboratory Press.

  1. MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis

    PubMed Central

    Silver, Adam C.; Dunne, Dana W.; Zeiss, Caroline J.; Bockenstedt, Linda K.; Radolf, Justin D.; Salazar, Juan C.; Fikrig, Erol

    2013-01-01

    Research on syphilis, a sexually transmitted infection caused by the non-cultivatable spirochete Treponema pallidum, has been hampered by the lack of an inbred animal model. We hypothesized that Toll-like receptor (TLR)-dependent responses are essential for clearance of T. pallidum and, consequently, compared infection in wild-type (WT) mice and animals lacking MyD88, the adaptor molecule required for signaling by most TLRs. MyD88-deficient mice had significantly higher pathogen burdens and more extensive inflammation than control animals. Whereas tissue infiltrates in WT mice consisted of mixed mononuclear and plasma cells, infiltrates in MyD88-deficient animals were predominantly neutrophilic. Although both WT and MyD88-deficient mice produced antibodies that promoted uptake of treponemes by WT macrophages, MyD88-deficient macrophages were deficient in opsonophagocytosis of treponemes. Our results demonstrate that TLR-mediated responses are major contributors to the resistance of mice to syphilitic disease and that MyD88 signaling and FcR-mediated opsonophagocytosis are linked to the macrophage-mediated clearance of treponemes. PMID:23940747

  2. Pseudoxanthoma elasticum is a metabolic disease.

    PubMed

    Jiang, Qiujie; Endo, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2009-02-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the "metabolic" versus the "PXE cell" hypotheses. We examined a murine PXE model (Abcc6(-/-)) by transplanting muzzle skin from knockout (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, whereas grafting KO mouse muzzle skin onto WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu.

  3. Lignification in transgenics deficient in 4-coumarate 3-hydroxylase (C3H)or the associated hydroxycinnamoyl transferase (HCT)

    Treesearch

    John Ralph; Takuya Akiyama; Hoon Kim; Fachuang Lu; Sally A. Ralph; Clint Chapple; Ramesh B. Nair; Armin Wagner; Fang Chen; M.S. Srinivasa Reddy; Richard A Dixon; Heather D. Coleman; Shawn D. Mansfield

    2006-01-01

    Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in angiosperms massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to the normally dominant syringyl (S) and guaiacyl (G) units. Alfalfa stem levels of up to ~65% P (from wild-type (WT) levels of ~1%) resulting from down-regulation of C3H were measured by...

  4. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets and monkeys

    USDA-ARS?s Scientific Manuscript database

    A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of HP A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (...

  5. An RNAi construct of the P450 gene CYP82D109 leads to increased resistance to Fusarium oxysporum f. sp. vasinfectum (Fov11) and increased feeding by Helicoverpa Zea larvae

    USDA-ARS?s Scientific Manuscript database

    The P450 CYP82D109 gene codes for an early step enzyme in the gossypol pathway in Gossypium. The terminal leaves of RNAi plants had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels compared to wild-type (WT) plants. Previous studies comparing glanded...

  6. The therapeutic effect of tigecycline, unlike that of Ceftazidime, is not influenced by whether the Klebsiella pneumoniae strain produces extended-spectrum β-lactamases in experimental pneumonia in rats.

    PubMed

    Goessens, Wil H F; Mouton, Johan W; Ten Kate, Marian T; Sörgel, Fritz; Kinzig, Martina; Bakker-Woudenberg, Irma A J M

    2013-01-01

    The efficacies of tigecycline and ceftazidime against fatal pneumonia in rats caused by an extended-spectrum β-lactamase (ESBL)-positive Klebsiella pneumoniae strain or its wild-type (WT) progenitor were compared. Ceftazidime at 12.5 or 50 mg/kg of body weight twice daily (b.i.d.) was effective (50% or 100% rat survival) in pneumonia caused by the WT isolate but unsuccessful (100% rat mortality) in pneumonia caused by the ESBL-positive variant. In contrast, tigecycline at 6.25, 12.5, or 25 mg/kg b.i.d. showed dosage-dependent efficacy up to 100% rat survival irrespective of the ESBL character of the infecting organism.

  7. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV.

    PubMed

    Wang, Hong-Han; Chen, Hong-Sheng; Li, Hai-Bo; Zhang, Hua; Mei, Ling-Yun; He, Chu-Feng; Wang, Xing-Wei; Men, Mei-Chao; Jiang, Lu; Liao, Xin-Bin; Wu, Hong; Feng, Yong

    2014-03-15

    Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory-pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate.

    PubMed

    Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste

    2017-09-01

    Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL -/- ) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL -/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.

  9. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance.

    PubMed

    Henstridge, Darren C; Bruce, Clinton R; Drew, Brian G; Tory, Kálmán; Kolonics, Attila; Estevez, Emma; Chung, Jason; Watson, Nadine; Gardner, Timothy; Lee-Young, Robert S; Connor, Timothy; Watt, Matthew J; Carpenter, Kevin; Hargreaves, Mark; McGee, Sean L; Hevener, Andrea L; Febbraio, Mark A

    2014-06-01

    Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised. © 2014 by the American Diabetes Association.

  10. Interleukin-18 gene deletion protects against sepsis-induced cardiac dysfunction by inhibiting PP2A activity.

    PubMed

    Okuhara, Yoshitaka; Yokoe, Shunichi; Iwasaku, Toshihiro; Eguchi, Akiyo; Nishimura, Koichi; Li, Wen; Oboshi, Makiko; Naito, Yoshiro; Mano, Toshiaki; Asahi, Michio; Okamura, Haruki; Masuyama, Tohru; Hirotani, Shinichi

    2017-09-15

    Interleukin-18 (IL-18) neutralization protects against lipopolysaccharide (LPS)-induced injuries, including myocardial dysfunction. However, the mechanism is yet to be fully elucidated. The aim of the present study was to determine whether IL-18 gene deletion prevents sepsis-induced cardiac dysfunction and to elucidate the potential mechanisms underlying IL-18-mediated cardiotoxicity by LPS. Ten-week-old male wild-type (WT) and IL-18 knockout (IL-18 KO) mice were intraperitoneally administered LPS. Serial echocardiography showed better systolic pump function and less left ventricular (LV) dilatation in LPS-treated IL-18 KO mice compared with those in LPS-treated WT mice. LPS treatment significantly decreased the levels of phospholamban (PLN) and Akt phosphorylation in WT mice compared with those in saline-treated WT mice, while the LPS-induced decrease in the phosphorylation levels was attenuated in IL-18 KO mice compared with that in WT mice. IL-18 gene deletion also attenuated an LPS-induced increase of type 2 protein phosphatase 2A (PP2A) activity, a molecule that dephosphorylates PLN and Akt. There was no difference in type 1 protein phosphatase (PP1) activity. To address whether IL-18 affects PLN and Akt phosphorylation via PP2A activation in cardiomyocytes, rat neonatal cardiac myocytes were cultured and stimulated using 100ng/ml of recombinant rat IL-18. Exogenous IL-18 decreased the level of PLN and Akt phosphorylation in cardiomyocytes. PP2A activity but not PP1 activity was increased by IL-18 stimulation in cardiomyocytes. IL-18 plays a pivotal role in advancing sepsis-induced cardiac dysfunction, and the mechanisms underlying IL-18-mediated cardiotoxicity potentially involve the regulation of PLN and Akt phosphorylation through PP2A activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice

    PubMed Central

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-01-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4+ T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4+ T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation. PMID:27686408

  12. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice.

    PubMed

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-03-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4 + T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4 + T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation.

  13. Metallothionein-I/II Knockout Mice Aggravate Mitochondrial Superoxide Production and Peroxiredoxin 3 Expression in Thyroid after Excessive Iodide Exposure

    PubMed Central

    Zhang, Na; Wang, Lingyan; Duan, Qi; Lin, Laixiang; Ahmed, Mohamed; Wang, Tingting; Yao, Xiaomei

    2015-01-01

    Purpose. We aim to figure out the effect of metallothioneins on iodide excess induced oxidative stress in the thyroid. Methods. Eight-week-old MT-I/II knockout (MT-I/II KO) mice and background-matched wild-type (WT) mice were used. Mitochondrial superoxide production and peroxiredoxin (Prx) 3 expression were measured. Results. In in vitro study, more significant increases in mitochondrial superoxide production and Prx 3 expression were detected in the MT-I/II KO groups. In in vivo study, significantly higher concentrations of urinary iodine level were detected in MT-I/II KO mice in 100 HI group. Compared to the NI group, there was no significant difference existing in serum thyroid hormones level in either groups (P > 0.05), while the mitochondrial superoxide production was significantly increased in 100 HI groups with significantly increased LDH activity and decreased relative cell viability. Compared to WT mice, more significant changes were detected in MT-I/II KO mice in 100 HI groups. No significant differences were detected between the NI group and 10 HI group in both the MT-I/II KO and WT mice groups (P > 0.05). Conclusions. Iodide excess in a thyroid without MT I/II protection may result in strong mitochondrial oxidative stress, which further leads to the damage of thyrocytes. PMID:26101557

  14. Lack of β, β-carotene -9’, 10’-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice

    PubMed Central

    Wu, Lei; Guo, Xin; Hartson, Steven D.; Davis, Mary Abby; He, Hui; Medeiros, Denis M.; Wang, Weiqun; Clarke, Stephen L.; Lucas, Edralin; Smith, Brenda J.; von Lintig, Johannes; Lin, Dingbo

    2017-01-01

    Scope β,β-carotene-9’,10’-dioxygenase 2 (BCO2) is a carotenoid cleavage enzyme localized to the inner mitochondrial membrane in mammals. This study was aimed to assess the impact of genetic ablation of BCO2 on hepatic oxidative stress through mitochondrial function in mice. Methods and Results Liver samples from 6 week old male BCO2−/− knockout (KO) and isogenic wild-type (WT) mice were subjected to proteomics and functional activity assays. Compared to the WT, KO mice consumed more food (by 18 %) yet displayed significantly lower body weight (by 12 %). Mitochondrial proteomic results demonstrated that loss of BCO2 was associated with quantitative changes of the mitochondrial proteome mainly shown by suppressed expression of enzymes and/or proteins involved in fatty acid β–oxidation, the tricarboxylic acid cycle, and the electron transport chain (ETC). The mitochondrial basal respiratory rate, proton leak, and ETC complex II capacity were significantly elevated in the livers of KO compared to WT mice. Moreover, elevated reactive oxygen species and increased mitochondrial protein carbonylation were also demonstrated in liver of KO mice. Conclusions Loss of BCO2 induces mitochondrial hyperactivation, mitochondrial stress and changes of the mitochondrial proteome, leading to mitochondrial energy insufficiency. BCO2 appears to be critical for proper hepatic mitochondrial function. PMID:27991717

  15. The role of the heat shock protein Hsp12p in the dynamic response of Saccharomyces cerevisiae to the addition of Congo red.

    PubMed

    Shamrock, Vanessa J; Duval, Jérôme F L; Lindsey, George G; Gaboriaud, Fabien

    2009-05-01

    In this study, we investigate the electrohydrodynamic and nanomechanical characteristics of two Saccharomyces cerevisiae yeast strains, a wild-type (WT) strain and a strain overexpressing (OE) Hsp12p, in the presence and absence of hydrophobic Congo red compound. By combining these two advanced biophysical methods, we demonstrate that Hsp12p proteins are mostly located within a thin layer (c. 10 nm thick) positioned at the external side of the cell wall. However, this Hsp12p-enriched layer does not prevent Congo red from entering the cell wall and from interacting with the chitin therein. The entrance of Congo red within the cell wall is reflected in an increase of the turgor pressure for the OE strain and a decrease of that for the WT strain. It is shown that these opposite trends are consistent with significant modulations of the water content within the cell wall from/to the cytoplasm. These are the result of changes in the hydrophobicity/hydrophilicity balance, as governed by the intertwined local concentration variations of Congo red and Hsp12p across the cell wall. In particular, the decrease of the turgor pressure in the case of WT strain upon addition of Congo red is shown to be consistent with an upregulation of Hsp12p in the close vicinity of the plasma membrane.

  16. Manipulation of sinapine, choline and betaine accumulation in Arabidopsis seed: towards improving the nutritional value of the meal and enhancing the seedling performance under environmental stresses in oilseed crops.

    PubMed

    Huang, Jun; Rozwadowski, Kevin; Bhinu, V S; Schäfer, Ulrike; Hannoufa, Abdelali

    2008-07-01

    Sinapoylcholine (sinapine) is the most abundant antinutritional phenolic compound in cruciferous seeds. The quaternary ammonium compounds, choline, betaine and N,N-dimethylglycine, reside along a biosynthetic pathway linked to the synthesis of membrane phospholipids and neurotransmitters with various biological functions. In chicken, choline intake is required for optimal egg-laying performance and a choline supplement in diet is positively correlated with weight gains. A key step in sinapine biosynthesis is catalyzed by sinapoylglucose: choline sinapoyltransferase (SCT; EC 2.3.1.91) to form an ester linkage with sinapoylglucose and choline. The objective of this work was to reduce the sinapine content and simultaneously enhance free choline levels in cruciferous seeds. We report here the characterization of an Arabidopsis T-DNA insertion mutant lacking SCT activity in the seed. The sct mutant seeds contain less than 1% of sinapine and a more than 2-fold increase in free choline compared with wild type. We further expressed a choline oxidase (COX; EC 1.1.3.17) gene from Arthrobacter pascens in the Arabidopsis sct mutant and wild-type background using a napin gene promoter to convert free choline into betaine, an effective stress-alleviating compound in plants. Betaine was not detected in WT or sct mutant seeds. The sct+COX seeds contain nearly 2-fold greater levels of betaine relative to WT+COX seeds, demonstrating a positive correlation between endogenous choline and betaine production. In contrast, stable comparable levels of free choline were detected between sct+COX and WT+COX plants suggesting choline homeostasis likely prevent high levels of betaine production in the seed of transgenic COX plants.

  17. Improved production of kojic acid by mutagenesis of Aspergillus flavus HAk1 and Aspergillus oryzae HAk2 and their potential antioxidant activity.

    PubMed

    Ammar, Hala A M; Ezzat, Saeid M; Houseny, Asmaa M

    2017-10-01

    Two wild-type (WT) Aspergillus strains, A. flavus HAk1 and A. oryzae HAk2, were selected for kojic acid (KA) biosynthesis. Malt extract sucrose culture medium (MES) was the best culture medium for maximum production of KA. The maximum production of KA has been estimated at pH 4 after 7 days of incubation at 30 °C. Overproduction of KA was attained by mutagenesis of both A. flavus HAk1 and A. oryzae HAk2 through their exposer to different doses of gamma irradiation. The mutant strains (MT) A. flavus HAk1-M2 and A. oryzae HAk2-M26 were the most stable mutants for maximum production of KA through four generations. Yield of KA by A. oryzae HAk2-M26 and A. flavus HAk1-M2 has been 2.03-fold and 1.9-fold, respectively, higher than their wild-type strains. All WT and MT strains were used for KA production from different agricultural raw materials. Apple peel was the best waste for KA production by WT strains of A. flavus and A. oryzae, while orange peel and rice stalk are best material for KA production by MT strains, A. flavus HAk1-M2 and A. oryzae HAk2-M26, respectively. All experimental strains have the ability to produce considerable amounts of KA from sugarcane molasse (SCM) and sugar-beet molasse (SBM). SBM was better than SCM for KA production by all strains. The antioxidant activity of biosynthesizing KA was strongly affected with production conditions, where the highest antioxidant activity of all strains was recorded at the optimum environmental and nutritional conditions for KA production.

  18. TNFR1 signaling resistance associated with female stem cell cytokine production is independent of TNFR2-mediated pathways

    PubMed Central

    Markel, Troy A.; Crisostomo, Paul R.; Wang, Meijing; Wang, Yue; Lahm, Tim; Novotny, Nathan M.; Tan, Jiangning; Meldrum, Daniel R.

    2008-01-01

    End-organ ischemia is a common source of patient morbidity and mortality. Stem cell therapy represents a novel treatment modality for ischemic diseases and may aid injured tissues through the release of beneficial paracrine mediators. Female bone marrow mesenchymal stem cells (MSCs) have demonstrated a relative resistance to detrimental TNF receptor 1 (TNFR1) signaling and are thought to be superior to male stem cells in limiting inflammation. However, it is not known whether sex differences exist in TNF receptor 2 (TNFR2)-ablated MSCs. Therefore, we hypothesized that 1) sex differences would be observed in wild-type (WT) and TNFR2-ablated MSC cytokine signaling, and 2) the production of IL-6, VEGF, and IGF-1 in males, but not females, would be mediated through TNFR2. MSCs were harvested from male and female WT and TNFR2 knockout (TNFR2KO) mice and were subsequently exposed to TNF (50 ng/ml) or LPS (100 ng/ml). After 24 h, supernatants were collected and measured for cytokines. TNF and LPS stimulated WT stem cells to produce cytokines, but sex differences were only seen in IL-6 and IGF-1 after TNF stimulation. Ablation of TNFR2 increased VEGF and IGF-1 production in males compared with wild-type, but no difference was observed in females. Female MSCs from TNFR2KOs produced significantly lower levels of VEGF and IGF-1 compared with male TNFR2KOs. The absence of TNFR2 signaling appears to play a greater role in male MSC cytokine production. As a result, male, but not female stem cell cytokine production may be mediated through TNFR2 signaling cascades. PMID:18685063

  19. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas.

    PubMed

    Sneeringer, Christopher J; Scott, Margaret Porter; Kuntz, Kevin W; Knutson, Sarah K; Pollock, Roy M; Richon, Victoria M; Copeland, Robert A

    2010-12-07

    EZH2, the catalytic subunit of the PRC2 complex, catalyzes the mono- through trimethylation of lysine 27 on histone H3 (H3K27). Histone H3K27 trimethylation is a mechanism for suppressing transcription of specific genes that are proximal to the site of histone modification. Point mutations of the EZH2 gene (Tyr641) have been reported to be linked to subsets of human B-cell lymphoma. The mutant allele is always found associated with a wild-type allele (heterozygous) in disease cells, and the mutations were reported to ablate the enzymatic activity of the PRC2 complex for methylating an unmodified peptide substrate. Here we demonstrate that the WT enzyme displays greatest catalytic efficiency (k(cat)/K) for the zero to monomethylation reaction of H3K27 and diminished efficiency for subsequent (mono- to di- and di- to trimethylation) reactions. In stark contrast, the disease-associated Y641 mutations display very limited ability to perform the first methylation reaction, but have enhanced catalytic efficiency for the subsequent reactions, relative to the WT enzyme. These results imply that the malignant phenotype of disease requires the combined activities of a H3K27 monomethylating enzyme (PRC2 containing WT EZH2 or EZH1) together with the mutant PRC2s for augmented conversion of H3K27 to the trimethylated form. To our knowledge, this is the first example of a human disease that is dependent on the coordinated activities of normal and disease-associated mutant enzymatic function.

  20. 5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons.

    PubMed

    Brodsky, Matthew; Lesiak, Adam J; Croicu, Alex; Cohenca, Nathalie; Sullivan, Jane M; Neumaier, John F

    2017-04-01

    The 5-HT 6 receptor has been implicated in a variety of cognitive processes including habitual behaviors, learning, and memory. It is found almost exclusively in the brain, is expressed abundantly in striatum, and localizes to neuronal primary cilia. Primary cilia are antenna-like, sensory organelles found on most neurons that receive both chemical and mechanical signals from other cells and the surrounding environment; however, the effect of 5-HT 6 receptor function on cellular morphology has not been examined. We confirmed that 5-HT 6 receptors were localized to primary cilia in wild-type (WT) but not 5-HT 6 knockout (5-HT 6 KO) in both native mouse brain tissue and primary cultured striatal neurons then used primary neurons cultured from WT or 5-HT 6 KO mice to study the function of these receptors. Selective 5-HT 6 antagonists reduced cilia length in neurons cultured from wild-type mice in a concentration and time-dependent manner without altering dendrites, but had no effect on cilia length in 5-HT 6 KO cultured neurons. Varying the expression levels of heterologously expressed 5-HT 6 receptors affected the fidelity of ciliary localization in both WT and 5-HT 6 KO neurons; overexpression lead to increasing amounts of 5-HT 6 localization outside of the cilia but did not alter cilia morphology. Introducing discrete mutations into the third cytoplasmic loop of the 5-HT 6 receptor greatly reduced, but did not entirely eliminate, trafficking of the 5-HT 6 receptor to primary cilia. These data suggest that blocking 5-HT 6 receptor activity reduces the length of primary cilia and that mechanisms that regulate trafficking of 5-HT 6 receptors to cilia are more complex than previously thought. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation.

    PubMed

    Arsenault, Ryan J; Genovese, Kenneth J; He, Haiqi; Wu, Huixia; Neish, Andrew S; Kogut, Michael H

    2016-02-01

    Salmonella enterica serovar Typhimurium (ST) is a serious infectious disease throughout the world, and a major reservoir for Salmonella is chicken. Chicken infected with Salmonella do not develop clinical disease, this may be the result of important host interactions with key virulence proteins. To study this, we inoculated chicken with mutant Salmonella Typhimurium that lacked the virulence protein AvrA (AvrA(-)). AvrA is referred to as an avirulence factor, as it moderates the host immune response. The lack of the AvrA virulence gene in ST resulted in reduced weight gain, enhanced persistence and greater extraintestinal organ invasion in chickens, as compared to wild-type (WT) ST. Kinome analysis was performed on inoculated cecal tissue. The majority of the signal transduction pathways induced by AvrA(-) and WT ST were similar; however, we observed alterations in innate immune system signaling. In addition, a leukocyte migration pathway was altered by AvrA(-) ST that may allow greater gut barrier permeability and invasion by the mutant. Cytokine expression did not appear significantly altered at 7 d post-inoculation; at 14 d post-inoculation, there was an observed increase in the expression of anti-inflammatory IL-10 in the WT inoculated ceca. This study is the first to describe mutant AvrA(-) ST infection of chicken and provides further insight into the Salmonella responses observed in chicken relative to other species such as humans and cattle. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells.

    PubMed

    Meléndez, Giselle C; Li, Jianping; Law, Brittany A; Janicki, Joseph S; Supowit, Scott C; Levick, Scott P

    2011-12-01

    Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Volume overload was induced by aortocaval fistula in TAC1(-/-) mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1(-/-) mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1(-/-) mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1(-/-) group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix.

  3. The role of aromatic phenylalanine residues in binding carotenoid to light-harvesting model and wild-type complexes.

    PubMed

    García-Martín, A; Pazur, A; Wilhelm, B; Silber, M; Robert, B; Braun, P

    2008-09-26

    The mode of carotenoid (Crt) binding to polypeptide and specifying its function is as yet largely unknown. Statistical analysis of major photosystems I and II suggests that aromatic residues make up a significant part of the Crt binding pockets. Phenylalanine residues ensure approximately 25%--at some carbon atoms even up to 40%--of the total contacts with Crts. By use of an alanine-leucine model transmembrane helix that replaces the native helix of the bacterial light-harvesting complex 2 (LH2) alpha-subunit, we study the effects of polypeptide residues on cofactor binding in a model sequence context. Here, it is shown that phenylalanine residues located in the close vicinity of the Crts' polyene backbone significantly contribute to the binding of the Crt to the model protein. The replacement of a phenylalanine with leucine in the model helix results in significant reduction in the complexes' Crt content. This effect is strongly enhanced by the removal of a second phenylalanine in close vicinity to the Crt, i.e., of the wild-type (WT) beta-subunit. Remarkably, the mutation of only two phenylalanine residues in the LH2 WT sequence, alpha-Phe at position -12 and beta-Phe at -8, results in the loss of nearly 50% of functional Crt. Resonance Raman spectra indicate that the Crt conformation is fundamentally altered by the absence of the phenylalanines' aromatic side chains, suggesting that they lock the Crt into a precise, well-defined configuration. Thus, binding and specific functionalisation of Crt in the model and WT light-harvesting complex is reliant on the aromatic residue phenylalanine. The use of the light-harvesting complex as a model system thus substantiates the notion that the aromatic residue phenylalanine is a key factor for the binding of Crt to transmembrane proteins.

  4. Ultrasensitive Quantification of Hepatitis B Virus A1762T/G1764A Mutant by a SimpleProbe PCR Using a Wild-Type-Selective PCR Blocker and a Primer-Blocker-Probe Partial-Overlap Approach ▿

    PubMed Central

    Nie, Hui; Evans, Alison A.; London, W. Thomas; Block, Timothy M.; Ren, Xiangdong David

    2011-01-01

    Hepatitis B virus (HBV) carrying the A1762T/G1764A double mutation in the basal core promoter (BCP) region is associated with HBe antigen seroconversion and increased risk of liver cirrhosis and hepatocellular carcinoma (HCC). Quantification of the mutant viruses may help in predicting the risk of HCC. However, the viral genome tends to have nucleotide polymorphism, which makes it difficult to design hybridization-based assays including real-time PCR. Ultrasensitive quantification of the mutant viruses at the early developmental stage is even more challenging, as the mutant is masked by excessive amounts of the wild-type (WT) viruses. In this study, we developed a selective inhibitory PCR (siPCR) using a locked nucleic acid-based PCR blocker to selectively inhibit the amplification of the WT viral DNA but not the mutant DNA. At the end of siPCR, the proportion of the mutant could be increased by about 10,000-fold, making the mutant more readily detectable by downstream applications such as real-time PCR and DNA sequencing. We also describe a primer-probe partial overlap approach which significantly simplified the melting curve patterns and minimized the influence of viral genome polymorphism on assay accuracy. Analysis of 62 patient samples showed a complete match of the melting curve patterns with the sequencing results. More than 97% of HBV BCP sequences in the GenBank database can be correctly identified by the melting curve analysis. The combination of siPCR and the SimpleProbe real-time PCR enabled mutant quantification in the presence of a 100,000-fold excess of the WT DNA. PMID:21562108

  5. CLOCK regulates mammary epithelial cell growth and differentiation

    PubMed Central

    Crodian, Jennifer; Suárez-Trujillo, Aridany; Erickson, Emily; Weldon, Bethany; Crow, Kristi; Cummings, Shelby; Chen, Yulu; Shamay, Avi; Mabjeesh, Sameer J.; Plaut, Karen

    2016-01-01

    Circadian clocks influence virtually all physiological processes, including lactation. Here, we investigate the role of the CLOCK gene in regulation of mammary epithelial cell growth and differentiation. Comparison of mammary morphology in late-pregnant wild-type and ClockΔ19 mice, showed that gland development was negatively impacted by genetic loss of a functional timing system. To understand whether these effects were due, in part, to loss of CLOCK function in the gland, the mouse mammary epithelial cell line, HC11, was transfected with short hairpin RNA that targeted Clock (shClock). Cells transfected with shClock expressed 70% less Clock mRNA than wild-type (WT) HC11 cultures, which resulted in significantly depressed levels of CLOCK protein (P < 0.05). HC11 lines carrying shClock had four-fold higher growth rates (P < 0.05), and the percentage of cells in G1 phase was significantly higher (90.1 ± 1.1% of shClock vs. 71.3 ± 3.6% of WT-HC11) following serum starvation. Quantitative-PCR (qPCR) analysis showed shClock had significant effects (P < 0.0001) on relative expression levels of Ccnd1, Wee1, and Tp63. qPCR analysis of the effect of shClock on Fasn and Cdh1 expression in undifferentiated cultures and cultures treated 96 h with dexamethasone, insulin, and prolactin (differentiated) found levels were reduced by twofold and threefold, respectively (P < 0.05), in shClock line relative to WT cultures. Abundance of CDH1 and TP63 proteins were significantly reduced in cultures transfected with shClock. These data support how CLOCK plays a role in regulation of epithelial cell growth and differentiation in the mammary gland. PMID:27707717

  6. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice.

    PubMed

    Ganguly, Amit; Collis, Laura; Devaskar, Sherin U

    2012-08-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3(+/-)) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3(+/-) mice. In glut3(+/-) mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3(+/-) mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3(+/-) fetuses against maternal CR-imposed reduction of macromolecular nutrients.

  7. Investigating the Structure and Dynamics of the PIK3CA Wild-Type and H1047R Oncogenic Mutant

    PubMed Central

    Pavlaki, Maria; Lazani, Vasiliki; Christoforidis, Savvas; Agianian, Bogos; Cournia, Zoe

    2014-01-01

    The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα), which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR) experiments and Molecular Dynamics (MD) simulations were carried out for both wild-type (WT) and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation. PMID:25340423

  8. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.

    PubMed

    Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C

    2009-07-07

    Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.

  9. Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils†

    PubMed Central

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P. R. O.; Meredith, Stephen C.

    2009-01-01

    Asp23-to-Asn mutation within the coding sequence of β-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer’s disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Aβ40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Aβ40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 × 10-3 min-1 and 1.07 × 10-4 min-1 for D23N-Aβ40 and the wild-type peptide WT-Aβ40, respectively) and without a lag phase. Electron microscopy shows that D23N-Aβ40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-β pattern, with a sharp reflection at 4.7 Å and a broad reflection at 9.4 Å, which is notably smaller than the value for WT-Aβ40 fibrils (10.4 Å). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Aβ40 fibrils containing the in-register, parallel β-sheet structure commonly found in WT-Aβ40 fibrils and most other amyloid fibrils. Antiparallel β-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Aβ40 fibrils and the unusual vasculotropic clinical picture in these patients. PMID:19358576

  10. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    NASA Astrophysics Data System (ADS)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  11. Iron dysregulation combined with aging prevents sepsis-induced apoptosis

    PubMed Central

    Javadi, Pardis; Buchman, Timothy G.; Stromberg, Paul E.; Turnbull, Isaiah R.; Vyas, Dinesh; Hotchkiss, Richard S.; Karl, Irene E.; Coopersmith, Craig M.

    2005-01-01

    Background Sepsis, iron loading and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Methods Hfe−/− mice (a murine homolog of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24–26 months) or mature (16–18 months) Hfe−/− mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 hours later and assessed for apoptosis and cytokine levels. Results Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe−/− mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe−/− mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe−/− mice than septic mature Hfe−/− animals. Interleukin-6 was elevated in septic aged Hfe−/− mice compared to sham mice. Conclusions Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe−/− mice are able to mount an inflammatory response following CLP and mature Hfe−/− mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation. PMID:15921699

  12. The Fate of Nephrons in Congenital Obstructive Nephropathy: Adult Recovery is Limited by Nephron Number Despite Early Release of Obstruction

    PubMed Central

    Sergio, Maria; Galarreta, Carolina I.; Thornhill, Barbara A.; Forbes, Michael S.; Chevalier, Robert L.

    2015-01-01

    Purpose Urinary tract obstruction and reduced nephron number often occur together as a result of maldevelopment of kidneys and urinary tract. We wished to determine the role of nephron number on the adaptation of remaining nephrons of mice subjected to neonatal partial unilateral ureteral obstruction (UUO) and followed through adulthood. Materials and Methods Wild-type (WT) and Os/+ mice (with 50% fewer nephrons) were subjected to sham operation or partial UUO in the first 2 days of life. Additional mice underwent release of UUO at 7 days. All kidneys were harvested at 3 weeks (weaning) or 6 weeks (adulthood). Glomerular number and area, glomerulotubular junction integrity, proximal tubular volume fraction, and interstitial fibrosis were measured by histomorphometry. Results In the obstructed kidney, UUO caused additional nephron loss in Os/+ but not WT mice. Glomerular growth from 3 to 6 weeks was impaired by ipsilateral UUO and was not preserved by release in WT or Os/+. Proximal tubular growth was impaired and interstitial collagen was increased by ipsilateral UUO in all mice. These were attenuated by release of UUO in WT mice, but were not restored in Os/+ mice. UUO increased interstitial collagen in the contralateral kidney; release of UUO enhanced tubular growth and reduced interstitial collagen. Conclusions We conclude that UUO in early postnatal development impairs adaptation to reduced nephron number and induces additional nephron loss despite release of obstruction. Premature and low birth weight infants with congenital obstructive nephropathy are likely at increased risk for progression of chronic kidney disease. PMID:25912494

  13. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance

    PubMed Central

    Palanivel, R.; Fullerton, M. D.; Galic, S.; Honeyman, J.; Hewitt, K. A.; Jorgensen, S. B.; Steinberg, G. R.

    2017-01-01

    Aims/hypothesis Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. Methods We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. Results The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic–euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). Conclusions/interpretation These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity. PMID:22872213

  14. Stress-related arterial hypertension in Gper-deficient rats.

    PubMed

    Luo, Ping; Wu, Mei-Mei; Gao, Po; Gao, Ting; Dong, Li; Ding, Xiao-Wei; Meng, You-Qiang; Qian, Jia-Hong; Zhang, Guo-Hua; Rong, Wei-Fang

    2017-10-25

    Numerous studies have demonstrated that estrogens may exert multifaceted effects on the cardiovascular system via activating the classical nuclear receptors ERα or ERβ and the novel G protein coupled estrogen receptor (Gper). However, some studies have reported inconsistent cardiovascular phenotypes in Gper-deficient mice. The current study was aimed to reveal the effects of genetic deletion of Gper on the arterial blood pressure (ABP) and heart rate in rats. Gper-deficient Sprague-Dawley rats were generated by utilizing the CRISPR-Cas9 gene-editing technique. ABP of 10-week old male (n = 6) and 12-week old female (n = 6) Gper-deficient rats and age-matched wild type (WT) rats (6 females and 6 males) were measured under awake and restrained conditions through the non-invasive tail-cuff method daily for 8 (females) or 9 days (males). In the male WT rats, ABP and heart rate were slightly higher in day 1 to 4 than those in day 5 to 9, indicative of stress-related sympathoexcitation in the first few days and gradual adaptation to the restrained stress in later days. Gper-deficient rats had significantly higher ABP initially (male: day 1 to day 5; female: day 1 to day 3) and similar ABP in later days of measurement compared with the WT rats. The heart rate of male Gper-deficient rats was consistently higher than that of the male WT rats from day 1 to day 8. Both male and female Gper-deficient rats appeared to show slower body weight gain than the WT counterparts during the study period. Under anesthesia, ABP of Gper-deficient rats was not significantly different from their WT counterparts. These results indicate that Gper-deficient rats may be more sensitive to stress-induced sympathoexcitation and highlight the importance of Gper in the regulation of the cardiovascular function in stressful conditions.

  15. Study on the Mechanism of Cell Cycle Checkpoint Kinase 2 (CHEK2) Gene Dysfunction in Chemotherapeutic Drug Resistance of Triple Negative Breast Cancer Cells.

    PubMed

    Luo, Li; Gao, Wei; Wang, Jinghui; Wang, Dingxue; Peng, Xiaobo; Jia, Zhaoyang; Jiang, Ye; Li, Gongzhuo; Tang, Dongxin; Wang, Yajie

    2018-05-15

    BACKGROUND This study aimed to investigate the mechanism of CHEK2 gene dysfunction in drug resistance of triple negative breast cancer (TNBC) cells. MATERIAL AND METHODS To perform our study, a stable CHEK2 wild type (CHEK2 WT) or CHEK2 Y390C mutation (CHEK2 Y390C) expressed MDA-MB-231 cell line was established. MTT assay, cell apoptosis assay and cell cycle assay were carried out to analyze the cell viability, apoptosis, and cell cycle respectively. Western blotting and qRT-PCR were applied for related protein and gene expression detection. RESULTS We found that the IC50 value of DDP (Cisplatin) to CHEK2 Y390C expressed MDA-MB-231 cells was significantly higher than that of the CHEK2 WT expressed cells and the control cells. After treatment with DDP for 48 h, cells expressing CHEK2 WT showed lower cell viability than that of the CHEK2 Y390C expressed cells and the control cells; compared with the CHEK2 Y390C expressed cells and the control cells, cells expressing CHEK2 WT showed significant G1/S arrest. Meanwhile, we found that compared with the CHEK2 Y390C expressed cells and the control cells, cell apoptosis was significantly increased in CHEK2 WT expressed cells. Moreover, our results suggested that cells expressing CHEK2 WT showed higher level of p-CDC25A, p-p53, p21, Bax, PUMA, and Noxa than that of the CHEK2 Y390C expressed cells and the control cells. CONCLUSIONS Our findings indicated that CHEK2 Y390C mutation induced the drug resistance of TNBC cells to chemotherapeutic drugs through administrating cell apoptosis and cell cycle arrest via regulating p53 activation and CHEK2-p53 apoptosis pathway.

  16. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea.

    PubMed

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52 , from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea , compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea . In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

  17. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging.

    PubMed

    Qin, Zhenxia; Dimitrijevic, Aleksandra; Aswad, Dana W

    2015-02-01

    Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Nicotinamide Adenine Dinucleotide (NAD+) and Nicotinamide: Sex Differences in Cerebral Ischemia

    PubMed Central

    Siegel, Chad S.; McCullough, Louise D.

    2013-01-01

    Background Previous literature suggests that cell death pathways activated after cerebral ischemia differ between the sexes. While caspase-dependent mechanisms predominate in the female brain, caspase-independent cell death induced by activation of Poly (ADP-ribose) polymerase (PARP) predominates in the male brain. PARP-1 gene deletion decreases infarction volume in the male brain, but paradoxically increases damage in PARP-1 knockout females. Purpose This study examined stroke induced changes in NAD+, a key energy molecule involved in PARP-1 activation in both sexes. Methods Mice were subjected to Middle Cerebral Artery Occlusion and NAD+ levels were assessed. Caspase-3 activity and nuclear translocation was assessed 6 hours after ischemia. In additional cohorts, Nicotinamide (500mg/kg i.p.) a precursor of NAD+ or vehicle was administered and infarction volume was measured 24 hours after ischemia. Results Males have higher baseline NAD+ levels than females. Significant stroke-induced NAD+ depletion occurred in males and ovariectomized females but not in intact females. PARP-1 deletion prevented the stroke induced loss in NAD+ in males, but worsened NAD+ loss in PARP-1 deficient females. Preventing NAD+ loss with nicotinamide reduced infarct in wild-type males and PARP-1 knockout mice of both sexes, with no effect in WT females. Caspase-3 activity was significantly increased in PARP-1 knockout females compared to males and wild-type females, this was reversed with nicotinamide. Conclusions Sex differences exist in baseline and stroke-induced NAD+ levels. Nicotinamide protected males and PARP knockout mice, but had minimal effects in the wild-type female brain. This may be secondary to differences in energy metabolism between the sexes. PMID:23403179

  19. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  20. Pseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator–IL-6–antimicrobial–repair pathway

    PubMed Central

    Saint-Criq, Vinciane; Villeret, Bérengère; Bastaert, Fabien; Kheir, Saadé; Hatton, Aurélie; Cazes, Aurélie; Xing, Zhou; Sermet-Gaudelus, Isabelle; Garcia-Verdugo, Ignacio; Edelman, Aleksander

    2018-01-01

    Background Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. Objective We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II secretion system, on ion transport, innate immune responses and epithelial repair, both in vitro and in vivo. Methods Wild-type (WT) or cystic fibrosis transmembrane conductance regulator (CFTR)-mutated epithelial cells (cell lines and primary cells from patients) were treated with WT or ΔLasB pseudomonas aeruginosa O1 (PAO1) secretomes. The effect of LasB and PAO1 infection was also assessed in vivo in murine models. Results We showed that LasB was the most abundant protein in WT PAO1 secretomes and that it decreased epithelial CFTR expression and activity. In airway epithelial cell lines and primary bronchial epithelial cells, LasB degraded the immune mediators interleukin (IL)-6 and trappin-2, an important epithelial-derived antimicrobial molecule. We further showed that an IL-6/STAT3 signalling pathway was downregulated by LasB, resulting in inhibition of epithelial cell repair. In mice, intranasally instillated LasB induced significant weight loss, inflammation, injury and death. By contrast, we showed that overexpression of IL-6 and trappin-2 protected mice against WT-PAO1-induced death, by upregulating IL-17/IL-22 antimicrobial and repair pathways. Conclusions Our data demonstrate that PAO1 LasB is a major P. aeruginosa secreted factor that modulates ion transport, immune response and tissue repair. Targeting this virulence factor or upregulating protective factors such as IL-6 or antimicrobial molecules such as trappin-2 could be beneficial in P. aeruginosa-infected individuals. PMID:28790180

  1. A hydrophobic patch surrounding Trp154 in human neuroserpin controls the helix F dynamics with implications in inhibition and aggregation

    NASA Astrophysics Data System (ADS)

    Ali, Mohammad Farhan; Kaushik, Abhinav; Kapil, Charu; Gupta, Dinesh; Jairajpuri, Mohamad Aman

    2017-02-01

    Neuroserpin (NS) mediated inhibition of tissue-type plasminogen activator (tPA) is important for brain development, synapse formation and memory. Aberrations in helix F and β-sheet A movement during inhibition can directly lead to epilepsy or dementia. Conserved W154 residue in a hydrophobic patch between helix F and β-sheet A is ideally placed to control their movement during inhibition. Molecular Dynamics (MD) simulation on wild type (WT) NS and its two variants (W154A and W154P) demonstrated partial deformation in helix F and conformational differences in strands 1A and 2A only in W154P. A fluorescence and Circular Dichroism (CD) analysis with purified W154 variants revealed a significant red-shift and an increase in α-helical content in W154P as compared to W154A and WT NS. Kinetics of tPA inhibition showed a decline in association rates (ka) for W154A as compared to WT NS with indication of complex formation. Appearance of cleaved without complex formation in W154P indicates that the variant acts as substrate due to conformational misfolding around helix F. Both the variants however showed increased rate of aggregation as compared to WT NS. The hydrophobic patch identified in this study may have importance in helix F dynamics of NS.

  2. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure

    PubMed Central

    Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.

    2017-01-01

    Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice. PMID:28093832

  3. ATZ11 Recognizes Not Only Z-α1-Antitrypsin-Polymers and Complexed Forms of Non-Z-α1-Antitrypsin but Also the von Willebrand Factor

    PubMed Central

    Yadegari, Hamideh; Driesen, Julia; Kirfel, Jutta; Neuhaus, Thomas; Steiner, Susanne; Esch, Christiane; Bedorf, Jörg; Hertfelder, Hans-Jörg; Fischer, Hans-Peter

    2014-01-01

    Aims The ATZ11 antibody has been well established for the identification of α1-anti-trypsin (AAT) molecule type PiZ (Z-AAT) in blood samples and liver tissue. In this study, we systematically analyzed the antibody for additional binding sites in human tissue. Methods and Results Ultrastructural ATZ11 binding was investigated immunoelectron microscopically in human umbilical vein endothelial cells (HUVECs) and in platelets of a healthy individual. Human embryonic kidney (HEK293) cells were transiently transfected with Von Willebrand factor (VWF) and analyzed immunocytochemically using confocal microscopy and SDS-PAGE electrophoresis followed by western blotting (WB). Platelets and serum samples of VWF-competent and VWF-deficient patients were investigated using native PAGE and SDS-PAGE electrophoresis followed by WB. The specificity of the ATZ11 reaction was tested immunohistochemically by extensive antibody-mediated blocking of AAT- and VWF-antigens. ATZ11-positive epitopes could be detected in Weibel-Palade bodies (WPBs) of HUVECs and α-granules of platelets. ATZ11 stains pseudo-WBP containing recombinant wild-type VWF (rVWF-WT) in HEK293 cells. In SDS-PAGE electrophoresis followed by WB, anti-VWF and ATZ11 both identified rVWF-WT. However, neither rVWF-WT-multimers, human VWF-multimers, nor serum proteins of VWF-deficient patients were detected using ATZ11 by WB, whereas anti-VWF antibody (anti-VWF) detected rVWF-WT-multimers as well as human VWF-multimers. In human tissue specimens, AAT-antigen blockade using anti-AAT antibody abolished ATZ11 staining of Z-AAT in a heterozygous AAT-deficient patient, whereas VWF-antigen blockade using anti-VWF abolished ATZ11 staining of endothelial cells and megakaryocytes. Conclusions ATZ11 reacts with cellular bound and denatured rVWF-WT and human VWF as shown using immunocytochemistry and subsequent confocal imaging, immunoelectron microscopy, SDS-PAGE and WB, and immunohistology. These immunoreactions are independent of the binding of Z-AAT-molecules and non-Z-AAT complexes. PMID:24646657

  4. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Salty Taste Deficits in CALHM1 Knockout Mice

    PubMed Central

    Ellis, Hillary T.; Aleman, Tiffany R.; Downing, Arnelle; Marambaud, Philippe; Foskett, J. Kevin; Dana, Rachel M.; McCaughey, Stuart A.

    2014-01-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein–coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste–related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH4Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH4Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  6. Effect of Flooding and the nosZ Gene in Bradyrhizobia on Bradyrhizobial Community Structure in the Soil.

    PubMed

    Saeki, Yuichi; Nakamura, Misato; Mason, Maria Luisa T; Yano, Tsubasa; Shiro, Sokichi; Sameshima-Saito, Reiko; Itakura, Manabu; Minamisawa, Kiwamu; Yamamoto, Akihiro

    2017-06-24

    We investigated the effects of the water status (flooded or non-flooded) and presence of the nosZ gene in bradyrhizobia on the bradyrhizobial community structure in a factorial experiment that examined three temperature levels (20°C, 25°C, and 30°C) and two soil types (andosol and gray lowland soil) using microcosm incubations. All microcosms were inoculated with Bradyrhizobium japonicum USDA6 T , B. japonicum USDA123, and B. elkanii USDA76 T , which do not possess the nosZ gene, and then half received B. diazoefficiens USDA110 T wt (wt for the wild-type) and the other half received B. diazoefficiens USDA110ΔnosZ. USDA110 T wt possesses the nosZ gene, which encodes N 2 O reductase; 110ΔnosZ, a mutant variant, does not. Changes in the community structure after 30- and 60-d incubations were investigated by denaturing-gradient gel electrophoresis and an image analysis. USDA6 T and 76 T strains slightly increased in non-flooded soil regardless of which USDA110 T strain was present. In flooded microcosms with the USDA110 T wt strain, USDA110 T wt became dominant, whereas in microcosms with the USDA110ΔnosZ, a similar change in the community structure occurred to that in non-flooded microcosms. These results suggest that possession of the nosZ gene confers a competitive advantage to B. diazoefficiens USDA110 T in flooded soil. We herein demonstrated that the dominance of B. diazoefficiens USDA110 T wt within the soil bradyrhizobial population may be enhanced by periods of flooding or waterlogging systems such as paddy-soybean rotations because it appears to have the ability to thrive in moderately anaerobic soil.

  7. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease.

    PubMed

    Hamilton, James; Pellman, Jessica J; Brustovetsky, Tatiana; Harris, Robert A; Brustovetsky, Nickolay

    2016-07-01

    Alterations in oxidative metabolism and defects in mitochondrial Ca 2+ handling have been implicated in the pathology of Huntington's disease (HD), but existing data are contradictory. We investigated the effect of human mHtt fragments on oxidative metabolism and Ca 2+ handling in isolated brain mitochondria and cultured striatal neurons from the R6/2 mouse model of HD. Non-synaptic and synaptic mitochondria isolated from the brains of R6/2 mice had similar respiratory rates and Ca 2+ uptake capacity compared with mitochondria from wild-type (WT) mice. Respiratory activity of cultured striatal neurons measured with Seahorse XF24 flux analyzer revealed unaltered cellular respiration in neurons derived from R6/2 mice compared with neurons from WT animals. Consistent with the lack of respiratory dysfunction, ATP content of cultured striatal neurons from R6/2 and WT mice was similar. Mitochondrial Ca 2+ accumulation was also evaluated in cultured striatal neurons from R6/2 and WT animals. Our data obtained with striatal neurons derived from R6/2 and WT mice show that both glutamate-induced increases in cytosolic Ca 2+ and subsequent carbonilcyanide p-triflouromethoxyphenylhydrazone-induced increases in cytosolic Ca 2+ were similar between WT and R6/2, suggesting that mitochondria in neurons derived from both types of animals accumulated comparable amounts of Ca 2+ Overall, our data argue against respiratory deficiency and impaired Ca 2+ handling induced by human mHtt fragments in both isolated brain mitochondria and cultured striatal neurons from transgenic R6/2 mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.

    PubMed

    Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil

    2013-05-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.

  9. Lung-Restricted Macrophage Activation in the Pearl Mouse Model of Hermansky-Pudlak Syndrome1

    PubMed Central

    Young, Lisa R.; Borchers, Michael T.; Allen, Holly L.; Gibbons, Reta S.; McCormack, Francis X.

    2013-01-01

    Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring “pearl” HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1γ) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-α, were detected in BAL from pearl mice. After intranasal LPS challenge, BAL levels of TNF-α, MIP1α, KC, and MCP-1 were 2- to 3-fold greater in pearl than WT mice. At baseline, cultured pearl alveolar macrophages (AMs) had markedly increased production of inflammatory cytokines. Furthermore, pearl AMs had exaggerated TNF-α responses to TLR4, TLR2, and TLR3 ligands, as well as increased IFN-γ/LPS-induced NO production. After 24 h in culture, pearl AM LPS responses reverted to WT levels, and pearl AMs were appropriately refractory to continuous LPS exposure. In contrast, cultured pearl peritoneal macrophages and peripheral blood monocytes did not produce TNF-α at baseline and had LPS responses which were no different from WT controls. Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-α secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation. PMID:16547274

  10. MicroRNA-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy.

    PubMed

    Lin, Xu; You, Yanwu; Wang, Jie; Qin, Youling; Huang, Peng; Yang, Fafen

    2015-04-01

    MiR-155 has been reported to be involved in both innate and adaptive immune responses. But the role of miR-155 in hyperglycemia-induced nephropathy is still unknown. In our current study, 3-month-old male wild-type C57 mice and Mir-155(-/-) mice were used to establish hyperglycemia-induced nephropathy. In our hyperglycemia-induced nephropathy model, the expression of podocyte injury marker desmin was markedly increased in the diabetes group when compared with control. Diabetes also significantly decreased the levels of nephrin and acetylated nephrin, whereas the expression of miR-155 was markedly increased in diabetes group when compared with control. MiR-155(-/-) mice showed significantly increased expression of nephrin, acetylated nephrin, and Wilm's tumor-1 protein (WT-1) when compared with wild-type control. MiR-155 deficiency results in significantly decrease in IL-17A expression both in vivo and in vitro. And the increased expression of WT-1, nephrin, and ac-nephrin was reversed with additional treatment of rmIL-17. Furthermore, we found that the inhibited Th17 differentiation induced by miR-155 deficiency was dependent on increased expression of SOCS1. In conclusion, miR-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy. This was associated with inhibited IL-17 production through enhancement of SOCS1 expression.

  11. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. Copyright © 2015. Published by Elsevier Inc.

  12. Peroxisomal Targeting, Import, and Assembly of Alcohol Oxidase in Pichia pastoris

    PubMed Central

    Waterham, Hans R.; Russell, Kimberly A.; de Vries, Yne; Cregg, James M.

    1997-01-01

    Alcohol oxidase (AOX), the first enzyme in the yeast methanol utilization pathway is a homooctameric peroxisomal matrix protein. In peroxisome biogenesis-defective (pex) mutants of the yeast Pichia pastoris, AOX fails to assemble into active octamers and instead forms inactive cytoplasmic aggregates. The apparent inability of AOX to assemble in the cytoplasm contrasts with other peroxisomal proteins that are able to oligomerize before import. To further investigate the import of AOX, we first identified its peroxisomal targeting signal (PTS). We found that sequences essential for targeting AOX are primarily located within the four COOH-terminal amino acids of the protein leucine-alanine-arginine-phenylalanine COOH (LARF). To examine whether AOX can oligomerize before import, we coexpressed AOX without its PTS along with wild-type AOX and determined whether the mutant AOX could be coimported into peroxisomes. To identify the mutant form of AOX, the COOH-terminal LARF sequence of the protein was replaced with a hemagglutinin epitope tag (AOX–HA). Coexpression of AOX–HA with wild-type AOX (AOX-WT) did not result in an increase in the proportion of AOX–HA present in octameric active AOX, suggesting that newly synthesized AOX–HA cannot oligomerize with AOX-WT in the cytoplasm. Thus, AOX cannot initiate oligomerization in the cytoplasm, but must first be targeted to the organelle before assembly begins. PMID:9396748

  13. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.

    1998-01-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  14. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA)

    PubMed Central

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  15. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-06

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.

  16. Antimicrobial Susceptibility of Flavobacterium psychrophilum from Chilean Salmon Farms and Their Epidemiological Cut-Off Values Using Agar Dilution and Disk Diffusion Methods.

    PubMed

    Miranda, Claudio D; Smith, Peter; Rojas, Rodrigo; Contreras-Lynch, Sergio; Vega, J M Alonso

    2016-01-01

    Flavobacterium psychrophilum is the most important bacterial pathogen for freshwater farmed salmonids in Chile. The aims of this study were to determine the susceptibility to antimicrobials used in fish farming of Chilean isolates and to calculate their epidemiological cut-off (CO WT ) values. A number of 125 Chilean isolates of F. psychrophilum were isolated from reared salmonids presenting clinical symptoms indicative of flavobacteriosis and their identities were confirmed by 16S rRNA polymerase chain reaction. Susceptibility to antibacterials was tested on diluted Mueller-Hinton by using an agar dilution MIC method and a disk diffusion method. The CO WT values calculated by Normalized Resistance Interpretation (NRI) analysis allow isolates to be categorized either as wild-type fully susceptible (WT) or as manifesting reduced susceptibility (NWT). When MIC data was used, NRI analysis calculated a CO WT of ≤0.125, ≤2, and ≤0.5 μg mL -1 for amoxicillin, florfenicol, and oxytetracycline, respectively. For the quinolones, the CO WT were ≤1, ≤0.5, and ≤0.125 μg mL -1 for oxolinic acid, flumequine, and enrofloxacin, respectively. The disk diffusion data sets obtained in this work were extremely diverse and were spread over a wide range. For the quinolones there was a close agreement between the frequencies of NWT isolates calculated using MIC and disk data. For oxolinic acid, flumequine, and enrofloxacin the frequencies were 45, 39, and 38% using MIC data, and 42, 41, and 44%, when disk data were used. There was less agreement with the other antimicrobials, because NWT frequencies obtained using MIC and disk data, respectively, were 24 and 10% for amoxicillin, 8 and 2% for florfenicol, and 70 and 64% for oxytetracycline. Considering that the MIC data was more precise than the disk diffusion data, MIC determination would be the preferred method for susceptibility testing for this species and the NWT frequencies derived from the MIC data sets should be considered as the more authoritative. Despite the high frequency of isolates showing full susceptibility to florfenicol, the significant frequencies of isolates exhibiting reduced susceptibility to oxytetracycline and quinolones may result in treatment failures when these agents are used.

  17. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin

    2008-01-25

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53{sup wt}) or being p(HCT-116 p53{sup -/-}), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53{sup -/-} xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53{sup wt}more » cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53{sup wt} cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75{sup NTR}, p53 and Bax.« less

  18. A single point mutation in Tomato spotted wilt virus NSs protein is sufficient to overcome Tsw-gene-mediated resistance in pepper.

    PubMed

    Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin

    2017-06-01

    The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.

  19. Photoinduced transport in an H64Q neuroglobin antidote for carbon monoxide poisoning

    NASA Astrophysics Data System (ADS)

    Rydzewski, J.; Nowak, W.

    2018-03-01

    Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, without available antidotal therapy. Recently, a potential treatment for CO poisoning was introduced, based on binding of CO by neuroglobin (Ngb) with a mutated distal histidine (H64Q). Here, we present an atomistic mechanism of CO trapping by H64Q Ngb revealed by nonadiabatic molecular dynamics. We focused on CO photodissociation and recombination of CO to wild type (WT) and H64Q Ngb. Our results demonstrate that the distribution of CO within the proteins differs substantially due to rearrangement of amino acids surrounding the distal heme pocket. This leads to the decrease of the distal pocket volume in H64Q Ngb in comparison to WT Ngb, trapping migrating CO molecules in the distal pocket. We show that the mutation implicates the shortening of the time scale of CO geminate recombination, making H64Q Ngb 2.7 times more frequent binder than WT Ngb.

  20. Photoinduced transport in an H64Q neuroglobin antidote for carbon monoxide poisoning.

    PubMed

    Rydzewski, J; Nowak, W

    2018-03-21

    Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, without available antidotal therapy. Recently, a potential treatment for CO poisoning was introduced, based on binding of CO by neuroglobin (Ngb) with a mutated distal histidine (H64Q). Here, we present an atomistic mechanism of CO trapping by H64Q Ngb revealed by nonadiabatic molecular dynamics. We focused on CO photodissociation and recombination of CO to wild type (WT) and H64Q Ngb. Our results demonstrate that the distribution of CO within the proteins differs substantially due to rearrangement of amino acids surrounding the distal heme pocket. This leads to the decrease of the distal pocket volume in H64Q Ngb in comparison to WT Ngb, trapping migrating CO molecules in the distal pocket. We show that the mutation implicates the shortening of the time scale of CO geminate recombination, making H64Q Ngb 2.7 times more frequent binder than WT Ngb.

  1. Optimized P2A for reporter gene insertion into Nipah virus results in efficient ribosomal skipping and wild-type lethality.

    PubMed

    Park, Arnold; Yun, Tatyana; Hill, Terence E; Ikegami, Tetsuro; Juelich, Terry L; Smith, Jennifer K; Zhang, Lihong; Freiberg, Alexander N; Lee, Benhur

    2016-04-01

    Incorporation of reporter genes within virus genomes is an indispensable tool for interrogation of virus biology and pathogenesis. In previous work, we incorporated a fluorophore into a viral ORF by attaching it to the viral gene via a P2A ribosomal skipping sequence. This recombinant Nipah virus, however, was attenuated in vitro relative to WT virus. In this work, we determined that inefficient ribosomal skipping was a major contributing factor to this attenuation. Inserting a GSG linker before the P2A sequence resulted in essentially complete skipping, significantly improved growth in vitro, and WT lethality in vivo. To the best of our knowledge, this represents the first time a recombinant virus of Mononegavirales with integration of a reporter into a viral ORF has been compared with the WT virus in vivo. Incorporating the GSG linker for improved skipping efficiency whenever functionally important is a critical consideration for recombinant virus design.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanan, Emily J.; Eigenbrot, Charles; Bryan, Marian C.

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. Here in this paper, wemore » describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.« less

  3. Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11).

    PubMed

    Kato, Takuya; Hayashi, Hisamitsu; Sugiyama, Yuichi

    2010-09-01

    The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an approved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin-Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids. 2010 Elsevier B.V. All rights reserved.

  4. Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells

    PubMed Central

    Hosey, Kristen Lynette; Hu, Sishun

    2015-01-01

    We previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription. PMID:26262558

  5. Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits.

    PubMed

    Zhang, Jifeng; Niimi, Manabu; Yang, Dongshan; Liang, Jingyan; Xu, Jie; Kimura, Tokuhide; Mathew, Anna V; Guo, Yanhong; Fan, Yanbo; Zhu, Tianqing; Song, Jun; Ackermann, Rose; Koike, Yui; Schwendeman, Anna; Lai, Liangxue; Pennathur, Subramaniam; Garcia-Barrio, Minerva; Fan, Jianglin; Chen, Y Eugene

    2017-06-01

    CETP (cholesteryl ester transfer protein) plays an important role in lipoprotein metabolism; however, whether inhibition of CETP activity can prevent cardiovascular disease remains controversial. We generated CETP knockout (KO) rabbits by zinc finger nuclease gene editing and compared their susceptibility to cholesterol diet-induced atherosclerosis to that of wild-type (WT) rabbits. On a chow diet, KO rabbits showed higher plasma levels of high-density lipoprotein (HDL) cholesterol than WT controls, and HDL particles of KO rabbits were essentially rich in apolipoprotein AI and apolipoprotein E contents. When challenged with a cholesterol-rich diet for 18 weeks, KO rabbits not only had higher HDL cholesterol levels but also lower total cholesterol levels than WT rabbits. Analysis of plasma lipoproteins revealed that reduced plasma total cholesterol in KO rabbits was attributable to decreased apolipoprotein B-containing particles, while HDLs remained higher than that in WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. Apolipoprotein B-depleted plasma isolated from CETP KO rabbits showed significantly higher capacity for cholesterol efflux from macrophages than that from WT rabbits. Furthermore, HDLs isolated from CETP KO rabbits suppressed tumor necrosis factor-α-induced vascular cell adhesion molecule 1 and E-selectin expression in cultured endothelial cells. These results provide evidence that genetic ablation of CETP activity protects against cholesterol diet-induced atherosclerosis in rabbits. © 2017 American Heart Association, Inc.

  6. Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity

    NASA Technical Reports Server (NTRS)

    Fitzelle, K. J.; Kiss, J. Z.

    2001-01-01

    Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.

  7. A mouse model for a partially inactive obesity-associated human MC3R variant

    PubMed Central

    Lee, Bonggi; Koo, Jashin; Yun Jun, Joo; Gavrilova, Oksana; Lee, Yongjun; Seo, Arnold Y.; Taylor-Douglas, Dezmond C.; Adler-Wailes, Diane C.; Chen, Faye; Gardner, Ryan; Koutzoumis, Dimitri; Sherafat Kazemzadeh, Roya; Roberson, Robin B.; Yanovski, Jack A.

    2016-01-01

    We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3RhWT/hWT) and double-mutant (C17A+G241A) human (MC3RhDM/hDM) MC3R, that MC3RhDM/hDM have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3RhWT/hWT. MC3RhDM/hDM mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass. Serum adiponectin levels are increased in MC3RhDM/hDM mice and MC3RhDM/hDM human subjects. MC3RhDM/hDM bone- and adipose tissue-derived mesenchymal stem cells (MSCs) differentiate into adipocytes that accumulate more triglyceride than MC3RhWT/hWT MSCs. MC3RhDM/hDM impacts nutrient partitioning to generate increased adipose tissue that appears metabolically healthy. These data confirm the importance of MC3R signalling in human metabolism and suggest a previously-unrecognized role for the MC3R in adipose tissue development. PMID:26818770

  8. Phospholipase D1 downregulation by α-synuclein: Implications for neurodegeneration in Parkinson's disease.

    PubMed

    Conde, Melisa A; Alza, Natalia P; Iglesias González, Pablo A; Scodelaro Bilbao, Paola G; Sánchez Campos, Sofía; Uranga, Romina M; Salvador, Gabriela A

    2018-06-01

    We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. New Nitric Oxide Donor NCX 1443: Therapeutic Effects on Pulmonary Hypertension in the SAD Mouse Model of Sickle Cell Disease.

    PubMed

    Abid, Shariq; Kebe, Kanny; Houssaïni, Amal; Tomberli, Françoise; Marcos, Elisabeth; Bizard, Emilie; Breau, Marielle; Parpaleix, Aurelien; Tissot, Claire-Marie; Maitre, Bernard; Lipskaia, Larissa; Derumeaux, Genevieve; Bastia, Elena; Mekontso-Dessap, Armand; Adnot, Serge

    2018-05-01

    Nitric oxide (NO) donors may be useful for treating pulmonary hypertension (PH) complicating sickle cell disease (SCD), as endogenous NO is inactivated by hemoglobin released by intravascular hemolysis. Here, we investigated the effects of the new NO donor NCX1443 on PH in transgenic SAD mice, which exhibit mild SCD without severe hemolytic anemia. In SAD and wild-type (WT) mice, the pulmonary pressure response to acute hypoxia was similar and was abolished by 100 mg/kg NCX1443. The level of PH was also similar in SAD and WT mice exposed to chronic hypoxia (9% O2) alone or with SU5416 and was similarly reduced by daily NCX1443 gavage. Compared with WT mice, SAD mice exhibited higher levels of HO-1, endothelial NO synthase, and PDE5 but similar levels of lung cyclic guanosine monophosphate. Cultured pulmonary artery smooth muscle cells from SAD mice grew faster than those from WT mice and had higher PDE5 protein levels. Combining NCX1443 and a PDE5 inhibitor suppressed the growth rate difference between SAD and WT cells and induced a larger reduction in hypoxic PH severity in SAD than in WT mice. By amplifying endogenous protective mechanisms, NCX1443 in combination with PDE5 inhibition may prove useful for treating PH complicating SCD.

  10. Metabolic profiling for the identification of Huntington biomarkers by on-line solid-phase extraction capillary electrophoresis mass spectrometry combined with advanced data analysis tools.

    PubMed

    Pont, Laura; Benavente, Fernando; Jaumot, Joaquim; Tauler, Romà; Alberch, Jordi; Ginés, Silvia; Barbosa, José; Sanz-Nebot, Victoria

    2016-03-01

    In this work, an untargeted metabolomic approach based on sensitive analysis by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS) in combination with multivariate data analysis is proposed as an efficient method for the identification of biomarkers of Huntington's disease (HD) progression in plasma. For this purpose, plasma samples from wild-type (wt) and HD (R6/1) mice of different ages (8, 12, and 30 weeks), were analyzed by C18 -SPE-CE-MS in order to obtain the characteristic electrophoretic profiles of low molecular mass compounds. Then, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the multiple full scan MS datasets. This strategy permitted the resolution of a large number of metabolites being characterized by their electrophoretic peaks and their corresponding mass spectra. A total number of 29 compounds were relevant to discriminate between wt and HD plasma samples, as well as to follow-up the HD progression. The intracellular signaling was found to be the most affected metabolic pathway in HD mice after 12 weeks of birth, when mice already showed motor coordination deficiencies and cognitive decline. This fact agreed with the atrophy and dysfunction of specific neurons, loss of several types of receptors, and changed expression of neurotransmitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sirtuin 1 Enzymatic Activity Is Required for Cartilage Homeostasis In Vivo in a Mouse Model

    PubMed Central

    Gabay, Odile; Sanchez, Christelle; Dvir-Ginzberg, Mona; Gagarina, Viktoria; Zaal, Kristien J.; Song, Yingjie; He, Xiao Hong; McBurney, Michael W.

    2014-01-01

    Objective We and others previously demonstrated that sirtuin 1 (SIRT-1) regulates apoptosis and cartilage-specific gene expression in human chondrocytes and mouse models. This study was undertaken to determine if SIRT-1 enzymatic activity plays a protective role in cartilage homeostasis in vivo, by investigating mice with SIRT-1 mutations to characterize their cartilage. Methods Articular cartilage was harvested from the paws and knees of 5- and 6-month-old wild-type (WT) mice and mice homozygous for SIRT-1tm2.1Mcby (SIRT-1y/y), an allele carrying a point mutation that encodes a SIRT-1 protein with no enzymatic activity (y/y mice). Mice ages 2 days old and 6–7 days old were also examined. Mouse joint cartilage was processed for histologic examination or biochemical analyses of chondrocyte cultures. Results We found that articular cartilage tissue sections from y/y mice of up to 6 months of age contained reduced levels of type II collagen, aggrecan, and glycosaminoglycan compared to sections from WT mice. In contrast, protein levels of matrix metalloproteinase 8 (MMP-8), MMP-9, and MMP-13 were elevated in the cartilage of y/y mice. In addition, chondrocyte apoptosis was elevated in SIRT-1 mutant mice as compared to their WT littermates. Consistent with these observations, protein tyrosine phosphatase 1b was elevated in the y/y mice. Conclusion Our in vivo findings in this animal model demonstrate that mice with defective SIRT-1 also have defective cartilage, with elevated rates of cartilage degradation with age. Hence, normal cartilage homeostasis requires enzymatically active SIRT-1 protein. PMID:23124828

  12. The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.

    PubMed

    Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung

    2018-03-01

    The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018

  13. Innate immunity of surfactant proteins A and D in urinary tract infection with uropathogenic Escherichia coli

    PubMed Central

    Hu, Fengqi; Ding, Guohua; Zhang, Zhiyong; Gatto, Louis A.; Hawgood, Samuel; Poulain, Francis R.; Cooney, Robert N.; Wang, Guirong

    2015-01-01

    To investigate the effects of surfactant proteins A and D (SP-A, SP-D) in urinary tract infection (UTI), SP-A and SP-D double knockout (SP-A/D KO) and wild type (WT) C57BL/6 female mice were infected with uropathogenic Escherichia coli by intravesical inoculation. Compared with WT mice SP-A/D KO mice showed increased susceptibility to UTI as evidenced by higher bacterial CFU, more infiltrating neutrophils and severe pathological changes. Keratinocyte-derived chemokine increased in the kidney of WT mice but not in SP-A/D KO mice 24 h post-infection. Compared to control, level of IL-17 was elevated in the kidney of infected WT and SP-A/D KO mice and the level of IL-17 was higher in the infected SP-A/D KO mice than infected WT mice 24 and 48 h post-infection. Basal level of p38 MAPK phosphorylation in SP-A/D KO mice was higher compared to WT mice. Phosphorylated-p38 level was elevated in the kidney of WT mice post-infection but not in SP-A/D KO mice. Furthermore, in vitro growth of uropathogenic E. coli was inhibited by SP-A and SP-D. We conclude that SP-A and SP-D function as mediators of innate immunity by inhibiting bacterial growth and modulating renal inflammation in part by regulating p38 MAPK-related pathway in murine UTI. PMID:26511057

  14. Impaired Angiogenesis and Mobilization of Circulating Angiogenic Cells in HIF-1α Heterozygous-Null Mice after Burn Wounding

    PubMed Central

    Zhang, Xianjie; Liu, Lixin; Wei, Xiaofei; Tan, Yee Sun; Tong, Lana; Chang, Ryan; Ghanamah, Mohammed S.; Reinblatt, Maura; Marti, Guy P.; Harmon, John W.; Semenza, Gregg L.

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that controls vascular responses to hypoxia and ischemia. In this study, mice that were heterozygous for a null allele at the locus encoding the HIF-1α subunit (HET mice) and their wild type (WT) littermates were subjected to thermal injury involving 10% of body surface area. HIF-1α protein levels were increased in burn wounds of WT but not of HET mice on day 2. Serum levels of stromal-derived factor 1α, which binds to CXCR4, were increased on day 2 in WT but not in HET mice. Circulating angiogenic cells were also increased on day 2 in WT but not in HET mice and included CXCR4+Sca1+ cells. Laser Doppler perfusion imaging demonstrated increased blood flow in burn wounds of WT but not HET mice on day 7. Immunohistochemistry on day 7 revealed a reduced number of CD31+ vessels at the healing margin of burn wounds in HET as compared to WT mice. Vessel maturation was also impaired in wounds of HET mice as determined by the number of α-smooth muscle actin-positive vessels on day 21. The remaining wound area on day 14 was significantly increased in HET mice compared to WT littermates. The percentage of healed wounds on day 14 was significantly decreased in HET mice. These data delineate a signaling pathway by which HIF-1 promotes angiogenesis during burn wound healing. PMID:20163569

  15. The Transcriptional Response of Lactobacillus sanfranciscensis DSM 20451T and Its tcyB Mutant Lacking a Functional Cystine Transporter to Diamide Stress

    PubMed Central

    Stetina, Mandy; Behr, Jürgen

    2014-01-01

    As a result of its strong adaptation to wheat and rye sourdoughs, Lactobacillus sanfranciscensis has the smallest genome within the genus Lactobacillus. The concomitant absence of some important antioxidative enzymes and the inability to synthesize glutathione suggest a role of cystine transport in maintenance of an intracellular thiol balance. Diamide [synonym 1,1′-azobis(N,N-dimethylformamide)] disturbs intracellular and membrane thiol levels in oxidizing protein thiols depending on its initial concentration. In this study, RNA sequencing was used to reveal the transcriptional response of L. sanfranciscensis DSM 20451T (wild type [WT]) and its ΔtcyB mutant with a nonfunctional cystine transporter after thiol stress caused by diamide. Along with the different expression of genes involved in amino acid starvation, pyrimidine synthesis, and energy production, our results show that thiol stress in the wild type can be compensated through activation of diverse chaperones and proteases whereas the ΔtcyB mutant shifts its metabolism in the direction of survival. Only a small set of genes are significantly differentially expressed between the wild type and the mutant. In the WT, mainly genes which are associated with a heat shock response are upregulated whereas glutamine import and synthesis genes are downregulated. In the ΔtcyB mutant, the whole opp operon was more highly expressed, as well as a protein which probably includes enzymes for methionine transport. The two proteins encoded by spxA and nrdH, which are involved in direct or indirect oxidative stress responses, are also upregulated in the mutant. This work emphasizes that even in the absence of definitive antioxidative enzymes, bacteria with a small genome and a high frequency of gene inactivation and elimination use small molecules such as the cysteine/cystine couple to overcome potential cell damage resulting from oxidative stress. PMID:24795368

  16. The transcriptional response of Lactobacillus sanfranciscensis DSM 20451T and its tcyB mutant lacking a functional cystine transporter to diamide stress.

    PubMed

    Stetina, Mandy; Behr, Jürgen; Vogel, Rudi F

    2014-07-01

    As a result of its strong adaptation to wheat and rye sourdoughs, Lactobacillus sanfranciscensis has the smallest genome within the genus Lactobacillus. The concomitant absence of some important antioxidative enzymes and the inability to synthesize glutathione suggest a role of cystine transport in maintenance of an intracellular thiol balance. Diamide [synonym 1,1'-azobis(N,N-dimethylformamide)] disturbs intracellular and membrane thiol levels in oxidizing protein thiols depending on its initial concentration. In this study, RNA sequencing was used to reveal the transcriptional response of L. sanfranciscensis DSM 20451(T) (wild type [WT]) and its ΔtcyB mutant with a nonfunctional cystine transporter after thiol stress caused by diamide. Along with the different expression of genes involved in amino acid starvation, pyrimidine synthesis, and energy production, our results show that thiol stress in the wild type can be compensated through activation of diverse chaperones and proteases whereas the ΔtcyB mutant shifts its metabolism in the direction of survival. Only a small set of genes are significantly differentially expressed between the wild type and the mutant. In the WT, mainly genes which are associated with a heat shock response are upregulated whereas glutamine import and synthesis genes are downregulated. In the ΔtcyB mutant, the whole opp operon was more highly expressed, as well as a protein which probably includes enzymes for methionine transport. The two proteins encoded by spxA and nrdH, which are involved in direct or indirect oxidative stress responses, are also upregulated in the mutant. This work emphasizes that even in the absence of definitive antioxidative enzymes, bacteria with a small genome and a high frequency of gene inactivation and elimination use small molecules such as the cysteine/cystine couple to overcome potential cell damage resulting from oxidative stress. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Gravitropism in roots of intermediate-starch mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Wright, J. B.; Caspar, T.

    1996-01-01

    Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the starchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to the starchless mutant, it appears that 51-60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.

  18. Astrocytic leptin-receptor knockout mice show partial rescue of leptin resistance in diet-induced obesity.

    PubMed

    Jayaram, Bhavaani; Pan, Weihong; Wang, Yuping; Hsuchou, Hung; Mace, Aurelien; Cornelissen-Guillaume, Germaine G; Mishra, Pramod K; Koza, Robert A; Kastin, Abba J

    2013-03-15

    To determine how astrocytic leptin signaling regulates the physiological response of mice to diet-induced obesity (DIO), we performed metabolic analyses and hypothalamic leptin signaling assays on astrocytic leptin-receptor knockout (ALKO) mice in which astrocytes lack functional leptin receptor (ObR) signaling. ALKO mice and wild-type (WT) littermate controls were studied at different stages of DIO with measurement of body wt, percent fat, metabolic activity, and biochemical parameters. When fed regular chow, the ALKO mice had similar body wt, percent fat, food intake, heat dissipation, respiratory exchange ratio, and activity as their WT littermates. There was no change in blood concentrations of triglyceride, soluble leptin receptor (sObR), mRNA for leptin and uncoupling protein 1 (UCP1) in adipose tissue, and insulin sensitivity. Unexpectedly, in response to a high-fat diet the ALKO mice had attenuated hyperleptinemia and sObR, a lower level of leptin mRNA in subcutaneous fat, and a paradoxical increase in UCP1 mRNA. Thus, ALKO mice did not show the worsening of obesity that occurs with normal WT mice and the neuronal ObR mutation that results in morbid obesity. The findings are consistent with a competing, counterregulatory model between neuronal and astrocytic leptin signaling.

  19. Glu-370 in the large subunit influences the substrate binding, allosteric, and heat stability properties of potato ADP-glucose pyrophosphorylase.

    PubMed

    Seferoglu, Ayse Bengisu; Gul, Seref; Dikbas, Ugur Meric; Baris, Ibrahim; Koper, Kaan; Caliskan, Mahmut; Cevahir, Gul; Kavakli, Ibrahim Halil

    2016-11-01

    ADP-glucose pyrophosphorylase (AGPase) is a key allosteric enzyme in plant starch biosynthesis. Plant AGPase is a heterotetrameric enzyme that consists of large (LS) and small subunits (SS), which are encoded by two different genes. In this study, we showed that the conversion of Glu to Gly at position 370 in the LS of AGPase alters the heterotetrameric stability along with the binding properties of substrate and effectors of the enzyme. Kinetic analyses revealed that the affinity of the LS E370G SS WT AGPase for glucose-1-phosphate is 3-fold less than for wild type (WT) AGPase. Additionally, the LS E370G SS WT AGPase requires 3-fold more 3-phosphogyceric acid to be activated. Finally, the LS E370G SS WT AGPase is less heat stable compared with the WT AGPase. Computational analysis of the mutant Gly-370 in the 3D modeled LS AGPase showed that this residue changes charge distribution of the surface and thus affect stability of the LS AGPase and overall heat stability of the heterotetrameric AGPase. In summary, our results show that LS E370 intricately modulate the heat stability and enzymatic activity of potato the AGPase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Global ablation of the mitochondrial calcium uniporter increases glycolysis in cortical neurons subjected to energetic stressors.

    PubMed

    Nichols, Matthew; Elustondo, Pia A; Warford, Jordan; Thirumaran, Aruloli; Pavlov, Evgeny V; Robertson, George S

    2017-08-01

    The effects of global mitochondrial calcium (Ca 2+ ) uniporter (MCU) deficiency on hypoxic-ischemic (HI) brain injury, neuronal Ca 2+ handling, bioenergetics and hypoxic preconditioning (HPC) were examined. Forebrain mitochondria isolated from global MCU nulls displayed markedly reduced Ca 2+ uptake and Ca 2+ -induced opening of the membrane permeability transition pore. Despite evidence that these effects should be neuroprotective, global MCU nulls and wild-type (WT) mice suffered comparable HI brain damage. Energetic stress enhanced glycolysis and depressed Complex I activity in global MCU null, relative to WT, cortical neurons. HI reduced forebrain NADH levels more in global MCU nulls than WT mice suggesting that increased glycolytic consumption of NADH suppressed Complex I activity. Compared to WT neurons, pyruvate dehydrogenase (PDH) was hyper-phosphorylated in MCU nulls at several sites that lower the supply of substrates for the tricarboxylic acid cycle. Elevation of cytosolic Ca 2+ with glutamate or ionomycin decreased PDH phosphorylation in MCU null neurons suggesting the use of alternative mitochondrial Ca 2+ transport. Under basal conditions, global MCU nulls showed similar increases of Ca 2+ handling genes in the hippocampus as WT mice subjected to HPC. We propose that long-term adaptations, common to HPC, in global MCU nulls compromise resistance to HI brain injury and disrupt HPC.

  1. AtSRP1, SMALL RUBBER PARTICLE PROTEIN HOMOLOG, functions in pollen growth and development in Arabidopsis.

    PubMed

    Chi, Yong Hun; Kim, Sun Young; Lee, Eun Seon; Jung, Young Jun; Park, Joung Hun; Paeng, Seol Ki; Oh, Hun Taek; Melencion, Sarah Mae Boyles; Alinapon, Cresilda Vergara; Lee, Sang Yeol

    2016-06-24

    To identify novel roles of SMALL RUBBER PARTICLE PROTEIN Homolog in the non-rubber-producing plant Arabidopsis (AtSRP1), we isolated a T-DNA-insertion knock-out mutant (FLAG_543A05) and investigated its functional characteristics. AtSRP1 is predominantly expressed in reproductive organs and is localized to lipid droplets and ER. Compared to wild-type (WT) Arabidopsis, atsrp1 plants contain small siliques with a reduced number of heterogeneously shaped seeds. The size of anther and pollen grains in atsrp1 is highly irregular, with a lower grain number than WT. Therefore, AtSRP1 plays a novel role related to pollen growth and development in a non-rubber-producing plant. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Fibroblasts derived from long-lived insulin receptor substrate 1 null mice are not resistant to multiple forms of stress

    PubMed Central

    Page, Melissa M; Sinclair, Amy; Robb, Ellen L; Stuart, Jeffrey A; Withers, Dominic J; Selman, Colin

    2014-01-01

    Reduced signalling through the insulin/insulin-like growth factor-1 signalling (IIS) pathway is a highly conserved lifespan determinant in model organisms. The precise mechanism underlying the effects of the IIS on lifespan and health is currently unclear, although cellular stress resistance may be important. We have previously demonstrated that mice globally lacking insulin receptor substrate 1 (Irs1−/−) are long-lived and enjoy a greater period of their life free from age-related pathology compared with wild-type (WT) controls. In this study, we show that primary dermal fibroblasts and primary myoblasts derived from Irs1−/− mice are no more resistant to a range of oxidant and nonoxidant chemical stressors than cells derived from WT mice. PMID:25059507

  3. Type 2 diabetes aggravates Alzheimer's disease-associated vascular alterations of the aorta in mice.

    PubMed

    Sena, Cristina M; Pereira, Ana M; Carvalho, Cristina; Fernandes, Rosa; Seiça, Raquel M; Oliveira, Catarina R; Moreira, Paula I

    2015-01-01

    Vascular risk factors are associated with a higher incidence of dementia. In fact, diabetes mellitus is considered a main risk factor for Alzheimer's disease (AD) and both diseases are characterized by vascular dysfunction. However, the underlying mechanisms remain largely unknown. Here, the effects of high-sucrose-induced type 2 diabetes (T2D) in the aorta of wild type (WT) and triple-transgenic AD (3xTg-AD) mice were investigated. 3xTg-AD mice showed a significant decrease in body weight and an increase in postprandial glycemia, glycated hemoglobin (HbA1c), and vascular nitrotyrosine, superoxide anion (O2•-), receptor for the advanced glycation end products (RAGE) protein, and monocyte chemoattractant protein-1 (MCP-1) levels when compared to WT mice. High-sucrose intake caused a significant increase in body weight, postprandial glycemia, HbA1c, triglycerides, plasma vascular cell adhesion molecule 1 (VCAM-1), and vascular nitrotyrosine, O2•-, RAGE, and MCP-1 levels in both WT and 3xTg-AD mice when compared to the respective control group. Also, a significant decrease in nitric oxide-dependent vasorelaxation was observed in 3xTg-AD and sucrose-treated WT mice. In conclusion, AD and T2D promote similar vascular dysfunction of the aorta, this effect being associated with elevated oxidative and nitrosative stress and inflammation. Also, AD-associated vascular alterations are potentiated by T2D. These findings support the idea that metabolic alterations predispose to the onset and progression of dementia.

  4. Deletion of angiotensin II type 1 receptor gene attenuates chronic alcohol-induced retinal ganglion cell death with preservation of VEGF expression.

    PubMed

    Miao, Xiao; Lv, Huayi; Wang, Bo; Chen, Qiang; Miao, Lining; Su, Guanfang; Tan, Yi

    2013-01-01

    To investigate how chronic alcohol consumption affects adult visual nervous system and whether renin-angiotensin system (RAS) is involved in this pathogenic process. Male transgenic mice with angiotensin II (Ang II) type 1 (AT1) receptor gene knockout (AT1-KO) and age-matched wild-type (WT) mice were pair-fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. At the end of the study, retinas were harvested and subjected to histopathological and immunohistochemical examination. We found that chronic alcohol consumption significantly increased retinal ganglion cell (RGC) apoptosis in the retina of WT mice, but not AT1-KO mice, detected by terminal deoxynucleotidyl-transferase-mediated dUTP-nick-end labeling staining and caspase 3 activation, along with an up-regulation of AT1 expression in RGC. At the same time, the phosphorylation of P53 in RGCs was significantly increased for both WT and AT1-KO mice exposed to alcohol, which could be significantly, although partially, prevented by AT1 gene deletion. We further examined the expression of vascular endothelial growth factor (VEGF) and CD31, and found that alcohol treatment significantly decreased the expression of VEGF and CD31 in RGCs of WT mice, but not AT1-KO mice. Taken together, our study demonstrates that the induction of RGC apoptosis by chronic alcohol exposure may be related to p53-activation and VEGF depression, all which are partially dependent of AT1 receptor activation.

  5. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine.

    PubMed

    Franceschini, Alessia; Nair, Asha; Bele, Tanja; van den Maagdenberg, Arn Mjm; Nistri, Andrea; Fabbretti, Elsa

    2012-11-21

    Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.

  6. The Prion Protein Modulates A-type K+ Currents Mediated by Kv4.2 Complexes through Dipeptidyl Aminopeptidase-like Protein 6*

    PubMed Central

    Mercer, Robert C. C.; Ma, Li; Watts, Joel C.; Strome, Robert; Wohlgemuth, Serene; Yang, Jing; Cashman, Neil R.; Coulthart, Michael B.; Schmitt-Ulms, Gerold; Jhamandas, Jack H.; Westaway, David

    2013-01-01

    Widely expressed in the adult central nervous system, the cellular prion protein (PrPC) is implicated in a variety of processes, including neuronal excitability. Dipeptidyl aminopeptidase-like protein 6 (DPP6) was first identified as a PrPC interactor using in vivo formaldehyde cross-linking of wild type (WT) mouse brain. This finding was confirmed in three cell lines and, because DPP6 directs the functional assembly of K+ channels, we assessed the impact of WT and mutant PrPC upon Kv4.2-based cell surface macromolecular complexes. Whereas a Gerstmann-Sträussler-Scheinker disease version of PrP with eight extra octarepeats was a loss of function both for complex formation and for modulation of Kv4.2 channels, WT PrPC, in a DPP6-dependent manner, modulated Kv4.2 channel properties, causing an increase in peak amplitude, a rightward shift of the voltage-dependent steady-state inactivation curve, a slower inactivation, and a faster recovery from steady-state inactivation. Thus, the net impact of wt PrPC was one of enhancement, which plays a critical role in the down-regulation of neuronal membrane excitability and is associated with a decreased susceptibility to seizures. Insofar as previous work has established a requirement for WT PrPC in the Aβ-dependent modulation of excitability in cholinergic basal forebrain neurons, our findings implicate PrPC regulation of Kv4.2 channels as a mechanism contributing to the effects of oligomeric Aβ upon neuronal excitability and viability. PMID:24225951

  7. Inducible nitric oxide synthase during the late phase of sepsis is associated with hypothermia and immune cell migration.

    PubMed

    Takatani, Yudai; Ono, Kenji; Suzuki, Hiromi; Inaba, Masato; Sawada, Makoto; Matsuda, Naoyuki

    2018-02-14

    Hypothermia is a significant sign of sepsis, which is associated with poor prognosis, but few mechanisms underlying the regulation of hypothermia are known. Inducible nitric oxide synthase (iNOS) is a key inflammatory mediator of sepsis. However, the therapeutic benefit of iNOS inhibition in sepsis is still controversial, and requires elucidation in an accurate model system. In this study, wild-type (WT) mice showed temperature drops in a biphasic manner at the early and late phase of sepsis, and all mice died within 48 h of sepsis. In contrast, iNOS-knockout (KO) mice never showed the second temperature drop and exhibited improved mortality. Plasma nitric oxide (NO) levels of WT mice increased in the late phase of sepsis and correlated to hypothermia. The results indicate that iNOS-derived NO during the late phase of sepsis caused vasodilation-induced hypothermia and a lethal hypodynamic state. The expression of the iNOS mRNA was high in the lung of WT mice with sepsis, which reflects the pathology of acute respiratory distress syndrome (ARDS). We obtained the results in a modified keyhole-type cecal ligation and puncture model of septic shock induced by minimally invasive surgery. In this accurate and reproducible model system, we transplanted the bone marrow cells of GFP transgenic mice into WT and iNOS-KO mice, and evaluated the role of increased pulmonary iNOS expression in cell migration during the late phase of sepsis. We also investigated the quantity and type of bone marrow-derived cells (BMDCs) in the lung. The number of BMDCs in the lung of iNOS-KO mice was less than that in the lung of WT mice. The major BMDCs populations were CD11b-positive, iNOS-negative cells in WT mice, and Gr-1-positive cells in iNOS-KO mice that expressed iNOS. These results suggest that sustained hypothermia may be a beneficial guide for future iNOS-targeted therapy of sepsis, and that iNOS modulated the migratory efficiency and cell type of BMDCs in septic ARDS.

  8. Do cryptic species exist in Hoplobatrachus rugulosus? An examination using four nuclear genes, the cyt b gene and the complete MT genome.

    PubMed

    Yu, Danna; Zhang, Jiayong; Li, Peng; Zheng, Rongquan; Shao, Chen

    2015-01-01

    he Chinese tiger frog Hoplobatrachus rugulosus is widely distributed in southern China, Malaysia, Myanmar, Thailand, and Vietnam. It is listed in Appendix II of CITES as the only Class II nationally-protected frog in China. The bred tiger frog known as the Thailand tiger frog, is also identified as H. rugulosus. Our analysis of the Cyt b gene showed high genetic divergence (13.8%) between wild and bred samples of tiger frog. Unexpected genetic divergence of the complete mt genome (14.0%) was also observed between wild and bred samples of tiger frog. Yet, the nuclear genes (NCX1, Rag1, Rhod, Tyr) showed little divergence between them. Despite this and their very similar morphology, the features of the mitochondrial genome including genetic divergence of other genes, different three-dimensional structures of ND5 proteins, and gene rearrangements indicate that H. rugulosus may be a cryptic species complex. Using Bayesian inference, maximum likelihood, and maximum parsimony analyses, Hoplobatrachus was resolved as a sister clade to Euphlyctis, and H. rugulosus (BT) as a sister clade to H. rugulosus (WT). We suggest that we should prevent Thailand tiger frogs (bred type) from escaping into wild environments lest they produce hybrids with Chinese tiger frogs (wild type).

  9. Do Cryptic Species Exist in Hoplobatrachus rugulosus? An Examination Using Four Nuclear Genes, the Cyt b Gene and the Complete MT Genome

    PubMed Central

    Li, Peng; Zheng, Rongquan; Shao, Chen

    2015-01-01

    he Chinese tiger frog Hoplobatrachus rugulosus is widely distributed in southern China, Malaysia, Myanmar, Thailand, and Vietnam. It is listed in Appendix II of CITES as the only Class II nationally-protected frog in China. The bred tiger frog known as the Thailand tiger frog, is also identified as H. rugulosus. Our analysis of the Cyt b gene showed high genetic divergence (13.8%) between wild and bred samples of tiger frog. Unexpected genetic divergence of the complete mt genome (14.0%) was also observed between wild and bred samples of tiger frog. Yet, the nuclear genes (NCX1, Rag1, Rhod, Tyr) showed little divergence between them. Despite this and their very similar morphology, the features of the mitochondrial genome including genetic divergence of other genes, different three-dimensional structures of ND5 proteins, and gene rearrangements indicate that H. rugulosus may be a cryptic species complex. Using Bayesian inference, maximum likelihood, and maximum parsimony analyses, Hoplobatrachus was resolved as a sister clade to Euphlyctis, and H. rugulosus (BT) as a sister clade to H. rugulosus (WT). We suggest that we should prevent Thailand tiger frogs (bred type) from escaping into wild environments lest they produce hybrids with Chinese tiger frogs (wild type). PMID:25875761

  10. Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Sack, F. D.

    1989-01-01

    Gravitropism was studied in seedlings of Nicotiana sylvestris Speg. et Comes wild-type (WT) and mutant NS 458 which has a defective plastid phosphoglucomutase (EC 2.7.5.1.). Starch was greatly reduced in NS 458 compared to the WT, but small amounts of starch were detected in rootcap columella cells in NS 458 by light and electron microscopy. The roots of WT are more sensitive to gravity than mutant NS 458 roots since: (1) in mutant roots, curvature was reduced and delayed in the time course of curvature; (2) curvature of mutant roots was 24-56% that of WT roots over the range of induction periods tested; (3) in intermittent-stimulation experiments, curvature of mutant roots was 37% or less than that of WT roots in all treatments tested. The perception time, determined by intermittent-stimulation experiments, was < or = 5 s for WT roots and 30-60 s for mutant roots. The growth rates for WT and NS 458 roots were essentially equal. These results and our previous results with WT and starchless mutant Arabidopsis roots (Kiss et al. 1989, Planta 177, 198-206) support the conclusions that a full complement of starch is necessary for full gravitropic sensitivity and that amyloplasts function in gravity perception. Since a presumed relatively small increase in plastid buoyant mass (N. sylvestris mutant versus Arabidopsis mutant) significantly improves the orientation of the N. sylvestris mutant roots, we suggest that plastids are the likeliest candidates to be triggering gravity perception in roots of both mutants.

  11. Characterization of locomotor activity circadian rhythms in athymic nude mice

    PubMed Central

    2013-01-01

    Background The relation between circadian dysregulation and cancer incidence and progression has become a topic of major interest over the last decade. Also, circadian timing has gained attention regarding the use of chronopharmacology-based therapeutics. Given its lack of functional T lymphocytes, due to a failure in thymus development, mice carrying the Foxn1(Δ/Δ) mutation (nude mice) have been traditionally used in studies including implantation of xenogeneic tumors. Since the immune system is able to modulate the circadian clock, we investigated if there were alterations in the circadian system of the athymic mutant mice. Methods General activity circadian rhythms in 2–4 month-old Foxn1(Δ/Δ) mice (from Swiss Webster background) and their corresponding wild type (WT) controls was recorded. The response of the circadian system to different manipulations (constant darkness, light pulses and shifts in the light–dark schedule) was analyzed. Results Free-running periods of athymic mice and their wild type counterpart were 23.86 ± 0.03 and 23.88 ± 0.05 hours, respectively. Both strains showed similar phase delays in response to 10 or 120 minutes light pulses applied in the early subjective night and did not differ in the number of c-Fos-expressing cells in the suprachiasmatic nuclei, after a light pulse at circadian time (CT) 15. Similarly, the two groups showed no significant difference in the time needed for resynchronization after 6-hour delays or advances in the light–dark schedule. The proportion of diurnal activity, phase-angle with the zeitgeber, subjective night duration and other activity patterns were similar between the groups. Conclusions Since athymic Foxn1(Δ/Δ) mice presented no differences with the WT controls in the response of the circadian system to the experimental manipulations performed in this work, we conclude that they represent a good model in studies that combine xenograft implants with either alteration of the circadian schedules or chronopharmacological approaches to therapeutics. PMID:23369611

  12. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L.

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa—using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of retinal electrostimulation by establishing standard stimuli for each unique experimental condition.

  13. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.

    PubMed

    Kasemets, Kaja; Suppi, Sandra; Künnis-Beres, Kai; Kahru, Anne

    2013-03-18

    A suite of eight tentatively oxidative stress response-deficient Saccharomyces cerevisiae BY4741 single-gene mutants (sod1Δ, sod2Δ, yap1Δ, cta1Δ, ctt1Δ, gsh1Δ, glr1Δ, and ccs1Δ) and one copper-vulnerable mutant (cup2Δ) was used to elucidate weather the toxicity of CuO nanoparticles to S. cerevisiae is mediated by oxidative stress (OS). Specifically, sensitivity profiles of mutants' phenotypes and wild-type (wt) upon exposure to nano-CuO were compared. As controls, CuSO4 (solubility), bulk-CuO (size), H2O2, and menadione (OS) were used. Growth inhibition of wt and mutant strains was studied in rich YPD medium and cell viability in deionized water (DI). Dissolved Cu-ions were quantified by recombinant metal-sensing bacteria and chemical analysis. To wt strain nano-CuO was 32-fold more toxic than bulk-CuO: 24-h IC50 4.8 and 155 mg/L in DI and 643 and >20000 mg/L in YPD, respectively. In toxicant-free YPD medium, all mutants had practically similar growth patterns as wt. However, the mutant strains sod1Δ, sod2Δ, ccs1Δ, and yap1Δ showed up to 12-fold elevated sensitivity toward OS standard chemicals menadione and H2O2 but not to nano-CuO, indicating that CuO nanoparticles exerted toxicity to yeast cells via different mechanisms. The most vulnerable strain to all studied Cu compounds was the copper stress response-deficient strain cup2Δ (∼16-fold difference with wt), indicating that the toxic effect of CuO (nano)particles proceeds via dissolved Cu-ions. The dissolved copper solely explained the toxicity of nano-CuO in DI but not in YPD. Assumingly, in YPD nano-CuO acquired a coating of peptides/proteins and sorbed onto the yeast's outer surface, resulting in their increased solubility in the close vicinity of yeast cells and increased uptake of Cu-ions that was not registered by the assays used for the analysis of dissolved Cu-ions in the test medium. Lastly, as yeast retained its viability in DI even by 24th hour of incubation, the profiling of the acute basal toxicity of chemicals toward yeasts may be conducted in DI.

  14. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    PubMed

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  15. Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart.

    PubMed

    Levitan, Bryana M; Manning, Janet R; Withers, Catherine N; Smith, Jeffrey D; Shaw, Robin M; Andres, Douglas A; Sorrell, Vincent L; Satin, Jonathan

    2016-12-01

    Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad -/- ) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad -/- confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad -/- . Rad -/- basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support.

  16. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection.

    PubMed

    Yockey, Laura J; Varela, Luis; Rakib, Tasfia; Khoury-Hanold, William; Fink, Susan L; Stutz, Bernardo; Szigeti-Buck, Klara; Van den Pol, Anthony; Lindenbach, Brett D; Horvath, Tamas L; Iwasaki, Akiko

    2016-08-25

    Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart

    PubMed Central

    Levitan, Bryana M.; Manning, Janet R.; Withers, Catherine N.; Smith, Jeffrey D.; Shaw, Robin M.; Andres, Douglas A.; Sorrell, Vincent L.

    2016-01-01

    Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad−/−) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad−/− confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad−/−. Rad−/− basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support. PMID:27798760

  18. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise.

    PubMed

    Miner, Jonathan J; Cao, Bin; Govero, Jennifer; Smith, Amber M; Fernandez, Estefania; Cabrera, Omar H; Garber, Charise; Noll, Michelle; Klein, Robyn S; Noguchi, Kevin K; Mysorekar, Indira U; Diamond, Michael S

    2016-05-19

    Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Zika virus infection during pregnancy in mice causes placental damage and fetal demise

    PubMed Central

    Miner, Jonathan J.; Cao, Bin; Govero, Jennifer; Smith, Amber M.; Fernandez, Estefania; Cabrera, Omar H.; Garber, Charise; Noll, Michelle; Klein, Robyn S.; Noguchi, Kevin K.; Mysorekar, Indira U.; Diamond, Michael S.

    2016-01-01

    SUMMARY Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. PMID:27180225

  20. Patterns of Viral DNA Integration in Cells Transformed by Wild Type or DNA-Binding Protein Mutants of Adenovirus Type 5 and Effect of Chemical Carcinogens on Integration

    PubMed Central

    Dorsch-Häsler, Karoline; Fisher, Paul B.; Weinstein, I. Bernard; Ginsberg, Harold S.

    1980-01-01

    The integration pattern of viral DNA was studied in a number of cell lines transformed by wild-type adenovirus type 5 (Ad5 WT) and two mutants of the DNA-binding protein gene, H5ts125 and H5ts107. The effect of chemical carcinogens on the integration of viral DNA was also investigated. Liquid hybridization (C0t) analyses showed that rat embryo cells transformed by Ad5 WT usually contained only the left-hand end of the viral genome, whereas cell lines transformed by H5ts125 or H5ts107 at either the semipermissive (36°C) or nonpermissive (39.5°C) temperature often contained one to five copies of all or most of the entire adenovirus genome. The arrangement of the integrated adenovirus DNA sequences was determined by cleavage of transformed cell DNA with restriction endonucleases XbaI, EcoRI, or HindIII followed by transfer of separated fragments to nitrocellulose paper and hybridization according to the technique of E. M. Southern (J. Mol. Biol. 98: 503-517, 1975). It was found that the adenovirus genome is integrated as a linear sequence covalently linked to host cell DNA; that the viral DNA is integrated into different host DNA sequences in each cell line studied; that in cell lines that contain multiple copies of the Ad5 genome the viral DNA sequences can be integrated in a single set of host cell DNA sequences and not as concatemers; and that chemical carcinogens do not alter the extent or pattern of viral DNA integration. Images PMID:6246266

  1. Accumulation, speciation, and coordination of arsenic in an inbred line and a wild type cultivar of the desert plant species Chilopsis linearis (Desert willow).

    PubMed

    Castillo-Michel, Hiram A; Zuverza-Mena, Nubia; Parsons, Jason G; Dokken, Kenneth M; Duarte-Gardea, Maria; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2009-03-01

    This study investigated the absorption of arsenic (As), sulfur (S), and phosphorus (P) in the desert plant Chilopsis linearis (Desert willow). A comparison between an inbred line (red flowered) and wild type (white flowered) plants was performed to look for differential responses to As treatment. One month old seedlings were treated for 7 days with arsenate (As(2)O(5), As(V)) at 0, 20, and 40 mg As(V)L(-1). Results from the ICP-OES analysis showed that at 20mg As(V)L(-1), red flowered plants had 280+/-11 and 98+/-7 mg As kg(-1) dry wt in roots and stems, respectively, while white flowered plants had 196+/-30 and 103+/-13 mg As kg(-1) dry wt for roots and stems. At this treatment level, the concentration of As in leaves was below detection limits for both plants. In red flowered plants treated with 40 mg As(V)L(-1), As was at 290+/-77 and 151+/-60 mg As kg(-1) in roots and stems, respectively, and not detected in leaves, whereas white flowered plants had 406+/-36, 213+/-12, and 177+/-40 mg As kg(-1) in roots, stems, and leaves. The concentration of S increased in all As treated plants, while the concentration of P decreased in roots and stems of both types of plants and in leaves of red flowered plants. X-ray absorption spectroscopy analyses demonstrated partial reduction of arsenate to arsenite in the form of As-(SX)(3) species in both types of plants.

  2. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span

    PubMed Central

    Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A.

    2015-01-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  3. Phosphate Uptake-Independent Signaling Functions of the Type III Sodium-Dependent Phosphate Transporter, PiT-1, in Vascular Smooth Muscle Cells

    PubMed Central

    Chavkin, Nicholas W.; Jun Chia, Jia; Crouthamel, Matthew H.; Giachelli, Cecilia M.

    2015-01-01

    Vascular calcification (VC) is prevalent in chronic kidney disease and elevated serum inorganic phosphate (Pi) is a recognized risk factor. The type III sodium-dependent phosphate transporter, PiT-1, is required for elevated Pi-induced osteochondrogenic differentiation and matrix mineralization in vascular smooth muscle cells (VSMCs). However, the molecular mechanism(s) by which PiT-1 promotes these processes is unclear. In the present study, we confirmed that the Pi concentration required to induce osteochondrogenic differentiation and matrix mineralization of mouse VSMCs was well above that required for maximal Pi uptake, suggesting a signaling function of PiT-1 that was independent of Pi transport. Elevated Pi-induced signaling via ERK1/2 phosphorylation was abrogated in PiT-1 deficient VSMCs, but could be rescued by wild-type (WT) and a Pi transport-deficient PiT-1 mutant. Furthermore, both WT and transport-deficient PiT-1 mutants promoted osteochondrogenic differentiation as measured by decreased SM22α and increased osteopontin mRNA expression. Finally, compared to vector alone, expression of transport-deficient PiT-1 mutants promoted VSMC matrix mineralization, but not to the extent observed with PiT-1 WT. These data suggest that both Pi uptake-dependent and -independent functions of PiT-1 are important for VSMC processes mediating vascular calcification. PMID:25684711

  4. Loss or Inhibition of uPA or MMP-9 Attenuates LV Remodeling and Dysfunction after Acute Pressure Overload in Mice

    PubMed Central

    Heymans, Stephane; Lupu, Florea; Terclavers, Sven; Vanwetswinkel, Bjorn; Herbert, Jean-Marc; Baker, Andrew; Collen, Desire; Carmeliet, Peter; Moons, Lieve

    2005-01-01

    Left ventricular (LV) hypertrophy is a natural response of the heart to increased pressure loading, but accompanying fibrosis and dilatation may result in irreversible life-threatening heart failure. Matrix metalloproteinases (MMPs) have been invoked in various cardiac diseases, however, direct genetic evidence for a role of the plasminogen activator (PA) and MMP systems in pressure overload-induced LV hypertrophy and in heart failure is lacking. Therefore, the consequences of transverse aortic banding (TAB) were analyzed in mice lacking tissue-type PA (t-PA−/−), urokinase-type PA (u-PA−/−), or gelatinase-B (MMP-9−/−), and in wild-type (WT) mice after adenoviral gene transfer of the PA-inhibitor PAI-1 or the MMP-inhibitor TIMP-1. TAB elevated LV pressure comparably in all genotypes. In WT and t-PA−/− mice, cardiomyocyte hypertrophy was associated with myocardial fibrosis, LV dilatation and dysfunction, and pump failure after 7 weeks. In contrast, in u-PA−/− mice or in WT mice after PAI-1- and TIMP-1-gene transfer, cardiomyocyte hypertrophy was moderate and only minimally associated with cardiac fibrosis and LV dilatation, resulting in better preservation of pump function. Deficiency of MMP-9 had an intermediate effect. These findings suggest that the use of u-PA- or MMP-inhibitors might preserve cardiac pump function in LV pressure overloading. PMID:15631996

  5. University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- | Office of Cancer Genomics

    Cancer.gov

    This data set contains the transcriptional profiles of 20 dorsal skin samples from eight-week-old mice. Mice were generated by crossing FVB/N to Mus spretus mice to generate F1 mice, and then crossing F1 mice back to the FVB/N strain. 10  FVB/N mice lacking Hras1 (aka HrasKO, Hras-/-) and 10  FVB/N mice with wild-type Hras1 were generated. Read the abstract.

  6. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  7. Loss of Nucleotide Excision Repair as a Source of Genomic Instability in Breast Cancer

    DTIC Science & Technology

    2005-06-01

    prone syndrome xeroderma pigmentosum (XP), and reminiscent of p48 deficiency in XP-E cells, and we have in result in the developmental and...photoproduct; UV-DDB, UV-damaged DNA binding factor; wt, wild-type; well as damaged DNA itself, thus suggesting that it may act as XP, xeroderma pigmentosum . a...the potential for mutagenesis. If UV-DDB is a chromatin the classification of five cell strains of xeroderma pigmentosum group E remodeling factor

  8. Programmed death (PD)-1 attenuates macrophage activation and brain inflammation via regulation of fibrinogen-like protein 2 (Fgl-2) after intracerebral hemorrhage in mice.

    PubMed

    Yuan, Bangqing; Huang, Shaokuan; Gong, Shuangfeng; Wang, Feihong; Lin, Li; Su, Tonggang; Sheng, Hanchao; Shi, Hui; Ma, Kunlong; Yang, Zhao

    2016-11-01

    Neuroinflammation plays an important role in the recovery of brain injury in ICH. Macrophage is the major executor in the neuroinflammation and initiates neurological defects. Programmed death 1 (PD-1) delivers inhibitory signals that regulate the balance between T cell activation, tolerance, and immunopathology. PD-1 expression by macrophages plays a pathologic role in the innate inflammatory response. However, the exact role of PD-1 on inflammatory responses following ICH has not been well identified. In this experiment, PD-1 KO (PD-1 -/-) ICH mice and Wild-type (WT) ICH mice were caused by intracranial injection of type IV collagenase. The level of macrophage activation, inflammatory cytokines and fibrinogen-like protein 2 (Fgl-2) were detected using immunofluorescence staining and ELISA assays. In addition, brain edema and neurological scores of ICH mice were also measured. Our data demonstrated that ICH promoted PD-1 expression of macrophage and enhanced inflammatory cytokines and Fgl-2 concentrations. PD-1 -/- mice exhibited significantly higher expression of the inflammatory cytokines which initiate Fgl-2, than did their wild-type (WT) littermates. As a result, macrophage activation, cerebral edema and neurological deficit scores of PD-1 -/- mice were higher. In conclusion, our data demonstrate that PD-1 plays a vital role in brain inflammation via regulation of Fgl-2 after ICH, and that manipulation of PD-1 might be a promising therapeutical target in ICH. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase.

    PubMed

    Habjan, Matthias; Pichlmair, Andreas; Elliott, Richard M; Overby, Anna K; Glatter, Timo; Gstaiger, Matthias; Superti-Furga, Giulio; Unger, Hermann; Weber, Friedemann

    2009-05-01

    Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.

  10. qPCR in gastrointestinal stromal tumors: Evaluation of reference genes and expression analysis of KIT and the alternative receptor tyrosine kinases FLT3, CSF1-R, PDGFRB, MET and AXL

    PubMed Central

    2010-01-01

    Background Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative receptor tyrosine kinase genes FLT3, CSF1-R, PDGFRB, AXL and MET by qPCR. wt-GIST were compared to samples with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these alternative RTK might contribute to the pathogenesis of wt-GIST. Results Gene expression variability of the pooled cDNA samples is much lower than the single reverse transcription cDNA synthesis. By combining the lowest variability values of fixed and fresh tissue, the genes POLR2A, PPIA, RPLPO and TFRC were chosen for further analysis of the GIST samples. Overexpression of KIT compared to the corresponding normal tissue was detected in each GIST subgroup except in GIST with PDGFRA exon 18 mutation. Comparing our sample groups, no significant differences in the gene expression levels of FLT3, CSF1R and AXL were determined. An exception was the sample group with KIT exon 9 mutation. A significantly reduced expression of CSF1R, FLT3 and PDGFRB compared to the normal tissue was detected. GIST with mutations in KIT exon 9 and 11 and in PDGFRA exon 18 showed a significant PDGFRB downregulation. Conclusions As the variability of expression levels for the reference genes is very high comparing fresh frozen and formalin-fixed tissue there is a strong need for validation in each tissue type. None of the alternative receptor tyrosine kinases analyzed is associated with the pathogenesis of wild-type or mutated GIST. It remains to be clarified whether an autocrine or paracrine mechanism by overexpression of receptor tyrosine kinase ligands is responsible for the tumorigenesis of wt-GIST. PMID:21171987

  11. ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism

    PubMed Central

    Murakami, Tetsuro; Yang, Seung-Pil; Xie, Lin; Kawano, Taizo; Fu, Donald; Mukai, Asuka; Bohm, Christopher; Chen, Fusheng; Robertson, Janice; Suzuki, Hiroshi; Tartaglia, Gian Gaetano; Vendruscolo, Michele; Kaminski Schierle, Gabriele S.; Chan, Fiona T.S.; Moloney, Aileen; Crowther, Damian; Kaminski, Clemens F.; Zhen, Mei; St George-Hyslop, Peter

    2012-01-01

    It is unclear whether mutations in fused in sarcoma (FUS) cause familial amyotrophic lateral sclerosis via a loss-of-function effect due to titrating FUS from the nucleus or a gain-of-function effect from cytoplasmic overabundance. To investigate this question, we generated a series of independent Caenorhabditis elegans lines expressing mutant or wild-type (WT) human FUS. We show that mutant FUS, but not WT-FUS, causes cytoplasmic mislocalization associated with progressive motor dysfunction and reduced lifespan. The severity of the mutant phenotype in C. elegans was directly correlated with the severity of the illness caused by the same mutation in humans, arguing that this model closely replicates key features of the human illness. Importantly, the mutant phenotype could not be rescued by overexpression of WT-FUS, even though WT-FUS had physiological intracellular localization, and was not recruited to the cytoplasmic mutant FUS aggregates. Our data suggest that FUS mutants cause neuronal dysfunction by a dominant gain-of-function effect related either to neurotoxic aggregates of mutant FUS in the cytoplasm or to dysfunction in its RNA-binding functions. PMID:21949354

  12. ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism.

    PubMed

    Murakami, Tetsuro; Yang, Seung-Pil; Xie, Lin; Kawano, Taizo; Fu, Donald; Mukai, Asuka; Bohm, Christopher; Chen, Fusheng; Robertson, Janice; Suzuki, Hiroshi; Tartaglia, Gian Gaetano; Vendruscolo, Michele; Kaminski Schierle, Gabriele S; Chan, Fiona T S; Moloney, Aileen; Crowther, Damian; Kaminski, Clemens F; Zhen, Mei; St George-Hyslop, Peter

    2012-01-01

    It is unclear whether mutations in fused in sarcoma (FUS) cause familial amyotrophic lateral sclerosis via a loss-of-function effect due to titrating FUS from the nucleus or a gain-of-function effect from cytoplasmic overabundance. To investigate this question, we generated a series of independent Caenorhabditis elegans lines expressing mutant or wild-type (WT) human FUS. We show that mutant FUS, but not WT-FUS, causes cytoplasmic mislocalization associated with progressive motor dysfunction and reduced lifespan. The severity of the mutant phenotype in C. elegans was directly correlated with the severity of the illness caused by the same mutation in humans, arguing that this model closely replicates key features of the human illness. Importantly, the mutant phenotype could not be rescued by overexpression of WT-FUS, even though WT-FUS had physiological intracellular localization, and was not recruited to the cytoplasmic mutant FUS aggregates. Our data suggest that FUS mutants cause neuronal dysfunction by a dominant gain-of-function effect related either to neurotoxic aggregates of mutant FUS in the cytoplasm or to dysfunction in its RNA-binding functions.

  13. Roles of Alum and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency to Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine

    PubMed Central

    Ko, Eun-Ju; Lee, Young-Tae; Kim, Ki-Hye; Lee, Youri; Jung, Yu-Jin; Kim, Min-Chul; Lee, Yu-Na; Kang, Taeuk; Kang, Sang-Moo

    2016-01-01

    Vaccine adjuvant effects in CD4 deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and Alum adjuvant (MPL+Alum) in inducing immunity after immunization of CD4-knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched antibodies, IgG secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHCII KO mice suggest that MHCII positive antigen presenting cells contribute to providing alternative B cell help in CD4 deficient condition in the context of MPL+Alum adjuvanted vaccination. PMID:27881702

  14. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse.

    PubMed

    Sørensen, Emilie M; Bertelsen, Freja; Weikop, Pia; Skovborg, Maria M; Banke, Tue; Drasbek, Kim R; Scheel-Krüger, Jørgen

    2015-12-01

    The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in the three-chamber test. Fmr1 KO mice spent more time with stranger mice compared with the WT. However, after a correction for hyperactivity, their apparent increase in sociability became identical to that of the WT. Furthermore, the Fmr1 KO mice could not differentiate between a familiar or a novel mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity coexists in ASD patients.

  15. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice.

    PubMed

    Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Nguyen, Amanda; Schaack, Jerome; Hay, William W; Shao, Jianhua

    2017-05-01

    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout ( Adipoq -/- ) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector-mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq -/- dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq -/- dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq -/- dams. Hepatic glucose and triglyceride production rates of Adipoq -/- dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq -/- dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq -/- and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq -/- dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq -/- dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy. © 2017 by the American Diabetes Association.

  16. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice

    PubMed Central

    Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Nguyen, Amanda; Schaack, Jerome; Hay, William W.

    2017-01-01

    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout (Adipoq−/−) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector–mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq−/− dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq−/− dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq−/− dams. Hepatic glucose and triglyceride production rates of Adipoq−/− dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq−/− dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq−/− and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq−/− dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq−/− dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy. PMID:28073830

  17. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV)

    PubMed Central

    Holst, Johan; Oster, Philipp; Arnold, Richard; Tatley, Michael V.; Næss, Lisbeth M.; Aaberge, Ingeborg S.; Galloway, Yvonne; McNicholas, Anne; O’Hallahan, Jane; Rosenqvist, Einar; Black, Steven

    2013-01-01

    The utility of wild-type outer membrane vesicle (wtOMV) vaccines against serogroup B (MenB) meningococcal disease has been explored since the 1970s. Public health interventions in Cuba, Norway and New Zealand have demonstrated that these protein-based vaccines can prevent MenB disease. Data from large clinical studies and retrospective statistical analyses in New Zealand give effectiveness estimates of at least 70%. A consistent pattern of moderately reactogenic and safe vaccines has been seen with the use of approximately 60 million doses of three different wtOMV vaccine formulations. The key limitation of conventional wtOMV vaccines is their lack of broad protective activity against the large diversity of MenB strains circulating globally. The public health intervention in New Zealand (between 2004–2008) when MeNZB was used to control a clonal MenB epidemic, provided a number of new insights regarding international and public-private collaboration, vaccine safety surveillance, vaccine effectiveness estimates and communication to the public. The experience with wtOMV vaccines also provide important information for the next generation of MenB vaccines designed to give more comprehensive protection against multiple strains. PMID:23857274

  18. Pseudoxanthoma Elasticum is a Metabolic Disease

    PubMed Central

    Jiang, Qiujie; Endoh, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the “metabolic” versus the “PXE cell” hypotheses. We examined a murine PXE model (Abcc6−/−) by transplanting muzzle skin from knock-out (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, while grafting KO mouse muzzle skin onto the WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu. PMID:18685618

  19. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy.

    PubMed

    Pratcorona, Marta; Brunet, Salut; Nomdedéu, Josep; Ribera, Josep Maria; Tormo, Mar; Duarte, Rafael; Escoda, Lourdes; Guàrdia, Ramon; Queipo de Llano, M Paz; Salamero, Olga; Bargay, Joan; Pedro, Carmen; Martí, Josep Maria; Torrebadell, Montserrat; Díaz-Beyá, Marina; Camós, Mireia; Colomer, Dolors; Hoyos, Montserrat; Sierra, Jorge; Esteve, Jordi

    2013-04-04

    Risk associated to FLT3 internal tandem duplication (FLT3-ITD) in patients with acute myeloid leukemia (AML) may depend on mutational burden and its interaction with other mutations. We analyzed the effect of FLT3-ITD/FLT3 wild-type (FLT3wt) ratio depending on NPM1 mutation (NPM1mut) in 303 patients with intermediate-risk cytogenetics AML treated with intensive chemotherapy. Among NPM1mut patients, FLT3wt and low ratio (<0.5) subgroups showed similar overall survival, relapse risk, and leukemia-free survival, whereas high ratio (≥0.5) patients had a worse outcome. In NPM1wt AML, FLT3-ITD subgroups showed a comparable outcome, with higher risk of relapse and shortened overall survival than FLT3wt patients. Allogeneic stem cell transplantation in CR1 was associated with a reduced relapse risk in all molecular subgroups with the exception of NPM1mut AML with absent or low ratio FLT3-ITD. In conclusion, effect of FLT3 burden is modulated by NPM1 mutation, especially in patients with a low ratio.

  20. Placental expression of 2,3 bisphosphoglycerate mutase in IGF-II knock out mouse: correlation of circulating maternal 2,3 bisphosphoglycerate and fetal growth.

    PubMed

    Gu, M; Pritlove, D C; Boyd, C A R; Vatish, M

    2009-10-01

    Bisphosphoglycerate mutase (BPGM) catalyses the formation of 2,3 bisphosphoglycerate (BPG) a ligand of haemoglobin. BPG facilitates liberation of oxygen from haemoglobin at low oxygen tension enabling efficient delivery of oxygen to tissues. We describe expression of BPGM in mouse labyrinthine trophoblasts, located at the maternal-placental interface. Expression is lower in placentae of igf2(+/-) knockout mice, a widely used model of growth restriction, compared to wild type placentae. Circulating maternal BPG increased throughout gestation but this increase was less in wt mothers carrying igf2(+/-) pups than in those carrying exclusively wt pups. This reduction was observed well before term and may contribute to the low birth weight of igf2(+/-) pups. Strikingly, we also measured reductions of fetal and placental weight in wt littermates of igf2(+/-) pups compared to pups developing in an exclusively wt environment. These data suggest that placental expression of BPGM can influence maternal BPG concentrations and supports a hypothesis under which BPG synthesized in the placenta may act on maternal haemoglobin to enhance delivery of oxygen to the developing fetus.

  1. Curvature induced by amyloplast magnetophoresis in protonemata of the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Kuznetsov, O. A.; Schwuchow, J.; Sack, F. D.; Hasenstein, K. H.

    1999-01-01

    After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm-3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity.

  2. Potential role of alpha-synuclein and metallothionein in lead-induced inclusion body formation.

    PubMed

    Zuo, Peijun; Qu, Wei; Cooper, Ryan N; Goyer, Robert A; Diwan, Bhalchandra A; Waalkes, Michael P

    2009-09-01

    Lead (Pb) produces aggresome-like inclusion bodies (IBs) in target cells as a toxic response. Our prior work shows metallothionein (MT) is required for this process. We used MT-I/II double knockout (MT-null) and parental wild-type (WT) cell lines to further explore the formation process of Pb-induced IBs. Unlike WT cells, MT-null cells did not form IBs after Pb exposure. Western blot of cytosol showed soluble MT protein in WT cells was lost during Pb exposure as IBs formed. Transfection of MT-I into MT-null cells allowed IBs formation after Pb exposure. Considering Pb-induced IBs may be like disease-related aggresomes, which often contain alpha-synuclein (Scna), we investigated Scna expression in cells capable (WT) and incapable (MT-null) of producing IBs after Pb exposure. Scna protein showed poor basal expression in MT-null cells. Pb exposure increased Scna expression only in WT cells. MT transfection increased Scna transcript to WT levels. In WT or MT-transfected MT-null cells, Pb-induced Scna expression rapidly increased and then decreased over 48 h as Pb-induced IBs were formed. A direct interaction between Scna and MT was confirmed ex vivo by antibody pulldown assay where the proteins coprecipitated with an antibody to MT. Pb exposure caused increased colocalization of MT and Scna proteins with time only in WT cells. In WT mice after chronic Pb exposure Scna was localized in renal cells containing forming IBs, whereas MT-null mice did not form IBs. Thus, Scna could be component of Pb-induced IBs and, with MT, may play a role in IBs formation.

  3. Coronary vasospasm induced in transgenic mouse with increased phospholipase C-δ1 activity.

    PubMed

    Shibutani, Shuji; Osanai, Tomohiro; Ashitate, Toshihiro; Sagara, Shigeki; Izumiyama, Kei; Yamamoto, Yuko; Hanada, Kenji; Echizen, Takashi; Tomita, Hirofumi; Fujita, Takeshi; Miwa, Takeshi; Matsubara, Hiroaki; Homma, Yoshimi; Okumura, Ken

    2012-02-28

    We reported that phospholipase C (PLC)-δ1 activity was enhanced 3-fold in patients with coronary spastic angina. We detected variant PLC-δ1 with replacement of arginine 257 by histidine (R257H) showing increased enzymatic activity. We tested the hypothesis that increased PLC-δ1 activity causes enhanced coronary vasomotility. We generated transgenic (TG) mice with human R257H variant PLC-δ1 in vascular smooth muscle cells. PLC enzymatic activity in the coronary artery was increased by 2.57 and 1.89 times, respectively, in homozygous and heterozygous TG compared with wild-type (WT) mice. ST elevation after ergometrine occurred in 17 of 18 homozygous TG, 6 of 20 heterozygous TG, and 3 of 22 WT mice (P<0.01, homozygous TG versus WT; P<0.05, homozygous TG versus heterozygous TG; P=NS, heterozygous TG versus WT). ST elevation was associated with bradyarrhythmias in homozygous TG mice. Focal coronary artery narrowing was documented with the microvascular filling technique in 3 of 5 homozygous TG mice after ergometrine but not in any of 7 WT mice (P<0.05). In the isolated Langendorff hearts, coronary perfusion pressure was increased after ergometrine in homozygous TG mice (P<0.01) but not in heterozygous TG or WT mice. Coronary perfusion pressure increase after prostaglandin F2α was similar among homozygous TG, heterozygous TG, and WT mice. Cultured rat aortic smooth muscle cells transfected with variant PLC-δ1 showed a higher PLC activity than those with WT PLC-δ1 (P<0.05) and furthermore showed greater intracellular Ca2+ response to acetylcholine in variant than in WT PLC-δ1 (P<0.05). Increased PLC-δ1 activity enhances coronary vasomotility such as that seen in patients with coronary spastic angina.

  4. Development of diabetic nephropathy in nude mice.

    PubMed

    Lin, S; Xu, P C; Huang, Q E; Jia, J Y; Jia, Z H; Wei, L; Zheng, Z F; Shang, W Y

    2013-12-01

    Immune dysfunction is very common in diabetes mellitus (DM). However, there is no evidence whether such immune dysfunction can influence the development of DM, especially the development of diabetic nephropathy (DN). To investigate the influence of absence of T cells on DN. Balb/c nude mice and Balb/c wild-type nude (WT) mice were injected with streptozotocin (STZ). Serum tumor necrosis factor α (TNF-α), blood glucose, body weight, urine albumin/creatinine ratio and rate of kidney weight to body weight (KW/BW) were measured. After modeling, there was no difference of blood glucose level between nude mice and WT mice except at week 2 (28.3 ± 4.9 mmol/l vs 23.1 ± 3.9 mmol/l, p<0.01). At week 4, the serum TNF- α level of nude mice got to 175.08 ± 46.03 pg/ml (p<0.05, compared with baseline level 80.19 ± 8.46 pg/ml), whereas the TNF- α levels of WT mice was stable. At week 4, the body weight of nude mice was lower than that of WT mice (14.7 ± 3.15 g vs 17.97 ± 2.85 g, p<0.05); the urine albumin/creatinine ratio (Alb/Cr) of nude mice was higher than that of WT mice (50.96 ± 5.57 mg/mmol vs 41.09 ± 5.79 mg/mmol, p<0.05); the kidney weight to body weight of nude mice was higher than that of WT mice (0.01352 ± 0.00163 vs 0.01173 ± 0.00131, p<0.05). Correlation analysis showed urine Alb/Cr positively correlated with serum TNF-α level at week 4 (r = 0.588, p<0.01). At week 4, the increase of type IV collagen in the glomeruli was more prominent in diabetic nude mice than in diabetic WT mice (p<0.05). Absence of T cells in DM might influence the development of DN.

  5. Toll-like receptor-2 exacerbates murine acute viral hepatitis.

    PubMed

    Bleau, Christian; Burnette, Mélanie; Filliol, Aveline; Piquet-Pellorce, Claire; Samson, Michel; Lamontagne, Lucie

    2016-10-01

    Viral replication in the liver is generally detected by cellular endosomal Toll-like receptors (TLRs) and cytosolic helicase sensors that trigger antiviral inflammatory responses. Recent evidence suggests that surface TLR2 may also contribute to viral detection through recognition of viral coat proteins but its role in the outcome of acute viral infection remains elusive. In this study, we examined in vivo the role of TLR2 in acute infections induced by the highly hepatotrophic mouse hepatitis virus (MHV) type 3 and weakly hepatotrophic MHV-A59 serotype. To address this, C57BL/6 (wild-type; WT) and TLR2 knockout (KO) groups of mice were intraperitoneally infected with MHV3 or MHV-A59. MHV3 infection provoked a fulminant hepatitis in WT mice, characterized by early mortality and high alanine and aspartate transaminase levels, histopathological lesions and viral replication whereas infection of TLR2 KO mice was markedly less severe. MHV-A59 provoked a comparable mild and subclinical hepatitis in WT and TLR2 KO mice. MHV3-induced fulminant hepatitis in WT mice correlated with higher hepatic expression of interferon-β, interleukin-6, tumour necrosis factor-α, CXCL1, CCL2, CXCL10 and alarmin (interleukin-33) than in MHV-A59-infected WT mice and in MHV3-infected TLR2 KO mice. Intrahepatic recruited neutrophils, natural killer cells, natural killer T cells or macrophages rapidly decreased in MHV3-infected WT mice whereas they were sustained in MHV-A59-infected WT mice and MHV3-infected TLR2 KO. MHV3 in vitro infection of macrophagic cells induced rapid and higher viral replication and/or interleukin-6 induction in comparison to MHV-A59, and depended on viral activation of TLR2 and p38 mitogen-activated protein kinase. Taken together, these results support a new aggravating inflammatory role for TLR2 in MHV3-induced acute fulminant hepatitis. © 2016 John Wiley & Sons Ltd.

  6. Culture-dependent enumeration methods failed to simultaneously detect disinfectant-injured and genetically modified Escherichia coli in drinking water.

    PubMed

    Li, Jing; Liu, Lu; Yang, Dong; Liu, Wei-Li; Shen, Zhi-Qiang; Qu, Hong-Mei; Qiu, Zhi-Gang; Hou, Ai-Ming; Wang, Da-Ning; Ding, Chen-Shi; Li, Jun-Wen; Guo, Jian-Hua; Jin, Min

    2017-05-24

    Underestimation of Escherichia coli in drinking water, an indicator microorganism of sanitary risk, may result in potential risks of waterborne diseases. However, the detection of disinfectant-injured or genetically modified (GM) E. coli has been largely overlooked so far. To evaluate the accuracy of culture-dependent enumeration with regard to disinfectant-injured and GM E. coli, chlorine- or ozone-injured wild-type (WT) and GM E. coli were prepared and characterized. Then, water samples contaminated with these E. coli strains were assayed by four widely used methods, including lactose tryptose broth-based multiple-tube fermentation (MTF), m-endo-based membrane filtration method (MFM), an enzyme substrate test (EST) known as Colilert, and Petrifilm-based testing slip method (TSM). It was found that MTF was the most effective method to detect disinfectant-injured WT E. coli (with 76.9% trials detecting all these bacteria), while this method could not effectively detect GM E. coli (with uninjured bacteria undetectable and a maximal detection rate of 21.5% for the injured). The EST was the only method which enabled considerable enumeration of uninjured GM E. coli, with a detection rate of over 93%. However, the detection rate declined to lower than 45.4% once the GM E. coli was injured by disinfectants. The MFM was invalid for both disinfectant-injured and GM E. coli. This is the first study to report the failure of these commonly used enumeration methods to simultaneously detect disinfectant-injured and GM E. coli. Thus, it highlights the urgent requirement for the development of a more accurate and versatile enumeration method which allows the detection of disinfectant-injured and GM E. coli on the assessment of microbial quality of drinking water.

  7. Experimental Support for the Ecoimmunity Theory: Distinct Phenotypes of Nonlymphocytic Cells in SCID and Wild-Type Mice.

    PubMed

    Ochayon, David E; Baranovski, Boris M; Malkin, Peter; Schuster, Ronen; Kalay, Noa; Ben-Hamo, Rotem; Sloma, Ido; Levinson, Justin; Brazg, Jared; Efroni, Sol; Lewis, Eli C; Nevo, Uri

    2016-01-01

    Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.

  8. Transformation by oncogenic mutants and ligand-dependent activation of FLT3 wild-type requires the tyrosine residues 589 and 591.

    PubMed

    Vempati, Sridhar; Reindl, Carola; Wolf, Ulla; Kern, Ruth; Petropoulos, Konstantin; Naidu, Vegi M; Buske, Christian; Hiddemann, Wolfgang; Kohl, Tobias M; Spiekermann, Karsten

    2008-07-15

    Mutations in the receptor tyrosine kinase FLT3 are found in up to 30% of acute myelogenous leukemia patients and are associated with an inferior prognosis. In this study, we characterized critical tyrosine residues responsible for the transforming potential of active FLT3-receptor mutants and ligand-dependent activation of FLT3-WT. We performed a detailed structure-function analysis of putative autophosphorylation tyrosine residues in the FLT3-D835Y tyrosine kinase domain (TKD) mutant. All tyrosine residues in the juxtamembrane domain (Y566, Y572, Y589, Y591, Y597, and Y599), interkinase domain (Y726 and Y768), and COOH-terminal domain (Y955 and Y969) of the FLT3-D835Y construct were successively mutated to phenylalanine and the transforming activity of these mutants was analyzed in interleukin-3-dependent Ba/F3 cells. Tyrosine residues critical for the transforming potential of FLT3-D835Y were also analyzed in FLT3 internal tandem duplication mutants (FLT3-ITD)and the FLT3 wild-type (FLT3-WT) receptor. The substitution of the tyrosine residues by phenylalanine in the juxtamembrane, interkinase, and COOH-terminal domains resulted in a complete loss of the transforming potential of FLT3-D835Y-expressing cells which can be attributed to a significant reduction of signal tranducer and activator of transcription 5 (STAT5) phosphorylation at the molecular level. Reintroduction of single tyrosine residues revealed the critical role of Y589 and Y591 in reconstituting interleukin-3-independent growth of FLT3-TKD-expressing cells. Combined mutation of Y589 and Y591 to phenylalanine also abrogated ligand-dependent proliferation of FLT3-WT and the transforming potential of FLT3-ITD-with a subsequent abrogation of STAT5 phosphorylation. We identified two tyrosine residues, Y589 and Y591, in the juxtamembrane domain that are critical for the ligand-dependent activation of FLT3-WT and the transforming potential of oncogenic FLT3 mutants.

  9. Bridging the gap between chemistry, physiology, and evolution: quantifying the functionality of sperm whale myoglobin mutants.

    PubMed

    Dasmeh, Pouria; Kepp, Kasper P

    2012-01-01

    This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O(2)-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O(2)-consumption rate resembling workload, O(2) partial pressure resembling hypoxic stress, muscle cell size, and Mb concentration, resembling different organism-specific and compensatory variables. We find that O(2)-storage and -transport are distinct functions that rank mutants and wild type differently depending on O(2) partial pressure. Specifically, the wild type is near-optimal for storage at all conditions, but for transport only at severely hypoxic conditions. At normoxic conditions, low-affinity mutants are in fact better O(2)-transporters because they still have empty sites for O(2), giving rise to a larger [MbO(2)] gradient (more varying saturation curve). The distributions of functionality reveal that many mutants are near-neutral with respect to function, whereas only a few are strongly affected, and the variation in functionality increases dramatically at lower O(2) pressure. These results together show that conserved residues in wild type (WT) Mb were fixated under a selection pressure of low P(O2). Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A20 Haploinsufficiency Aggravates Transplant Arteriosclerosis in Mouse Vascular Allografts: Implications for Clinical Transplantation

    PubMed Central

    Cervantes, Jesus Revuelta; Wojcik, Brandon M.; Parulkhar, Anshul; Mele, Alessandra; LoGerfo, Philip J.; Siracuse, Jeffrey J.; Csizmadia, Eva; da Silva, Cleide G.; Ferran, Christiane

    2016-01-01

    Background Inflammation is central to the pathogenesis of transplant arteriosclerosis (TA). We questioned whether physiologic levels of anti-inflammatory A20 influence TA severity. Methods We performed major histocompatibility complex (MHC) mismatched aorta to carotid artery interposition grafts, using wild type (WT) or A20 heterozygote (HET) C57BL/6 (H-2b) donors and BALB/c (H-2d) recipients, and conversely BALB/c donors and WT/HET recipients. We analyzed aortic allografts by histology, immunohistochemistry, immunofluorescence, and gene profiling (qPCR). We validated select in vivo A20 targets in human and mouse smooth muscle cell (SMC) cultures. Results We noted significantly greater intimal hyperplasia in HET vs. WT allografts, indicating aggravated TA. Inadequate upregulation of A20 in HET allografts after transplantation was associated with excessive NF-κB activation, gauged by higher levels of IκBα, p65, VCAM-1, ICAM-1, CXCL10, CCL2, TNF, and IL-6 (mostly localized to SMC). Correspondingly, cytokine-induced upregulation of TNF and IL-6 in human and mouse SMC cultures inversely correlated with A20 expression. Aggravated TA in HET vs. WT allografts correlated with increased intimal SMC proliferation, and a higher number of infiltrating IFNγ+ and Granzyme B+ CD4+ T cells and natural killer cells, and lower number of FoxP3+ regulatory T cells. A20 haploinsufficiency in allograft recipients did not influence TA. Conclusions A20 haploinsufficiency in vascular allografts aggravates lesions of TA by exacerbating inflammation, SMC proliferation, and infiltration of pathogenic T cells. A20 single nucleotide polymorphisms (SNPs) associating with lower A20 expression or function in donors of vascularized allografts may inform risk and severity of TA, highlighting the clinical implications of our findings. PMID:27495763

  11. Brain and Brown Adipose Tissue Metabolism in Transgenic Tg2576 Mice Models of Alzheimer Disease Assessed Using 18F-FDG PET Imaging

    PubMed Central

    Coleman, Robert A.; Liang, Christopher; Patel, Rima; Ali, Sarah

    2017-01-01

    Objective: Imaging animal models of Alzheimer disease (AD) is useful for the development of therapeutic drugs and understanding AD. Transgenic Swedish hAPPswe Tg2576 mice are a good model of β-amyloid plaques. We report 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) imaging of brain and intrascapular brown adipose tissue (IBAT) in transgenic mice 2576 (Tg2576) and wild-type (WT) mice. Methods: Transgenic Tg2576 mice and WT mice, >18 months were injected intraperitonally with ≈ 25 to 30 MBq 18F-FDG while awake. After 60 minutes, they were anesthetized with isoflurane (2.5%) and imaged with Inveon MicroPET. Select mice were killed, imaged ex vivo, and 20 µm sections cut for autoradiography. 18F-FDG uptake in brain and IBAT PET and brain autoradiographs were analyzed. Results: Fasting blood glucose levels averaged 120 mg/dL for WT and 100 mg/dL for Tg2576. Compared to WT, Tg2576 mice exhibited a decrease in SUVglc in the various brain regions. Average reductions in the cerebrum regions were as high as −20%, while changes in cerebellum were −3%. Uptake of 18F-FDG in IBAT decreased by −60% in Tg2576 mice and was found to be significant. Intrascapular brown adipose tissue findings in Tg2576 mice are new and not previously reported. Use of blood glucose for PET data analysis and corpus callosum as reference region for autoradiographic analysis were important to detect change in Tg2576 mice. Conclusion: Our results suggest that 18F-FDG uptake in the Tg2576 mice brain show 18F-FDG deficits only when blood glucose is taken into consideration. PMID:28654383

  12. A Model of Best Vitelliform Macular Dystrophy in Rats

    PubMed Central

    Marmorstein, Alan D.; Stanton, J. Brett; Yocom, John; Bakall, Benjamin; Schiavone, Marc T.; Wadelius, Claes; Marmorstein, Lihua Y.; Peachey, Neal S.

    2010-01-01

    PURPOSE The VMD2 gene, mutated in Best macular dystrophy (BMD) encodes bestrophin, a 68-kDa basolateral plasma membrane protein expressed in retinal pigment epithelial (RPE) cells. BMD is characterized by a depressed light peak (LP) in the electro-oculogram. Bestrophin is thought to be the Cl channel that generates the LP. The goal was to generate an animal model of BMD and to determine the effects of bestrophin overexpression on the RPE-generated components of the ERG. METHODS Bestrophin or bestrophin mutants (W93C or R218C) were overexpressed in the RPE of rats by injection of replication-defective adenovirus. Immunofluorescence microscopy and ERG recordings were used to study subsequent effects. RESULTS Bestrophin was confined to the basolateral plasma membrane of the RPE. Neither wild-type (wt) nor mutant bestrophin affected the a- or b-waves of the ERG. Wt bestrophin, however, increased the c-wave and fast oscillation (FO), but not the LP. In contrast, both mutants had little or no effect on the c-wave and FO, but did reduce LP amplitude. LP amplitudes across a range of stimuli were not altered by wt bestrophin, though the luminance response function was desensitized. LP response functions were unaffected by bestrophin R218C but were significantly altered by bestrophin W93C. CONCLUSIONS A model of BMD was developed in the present study. Because overexpression of wt bestrophin shifted luminance response but did not alter the range of LP response amplitudes, the authors conclude that the rate-limiting step for generating LP amplitude occurs before activation of bestrophin or that bestrophin does not directly generate the LP conductance. PMID:15452084

  13. Optimizing the design and in vitro evaluation of bioreactive glucose oxidase-microspheres for enhanced cytotoxicity against multidrug resistant breast cancer cells.

    PubMed

    Cheng, Ji; Liu, Qun; Shuhendler, Adam J; Rauth, Andrew M; Wu, Xiao Yu

    2015-06-01

    Glucose oxidase (GOX) encapsulated in alginate-chitosan microspheres (GOX-MS) was shown in our previous work to produce reactive oxygen species (ROS) in situ and exhibit anticancer effects in vitro and in vivo. The purpose of present work was to optimize the design and thus enhance the efficacy of GOX-MS against multidrug resistant (MDR) cancer cells. GOX-MS with different mean diameters of 4, 20 or 140 μm were prepared using an emulsification-internal gelation-adsorption-chitosan coating method with varying compositions and conditions. The GOX loading efficiency, loading level, relative bioactivity of GOX-MS, and GOX leakage were determined and optimal chitosan concentrations in the coating solution were identified. The influence of particle size on cellular uptake, ROS generation, cytotoxicity and their underlying mechanisms was investigated. At the same GOX dose and incubation time, smaller sized GOX-MS produced larger amounts of H2O2 in cell culture medium and greater cytotoxicity toward murine breast cancer MDR (EMT6/AR1.0) and wild type (EMT6/WT) cells. Fluorescence and confocal laser scanning microscopy revealed significant uptake of small sized (4 μm) GOX-MS by both MDR and WT cells, but no cellular uptake of large (140 μm) GOX-MS. The GOX-MS were equally effective in killing both MDR cells and WT cells. The cytotoxicity of the GOX formulations was positively correlated with membrane damage and lipid peroxidation. GOX-MS induced greater membrane damage and lipid peroxidation in MDR cells than the WT cells. These results suggest that the optimized, small micron-sized GOX-MS are highly effective against MDR breast cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations.

    PubMed

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  15. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    PubMed Central

    Duan, Qi; Wang, Tingting; Zhang, Na; Perera, Vern; Liang, Xue; Abeysekera, Iruni Roshanie

    2016-01-01

    Background Increased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs) are regarded as scavengers of reactive oxygen species (ROS) in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU), a thyroid peroxidase inhibitor, perchlorate (KClO4), a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH) on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO) mice. Methods Eight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO) mice and background-matched wild type (WT) mice were used. Results By using a mitochondrial superoxide indicator (MitoSOX Red), lactate dehydrogenase (LDH) release, and methyl thiazolyl tetrazolium (MTT) assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM) can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05). Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05). Conclusion We concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid. PMID:26754589

  16. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle

    PubMed Central

    2013-01-01

    Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs. PMID:23295128

  17. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    PubMed Central

    2010-01-01

    Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age. Results Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility. Conclusions The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content. PMID:20487541

  18. Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder

    PubMed Central

    van Enkhuizen, Jordy; Geyer, Mark A.; Halberstadt, Adam L.; Zhuang, Xiaoxi; Young, Jared W.

    2014-01-01

    Background Patients with BD suffer from multifaceted symptoms, including hyperactive and psychomotor agitated behaviors. Previously, we quantified hyperactivity, increased exploration, and straighter movements of patients with BD mania in the human Behavioral Pattern Monitor (BPM). A similar BPM profile is observed in mice that are hyperdopaminergic due to reduced dopamine transporter (DAT) functioning. We hypothesized that dopamine depletion through alpha-methyl-p-tyrosine (AMPT) administration would attenuate this mania-like profile. Methods Male and female DAT wild-type (WT; n=26) and knockdown (KD; n=28) mice on a C57BL/6 background were repeatedly tested in the BPM to assess profile robustness and stability. The optimal AMPT dose was identified by treating male C57BL/6 mice (n=39) with vehicle or AMPT (10, 30, or 100 mg/kg) at 24, 20, and 4 h prior to testing in the BPM. Then, male and female DAT WT (n=40) and KD (n=37) mice were tested in the BPM after vehicle or AMPT (30 mg/kg) treatment. Results Compared to WT littermates, KD mice exhibited increased activity, exploration, straighter movement, and disorganized behavior. AMPT-treatment reduced hyperactivity and increased path organization, but potentiated specific exploration in KD mice without affecting WT mice. Limitations AMPT is not specific to dopamine and also depletes norepinephrine. Conclusions KD mice exhibit abnormal exploration in the BPM similar to patients with BD mania. AMPT-induced dopamine depletion attenuated some, but potentiated other, aspects of this mania-like profile in mice. Future studies should extend these findings into other aspects of mania to determine the suitability of AMPT as a treatment for BD mania. PMID:24287168

  19. Impact of Emergent Circulating Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer.

    PubMed

    Kim, Tae Won; Peeters, Marc; Thomas, Anne L; Gibbs, Peter; Hool, Kristina; Zhang, Jianqi; Ang, Agnes; Bach, Bruce Allen; Price, Timothy

    2018-06-13

    The accumulation of emergent RAS mutations during anti-epidermal growth factor receptor (EGFR) therapy is of interest as a mechanism for acquired resistance to anti-EGFR treatment. Plasma analysis of circulating tumor (ct) DNA is a minimally invasive and highly sensitive method to determine RAS mutational status. This biomarker analysis of the global phase III ASPECCT study used next-generation sequencing to detect expanded RAS ctDNA mutations in panitumumab-treated patients. Plasma samples collected at baseline and posttreatment were analyzed categorically for the presence of RAS mutations by the Plasma Select -R™ 64-gene panel at 0.1% sensitivity. Among panitumumab-treated patients with evaluable plasma samples at baseline (n = 238), 188 (79%) were wild-type (WT) RAS, and 50 (21%) were mutant RAS Of the 188 patients with baseline ctDNA WT RAS status, 164 had evaluable posttreatment results with a 32% rate of emergent RAS mutations. The median overall survival (OS) for WT and RAS mutant status by ctDNA at baseline was 13.7 (95% confidence interval: 11.5-15.4) and 7.9 months (6.4-9.6), respectively ( P < 0.0001). Clinical outcomes were not significantly different between patients with and without emergent ctDNA RAS mutations. Although patients with baseline ctDNA RAS mutations had worse outcomes than patients who were WT RAS before initiating treatment, emergent ctDNA RAS mutations were not associated with less favorable patient outcomes in panitumumab-treated patients. Further research is needed to determine a clinically relevant threshold for baseline and emergent ctDNA RAS mutations. Copyright ©2018, American Association for Cancer Research.

  20. Munc18-1 haploinsufficiency results in enhanced anxiety-like behavior as determined by heart rate responses in mice.

    PubMed

    Hager, Torben; Maroteaux, Grégoire; Pont, Paula du; Julsing, Joris; van Vliet, Rick; Stiedl, Oliver

    2014-03-01

    Heterozygous (HZ) missense mutations in the gene encoding syntaxin binding protein 1 (Stxbp1 or Munc18-1), a presynaptic protein essential for neurotransmitter release, causes early infantile epileptic encephalopathy, abnormal brain structure and mental retardation in humans. Here we investigated whether the mouse model mimics symptoms of the human phenotype. The effects of the deletion of munc18-1 were studied in HZ and wild-type (WT) mice based on heart rate (HR) and its variability (HRV) as independent measures to expand previous behavioral results of enhanced anxiety and impaired emotional learning suggesting mild cognitive impairments. HR responses were assessed during novelty exposure, during the expression and extinction of conditioned tone-dependent fear and during the diurnal phase. Novelty exposure yielded no differences in activity patterns between the two genotypes, while maximum HR differed significantly (WT: 770 bpm; HZ: 790 bpm). Retention tests after both auditory delay and trace fear conditioning showed a delayed extinction of the conditioned HR response in HZ mice compared to WT mice. Since the HR versus HRV correlation and HR dynamics assessed by nonlinear methods revealed similar function in HZ and WT mice, the higher HR responses of munc18-1 HZ mice to different emotional challenges cannot be attributed to differences in autonomic nervous system function. Thus, in contrast to the adverse consequences of deletion of a single allele of munc18-1 in humans, C57BL/6J mice show enhanced anxiety responses based on HR adjustments that extend previous results on the behavioral level without support of cognitive impairment, epileptic seizures and autonomic dysregulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Direct renin inhibition modulates insulin resistance in caveolin-1-deficient mice

    PubMed Central

    Chuengsamarn, Somlak; Garza, Amanda E.; Krug, Alexander W.; Romero, Jose R.; Adler, Gail K.; Williams, Gordon H.; Pojoga, Luminita H.

    2012-01-01

    Objective To test the hypothesis that aliskiren improves the metabolic phenotype in a genetic mouse model of the metabolic syndrome (the caveolin-1 knock out (KO) mouse). Materials/Methods Eleven-week-old cav-1 KO and genetically matched wild-type (WT) mice were randomized to three treatment groups: placebo (n = 8/group), amlodipine (6 mg/kg/day, n = 18/ group), and aliskiren (50 mg/kg/day, n = 18/ group). After three weeks of treatment, all treatment groups were assessed for several measures of insulin resistance (fasting insulin and glucose, HOMA-IR, and the response to an intraperitoneal glucose tolerance test (ipGTT)) as well as for triglyceride levels and the blood pressure response to treatment. Results Treatment with aliskiren did not affect the ipGTT response but significantly lowered the HOMA-IR and insulin levels in cav-1 KO mice. However, treatment with amlodipine significantly degraded the ipGTT response, as well as the HOMA-IR and insulin levels in the cav-1 KO mice. Aliskiren also significantly lowered triglyceride levels in the cav-1 KO but not in the WT mice. Moreover, aliskiren treatment had a significantly greater effect on blood pressure readings in the cav-1 KO vs. WT mice, and marginally more effective than amlodipine. Conclusions Our results support the hypothesis that aliskiren reduces insulin resistance as indicated by improved HOMA-IR in cav-1 KO mice whereas amlodipine treatment resulted in changes consistent with increased insulin resistance. In addition, aliskiren was substantially more effective in lowering blood pressure in the cav-1 KO mouse model than in WT mice and marginally more effective than amlodipine. PMID:22954672

  2. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction

    PubMed Central

    Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M

    2015-01-01

    Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404

  3. Role of WNT16 in the Regulation of Periosteal Bone Formation in Female Mice

    PubMed Central

    Wergedal, Jon E.; Kesavan, Chandrasekhar; Brommage, Robert; Das, Subhashri

    2015-01-01

    In this study, we evaluated the role of WNT16 in regulating bone size, an important determinant of bone strength. Mice with targeted disruption of the Wnt16 gene exhibited a 24% reduction in tibia cross-sectional area at 12 weeks of age compared with that of littermate wild-type (WT) mice. Histomorphometric studies revealed that the periosteal bone formation rate and mineral apposition rate were reduced (P < .05) by 55% and 32%, respectively, in Wnt16 knockout (KO) vs WT mice at 12 weeks of age. In contrast, the periosteal tartrate resistant acid phosphatase-labeled surface was increased by 20% in the KO mice. Because mechanical strain is an important physiological regulator of periosteal bone formation (BF), we determined whether mechanical loading–induced periosteal BF is compromised in Wnt16 KO mice. Application of 4800-μe strain to the right tibia using a 4-point bending loading method for 2 weeks (2-Hz frequency, 36 cycles per day, 6 days/wk) produced a significant increase in cross-sectional area (11% above that of the unloaded left tibia, P < .05, n = 6) in the WT but not in the KO mice (−0.2% change). Histomorphometric analyses revealed increases in the periosteal bone formation rate and mineral apposition rate in the loaded bones of WT but not KO mice. Wnt16 KO mice showed significant (20%–70%) reductions in the expression levels of markers of canonical (β-catenin and Axin2) but not noncanonical (Nfatc1 and Tnnt2) WNT signaling in the periosteum at 5 weeks of age. Our findings suggest that WNT16 acting via canonical WNT signaling regulates mechanical strain-induced periosteal BF and bone size. PMID:25521583

  4. Discrimination of haptens from prohaptens using the metabolically deficient Cpr{sup low/low} mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipinda, Itai, E-mail: IChipinda@cdc.gov; Blachere, Francoise M.; Anderson, Stacey E.

    2011-05-01

    The murine local lymph node assay (LLNA) is a validated, well accepted method for identification of chemical contact allergens. Both direct acting haptens and prohaptens (requiring metabolic activation) can be identified, but not differentiated by this assay. This study was used to assess the utility of a pan microsomal metabolic deficient mouse to distinguish between direct acting haptens and prohaptens in the LLNA. Hapten and prohapten induced cell proliferation was compared in C57BL/6J (B6) wild type (WT) versus homozygous (HO) knockout mice with a hypomorphic NADPH-Cytochrome P450 Reductase (CPR) gene (termed Cpr{sup low/low}) resulting in low CPR enzyme activity. Micemore » were dosed with known prohaptens; benzo(a)pyrene (BaP), carvone oxime (COx) and paracetamol (PCM) and haptens; oxazolone (OX), 4-ethoxymethylene-2-phenyl-2-oxazolin-5-one (EtOX), and N-acetylbenzoquinoneimine (NABQI) in this study. Skin microsomes from the WT, HO and heterozygous (HT) Cpr{sup low/low} mice were compared and evaluated for CPR activity. Lymphocyte proliferative responses to BaP, COx and PCM were significantly abrogated by 36.4%, 45.2% and 50.8%, respectively; in Cpr{sup low/low} knock out (KO) mice versus WT mice; while the lymphocyte proliferative responses to the direct acting haptens OX, EtOX and NABQI were comparable. CPR activity, determined as Units/mg protein, was determined to be significantly lower in the Cpr{sup low/low} mice compared to the WT. Results of the present study suggest potential utility of the Cpr{sup low/low} mice in the LLNA to differentiate prohaptens from direct acting haptens.« less

  5. Inflammasome activation mediates inflammation and outcome in humans and mice with pneumococcal meningitis

    PubMed Central

    2013-01-01

    Background Inflammasomes are multi-protein intracellular signaling complexes that have recently been hypothesized to play a role in the regulation of the inflammation response. We studied associations between inflammasome-associated cytokines IL-1β and IL-18 in cerebrospinal fluid (CSF) of patients with bacterial meningitis and clinical outcome, and pneumococcal serotype. In a murine model of pneumococcal meningitis we examined the pathophysiological roles of two inflammasome proteins, NLRP3 (Nod-like receptor protein-3) and adaptor protein ASC (apoptosis-associated speck-like protein). Methods In a nationwide prospective cohort study, CSF cytokine levels were measured and related to clinical outcome and pneumococcal serotype. In a murine model of pneumococcal meningitis using Streptococcus pneumoniae serotype 3, we examined bacterial titers, cytokine profiles and brain histology at 6 and 30 hours after inoculation in wild-type (WT), Asc and Nlrp3 deficient mice. Results In patients with bacterial meningitis, CSF levels of inflammasome associated cytokines IL-1β and IL-18 were related to complications, and unfavorable disease outcome. CSF levels of IL-1β were associated with pneumococcal serotype (p<0.001). In our animal model, Asc and Nlrp3 deficient mice had decreased systemic inflammatory responses and bacterial outgrowth as compared to WT mice. Differences between Asc−/− and WT mice appeared sooner after bacterial inoculation and were more widespread (lower pro-inflammatory cytokine levels in both blood and brain homogenate) than in Nlrp3-/-mice. Nlrp3 deficiency was associated with an increase of cerebral neutrophil infiltration and cerebral hemorrhages when compared to WT controls. Conclusions Our results implicate an important role for inflammasome proteins NLRP3 and ASC in the regulation of the systemic inflammatory response and the development of cerebral damage during pneumococcal meningitis, which may dependent on the pneumococcal serotype. PMID:23902681

  6. Ocular inflammation in HLA-B27 transgenic mice reveals a potential role for MHC class I in corneal immune privilege.

    PubMed

    Lin, Aifeng; Guo, Xiaoxin; Inman, Robert D; Sivak, Jeremy M

    2015-01-01

    HLA-B27 is a major histocompatibility complex class I (MHCI) allele that has been closely associated with the development of ankylosing spondylitis and acute anterior uveitis (AAU), the most common form of uveitis worldwide. We have been characterizing the phenotypes of transgenic mice carrying a human HLA-B27 allele, but that are deficient in endogenous mouse MHCI genes (H-2K(-/-) and H-2D(-/-) double knockout, or DKO) to create the HLA-B27/DKO line. In maintaining and expanding this colony, we observed a rare sporadic severe central keratitis that developed in transgenic animals, but that was not present in wild-type (WT) animals. The corneas of affected HLA-B27/DKO and DKO mice were compared to their WT counterparts by staining with standard histological methods for markers of inflammation and neovascularization. A model of experimental corneal inflammation was subsequently used to test the responses of each genotype to insult. We identified a previously unreported corneal pathology in naïve HLA-B27/DKO mice, and we describe significantly prolonged CD4(+)- and CD8(+)-associated inflammation in these animals following an experimentally induced corneal injury. These results demonstrate an increased T-cell response in B27/DKO corneas due to the expression of the HLA-B27 allele, suggesting that low MHCI expression in WT corneas is an important contributor to immune privilege.

  7. Development of an FHbp-CTB holotoxin-like chimera and the elicitation of bactericidal antibodies against serogroup B Neisseria meningitidis.

    PubMed

    Price, Gregory A; Bash, Margaret C

    2018-01-29

    The Neisseria meningitidis factor H binding protein (FHbp) is an important virulence factor and vaccine antigen contained in both USA licensed serogroup B meningococcal vaccines. Recent studies in human factor H (hFH) transgenic mice suggest that hFH-FHbp interactions lower FHbp-elicited immunogenicity. To provide tools with which to characterize and potentially improve FHbp immunogenicity, we developed an FHbp-cholera holotoxin-like chimera vaccine expression system in Escherichia coli that utilizes cholera toxin B (CTB) as both a scaffold and adjuvant for FHbp. We developed FHbp-CTB chimeras using a wild-type (WT) FHbp and a low hFH-binding FHbp mutant R41S. Both chimeras bound to G M1 ganglioside and were recognized by the FHbp-specific monoclonal antibody JAR4. The R41S mutant had greatly reduced hFH binding compared to the WT FHbp-CTB chimera. WT and R41S FHbp-CTB chimeric antigens were compared to equimolar amounts of FHbp admixed with CTB or FHbp alone in mouse immunogenicity studies. The chimeras were significantly more immunogenic than FHbp alone or mixed with CTB, and elicited bactericidal antibodies against a panel of MenB isolates. This study demonstrates a unique and simple method for studying FHbp immunogenicity. The chimeric approach may facilitate studies of other protein-based antigens targeting pathogenic Neisseria and lay groundwork for the development of new protein based vaccines against meningococcal and gonococcal disease. Published by Elsevier Ltd.

  8. Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata.

    PubMed

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Li, Yingying; Li, Yaqian; Chen, Jie

    2015-05-01

    Mutant T66 was isolated from 450 mutants (constructed with Agrobacterium tumefaciens-mediated transformation method) of Trichoderma harzianum. Maize seeds coated with T66 were more susceptible to Curvularia lunata when compared with those coated with wild-type (WT) strain. The disease index of maize treated with T66 and WT were 62.5 and 42.1%, respectively. Further research showed T-DNA has inserted into the ORF of one gene, which resulted in the functional difference between WT and T66. The gene was cloned and named Thc6, which encodes a novel 327 amino acid protein. To investigate its function, we obtained knockout, complementation, and overexpression mutants of Thc6. Challenge inoculation studies suggested that the Thc6 overexpression mutant can reduce the disease index of maize inbred line Huangzao 4 against the leaf spot pathogen (C. lunata). Meanwhile, The Thc6 mutants were found to affect the resistance of maize inbred line Huangzao 4 against C. lunata by enhancing the activation of jasmonate-responsive genes expression. Liquid chromatography-mass spectrometry (LC-MS) data further confirmed that the concentration of jasmonate in the induced maize exhibits a parallel change tendency with the expression level of defense-related genes. Hence, the Thc6 gene could be participated in the induced resistance of maize inbred line Huangzao 4 against C. lunata infection through a jasmonic acid-dependent pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of an ntrX mutant of Neisseria gonorrhoeae reveals a response regulator that controls expression of respiratory enzymes in oxidase-positive proteobacteria.

    PubMed

    Atack, John M; Srikhanta, Yogitha N; Djoko, Karrera Y; Welch, Jessica P; Hasri, Norain H M; Steichen, Christopher T; Vanden Hoven, Rachel N; Grimmond, Sean M; Othman, Dk Seti Maimonah Pg; Kappler, Ulrike; Apicella, Michael A; Jennings, Michael P; Edwards, Jennifer L; McEwan, Alastair G

    2013-06-01

    NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.

  10. Fluctuating hydrogen-bond networks govern anomalous electron transfer kinetics in a blue copper protein.

    PubMed

    Kretchmer, Joshua S; Boekelheide, Nicholas; Warren, Jeffrey J; Winkler, Jay R; Gray, Harry B; Miller, Thomas F

    2018-06-12

    We combine experimental and computational methods to address the anomalous kinetics of long-range electron transfer (ET) in mutants of Pseudomonas aeruginosa azurin. ET rates and driving forces for wild type (WT) and three N47X mutants (X = L, S, and D) of Ru(2,2'-bipyridine) 2 (imidazole)(His83) azurin are reported. An enhanced ET rate for the N47L mutant suggests either an increase of the donor-acceptor (DA) electronic coupling or a decrease in the reorganization energy for the reaction. The underlying atomistic features are investigated using a recently developed nonadiabatic molecular dynamics method to simulate ET in each of the azurin mutants, revealing unexpected aspects of DA electronic coupling. In particular, WT azurin and all studied mutants exhibit more DA compression during ET (>2 Å) than previously recognized. Moreover, it is found that DA compression involves an extended network of hydrogen bonds, the fluctuations of which gate the ET reaction, such that DA compression is facilitated by transiently rupturing hydrogen bonds. It is found that the N47L mutant intrinsically disrupts this hydrogen-bond network, enabling particularly facile DA compression. This work, which reveals the surprisingly fluctional nature of ET in azurin, suggests that hydrogen-bond networks can modulate the efficiency of long-range biological ET. Copyright © 2018 the Author(s). Published by PNAS.

  11. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.

    PubMed

    Chen, Ana; Li, Yamei; Nie, Jianqi; McNeil, Brian; Jeffrey, Laura; Yang, Yankun; Bai, Zhonghu

    2015-10-01

    Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Genetic Retargeting of Adenovirus: Novel Strategy Employing “Deknobbing” of the Fiber

    PubMed Central

    Magnusson, Maria K.; Hong, Saw See; Boulanger, Pierre; Lindholm, Leif

    2001-01-01

    For efficient and versatile use of adenovirus (Ad) as an in vivo gene therapy vector, modulation of the viral tropism is highly desirable. In this study, a novel method to genetically alter the Ad fiber tropism is described. The knob and the last 15 shaft repeats of the fiber gene were deleted and replaced with an external trimerization motif and a new cell-binding ligand, in this case the integrin-binding motif RGD. The corresponding recombinant fiber retained the basic biological functions of the natural fiber, i.e., trimerization, nuclear import, penton formation, and ligand binding. The recombinant fiber bound to integrins but failed to react with antiknob antibody. For virus production, the recombinant fiber gene was rescued into the Ad genome at the exact position of the wild-type (WT) fiber to make use of the native regulation of fiber expression. The recombinant virus Ad5/FibR7-RGD yielded plaques on 293 cells, but the spread through the monolayer was two to three times delayed compared to WT, and the ratio of infectious to physical particles was 20 times lower. Studies on virus tropism showed that Ad5/FibR7-RGD was able to infect cells which did not express the coxsackie-adenovirus receptor (CAR), but did express integrins. Ad5/FibR7-RGD virus infectivity was unchanged in the presence of antiknob antibody, which neutralized the WT virus. Ad5/FibR7-RGD virus showed an expanded tropism, which is useful when gene transfer to cells not expressing CAR is needed. The described method should also make possible the construction of Ad genetically retargeted via ligands other than RGD. PMID:11462000

  13. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis.

    PubMed

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi; Tomino, Yasuhiko

    2011-11-01

    In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). The urinary protein level in Tg mice decreased significantly during the acute phase (~Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with vascular thrombosis in WT mice. The glomerular damage in Tg mice was improved by administration of an ARB. The present experimental model suggests that tubular enhancement of L-FABP may protect mice with anti-GBM GN from progression of both tubulointerstitial and glomerular injury.

  14. Multiple adaptive amino acid substitutions increase the virulence of a wild waterfowl-origin reassortant H5N8 avian influenza virus in mice.

    PubMed

    Yu, Zhijun; Cheng, Kaihui; Sun, Weiyang; Zhang, Xinghai; Xia, Xianzhu; Gao, Yuwei

    2018-01-15

    A novel H5N8 highly pathogenic avian influenza virus (HPAIV) caused poultry outbreaks in the Republic of Korea in 2014. The novel H5N8 HPAIV has spread to Asia, Europe, and North America and caused great public concern from then on. Here, we generated mouse-adapted variants of a wild waterfowl-origin H5N8 HPAIV to identify adaptive mutants that confer enhanced pathogenicity in mammals. The mouse lethal doses (MLD 50 ) of the mouse-adapted variants were reduced 31623-fold compared to the wild-type (WT) virus. Mouse-adapted variants displayed enhanced replication in vitro and in vivo, and expanded tissue tropism in mice. Sequence analysis revealed four amino acid substitutions in the PB2 (E627K), PA (F35S), HA (R227H), and NA (I462V) proteins. These data suggest that multiple amino acid substitutions collaboratively increase the virulence of a wild bird-origin reassortant H5N8 HPAIV and cause severe disease in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    PubMed

    Windahl, Sara H; Andersson, Niklas; Börjesson, Anna E; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05) and cortical bone mineral content (-15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  16. Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice

    PubMed Central

    Windahl, Sara H.; Andersson, Niklas; Börjesson, Anna E.; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K.; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels. PMID:21731732

  17. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter

    PubMed Central

    Gjymishka, Altin; Salido, Eduardo C.; Allison, Milton J.; Freel, Robert W.

    2011-01-01

    Oxalobacter colonization of rat intestine was previously shown to promote enteric oxalate secretion and elimination, leading to significant reductions in urinary oxalate excretion (Hatch et al. Kidney Int 69: 691–698, 2006). The main goal of the present study, using a mouse model of primary hyperoxaluria type 1 (PH1), was to test the hypothesis that colonization of the mouse gut by Oxalobacter formigenes could enhance enteric oxalate secretion and effectively reduce the hyperoxaluria associated with this genetic disease. Wild-type (WT) mice and mice deficient in liver alanine-glyoxylate aminotransferase (Agxt) exhibiting hyperoxalemia and hyperoxaluria were used in these studies. We compared the unidirectional and net fluxes of oxalate across isolated, short-circuited large intestine of artificially colonized and noncolonized mice. In addition, plasma and urinary oxalate was determined. Our results demonstrate that the cecum and distal colon contribute significantly to enteric oxalate excretion in Oxalobacter-colonized Agxt and WT mice. In colonized Agxt mice, urinary oxalate excretion was reduced 50% (to within the normal range observed for WT mice). Moreover, plasma oxalate concentrations in Agxt mice were also normalized (reduced 50%). Colonization of WT mice was also associated with marked (up to 95%) reductions in urinary oxalate excretion. We conclude that segment-specific effects of Oxalobacter on intestinal oxalate transport in the PH1 mouse model are associated with a normalization of plasma oxalate and urinary oxalate excretion in otherwise hyperoxalemic and hyperoxaluric animals. PMID:21163900

  18. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts.

    PubMed

    Ring, Axel; Le Lay, Soazig; Pohl, Juergen; Verkade, Paul; Stremmel, Wolfgang

    2006-04-01

    Several lines of evidence suggest that lipid rafts are involved in cellular fatty acid uptake and influence fatty acid translocase (FAT/CD36) function. However, it remains unknown whether caveolae, a specialized raft type, are required for this mechanism. Here, we show that wild-type (WT) mouse embryonic fibroblasts (MEFs) and caveolin-1 knockout (KO) MEFs, which are devoid of caveolae, have comparable overall expression of FAT/CD36 protein but altered subcellular FAT/CD36 localization and function. In WT MEFs, FAT/CD36 was isolated with both lipid raft enriched detergent-resistant membranes (DRMs) and detergent-soluble membranes (DSMs), whereas in cav-1 KO cells it was exclusively associated with DSMs. Subcellular fractionation demonstrated that FAT/CD36 in WT MEFs was localized intracellularly and at the plasma membrane level while in cav-1 KO MEFs it was absent from the plasma membrane. This mistargeting of FAT/CD36 in cav-1 KO cells resulted in reduced fatty acid uptake compared to WT controls. Adenoviral expression of caveolin-1 in KO MEFs induced caveolae formation, redirection of FAT/CD36 to the plasma membrane and rescue of fatty acid uptake. In conclusion, our data provide evidence that caveolin-1 is necessary to target FAT/CD36 to the plasma membrane. Caveolin-1 may influence fatty acid uptake by regulating surface availability of FAT/CD36.

  19. Isolation and characterization of dental epithelial cells derived from amelogenesis imperfecta rat.

    PubMed

    Adiningrat, A; Tanimura, A; Miyoshi, K; Hagita, H; Yanuaryska, R D; Arinawati, D Y; Horiguchi, T; Noma, T

    2016-03-01

    Disruption of the third zinc finger domain of specificity protein 6 (SP6) presents an enamel-specific defect in a rat model of amelogenesis imperfecta (AMI rats). To understand the molecular basis of amelogenesis imperfecta caused by the Sp6 mutation, we established and characterized AMI-derived rat dental epithelial (ARE) cells. ARE cell clones were isolated from the mandibular incisors of AMI rats, and amelogenesis-related gene expression was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Localization of wild-type SP6 (SP6WT) and mutant-type SP6 (SP6AMI) was analyzed by immunocytochemistry. SP6 transcriptional activity was monitored by rho-associated protein kinase 1 (Rock1) promoter activity with its specific binding to the promoter region in dental (G5 and ARE) and non-dental (COS-7) epithelial cells. Isolated ARE cells were varied in morphology and gene expression. Both SP6WT and SP6AMI were mainly detected in nuclei. The promoter analysis revealed that SP6WT and SP6AMI enhanced Rock1 promoter activity in G5 cells but that enhancement by SP6AMI was weaker, whereas no enhancement was observed in the ARE and COS-7 cells, even though SP6WT and SP6AMI bound to the promoter in all instances. ARE cell clones can provide a useful in vitro model to study the mechanism of SP6-mediated amelogenesis imperfecta. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema.

    PubMed

    Fujii, Utako; Miyahara, Nobuaki; Taniguchi, Akihiko; Waseda, Koichi; Morichika, Daisuke; Kurimoto, Etsuko; Koga, Hikari; Kataoka, Mikio; Gelfand, Erwin W; Cua, Daniel J; Yoshimura, Akihiko; Tanimoto, Mitsune; Kanehiro, Arihiko

    2016-11-01

    We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23 -/- ) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23 -/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23 -/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.

Top